1 //===- ArgumentPromotion.cpp - Promote by-reference arguments -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass promotes "by reference" arguments to be "by value" arguments.  In
10 // practice, this means looking for internal functions that have pointer
11 // arguments.  If it can prove, through the use of alias analysis, that an
12 // argument is *only* loaded, then it can pass the value into the function
13 // instead of the address of the value.  This can cause recursive simplification
14 // of code and lead to the elimination of allocas (especially in C++ template
15 // code like the STL).
16 //
17 // This pass also handles aggregate arguments that are passed into a function,
18 // scalarizing them if the elements of the aggregate are only loaded.  Note that
19 // by default it refuses to scalarize aggregates which would require passing in
20 // more than three operands to the function, because passing thousands of
21 // operands for a large array or structure is unprofitable! This limit can be
22 // configured or disabled, however.
23 //
24 // Note that this transformation could also be done for arguments that are only
25 // stored to (returning the value instead), but does not currently.  This case
26 // would be best handled when and if LLVM begins supporting multiple return
27 // values from functions.
28 //
29 //===----------------------------------------------------------------------===//
30 
31 #include "llvm/Transforms/IPO/ArgumentPromotion.h"
32 #include "llvm/ADT/DepthFirstIterator.h"
33 #include "llvm/ADT/None.h"
34 #include "llvm/ADT/Optional.h"
35 #include "llvm/ADT/STLExtras.h"
36 #include "llvm/ADT/ScopeExit.h"
37 #include "llvm/ADT/SmallPtrSet.h"
38 #include "llvm/ADT/SmallVector.h"
39 #include "llvm/ADT/Statistic.h"
40 #include "llvm/ADT/Twine.h"
41 #include "llvm/Analysis/AssumptionCache.h"
42 #include "llvm/Analysis/BasicAliasAnalysis.h"
43 #include "llvm/Analysis/CGSCCPassManager.h"
44 #include "llvm/Analysis/CallGraph.h"
45 #include "llvm/Analysis/CallGraphSCCPass.h"
46 #include "llvm/Analysis/LazyCallGraph.h"
47 #include "llvm/Analysis/Loads.h"
48 #include "llvm/Analysis/MemoryLocation.h"
49 #include "llvm/Analysis/ValueTracking.h"
50 #include "llvm/Analysis/TargetLibraryInfo.h"
51 #include "llvm/Analysis/TargetTransformInfo.h"
52 #include "llvm/IR/Argument.h"
53 #include "llvm/IR/Attributes.h"
54 #include "llvm/IR/BasicBlock.h"
55 #include "llvm/IR/CFG.h"
56 #include "llvm/IR/Constants.h"
57 #include "llvm/IR/DataLayout.h"
58 #include "llvm/IR/DerivedTypes.h"
59 #include "llvm/IR/Function.h"
60 #include "llvm/IR/IRBuilder.h"
61 #include "llvm/IR/InstrTypes.h"
62 #include "llvm/IR/Instruction.h"
63 #include "llvm/IR/Instructions.h"
64 #include "llvm/IR/Metadata.h"
65 #include "llvm/IR/Module.h"
66 #include "llvm/IR/NoFolder.h"
67 #include "llvm/IR/PassManager.h"
68 #include "llvm/IR/Type.h"
69 #include "llvm/IR/Use.h"
70 #include "llvm/IR/User.h"
71 #include "llvm/IR/Value.h"
72 #include "llvm/InitializePasses.h"
73 #include "llvm/Pass.h"
74 #include "llvm/Support/Casting.h"
75 #include "llvm/Support/Debug.h"
76 #include "llvm/Support/FormatVariadic.h"
77 #include "llvm/Support/raw_ostream.h"
78 #include "llvm/Transforms/IPO.h"
79 #include <algorithm>
80 #include <cassert>
81 #include <cstdint>
82 #include <functional>
83 #include <iterator>
84 #include <map>
85 #include <set>
86 #include <utility>
87 #include <vector>
88 
89 using namespace llvm;
90 
91 #define DEBUG_TYPE "argpromotion"
92 
93 STATISTIC(NumArgumentsPromoted, "Number of pointer arguments promoted");
94 STATISTIC(NumAggregatesPromoted, "Number of aggregate arguments promoted");
95 STATISTIC(NumByValArgsPromoted, "Number of byval arguments promoted");
96 STATISTIC(NumArgumentsDead, "Number of dead pointer args eliminated");
97 
98 /// A vector used to hold the indices of a single GEP instruction
99 using IndicesVector = std::vector<uint64_t>;
100 
101 /// DoPromotion - This method actually performs the promotion of the specified
102 /// arguments, and returns the new function.  At this point, we know that it's
103 /// safe to do so.
104 static Function *
105 doPromotion(Function *F, SmallPtrSetImpl<Argument *> &ArgsToPromote,
106             SmallPtrSetImpl<Argument *> &ByValArgsToTransform,
107             Optional<function_ref<void(CallBase &OldCS, CallBase &NewCS)>>
108                 ReplaceCallSite) {
109   // Start by computing a new prototype for the function, which is the same as
110   // the old function, but has modified arguments.
111   FunctionType *FTy = F->getFunctionType();
112   std::vector<Type *> Params;
113 
114   using ScalarizeTable = std::set<std::pair<Type *, IndicesVector>>;
115 
116   // ScalarizedElements - If we are promoting a pointer that has elements
117   // accessed out of it, keep track of which elements are accessed so that we
118   // can add one argument for each.
119   //
120   // Arguments that are directly loaded will have a zero element value here, to
121   // handle cases where there are both a direct load and GEP accesses.
122   std::map<Argument *, ScalarizeTable> ScalarizedElements;
123 
124   // OriginalLoads - Keep track of a representative load instruction from the
125   // original function so that we can tell the alias analysis implementation
126   // what the new GEP/Load instructions we are inserting look like.
127   // We need to keep the original loads for each argument and the elements
128   // of the argument that are accessed.
129   std::map<std::pair<Argument *, IndicesVector>, LoadInst *> OriginalLoads;
130 
131   // Attribute - Keep track of the parameter attributes for the arguments
132   // that we are *not* promoting. For the ones that we do promote, the parameter
133   // attributes are lost
134   SmallVector<AttributeSet, 8> ArgAttrVec;
135   AttributeList PAL = F->getAttributes();
136 
137   // First, determine the new argument list
138   unsigned ArgNo = 0;
139   for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E;
140        ++I, ++ArgNo) {
141     if (ByValArgsToTransform.count(&*I)) {
142       // Simple byval argument? Just add all the struct element types.
143       Type *AgTy = I->getParamByValType();
144       StructType *STy = cast<StructType>(AgTy);
145       llvm::append_range(Params, STy->elements());
146       ArgAttrVec.insert(ArgAttrVec.end(), STy->getNumElements(),
147                         AttributeSet());
148       ++NumByValArgsPromoted;
149     } else if (!ArgsToPromote.count(&*I)) {
150       // Unchanged argument
151       Params.push_back(I->getType());
152       ArgAttrVec.push_back(PAL.getParamAttrs(ArgNo));
153     } else if (I->use_empty()) {
154       // Dead argument (which are always marked as promotable)
155       ++NumArgumentsDead;
156     } else {
157       // Okay, this is being promoted. This means that the only uses are loads
158       // or GEPs which are only used by loads
159 
160       // In this table, we will track which indices are loaded from the argument
161       // (where direct loads are tracked as no indices).
162       ScalarizeTable &ArgIndices = ScalarizedElements[&*I];
163       for (User *U : make_early_inc_range(I->users())) {
164         Instruction *UI = cast<Instruction>(U);
165         Type *SrcTy;
166         if (LoadInst *L = dyn_cast<LoadInst>(UI))
167           SrcTy = L->getType();
168         else
169           SrcTy = cast<GetElementPtrInst>(UI)->getSourceElementType();
170         // Skip dead GEPs and remove them.
171         if (isa<GetElementPtrInst>(UI) && UI->use_empty()) {
172           UI->eraseFromParent();
173           continue;
174         }
175 
176         IndicesVector Indices;
177         Indices.reserve(UI->getNumOperands() - 1);
178         // Since loads will only have a single operand, and GEPs only a single
179         // non-index operand, this will record direct loads without any indices,
180         // and gep+loads with the GEP indices.
181         for (const Use &I : llvm::drop_begin(UI->operands()))
182           Indices.push_back(cast<ConstantInt>(I)->getSExtValue());
183         // GEPs with a single 0 index can be merged with direct loads
184         if (Indices.size() == 1 && Indices.front() == 0)
185           Indices.clear();
186         ArgIndices.insert(std::make_pair(SrcTy, Indices));
187         LoadInst *OrigLoad;
188         if (LoadInst *L = dyn_cast<LoadInst>(UI))
189           OrigLoad = L;
190         else
191           // Take any load, we will use it only to update Alias Analysis
192           OrigLoad = cast<LoadInst>(UI->user_back());
193         OriginalLoads[std::make_pair(&*I, Indices)] = OrigLoad;
194       }
195 
196       // Add a parameter to the function for each element passed in.
197       for (const auto &ArgIndex : ArgIndices) {
198         // not allowed to dereference ->begin() if size() is 0
199         Params.push_back(GetElementPtrInst::getIndexedType(
200             I->getType()->getPointerElementType(), ArgIndex.second));
201         ArgAttrVec.push_back(AttributeSet());
202         assert(Params.back());
203       }
204 
205       if (ArgIndices.size() == 1 && ArgIndices.begin()->second.empty())
206         ++NumArgumentsPromoted;
207       else
208         ++NumAggregatesPromoted;
209     }
210   }
211 
212   Type *RetTy = FTy->getReturnType();
213 
214   // Construct the new function type using the new arguments.
215   FunctionType *NFTy = FunctionType::get(RetTy, Params, FTy->isVarArg());
216 
217   // Create the new function body and insert it into the module.
218   Function *NF = Function::Create(NFTy, F->getLinkage(), F->getAddressSpace(),
219                                   F->getName());
220   NF->copyAttributesFrom(F);
221   NF->copyMetadata(F, 0);
222 
223   // The new function will have the !dbg metadata copied from the original
224   // function. The original function may not be deleted, and dbg metadata need
225   // to be unique so we need to drop it.
226   F->setSubprogram(nullptr);
227 
228   LLVM_DEBUG(dbgs() << "ARG PROMOTION:  Promoting to:" << *NF << "\n"
229                     << "From: " << *F);
230 
231   // Recompute the parameter attributes list based on the new arguments for
232   // the function.
233   NF->setAttributes(AttributeList::get(F->getContext(), PAL.getFnAttrs(),
234                                        PAL.getRetAttrs(), ArgAttrVec));
235   ArgAttrVec.clear();
236 
237   F->getParent()->getFunctionList().insert(F->getIterator(), NF);
238   NF->takeName(F);
239 
240   // Loop over all of the callers of the function, transforming the call sites
241   // to pass in the loaded pointers.
242   //
243   SmallVector<Value *, 16> Args;
244   const DataLayout &DL = F->getParent()->getDataLayout();
245   while (!F->use_empty()) {
246     CallBase &CB = cast<CallBase>(*F->user_back());
247     assert(CB.getCalledFunction() == F);
248     const AttributeList &CallPAL = CB.getAttributes();
249     IRBuilder<NoFolder> IRB(&CB);
250 
251     // Loop over the operands, inserting GEP and loads in the caller as
252     // appropriate.
253     auto AI = CB.arg_begin();
254     ArgNo = 0;
255     for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E;
256          ++I, ++AI, ++ArgNo)
257       if (!ArgsToPromote.count(&*I) && !ByValArgsToTransform.count(&*I)) {
258         Args.push_back(*AI); // Unmodified argument
259         ArgAttrVec.push_back(CallPAL.getParamAttrs(ArgNo));
260       } else if (ByValArgsToTransform.count(&*I)) {
261         // Emit a GEP and load for each element of the struct.
262         Type *AgTy = I->getParamByValType();
263         StructType *STy = cast<StructType>(AgTy);
264         Value *Idxs[2] = {
265             ConstantInt::get(Type::getInt32Ty(F->getContext()), 0), nullptr};
266         const StructLayout *SL = DL.getStructLayout(STy);
267         Align StructAlign = *I->getParamAlign();
268         for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
269           Idxs[1] = ConstantInt::get(Type::getInt32Ty(F->getContext()), i);
270           auto *Idx =
271               IRB.CreateGEP(STy, *AI, Idxs, (*AI)->getName() + "." + Twine(i));
272           // TODO: Tell AA about the new values?
273           Align Alignment =
274               commonAlignment(StructAlign, SL->getElementOffset(i));
275           Args.push_back(IRB.CreateAlignedLoad(
276               STy->getElementType(i), Idx, Alignment, Idx->getName() + ".val"));
277           ArgAttrVec.push_back(AttributeSet());
278         }
279       } else if (!I->use_empty()) {
280         // Non-dead argument: insert GEPs and loads as appropriate.
281         ScalarizeTable &ArgIndices = ScalarizedElements[&*I];
282         // Store the Value* version of the indices in here, but declare it now
283         // for reuse.
284         std::vector<Value *> Ops;
285         for (const auto &ArgIndex : ArgIndices) {
286           Value *V = *AI;
287           LoadInst *OrigLoad =
288               OriginalLoads[std::make_pair(&*I, ArgIndex.second)];
289           if (!ArgIndex.second.empty()) {
290             Ops.reserve(ArgIndex.second.size());
291             Type *ElTy = V->getType();
292             for (auto II : ArgIndex.second) {
293               // Use i32 to index structs, and i64 for others (pointers/arrays).
294               // This satisfies GEP constraints.
295               Type *IdxTy =
296                   (ElTy->isStructTy() ? Type::getInt32Ty(F->getContext())
297                                       : Type::getInt64Ty(F->getContext()));
298               Ops.push_back(ConstantInt::get(IdxTy, II));
299               // Keep track of the type we're currently indexing.
300               if (auto *ElPTy = dyn_cast<PointerType>(ElTy))
301                 ElTy = ElPTy->getPointerElementType();
302               else
303                 ElTy = GetElementPtrInst::getTypeAtIndex(ElTy, II);
304             }
305             // And create a GEP to extract those indices.
306             V = IRB.CreateGEP(ArgIndex.first, V, Ops, V->getName() + ".idx");
307             Ops.clear();
308           }
309           // Since we're replacing a load make sure we take the alignment
310           // of the previous load.
311           LoadInst *newLoad =
312               IRB.CreateLoad(OrigLoad->getType(), V, V->getName() + ".val");
313           newLoad->setAlignment(OrigLoad->getAlign());
314           // Transfer the AA info too.
315           newLoad->setAAMetadata(OrigLoad->getAAMetadata());
316 
317           Args.push_back(newLoad);
318           ArgAttrVec.push_back(AttributeSet());
319         }
320       }
321 
322     // Push any varargs arguments on the list.
323     for (; AI != CB.arg_end(); ++AI, ++ArgNo) {
324       Args.push_back(*AI);
325       ArgAttrVec.push_back(CallPAL.getParamAttrs(ArgNo));
326     }
327 
328     SmallVector<OperandBundleDef, 1> OpBundles;
329     CB.getOperandBundlesAsDefs(OpBundles);
330 
331     CallBase *NewCS = nullptr;
332     if (InvokeInst *II = dyn_cast<InvokeInst>(&CB)) {
333       NewCS = InvokeInst::Create(NF, II->getNormalDest(), II->getUnwindDest(),
334                                  Args, OpBundles, "", &CB);
335     } else {
336       auto *NewCall = CallInst::Create(NF, Args, OpBundles, "", &CB);
337       NewCall->setTailCallKind(cast<CallInst>(&CB)->getTailCallKind());
338       NewCS = NewCall;
339     }
340     NewCS->setCallingConv(CB.getCallingConv());
341     NewCS->setAttributes(AttributeList::get(F->getContext(),
342                                             CallPAL.getFnAttrs(),
343                                             CallPAL.getRetAttrs(), ArgAttrVec));
344     NewCS->copyMetadata(CB, {LLVMContext::MD_prof, LLVMContext::MD_dbg});
345     Args.clear();
346     ArgAttrVec.clear();
347 
348     // Update the callgraph to know that the callsite has been transformed.
349     if (ReplaceCallSite)
350       (*ReplaceCallSite)(CB, *NewCS);
351 
352     if (!CB.use_empty()) {
353       CB.replaceAllUsesWith(NewCS);
354       NewCS->takeName(&CB);
355     }
356 
357     // Finally, remove the old call from the program, reducing the use-count of
358     // F.
359     CB.eraseFromParent();
360   }
361 
362   // Since we have now created the new function, splice the body of the old
363   // function right into the new function, leaving the old rotting hulk of the
364   // function empty.
365   NF->getBasicBlockList().splice(NF->begin(), F->getBasicBlockList());
366 
367   // Loop over the argument list, transferring uses of the old arguments over to
368   // the new arguments, also transferring over the names as well.
369   for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(),
370                               I2 = NF->arg_begin();
371        I != E; ++I) {
372     if (!ArgsToPromote.count(&*I) && !ByValArgsToTransform.count(&*I)) {
373       // If this is an unmodified argument, move the name and users over to the
374       // new version.
375       I->replaceAllUsesWith(&*I2);
376       I2->takeName(&*I);
377       ++I2;
378       continue;
379     }
380 
381     if (ByValArgsToTransform.count(&*I)) {
382       // In the callee, we create an alloca, and store each of the new incoming
383       // arguments into the alloca.
384       Instruction *InsertPt = &NF->begin()->front();
385 
386       // Just add all the struct element types.
387       Type *AgTy = I->getParamByValType();
388       Align StructAlign = *I->getParamAlign();
389       Value *TheAlloca = new AllocaInst(AgTy, DL.getAllocaAddrSpace(), nullptr,
390                                         StructAlign, "", InsertPt);
391       StructType *STy = cast<StructType>(AgTy);
392       Value *Idxs[2] = {ConstantInt::get(Type::getInt32Ty(F->getContext()), 0),
393                         nullptr};
394       const StructLayout *SL = DL.getStructLayout(STy);
395 
396       for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
397         Idxs[1] = ConstantInt::get(Type::getInt32Ty(F->getContext()), i);
398         Value *Idx = GetElementPtrInst::Create(
399             AgTy, TheAlloca, Idxs, TheAlloca->getName() + "." + Twine(i),
400             InsertPt);
401         I2->setName(I->getName() + "." + Twine(i));
402         Align Alignment = commonAlignment(StructAlign, SL->getElementOffset(i));
403         new StoreInst(&*I2++, Idx, false, Alignment, InsertPt);
404       }
405 
406       // Anything that used the arg should now use the alloca.
407       I->replaceAllUsesWith(TheAlloca);
408       TheAlloca->takeName(&*I);
409       continue;
410     }
411 
412     // There potentially are metadata uses for things like llvm.dbg.value.
413     // Replace them with undef, after handling the other regular uses.
414     auto RauwUndefMetadata = make_scope_exit(
415         [&]() { I->replaceAllUsesWith(UndefValue::get(I->getType())); });
416 
417     if (I->use_empty())
418       continue;
419 
420     // Otherwise, if we promoted this argument, then all users are load
421     // instructions (or GEPs with only load users), and all loads should be
422     // using the new argument that we added.
423     ScalarizeTable &ArgIndices = ScalarizedElements[&*I];
424 
425     while (!I->use_empty()) {
426       if (LoadInst *LI = dyn_cast<LoadInst>(I->user_back())) {
427         assert(ArgIndices.begin()->second.empty() &&
428                "Load element should sort to front!");
429         I2->setName(I->getName() + ".val");
430         LI->replaceAllUsesWith(&*I2);
431         LI->eraseFromParent();
432         LLVM_DEBUG(dbgs() << "*** Promoted load of argument '" << I->getName()
433                           << "' in function '" << F->getName() << "'\n");
434       } else {
435         GetElementPtrInst *GEP = cast<GetElementPtrInst>(I->user_back());
436         assert(!GEP->use_empty() &&
437                "GEPs without uses should be cleaned up already");
438         IndicesVector Operands;
439         Operands.reserve(GEP->getNumIndices());
440         for (const Use &Idx : GEP->indices())
441           Operands.push_back(cast<ConstantInt>(Idx)->getSExtValue());
442 
443         // GEPs with a single 0 index can be merged with direct loads
444         if (Operands.size() == 1 && Operands.front() == 0)
445           Operands.clear();
446 
447         Function::arg_iterator TheArg = I2;
448         for (ScalarizeTable::iterator It = ArgIndices.begin();
449              It->second != Operands; ++It, ++TheArg) {
450           assert(It != ArgIndices.end() && "GEP not handled??");
451         }
452 
453         TheArg->setName(formatv("{0}.{1:$[.]}.val", I->getName(),
454                                 make_range(Operands.begin(), Operands.end())));
455 
456         LLVM_DEBUG(dbgs() << "*** Promoted agg argument '" << TheArg->getName()
457                           << "' of function '" << NF->getName() << "'\n");
458 
459         // All of the uses must be load instructions.  Replace them all with
460         // the argument specified by ArgNo.
461         while (!GEP->use_empty()) {
462           LoadInst *L = cast<LoadInst>(GEP->user_back());
463           L->replaceAllUsesWith(&*TheArg);
464           L->eraseFromParent();
465         }
466         GEP->eraseFromParent();
467       }
468     }
469     // Increment I2 past all of the arguments added for this promoted pointer.
470     std::advance(I2, ArgIndices.size());
471   }
472 
473   return NF;
474 }
475 
476 /// Return true if we can prove that all callees pass in a valid pointer for the
477 /// specified function argument.
478 static bool allCallersPassValidPointerForArgument(Argument *Arg, Type *Ty) {
479   Function *Callee = Arg->getParent();
480   const DataLayout &DL = Callee->getParent()->getDataLayout();
481 
482   unsigned ArgNo = Arg->getArgNo();
483 
484   // Look at all call sites of the function.  At this point we know we only have
485   // direct callees.
486   for (User *U : Callee->users()) {
487     CallBase &CB = cast<CallBase>(*U);
488 
489     if (!isDereferenceablePointer(CB.getArgOperand(ArgNo), Ty, DL))
490       return false;
491   }
492   return true;
493 }
494 
495 /// Returns true if Prefix is a prefix of longer. That means, Longer has a size
496 /// that is greater than or equal to the size of prefix, and each of the
497 /// elements in Prefix is the same as the corresponding elements in Longer.
498 ///
499 /// This means it also returns true when Prefix and Longer are equal!
500 static bool isPrefix(const IndicesVector &Prefix, const IndicesVector &Longer) {
501   if (Prefix.size() > Longer.size())
502     return false;
503   return std::equal(Prefix.begin(), Prefix.end(), Longer.begin());
504 }
505 
506 /// Checks if Indices, or a prefix of Indices, is in Set.
507 static bool prefixIn(const IndicesVector &Indices,
508                      std::set<IndicesVector> &Set) {
509   std::set<IndicesVector>::iterator Low;
510   Low = Set.upper_bound(Indices);
511   if (Low != Set.begin())
512     Low--;
513   // Low is now the last element smaller than or equal to Indices. This means
514   // it points to a prefix of Indices (possibly Indices itself), if such
515   // prefix exists.
516   //
517   // This load is safe if any prefix of its operands is safe to load.
518   return Low != Set.end() && isPrefix(*Low, Indices);
519 }
520 
521 /// Mark the given indices (ToMark) as safe in the given set of indices
522 /// (Safe). Marking safe usually means adding ToMark to Safe. However, if there
523 /// is already a prefix of Indices in Safe, Indices are implicitely marked safe
524 /// already. Furthermore, any indices that Indices is itself a prefix of, are
525 /// removed from Safe (since they are implicitely safe because of Indices now).
526 static void markIndicesSafe(const IndicesVector &ToMark,
527                             std::set<IndicesVector> &Safe) {
528   std::set<IndicesVector>::iterator Low;
529   Low = Safe.upper_bound(ToMark);
530   // Guard against the case where Safe is empty
531   if (Low != Safe.begin())
532     Low--;
533   // Low is now the last element smaller than or equal to Indices. This
534   // means it points to a prefix of Indices (possibly Indices itself), if
535   // such prefix exists.
536   if (Low != Safe.end()) {
537     if (isPrefix(*Low, ToMark))
538       // If there is already a prefix of these indices (or exactly these
539       // indices) marked a safe, don't bother adding these indices
540       return;
541 
542     // Increment Low, so we can use it as a "insert before" hint
543     ++Low;
544   }
545   // Insert
546   Low = Safe.insert(Low, ToMark);
547   ++Low;
548   // If there we're a prefix of longer index list(s), remove those
549   std::set<IndicesVector>::iterator End = Safe.end();
550   while (Low != End && isPrefix(ToMark, *Low)) {
551     std::set<IndicesVector>::iterator Remove = Low;
552     ++Low;
553     Safe.erase(Remove);
554   }
555 }
556 
557 /// isSafeToPromoteArgument - As you might guess from the name of this method,
558 /// it checks to see if it is both safe and useful to promote the argument.
559 /// This method limits promotion of aggregates to only promote up to three
560 /// elements of the aggregate in order to avoid exploding the number of
561 /// arguments passed in.
562 static bool isSafeToPromoteArgument(Argument *Arg, Type *ByValTy, AAResults &AAR,
563                                     unsigned MaxElements) {
564   using GEPIndicesSet = std::set<IndicesVector>;
565 
566   // Quick exit for unused arguments
567   if (Arg->use_empty())
568     return true;
569 
570   // We can only promote this argument if all of the uses are loads, or are GEP
571   // instructions (with constant indices) that are subsequently loaded.
572   //
573   // Promoting the argument causes it to be loaded in the caller
574   // unconditionally. This is only safe if we can prove that either the load
575   // would have happened in the callee anyway (ie, there is a load in the entry
576   // block) or the pointer passed in at every call site is guaranteed to be
577   // valid.
578   // In the former case, invalid loads can happen, but would have happened
579   // anyway, in the latter case, invalid loads won't happen. This prevents us
580   // from introducing an invalid load that wouldn't have happened in the
581   // original code.
582   //
583   // This set will contain all sets of indices that are loaded in the entry
584   // block, and thus are safe to unconditionally load in the caller.
585   GEPIndicesSet SafeToUnconditionallyLoad;
586 
587   // This set contains all the sets of indices that we are planning to promote.
588   // This makes it possible to limit the number of arguments added.
589   GEPIndicesSet ToPromote;
590 
591   // If the pointer is always valid, any load with first index 0 is valid.
592 
593   if (ByValTy)
594     SafeToUnconditionallyLoad.insert(IndicesVector(1, 0));
595 
596   // Whenever a new underlying type for the operand is found, make sure it's
597   // consistent with the GEPs and loads we've already seen and, if necessary,
598   // use it to see if all incoming pointers are valid (which implies the 0-index
599   // is safe).
600   Type *BaseTy = ByValTy;
601   auto UpdateBaseTy = [&](Type *NewBaseTy) {
602     if (BaseTy)
603       return BaseTy == NewBaseTy;
604 
605     BaseTy = NewBaseTy;
606     if (allCallersPassValidPointerForArgument(Arg, BaseTy)) {
607       assert(SafeToUnconditionallyLoad.empty());
608       SafeToUnconditionallyLoad.insert(IndicesVector(1, 0));
609     }
610 
611     return true;
612   };
613 
614   // First, iterate functions that are guaranteed to execution on function
615   // entry and mark loads of (geps of) arguments as safe.
616   BasicBlock &EntryBlock = Arg->getParent()->front();
617   // Declare this here so we can reuse it
618   IndicesVector Indices;
619   for (Instruction &I : EntryBlock) {
620     if (LoadInst *LI = dyn_cast<LoadInst>(&I)) {
621       Value *V = LI->getPointerOperand();
622       if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(V)) {
623         V = GEP->getPointerOperand();
624         if (V == Arg) {
625           // This load actually loads (part of) Arg? Check the indices then.
626           Indices.reserve(GEP->getNumIndices());
627           for (Use &Idx : GEP->indices())
628             if (ConstantInt *CI = dyn_cast<ConstantInt>(Idx))
629               Indices.push_back(CI->getSExtValue());
630             else
631               // We found a non-constant GEP index for this argument? Bail out
632               // right away, can't promote this argument at all.
633               return false;
634 
635           if (!UpdateBaseTy(GEP->getSourceElementType()))
636             return false;
637 
638           // Indices checked out, mark them as safe
639           markIndicesSafe(Indices, SafeToUnconditionallyLoad);
640           Indices.clear();
641         }
642       } else if (V == Arg) {
643         // Direct loads are equivalent to a GEP with a single 0 index.
644         markIndicesSafe(IndicesVector(1, 0), SafeToUnconditionallyLoad);
645 
646         if (BaseTy && LI->getType() != BaseTy)
647           return false;
648 
649         BaseTy = LI->getType();
650       }
651     }
652 
653     if (!isGuaranteedToTransferExecutionToSuccessor(&I))
654       break;
655   }
656 
657   // Now, iterate all uses of the argument to see if there are any uses that are
658   // not (GEP+)loads, or any (GEP+)loads that are not safe to promote.
659   SmallVector<LoadInst *, 16> Loads;
660   IndicesVector Operands;
661   for (Use &U : Arg->uses()) {
662     User *UR = U.getUser();
663     Operands.clear();
664     if (LoadInst *LI = dyn_cast<LoadInst>(UR)) {
665       // Don't hack volatile/atomic loads
666       if (!LI->isSimple())
667         return false;
668       Loads.push_back(LI);
669       // Direct loads are equivalent to a GEP with a zero index and then a load.
670       Operands.push_back(0);
671 
672       if (!UpdateBaseTy(LI->getType()))
673         return false;
674     } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(UR)) {
675       if (GEP->use_empty()) {
676         // Dead GEP's cause trouble later.  Just remove them if we run into
677         // them.
678         continue;
679       }
680 
681       if (!UpdateBaseTy(GEP->getSourceElementType()))
682         return false;
683 
684       // Ensure that all of the indices are constants.
685       for (Use &Idx : GEP->indices())
686         if (ConstantInt *C = dyn_cast<ConstantInt>(Idx))
687           Operands.push_back(C->getSExtValue());
688         else
689           return false; // Not a constant operand GEP!
690 
691       // Ensure that the only users of the GEP are load instructions.
692       for (User *GEPU : GEP->users())
693         if (LoadInst *LI = dyn_cast<LoadInst>(GEPU)) {
694           // Don't hack volatile/atomic loads
695           if (!LI->isSimple())
696             return false;
697           Loads.push_back(LI);
698         } else {
699           // Other uses than load?
700           return false;
701         }
702     } else {
703       return false; // Not a load or a GEP.
704     }
705 
706     // Now, see if it is safe to promote this load / loads of this GEP. Loading
707     // is safe if Operands, or a prefix of Operands, is marked as safe.
708     if (!prefixIn(Operands, SafeToUnconditionallyLoad))
709       return false;
710 
711     // See if we are already promoting a load with these indices. If not, check
712     // to make sure that we aren't promoting too many elements.  If so, nothing
713     // to do.
714     if (ToPromote.find(Operands) == ToPromote.end()) {
715       if (MaxElements > 0 && ToPromote.size() == MaxElements) {
716         LLVM_DEBUG(dbgs() << "argpromotion not promoting argument '"
717                           << Arg->getName()
718                           << "' because it would require adding more "
719                           << "than " << MaxElements
720                           << " arguments to the function.\n");
721         // We limit aggregate promotion to only promoting up to a fixed number
722         // of elements of the aggregate.
723         return false;
724       }
725       ToPromote.insert(std::move(Operands));
726     }
727   }
728 
729   if (Loads.empty())
730     return true; // No users, this is a dead argument.
731 
732   // Okay, now we know that the argument is only used by load instructions and
733   // it is safe to unconditionally perform all of them. Use alias analysis to
734   // check to see if the pointer is guaranteed to not be modified from entry of
735   // the function to each of the load instructions.
736 
737   // Because there could be several/many load instructions, remember which
738   // blocks we know to be transparent to the load.
739   df_iterator_default_set<BasicBlock *, 16> TranspBlocks;
740 
741   for (LoadInst *Load : Loads) {
742     // Check to see if the load is invalidated from the start of the block to
743     // the load itself.
744     BasicBlock *BB = Load->getParent();
745 
746     MemoryLocation Loc = MemoryLocation::get(Load);
747     if (AAR.canInstructionRangeModRef(BB->front(), *Load, Loc, ModRefInfo::Mod))
748       return false; // Pointer is invalidated!
749 
750     // Now check every path from the entry block to the load for transparency.
751     // To do this, we perform a depth first search on the inverse CFG from the
752     // loading block.
753     for (BasicBlock *P : predecessors(BB)) {
754       for (BasicBlock *TranspBB : inverse_depth_first_ext(P, TranspBlocks))
755         if (AAR.canBasicBlockModify(*TranspBB, Loc))
756           return false;
757     }
758   }
759 
760   // If the path from the entry of the function to each load is free of
761   // instructions that potentially invalidate the load, we can make the
762   // transformation!
763   return true;
764 }
765 
766 bool ArgumentPromotionPass::isDenselyPacked(Type *type, const DataLayout &DL) {
767   // There is no size information, so be conservative.
768   if (!type->isSized())
769     return false;
770 
771   // If the alloc size is not equal to the storage size, then there are padding
772   // bytes. For x86_fp80 on x86-64, size: 80 alloc size: 128.
773   if (DL.getTypeSizeInBits(type) != DL.getTypeAllocSizeInBits(type))
774     return false;
775 
776   // FIXME: This isn't the right way to check for padding in vectors with
777   // non-byte-size elements.
778   if (VectorType *seqTy = dyn_cast<VectorType>(type))
779     return isDenselyPacked(seqTy->getElementType(), DL);
780 
781   // For array types, check for padding within members.
782   if (ArrayType *seqTy = dyn_cast<ArrayType>(type))
783     return isDenselyPacked(seqTy->getElementType(), DL);
784 
785   if (!isa<StructType>(type))
786     return true;
787 
788   // Check for padding within and between elements of a struct.
789   StructType *StructTy = cast<StructType>(type);
790   const StructLayout *Layout = DL.getStructLayout(StructTy);
791   uint64_t StartPos = 0;
792   for (unsigned i = 0, E = StructTy->getNumElements(); i < E; ++i) {
793     Type *ElTy = StructTy->getElementType(i);
794     if (!isDenselyPacked(ElTy, DL))
795       return false;
796     if (StartPos != Layout->getElementOffsetInBits(i))
797       return false;
798     StartPos += DL.getTypeAllocSizeInBits(ElTy);
799   }
800 
801   return true;
802 }
803 
804 /// Checks if the padding bytes of an argument could be accessed.
805 static bool canPaddingBeAccessed(Argument *arg) {
806   assert(arg->hasByValAttr());
807 
808   // Track all the pointers to the argument to make sure they are not captured.
809   SmallPtrSet<Value *, 16> PtrValues;
810   PtrValues.insert(arg);
811 
812   // Track all of the stores.
813   SmallVector<StoreInst *, 16> Stores;
814 
815   // Scan through the uses recursively to make sure the pointer is always used
816   // sanely.
817   SmallVector<Value *, 16> WorkList(arg->users());
818   while (!WorkList.empty()) {
819     Value *V = WorkList.pop_back_val();
820     if (isa<GetElementPtrInst>(V) || isa<PHINode>(V)) {
821       if (PtrValues.insert(V).second)
822         llvm::append_range(WorkList, V->users());
823     } else if (StoreInst *Store = dyn_cast<StoreInst>(V)) {
824       Stores.push_back(Store);
825     } else if (!isa<LoadInst>(V)) {
826       return true;
827     }
828   }
829 
830   // Check to make sure the pointers aren't captured
831   for (StoreInst *Store : Stores)
832     if (PtrValues.count(Store->getValueOperand()))
833       return true;
834 
835   return false;
836 }
837 
838 /// Check if callers and the callee \p F agree how promoted arguments would be
839 /// passed. The ones that they do not agree on are eliminated from the sets but
840 /// the return value has to be observed as well.
841 static bool areFunctionArgsABICompatible(
842     const Function &F, const TargetTransformInfo &TTI,
843     SmallPtrSetImpl<Argument *> &ArgsToPromote,
844     SmallPtrSetImpl<Argument *> &ByValArgsToTransform) {
845   // TODO: Check individual arguments so we can promote a subset?
846   SmallVector<Type *, 32> Types;
847   for (Argument *Arg : ArgsToPromote)
848     Types.push_back(Arg->getType()->getPointerElementType());
849   for (Argument *Arg : ByValArgsToTransform)
850     Types.push_back(Arg->getParamByValType());
851 
852   for (const Use &U : F.uses()) {
853     CallBase *CB = dyn_cast<CallBase>(U.getUser());
854     if (!CB)
855       return false;
856     const Function *Caller = CB->getCaller();
857     const Function *Callee = CB->getCalledFunction();
858     if (!TTI.areTypesABICompatible(Caller, Callee, Types))
859       return false;
860   }
861   return true;
862 }
863 
864 /// PromoteArguments - This method checks the specified function to see if there
865 /// are any promotable arguments and if it is safe to promote the function (for
866 /// example, all callers are direct).  If safe to promote some arguments, it
867 /// calls the DoPromotion method.
868 static Function *
869 promoteArguments(Function *F, function_ref<AAResults &(Function &F)> AARGetter,
870                  unsigned MaxElements,
871                  Optional<function_ref<void(CallBase &OldCS, CallBase &NewCS)>>
872                      ReplaceCallSite,
873                  const TargetTransformInfo &TTI) {
874   // Don't perform argument promotion for naked functions; otherwise we can end
875   // up removing parameters that are seemingly 'not used' as they are referred
876   // to in the assembly.
877   if(F->hasFnAttribute(Attribute::Naked))
878     return nullptr;
879 
880   // Make sure that it is local to this module.
881   if (!F->hasLocalLinkage())
882     return nullptr;
883 
884   // Don't promote arguments for variadic functions. Adding, removing, or
885   // changing non-pack parameters can change the classification of pack
886   // parameters. Frontends encode that classification at the call site in the
887   // IR, while in the callee the classification is determined dynamically based
888   // on the number of registers consumed so far.
889   if (F->isVarArg())
890     return nullptr;
891 
892   // Don't transform functions that receive inallocas, as the transformation may
893   // not be safe depending on calling convention.
894   if (F->getAttributes().hasAttrSomewhere(Attribute::InAlloca))
895     return nullptr;
896 
897   // First check: see if there are any pointer arguments!  If not, quick exit.
898   SmallVector<Argument *, 16> PointerArgs;
899   for (Argument &I : F->args())
900     if (I.getType()->isPointerTy())
901       PointerArgs.push_back(&I);
902   if (PointerArgs.empty())
903     return nullptr;
904 
905   // Second check: make sure that all callers are direct callers.  We can't
906   // transform functions that have indirect callers.  Also see if the function
907   // is self-recursive and check that target features are compatible.
908   bool isSelfRecursive = false;
909   for (Use &U : F->uses()) {
910     CallBase *CB = dyn_cast<CallBase>(U.getUser());
911     // Must be a direct call.
912     if (CB == nullptr || !CB->isCallee(&U))
913       return nullptr;
914 
915     // Can't change signature of musttail callee
916     if (CB->isMustTailCall())
917       return nullptr;
918 
919     if (CB->getParent()->getParent() == F)
920       isSelfRecursive = true;
921   }
922 
923   // Can't change signature of musttail caller
924   // FIXME: Support promoting whole chain of musttail functions
925   for (BasicBlock &BB : *F)
926     if (BB.getTerminatingMustTailCall())
927       return nullptr;
928 
929   const DataLayout &DL = F->getParent()->getDataLayout();
930 
931   AAResults &AAR = AARGetter(*F);
932 
933   // Check to see which arguments are promotable.  If an argument is promotable,
934   // add it to ArgsToPromote.
935   SmallPtrSet<Argument *, 8> ArgsToPromote;
936   SmallPtrSet<Argument *, 8> ByValArgsToTransform;
937   for (Argument *PtrArg : PointerArgs) {
938     Type *AgTy = PtrArg->getType()->getPointerElementType();
939 
940     // Replace sret attribute with noalias. This reduces register pressure by
941     // avoiding a register copy.
942     if (PtrArg->hasStructRetAttr()) {
943       unsigned ArgNo = PtrArg->getArgNo();
944       F->removeParamAttr(ArgNo, Attribute::StructRet);
945       F->addParamAttr(ArgNo, Attribute::NoAlias);
946       for (Use &U : F->uses()) {
947         CallBase &CB = cast<CallBase>(*U.getUser());
948         CB.removeParamAttr(ArgNo, Attribute::StructRet);
949         CB.addParamAttr(ArgNo, Attribute::NoAlias);
950       }
951     }
952 
953     // If this is a byval argument, and if the aggregate type is small, just
954     // pass the elements, which is always safe, if the passed value is densely
955     // packed or if we can prove the padding bytes are never accessed.
956     //
957     // Only handle arguments with specified alignment; if it's unspecified, the
958     // actual alignment of the argument is target-specific.
959     bool isSafeToPromote = PtrArg->hasByValAttr() && PtrArg->getParamAlign() &&
960                            (ArgumentPromotionPass::isDenselyPacked(AgTy, DL) ||
961                             !canPaddingBeAccessed(PtrArg));
962     if (isSafeToPromote) {
963       if (StructType *STy = dyn_cast<StructType>(AgTy)) {
964         if (MaxElements > 0 && STy->getNumElements() > MaxElements) {
965           LLVM_DEBUG(dbgs() << "argpromotion disable promoting argument '"
966                             << PtrArg->getName()
967                             << "' because it would require adding more"
968                             << " than " << MaxElements
969                             << " arguments to the function.\n");
970           continue;
971         }
972 
973         // If all the elements are single-value types, we can promote it.
974         bool AllSimple = true;
975         for (const auto *EltTy : STy->elements()) {
976           if (!EltTy->isSingleValueType()) {
977             AllSimple = false;
978             break;
979           }
980         }
981 
982         // Safe to transform, don't even bother trying to "promote" it.
983         // Passing the elements as a scalar will allow sroa to hack on
984         // the new alloca we introduce.
985         if (AllSimple) {
986           ByValArgsToTransform.insert(PtrArg);
987           continue;
988         }
989       }
990     }
991 
992     // If the argument is a recursive type and we're in a recursive
993     // function, we could end up infinitely peeling the function argument.
994     if (isSelfRecursive) {
995       if (StructType *STy = dyn_cast<StructType>(AgTy)) {
996         bool RecursiveType =
997             llvm::is_contained(STy->elements(), PtrArg->getType());
998         if (RecursiveType)
999           continue;
1000       }
1001     }
1002 
1003     // Otherwise, see if we can promote the pointer to its value.
1004     Type *ByValTy =
1005         PtrArg->hasByValAttr() ? PtrArg->getParamByValType() : nullptr;
1006     if (isSafeToPromoteArgument(PtrArg, ByValTy, AAR, MaxElements))
1007       ArgsToPromote.insert(PtrArg);
1008   }
1009 
1010   // No promotable pointer arguments.
1011   if (ArgsToPromote.empty() && ByValArgsToTransform.empty())
1012     return nullptr;
1013 
1014   if (!areFunctionArgsABICompatible(
1015           *F, TTI, ArgsToPromote, ByValArgsToTransform))
1016     return nullptr;
1017 
1018   return doPromotion(F, ArgsToPromote, ByValArgsToTransform, ReplaceCallSite);
1019 }
1020 
1021 PreservedAnalyses ArgumentPromotionPass::run(LazyCallGraph::SCC &C,
1022                                              CGSCCAnalysisManager &AM,
1023                                              LazyCallGraph &CG,
1024                                              CGSCCUpdateResult &UR) {
1025   bool Changed = false, LocalChange;
1026 
1027   // Iterate until we stop promoting from this SCC.
1028   do {
1029     LocalChange = false;
1030 
1031     FunctionAnalysisManager &FAM =
1032         AM.getResult<FunctionAnalysisManagerCGSCCProxy>(C, CG).getManager();
1033 
1034     for (LazyCallGraph::Node &N : C) {
1035       Function &OldF = N.getFunction();
1036 
1037       // FIXME: This lambda must only be used with this function. We should
1038       // skip the lambda and just get the AA results directly.
1039       auto AARGetter = [&](Function &F) -> AAResults & {
1040         assert(&F == &OldF && "Called with an unexpected function!");
1041         return FAM.getResult<AAManager>(F);
1042       };
1043 
1044       const TargetTransformInfo &TTI = FAM.getResult<TargetIRAnalysis>(OldF);
1045       Function *NewF =
1046           promoteArguments(&OldF, AARGetter, MaxElements, None, TTI);
1047       if (!NewF)
1048         continue;
1049       LocalChange = true;
1050 
1051       // Directly substitute the functions in the call graph. Note that this
1052       // requires the old function to be completely dead and completely
1053       // replaced by the new function. It does no call graph updates, it merely
1054       // swaps out the particular function mapped to a particular node in the
1055       // graph.
1056       C.getOuterRefSCC().replaceNodeFunction(N, *NewF);
1057       FAM.clear(OldF, OldF.getName());
1058       OldF.eraseFromParent();
1059 
1060       PreservedAnalyses FuncPA;
1061       FuncPA.preserveSet<CFGAnalyses>();
1062       for (auto *U : NewF->users()) {
1063         auto *UserF = cast<CallBase>(U)->getFunction();
1064         FAM.invalidate(*UserF, FuncPA);
1065       }
1066     }
1067 
1068     Changed |= LocalChange;
1069   } while (LocalChange);
1070 
1071   if (!Changed)
1072     return PreservedAnalyses::all();
1073 
1074   PreservedAnalyses PA;
1075   // We've cleared out analyses for deleted functions.
1076   PA.preserve<FunctionAnalysisManagerCGSCCProxy>();
1077   // We've manually invalidated analyses for functions we've modified.
1078   PA.preserveSet<AllAnalysesOn<Function>>();
1079   return PA;
1080 }
1081 
1082 namespace {
1083 
1084 /// ArgPromotion - The 'by reference' to 'by value' argument promotion pass.
1085 struct ArgPromotion : public CallGraphSCCPass {
1086   // Pass identification, replacement for typeid
1087   static char ID;
1088 
1089   explicit ArgPromotion(unsigned MaxElements = 3)
1090       : CallGraphSCCPass(ID), MaxElements(MaxElements) {
1091     initializeArgPromotionPass(*PassRegistry::getPassRegistry());
1092   }
1093 
1094   void getAnalysisUsage(AnalysisUsage &AU) const override {
1095     AU.addRequired<AssumptionCacheTracker>();
1096     AU.addRequired<TargetLibraryInfoWrapperPass>();
1097     AU.addRequired<TargetTransformInfoWrapperPass>();
1098     getAAResultsAnalysisUsage(AU);
1099     CallGraphSCCPass::getAnalysisUsage(AU);
1100   }
1101 
1102   bool runOnSCC(CallGraphSCC &SCC) override;
1103 
1104 private:
1105   using llvm::Pass::doInitialization;
1106 
1107   bool doInitialization(CallGraph &CG) override;
1108 
1109   /// The maximum number of elements to expand, or 0 for unlimited.
1110   unsigned MaxElements;
1111 };
1112 
1113 } // end anonymous namespace
1114 
1115 char ArgPromotion::ID = 0;
1116 
1117 INITIALIZE_PASS_BEGIN(ArgPromotion, "argpromotion",
1118                       "Promote 'by reference' arguments to scalars", false,
1119                       false)
1120 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
1121 INITIALIZE_PASS_DEPENDENCY(CallGraphWrapperPass)
1122 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
1123 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
1124 INITIALIZE_PASS_END(ArgPromotion, "argpromotion",
1125                     "Promote 'by reference' arguments to scalars", false, false)
1126 
1127 Pass *llvm::createArgumentPromotionPass(unsigned MaxElements) {
1128   return new ArgPromotion(MaxElements);
1129 }
1130 
1131 bool ArgPromotion::runOnSCC(CallGraphSCC &SCC) {
1132   if (skipSCC(SCC))
1133     return false;
1134 
1135   // Get the callgraph information that we need to update to reflect our
1136   // changes.
1137   CallGraph &CG = getAnalysis<CallGraphWrapperPass>().getCallGraph();
1138 
1139   LegacyAARGetter AARGetter(*this);
1140 
1141   bool Changed = false, LocalChange;
1142 
1143   // Iterate until we stop promoting from this SCC.
1144   do {
1145     LocalChange = false;
1146     // Attempt to promote arguments from all functions in this SCC.
1147     for (CallGraphNode *OldNode : SCC) {
1148       Function *OldF = OldNode->getFunction();
1149       if (!OldF)
1150         continue;
1151 
1152       auto ReplaceCallSite = [&](CallBase &OldCS, CallBase &NewCS) {
1153         Function *Caller = OldCS.getParent()->getParent();
1154         CallGraphNode *NewCalleeNode =
1155             CG.getOrInsertFunction(NewCS.getCalledFunction());
1156         CallGraphNode *CallerNode = CG[Caller];
1157         CallerNode->replaceCallEdge(cast<CallBase>(OldCS),
1158                                     cast<CallBase>(NewCS), NewCalleeNode);
1159       };
1160 
1161       const TargetTransformInfo &TTI =
1162           getAnalysis<TargetTransformInfoWrapperPass>().getTTI(*OldF);
1163       if (Function *NewF = promoteArguments(OldF, AARGetter, MaxElements,
1164                                             {ReplaceCallSite}, TTI)) {
1165         LocalChange = true;
1166 
1167         // Update the call graph for the newly promoted function.
1168         CallGraphNode *NewNode = CG.getOrInsertFunction(NewF);
1169         NewNode->stealCalledFunctionsFrom(OldNode);
1170         if (OldNode->getNumReferences() == 0)
1171           delete CG.removeFunctionFromModule(OldNode);
1172         else
1173           OldF->setLinkage(Function::ExternalLinkage);
1174 
1175         // And updat ethe SCC we're iterating as well.
1176         SCC.ReplaceNode(OldNode, NewNode);
1177       }
1178     }
1179     // Remember that we changed something.
1180     Changed |= LocalChange;
1181   } while (LocalChange);
1182 
1183   return Changed;
1184 }
1185 
1186 bool ArgPromotion::doInitialization(CallGraph &CG) {
1187   return CallGraphSCCPass::doInitialization(CG);
1188 }
1189