1 //===- ArgumentPromotion.cpp - Promote by-reference arguments -------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass promotes "by reference" arguments to be "by value" arguments. In 10 // practice, this means looking for internal functions that have pointer 11 // arguments. If it can prove, through the use of alias analysis, that an 12 // argument is *only* loaded, then it can pass the value into the function 13 // instead of the address of the value. This can cause recursive simplification 14 // of code and lead to the elimination of allocas (especially in C++ template 15 // code like the STL). 16 // 17 // This pass also handles aggregate arguments that are passed into a function, 18 // scalarizing them if the elements of the aggregate are only loaded. Note that 19 // by default it refuses to scalarize aggregates which would require passing in 20 // more than three operands to the function, because passing thousands of 21 // operands for a large array or structure is unprofitable! This limit can be 22 // configured or disabled, however. 23 // 24 // Note that this transformation could also be done for arguments that are only 25 // stored to (returning the value instead), but does not currently. This case 26 // would be best handled when and if LLVM begins supporting multiple return 27 // values from functions. 28 // 29 //===----------------------------------------------------------------------===// 30 31 #include "llvm/Transforms/IPO/ArgumentPromotion.h" 32 #include "llvm/ADT/DepthFirstIterator.h" 33 #include "llvm/ADT/None.h" 34 #include "llvm/ADT/Optional.h" 35 #include "llvm/ADT/STLExtras.h" 36 #include "llvm/ADT/ScopeExit.h" 37 #include "llvm/ADT/SmallPtrSet.h" 38 #include "llvm/ADT/SmallVector.h" 39 #include "llvm/ADT/Statistic.h" 40 #include "llvm/ADT/Twine.h" 41 #include "llvm/Analysis/AssumptionCache.h" 42 #include "llvm/Analysis/BasicAliasAnalysis.h" 43 #include "llvm/Analysis/CGSCCPassManager.h" 44 #include "llvm/Analysis/CallGraph.h" 45 #include "llvm/Analysis/CallGraphSCCPass.h" 46 #include "llvm/Analysis/LazyCallGraph.h" 47 #include "llvm/Analysis/Loads.h" 48 #include "llvm/Analysis/MemoryLocation.h" 49 #include "llvm/Analysis/TargetLibraryInfo.h" 50 #include "llvm/Analysis/TargetTransformInfo.h" 51 #include "llvm/IR/Argument.h" 52 #include "llvm/IR/Attributes.h" 53 #include "llvm/IR/BasicBlock.h" 54 #include "llvm/IR/CFG.h" 55 #include "llvm/IR/Constants.h" 56 #include "llvm/IR/DataLayout.h" 57 #include "llvm/IR/DerivedTypes.h" 58 #include "llvm/IR/Function.h" 59 #include "llvm/IR/IRBuilder.h" 60 #include "llvm/IR/InstrTypes.h" 61 #include "llvm/IR/Instruction.h" 62 #include "llvm/IR/Instructions.h" 63 #include "llvm/IR/Metadata.h" 64 #include "llvm/IR/Module.h" 65 #include "llvm/IR/NoFolder.h" 66 #include "llvm/IR/PassManager.h" 67 #include "llvm/IR/Type.h" 68 #include "llvm/IR/Use.h" 69 #include "llvm/IR/User.h" 70 #include "llvm/IR/Value.h" 71 #include "llvm/InitializePasses.h" 72 #include "llvm/Pass.h" 73 #include "llvm/Support/Casting.h" 74 #include "llvm/Support/Debug.h" 75 #include "llvm/Support/FormatVariadic.h" 76 #include "llvm/Support/raw_ostream.h" 77 #include "llvm/Transforms/IPO.h" 78 #include <algorithm> 79 #include <cassert> 80 #include <cstdint> 81 #include <functional> 82 #include <iterator> 83 #include <map> 84 #include <set> 85 #include <string> 86 #include <utility> 87 #include <vector> 88 89 using namespace llvm; 90 91 #define DEBUG_TYPE "argpromotion" 92 93 STATISTIC(NumArgumentsPromoted, "Number of pointer arguments promoted"); 94 STATISTIC(NumAggregatesPromoted, "Number of aggregate arguments promoted"); 95 STATISTIC(NumByValArgsPromoted, "Number of byval arguments promoted"); 96 STATISTIC(NumArgumentsDead, "Number of dead pointer args eliminated"); 97 98 /// A vector used to hold the indices of a single GEP instruction 99 using IndicesVector = std::vector<uint64_t>; 100 101 /// DoPromotion - This method actually performs the promotion of the specified 102 /// arguments, and returns the new function. At this point, we know that it's 103 /// safe to do so. 104 static Function * 105 doPromotion(Function *F, SmallPtrSetImpl<Argument *> &ArgsToPromote, 106 SmallPtrSetImpl<Argument *> &ByValArgsToTransform, 107 Optional<function_ref<void(CallBase &OldCS, CallBase &NewCS)>> 108 ReplaceCallSite) { 109 // Start by computing a new prototype for the function, which is the same as 110 // the old function, but has modified arguments. 111 FunctionType *FTy = F->getFunctionType(); 112 std::vector<Type *> Params; 113 114 using ScalarizeTable = std::set<std::pair<Type *, IndicesVector>>; 115 116 // ScalarizedElements - If we are promoting a pointer that has elements 117 // accessed out of it, keep track of which elements are accessed so that we 118 // can add one argument for each. 119 // 120 // Arguments that are directly loaded will have a zero element value here, to 121 // handle cases where there are both a direct load and GEP accesses. 122 std::map<Argument *, ScalarizeTable> ScalarizedElements; 123 124 // OriginalLoads - Keep track of a representative load instruction from the 125 // original function so that we can tell the alias analysis implementation 126 // what the new GEP/Load instructions we are inserting look like. 127 // We need to keep the original loads for each argument and the elements 128 // of the argument that are accessed. 129 std::map<std::pair<Argument *, IndicesVector>, LoadInst *> OriginalLoads; 130 131 // Attribute - Keep track of the parameter attributes for the arguments 132 // that we are *not* promoting. For the ones that we do promote, the parameter 133 // attributes are lost 134 SmallVector<AttributeSet, 8> ArgAttrVec; 135 AttributeList PAL = F->getAttributes(); 136 137 // First, determine the new argument list 138 unsigned ArgNo = 0; 139 for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E; 140 ++I, ++ArgNo) { 141 if (ByValArgsToTransform.count(&*I)) { 142 // Simple byval argument? Just add all the struct element types. 143 Type *AgTy = cast<PointerType>(I->getType())->getElementType(); 144 StructType *STy = cast<StructType>(AgTy); 145 llvm::append_range(Params, STy->elements()); 146 ArgAttrVec.insert(ArgAttrVec.end(), STy->getNumElements(), 147 AttributeSet()); 148 ++NumByValArgsPromoted; 149 } else if (!ArgsToPromote.count(&*I)) { 150 // Unchanged argument 151 Params.push_back(I->getType()); 152 ArgAttrVec.push_back(PAL.getParamAttributes(ArgNo)); 153 } else if (I->use_empty()) { 154 // Dead argument (which are always marked as promotable) 155 ++NumArgumentsDead; 156 } else { 157 // Okay, this is being promoted. This means that the only uses are loads 158 // or GEPs which are only used by loads 159 160 // In this table, we will track which indices are loaded from the argument 161 // (where direct loads are tracked as no indices). 162 ScalarizeTable &ArgIndices = ScalarizedElements[&*I]; 163 for (User *U : make_early_inc_range(I->users())) { 164 Instruction *UI = cast<Instruction>(U); 165 Type *SrcTy; 166 if (LoadInst *L = dyn_cast<LoadInst>(UI)) 167 SrcTy = L->getType(); 168 else 169 SrcTy = cast<GetElementPtrInst>(UI)->getSourceElementType(); 170 // Skip dead GEPs and remove them. 171 if (isa<GetElementPtrInst>(UI) && UI->use_empty()) { 172 UI->eraseFromParent(); 173 continue; 174 } 175 176 IndicesVector Indices; 177 Indices.reserve(UI->getNumOperands() - 1); 178 // Since loads will only have a single operand, and GEPs only a single 179 // non-index operand, this will record direct loads without any indices, 180 // and gep+loads with the GEP indices. 181 for (User::op_iterator II = UI->op_begin() + 1, IE = UI->op_end(); 182 II != IE; ++II) 183 Indices.push_back(cast<ConstantInt>(*II)->getSExtValue()); 184 // GEPs with a single 0 index can be merged with direct loads 185 if (Indices.size() == 1 && Indices.front() == 0) 186 Indices.clear(); 187 ArgIndices.insert(std::make_pair(SrcTy, Indices)); 188 LoadInst *OrigLoad; 189 if (LoadInst *L = dyn_cast<LoadInst>(UI)) 190 OrigLoad = L; 191 else 192 // Take any load, we will use it only to update Alias Analysis 193 OrigLoad = cast<LoadInst>(UI->user_back()); 194 OriginalLoads[std::make_pair(&*I, Indices)] = OrigLoad; 195 } 196 197 // Add a parameter to the function for each element passed in. 198 for (const auto &ArgIndex : ArgIndices) { 199 // not allowed to dereference ->begin() if size() is 0 200 Params.push_back(GetElementPtrInst::getIndexedType( 201 cast<PointerType>(I->getType())->getElementType(), 202 ArgIndex.second)); 203 ArgAttrVec.push_back(AttributeSet()); 204 assert(Params.back()); 205 } 206 207 if (ArgIndices.size() == 1 && ArgIndices.begin()->second.empty()) 208 ++NumArgumentsPromoted; 209 else 210 ++NumAggregatesPromoted; 211 } 212 } 213 214 Type *RetTy = FTy->getReturnType(); 215 216 // Construct the new function type using the new arguments. 217 FunctionType *NFTy = FunctionType::get(RetTy, Params, FTy->isVarArg()); 218 219 // Create the new function body and insert it into the module. 220 Function *NF = Function::Create(NFTy, F->getLinkage(), F->getAddressSpace(), 221 F->getName()); 222 NF->copyAttributesFrom(F); 223 NF->copyMetadata(F, 0); 224 225 // The new function will have the !dbg metadata copied from the original 226 // function. The original function may not be deleted, and dbg metadata need 227 // to be unique so we need to drop it. 228 F->setSubprogram(nullptr); 229 230 LLVM_DEBUG(dbgs() << "ARG PROMOTION: Promoting to:" << *NF << "\n" 231 << "From: " << *F); 232 233 // Recompute the parameter attributes list based on the new arguments for 234 // the function. 235 NF->setAttributes(AttributeList::get(F->getContext(), PAL.getFnAttributes(), 236 PAL.getRetAttributes(), ArgAttrVec)); 237 ArgAttrVec.clear(); 238 239 F->getParent()->getFunctionList().insert(F->getIterator(), NF); 240 NF->takeName(F); 241 242 // Loop over all of the callers of the function, transforming the call sites 243 // to pass in the loaded pointers. 244 // 245 SmallVector<Value *, 16> Args; 246 while (!F->use_empty()) { 247 CallBase &CB = cast<CallBase>(*F->user_back()); 248 assert(CB.getCalledFunction() == F); 249 const AttributeList &CallPAL = CB.getAttributes(); 250 IRBuilder<NoFolder> IRB(&CB); 251 252 // Loop over the operands, inserting GEP and loads in the caller as 253 // appropriate. 254 auto AI = CB.arg_begin(); 255 ArgNo = 0; 256 for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E; 257 ++I, ++AI, ++ArgNo) 258 if (!ArgsToPromote.count(&*I) && !ByValArgsToTransform.count(&*I)) { 259 Args.push_back(*AI); // Unmodified argument 260 ArgAttrVec.push_back(CallPAL.getParamAttributes(ArgNo)); 261 } else if (ByValArgsToTransform.count(&*I)) { 262 // Emit a GEP and load for each element of the struct. 263 Type *AgTy = cast<PointerType>(I->getType())->getElementType(); 264 StructType *STy = cast<StructType>(AgTy); 265 Value *Idxs[2] = { 266 ConstantInt::get(Type::getInt32Ty(F->getContext()), 0), nullptr}; 267 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 268 Idxs[1] = ConstantInt::get(Type::getInt32Ty(F->getContext()), i); 269 auto *Idx = 270 IRB.CreateGEP(STy, *AI, Idxs, (*AI)->getName() + "." + Twine(i)); 271 // TODO: Tell AA about the new values? 272 Args.push_back(IRB.CreateLoad(STy->getElementType(i), Idx, 273 Idx->getName() + ".val")); 274 ArgAttrVec.push_back(AttributeSet()); 275 } 276 } else if (!I->use_empty()) { 277 // Non-dead argument: insert GEPs and loads as appropriate. 278 ScalarizeTable &ArgIndices = ScalarizedElements[&*I]; 279 // Store the Value* version of the indices in here, but declare it now 280 // for reuse. 281 std::vector<Value *> Ops; 282 for (const auto &ArgIndex : ArgIndices) { 283 Value *V = *AI; 284 LoadInst *OrigLoad = 285 OriginalLoads[std::make_pair(&*I, ArgIndex.second)]; 286 if (!ArgIndex.second.empty()) { 287 Ops.reserve(ArgIndex.second.size()); 288 Type *ElTy = V->getType(); 289 for (auto II : ArgIndex.second) { 290 // Use i32 to index structs, and i64 for others (pointers/arrays). 291 // This satisfies GEP constraints. 292 Type *IdxTy = 293 (ElTy->isStructTy() ? Type::getInt32Ty(F->getContext()) 294 : Type::getInt64Ty(F->getContext())); 295 Ops.push_back(ConstantInt::get(IdxTy, II)); 296 // Keep track of the type we're currently indexing. 297 if (auto *ElPTy = dyn_cast<PointerType>(ElTy)) 298 ElTy = ElPTy->getElementType(); 299 else 300 ElTy = GetElementPtrInst::getTypeAtIndex(ElTy, II); 301 } 302 // And create a GEP to extract those indices. 303 V = IRB.CreateGEP(ArgIndex.first, V, Ops, V->getName() + ".idx"); 304 Ops.clear(); 305 } 306 // Since we're replacing a load make sure we take the alignment 307 // of the previous load. 308 LoadInst *newLoad = 309 IRB.CreateLoad(OrigLoad->getType(), V, V->getName() + ".val"); 310 newLoad->setAlignment(OrigLoad->getAlign()); 311 // Transfer the AA info too. 312 AAMDNodes AAInfo; 313 OrigLoad->getAAMetadata(AAInfo); 314 newLoad->setAAMetadata(AAInfo); 315 // And other metadata. 316 newLoad->copyMetadata( 317 *OrigLoad, 318 {LLVMContext::MD_nontemporal, LLVMContext::MD_nonnull, 319 LLVMContext::MD_dereferenceable, LLVMContext::MD_align, 320 LLVMContext::MD_noundef, LLVMContext::MD_range}); 321 322 Args.push_back(newLoad); 323 ArgAttrVec.push_back(AttributeSet()); 324 } 325 } 326 327 // Push any varargs arguments on the list. 328 for (; AI != CB.arg_end(); ++AI, ++ArgNo) { 329 Args.push_back(*AI); 330 ArgAttrVec.push_back(CallPAL.getParamAttributes(ArgNo)); 331 } 332 333 SmallVector<OperandBundleDef, 1> OpBundles; 334 CB.getOperandBundlesAsDefs(OpBundles); 335 336 CallBase *NewCS = nullptr; 337 if (InvokeInst *II = dyn_cast<InvokeInst>(&CB)) { 338 NewCS = InvokeInst::Create(NF, II->getNormalDest(), II->getUnwindDest(), 339 Args, OpBundles, "", &CB); 340 } else { 341 auto *NewCall = CallInst::Create(NF, Args, OpBundles, "", &CB); 342 NewCall->setTailCallKind(cast<CallInst>(&CB)->getTailCallKind()); 343 NewCS = NewCall; 344 } 345 NewCS->setCallingConv(CB.getCallingConv()); 346 NewCS->setAttributes( 347 AttributeList::get(F->getContext(), CallPAL.getFnAttributes(), 348 CallPAL.getRetAttributes(), ArgAttrVec)); 349 NewCS->copyMetadata(CB, {LLVMContext::MD_prof, LLVMContext::MD_dbg}); 350 Args.clear(); 351 ArgAttrVec.clear(); 352 353 // Update the callgraph to know that the callsite has been transformed. 354 if (ReplaceCallSite) 355 (*ReplaceCallSite)(CB, *NewCS); 356 357 if (!CB.use_empty()) { 358 CB.replaceAllUsesWith(NewCS); 359 NewCS->takeName(&CB); 360 } 361 362 // Finally, remove the old call from the program, reducing the use-count of 363 // F. 364 CB.eraseFromParent(); 365 } 366 367 const DataLayout &DL = F->getParent()->getDataLayout(); 368 369 // Since we have now created the new function, splice the body of the old 370 // function right into the new function, leaving the old rotting hulk of the 371 // function empty. 372 NF->getBasicBlockList().splice(NF->begin(), F->getBasicBlockList()); 373 374 // Loop over the argument list, transferring uses of the old arguments over to 375 // the new arguments, also transferring over the names as well. 376 for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(), 377 I2 = NF->arg_begin(); 378 I != E; ++I) { 379 if (!ArgsToPromote.count(&*I) && !ByValArgsToTransform.count(&*I)) { 380 // If this is an unmodified argument, move the name and users over to the 381 // new version. 382 I->replaceAllUsesWith(&*I2); 383 I2->takeName(&*I); 384 ++I2; 385 continue; 386 } 387 388 if (ByValArgsToTransform.count(&*I)) { 389 // In the callee, we create an alloca, and store each of the new incoming 390 // arguments into the alloca. 391 Instruction *InsertPt = &NF->begin()->front(); 392 393 // Just add all the struct element types. 394 Type *AgTy = cast<PointerType>(I->getType())->getElementType(); 395 Value *TheAlloca = new AllocaInst( 396 AgTy, DL.getAllocaAddrSpace(), nullptr, 397 I->getParamAlign().getValueOr(DL.getPrefTypeAlign(AgTy)), "", 398 InsertPt); 399 StructType *STy = cast<StructType>(AgTy); 400 Value *Idxs[2] = {ConstantInt::get(Type::getInt32Ty(F->getContext()), 0), 401 nullptr}; 402 403 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 404 Idxs[1] = ConstantInt::get(Type::getInt32Ty(F->getContext()), i); 405 Value *Idx = GetElementPtrInst::Create( 406 AgTy, TheAlloca, Idxs, TheAlloca->getName() + "." + Twine(i), 407 InsertPt); 408 I2->setName(I->getName() + "." + Twine(i)); 409 new StoreInst(&*I2++, Idx, InsertPt); 410 } 411 412 // Anything that used the arg should now use the alloca. 413 I->replaceAllUsesWith(TheAlloca); 414 TheAlloca->takeName(&*I); 415 416 // If the alloca is used in a call, we must clear the tail flag since 417 // the callee now uses an alloca from the caller. 418 for (User *U : TheAlloca->users()) { 419 CallInst *Call = dyn_cast<CallInst>(U); 420 if (!Call) 421 continue; 422 Call->setTailCall(false); 423 } 424 continue; 425 } 426 427 // There potentially are metadata uses for things like llvm.dbg.value. 428 // Replace them with undef, after handling the other regular uses. 429 auto RauwUndefMetadata = make_scope_exit( 430 [&]() { I->replaceAllUsesWith(UndefValue::get(I->getType())); }); 431 432 if (I->use_empty()) 433 continue; 434 435 // Otherwise, if we promoted this argument, then all users are load 436 // instructions (or GEPs with only load users), and all loads should be 437 // using the new argument that we added. 438 ScalarizeTable &ArgIndices = ScalarizedElements[&*I]; 439 440 while (!I->use_empty()) { 441 if (LoadInst *LI = dyn_cast<LoadInst>(I->user_back())) { 442 assert(ArgIndices.begin()->second.empty() && 443 "Load element should sort to front!"); 444 I2->setName(I->getName() + ".val"); 445 LI->replaceAllUsesWith(&*I2); 446 LI->eraseFromParent(); 447 LLVM_DEBUG(dbgs() << "*** Promoted load of argument '" << I->getName() 448 << "' in function '" << F->getName() << "'\n"); 449 } else { 450 GetElementPtrInst *GEP = cast<GetElementPtrInst>(I->user_back()); 451 assert(!GEP->use_empty() && 452 "GEPs without uses should be cleaned up already"); 453 IndicesVector Operands; 454 Operands.reserve(GEP->getNumIndices()); 455 for (const Use &Idx : GEP->indices()) 456 Operands.push_back(cast<ConstantInt>(Idx)->getSExtValue()); 457 458 // GEPs with a single 0 index can be merged with direct loads 459 if (Operands.size() == 1 && Operands.front() == 0) 460 Operands.clear(); 461 462 Function::arg_iterator TheArg = I2; 463 for (ScalarizeTable::iterator It = ArgIndices.begin(); 464 It->second != Operands; ++It, ++TheArg) { 465 assert(It != ArgIndices.end() && "GEP not handled??"); 466 } 467 468 TheArg->setName(formatv("{0}.{1:$[.]}.val", I->getName(), 469 make_range(Operands.begin(), Operands.end()))); 470 471 LLVM_DEBUG(dbgs() << "*** Promoted agg argument '" << TheArg->getName() 472 << "' of function '" << NF->getName() << "'\n"); 473 474 // All of the uses must be load instructions. Replace them all with 475 // the argument specified by ArgNo. 476 while (!GEP->use_empty()) { 477 LoadInst *L = cast<LoadInst>(GEP->user_back()); 478 L->replaceAllUsesWith(&*TheArg); 479 L->eraseFromParent(); 480 } 481 GEP->eraseFromParent(); 482 } 483 } 484 // Increment I2 past all of the arguments added for this promoted pointer. 485 std::advance(I2, ArgIndices.size()); 486 } 487 488 return NF; 489 } 490 491 /// Return true if we can prove that all callees pass in a valid pointer for the 492 /// specified function argument. 493 static bool allCallersPassValidPointerForArgument(Argument *Arg, Type *Ty) { 494 Function *Callee = Arg->getParent(); 495 const DataLayout &DL = Callee->getParent()->getDataLayout(); 496 497 unsigned ArgNo = Arg->getArgNo(); 498 499 // Look at all call sites of the function. At this point we know we only have 500 // direct callees. 501 for (User *U : Callee->users()) { 502 CallBase &CB = cast<CallBase>(*U); 503 504 if (!isDereferenceablePointer(CB.getArgOperand(ArgNo), Ty, DL)) 505 return false; 506 } 507 return true; 508 } 509 510 /// Returns true if Prefix is a prefix of longer. That means, Longer has a size 511 /// that is greater than or equal to the size of prefix, and each of the 512 /// elements in Prefix is the same as the corresponding elements in Longer. 513 /// 514 /// This means it also returns true when Prefix and Longer are equal! 515 static bool isPrefix(const IndicesVector &Prefix, const IndicesVector &Longer) { 516 if (Prefix.size() > Longer.size()) 517 return false; 518 return std::equal(Prefix.begin(), Prefix.end(), Longer.begin()); 519 } 520 521 /// Checks if Indices, or a prefix of Indices, is in Set. 522 static bool prefixIn(const IndicesVector &Indices, 523 std::set<IndicesVector> &Set) { 524 std::set<IndicesVector>::iterator Low; 525 Low = Set.upper_bound(Indices); 526 if (Low != Set.begin()) 527 Low--; 528 // Low is now the last element smaller than or equal to Indices. This means 529 // it points to a prefix of Indices (possibly Indices itself), if such 530 // prefix exists. 531 // 532 // This load is safe if any prefix of its operands is safe to load. 533 return Low != Set.end() && isPrefix(*Low, Indices); 534 } 535 536 /// Mark the given indices (ToMark) as safe in the given set of indices 537 /// (Safe). Marking safe usually means adding ToMark to Safe. However, if there 538 /// is already a prefix of Indices in Safe, Indices are implicitely marked safe 539 /// already. Furthermore, any indices that Indices is itself a prefix of, are 540 /// removed from Safe (since they are implicitely safe because of Indices now). 541 static void markIndicesSafe(const IndicesVector &ToMark, 542 std::set<IndicesVector> &Safe) { 543 std::set<IndicesVector>::iterator Low; 544 Low = Safe.upper_bound(ToMark); 545 // Guard against the case where Safe is empty 546 if (Low != Safe.begin()) 547 Low--; 548 // Low is now the last element smaller than or equal to Indices. This 549 // means it points to a prefix of Indices (possibly Indices itself), if 550 // such prefix exists. 551 if (Low != Safe.end()) { 552 if (isPrefix(*Low, ToMark)) 553 // If there is already a prefix of these indices (or exactly these 554 // indices) marked a safe, don't bother adding these indices 555 return; 556 557 // Increment Low, so we can use it as a "insert before" hint 558 ++Low; 559 } 560 // Insert 561 Low = Safe.insert(Low, ToMark); 562 ++Low; 563 // If there we're a prefix of longer index list(s), remove those 564 std::set<IndicesVector>::iterator End = Safe.end(); 565 while (Low != End && isPrefix(ToMark, *Low)) { 566 std::set<IndicesVector>::iterator Remove = Low; 567 ++Low; 568 Safe.erase(Remove); 569 } 570 } 571 572 /// isSafeToPromoteArgument - As you might guess from the name of this method, 573 /// it checks to see if it is both safe and useful to promote the argument. 574 /// This method limits promotion of aggregates to only promote up to three 575 /// elements of the aggregate in order to avoid exploding the number of 576 /// arguments passed in. 577 static bool isSafeToPromoteArgument(Argument *Arg, Type *ByValTy, AAResults &AAR, 578 unsigned MaxElements) { 579 using GEPIndicesSet = std::set<IndicesVector>; 580 581 // Quick exit for unused arguments 582 if (Arg->use_empty()) 583 return true; 584 585 // We can only promote this argument if all of the uses are loads, or are GEP 586 // instructions (with constant indices) that are subsequently loaded. 587 // 588 // Promoting the argument causes it to be loaded in the caller 589 // unconditionally. This is only safe if we can prove that either the load 590 // would have happened in the callee anyway (ie, there is a load in the entry 591 // block) or the pointer passed in at every call site is guaranteed to be 592 // valid. 593 // In the former case, invalid loads can happen, but would have happened 594 // anyway, in the latter case, invalid loads won't happen. This prevents us 595 // from introducing an invalid load that wouldn't have happened in the 596 // original code. 597 // 598 // This set will contain all sets of indices that are loaded in the entry 599 // block, and thus are safe to unconditionally load in the caller. 600 GEPIndicesSet SafeToUnconditionallyLoad; 601 602 // This set contains all the sets of indices that we are planning to promote. 603 // This makes it possible to limit the number of arguments added. 604 GEPIndicesSet ToPromote; 605 606 // If the pointer is always valid, any load with first index 0 is valid. 607 608 if (ByValTy) 609 SafeToUnconditionallyLoad.insert(IndicesVector(1, 0)); 610 611 // Whenever a new underlying type for the operand is found, make sure it's 612 // consistent with the GEPs and loads we've already seen and, if necessary, 613 // use it to see if all incoming pointers are valid (which implies the 0-index 614 // is safe). 615 Type *BaseTy = ByValTy; 616 auto UpdateBaseTy = [&](Type *NewBaseTy) { 617 if (BaseTy) 618 return BaseTy == NewBaseTy; 619 620 BaseTy = NewBaseTy; 621 if (allCallersPassValidPointerForArgument(Arg, BaseTy)) { 622 assert(SafeToUnconditionallyLoad.empty()); 623 SafeToUnconditionallyLoad.insert(IndicesVector(1, 0)); 624 } 625 626 return true; 627 }; 628 629 // First, iterate the entry block and mark loads of (geps of) arguments as 630 // safe. 631 BasicBlock &EntryBlock = Arg->getParent()->front(); 632 // Declare this here so we can reuse it 633 IndicesVector Indices; 634 for (Instruction &I : EntryBlock) 635 if (LoadInst *LI = dyn_cast<LoadInst>(&I)) { 636 Value *V = LI->getPointerOperand(); 637 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(V)) { 638 V = GEP->getPointerOperand(); 639 if (V == Arg) { 640 // This load actually loads (part of) Arg? Check the indices then. 641 Indices.reserve(GEP->getNumIndices()); 642 for (Use &Idx : GEP->indices()) 643 if (ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) 644 Indices.push_back(CI->getSExtValue()); 645 else 646 // We found a non-constant GEP index for this argument? Bail out 647 // right away, can't promote this argument at all. 648 return false; 649 650 if (!UpdateBaseTy(GEP->getSourceElementType())) 651 return false; 652 653 // Indices checked out, mark them as safe 654 markIndicesSafe(Indices, SafeToUnconditionallyLoad); 655 Indices.clear(); 656 } 657 } else if (V == Arg) { 658 // Direct loads are equivalent to a GEP with a single 0 index. 659 markIndicesSafe(IndicesVector(1, 0), SafeToUnconditionallyLoad); 660 661 if (BaseTy && LI->getType() != BaseTy) 662 return false; 663 664 BaseTy = LI->getType(); 665 } 666 } 667 668 // Now, iterate all uses of the argument to see if there are any uses that are 669 // not (GEP+)loads, or any (GEP+)loads that are not safe to promote. 670 SmallVector<LoadInst *, 16> Loads; 671 IndicesVector Operands; 672 for (Use &U : Arg->uses()) { 673 User *UR = U.getUser(); 674 Operands.clear(); 675 if (LoadInst *LI = dyn_cast<LoadInst>(UR)) { 676 // Don't hack volatile/atomic loads 677 if (!LI->isSimple()) 678 return false; 679 Loads.push_back(LI); 680 // Direct loads are equivalent to a GEP with a zero index and then a load. 681 Operands.push_back(0); 682 683 if (!UpdateBaseTy(LI->getType())) 684 return false; 685 } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(UR)) { 686 if (GEP->use_empty()) { 687 // Dead GEP's cause trouble later. Just remove them if we run into 688 // them. 689 continue; 690 } 691 692 if (!UpdateBaseTy(GEP->getSourceElementType())) 693 return false; 694 695 // Ensure that all of the indices are constants. 696 for (Use &Idx : GEP->indices()) 697 if (ConstantInt *C = dyn_cast<ConstantInt>(Idx)) 698 Operands.push_back(C->getSExtValue()); 699 else 700 return false; // Not a constant operand GEP! 701 702 // Ensure that the only users of the GEP are load instructions. 703 for (User *GEPU : GEP->users()) 704 if (LoadInst *LI = dyn_cast<LoadInst>(GEPU)) { 705 // Don't hack volatile/atomic loads 706 if (!LI->isSimple()) 707 return false; 708 Loads.push_back(LI); 709 } else { 710 // Other uses than load? 711 return false; 712 } 713 } else { 714 return false; // Not a load or a GEP. 715 } 716 717 // Now, see if it is safe to promote this load / loads of this GEP. Loading 718 // is safe if Operands, or a prefix of Operands, is marked as safe. 719 if (!prefixIn(Operands, SafeToUnconditionallyLoad)) 720 return false; 721 722 // See if we are already promoting a load with these indices. If not, check 723 // to make sure that we aren't promoting too many elements. If so, nothing 724 // to do. 725 if (ToPromote.find(Operands) == ToPromote.end()) { 726 if (MaxElements > 0 && ToPromote.size() == MaxElements) { 727 LLVM_DEBUG(dbgs() << "argpromotion not promoting argument '" 728 << Arg->getName() 729 << "' because it would require adding more " 730 << "than " << MaxElements 731 << " arguments to the function.\n"); 732 // We limit aggregate promotion to only promoting up to a fixed number 733 // of elements of the aggregate. 734 return false; 735 } 736 ToPromote.insert(std::move(Operands)); 737 } 738 } 739 740 if (Loads.empty()) 741 return true; // No users, this is a dead argument. 742 743 // Okay, now we know that the argument is only used by load instructions and 744 // it is safe to unconditionally perform all of them. Use alias analysis to 745 // check to see if the pointer is guaranteed to not be modified from entry of 746 // the function to each of the load instructions. 747 748 // Because there could be several/many load instructions, remember which 749 // blocks we know to be transparent to the load. 750 df_iterator_default_set<BasicBlock *, 16> TranspBlocks; 751 752 for (LoadInst *Load : Loads) { 753 // Check to see if the load is invalidated from the start of the block to 754 // the load itself. 755 BasicBlock *BB = Load->getParent(); 756 757 MemoryLocation Loc = MemoryLocation::get(Load); 758 if (AAR.canInstructionRangeModRef(BB->front(), *Load, Loc, ModRefInfo::Mod)) 759 return false; // Pointer is invalidated! 760 761 // Now check every path from the entry block to the load for transparency. 762 // To do this, we perform a depth first search on the inverse CFG from the 763 // loading block. 764 for (BasicBlock *P : predecessors(BB)) { 765 for (BasicBlock *TranspBB : inverse_depth_first_ext(P, TranspBlocks)) 766 if (AAR.canBasicBlockModify(*TranspBB, Loc)) 767 return false; 768 } 769 } 770 771 // If the path from the entry of the function to each load is free of 772 // instructions that potentially invalidate the load, we can make the 773 // transformation! 774 return true; 775 } 776 777 bool ArgumentPromotionPass::isDenselyPacked(Type *type, const DataLayout &DL) { 778 // There is no size information, so be conservative. 779 if (!type->isSized()) 780 return false; 781 782 // If the alloc size is not equal to the storage size, then there are padding 783 // bytes. For x86_fp80 on x86-64, size: 80 alloc size: 128. 784 if (DL.getTypeSizeInBits(type) != DL.getTypeAllocSizeInBits(type)) 785 return false; 786 787 // FIXME: This isn't the right way to check for padding in vectors with 788 // non-byte-size elements. 789 if (VectorType *seqTy = dyn_cast<VectorType>(type)) 790 return isDenselyPacked(seqTy->getElementType(), DL); 791 792 // For array types, check for padding within members. 793 if (ArrayType *seqTy = dyn_cast<ArrayType>(type)) 794 return isDenselyPacked(seqTy->getElementType(), DL); 795 796 if (!isa<StructType>(type)) 797 return true; 798 799 // Check for padding within and between elements of a struct. 800 StructType *StructTy = cast<StructType>(type); 801 const StructLayout *Layout = DL.getStructLayout(StructTy); 802 uint64_t StartPos = 0; 803 for (unsigned i = 0, E = StructTy->getNumElements(); i < E; ++i) { 804 Type *ElTy = StructTy->getElementType(i); 805 if (!isDenselyPacked(ElTy, DL)) 806 return false; 807 if (StartPos != Layout->getElementOffsetInBits(i)) 808 return false; 809 StartPos += DL.getTypeAllocSizeInBits(ElTy); 810 } 811 812 return true; 813 } 814 815 /// Checks if the padding bytes of an argument could be accessed. 816 static bool canPaddingBeAccessed(Argument *arg) { 817 assert(arg->hasByValAttr()); 818 819 // Track all the pointers to the argument to make sure they are not captured. 820 SmallPtrSet<Value *, 16> PtrValues; 821 PtrValues.insert(arg); 822 823 // Track all of the stores. 824 SmallVector<StoreInst *, 16> Stores; 825 826 // Scan through the uses recursively to make sure the pointer is always used 827 // sanely. 828 SmallVector<Value *, 16> WorkList(arg->users()); 829 while (!WorkList.empty()) { 830 Value *V = WorkList.pop_back_val(); 831 if (isa<GetElementPtrInst>(V) || isa<PHINode>(V)) { 832 if (PtrValues.insert(V).second) 833 llvm::append_range(WorkList, V->users()); 834 } else if (StoreInst *Store = dyn_cast<StoreInst>(V)) { 835 Stores.push_back(Store); 836 } else if (!isa<LoadInst>(V)) { 837 return true; 838 } 839 } 840 841 // Check to make sure the pointers aren't captured 842 for (StoreInst *Store : Stores) 843 if (PtrValues.count(Store->getValueOperand())) 844 return true; 845 846 return false; 847 } 848 849 bool ArgumentPromotionPass::areFunctionArgsABICompatible( 850 const Function &F, const TargetTransformInfo &TTI, 851 SmallPtrSetImpl<Argument *> &ArgsToPromote, 852 SmallPtrSetImpl<Argument *> &ByValArgsToTransform) { 853 for (const Use &U : F.uses()) { 854 CallBase *CB = dyn_cast<CallBase>(U.getUser()); 855 if (!CB) 856 return false; 857 const Function *Caller = CB->getCaller(); 858 const Function *Callee = CB->getCalledFunction(); 859 if (!TTI.areFunctionArgsABICompatible(Caller, Callee, ArgsToPromote) || 860 !TTI.areFunctionArgsABICompatible(Caller, Callee, ByValArgsToTransform)) 861 return false; 862 } 863 return true; 864 } 865 866 /// PromoteArguments - This method checks the specified function to see if there 867 /// are any promotable arguments and if it is safe to promote the function (for 868 /// example, all callers are direct). If safe to promote some arguments, it 869 /// calls the DoPromotion method. 870 static Function * 871 promoteArguments(Function *F, function_ref<AAResults &(Function &F)> AARGetter, 872 unsigned MaxElements, 873 Optional<function_ref<void(CallBase &OldCS, CallBase &NewCS)>> 874 ReplaceCallSite, 875 const TargetTransformInfo &TTI) { 876 // Don't perform argument promotion for naked functions; otherwise we can end 877 // up removing parameters that are seemingly 'not used' as they are referred 878 // to in the assembly. 879 if(F->hasFnAttribute(Attribute::Naked)) 880 return nullptr; 881 882 // Make sure that it is local to this module. 883 if (!F->hasLocalLinkage()) 884 return nullptr; 885 886 // Don't promote arguments for variadic functions. Adding, removing, or 887 // changing non-pack parameters can change the classification of pack 888 // parameters. Frontends encode that classification at the call site in the 889 // IR, while in the callee the classification is determined dynamically based 890 // on the number of registers consumed so far. 891 if (F->isVarArg()) 892 return nullptr; 893 894 // Don't transform functions that receive inallocas, as the transformation may 895 // not be safe depending on calling convention. 896 if (F->getAttributes().hasAttrSomewhere(Attribute::InAlloca)) 897 return nullptr; 898 899 // First check: see if there are any pointer arguments! If not, quick exit. 900 SmallVector<Argument *, 16> PointerArgs; 901 for (Argument &I : F->args()) 902 if (I.getType()->isPointerTy()) 903 PointerArgs.push_back(&I); 904 if (PointerArgs.empty()) 905 return nullptr; 906 907 // Second check: make sure that all callers are direct callers. We can't 908 // transform functions that have indirect callers. Also see if the function 909 // is self-recursive and check that target features are compatible. 910 bool isSelfRecursive = false; 911 for (Use &U : F->uses()) { 912 CallBase *CB = dyn_cast<CallBase>(U.getUser()); 913 // Must be a direct call. 914 if (CB == nullptr || !CB->isCallee(&U)) 915 return nullptr; 916 917 // Can't change signature of musttail callee 918 if (CB->isMustTailCall()) 919 return nullptr; 920 921 if (CB->getParent()->getParent() == F) 922 isSelfRecursive = true; 923 } 924 925 // Can't change signature of musttail caller 926 // FIXME: Support promoting whole chain of musttail functions 927 for (BasicBlock &BB : *F) 928 if (BB.getTerminatingMustTailCall()) 929 return nullptr; 930 931 const DataLayout &DL = F->getParent()->getDataLayout(); 932 933 AAResults &AAR = AARGetter(*F); 934 935 // Check to see which arguments are promotable. If an argument is promotable, 936 // add it to ArgsToPromote. 937 SmallPtrSet<Argument *, 8> ArgsToPromote; 938 SmallPtrSet<Argument *, 8> ByValArgsToTransform; 939 for (Argument *PtrArg : PointerArgs) { 940 Type *AgTy = cast<PointerType>(PtrArg->getType())->getElementType(); 941 942 // Replace sret attribute with noalias. This reduces register pressure by 943 // avoiding a register copy. 944 if (PtrArg->hasStructRetAttr()) { 945 unsigned ArgNo = PtrArg->getArgNo(); 946 F->removeParamAttr(ArgNo, Attribute::StructRet); 947 F->addParamAttr(ArgNo, Attribute::NoAlias); 948 for (Use &U : F->uses()) { 949 CallBase &CB = cast<CallBase>(*U.getUser()); 950 CB.removeParamAttr(ArgNo, Attribute::StructRet); 951 CB.addParamAttr(ArgNo, Attribute::NoAlias); 952 } 953 } 954 955 // If this is a byval argument, and if the aggregate type is small, just 956 // pass the elements, which is always safe, if the passed value is densely 957 // packed or if we can prove the padding bytes are never accessed. 958 bool isSafeToPromote = PtrArg->hasByValAttr() && 959 (ArgumentPromotionPass::isDenselyPacked(AgTy, DL) || 960 !canPaddingBeAccessed(PtrArg)); 961 if (isSafeToPromote) { 962 if (StructType *STy = dyn_cast<StructType>(AgTy)) { 963 if (MaxElements > 0 && STy->getNumElements() > MaxElements) { 964 LLVM_DEBUG(dbgs() << "argpromotion disable promoting argument '" 965 << PtrArg->getName() 966 << "' because it would require adding more" 967 << " than " << MaxElements 968 << " arguments to the function.\n"); 969 continue; 970 } 971 972 // If all the elements are single-value types, we can promote it. 973 bool AllSimple = true; 974 for (const auto *EltTy : STy->elements()) { 975 if (!EltTy->isSingleValueType()) { 976 AllSimple = false; 977 break; 978 } 979 } 980 981 // Safe to transform, don't even bother trying to "promote" it. 982 // Passing the elements as a scalar will allow sroa to hack on 983 // the new alloca we introduce. 984 if (AllSimple) { 985 ByValArgsToTransform.insert(PtrArg); 986 continue; 987 } 988 } 989 } 990 991 // If the argument is a recursive type and we're in a recursive 992 // function, we could end up infinitely peeling the function argument. 993 if (isSelfRecursive) { 994 if (StructType *STy = dyn_cast<StructType>(AgTy)) { 995 bool RecursiveType = 996 llvm::is_contained(STy->elements(), PtrArg->getType()); 997 if (RecursiveType) 998 continue; 999 } 1000 } 1001 1002 // Otherwise, see if we can promote the pointer to its value. 1003 Type *ByValTy = 1004 PtrArg->hasByValAttr() ? PtrArg->getParamByValType() : nullptr; 1005 if (isSafeToPromoteArgument(PtrArg, ByValTy, AAR, MaxElements)) 1006 ArgsToPromote.insert(PtrArg); 1007 } 1008 1009 // No promotable pointer arguments. 1010 if (ArgsToPromote.empty() && ByValArgsToTransform.empty()) 1011 return nullptr; 1012 1013 if (!ArgumentPromotionPass::areFunctionArgsABICompatible( 1014 *F, TTI, ArgsToPromote, ByValArgsToTransform)) 1015 return nullptr; 1016 1017 return doPromotion(F, ArgsToPromote, ByValArgsToTransform, ReplaceCallSite); 1018 } 1019 1020 PreservedAnalyses ArgumentPromotionPass::run(LazyCallGraph::SCC &C, 1021 CGSCCAnalysisManager &AM, 1022 LazyCallGraph &CG, 1023 CGSCCUpdateResult &UR) { 1024 bool Changed = false, LocalChange; 1025 1026 // Iterate until we stop promoting from this SCC. 1027 do { 1028 LocalChange = false; 1029 1030 for (LazyCallGraph::Node &N : C) { 1031 Function &OldF = N.getFunction(); 1032 1033 FunctionAnalysisManager &FAM = 1034 AM.getResult<FunctionAnalysisManagerCGSCCProxy>(C, CG).getManager(); 1035 // FIXME: This lambda must only be used with this function. We should 1036 // skip the lambda and just get the AA results directly. 1037 auto AARGetter = [&](Function &F) -> AAResults & { 1038 assert(&F == &OldF && "Called with an unexpected function!"); 1039 return FAM.getResult<AAManager>(F); 1040 }; 1041 1042 const TargetTransformInfo &TTI = FAM.getResult<TargetIRAnalysis>(OldF); 1043 Function *NewF = 1044 promoteArguments(&OldF, AARGetter, MaxElements, None, TTI); 1045 if (!NewF) 1046 continue; 1047 LocalChange = true; 1048 1049 // Directly substitute the functions in the call graph. Note that this 1050 // requires the old function to be completely dead and completely 1051 // replaced by the new function. It does no call graph updates, it merely 1052 // swaps out the particular function mapped to a particular node in the 1053 // graph. 1054 C.getOuterRefSCC().replaceNodeFunction(N, *NewF); 1055 FAM.clear(OldF, OldF.getName()); 1056 OldF.eraseFromParent(); 1057 } 1058 1059 Changed |= LocalChange; 1060 } while (LocalChange); 1061 1062 if (!Changed) 1063 return PreservedAnalyses::all(); 1064 1065 return PreservedAnalyses::none(); 1066 } 1067 1068 namespace { 1069 1070 /// ArgPromotion - The 'by reference' to 'by value' argument promotion pass. 1071 struct ArgPromotion : public CallGraphSCCPass { 1072 // Pass identification, replacement for typeid 1073 static char ID; 1074 1075 explicit ArgPromotion(unsigned MaxElements = 3) 1076 : CallGraphSCCPass(ID), MaxElements(MaxElements) { 1077 initializeArgPromotionPass(*PassRegistry::getPassRegistry()); 1078 } 1079 1080 void getAnalysisUsage(AnalysisUsage &AU) const override { 1081 AU.addRequired<AssumptionCacheTracker>(); 1082 AU.addRequired<TargetLibraryInfoWrapperPass>(); 1083 AU.addRequired<TargetTransformInfoWrapperPass>(); 1084 getAAResultsAnalysisUsage(AU); 1085 CallGraphSCCPass::getAnalysisUsage(AU); 1086 } 1087 1088 bool runOnSCC(CallGraphSCC &SCC) override; 1089 1090 private: 1091 using llvm::Pass::doInitialization; 1092 1093 bool doInitialization(CallGraph &CG) override; 1094 1095 /// The maximum number of elements to expand, or 0 for unlimited. 1096 unsigned MaxElements; 1097 }; 1098 1099 } // end anonymous namespace 1100 1101 char ArgPromotion::ID = 0; 1102 1103 INITIALIZE_PASS_BEGIN(ArgPromotion, "argpromotion", 1104 "Promote 'by reference' arguments to scalars", false, 1105 false) 1106 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 1107 INITIALIZE_PASS_DEPENDENCY(CallGraphWrapperPass) 1108 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 1109 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 1110 INITIALIZE_PASS_END(ArgPromotion, "argpromotion", 1111 "Promote 'by reference' arguments to scalars", false, false) 1112 1113 Pass *llvm::createArgumentPromotionPass(unsigned MaxElements) { 1114 return new ArgPromotion(MaxElements); 1115 } 1116 1117 bool ArgPromotion::runOnSCC(CallGraphSCC &SCC) { 1118 if (skipSCC(SCC)) 1119 return false; 1120 1121 // Get the callgraph information that we need to update to reflect our 1122 // changes. 1123 CallGraph &CG = getAnalysis<CallGraphWrapperPass>().getCallGraph(); 1124 1125 LegacyAARGetter AARGetter(*this); 1126 1127 bool Changed = false, LocalChange; 1128 1129 // Iterate until we stop promoting from this SCC. 1130 do { 1131 LocalChange = false; 1132 // Attempt to promote arguments from all functions in this SCC. 1133 for (CallGraphNode *OldNode : SCC) { 1134 Function *OldF = OldNode->getFunction(); 1135 if (!OldF) 1136 continue; 1137 1138 auto ReplaceCallSite = [&](CallBase &OldCS, CallBase &NewCS) { 1139 Function *Caller = OldCS.getParent()->getParent(); 1140 CallGraphNode *NewCalleeNode = 1141 CG.getOrInsertFunction(NewCS.getCalledFunction()); 1142 CallGraphNode *CallerNode = CG[Caller]; 1143 CallerNode->replaceCallEdge(cast<CallBase>(OldCS), 1144 cast<CallBase>(NewCS), NewCalleeNode); 1145 }; 1146 1147 const TargetTransformInfo &TTI = 1148 getAnalysis<TargetTransformInfoWrapperPass>().getTTI(*OldF); 1149 if (Function *NewF = promoteArguments(OldF, AARGetter, MaxElements, 1150 {ReplaceCallSite}, TTI)) { 1151 LocalChange = true; 1152 1153 // Update the call graph for the newly promoted function. 1154 CallGraphNode *NewNode = CG.getOrInsertFunction(NewF); 1155 NewNode->stealCalledFunctionsFrom(OldNode); 1156 if (OldNode->getNumReferences() == 0) 1157 delete CG.removeFunctionFromModule(OldNode); 1158 else 1159 OldF->setLinkage(Function::ExternalLinkage); 1160 1161 // And updat ethe SCC we're iterating as well. 1162 SCC.ReplaceNode(OldNode, NewNode); 1163 } 1164 } 1165 // Remember that we changed something. 1166 Changed |= LocalChange; 1167 } while (LocalChange); 1168 1169 return Changed; 1170 } 1171 1172 bool ArgPromotion::doInitialization(CallGraph &CG) { 1173 return CallGraphSCCPass::doInitialization(CG); 1174 } 1175