1 //===- ArgumentPromotion.cpp - Promote by-reference arguments -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass promotes "by reference" arguments to be "by value" arguments.  In
10 // practice, this means looking for internal functions that have pointer
11 // arguments.  If it can prove, through the use of alias analysis, that an
12 // argument is *only* loaded, then it can pass the value into the function
13 // instead of the address of the value.  This can cause recursive simplification
14 // of code and lead to the elimination of allocas (especially in C++ template
15 // code like the STL).
16 //
17 // This pass also handles aggregate arguments that are passed into a function,
18 // scalarizing them if the elements of the aggregate are only loaded.  Note that
19 // by default it refuses to scalarize aggregates which would require passing in
20 // more than three operands to the function, because passing thousands of
21 // operands for a large array or structure is unprofitable! This limit can be
22 // configured or disabled, however.
23 //
24 // Note that this transformation could also be done for arguments that are only
25 // stored to (returning the value instead), but does not currently.  This case
26 // would be best handled when and if LLVM begins supporting multiple return
27 // values from functions.
28 //
29 //===----------------------------------------------------------------------===//
30 
31 #include "llvm/Transforms/IPO/ArgumentPromotion.h"
32 #include "llvm/ADT/DepthFirstIterator.h"
33 #include "llvm/ADT/None.h"
34 #include "llvm/ADT/Optional.h"
35 #include "llvm/ADT/STLExtras.h"
36 #include "llvm/ADT/ScopeExit.h"
37 #include "llvm/ADT/SmallPtrSet.h"
38 #include "llvm/ADT/SmallVector.h"
39 #include "llvm/ADT/Statistic.h"
40 #include "llvm/ADT/Twine.h"
41 #include "llvm/Analysis/AssumptionCache.h"
42 #include "llvm/Analysis/BasicAliasAnalysis.h"
43 #include "llvm/Analysis/CGSCCPassManager.h"
44 #include "llvm/Analysis/CallGraph.h"
45 #include "llvm/Analysis/CallGraphSCCPass.h"
46 #include "llvm/Analysis/LazyCallGraph.h"
47 #include "llvm/Analysis/Loads.h"
48 #include "llvm/Analysis/MemoryLocation.h"
49 #include "llvm/Analysis/TargetLibraryInfo.h"
50 #include "llvm/Analysis/TargetTransformInfo.h"
51 #include "llvm/IR/Argument.h"
52 #include "llvm/IR/Attributes.h"
53 #include "llvm/IR/BasicBlock.h"
54 #include "llvm/IR/CFG.h"
55 #include "llvm/IR/Constants.h"
56 #include "llvm/IR/DataLayout.h"
57 #include "llvm/IR/DerivedTypes.h"
58 #include "llvm/IR/Function.h"
59 #include "llvm/IR/IRBuilder.h"
60 #include "llvm/IR/InstrTypes.h"
61 #include "llvm/IR/Instruction.h"
62 #include "llvm/IR/Instructions.h"
63 #include "llvm/IR/Metadata.h"
64 #include "llvm/IR/Module.h"
65 #include "llvm/IR/NoFolder.h"
66 #include "llvm/IR/PassManager.h"
67 #include "llvm/IR/Type.h"
68 #include "llvm/IR/Use.h"
69 #include "llvm/IR/User.h"
70 #include "llvm/IR/Value.h"
71 #include "llvm/InitializePasses.h"
72 #include "llvm/Pass.h"
73 #include "llvm/Support/Casting.h"
74 #include "llvm/Support/Debug.h"
75 #include "llvm/Support/FormatVariadic.h"
76 #include "llvm/Support/raw_ostream.h"
77 #include "llvm/Transforms/IPO.h"
78 #include <algorithm>
79 #include <cassert>
80 #include <cstdint>
81 #include <functional>
82 #include <iterator>
83 #include <map>
84 #include <set>
85 #include <string>
86 #include <utility>
87 #include <vector>
88 
89 using namespace llvm;
90 
91 #define DEBUG_TYPE "argpromotion"
92 
93 STATISTIC(NumArgumentsPromoted, "Number of pointer arguments promoted");
94 STATISTIC(NumAggregatesPromoted, "Number of aggregate arguments promoted");
95 STATISTIC(NumByValArgsPromoted, "Number of byval arguments promoted");
96 STATISTIC(NumArgumentsDead, "Number of dead pointer args eliminated");
97 
98 /// A vector used to hold the indices of a single GEP instruction
99 using IndicesVector = std::vector<uint64_t>;
100 
101 /// DoPromotion - This method actually performs the promotion of the specified
102 /// arguments, and returns the new function.  At this point, we know that it's
103 /// safe to do so.
104 static Function *
105 doPromotion(Function *F, SmallPtrSetImpl<Argument *> &ArgsToPromote,
106             SmallPtrSetImpl<Argument *> &ByValArgsToTransform,
107             Optional<function_ref<void(CallBase &OldCS, CallBase &NewCS)>>
108                 ReplaceCallSite) {
109   // Start by computing a new prototype for the function, which is the same as
110   // the old function, but has modified arguments.
111   FunctionType *FTy = F->getFunctionType();
112   std::vector<Type *> Params;
113 
114   using ScalarizeTable = std::set<std::pair<Type *, IndicesVector>>;
115 
116   // ScalarizedElements - If we are promoting a pointer that has elements
117   // accessed out of it, keep track of which elements are accessed so that we
118   // can add one argument for each.
119   //
120   // Arguments that are directly loaded will have a zero element value here, to
121   // handle cases where there are both a direct load and GEP accesses.
122   std::map<Argument *, ScalarizeTable> ScalarizedElements;
123 
124   // OriginalLoads - Keep track of a representative load instruction from the
125   // original function so that we can tell the alias analysis implementation
126   // what the new GEP/Load instructions we are inserting look like.
127   // We need to keep the original loads for each argument and the elements
128   // of the argument that are accessed.
129   std::map<std::pair<Argument *, IndicesVector>, LoadInst *> OriginalLoads;
130 
131   // Attribute - Keep track of the parameter attributes for the arguments
132   // that we are *not* promoting. For the ones that we do promote, the parameter
133   // attributes are lost
134   SmallVector<AttributeSet, 8> ArgAttrVec;
135   AttributeList PAL = F->getAttributes();
136 
137   // First, determine the new argument list
138   unsigned ArgNo = 0;
139   for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E;
140        ++I, ++ArgNo) {
141     if (ByValArgsToTransform.count(&*I)) {
142       // Simple byval argument? Just add all the struct element types.
143       Type *AgTy = cast<PointerType>(I->getType())->getElementType();
144       StructType *STy = cast<StructType>(AgTy);
145       llvm::append_range(Params, STy->elements());
146       ArgAttrVec.insert(ArgAttrVec.end(), STy->getNumElements(),
147                         AttributeSet());
148       ++NumByValArgsPromoted;
149     } else if (!ArgsToPromote.count(&*I)) {
150       // Unchanged argument
151       Params.push_back(I->getType());
152       ArgAttrVec.push_back(PAL.getParamAttributes(ArgNo));
153     } else if (I->use_empty()) {
154       // Dead argument (which are always marked as promotable)
155       ++NumArgumentsDead;
156     } else {
157       // Okay, this is being promoted. This means that the only uses are loads
158       // or GEPs which are only used by loads
159 
160       // In this table, we will track which indices are loaded from the argument
161       // (where direct loads are tracked as no indices).
162       ScalarizeTable &ArgIndices = ScalarizedElements[&*I];
163       for (User *U : make_early_inc_range(I->users())) {
164         Instruction *UI = cast<Instruction>(U);
165         Type *SrcTy;
166         if (LoadInst *L = dyn_cast<LoadInst>(UI))
167           SrcTy = L->getType();
168         else
169           SrcTy = cast<GetElementPtrInst>(UI)->getSourceElementType();
170         // Skip dead GEPs and remove them.
171         if (isa<GetElementPtrInst>(UI) && UI->use_empty()) {
172           UI->eraseFromParent();
173           continue;
174         }
175 
176         IndicesVector Indices;
177         Indices.reserve(UI->getNumOperands() - 1);
178         // Since loads will only have a single operand, and GEPs only a single
179         // non-index operand, this will record direct loads without any indices,
180         // and gep+loads with the GEP indices.
181         for (User::op_iterator II = UI->op_begin() + 1, IE = UI->op_end();
182              II != IE; ++II)
183           Indices.push_back(cast<ConstantInt>(*II)->getSExtValue());
184         // GEPs with a single 0 index can be merged with direct loads
185         if (Indices.size() == 1 && Indices.front() == 0)
186           Indices.clear();
187         ArgIndices.insert(std::make_pair(SrcTy, Indices));
188         LoadInst *OrigLoad;
189         if (LoadInst *L = dyn_cast<LoadInst>(UI))
190           OrigLoad = L;
191         else
192           // Take any load, we will use it only to update Alias Analysis
193           OrigLoad = cast<LoadInst>(UI->user_back());
194         OriginalLoads[std::make_pair(&*I, Indices)] = OrigLoad;
195       }
196 
197       // Add a parameter to the function for each element passed in.
198       for (const auto &ArgIndex : ArgIndices) {
199         // not allowed to dereference ->begin() if size() is 0
200         Params.push_back(GetElementPtrInst::getIndexedType(
201             cast<PointerType>(I->getType())->getElementType(),
202             ArgIndex.second));
203         ArgAttrVec.push_back(AttributeSet());
204         assert(Params.back());
205       }
206 
207       if (ArgIndices.size() == 1 && ArgIndices.begin()->second.empty())
208         ++NumArgumentsPromoted;
209       else
210         ++NumAggregatesPromoted;
211     }
212   }
213 
214   Type *RetTy = FTy->getReturnType();
215 
216   // Construct the new function type using the new arguments.
217   FunctionType *NFTy = FunctionType::get(RetTy, Params, FTy->isVarArg());
218 
219   // Create the new function body and insert it into the module.
220   Function *NF = Function::Create(NFTy, F->getLinkage(), F->getAddressSpace(),
221                                   F->getName());
222   NF->copyAttributesFrom(F);
223   NF->copyMetadata(F, 0);
224 
225   // The new function will have the !dbg metadata copied from the original
226   // function. The original function may not be deleted, and dbg metadata need
227   // to be unique so we need to drop it.
228   F->setSubprogram(nullptr);
229 
230   LLVM_DEBUG(dbgs() << "ARG PROMOTION:  Promoting to:" << *NF << "\n"
231                     << "From: " << *F);
232 
233   // Recompute the parameter attributes list based on the new arguments for
234   // the function.
235   NF->setAttributes(AttributeList::get(F->getContext(), PAL.getFnAttributes(),
236                                        PAL.getRetAttributes(), ArgAttrVec));
237   ArgAttrVec.clear();
238 
239   F->getParent()->getFunctionList().insert(F->getIterator(), NF);
240   NF->takeName(F);
241 
242   // Loop over all of the callers of the function, transforming the call sites
243   // to pass in the loaded pointers.
244   //
245   SmallVector<Value *, 16> Args;
246   while (!F->use_empty()) {
247     CallBase &CB = cast<CallBase>(*F->user_back());
248     assert(CB.getCalledFunction() == F);
249     const AttributeList &CallPAL = CB.getAttributes();
250     IRBuilder<NoFolder> IRB(&CB);
251 
252     // Loop over the operands, inserting GEP and loads in the caller as
253     // appropriate.
254     auto AI = CB.arg_begin();
255     ArgNo = 0;
256     for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E;
257          ++I, ++AI, ++ArgNo)
258       if (!ArgsToPromote.count(&*I) && !ByValArgsToTransform.count(&*I)) {
259         Args.push_back(*AI); // Unmodified argument
260         ArgAttrVec.push_back(CallPAL.getParamAttributes(ArgNo));
261       } else if (ByValArgsToTransform.count(&*I)) {
262         // Emit a GEP and load for each element of the struct.
263         Type *AgTy = cast<PointerType>(I->getType())->getElementType();
264         StructType *STy = cast<StructType>(AgTy);
265         Value *Idxs[2] = {
266             ConstantInt::get(Type::getInt32Ty(F->getContext()), 0), nullptr};
267         for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
268           Idxs[1] = ConstantInt::get(Type::getInt32Ty(F->getContext()), i);
269           auto *Idx =
270               IRB.CreateGEP(STy, *AI, Idxs, (*AI)->getName() + "." + Twine(i));
271           // TODO: Tell AA about the new values?
272           Args.push_back(IRB.CreateLoad(STy->getElementType(i), Idx,
273                                         Idx->getName() + ".val"));
274           ArgAttrVec.push_back(AttributeSet());
275         }
276       } else if (!I->use_empty()) {
277         // Non-dead argument: insert GEPs and loads as appropriate.
278         ScalarizeTable &ArgIndices = ScalarizedElements[&*I];
279         // Store the Value* version of the indices in here, but declare it now
280         // for reuse.
281         std::vector<Value *> Ops;
282         for (const auto &ArgIndex : ArgIndices) {
283           Value *V = *AI;
284           LoadInst *OrigLoad =
285               OriginalLoads[std::make_pair(&*I, ArgIndex.second)];
286           if (!ArgIndex.second.empty()) {
287             Ops.reserve(ArgIndex.second.size());
288             Type *ElTy = V->getType();
289             for (auto II : ArgIndex.second) {
290               // Use i32 to index structs, and i64 for others (pointers/arrays).
291               // This satisfies GEP constraints.
292               Type *IdxTy =
293                   (ElTy->isStructTy() ? Type::getInt32Ty(F->getContext())
294                                       : Type::getInt64Ty(F->getContext()));
295               Ops.push_back(ConstantInt::get(IdxTy, II));
296               // Keep track of the type we're currently indexing.
297               if (auto *ElPTy = dyn_cast<PointerType>(ElTy))
298                 ElTy = ElPTy->getElementType();
299               else
300                 ElTy = GetElementPtrInst::getTypeAtIndex(ElTy, II);
301             }
302             // And create a GEP to extract those indices.
303             V = IRB.CreateGEP(ArgIndex.first, V, Ops, V->getName() + ".idx");
304             Ops.clear();
305           }
306           // Since we're replacing a load make sure we take the alignment
307           // of the previous load.
308           LoadInst *newLoad =
309               IRB.CreateLoad(OrigLoad->getType(), V, V->getName() + ".val");
310           newLoad->setAlignment(OrigLoad->getAlign());
311           // Transfer the AA info too.
312           AAMDNodes AAInfo;
313           OrigLoad->getAAMetadata(AAInfo);
314           newLoad->setAAMetadata(AAInfo);
315           // And other metadata.
316           newLoad->copyMetadata(
317               *OrigLoad,
318               {LLVMContext::MD_nontemporal, LLVMContext::MD_nonnull,
319                LLVMContext::MD_dereferenceable, LLVMContext::MD_align,
320                LLVMContext::MD_noundef, LLVMContext::MD_range});
321 
322           Args.push_back(newLoad);
323           ArgAttrVec.push_back(AttributeSet());
324         }
325       }
326 
327     // Push any varargs arguments on the list.
328     for (; AI != CB.arg_end(); ++AI, ++ArgNo) {
329       Args.push_back(*AI);
330       ArgAttrVec.push_back(CallPAL.getParamAttributes(ArgNo));
331     }
332 
333     SmallVector<OperandBundleDef, 1> OpBundles;
334     CB.getOperandBundlesAsDefs(OpBundles);
335 
336     CallBase *NewCS = nullptr;
337     if (InvokeInst *II = dyn_cast<InvokeInst>(&CB)) {
338       NewCS = InvokeInst::Create(NF, II->getNormalDest(), II->getUnwindDest(),
339                                  Args, OpBundles, "", &CB);
340     } else {
341       auto *NewCall = CallInst::Create(NF, Args, OpBundles, "", &CB);
342       NewCall->setTailCallKind(cast<CallInst>(&CB)->getTailCallKind());
343       NewCS = NewCall;
344     }
345     NewCS->setCallingConv(CB.getCallingConv());
346     NewCS->setAttributes(
347         AttributeList::get(F->getContext(), CallPAL.getFnAttributes(),
348                            CallPAL.getRetAttributes(), ArgAttrVec));
349     NewCS->copyMetadata(CB, {LLVMContext::MD_prof, LLVMContext::MD_dbg});
350     Args.clear();
351     ArgAttrVec.clear();
352 
353     // Update the callgraph to know that the callsite has been transformed.
354     if (ReplaceCallSite)
355       (*ReplaceCallSite)(CB, *NewCS);
356 
357     if (!CB.use_empty()) {
358       CB.replaceAllUsesWith(NewCS);
359       NewCS->takeName(&CB);
360     }
361 
362     // Finally, remove the old call from the program, reducing the use-count of
363     // F.
364     CB.eraseFromParent();
365   }
366 
367   const DataLayout &DL = F->getParent()->getDataLayout();
368 
369   // Since we have now created the new function, splice the body of the old
370   // function right into the new function, leaving the old rotting hulk of the
371   // function empty.
372   NF->getBasicBlockList().splice(NF->begin(), F->getBasicBlockList());
373 
374   // Loop over the argument list, transferring uses of the old arguments over to
375   // the new arguments, also transferring over the names as well.
376   for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(),
377                               I2 = NF->arg_begin();
378        I != E; ++I) {
379     if (!ArgsToPromote.count(&*I) && !ByValArgsToTransform.count(&*I)) {
380       // If this is an unmodified argument, move the name and users over to the
381       // new version.
382       I->replaceAllUsesWith(&*I2);
383       I2->takeName(&*I);
384       ++I2;
385       continue;
386     }
387 
388     if (ByValArgsToTransform.count(&*I)) {
389       // In the callee, we create an alloca, and store each of the new incoming
390       // arguments into the alloca.
391       Instruction *InsertPt = &NF->begin()->front();
392 
393       // Just add all the struct element types.
394       Type *AgTy = cast<PointerType>(I->getType())->getElementType();
395       Value *TheAlloca = new AllocaInst(
396           AgTy, DL.getAllocaAddrSpace(), nullptr,
397           I->getParamAlign().getValueOr(DL.getPrefTypeAlign(AgTy)), "",
398           InsertPt);
399       StructType *STy = cast<StructType>(AgTy);
400       Value *Idxs[2] = {ConstantInt::get(Type::getInt32Ty(F->getContext()), 0),
401                         nullptr};
402 
403       for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
404         Idxs[1] = ConstantInt::get(Type::getInt32Ty(F->getContext()), i);
405         Value *Idx = GetElementPtrInst::Create(
406             AgTy, TheAlloca, Idxs, TheAlloca->getName() + "." + Twine(i),
407             InsertPt);
408         I2->setName(I->getName() + "." + Twine(i));
409         new StoreInst(&*I2++, Idx, InsertPt);
410       }
411 
412       // Anything that used the arg should now use the alloca.
413       I->replaceAllUsesWith(TheAlloca);
414       TheAlloca->takeName(&*I);
415 
416       // If the alloca is used in a call, we must clear the tail flag since
417       // the callee now uses an alloca from the caller.
418       for (User *U : TheAlloca->users()) {
419         CallInst *Call = dyn_cast<CallInst>(U);
420         if (!Call)
421           continue;
422         Call->setTailCall(false);
423       }
424       continue;
425     }
426 
427     // There potentially are metadata uses for things like llvm.dbg.value.
428     // Replace them with undef, after handling the other regular uses.
429     auto RauwUndefMetadata = make_scope_exit(
430         [&]() { I->replaceAllUsesWith(UndefValue::get(I->getType())); });
431 
432     if (I->use_empty())
433       continue;
434 
435     // Otherwise, if we promoted this argument, then all users are load
436     // instructions (or GEPs with only load users), and all loads should be
437     // using the new argument that we added.
438     ScalarizeTable &ArgIndices = ScalarizedElements[&*I];
439 
440     while (!I->use_empty()) {
441       if (LoadInst *LI = dyn_cast<LoadInst>(I->user_back())) {
442         assert(ArgIndices.begin()->second.empty() &&
443                "Load element should sort to front!");
444         I2->setName(I->getName() + ".val");
445         LI->replaceAllUsesWith(&*I2);
446         LI->eraseFromParent();
447         LLVM_DEBUG(dbgs() << "*** Promoted load of argument '" << I->getName()
448                           << "' in function '" << F->getName() << "'\n");
449       } else {
450         GetElementPtrInst *GEP = cast<GetElementPtrInst>(I->user_back());
451         assert(!GEP->use_empty() &&
452                "GEPs without uses should be cleaned up already");
453         IndicesVector Operands;
454         Operands.reserve(GEP->getNumIndices());
455         for (const Use &Idx : GEP->indices())
456           Operands.push_back(cast<ConstantInt>(Idx)->getSExtValue());
457 
458         // GEPs with a single 0 index can be merged with direct loads
459         if (Operands.size() == 1 && Operands.front() == 0)
460           Operands.clear();
461 
462         Function::arg_iterator TheArg = I2;
463         for (ScalarizeTable::iterator It = ArgIndices.begin();
464              It->second != Operands; ++It, ++TheArg) {
465           assert(It != ArgIndices.end() && "GEP not handled??");
466         }
467 
468         TheArg->setName(formatv("{0}.{1:$[.]}.val", I->getName(),
469                                 make_range(Operands.begin(), Operands.end())));
470 
471         LLVM_DEBUG(dbgs() << "*** Promoted agg argument '" << TheArg->getName()
472                           << "' of function '" << NF->getName() << "'\n");
473 
474         // All of the uses must be load instructions.  Replace them all with
475         // the argument specified by ArgNo.
476         while (!GEP->use_empty()) {
477           LoadInst *L = cast<LoadInst>(GEP->user_back());
478           L->replaceAllUsesWith(&*TheArg);
479           L->eraseFromParent();
480         }
481         GEP->eraseFromParent();
482       }
483     }
484     // Increment I2 past all of the arguments added for this promoted pointer.
485     std::advance(I2, ArgIndices.size());
486   }
487 
488   return NF;
489 }
490 
491 /// Return true if we can prove that all callees pass in a valid pointer for the
492 /// specified function argument.
493 static bool allCallersPassValidPointerForArgument(Argument *Arg, Type *Ty) {
494   Function *Callee = Arg->getParent();
495   const DataLayout &DL = Callee->getParent()->getDataLayout();
496 
497   unsigned ArgNo = Arg->getArgNo();
498 
499   // Look at all call sites of the function.  At this point we know we only have
500   // direct callees.
501   for (User *U : Callee->users()) {
502     CallBase &CB = cast<CallBase>(*U);
503 
504     if (!isDereferenceablePointer(CB.getArgOperand(ArgNo), Ty, DL))
505       return false;
506   }
507   return true;
508 }
509 
510 /// Returns true if Prefix is a prefix of longer. That means, Longer has a size
511 /// that is greater than or equal to the size of prefix, and each of the
512 /// elements in Prefix is the same as the corresponding elements in Longer.
513 ///
514 /// This means it also returns true when Prefix and Longer are equal!
515 static bool isPrefix(const IndicesVector &Prefix, const IndicesVector &Longer) {
516   if (Prefix.size() > Longer.size())
517     return false;
518   return std::equal(Prefix.begin(), Prefix.end(), Longer.begin());
519 }
520 
521 /// Checks if Indices, or a prefix of Indices, is in Set.
522 static bool prefixIn(const IndicesVector &Indices,
523                      std::set<IndicesVector> &Set) {
524   std::set<IndicesVector>::iterator Low;
525   Low = Set.upper_bound(Indices);
526   if (Low != Set.begin())
527     Low--;
528   // Low is now the last element smaller than or equal to Indices. This means
529   // it points to a prefix of Indices (possibly Indices itself), if such
530   // prefix exists.
531   //
532   // This load is safe if any prefix of its operands is safe to load.
533   return Low != Set.end() && isPrefix(*Low, Indices);
534 }
535 
536 /// Mark the given indices (ToMark) as safe in the given set of indices
537 /// (Safe). Marking safe usually means adding ToMark to Safe. However, if there
538 /// is already a prefix of Indices in Safe, Indices are implicitely marked safe
539 /// already. Furthermore, any indices that Indices is itself a prefix of, are
540 /// removed from Safe (since they are implicitely safe because of Indices now).
541 static void markIndicesSafe(const IndicesVector &ToMark,
542                             std::set<IndicesVector> &Safe) {
543   std::set<IndicesVector>::iterator Low;
544   Low = Safe.upper_bound(ToMark);
545   // Guard against the case where Safe is empty
546   if (Low != Safe.begin())
547     Low--;
548   // Low is now the last element smaller than or equal to Indices. This
549   // means it points to a prefix of Indices (possibly Indices itself), if
550   // such prefix exists.
551   if (Low != Safe.end()) {
552     if (isPrefix(*Low, ToMark))
553       // If there is already a prefix of these indices (or exactly these
554       // indices) marked a safe, don't bother adding these indices
555       return;
556 
557     // Increment Low, so we can use it as a "insert before" hint
558     ++Low;
559   }
560   // Insert
561   Low = Safe.insert(Low, ToMark);
562   ++Low;
563   // If there we're a prefix of longer index list(s), remove those
564   std::set<IndicesVector>::iterator End = Safe.end();
565   while (Low != End && isPrefix(ToMark, *Low)) {
566     std::set<IndicesVector>::iterator Remove = Low;
567     ++Low;
568     Safe.erase(Remove);
569   }
570 }
571 
572 /// isSafeToPromoteArgument - As you might guess from the name of this method,
573 /// it checks to see if it is both safe and useful to promote the argument.
574 /// This method limits promotion of aggregates to only promote up to three
575 /// elements of the aggregate in order to avoid exploding the number of
576 /// arguments passed in.
577 static bool isSafeToPromoteArgument(Argument *Arg, Type *ByValTy, AAResults &AAR,
578                                     unsigned MaxElements) {
579   using GEPIndicesSet = std::set<IndicesVector>;
580 
581   // Quick exit for unused arguments
582   if (Arg->use_empty())
583     return true;
584 
585   // We can only promote this argument if all of the uses are loads, or are GEP
586   // instructions (with constant indices) that are subsequently loaded.
587   //
588   // Promoting the argument causes it to be loaded in the caller
589   // unconditionally. This is only safe if we can prove that either the load
590   // would have happened in the callee anyway (ie, there is a load in the entry
591   // block) or the pointer passed in at every call site is guaranteed to be
592   // valid.
593   // In the former case, invalid loads can happen, but would have happened
594   // anyway, in the latter case, invalid loads won't happen. This prevents us
595   // from introducing an invalid load that wouldn't have happened in the
596   // original code.
597   //
598   // This set will contain all sets of indices that are loaded in the entry
599   // block, and thus are safe to unconditionally load in the caller.
600   GEPIndicesSet SafeToUnconditionallyLoad;
601 
602   // This set contains all the sets of indices that we are planning to promote.
603   // This makes it possible to limit the number of arguments added.
604   GEPIndicesSet ToPromote;
605 
606   // If the pointer is always valid, any load with first index 0 is valid.
607 
608   if (ByValTy)
609     SafeToUnconditionallyLoad.insert(IndicesVector(1, 0));
610 
611   // Whenever a new underlying type for the operand is found, make sure it's
612   // consistent with the GEPs and loads we've already seen and, if necessary,
613   // use it to see if all incoming pointers are valid (which implies the 0-index
614   // is safe).
615   Type *BaseTy = ByValTy;
616   auto UpdateBaseTy = [&](Type *NewBaseTy) {
617     if (BaseTy)
618       return BaseTy == NewBaseTy;
619 
620     BaseTy = NewBaseTy;
621     if (allCallersPassValidPointerForArgument(Arg, BaseTy)) {
622       assert(SafeToUnconditionallyLoad.empty());
623       SafeToUnconditionallyLoad.insert(IndicesVector(1, 0));
624     }
625 
626     return true;
627   };
628 
629   // First, iterate the entry block and mark loads of (geps of) arguments as
630   // safe.
631   BasicBlock &EntryBlock = Arg->getParent()->front();
632   // Declare this here so we can reuse it
633   IndicesVector Indices;
634   for (Instruction &I : EntryBlock)
635     if (LoadInst *LI = dyn_cast<LoadInst>(&I)) {
636       Value *V = LI->getPointerOperand();
637       if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(V)) {
638         V = GEP->getPointerOperand();
639         if (V == Arg) {
640           // This load actually loads (part of) Arg? Check the indices then.
641           Indices.reserve(GEP->getNumIndices());
642           for (Use &Idx : GEP->indices())
643             if (ConstantInt *CI = dyn_cast<ConstantInt>(Idx))
644               Indices.push_back(CI->getSExtValue());
645             else
646               // We found a non-constant GEP index for this argument? Bail out
647               // right away, can't promote this argument at all.
648               return false;
649 
650           if (!UpdateBaseTy(GEP->getSourceElementType()))
651             return false;
652 
653           // Indices checked out, mark them as safe
654           markIndicesSafe(Indices, SafeToUnconditionallyLoad);
655           Indices.clear();
656         }
657       } else if (V == Arg) {
658         // Direct loads are equivalent to a GEP with a single 0 index.
659         markIndicesSafe(IndicesVector(1, 0), SafeToUnconditionallyLoad);
660 
661         if (BaseTy && LI->getType() != BaseTy)
662           return false;
663 
664         BaseTy = LI->getType();
665       }
666     }
667 
668   // Now, iterate all uses of the argument to see if there are any uses that are
669   // not (GEP+)loads, or any (GEP+)loads that are not safe to promote.
670   SmallVector<LoadInst *, 16> Loads;
671   IndicesVector Operands;
672   for (Use &U : Arg->uses()) {
673     User *UR = U.getUser();
674     Operands.clear();
675     if (LoadInst *LI = dyn_cast<LoadInst>(UR)) {
676       // Don't hack volatile/atomic loads
677       if (!LI->isSimple())
678         return false;
679       Loads.push_back(LI);
680       // Direct loads are equivalent to a GEP with a zero index and then a load.
681       Operands.push_back(0);
682 
683       if (!UpdateBaseTy(LI->getType()))
684         return false;
685     } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(UR)) {
686       if (GEP->use_empty()) {
687         // Dead GEP's cause trouble later.  Just remove them if we run into
688         // them.
689         continue;
690       }
691 
692       if (!UpdateBaseTy(GEP->getSourceElementType()))
693         return false;
694 
695       // Ensure that all of the indices are constants.
696       for (Use &Idx : GEP->indices())
697         if (ConstantInt *C = dyn_cast<ConstantInt>(Idx))
698           Operands.push_back(C->getSExtValue());
699         else
700           return false; // Not a constant operand GEP!
701 
702       // Ensure that the only users of the GEP are load instructions.
703       for (User *GEPU : GEP->users())
704         if (LoadInst *LI = dyn_cast<LoadInst>(GEPU)) {
705           // Don't hack volatile/atomic loads
706           if (!LI->isSimple())
707             return false;
708           Loads.push_back(LI);
709         } else {
710           // Other uses than load?
711           return false;
712         }
713     } else {
714       return false; // Not a load or a GEP.
715     }
716 
717     // Now, see if it is safe to promote this load / loads of this GEP. Loading
718     // is safe if Operands, or a prefix of Operands, is marked as safe.
719     if (!prefixIn(Operands, SafeToUnconditionallyLoad))
720       return false;
721 
722     // See if we are already promoting a load with these indices. If not, check
723     // to make sure that we aren't promoting too many elements.  If so, nothing
724     // to do.
725     if (ToPromote.find(Operands) == ToPromote.end()) {
726       if (MaxElements > 0 && ToPromote.size() == MaxElements) {
727         LLVM_DEBUG(dbgs() << "argpromotion not promoting argument '"
728                           << Arg->getName()
729                           << "' because it would require adding more "
730                           << "than " << MaxElements
731                           << " arguments to the function.\n");
732         // We limit aggregate promotion to only promoting up to a fixed number
733         // of elements of the aggregate.
734         return false;
735       }
736       ToPromote.insert(std::move(Operands));
737     }
738   }
739 
740   if (Loads.empty())
741     return true; // No users, this is a dead argument.
742 
743   // Okay, now we know that the argument is only used by load instructions and
744   // it is safe to unconditionally perform all of them. Use alias analysis to
745   // check to see if the pointer is guaranteed to not be modified from entry of
746   // the function to each of the load instructions.
747 
748   // Because there could be several/many load instructions, remember which
749   // blocks we know to be transparent to the load.
750   df_iterator_default_set<BasicBlock *, 16> TranspBlocks;
751 
752   for (LoadInst *Load : Loads) {
753     // Check to see if the load is invalidated from the start of the block to
754     // the load itself.
755     BasicBlock *BB = Load->getParent();
756 
757     MemoryLocation Loc = MemoryLocation::get(Load);
758     if (AAR.canInstructionRangeModRef(BB->front(), *Load, Loc, ModRefInfo::Mod))
759       return false; // Pointer is invalidated!
760 
761     // Now check every path from the entry block to the load for transparency.
762     // To do this, we perform a depth first search on the inverse CFG from the
763     // loading block.
764     for (BasicBlock *P : predecessors(BB)) {
765       for (BasicBlock *TranspBB : inverse_depth_first_ext(P, TranspBlocks))
766         if (AAR.canBasicBlockModify(*TranspBB, Loc))
767           return false;
768     }
769   }
770 
771   // If the path from the entry of the function to each load is free of
772   // instructions that potentially invalidate the load, we can make the
773   // transformation!
774   return true;
775 }
776 
777 bool ArgumentPromotionPass::isDenselyPacked(Type *type, const DataLayout &DL) {
778   // There is no size information, so be conservative.
779   if (!type->isSized())
780     return false;
781 
782   // If the alloc size is not equal to the storage size, then there are padding
783   // bytes. For x86_fp80 on x86-64, size: 80 alloc size: 128.
784   if (DL.getTypeSizeInBits(type) != DL.getTypeAllocSizeInBits(type))
785     return false;
786 
787   // FIXME: This isn't the right way to check for padding in vectors with
788   // non-byte-size elements.
789   if (VectorType *seqTy = dyn_cast<VectorType>(type))
790     return isDenselyPacked(seqTy->getElementType(), DL);
791 
792   // For array types, check for padding within members.
793   if (ArrayType *seqTy = dyn_cast<ArrayType>(type))
794     return isDenselyPacked(seqTy->getElementType(), DL);
795 
796   if (!isa<StructType>(type))
797     return true;
798 
799   // Check for padding within and between elements of a struct.
800   StructType *StructTy = cast<StructType>(type);
801   const StructLayout *Layout = DL.getStructLayout(StructTy);
802   uint64_t StartPos = 0;
803   for (unsigned i = 0, E = StructTy->getNumElements(); i < E; ++i) {
804     Type *ElTy = StructTy->getElementType(i);
805     if (!isDenselyPacked(ElTy, DL))
806       return false;
807     if (StartPos != Layout->getElementOffsetInBits(i))
808       return false;
809     StartPos += DL.getTypeAllocSizeInBits(ElTy);
810   }
811 
812   return true;
813 }
814 
815 /// Checks if the padding bytes of an argument could be accessed.
816 static bool canPaddingBeAccessed(Argument *arg) {
817   assert(arg->hasByValAttr());
818 
819   // Track all the pointers to the argument to make sure they are not captured.
820   SmallPtrSet<Value *, 16> PtrValues;
821   PtrValues.insert(arg);
822 
823   // Track all of the stores.
824   SmallVector<StoreInst *, 16> Stores;
825 
826   // Scan through the uses recursively to make sure the pointer is always used
827   // sanely.
828   SmallVector<Value *, 16> WorkList(arg->users());
829   while (!WorkList.empty()) {
830     Value *V = WorkList.pop_back_val();
831     if (isa<GetElementPtrInst>(V) || isa<PHINode>(V)) {
832       if (PtrValues.insert(V).second)
833         llvm::append_range(WorkList, V->users());
834     } else if (StoreInst *Store = dyn_cast<StoreInst>(V)) {
835       Stores.push_back(Store);
836     } else if (!isa<LoadInst>(V)) {
837       return true;
838     }
839   }
840 
841   // Check to make sure the pointers aren't captured
842   for (StoreInst *Store : Stores)
843     if (PtrValues.count(Store->getValueOperand()))
844       return true;
845 
846   return false;
847 }
848 
849 bool ArgumentPromotionPass::areFunctionArgsABICompatible(
850     const Function &F, const TargetTransformInfo &TTI,
851     SmallPtrSetImpl<Argument *> &ArgsToPromote,
852     SmallPtrSetImpl<Argument *> &ByValArgsToTransform) {
853   for (const Use &U : F.uses()) {
854     CallBase *CB = dyn_cast<CallBase>(U.getUser());
855     if (!CB)
856       return false;
857     const Function *Caller = CB->getCaller();
858     const Function *Callee = CB->getCalledFunction();
859     if (!TTI.areFunctionArgsABICompatible(Caller, Callee, ArgsToPromote) ||
860         !TTI.areFunctionArgsABICompatible(Caller, Callee, ByValArgsToTransform))
861       return false;
862   }
863   return true;
864 }
865 
866 /// PromoteArguments - This method checks the specified function to see if there
867 /// are any promotable arguments and if it is safe to promote the function (for
868 /// example, all callers are direct).  If safe to promote some arguments, it
869 /// calls the DoPromotion method.
870 static Function *
871 promoteArguments(Function *F, function_ref<AAResults &(Function &F)> AARGetter,
872                  unsigned MaxElements,
873                  Optional<function_ref<void(CallBase &OldCS, CallBase &NewCS)>>
874                      ReplaceCallSite,
875                  const TargetTransformInfo &TTI) {
876   // Don't perform argument promotion for naked functions; otherwise we can end
877   // up removing parameters that are seemingly 'not used' as they are referred
878   // to in the assembly.
879   if(F->hasFnAttribute(Attribute::Naked))
880     return nullptr;
881 
882   // Make sure that it is local to this module.
883   if (!F->hasLocalLinkage())
884     return nullptr;
885 
886   // Don't promote arguments for variadic functions. Adding, removing, or
887   // changing non-pack parameters can change the classification of pack
888   // parameters. Frontends encode that classification at the call site in the
889   // IR, while in the callee the classification is determined dynamically based
890   // on the number of registers consumed so far.
891   if (F->isVarArg())
892     return nullptr;
893 
894   // Don't transform functions that receive inallocas, as the transformation may
895   // not be safe depending on calling convention.
896   if (F->getAttributes().hasAttrSomewhere(Attribute::InAlloca))
897     return nullptr;
898 
899   // First check: see if there are any pointer arguments!  If not, quick exit.
900   SmallVector<Argument *, 16> PointerArgs;
901   for (Argument &I : F->args())
902     if (I.getType()->isPointerTy())
903       PointerArgs.push_back(&I);
904   if (PointerArgs.empty())
905     return nullptr;
906 
907   // Second check: make sure that all callers are direct callers.  We can't
908   // transform functions that have indirect callers.  Also see if the function
909   // is self-recursive and check that target features are compatible.
910   bool isSelfRecursive = false;
911   for (Use &U : F->uses()) {
912     CallBase *CB = dyn_cast<CallBase>(U.getUser());
913     // Must be a direct call.
914     if (CB == nullptr || !CB->isCallee(&U))
915       return nullptr;
916 
917     // Can't change signature of musttail callee
918     if (CB->isMustTailCall())
919       return nullptr;
920 
921     if (CB->getParent()->getParent() == F)
922       isSelfRecursive = true;
923   }
924 
925   // Can't change signature of musttail caller
926   // FIXME: Support promoting whole chain of musttail functions
927   for (BasicBlock &BB : *F)
928     if (BB.getTerminatingMustTailCall())
929       return nullptr;
930 
931   const DataLayout &DL = F->getParent()->getDataLayout();
932 
933   AAResults &AAR = AARGetter(*F);
934 
935   // Check to see which arguments are promotable.  If an argument is promotable,
936   // add it to ArgsToPromote.
937   SmallPtrSet<Argument *, 8> ArgsToPromote;
938   SmallPtrSet<Argument *, 8> ByValArgsToTransform;
939   for (Argument *PtrArg : PointerArgs) {
940     Type *AgTy = cast<PointerType>(PtrArg->getType())->getElementType();
941 
942     // Replace sret attribute with noalias. This reduces register pressure by
943     // avoiding a register copy.
944     if (PtrArg->hasStructRetAttr()) {
945       unsigned ArgNo = PtrArg->getArgNo();
946       F->removeParamAttr(ArgNo, Attribute::StructRet);
947       F->addParamAttr(ArgNo, Attribute::NoAlias);
948       for (Use &U : F->uses()) {
949         CallBase &CB = cast<CallBase>(*U.getUser());
950         CB.removeParamAttr(ArgNo, Attribute::StructRet);
951         CB.addParamAttr(ArgNo, Attribute::NoAlias);
952       }
953     }
954 
955     // If this is a byval argument, and if the aggregate type is small, just
956     // pass the elements, which is always safe, if the passed value is densely
957     // packed or if we can prove the padding bytes are never accessed.
958     bool isSafeToPromote = PtrArg->hasByValAttr() &&
959                            (ArgumentPromotionPass::isDenselyPacked(AgTy, DL) ||
960                             !canPaddingBeAccessed(PtrArg));
961     if (isSafeToPromote) {
962       if (StructType *STy = dyn_cast<StructType>(AgTy)) {
963         if (MaxElements > 0 && STy->getNumElements() > MaxElements) {
964           LLVM_DEBUG(dbgs() << "argpromotion disable promoting argument '"
965                             << PtrArg->getName()
966                             << "' because it would require adding more"
967                             << " than " << MaxElements
968                             << " arguments to the function.\n");
969           continue;
970         }
971 
972         // If all the elements are single-value types, we can promote it.
973         bool AllSimple = true;
974         for (const auto *EltTy : STy->elements()) {
975           if (!EltTy->isSingleValueType()) {
976             AllSimple = false;
977             break;
978           }
979         }
980 
981         // Safe to transform, don't even bother trying to "promote" it.
982         // Passing the elements as a scalar will allow sroa to hack on
983         // the new alloca we introduce.
984         if (AllSimple) {
985           ByValArgsToTransform.insert(PtrArg);
986           continue;
987         }
988       }
989     }
990 
991     // If the argument is a recursive type and we're in a recursive
992     // function, we could end up infinitely peeling the function argument.
993     if (isSelfRecursive) {
994       if (StructType *STy = dyn_cast<StructType>(AgTy)) {
995         bool RecursiveType =
996             llvm::is_contained(STy->elements(), PtrArg->getType());
997         if (RecursiveType)
998           continue;
999       }
1000     }
1001 
1002     // Otherwise, see if we can promote the pointer to its value.
1003     Type *ByValTy =
1004         PtrArg->hasByValAttr() ? PtrArg->getParamByValType() : nullptr;
1005     if (isSafeToPromoteArgument(PtrArg, ByValTy, AAR, MaxElements))
1006       ArgsToPromote.insert(PtrArg);
1007   }
1008 
1009   // No promotable pointer arguments.
1010   if (ArgsToPromote.empty() && ByValArgsToTransform.empty())
1011     return nullptr;
1012 
1013   if (!ArgumentPromotionPass::areFunctionArgsABICompatible(
1014           *F, TTI, ArgsToPromote, ByValArgsToTransform))
1015     return nullptr;
1016 
1017   return doPromotion(F, ArgsToPromote, ByValArgsToTransform, ReplaceCallSite);
1018 }
1019 
1020 PreservedAnalyses ArgumentPromotionPass::run(LazyCallGraph::SCC &C,
1021                                              CGSCCAnalysisManager &AM,
1022                                              LazyCallGraph &CG,
1023                                              CGSCCUpdateResult &UR) {
1024   bool Changed = false, LocalChange;
1025 
1026   // Iterate until we stop promoting from this SCC.
1027   do {
1028     LocalChange = false;
1029 
1030     for (LazyCallGraph::Node &N : C) {
1031       Function &OldF = N.getFunction();
1032 
1033       FunctionAnalysisManager &FAM =
1034           AM.getResult<FunctionAnalysisManagerCGSCCProxy>(C, CG).getManager();
1035       // FIXME: This lambda must only be used with this function. We should
1036       // skip the lambda and just get the AA results directly.
1037       auto AARGetter = [&](Function &F) -> AAResults & {
1038         assert(&F == &OldF && "Called with an unexpected function!");
1039         return FAM.getResult<AAManager>(F);
1040       };
1041 
1042       const TargetTransformInfo &TTI = FAM.getResult<TargetIRAnalysis>(OldF);
1043       Function *NewF =
1044           promoteArguments(&OldF, AARGetter, MaxElements, None, TTI);
1045       if (!NewF)
1046         continue;
1047       LocalChange = true;
1048 
1049       // Directly substitute the functions in the call graph. Note that this
1050       // requires the old function to be completely dead and completely
1051       // replaced by the new function. It does no call graph updates, it merely
1052       // swaps out the particular function mapped to a particular node in the
1053       // graph.
1054       C.getOuterRefSCC().replaceNodeFunction(N, *NewF);
1055       FAM.clear(OldF, OldF.getName());
1056       OldF.eraseFromParent();
1057     }
1058 
1059     Changed |= LocalChange;
1060   } while (LocalChange);
1061 
1062   if (!Changed)
1063     return PreservedAnalyses::all();
1064 
1065   return PreservedAnalyses::none();
1066 }
1067 
1068 namespace {
1069 
1070 /// ArgPromotion - The 'by reference' to 'by value' argument promotion pass.
1071 struct ArgPromotion : public CallGraphSCCPass {
1072   // Pass identification, replacement for typeid
1073   static char ID;
1074 
1075   explicit ArgPromotion(unsigned MaxElements = 3)
1076       : CallGraphSCCPass(ID), MaxElements(MaxElements) {
1077     initializeArgPromotionPass(*PassRegistry::getPassRegistry());
1078   }
1079 
1080   void getAnalysisUsage(AnalysisUsage &AU) const override {
1081     AU.addRequired<AssumptionCacheTracker>();
1082     AU.addRequired<TargetLibraryInfoWrapperPass>();
1083     AU.addRequired<TargetTransformInfoWrapperPass>();
1084     getAAResultsAnalysisUsage(AU);
1085     CallGraphSCCPass::getAnalysisUsage(AU);
1086   }
1087 
1088   bool runOnSCC(CallGraphSCC &SCC) override;
1089 
1090 private:
1091   using llvm::Pass::doInitialization;
1092 
1093   bool doInitialization(CallGraph &CG) override;
1094 
1095   /// The maximum number of elements to expand, or 0 for unlimited.
1096   unsigned MaxElements;
1097 };
1098 
1099 } // end anonymous namespace
1100 
1101 char ArgPromotion::ID = 0;
1102 
1103 INITIALIZE_PASS_BEGIN(ArgPromotion, "argpromotion",
1104                       "Promote 'by reference' arguments to scalars", false,
1105                       false)
1106 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
1107 INITIALIZE_PASS_DEPENDENCY(CallGraphWrapperPass)
1108 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
1109 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
1110 INITIALIZE_PASS_END(ArgPromotion, "argpromotion",
1111                     "Promote 'by reference' arguments to scalars", false, false)
1112 
1113 Pass *llvm::createArgumentPromotionPass(unsigned MaxElements) {
1114   return new ArgPromotion(MaxElements);
1115 }
1116 
1117 bool ArgPromotion::runOnSCC(CallGraphSCC &SCC) {
1118   if (skipSCC(SCC))
1119     return false;
1120 
1121   // Get the callgraph information that we need to update to reflect our
1122   // changes.
1123   CallGraph &CG = getAnalysis<CallGraphWrapperPass>().getCallGraph();
1124 
1125   LegacyAARGetter AARGetter(*this);
1126 
1127   bool Changed = false, LocalChange;
1128 
1129   // Iterate until we stop promoting from this SCC.
1130   do {
1131     LocalChange = false;
1132     // Attempt to promote arguments from all functions in this SCC.
1133     for (CallGraphNode *OldNode : SCC) {
1134       Function *OldF = OldNode->getFunction();
1135       if (!OldF)
1136         continue;
1137 
1138       auto ReplaceCallSite = [&](CallBase &OldCS, CallBase &NewCS) {
1139         Function *Caller = OldCS.getParent()->getParent();
1140         CallGraphNode *NewCalleeNode =
1141             CG.getOrInsertFunction(NewCS.getCalledFunction());
1142         CallGraphNode *CallerNode = CG[Caller];
1143         CallerNode->replaceCallEdge(cast<CallBase>(OldCS),
1144                                     cast<CallBase>(NewCS), NewCalleeNode);
1145       };
1146 
1147       const TargetTransformInfo &TTI =
1148           getAnalysis<TargetTransformInfoWrapperPass>().getTTI(*OldF);
1149       if (Function *NewF = promoteArguments(OldF, AARGetter, MaxElements,
1150                                             {ReplaceCallSite}, TTI)) {
1151         LocalChange = true;
1152 
1153         // Update the call graph for the newly promoted function.
1154         CallGraphNode *NewNode = CG.getOrInsertFunction(NewF);
1155         NewNode->stealCalledFunctionsFrom(OldNode);
1156         if (OldNode->getNumReferences() == 0)
1157           delete CG.removeFunctionFromModule(OldNode);
1158         else
1159           OldF->setLinkage(Function::ExternalLinkage);
1160 
1161         // And updat ethe SCC we're iterating as well.
1162         SCC.ReplaceNode(OldNode, NewNode);
1163       }
1164     }
1165     // Remember that we changed something.
1166     Changed |= LocalChange;
1167   } while (LocalChange);
1168 
1169   return Changed;
1170 }
1171 
1172 bool ArgPromotion::doInitialization(CallGraph &CG) {
1173   return CallGraphSCCPass::doInitialization(CG);
1174 }
1175