1 //===-- ArgumentPromotion.cpp - Promote by-reference arguments ------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This pass promotes "by reference" arguments to be "by value" arguments.  In
11 // practice, this means looking for internal functions that have pointer
12 // arguments.  If it can prove, through the use of alias analysis, that an
13 // argument is *only* loaded, then it can pass the value into the function
14 // instead of the address of the value.  This can cause recursive simplification
15 // of code and lead to the elimination of allocas (especially in C++ template
16 // code like the STL).
17 //
18 // This pass also handles aggregate arguments that are passed into a function,
19 // scalarizing them if the elements of the aggregate are only loaded.  Note that
20 // by default it refuses to scalarize aggregates which would require passing in
21 // more than three operands to the function, because passing thousands of
22 // operands for a large array or structure is unprofitable! This limit can be
23 // configured or disabled, however.
24 //
25 // Note that this transformation could also be done for arguments that are only
26 // stored to (returning the value instead), but does not currently.  This case
27 // would be best handled when and if LLVM begins supporting multiple return
28 // values from functions.
29 //
30 //===----------------------------------------------------------------------===//
31 
32 #include "llvm/Transforms/IPO/ArgumentPromotion.h"
33 #include "llvm/ADT/DepthFirstIterator.h"
34 #include "llvm/ADT/Optional.h"
35 #include "llvm/ADT/Statistic.h"
36 #include "llvm/ADT/StringExtras.h"
37 #include "llvm/Analysis/AliasAnalysis.h"
38 #include "llvm/Analysis/AssumptionCache.h"
39 #include "llvm/Analysis/BasicAliasAnalysis.h"
40 #include "llvm/Analysis/CallGraph.h"
41 #include "llvm/Analysis/CallGraphSCCPass.h"
42 #include "llvm/Analysis/LazyCallGraph.h"
43 #include "llvm/Analysis/Loads.h"
44 #include "llvm/Analysis/TargetLibraryInfo.h"
45 #include "llvm/IR/CFG.h"
46 #include "llvm/IR/CallSite.h"
47 #include "llvm/IR/Constants.h"
48 #include "llvm/IR/DataLayout.h"
49 #include "llvm/IR/DebugInfo.h"
50 #include "llvm/IR/DerivedTypes.h"
51 #include "llvm/IR/Instructions.h"
52 #include "llvm/IR/LLVMContext.h"
53 #include "llvm/IR/Module.h"
54 #include "llvm/Support/Debug.h"
55 #include "llvm/Support/raw_ostream.h"
56 #include "llvm/Transforms/IPO.h"
57 #include <set>
58 using namespace llvm;
59 
60 #define DEBUG_TYPE "argpromotion"
61 
62 STATISTIC(NumArgumentsPromoted, "Number of pointer arguments promoted");
63 STATISTIC(NumAggregatesPromoted, "Number of aggregate arguments promoted");
64 STATISTIC(NumByValArgsPromoted, "Number of byval arguments promoted");
65 STATISTIC(NumArgumentsDead, "Number of dead pointer args eliminated");
66 
67 /// A vector used to hold the indices of a single GEP instruction
68 typedef std::vector<uint64_t> IndicesVector;
69 
70 /// DoPromotion - This method actually performs the promotion of the specified
71 /// arguments, and returns the new function.  At this point, we know that it's
72 /// safe to do so.
73 static Function *
74 doPromotion(Function *F, SmallPtrSetImpl<Argument *> &ArgsToPromote,
75             SmallPtrSetImpl<Argument *> &ByValArgsToTransform,
76             Optional<function_ref<void(CallSite OldCS, CallSite NewCS)>>
77                 ReplaceCallSite) {
78 
79   // Start by computing a new prototype for the function, which is the same as
80   // the old function, but has modified arguments.
81   FunctionType *FTy = F->getFunctionType();
82   std::vector<Type *> Params;
83 
84   typedef std::set<std::pair<Type *, IndicesVector>> ScalarizeTable;
85 
86   // ScalarizedElements - If we are promoting a pointer that has elements
87   // accessed out of it, keep track of which elements are accessed so that we
88   // can add one argument for each.
89   //
90   // Arguments that are directly loaded will have a zero element value here, to
91   // handle cases where there are both a direct load and GEP accesses.
92   //
93   std::map<Argument *, ScalarizeTable> ScalarizedElements;
94 
95   // OriginalLoads - Keep track of a representative load instruction from the
96   // original function so that we can tell the alias analysis implementation
97   // what the new GEP/Load instructions we are inserting look like.
98   // We need to keep the original loads for each argument and the elements
99   // of the argument that are accessed.
100   std::map<std::pair<Argument *, IndicesVector>, LoadInst *> OriginalLoads;
101 
102   // Attribute - Keep track of the parameter attributes for the arguments
103   // that we are *not* promoting. For the ones that we do promote, the parameter
104   // attributes are lost
105   SmallVector<AttributeSet, 8> AttributesVec;
106   const AttributeSet &PAL = F->getAttributes();
107 
108   // Add any return attributes.
109   if (PAL.hasAttributes(AttributeSet::ReturnIndex))
110     AttributesVec.push_back(
111         AttributeSet::get(F->getContext(), PAL.getRetAttributes()));
112 
113   // First, determine the new argument list
114   unsigned ArgIndex = 1;
115   for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E;
116        ++I, ++ArgIndex) {
117     if (ByValArgsToTransform.count(&*I)) {
118       // Simple byval argument? Just add all the struct element types.
119       Type *AgTy = cast<PointerType>(I->getType())->getElementType();
120       StructType *STy = cast<StructType>(AgTy);
121       Params.insert(Params.end(), STy->element_begin(), STy->element_end());
122       ++NumByValArgsPromoted;
123     } else if (!ArgsToPromote.count(&*I)) {
124       // Unchanged argument
125       Params.push_back(I->getType());
126       AttributeSet attrs = PAL.getParamAttributes(ArgIndex);
127       if (attrs.hasAttributes(ArgIndex)) {
128         AttrBuilder B(attrs, ArgIndex);
129         AttributesVec.push_back(
130             AttributeSet::get(F->getContext(), Params.size(), B));
131       }
132     } else if (I->use_empty()) {
133       // Dead argument (which are always marked as promotable)
134       ++NumArgumentsDead;
135     } else {
136       // Okay, this is being promoted. This means that the only uses are loads
137       // or GEPs which are only used by loads
138 
139       // In this table, we will track which indices are loaded from the argument
140       // (where direct loads are tracked as no indices).
141       ScalarizeTable &ArgIndices = ScalarizedElements[&*I];
142       for (User *U : I->users()) {
143         Instruction *UI = cast<Instruction>(U);
144         Type *SrcTy;
145         if (LoadInst *L = dyn_cast<LoadInst>(UI))
146           SrcTy = L->getType();
147         else
148           SrcTy = cast<GetElementPtrInst>(UI)->getSourceElementType();
149         IndicesVector Indices;
150         Indices.reserve(UI->getNumOperands() - 1);
151         // Since loads will only have a single operand, and GEPs only a single
152         // non-index operand, this will record direct loads without any indices,
153         // and gep+loads with the GEP indices.
154         for (User::op_iterator II = UI->op_begin() + 1, IE = UI->op_end();
155              II != IE; ++II)
156           Indices.push_back(cast<ConstantInt>(*II)->getSExtValue());
157         // GEPs with a single 0 index can be merged with direct loads
158         if (Indices.size() == 1 && Indices.front() == 0)
159           Indices.clear();
160         ArgIndices.insert(std::make_pair(SrcTy, Indices));
161         LoadInst *OrigLoad;
162         if (LoadInst *L = dyn_cast<LoadInst>(UI))
163           OrigLoad = L;
164         else
165           // Take any load, we will use it only to update Alias Analysis
166           OrigLoad = cast<LoadInst>(UI->user_back());
167         OriginalLoads[std::make_pair(&*I, Indices)] = OrigLoad;
168       }
169 
170       // Add a parameter to the function for each element passed in.
171       for (const auto &ArgIndex : ArgIndices) {
172         // not allowed to dereference ->begin() if size() is 0
173         Params.push_back(GetElementPtrInst::getIndexedType(
174             cast<PointerType>(I->getType()->getScalarType())->getElementType(),
175             ArgIndex.second));
176         assert(Params.back());
177       }
178 
179       if (ArgIndices.size() == 1 && ArgIndices.begin()->second.empty())
180         ++NumArgumentsPromoted;
181       else
182         ++NumAggregatesPromoted;
183     }
184   }
185 
186   // Add any function attributes.
187   if (PAL.hasAttributes(AttributeSet::FunctionIndex))
188     AttributesVec.push_back(
189         AttributeSet::get(FTy->getContext(), PAL.getFnAttributes()));
190 
191   Type *RetTy = FTy->getReturnType();
192 
193   // Construct the new function type using the new arguments.
194   FunctionType *NFTy = FunctionType::get(RetTy, Params, FTy->isVarArg());
195 
196   // Create the new function body and insert it into the module.
197   Function *NF = Function::Create(NFTy, F->getLinkage(), F->getName());
198   NF->copyAttributesFrom(F);
199 
200   // Patch the pointer to LLVM function in debug info descriptor.
201   NF->setSubprogram(F->getSubprogram());
202   F->setSubprogram(nullptr);
203 
204   DEBUG(dbgs() << "ARG PROMOTION:  Promoting to:" << *NF << "\n"
205                << "From: " << *F);
206 
207   // Recompute the parameter attributes list based on the new arguments for
208   // the function.
209   NF->setAttributes(AttributeSet::get(F->getContext(), AttributesVec));
210   AttributesVec.clear();
211 
212   F->getParent()->getFunctionList().insert(F->getIterator(), NF);
213   NF->takeName(F);
214 
215   // Loop over all of the callers of the function, transforming the call sites
216   // to pass in the loaded pointers.
217   //
218   SmallVector<Value *, 16> Args;
219   while (!F->use_empty()) {
220     CallSite CS(F->user_back());
221     assert(CS.getCalledFunction() == F);
222     Instruction *Call = CS.getInstruction();
223     const AttributeSet &CallPAL = CS.getAttributes();
224 
225     // Add any return attributes.
226     if (CallPAL.hasAttributes(AttributeSet::ReturnIndex))
227       AttributesVec.push_back(
228           AttributeSet::get(F->getContext(), CallPAL.getRetAttributes()));
229 
230     // Loop over the operands, inserting GEP and loads in the caller as
231     // appropriate.
232     CallSite::arg_iterator AI = CS.arg_begin();
233     ArgIndex = 1;
234     for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E;
235          ++I, ++AI, ++ArgIndex)
236       if (!ArgsToPromote.count(&*I) && !ByValArgsToTransform.count(&*I)) {
237         Args.push_back(*AI); // Unmodified argument
238 
239         if (CallPAL.hasAttributes(ArgIndex)) {
240           AttrBuilder B(CallPAL, ArgIndex);
241           AttributesVec.push_back(
242               AttributeSet::get(F->getContext(), Args.size(), B));
243         }
244       } else if (ByValArgsToTransform.count(&*I)) {
245         // Emit a GEP and load for each element of the struct.
246         Type *AgTy = cast<PointerType>(I->getType())->getElementType();
247         StructType *STy = cast<StructType>(AgTy);
248         Value *Idxs[2] = {
249             ConstantInt::get(Type::getInt32Ty(F->getContext()), 0), nullptr};
250         for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
251           Idxs[1] = ConstantInt::get(Type::getInt32Ty(F->getContext()), i);
252           Value *Idx = GetElementPtrInst::Create(
253               STy, *AI, Idxs, (*AI)->getName() + "." + Twine(i), Call);
254           // TODO: Tell AA about the new values?
255           Args.push_back(new LoadInst(Idx, Idx->getName() + ".val", Call));
256         }
257       } else if (!I->use_empty()) {
258         // Non-dead argument: insert GEPs and loads as appropriate.
259         ScalarizeTable &ArgIndices = ScalarizedElements[&*I];
260         // Store the Value* version of the indices in here, but declare it now
261         // for reuse.
262         std::vector<Value *> Ops;
263         for (const auto &ArgIndex : ArgIndices) {
264           Value *V = *AI;
265           LoadInst *OrigLoad =
266               OriginalLoads[std::make_pair(&*I, ArgIndex.second)];
267           if (!ArgIndex.second.empty()) {
268             Ops.reserve(ArgIndex.second.size());
269             Type *ElTy = V->getType();
270             for (unsigned long II : ArgIndex.second) {
271               // Use i32 to index structs, and i64 for others (pointers/arrays).
272               // This satisfies GEP constraints.
273               Type *IdxTy =
274                   (ElTy->isStructTy() ? Type::getInt32Ty(F->getContext())
275                                       : Type::getInt64Ty(F->getContext()));
276               Ops.push_back(ConstantInt::get(IdxTy, II));
277               // Keep track of the type we're currently indexing.
278               if (auto *ElPTy = dyn_cast<PointerType>(ElTy))
279                 ElTy = ElPTy->getElementType();
280               else
281                 ElTy = cast<CompositeType>(ElTy)->getTypeAtIndex(II);
282             }
283             // And create a GEP to extract those indices.
284             V = GetElementPtrInst::Create(ArgIndex.first, V, Ops,
285                                           V->getName() + ".idx", Call);
286             Ops.clear();
287           }
288           // Since we're replacing a load make sure we take the alignment
289           // of the previous load.
290           LoadInst *newLoad = new LoadInst(V, V->getName() + ".val", Call);
291           newLoad->setAlignment(OrigLoad->getAlignment());
292           // Transfer the AA info too.
293           AAMDNodes AAInfo;
294           OrigLoad->getAAMetadata(AAInfo);
295           newLoad->setAAMetadata(AAInfo);
296 
297           Args.push_back(newLoad);
298         }
299       }
300 
301     // Push any varargs arguments on the list.
302     for (; AI != CS.arg_end(); ++AI, ++ArgIndex) {
303       Args.push_back(*AI);
304       if (CallPAL.hasAttributes(ArgIndex)) {
305         AttrBuilder B(CallPAL, ArgIndex);
306         AttributesVec.push_back(
307             AttributeSet::get(F->getContext(), Args.size(), B));
308       }
309     }
310 
311     // Add any function attributes.
312     if (CallPAL.hasAttributes(AttributeSet::FunctionIndex))
313       AttributesVec.push_back(
314           AttributeSet::get(Call->getContext(), CallPAL.getFnAttributes()));
315 
316     SmallVector<OperandBundleDef, 1> OpBundles;
317     CS.getOperandBundlesAsDefs(OpBundles);
318 
319     Instruction *New;
320     if (InvokeInst *II = dyn_cast<InvokeInst>(Call)) {
321       New = InvokeInst::Create(NF, II->getNormalDest(), II->getUnwindDest(),
322                                Args, OpBundles, "", Call);
323       cast<InvokeInst>(New)->setCallingConv(CS.getCallingConv());
324       cast<InvokeInst>(New)->setAttributes(
325           AttributeSet::get(II->getContext(), AttributesVec));
326     } else {
327       New = CallInst::Create(NF, Args, OpBundles, "", Call);
328       cast<CallInst>(New)->setCallingConv(CS.getCallingConv());
329       cast<CallInst>(New)->setAttributes(
330           AttributeSet::get(New->getContext(), AttributesVec));
331       cast<CallInst>(New)->setTailCallKind(
332           cast<CallInst>(Call)->getTailCallKind());
333     }
334     New->setDebugLoc(Call->getDebugLoc());
335     Args.clear();
336     AttributesVec.clear();
337 
338     // Update the callgraph to know that the callsite has been transformed.
339     if (ReplaceCallSite)
340       (*ReplaceCallSite)(CS, CallSite(New));
341 
342     if (!Call->use_empty()) {
343       Call->replaceAllUsesWith(New);
344       New->takeName(Call);
345     }
346 
347     // Finally, remove the old call from the program, reducing the use-count of
348     // F.
349     Call->eraseFromParent();
350   }
351 
352   // Since we have now created the new function, splice the body of the old
353   // function right into the new function, leaving the old rotting hulk of the
354   // function empty.
355   NF->getBasicBlockList().splice(NF->begin(), F->getBasicBlockList());
356 
357   // Loop over the argument list, transferring uses of the old arguments over to
358   // the new arguments, also transferring over the names as well.
359   //
360   for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(),
361                               I2 = NF->arg_begin();
362        I != E; ++I) {
363     if (!ArgsToPromote.count(&*I) && !ByValArgsToTransform.count(&*I)) {
364       // If this is an unmodified argument, move the name and users over to the
365       // new version.
366       I->replaceAllUsesWith(&*I2);
367       I2->takeName(&*I);
368       ++I2;
369       continue;
370     }
371 
372     if (ByValArgsToTransform.count(&*I)) {
373       // In the callee, we create an alloca, and store each of the new incoming
374       // arguments into the alloca.
375       Instruction *InsertPt = &NF->begin()->front();
376 
377       // Just add all the struct element types.
378       Type *AgTy = cast<PointerType>(I->getType())->getElementType();
379       Value *TheAlloca = new AllocaInst(AgTy, nullptr, "", InsertPt);
380       StructType *STy = cast<StructType>(AgTy);
381       Value *Idxs[2] = {ConstantInt::get(Type::getInt32Ty(F->getContext()), 0),
382                         nullptr};
383 
384       for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
385         Idxs[1] = ConstantInt::get(Type::getInt32Ty(F->getContext()), i);
386         Value *Idx = GetElementPtrInst::Create(
387             AgTy, TheAlloca, Idxs, TheAlloca->getName() + "." + Twine(i),
388             InsertPt);
389         I2->setName(I->getName() + "." + Twine(i));
390         new StoreInst(&*I2++, Idx, InsertPt);
391       }
392 
393       // Anything that used the arg should now use the alloca.
394       I->replaceAllUsesWith(TheAlloca);
395       TheAlloca->takeName(&*I);
396 
397       // If the alloca is used in a call, we must clear the tail flag since
398       // the callee now uses an alloca from the caller.
399       for (User *U : TheAlloca->users()) {
400         CallInst *Call = dyn_cast<CallInst>(U);
401         if (!Call)
402           continue;
403         Call->setTailCall(false);
404       }
405       continue;
406     }
407 
408     if (I->use_empty())
409       continue;
410 
411     // Otherwise, if we promoted this argument, then all users are load
412     // instructions (or GEPs with only load users), and all loads should be
413     // using the new argument that we added.
414     ScalarizeTable &ArgIndices = ScalarizedElements[&*I];
415 
416     while (!I->use_empty()) {
417       if (LoadInst *LI = dyn_cast<LoadInst>(I->user_back())) {
418         assert(ArgIndices.begin()->second.empty() &&
419                "Load element should sort to front!");
420         I2->setName(I->getName() + ".val");
421         LI->replaceAllUsesWith(&*I2);
422         LI->eraseFromParent();
423         DEBUG(dbgs() << "*** Promoted load of argument '" << I->getName()
424                      << "' in function '" << F->getName() << "'\n");
425       } else {
426         GetElementPtrInst *GEP = cast<GetElementPtrInst>(I->user_back());
427         IndicesVector Operands;
428         Operands.reserve(GEP->getNumIndices());
429         for (User::op_iterator II = GEP->idx_begin(), IE = GEP->idx_end();
430              II != IE; ++II)
431           Operands.push_back(cast<ConstantInt>(*II)->getSExtValue());
432 
433         // GEPs with a single 0 index can be merged with direct loads
434         if (Operands.size() == 1 && Operands.front() == 0)
435           Operands.clear();
436 
437         Function::arg_iterator TheArg = I2;
438         for (ScalarizeTable::iterator It = ArgIndices.begin();
439              It->second != Operands; ++It, ++TheArg) {
440           assert(It != ArgIndices.end() && "GEP not handled??");
441         }
442 
443         std::string NewName = I->getName();
444         for (unsigned i = 0, e = Operands.size(); i != e; ++i) {
445           NewName += "." + utostr(Operands[i]);
446         }
447         NewName += ".val";
448         TheArg->setName(NewName);
449 
450         DEBUG(dbgs() << "*** Promoted agg argument '" << TheArg->getName()
451                      << "' of function '" << NF->getName() << "'\n");
452 
453         // All of the uses must be load instructions.  Replace them all with
454         // the argument specified by ArgNo.
455         while (!GEP->use_empty()) {
456           LoadInst *L = cast<LoadInst>(GEP->user_back());
457           L->replaceAllUsesWith(&*TheArg);
458           L->eraseFromParent();
459         }
460         GEP->eraseFromParent();
461       }
462     }
463 
464     // Increment I2 past all of the arguments added for this promoted pointer.
465     std::advance(I2, ArgIndices.size());
466   }
467 
468   return NF;
469 }
470 
471 /// AllCallersPassInValidPointerForArgument - Return true if we can prove that
472 /// all callees pass in a valid pointer for the specified function argument.
473 static bool allCallersPassInValidPointerForArgument(Argument *Arg) {
474   Function *Callee = Arg->getParent();
475   const DataLayout &DL = Callee->getParent()->getDataLayout();
476 
477   unsigned ArgNo = Arg->getArgNo();
478 
479   // Look at all call sites of the function.  At this point we know we only have
480   // direct callees.
481   for (User *U : Callee->users()) {
482     CallSite CS(U);
483     assert(CS && "Should only have direct calls!");
484 
485     if (!isDereferenceablePointer(CS.getArgument(ArgNo), DL))
486       return false;
487   }
488   return true;
489 }
490 
491 /// Returns true if Prefix is a prefix of longer. That means, Longer has a size
492 /// that is greater than or equal to the size of prefix, and each of the
493 /// elements in Prefix is the same as the corresponding elements in Longer.
494 ///
495 /// This means it also returns true when Prefix and Longer are equal!
496 static bool isPrefix(const IndicesVector &Prefix, const IndicesVector &Longer) {
497   if (Prefix.size() > Longer.size())
498     return false;
499   return std::equal(Prefix.begin(), Prefix.end(), Longer.begin());
500 }
501 
502 /// Checks if Indices, or a prefix of Indices, is in Set.
503 static bool prefixIn(const IndicesVector &Indices,
504                      std::set<IndicesVector> &Set) {
505   std::set<IndicesVector>::iterator Low;
506   Low = Set.upper_bound(Indices);
507   if (Low != Set.begin())
508     Low--;
509   // Low is now the last element smaller than or equal to Indices. This means
510   // it points to a prefix of Indices (possibly Indices itself), if such
511   // prefix exists.
512   //
513   // This load is safe if any prefix of its operands is safe to load.
514   return Low != Set.end() && isPrefix(*Low, Indices);
515 }
516 
517 /// Mark the given indices (ToMark) as safe in the given set of indices
518 /// (Safe). Marking safe usually means adding ToMark to Safe. However, if there
519 /// is already a prefix of Indices in Safe, Indices are implicitely marked safe
520 /// already. Furthermore, any indices that Indices is itself a prefix of, are
521 /// removed from Safe (since they are implicitely safe because of Indices now).
522 static void markIndicesSafe(const IndicesVector &ToMark,
523                             std::set<IndicesVector> &Safe) {
524   std::set<IndicesVector>::iterator Low;
525   Low = Safe.upper_bound(ToMark);
526   // Guard against the case where Safe is empty
527   if (Low != Safe.begin())
528     Low--;
529   // Low is now the last element smaller than or equal to Indices. This
530   // means it points to a prefix of Indices (possibly Indices itself), if
531   // such prefix exists.
532   if (Low != Safe.end()) {
533     if (isPrefix(*Low, ToMark))
534       // If there is already a prefix of these indices (or exactly these
535       // indices) marked a safe, don't bother adding these indices
536       return;
537 
538     // Increment Low, so we can use it as a "insert before" hint
539     ++Low;
540   }
541   // Insert
542   Low = Safe.insert(Low, ToMark);
543   ++Low;
544   // If there we're a prefix of longer index list(s), remove those
545   std::set<IndicesVector>::iterator End = Safe.end();
546   while (Low != End && isPrefix(ToMark, *Low)) {
547     std::set<IndicesVector>::iterator Remove = Low;
548     ++Low;
549     Safe.erase(Remove);
550   }
551 }
552 
553 /// isSafeToPromoteArgument - As you might guess from the name of this method,
554 /// it checks to see if it is both safe and useful to promote the argument.
555 /// This method limits promotion of aggregates to only promote up to three
556 /// elements of the aggregate in order to avoid exploding the number of
557 /// arguments passed in.
558 static bool isSafeToPromoteArgument(Argument *Arg, bool isByValOrInAlloca,
559                                     AAResults &AAR, unsigned MaxElements) {
560   typedef std::set<IndicesVector> GEPIndicesSet;
561 
562   // Quick exit for unused arguments
563   if (Arg->use_empty())
564     return true;
565 
566   // We can only promote this argument if all of the uses are loads, or are GEP
567   // instructions (with constant indices) that are subsequently loaded.
568   //
569   // Promoting the argument causes it to be loaded in the caller
570   // unconditionally. This is only safe if we can prove that either the load
571   // would have happened in the callee anyway (ie, there is a load in the entry
572   // block) or the pointer passed in at every call site is guaranteed to be
573   // valid.
574   // In the former case, invalid loads can happen, but would have happened
575   // anyway, in the latter case, invalid loads won't happen. This prevents us
576   // from introducing an invalid load that wouldn't have happened in the
577   // original code.
578   //
579   // This set will contain all sets of indices that are loaded in the entry
580   // block, and thus are safe to unconditionally load in the caller.
581   //
582   // This optimization is also safe for InAlloca parameters, because it verifies
583   // that the address isn't captured.
584   GEPIndicesSet SafeToUnconditionallyLoad;
585 
586   // This set contains all the sets of indices that we are planning to promote.
587   // This makes it possible to limit the number of arguments added.
588   GEPIndicesSet ToPromote;
589 
590   // If the pointer is always valid, any load with first index 0 is valid.
591   if (isByValOrInAlloca || allCallersPassInValidPointerForArgument(Arg))
592     SafeToUnconditionallyLoad.insert(IndicesVector(1, 0));
593 
594   // First, iterate the entry block and mark loads of (geps of) arguments as
595   // safe.
596   BasicBlock &EntryBlock = Arg->getParent()->front();
597   // Declare this here so we can reuse it
598   IndicesVector Indices;
599   for (Instruction &I : EntryBlock)
600     if (LoadInst *LI = dyn_cast<LoadInst>(&I)) {
601       Value *V = LI->getPointerOperand();
602       if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(V)) {
603         V = GEP->getPointerOperand();
604         if (V == Arg) {
605           // This load actually loads (part of) Arg? Check the indices then.
606           Indices.reserve(GEP->getNumIndices());
607           for (User::op_iterator II = GEP->idx_begin(), IE = GEP->idx_end();
608                II != IE; ++II)
609             if (ConstantInt *CI = dyn_cast<ConstantInt>(*II))
610               Indices.push_back(CI->getSExtValue());
611             else
612               // We found a non-constant GEP index for this argument? Bail out
613               // right away, can't promote this argument at all.
614               return false;
615 
616           // Indices checked out, mark them as safe
617           markIndicesSafe(Indices, SafeToUnconditionallyLoad);
618           Indices.clear();
619         }
620       } else if (V == Arg) {
621         // Direct loads are equivalent to a GEP with a single 0 index.
622         markIndicesSafe(IndicesVector(1, 0), SafeToUnconditionallyLoad);
623       }
624     }
625 
626   // Now, iterate all uses of the argument to see if there are any uses that are
627   // not (GEP+)loads, or any (GEP+)loads that are not safe to promote.
628   SmallVector<LoadInst *, 16> Loads;
629   IndicesVector Operands;
630   for (Use &U : Arg->uses()) {
631     User *UR = U.getUser();
632     Operands.clear();
633     if (LoadInst *LI = dyn_cast<LoadInst>(UR)) {
634       // Don't hack volatile/atomic loads
635       if (!LI->isSimple())
636         return false;
637       Loads.push_back(LI);
638       // Direct loads are equivalent to a GEP with a zero index and then a load.
639       Operands.push_back(0);
640     } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(UR)) {
641       if (GEP->use_empty()) {
642         // Dead GEP's cause trouble later.  Just remove them if we run into
643         // them.
644         GEP->eraseFromParent();
645         // TODO: This runs the above loop over and over again for dead GEPs
646         // Couldn't we just do increment the UI iterator earlier and erase the
647         // use?
648         return isSafeToPromoteArgument(Arg, isByValOrInAlloca, AAR,
649                                        MaxElements);
650       }
651 
652       // Ensure that all of the indices are constants.
653       for (User::op_iterator i = GEP->idx_begin(), e = GEP->idx_end(); i != e;
654            ++i)
655         if (ConstantInt *C = dyn_cast<ConstantInt>(*i))
656           Operands.push_back(C->getSExtValue());
657         else
658           return false; // Not a constant operand GEP!
659 
660       // Ensure that the only users of the GEP are load instructions.
661       for (User *GEPU : GEP->users())
662         if (LoadInst *LI = dyn_cast<LoadInst>(GEPU)) {
663           // Don't hack volatile/atomic loads
664           if (!LI->isSimple())
665             return false;
666           Loads.push_back(LI);
667         } else {
668           // Other uses than load?
669           return false;
670         }
671     } else {
672       return false; // Not a load or a GEP.
673     }
674 
675     // Now, see if it is safe to promote this load / loads of this GEP. Loading
676     // is safe if Operands, or a prefix of Operands, is marked as safe.
677     if (!prefixIn(Operands, SafeToUnconditionallyLoad))
678       return false;
679 
680     // See if we are already promoting a load with these indices. If not, check
681     // to make sure that we aren't promoting too many elements.  If so, nothing
682     // to do.
683     if (ToPromote.find(Operands) == ToPromote.end()) {
684       if (MaxElements > 0 && ToPromote.size() == MaxElements) {
685         DEBUG(dbgs() << "argpromotion not promoting argument '"
686                      << Arg->getName()
687                      << "' because it would require adding more "
688                      << "than " << MaxElements
689                      << " arguments to the function.\n");
690         // We limit aggregate promotion to only promoting up to a fixed number
691         // of elements of the aggregate.
692         return false;
693       }
694       ToPromote.insert(std::move(Operands));
695     }
696   }
697 
698   if (Loads.empty())
699     return true; // No users, this is a dead argument.
700 
701   // Okay, now we know that the argument is only used by load instructions and
702   // it is safe to unconditionally perform all of them. Use alias analysis to
703   // check to see if the pointer is guaranteed to not be modified from entry of
704   // the function to each of the load instructions.
705 
706   // Because there could be several/many load instructions, remember which
707   // blocks we know to be transparent to the load.
708   df_iterator_default_set<BasicBlock *, 16> TranspBlocks;
709 
710   for (LoadInst *Load : Loads) {
711     // Check to see if the load is invalidated from the start of the block to
712     // the load itself.
713     BasicBlock *BB = Load->getParent();
714 
715     MemoryLocation Loc = MemoryLocation::get(Load);
716     if (AAR.canInstructionRangeModRef(BB->front(), *Load, Loc, MRI_Mod))
717       return false; // Pointer is invalidated!
718 
719     // Now check every path from the entry block to the load for transparency.
720     // To do this, we perform a depth first search on the inverse CFG from the
721     // loading block.
722     for (BasicBlock *P : predecessors(BB)) {
723       for (BasicBlock *TranspBB : inverse_depth_first_ext(P, TranspBlocks))
724         if (AAR.canBasicBlockModify(*TranspBB, Loc))
725           return false;
726     }
727   }
728 
729   // If the path from the entry of the function to each load is free of
730   // instructions that potentially invalidate the load, we can make the
731   // transformation!
732   return true;
733 }
734 
735 /// \brief Checks if a type could have padding bytes.
736 static bool isDenselyPacked(Type *type, const DataLayout &DL) {
737 
738   // There is no size information, so be conservative.
739   if (!type->isSized())
740     return false;
741 
742   // If the alloc size is not equal to the storage size, then there are padding
743   // bytes. For x86_fp80 on x86-64, size: 80 alloc size: 128.
744   if (DL.getTypeSizeInBits(type) != DL.getTypeAllocSizeInBits(type))
745     return false;
746 
747   if (!isa<CompositeType>(type))
748     return true;
749 
750   // For homogenous sequential types, check for padding within members.
751   if (SequentialType *seqTy = dyn_cast<SequentialType>(type))
752     return isDenselyPacked(seqTy->getElementType(), DL);
753 
754   // Check for padding within and between elements of a struct.
755   StructType *StructTy = cast<StructType>(type);
756   const StructLayout *Layout = DL.getStructLayout(StructTy);
757   uint64_t StartPos = 0;
758   for (unsigned i = 0, E = StructTy->getNumElements(); i < E; ++i) {
759     Type *ElTy = StructTy->getElementType(i);
760     if (!isDenselyPacked(ElTy, DL))
761       return false;
762     if (StartPos != Layout->getElementOffsetInBits(i))
763       return false;
764     StartPos += DL.getTypeAllocSizeInBits(ElTy);
765   }
766 
767   return true;
768 }
769 
770 /// \brief Checks if the padding bytes of an argument could be accessed.
771 static bool canPaddingBeAccessed(Argument *arg) {
772 
773   assert(arg->hasByValAttr());
774 
775   // Track all the pointers to the argument to make sure they are not captured.
776   SmallPtrSet<Value *, 16> PtrValues;
777   PtrValues.insert(arg);
778 
779   // Track all of the stores.
780   SmallVector<StoreInst *, 16> Stores;
781 
782   // Scan through the uses recursively to make sure the pointer is always used
783   // sanely.
784   SmallVector<Value *, 16> WorkList;
785   WorkList.insert(WorkList.end(), arg->user_begin(), arg->user_end());
786   while (!WorkList.empty()) {
787     Value *V = WorkList.back();
788     WorkList.pop_back();
789     if (isa<GetElementPtrInst>(V) || isa<PHINode>(V)) {
790       if (PtrValues.insert(V).second)
791         WorkList.insert(WorkList.end(), V->user_begin(), V->user_end());
792     } else if (StoreInst *Store = dyn_cast<StoreInst>(V)) {
793       Stores.push_back(Store);
794     } else if (!isa<LoadInst>(V)) {
795       return true;
796     }
797   }
798 
799   // Check to make sure the pointers aren't captured
800   for (StoreInst *Store : Stores)
801     if (PtrValues.count(Store->getValueOperand()))
802       return true;
803 
804   return false;
805 }
806 
807 /// PromoteArguments - This method checks the specified function to see if there
808 /// are any promotable arguments and if it is safe to promote the function (for
809 /// example, all callers are direct).  If safe to promote some arguments, it
810 /// calls the DoPromotion method.
811 ///
812 static Function *
813 promoteArguments(Function *F, function_ref<AAResults &(Function &F)> AARGetter,
814                  unsigned MaxElements,
815                  Optional<function_ref<void(CallSite OldCS, CallSite NewCS)>>
816                      ReplaceCallSite) {
817   // Make sure that it is local to this module.
818   if (!F->hasLocalLinkage())
819     return nullptr;
820 
821   // Don't promote arguments for variadic functions. Adding, removing, or
822   // changing non-pack parameters can change the classification of pack
823   // parameters. Frontends encode that classification at the call site in the
824   // IR, while in the callee the classification is determined dynamically based
825   // on the number of registers consumed so far.
826   if (F->isVarArg())
827     return nullptr;
828 
829   // First check: see if there are any pointer arguments!  If not, quick exit.
830   SmallVector<Argument *, 16> PointerArgs;
831   for (Argument &I : F->args())
832     if (I.getType()->isPointerTy())
833       PointerArgs.push_back(&I);
834   if (PointerArgs.empty())
835     return nullptr;
836 
837   // Second check: make sure that all callers are direct callers.  We can't
838   // transform functions that have indirect callers.  Also see if the function
839   // is self-recursive.
840   bool isSelfRecursive = false;
841   for (Use &U : F->uses()) {
842     CallSite CS(U.getUser());
843     // Must be a direct call.
844     if (CS.getInstruction() == nullptr || !CS.isCallee(&U))
845       return nullptr;
846 
847     if (CS.getInstruction()->getParent()->getParent() == F)
848       isSelfRecursive = true;
849   }
850 
851   const DataLayout &DL = F->getParent()->getDataLayout();
852 
853   AAResults &AAR = AARGetter(*F);
854 
855   // Check to see which arguments are promotable.  If an argument is promotable,
856   // add it to ArgsToPromote.
857   SmallPtrSet<Argument *, 8> ArgsToPromote;
858   SmallPtrSet<Argument *, 8> ByValArgsToTransform;
859   for (Argument *PtrArg : PointerArgs) {
860     Type *AgTy = cast<PointerType>(PtrArg->getType())->getElementType();
861 
862     // Replace sret attribute with noalias. This reduces register pressure by
863     // avoiding a register copy.
864     if (PtrArg->hasStructRetAttr()) {
865       unsigned ArgNo = PtrArg->getArgNo();
866       F->setAttributes(
867           F->getAttributes()
868               .removeAttribute(F->getContext(), ArgNo + 1, Attribute::StructRet)
869               .addAttribute(F->getContext(), ArgNo + 1, Attribute::NoAlias));
870       for (Use &U : F->uses()) {
871         CallSite CS(U.getUser());
872         CS.setAttributes(
873             CS.getAttributes()
874                 .removeAttribute(F->getContext(), ArgNo + 1,
875                                  Attribute::StructRet)
876                 .addAttribute(F->getContext(), ArgNo + 1, Attribute::NoAlias));
877       }
878     }
879 
880     // If this is a byval argument, and if the aggregate type is small, just
881     // pass the elements, which is always safe, if the passed value is densely
882     // packed or if we can prove the padding bytes are never accessed. This does
883     // not apply to inalloca.
884     bool isSafeToPromote =
885         PtrArg->hasByValAttr() &&
886         (isDenselyPacked(AgTy, DL) || !canPaddingBeAccessed(PtrArg));
887     if (isSafeToPromote) {
888       if (StructType *STy = dyn_cast<StructType>(AgTy)) {
889         if (MaxElements > 0 && STy->getNumElements() > MaxElements) {
890           DEBUG(dbgs() << "argpromotion disable promoting argument '"
891                        << PtrArg->getName()
892                        << "' because it would require adding more"
893                        << " than " << MaxElements
894                        << " arguments to the function.\n");
895           continue;
896         }
897 
898         // If all the elements are single-value types, we can promote it.
899         bool AllSimple = true;
900         for (const auto *EltTy : STy->elements()) {
901           if (!EltTy->isSingleValueType()) {
902             AllSimple = false;
903             break;
904           }
905         }
906 
907         // Safe to transform, don't even bother trying to "promote" it.
908         // Passing the elements as a scalar will allow sroa to hack on
909         // the new alloca we introduce.
910         if (AllSimple) {
911           ByValArgsToTransform.insert(PtrArg);
912           continue;
913         }
914       }
915     }
916 
917     // If the argument is a recursive type and we're in a recursive
918     // function, we could end up infinitely peeling the function argument.
919     if (isSelfRecursive) {
920       if (StructType *STy = dyn_cast<StructType>(AgTy)) {
921         bool RecursiveType = false;
922         for (const auto *EltTy : STy->elements()) {
923           if (EltTy == PtrArg->getType()) {
924             RecursiveType = true;
925             break;
926           }
927         }
928         if (RecursiveType)
929           continue;
930       }
931     }
932 
933     // Otherwise, see if we can promote the pointer to its value.
934     if (isSafeToPromoteArgument(PtrArg, PtrArg->hasByValOrInAllocaAttr(), AAR,
935                                 MaxElements))
936       ArgsToPromote.insert(PtrArg);
937   }
938 
939   // No promotable pointer arguments.
940   if (ArgsToPromote.empty() && ByValArgsToTransform.empty())
941     return nullptr;
942 
943   return doPromotion(F, ArgsToPromote, ByValArgsToTransform, ReplaceCallSite);
944 }
945 
946 PreservedAnalyses ArgumentPromotionPass::run(LazyCallGraph::SCC &C,
947                                              CGSCCAnalysisManager &AM,
948                                              LazyCallGraph &CG,
949                                              CGSCCUpdateResult &UR) {
950   bool Changed = false, LocalChange;
951 
952   // Iterate until we stop promoting from this SCC.
953   do {
954     LocalChange = false;
955 
956     for (LazyCallGraph::Node &N : C) {
957       Function &OldF = N.getFunction();
958 
959       FunctionAnalysisManager &FAM =
960           AM.getResult<FunctionAnalysisManagerCGSCCProxy>(C, CG).getManager();
961       // FIXME: This lambda must only be used with this function. We should
962       // skip the lambda and just get the AA results directly.
963       auto AARGetter = [&](Function &F) -> AAResults & {
964         assert(&F == &OldF && "Called with an unexpected function!");
965         return FAM.getResult<AAManager>(F);
966       };
967 
968       Function *NewF = promoteArguments(&OldF, AARGetter, 3u, None);
969       if (!NewF)
970         continue;
971       LocalChange = true;
972 
973       // Directly substitute the functions in the call graph. Note that this
974       // requires the old function to be completely dead and completely
975       // replaced by the new function. It does no call graph updates, it merely
976       // swaps out the particular function mapped to a particular node in the
977       // graph.
978       C.getOuterRefSCC().replaceNodeFunction(N, *NewF);
979       OldF.eraseFromParent();
980     }
981 
982     Changed |= LocalChange;
983   } while (LocalChange);
984 
985   if (!Changed)
986     return PreservedAnalyses::all();
987 
988   return PreservedAnalyses::none();
989 }
990 
991 namespace {
992 /// ArgPromotion - The 'by reference' to 'by value' argument promotion pass.
993 ///
994 struct ArgPromotion : public CallGraphSCCPass {
995   void getAnalysisUsage(AnalysisUsage &AU) const override {
996     AU.addRequired<AssumptionCacheTracker>();
997     AU.addRequired<TargetLibraryInfoWrapperPass>();
998     getAAResultsAnalysisUsage(AU);
999     CallGraphSCCPass::getAnalysisUsage(AU);
1000   }
1001 
1002   bool runOnSCC(CallGraphSCC &SCC) override;
1003   static char ID; // Pass identification, replacement for typeid
1004   explicit ArgPromotion(unsigned MaxElements = 3)
1005       : CallGraphSCCPass(ID), MaxElements(MaxElements) {
1006     initializeArgPromotionPass(*PassRegistry::getPassRegistry());
1007   }
1008 
1009 private:
1010   using llvm::Pass::doInitialization;
1011   bool doInitialization(CallGraph &CG) override;
1012   /// The maximum number of elements to expand, or 0 for unlimited.
1013   unsigned MaxElements;
1014 };
1015 }
1016 
1017 char ArgPromotion::ID = 0;
1018 INITIALIZE_PASS_BEGIN(ArgPromotion, "argpromotion",
1019                       "Promote 'by reference' arguments to scalars", false,
1020                       false)
1021 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
1022 INITIALIZE_PASS_DEPENDENCY(CallGraphWrapperPass)
1023 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
1024 INITIALIZE_PASS_END(ArgPromotion, "argpromotion",
1025                     "Promote 'by reference' arguments to scalars", false, false)
1026 
1027 Pass *llvm::createArgumentPromotionPass(unsigned MaxElements) {
1028   return new ArgPromotion(MaxElements);
1029 }
1030 
1031 bool ArgPromotion::runOnSCC(CallGraphSCC &SCC) {
1032   if (skipSCC(SCC))
1033     return false;
1034 
1035   // Get the callgraph information that we need to update to reflect our
1036   // changes.
1037   CallGraph &CG = getAnalysis<CallGraphWrapperPass>().getCallGraph();
1038 
1039   LegacyAARGetter AARGetter(*this);
1040 
1041   bool Changed = false, LocalChange;
1042 
1043   // Iterate until we stop promoting from this SCC.
1044   do {
1045     LocalChange = false;
1046     // Attempt to promote arguments from all functions in this SCC.
1047     for (CallGraphNode *OldNode : SCC) {
1048       Function *OldF = OldNode->getFunction();
1049       if (!OldF)
1050         continue;
1051 
1052       auto ReplaceCallSite = [&](CallSite OldCS, CallSite NewCS) {
1053         Function *Caller = OldCS.getInstruction()->getParent()->getParent();
1054         CallGraphNode *NewCalleeNode =
1055             CG.getOrInsertFunction(NewCS.getCalledFunction());
1056         CallGraphNode *CallerNode = CG[Caller];
1057         CallerNode->replaceCallEdge(OldCS, NewCS, NewCalleeNode);
1058       };
1059 
1060       if (Function *NewF = promoteArguments(OldF, AARGetter, MaxElements,
1061                                             {ReplaceCallSite})) {
1062         LocalChange = true;
1063 
1064         // Update the call graph for the newly promoted function.
1065         CallGraphNode *NewNode = CG.getOrInsertFunction(NewF);
1066         NewNode->stealCalledFunctionsFrom(OldNode);
1067         if (OldNode->getNumReferences() == 0)
1068           delete CG.removeFunctionFromModule(OldNode);
1069         else
1070           OldF->setLinkage(Function::ExternalLinkage);
1071 
1072         // And updat ethe SCC we're iterating as well.
1073         SCC.ReplaceNode(OldNode, NewNode);
1074       }
1075     }
1076     // Remember that we changed something.
1077     Changed |= LocalChange;
1078   } while (LocalChange);
1079 
1080   return Changed;
1081 }
1082 
1083 bool ArgPromotion::doInitialization(CallGraph &CG) {
1084   return CallGraphSCCPass::doInitialization(CG);
1085 }
1086