1 //===- ArgumentPromotion.cpp - Promote by-reference arguments -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass promotes "by reference" arguments to be "by value" arguments.  In
10 // practice, this means looking for internal functions that have pointer
11 // arguments.  If it can prove, through the use of alias analysis, that an
12 // argument is *only* loaded, then it can pass the value into the function
13 // instead of the address of the value.  This can cause recursive simplification
14 // of code and lead to the elimination of allocas (especially in C++ template
15 // code like the STL).
16 //
17 // This pass also handles aggregate arguments that are passed into a function,
18 // scalarizing them if the elements of the aggregate are only loaded.  Note that
19 // by default it refuses to scalarize aggregates which would require passing in
20 // more than three operands to the function, because passing thousands of
21 // operands for a large array or structure is unprofitable! This limit can be
22 // configured or disabled, however.
23 //
24 // Note that this transformation could also be done for arguments that are only
25 // stored to (returning the value instead), but does not currently.  This case
26 // would be best handled when and if LLVM begins supporting multiple return
27 // values from functions.
28 //
29 //===----------------------------------------------------------------------===//
30 
31 #include "llvm/Transforms/IPO/ArgumentPromotion.h"
32 #include "llvm/ADT/DepthFirstIterator.h"
33 #include "llvm/ADT/None.h"
34 #include "llvm/ADT/Optional.h"
35 #include "llvm/ADT/STLExtras.h"
36 #include "llvm/ADT/SmallPtrSet.h"
37 #include "llvm/ADT/SmallVector.h"
38 #include "llvm/ADT/Statistic.h"
39 #include "llvm/ADT/StringExtras.h"
40 #include "llvm/ADT/Twine.h"
41 #include "llvm/Analysis/AliasAnalysis.h"
42 #include "llvm/Analysis/AssumptionCache.h"
43 #include "llvm/Analysis/BasicAliasAnalysis.h"
44 #include "llvm/Analysis/CGSCCPassManager.h"
45 #include "llvm/Analysis/CallGraph.h"
46 #include "llvm/Analysis/CallGraphSCCPass.h"
47 #include "llvm/Analysis/LazyCallGraph.h"
48 #include "llvm/Analysis/Loads.h"
49 #include "llvm/Analysis/MemoryLocation.h"
50 #include "llvm/Analysis/TargetLibraryInfo.h"
51 #include "llvm/Analysis/TargetTransformInfo.h"
52 #include "llvm/IR/Argument.h"
53 #include "llvm/IR/Attributes.h"
54 #include "llvm/IR/BasicBlock.h"
55 #include "llvm/IR/CFG.h"
56 #include "llvm/IR/CallSite.h"
57 #include "llvm/IR/Constants.h"
58 #include "llvm/IR/DataLayout.h"
59 #include "llvm/IR/DerivedTypes.h"
60 #include "llvm/IR/Function.h"
61 #include "llvm/IR/IRBuilder.h"
62 #include "llvm/IR/InstrTypes.h"
63 #include "llvm/IR/Instruction.h"
64 #include "llvm/IR/Instructions.h"
65 #include "llvm/IR/Metadata.h"
66 #include "llvm/IR/Module.h"
67 #include "llvm/IR/NoFolder.h"
68 #include "llvm/IR/PassManager.h"
69 #include "llvm/IR/Type.h"
70 #include "llvm/IR/Use.h"
71 #include "llvm/IR/User.h"
72 #include "llvm/IR/Value.h"
73 #include "llvm/Pass.h"
74 #include "llvm/Support/Casting.h"
75 #include "llvm/Support/Debug.h"
76 #include "llvm/Support/raw_ostream.h"
77 #include "llvm/Transforms/IPO.h"
78 #include <algorithm>
79 #include <cassert>
80 #include <cstdint>
81 #include <functional>
82 #include <iterator>
83 #include <map>
84 #include <set>
85 #include <string>
86 #include <utility>
87 #include <vector>
88 
89 using namespace llvm;
90 
91 #define DEBUG_TYPE "argpromotion"
92 
93 STATISTIC(NumArgumentsPromoted, "Number of pointer arguments promoted");
94 STATISTIC(NumAggregatesPromoted, "Number of aggregate arguments promoted");
95 STATISTIC(NumByValArgsPromoted, "Number of byval arguments promoted");
96 STATISTIC(NumArgumentsDead, "Number of dead pointer args eliminated");
97 
98 /// A vector used to hold the indices of a single GEP instruction
99 using IndicesVector = std::vector<uint64_t>;
100 
101 /// DoPromotion - This method actually performs the promotion of the specified
102 /// arguments, and returns the new function.  At this point, we know that it's
103 /// safe to do so.
104 static Function *
105 doPromotion(Function *F, SmallPtrSetImpl<Argument *> &ArgsToPromote,
106             SmallPtrSetImpl<Argument *> &ByValArgsToTransform,
107             Optional<function_ref<void(CallSite OldCS, CallSite NewCS)>>
108                 ReplaceCallSite) {
109   // Start by computing a new prototype for the function, which is the same as
110   // the old function, but has modified arguments.
111   FunctionType *FTy = F->getFunctionType();
112   std::vector<Type *> Params;
113 
114   using ScalarizeTable = std::set<std::pair<Type *, IndicesVector>>;
115 
116   // ScalarizedElements - If we are promoting a pointer that has elements
117   // accessed out of it, keep track of which elements are accessed so that we
118   // can add one argument for each.
119   //
120   // Arguments that are directly loaded will have a zero element value here, to
121   // handle cases where there are both a direct load and GEP accesses.
122   std::map<Argument *, ScalarizeTable> ScalarizedElements;
123 
124   // OriginalLoads - Keep track of a representative load instruction from the
125   // original function so that we can tell the alias analysis implementation
126   // what the new GEP/Load instructions we are inserting look like.
127   // We need to keep the original loads for each argument and the elements
128   // of the argument that are accessed.
129   std::map<std::pair<Argument *, IndicesVector>, LoadInst *> OriginalLoads;
130 
131   // Attribute - Keep track of the parameter attributes for the arguments
132   // that we are *not* promoting. For the ones that we do promote, the parameter
133   // attributes are lost
134   SmallVector<AttributeSet, 8> ArgAttrVec;
135   AttributeList PAL = F->getAttributes();
136 
137   // First, determine the new argument list
138   unsigned ArgNo = 0;
139   for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E;
140        ++I, ++ArgNo) {
141     if (ByValArgsToTransform.count(&*I)) {
142       // Simple byval argument? Just add all the struct element types.
143       Type *AgTy = cast<PointerType>(I->getType())->getElementType();
144       StructType *STy = cast<StructType>(AgTy);
145       Params.insert(Params.end(), STy->element_begin(), STy->element_end());
146       ArgAttrVec.insert(ArgAttrVec.end(), STy->getNumElements(),
147                         AttributeSet());
148       ++NumByValArgsPromoted;
149     } else if (!ArgsToPromote.count(&*I)) {
150       // Unchanged argument
151       Params.push_back(I->getType());
152       ArgAttrVec.push_back(PAL.getParamAttributes(ArgNo));
153     } else if (I->use_empty()) {
154       // Dead argument (which are always marked as promotable)
155       ++NumArgumentsDead;
156 
157       // There may be remaining metadata uses of the argument for things like
158       // llvm.dbg.value. Replace them with undef.
159       I->replaceAllUsesWith(UndefValue::get(I->getType()));
160     } else {
161       // Okay, this is being promoted. This means that the only uses are loads
162       // or GEPs which are only used by loads
163 
164       // In this table, we will track which indices are loaded from the argument
165       // (where direct loads are tracked as no indices).
166       ScalarizeTable &ArgIndices = ScalarizedElements[&*I];
167       for (User *U : I->users()) {
168         Instruction *UI = cast<Instruction>(U);
169         Type *SrcTy;
170         if (LoadInst *L = dyn_cast<LoadInst>(UI))
171           SrcTy = L->getType();
172         else
173           SrcTy = cast<GetElementPtrInst>(UI)->getSourceElementType();
174         IndicesVector Indices;
175         Indices.reserve(UI->getNumOperands() - 1);
176         // Since loads will only have a single operand, and GEPs only a single
177         // non-index operand, this will record direct loads without any indices,
178         // and gep+loads with the GEP indices.
179         for (User::op_iterator II = UI->op_begin() + 1, IE = UI->op_end();
180              II != IE; ++II)
181           Indices.push_back(cast<ConstantInt>(*II)->getSExtValue());
182         // GEPs with a single 0 index can be merged with direct loads
183         if (Indices.size() == 1 && Indices.front() == 0)
184           Indices.clear();
185         ArgIndices.insert(std::make_pair(SrcTy, Indices));
186         LoadInst *OrigLoad;
187         if (LoadInst *L = dyn_cast<LoadInst>(UI))
188           OrigLoad = L;
189         else
190           // Take any load, we will use it only to update Alias Analysis
191           OrigLoad = cast<LoadInst>(UI->user_back());
192         OriginalLoads[std::make_pair(&*I, Indices)] = OrigLoad;
193       }
194 
195       // Add a parameter to the function for each element passed in.
196       for (const auto &ArgIndex : ArgIndices) {
197         // not allowed to dereference ->begin() if size() is 0
198         Params.push_back(GetElementPtrInst::getIndexedType(
199             cast<PointerType>(I->getType()->getScalarType())->getElementType(),
200             ArgIndex.second));
201         ArgAttrVec.push_back(AttributeSet());
202         assert(Params.back());
203       }
204 
205       if (ArgIndices.size() == 1 && ArgIndices.begin()->second.empty())
206         ++NumArgumentsPromoted;
207       else
208         ++NumAggregatesPromoted;
209     }
210   }
211 
212   Type *RetTy = FTy->getReturnType();
213 
214   // Construct the new function type using the new arguments.
215   FunctionType *NFTy = FunctionType::get(RetTy, Params, FTy->isVarArg());
216 
217   // Create the new function body and insert it into the module.
218   Function *NF = Function::Create(NFTy, F->getLinkage(), F->getAddressSpace(),
219                                   F->getName());
220   NF->copyAttributesFrom(F);
221 
222   // Patch the pointer to LLVM function in debug info descriptor.
223   NF->setSubprogram(F->getSubprogram());
224   F->setSubprogram(nullptr);
225 
226   LLVM_DEBUG(dbgs() << "ARG PROMOTION:  Promoting to:" << *NF << "\n"
227                     << "From: " << *F);
228 
229   // Recompute the parameter attributes list based on the new arguments for
230   // the function.
231   NF->setAttributes(AttributeList::get(F->getContext(), PAL.getFnAttributes(),
232                                        PAL.getRetAttributes(), ArgAttrVec));
233   ArgAttrVec.clear();
234 
235   F->getParent()->getFunctionList().insert(F->getIterator(), NF);
236   NF->takeName(F);
237 
238   // Loop over all of the callers of the function, transforming the call sites
239   // to pass in the loaded pointers.
240   //
241   SmallVector<Value *, 16> Args;
242   while (!F->use_empty()) {
243     CallSite CS(F->user_back());
244     assert(CS.getCalledFunction() == F);
245     Instruction *Call = CS.getInstruction();
246     const AttributeList &CallPAL = CS.getAttributes();
247     IRBuilder<NoFolder> IRB(Call);
248 
249     // Loop over the operands, inserting GEP and loads in the caller as
250     // appropriate.
251     CallSite::arg_iterator AI = CS.arg_begin();
252     ArgNo = 0;
253     for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E;
254          ++I, ++AI, ++ArgNo)
255       if (!ArgsToPromote.count(&*I) && !ByValArgsToTransform.count(&*I)) {
256         Args.push_back(*AI); // Unmodified argument
257         ArgAttrVec.push_back(CallPAL.getParamAttributes(ArgNo));
258       } else if (ByValArgsToTransform.count(&*I)) {
259         // Emit a GEP and load for each element of the struct.
260         Type *AgTy = cast<PointerType>(I->getType())->getElementType();
261         StructType *STy = cast<StructType>(AgTy);
262         Value *Idxs[2] = {
263             ConstantInt::get(Type::getInt32Ty(F->getContext()), 0), nullptr};
264         for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
265           Idxs[1] = ConstantInt::get(Type::getInt32Ty(F->getContext()), i);
266           auto *Idx =
267               IRB.CreateGEP(STy, *AI, Idxs, (*AI)->getName() + "." + Twine(i));
268           // TODO: Tell AA about the new values?
269           Args.push_back(IRB.CreateLoad(STy->getElementType(i), Idx,
270                                         Idx->getName() + ".val"));
271           ArgAttrVec.push_back(AttributeSet());
272         }
273       } else if (!I->use_empty()) {
274         // Non-dead argument: insert GEPs and loads as appropriate.
275         ScalarizeTable &ArgIndices = ScalarizedElements[&*I];
276         // Store the Value* version of the indices in here, but declare it now
277         // for reuse.
278         std::vector<Value *> Ops;
279         for (const auto &ArgIndex : ArgIndices) {
280           Value *V = *AI;
281           LoadInst *OrigLoad =
282               OriginalLoads[std::make_pair(&*I, ArgIndex.second)];
283           if (!ArgIndex.second.empty()) {
284             Ops.reserve(ArgIndex.second.size());
285             Type *ElTy = V->getType();
286             for (auto II : ArgIndex.second) {
287               // Use i32 to index structs, and i64 for others (pointers/arrays).
288               // This satisfies GEP constraints.
289               Type *IdxTy =
290                   (ElTy->isStructTy() ? Type::getInt32Ty(F->getContext())
291                                       : Type::getInt64Ty(F->getContext()));
292               Ops.push_back(ConstantInt::get(IdxTy, II));
293               // Keep track of the type we're currently indexing.
294               if (auto *ElPTy = dyn_cast<PointerType>(ElTy))
295                 ElTy = ElPTy->getElementType();
296               else
297                 ElTy = cast<CompositeType>(ElTy)->getTypeAtIndex(II);
298             }
299             // And create a GEP to extract those indices.
300             V = IRB.CreateGEP(ArgIndex.first, V, Ops, V->getName() + ".idx");
301             Ops.clear();
302           }
303           // Since we're replacing a load make sure we take the alignment
304           // of the previous load.
305           LoadInst *newLoad =
306               IRB.CreateLoad(OrigLoad->getType(), V, V->getName() + ".val");
307           newLoad->setAlignment(MaybeAlign(OrigLoad->getAlignment()));
308           // Transfer the AA info too.
309           AAMDNodes AAInfo;
310           OrigLoad->getAAMetadata(AAInfo);
311           newLoad->setAAMetadata(AAInfo);
312 
313           Args.push_back(newLoad);
314           ArgAttrVec.push_back(AttributeSet());
315         }
316       }
317 
318     // Push any varargs arguments on the list.
319     for (; AI != CS.arg_end(); ++AI, ++ArgNo) {
320       Args.push_back(*AI);
321       ArgAttrVec.push_back(CallPAL.getParamAttributes(ArgNo));
322     }
323 
324     SmallVector<OperandBundleDef, 1> OpBundles;
325     CS.getOperandBundlesAsDefs(OpBundles);
326 
327     CallSite NewCS;
328     if (InvokeInst *II = dyn_cast<InvokeInst>(Call)) {
329       NewCS = InvokeInst::Create(NF, II->getNormalDest(), II->getUnwindDest(),
330                                  Args, OpBundles, "", Call);
331     } else {
332       auto *NewCall = CallInst::Create(NF, Args, OpBundles, "", Call);
333       NewCall->setTailCallKind(cast<CallInst>(Call)->getTailCallKind());
334       NewCS = NewCall;
335     }
336     NewCS.setCallingConv(CS.getCallingConv());
337     NewCS.setAttributes(
338         AttributeList::get(F->getContext(), CallPAL.getFnAttributes(),
339                            CallPAL.getRetAttributes(), ArgAttrVec));
340     NewCS->setDebugLoc(Call->getDebugLoc());
341     uint64_t W;
342     if (Call->extractProfTotalWeight(W))
343       NewCS->setProfWeight(W);
344     Args.clear();
345     ArgAttrVec.clear();
346 
347     // Update the callgraph to know that the callsite has been transformed.
348     if (ReplaceCallSite)
349       (*ReplaceCallSite)(CS, NewCS);
350 
351     if (!Call->use_empty()) {
352       Call->replaceAllUsesWith(NewCS.getInstruction());
353       NewCS->takeName(Call);
354     }
355 
356     // Finally, remove the old call from the program, reducing the use-count of
357     // F.
358     Call->eraseFromParent();
359   }
360 
361   const DataLayout &DL = F->getParent()->getDataLayout();
362 
363   // Since we have now created the new function, splice the body of the old
364   // function right into the new function, leaving the old rotting hulk of the
365   // function empty.
366   NF->getBasicBlockList().splice(NF->begin(), F->getBasicBlockList());
367 
368   // Loop over the argument list, transferring uses of the old arguments over to
369   // the new arguments, also transferring over the names as well.
370   for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(),
371                               I2 = NF->arg_begin();
372        I != E; ++I) {
373     if (!ArgsToPromote.count(&*I) && !ByValArgsToTransform.count(&*I)) {
374       // If this is an unmodified argument, move the name and users over to the
375       // new version.
376       I->replaceAllUsesWith(&*I2);
377       I2->takeName(&*I);
378       ++I2;
379       continue;
380     }
381 
382     if (ByValArgsToTransform.count(&*I)) {
383       // In the callee, we create an alloca, and store each of the new incoming
384       // arguments into the alloca.
385       Instruction *InsertPt = &NF->begin()->front();
386 
387       // Just add all the struct element types.
388       Type *AgTy = cast<PointerType>(I->getType())->getElementType();
389       Value *TheAlloca =
390           new AllocaInst(AgTy, DL.getAllocaAddrSpace(), nullptr,
391                          MaybeAlign(I->getParamAlignment()), "", InsertPt);
392       StructType *STy = cast<StructType>(AgTy);
393       Value *Idxs[2] = {ConstantInt::get(Type::getInt32Ty(F->getContext()), 0),
394                         nullptr};
395 
396       for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
397         Idxs[1] = ConstantInt::get(Type::getInt32Ty(F->getContext()), i);
398         Value *Idx = GetElementPtrInst::Create(
399             AgTy, TheAlloca, Idxs, TheAlloca->getName() + "." + Twine(i),
400             InsertPt);
401         I2->setName(I->getName() + "." + Twine(i));
402         new StoreInst(&*I2++, Idx, InsertPt);
403       }
404 
405       // Anything that used the arg should now use the alloca.
406       I->replaceAllUsesWith(TheAlloca);
407       TheAlloca->takeName(&*I);
408 
409       // If the alloca is used in a call, we must clear the tail flag since
410       // the callee now uses an alloca from the caller.
411       for (User *U : TheAlloca->users()) {
412         CallInst *Call = dyn_cast<CallInst>(U);
413         if (!Call)
414           continue;
415         Call->setTailCall(false);
416       }
417       continue;
418     }
419 
420     if (I->use_empty())
421       continue;
422 
423     // Otherwise, if we promoted this argument, then all users are load
424     // instructions (or GEPs with only load users), and all loads should be
425     // using the new argument that we added.
426     ScalarizeTable &ArgIndices = ScalarizedElements[&*I];
427 
428     while (!I->use_empty()) {
429       if (LoadInst *LI = dyn_cast<LoadInst>(I->user_back())) {
430         assert(ArgIndices.begin()->second.empty() &&
431                "Load element should sort to front!");
432         I2->setName(I->getName() + ".val");
433         LI->replaceAllUsesWith(&*I2);
434         LI->eraseFromParent();
435         LLVM_DEBUG(dbgs() << "*** Promoted load of argument '" << I->getName()
436                           << "' in function '" << F->getName() << "'\n");
437       } else {
438         GetElementPtrInst *GEP = cast<GetElementPtrInst>(I->user_back());
439         IndicesVector Operands;
440         Operands.reserve(GEP->getNumIndices());
441         for (User::op_iterator II = GEP->idx_begin(), IE = GEP->idx_end();
442              II != IE; ++II)
443           Operands.push_back(cast<ConstantInt>(*II)->getSExtValue());
444 
445         // GEPs with a single 0 index can be merged with direct loads
446         if (Operands.size() == 1 && Operands.front() == 0)
447           Operands.clear();
448 
449         Function::arg_iterator TheArg = I2;
450         for (ScalarizeTable::iterator It = ArgIndices.begin();
451              It->second != Operands; ++It, ++TheArg) {
452           assert(It != ArgIndices.end() && "GEP not handled??");
453         }
454 
455         std::string NewName = I->getName();
456         for (unsigned i = 0, e = Operands.size(); i != e; ++i) {
457           NewName += "." + utostr(Operands[i]);
458         }
459         NewName += ".val";
460         TheArg->setName(NewName);
461 
462         LLVM_DEBUG(dbgs() << "*** Promoted agg argument '" << TheArg->getName()
463                           << "' of function '" << NF->getName() << "'\n");
464 
465         // All of the uses must be load instructions.  Replace them all with
466         // the argument specified by ArgNo.
467         while (!GEP->use_empty()) {
468           LoadInst *L = cast<LoadInst>(GEP->user_back());
469           L->replaceAllUsesWith(&*TheArg);
470           L->eraseFromParent();
471         }
472         GEP->eraseFromParent();
473       }
474     }
475 
476     // Increment I2 past all of the arguments added for this promoted pointer.
477     std::advance(I2, ArgIndices.size());
478   }
479 
480   return NF;
481 }
482 
483 /// Return true if we can prove that all callees pass in a valid pointer for the
484 /// specified function argument.
485 static bool allCallersPassValidPointerForArgument(Argument *Arg, Type *Ty) {
486   Function *Callee = Arg->getParent();
487   const DataLayout &DL = Callee->getParent()->getDataLayout();
488 
489   unsigned ArgNo = Arg->getArgNo();
490 
491   // Look at all call sites of the function.  At this point we know we only have
492   // direct callees.
493   for (User *U : Callee->users()) {
494     CallSite CS(U);
495     assert(CS && "Should only have direct calls!");
496 
497     if (!isDereferenceablePointer(CS.getArgument(ArgNo), Ty, DL))
498       return false;
499   }
500   return true;
501 }
502 
503 /// Returns true if Prefix is a prefix of longer. That means, Longer has a size
504 /// that is greater than or equal to the size of prefix, and each of the
505 /// elements in Prefix is the same as the corresponding elements in Longer.
506 ///
507 /// This means it also returns true when Prefix and Longer are equal!
508 static bool isPrefix(const IndicesVector &Prefix, const IndicesVector &Longer) {
509   if (Prefix.size() > Longer.size())
510     return false;
511   return std::equal(Prefix.begin(), Prefix.end(), Longer.begin());
512 }
513 
514 /// Checks if Indices, or a prefix of Indices, is in Set.
515 static bool prefixIn(const IndicesVector &Indices,
516                      std::set<IndicesVector> &Set) {
517   std::set<IndicesVector>::iterator Low;
518   Low = Set.upper_bound(Indices);
519   if (Low != Set.begin())
520     Low--;
521   // Low is now the last element smaller than or equal to Indices. This means
522   // it points to a prefix of Indices (possibly Indices itself), if such
523   // prefix exists.
524   //
525   // This load is safe if any prefix of its operands is safe to load.
526   return Low != Set.end() && isPrefix(*Low, Indices);
527 }
528 
529 /// Mark the given indices (ToMark) as safe in the given set of indices
530 /// (Safe). Marking safe usually means adding ToMark to Safe. However, if there
531 /// is already a prefix of Indices in Safe, Indices are implicitely marked safe
532 /// already. Furthermore, any indices that Indices is itself a prefix of, are
533 /// removed from Safe (since they are implicitely safe because of Indices now).
534 static void markIndicesSafe(const IndicesVector &ToMark,
535                             std::set<IndicesVector> &Safe) {
536   std::set<IndicesVector>::iterator Low;
537   Low = Safe.upper_bound(ToMark);
538   // Guard against the case where Safe is empty
539   if (Low != Safe.begin())
540     Low--;
541   // Low is now the last element smaller than or equal to Indices. This
542   // means it points to a prefix of Indices (possibly Indices itself), if
543   // such prefix exists.
544   if (Low != Safe.end()) {
545     if (isPrefix(*Low, ToMark))
546       // If there is already a prefix of these indices (or exactly these
547       // indices) marked a safe, don't bother adding these indices
548       return;
549 
550     // Increment Low, so we can use it as a "insert before" hint
551     ++Low;
552   }
553   // Insert
554   Low = Safe.insert(Low, ToMark);
555   ++Low;
556   // If there we're a prefix of longer index list(s), remove those
557   std::set<IndicesVector>::iterator End = Safe.end();
558   while (Low != End && isPrefix(ToMark, *Low)) {
559     std::set<IndicesVector>::iterator Remove = Low;
560     ++Low;
561     Safe.erase(Remove);
562   }
563 }
564 
565 /// isSafeToPromoteArgument - As you might guess from the name of this method,
566 /// it checks to see if it is both safe and useful to promote the argument.
567 /// This method limits promotion of aggregates to only promote up to three
568 /// elements of the aggregate in order to avoid exploding the number of
569 /// arguments passed in.
570 static bool isSafeToPromoteArgument(Argument *Arg, Type *ByValTy, AAResults &AAR,
571                                     unsigned MaxElements) {
572   using GEPIndicesSet = std::set<IndicesVector>;
573 
574   // Quick exit for unused arguments
575   if (Arg->use_empty())
576     return true;
577 
578   // We can only promote this argument if all of the uses are loads, or are GEP
579   // instructions (with constant indices) that are subsequently loaded.
580   //
581   // Promoting the argument causes it to be loaded in the caller
582   // unconditionally. This is only safe if we can prove that either the load
583   // would have happened in the callee anyway (ie, there is a load in the entry
584   // block) or the pointer passed in at every call site is guaranteed to be
585   // valid.
586   // In the former case, invalid loads can happen, but would have happened
587   // anyway, in the latter case, invalid loads won't happen. This prevents us
588   // from introducing an invalid load that wouldn't have happened in the
589   // original code.
590   //
591   // This set will contain all sets of indices that are loaded in the entry
592   // block, and thus are safe to unconditionally load in the caller.
593   GEPIndicesSet SafeToUnconditionallyLoad;
594 
595   // This set contains all the sets of indices that we are planning to promote.
596   // This makes it possible to limit the number of arguments added.
597   GEPIndicesSet ToPromote;
598 
599   // If the pointer is always valid, any load with first index 0 is valid.
600 
601   if (ByValTy)
602     SafeToUnconditionallyLoad.insert(IndicesVector(1, 0));
603 
604   // Whenever a new underlying type for the operand is found, make sure it's
605   // consistent with the GEPs and loads we've already seen and, if necessary,
606   // use it to see if all incoming pointers are valid (which implies the 0-index
607   // is safe).
608   Type *BaseTy = ByValTy;
609   auto UpdateBaseTy = [&](Type *NewBaseTy) {
610     if (BaseTy)
611       return BaseTy == NewBaseTy;
612 
613     BaseTy = NewBaseTy;
614     if (allCallersPassValidPointerForArgument(Arg, BaseTy)) {
615       assert(SafeToUnconditionallyLoad.empty());
616       SafeToUnconditionallyLoad.insert(IndicesVector(1, 0));
617     }
618 
619     return true;
620   };
621 
622   // First, iterate the entry block and mark loads of (geps of) arguments as
623   // safe.
624   BasicBlock &EntryBlock = Arg->getParent()->front();
625   // Declare this here so we can reuse it
626   IndicesVector Indices;
627   for (Instruction &I : EntryBlock)
628     if (LoadInst *LI = dyn_cast<LoadInst>(&I)) {
629       Value *V = LI->getPointerOperand();
630       if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(V)) {
631         V = GEP->getPointerOperand();
632         if (V == Arg) {
633           // This load actually loads (part of) Arg? Check the indices then.
634           Indices.reserve(GEP->getNumIndices());
635           for (User::op_iterator II = GEP->idx_begin(), IE = GEP->idx_end();
636                II != IE; ++II)
637             if (ConstantInt *CI = dyn_cast<ConstantInt>(*II))
638               Indices.push_back(CI->getSExtValue());
639             else
640               // We found a non-constant GEP index for this argument? Bail out
641               // right away, can't promote this argument at all.
642               return false;
643 
644           if (!UpdateBaseTy(GEP->getSourceElementType()))
645             return false;
646 
647           // Indices checked out, mark them as safe
648           markIndicesSafe(Indices, SafeToUnconditionallyLoad);
649           Indices.clear();
650         }
651       } else if (V == Arg) {
652         // Direct loads are equivalent to a GEP with a single 0 index.
653         markIndicesSafe(IndicesVector(1, 0), SafeToUnconditionallyLoad);
654 
655         if (BaseTy && LI->getType() != BaseTy)
656           return false;
657 
658         BaseTy = LI->getType();
659       }
660     }
661 
662   // Now, iterate all uses of the argument to see if there are any uses that are
663   // not (GEP+)loads, or any (GEP+)loads that are not safe to promote.
664   SmallVector<LoadInst *, 16> Loads;
665   IndicesVector Operands;
666   for (Use &U : Arg->uses()) {
667     User *UR = U.getUser();
668     Operands.clear();
669     if (LoadInst *LI = dyn_cast<LoadInst>(UR)) {
670       // Don't hack volatile/atomic loads
671       if (!LI->isSimple())
672         return false;
673       Loads.push_back(LI);
674       // Direct loads are equivalent to a GEP with a zero index and then a load.
675       Operands.push_back(0);
676 
677       if (!UpdateBaseTy(LI->getType()))
678         return false;
679     } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(UR)) {
680       if (GEP->use_empty()) {
681         // Dead GEP's cause trouble later.  Just remove them if we run into
682         // them.
683         GEP->eraseFromParent();
684         // TODO: This runs the above loop over and over again for dead GEPs
685         // Couldn't we just do increment the UI iterator earlier and erase the
686         // use?
687         return isSafeToPromoteArgument(Arg, ByValTy, AAR, MaxElements);
688       }
689 
690       if (!UpdateBaseTy(GEP->getSourceElementType()))
691         return false;
692 
693       // Ensure that all of the indices are constants.
694       for (User::op_iterator i = GEP->idx_begin(), e = GEP->idx_end(); i != e;
695            ++i)
696         if (ConstantInt *C = dyn_cast<ConstantInt>(*i))
697           Operands.push_back(C->getSExtValue());
698         else
699           return false; // Not a constant operand GEP!
700 
701       // Ensure that the only users of the GEP are load instructions.
702       for (User *GEPU : GEP->users())
703         if (LoadInst *LI = dyn_cast<LoadInst>(GEPU)) {
704           // Don't hack volatile/atomic loads
705           if (!LI->isSimple())
706             return false;
707           Loads.push_back(LI);
708         } else {
709           // Other uses than load?
710           return false;
711         }
712     } else {
713       return false; // Not a load or a GEP.
714     }
715 
716     // Now, see if it is safe to promote this load / loads of this GEP. Loading
717     // is safe if Operands, or a prefix of Operands, is marked as safe.
718     if (!prefixIn(Operands, SafeToUnconditionallyLoad))
719       return false;
720 
721     // See if we are already promoting a load with these indices. If not, check
722     // to make sure that we aren't promoting too many elements.  If so, nothing
723     // to do.
724     if (ToPromote.find(Operands) == ToPromote.end()) {
725       if (MaxElements > 0 && ToPromote.size() == MaxElements) {
726         LLVM_DEBUG(dbgs() << "argpromotion not promoting argument '"
727                           << Arg->getName()
728                           << "' because it would require adding more "
729                           << "than " << MaxElements
730                           << " arguments to the function.\n");
731         // We limit aggregate promotion to only promoting up to a fixed number
732         // of elements of the aggregate.
733         return false;
734       }
735       ToPromote.insert(std::move(Operands));
736     }
737   }
738 
739   if (Loads.empty())
740     return true; // No users, this is a dead argument.
741 
742   // Okay, now we know that the argument is only used by load instructions and
743   // it is safe to unconditionally perform all of them. Use alias analysis to
744   // check to see if the pointer is guaranteed to not be modified from entry of
745   // the function to each of the load instructions.
746 
747   // Because there could be several/many load instructions, remember which
748   // blocks we know to be transparent to the load.
749   df_iterator_default_set<BasicBlock *, 16> TranspBlocks;
750 
751   for (LoadInst *Load : Loads) {
752     // Check to see if the load is invalidated from the start of the block to
753     // the load itself.
754     BasicBlock *BB = Load->getParent();
755 
756     MemoryLocation Loc = MemoryLocation::get(Load);
757     if (AAR.canInstructionRangeModRef(BB->front(), *Load, Loc, ModRefInfo::Mod))
758       return false; // Pointer is invalidated!
759 
760     // Now check every path from the entry block to the load for transparency.
761     // To do this, we perform a depth first search on the inverse CFG from the
762     // loading block.
763     for (BasicBlock *P : predecessors(BB)) {
764       for (BasicBlock *TranspBB : inverse_depth_first_ext(P, TranspBlocks))
765         if (AAR.canBasicBlockModify(*TranspBB, Loc))
766           return false;
767     }
768   }
769 
770   // If the path from the entry of the function to each load is free of
771   // instructions that potentially invalidate the load, we can make the
772   // transformation!
773   return true;
774 }
775 
776 /// Checks if a type could have padding bytes.
777 static bool isDenselyPacked(Type *type, const DataLayout &DL) {
778   // There is no size information, so be conservative.
779   if (!type->isSized())
780     return false;
781 
782   // If the alloc size is not equal to the storage size, then there are padding
783   // bytes. For x86_fp80 on x86-64, size: 80 alloc size: 128.
784   if (DL.getTypeSizeInBits(type) != DL.getTypeAllocSizeInBits(type))
785     return false;
786 
787   if (!isa<CompositeType>(type))
788     return true;
789 
790   // For homogenous sequential types, check for padding within members.
791   if (SequentialType *seqTy = dyn_cast<SequentialType>(type))
792     return isDenselyPacked(seqTy->getElementType(), DL);
793 
794   // Check for padding within and between elements of a struct.
795   StructType *StructTy = cast<StructType>(type);
796   const StructLayout *Layout = DL.getStructLayout(StructTy);
797   uint64_t StartPos = 0;
798   for (unsigned i = 0, E = StructTy->getNumElements(); i < E; ++i) {
799     Type *ElTy = StructTy->getElementType(i);
800     if (!isDenselyPacked(ElTy, DL))
801       return false;
802     if (StartPos != Layout->getElementOffsetInBits(i))
803       return false;
804     StartPos += DL.getTypeAllocSizeInBits(ElTy);
805   }
806 
807   return true;
808 }
809 
810 /// Checks if the padding bytes of an argument could be accessed.
811 static bool canPaddingBeAccessed(Argument *arg) {
812   assert(arg->hasByValAttr());
813 
814   // Track all the pointers to the argument to make sure they are not captured.
815   SmallPtrSet<Value *, 16> PtrValues;
816   PtrValues.insert(arg);
817 
818   // Track all of the stores.
819   SmallVector<StoreInst *, 16> Stores;
820 
821   // Scan through the uses recursively to make sure the pointer is always used
822   // sanely.
823   SmallVector<Value *, 16> WorkList;
824   WorkList.insert(WorkList.end(), arg->user_begin(), arg->user_end());
825   while (!WorkList.empty()) {
826     Value *V = WorkList.back();
827     WorkList.pop_back();
828     if (isa<GetElementPtrInst>(V) || isa<PHINode>(V)) {
829       if (PtrValues.insert(V).second)
830         WorkList.insert(WorkList.end(), V->user_begin(), V->user_end());
831     } else if (StoreInst *Store = dyn_cast<StoreInst>(V)) {
832       Stores.push_back(Store);
833     } else if (!isa<LoadInst>(V)) {
834       return true;
835     }
836   }
837 
838   // Check to make sure the pointers aren't captured
839   for (StoreInst *Store : Stores)
840     if (PtrValues.count(Store->getValueOperand()))
841       return true;
842 
843   return false;
844 }
845 
846 static bool areFunctionArgsABICompatible(
847     const Function &F, const TargetTransformInfo &TTI,
848     SmallPtrSetImpl<Argument *> &ArgsToPromote,
849     SmallPtrSetImpl<Argument *> &ByValArgsToTransform) {
850   for (const Use &U : F.uses()) {
851     CallSite CS(U.getUser());
852     const Function *Caller = CS.getCaller();
853     const Function *Callee = CS.getCalledFunction();
854     if (!TTI.areFunctionArgsABICompatible(Caller, Callee, ArgsToPromote) ||
855         !TTI.areFunctionArgsABICompatible(Caller, Callee, ByValArgsToTransform))
856       return false;
857   }
858   return true;
859 }
860 
861 /// PromoteArguments - This method checks the specified function to see if there
862 /// are any promotable arguments and if it is safe to promote the function (for
863 /// example, all callers are direct).  If safe to promote some arguments, it
864 /// calls the DoPromotion method.
865 static Function *
866 promoteArguments(Function *F, function_ref<AAResults &(Function &F)> AARGetter,
867                  unsigned MaxElements,
868                  Optional<function_ref<void(CallSite OldCS, CallSite NewCS)>>
869                      ReplaceCallSite,
870                  const TargetTransformInfo &TTI) {
871   // Don't perform argument promotion for naked functions; otherwise we can end
872   // up removing parameters that are seemingly 'not used' as they are referred
873   // to in the assembly.
874   if(F->hasFnAttribute(Attribute::Naked))
875     return nullptr;
876 
877   // Make sure that it is local to this module.
878   if (!F->hasLocalLinkage())
879     return nullptr;
880 
881   // Don't promote arguments for variadic functions. Adding, removing, or
882   // changing non-pack parameters can change the classification of pack
883   // parameters. Frontends encode that classification at the call site in the
884   // IR, while in the callee the classification is determined dynamically based
885   // on the number of registers consumed so far.
886   if (F->isVarArg())
887     return nullptr;
888 
889   // Don't transform functions that receive inallocas, as the transformation may
890   // not be safe depending on calling convention.
891   if (F->getAttributes().hasAttrSomewhere(Attribute::InAlloca))
892     return nullptr;
893 
894   // First check: see if there are any pointer arguments!  If not, quick exit.
895   SmallVector<Argument *, 16> PointerArgs;
896   for (Argument &I : F->args())
897     if (I.getType()->isPointerTy())
898       PointerArgs.push_back(&I);
899   if (PointerArgs.empty())
900     return nullptr;
901 
902   // Second check: make sure that all callers are direct callers.  We can't
903   // transform functions that have indirect callers.  Also see if the function
904   // is self-recursive and check that target features are compatible.
905   bool isSelfRecursive = false;
906   for (Use &U : F->uses()) {
907     CallSite CS(U.getUser());
908     // Must be a direct call.
909     if (CS.getInstruction() == nullptr || !CS.isCallee(&U))
910       return nullptr;
911 
912     // Can't change signature of musttail callee
913     if (CS.isMustTailCall())
914       return nullptr;
915 
916     if (CS.getInstruction()->getParent()->getParent() == F)
917       isSelfRecursive = true;
918   }
919 
920   // Can't change signature of musttail caller
921   // FIXME: Support promoting whole chain of musttail functions
922   for (BasicBlock &BB : *F)
923     if (BB.getTerminatingMustTailCall())
924       return nullptr;
925 
926   const DataLayout &DL = F->getParent()->getDataLayout();
927 
928   AAResults &AAR = AARGetter(*F);
929 
930   // Check to see which arguments are promotable.  If an argument is promotable,
931   // add it to ArgsToPromote.
932   SmallPtrSet<Argument *, 8> ArgsToPromote;
933   SmallPtrSet<Argument *, 8> ByValArgsToTransform;
934   for (Argument *PtrArg : PointerArgs) {
935     Type *AgTy = cast<PointerType>(PtrArg->getType())->getElementType();
936 
937     // Replace sret attribute with noalias. This reduces register pressure by
938     // avoiding a register copy.
939     if (PtrArg->hasStructRetAttr()) {
940       unsigned ArgNo = PtrArg->getArgNo();
941       F->removeParamAttr(ArgNo, Attribute::StructRet);
942       F->addParamAttr(ArgNo, Attribute::NoAlias);
943       for (Use &U : F->uses()) {
944         CallSite CS(U.getUser());
945         CS.removeParamAttr(ArgNo, Attribute::StructRet);
946         CS.addParamAttr(ArgNo, Attribute::NoAlias);
947       }
948     }
949 
950     // If this is a byval argument, and if the aggregate type is small, just
951     // pass the elements, which is always safe, if the passed value is densely
952     // packed or if we can prove the padding bytes are never accessed.
953     bool isSafeToPromote =
954         PtrArg->hasByValAttr() &&
955         (isDenselyPacked(AgTy, DL) || !canPaddingBeAccessed(PtrArg));
956     if (isSafeToPromote) {
957       if (StructType *STy = dyn_cast<StructType>(AgTy)) {
958         if (MaxElements > 0 && STy->getNumElements() > MaxElements) {
959           LLVM_DEBUG(dbgs() << "argpromotion disable promoting argument '"
960                             << PtrArg->getName()
961                             << "' because it would require adding more"
962                             << " than " << MaxElements
963                             << " arguments to the function.\n");
964           continue;
965         }
966 
967         // If all the elements are single-value types, we can promote it.
968         bool AllSimple = true;
969         for (const auto *EltTy : STy->elements()) {
970           if (!EltTy->isSingleValueType()) {
971             AllSimple = false;
972             break;
973           }
974         }
975 
976         // Safe to transform, don't even bother trying to "promote" it.
977         // Passing the elements as a scalar will allow sroa to hack on
978         // the new alloca we introduce.
979         if (AllSimple) {
980           ByValArgsToTransform.insert(PtrArg);
981           continue;
982         }
983       }
984     }
985 
986     // If the argument is a recursive type and we're in a recursive
987     // function, we could end up infinitely peeling the function argument.
988     if (isSelfRecursive) {
989       if (StructType *STy = dyn_cast<StructType>(AgTy)) {
990         bool RecursiveType = false;
991         for (const auto *EltTy : STy->elements()) {
992           if (EltTy == PtrArg->getType()) {
993             RecursiveType = true;
994             break;
995           }
996         }
997         if (RecursiveType)
998           continue;
999       }
1000     }
1001 
1002     // Otherwise, see if we can promote the pointer to its value.
1003     Type *ByValTy =
1004         PtrArg->hasByValAttr() ? PtrArg->getParamByValType() : nullptr;
1005     if (isSafeToPromoteArgument(PtrArg, ByValTy, AAR, MaxElements))
1006       ArgsToPromote.insert(PtrArg);
1007   }
1008 
1009   // No promotable pointer arguments.
1010   if (ArgsToPromote.empty() && ByValArgsToTransform.empty())
1011     return nullptr;
1012 
1013   if (!areFunctionArgsABICompatible(*F, TTI, ArgsToPromote,
1014                                     ByValArgsToTransform))
1015     return nullptr;
1016 
1017   return doPromotion(F, ArgsToPromote, ByValArgsToTransform, ReplaceCallSite);
1018 }
1019 
1020 PreservedAnalyses ArgumentPromotionPass::run(LazyCallGraph::SCC &C,
1021                                              CGSCCAnalysisManager &AM,
1022                                              LazyCallGraph &CG,
1023                                              CGSCCUpdateResult &UR) {
1024   bool Changed = false, LocalChange;
1025 
1026   // Iterate until we stop promoting from this SCC.
1027   do {
1028     LocalChange = false;
1029 
1030     for (LazyCallGraph::Node &N : C) {
1031       Function &OldF = N.getFunction();
1032 
1033       FunctionAnalysisManager &FAM =
1034           AM.getResult<FunctionAnalysisManagerCGSCCProxy>(C, CG).getManager();
1035       // FIXME: This lambda must only be used with this function. We should
1036       // skip the lambda and just get the AA results directly.
1037       auto AARGetter = [&](Function &F) -> AAResults & {
1038         assert(&F == &OldF && "Called with an unexpected function!");
1039         return FAM.getResult<AAManager>(F);
1040       };
1041 
1042       const TargetTransformInfo &TTI = FAM.getResult<TargetIRAnalysis>(OldF);
1043       Function *NewF =
1044           promoteArguments(&OldF, AARGetter, MaxElements, None, TTI);
1045       if (!NewF)
1046         continue;
1047       LocalChange = true;
1048 
1049       // Directly substitute the functions in the call graph. Note that this
1050       // requires the old function to be completely dead and completely
1051       // replaced by the new function. It does no call graph updates, it merely
1052       // swaps out the particular function mapped to a particular node in the
1053       // graph.
1054       C.getOuterRefSCC().replaceNodeFunction(N, *NewF);
1055       OldF.eraseFromParent();
1056     }
1057 
1058     Changed |= LocalChange;
1059   } while (LocalChange);
1060 
1061   if (!Changed)
1062     return PreservedAnalyses::all();
1063 
1064   return PreservedAnalyses::none();
1065 }
1066 
1067 namespace {
1068 
1069 /// ArgPromotion - The 'by reference' to 'by value' argument promotion pass.
1070 struct ArgPromotion : public CallGraphSCCPass {
1071   // Pass identification, replacement for typeid
1072   static char ID;
1073 
1074   explicit ArgPromotion(unsigned MaxElements = 3)
1075       : CallGraphSCCPass(ID), MaxElements(MaxElements) {
1076     initializeArgPromotionPass(*PassRegistry::getPassRegistry());
1077   }
1078 
1079   void getAnalysisUsage(AnalysisUsage &AU) const override {
1080     AU.addRequired<AssumptionCacheTracker>();
1081     AU.addRequired<TargetLibraryInfoWrapperPass>();
1082     AU.addRequired<TargetTransformInfoWrapperPass>();
1083     getAAResultsAnalysisUsage(AU);
1084     CallGraphSCCPass::getAnalysisUsage(AU);
1085   }
1086 
1087   bool runOnSCC(CallGraphSCC &SCC) override;
1088 
1089 private:
1090   using llvm::Pass::doInitialization;
1091 
1092   bool doInitialization(CallGraph &CG) override;
1093 
1094   /// The maximum number of elements to expand, or 0 for unlimited.
1095   unsigned MaxElements;
1096 };
1097 
1098 } // end anonymous namespace
1099 
1100 char ArgPromotion::ID = 0;
1101 
1102 INITIALIZE_PASS_BEGIN(ArgPromotion, "argpromotion",
1103                       "Promote 'by reference' arguments to scalars", false,
1104                       false)
1105 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
1106 INITIALIZE_PASS_DEPENDENCY(CallGraphWrapperPass)
1107 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
1108 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
1109 INITIALIZE_PASS_END(ArgPromotion, "argpromotion",
1110                     "Promote 'by reference' arguments to scalars", false, false)
1111 
1112 Pass *llvm::createArgumentPromotionPass(unsigned MaxElements) {
1113   return new ArgPromotion(MaxElements);
1114 }
1115 
1116 bool ArgPromotion::runOnSCC(CallGraphSCC &SCC) {
1117   if (skipSCC(SCC))
1118     return false;
1119 
1120   // Get the callgraph information that we need to update to reflect our
1121   // changes.
1122   CallGraph &CG = getAnalysis<CallGraphWrapperPass>().getCallGraph();
1123 
1124   LegacyAARGetter AARGetter(*this);
1125 
1126   bool Changed = false, LocalChange;
1127 
1128   // Iterate until we stop promoting from this SCC.
1129   do {
1130     LocalChange = false;
1131     // Attempt to promote arguments from all functions in this SCC.
1132     for (CallGraphNode *OldNode : SCC) {
1133       Function *OldF = OldNode->getFunction();
1134       if (!OldF)
1135         continue;
1136 
1137       auto ReplaceCallSite = [&](CallSite OldCS, CallSite NewCS) {
1138         Function *Caller = OldCS.getInstruction()->getParent()->getParent();
1139         CallGraphNode *NewCalleeNode =
1140             CG.getOrInsertFunction(NewCS.getCalledFunction());
1141         CallGraphNode *CallerNode = CG[Caller];
1142         CallerNode->replaceCallEdge(*cast<CallBase>(OldCS.getInstruction()),
1143                                     *cast<CallBase>(NewCS.getInstruction()),
1144                                     NewCalleeNode);
1145       };
1146 
1147       const TargetTransformInfo &TTI =
1148           getAnalysis<TargetTransformInfoWrapperPass>().getTTI(*OldF);
1149       if (Function *NewF = promoteArguments(OldF, AARGetter, MaxElements,
1150                                             {ReplaceCallSite}, TTI)) {
1151         LocalChange = true;
1152 
1153         // Update the call graph for the newly promoted function.
1154         CallGraphNode *NewNode = CG.getOrInsertFunction(NewF);
1155         NewNode->stealCalledFunctionsFrom(OldNode);
1156         if (OldNode->getNumReferences() == 0)
1157           delete CG.removeFunctionFromModule(OldNode);
1158         else
1159           OldF->setLinkage(Function::ExternalLinkage);
1160 
1161         // And updat ethe SCC we're iterating as well.
1162         SCC.ReplaceNode(OldNode, NewNode);
1163       }
1164     }
1165     // Remember that we changed something.
1166     Changed |= LocalChange;
1167   } while (LocalChange);
1168 
1169   return Changed;
1170 }
1171 
1172 bool ArgPromotion::doInitialization(CallGraph &CG) {
1173   return CallGraphSCCPass::doInitialization(CG);
1174 }
1175