1 //===- ArgumentPromotion.cpp - Promote by-reference arguments -------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass promotes "by reference" arguments to be "by value" arguments. In 10 // practice, this means looking for internal functions that have pointer 11 // arguments. If it can prove, through the use of alias analysis, that an 12 // argument is *only* loaded, then it can pass the value into the function 13 // instead of the address of the value. This can cause recursive simplification 14 // of code and lead to the elimination of allocas (especially in C++ template 15 // code like the STL). 16 // 17 // This pass also handles aggregate arguments that are passed into a function, 18 // scalarizing them if the elements of the aggregate are only loaded. Note that 19 // by default it refuses to scalarize aggregates which would require passing in 20 // more than three operands to the function, because passing thousands of 21 // operands for a large array or structure is unprofitable! This limit can be 22 // configured or disabled, however. 23 // 24 // Note that this transformation could also be done for arguments that are only 25 // stored to (returning the value instead), but does not currently. This case 26 // would be best handled when and if LLVM begins supporting multiple return 27 // values from functions. 28 // 29 //===----------------------------------------------------------------------===// 30 31 #include "llvm/Transforms/IPO/ArgumentPromotion.h" 32 #include "llvm/ADT/DepthFirstIterator.h" 33 #include "llvm/ADT/None.h" 34 #include "llvm/ADT/Optional.h" 35 #include "llvm/ADT/STLExtras.h" 36 #include "llvm/ADT/SmallPtrSet.h" 37 #include "llvm/ADT/SmallVector.h" 38 #include "llvm/ADT/Statistic.h" 39 #include "llvm/ADT/StringExtras.h" 40 #include "llvm/ADT/Twine.h" 41 #include "llvm/Analysis/AliasAnalysis.h" 42 #include "llvm/Analysis/AssumptionCache.h" 43 #include "llvm/Analysis/BasicAliasAnalysis.h" 44 #include "llvm/Analysis/CGSCCPassManager.h" 45 #include "llvm/Analysis/CallGraph.h" 46 #include "llvm/Analysis/CallGraphSCCPass.h" 47 #include "llvm/Analysis/LazyCallGraph.h" 48 #include "llvm/Analysis/Loads.h" 49 #include "llvm/Analysis/MemoryLocation.h" 50 #include "llvm/Analysis/TargetLibraryInfo.h" 51 #include "llvm/Analysis/TargetTransformInfo.h" 52 #include "llvm/IR/Argument.h" 53 #include "llvm/IR/Attributes.h" 54 #include "llvm/IR/BasicBlock.h" 55 #include "llvm/IR/CFG.h" 56 #include "llvm/IR/CallSite.h" 57 #include "llvm/IR/Constants.h" 58 #include "llvm/IR/DataLayout.h" 59 #include "llvm/IR/DerivedTypes.h" 60 #include "llvm/IR/Function.h" 61 #include "llvm/IR/IRBuilder.h" 62 #include "llvm/IR/InstrTypes.h" 63 #include "llvm/IR/Instruction.h" 64 #include "llvm/IR/Instructions.h" 65 #include "llvm/IR/Metadata.h" 66 #include "llvm/IR/Module.h" 67 #include "llvm/IR/NoFolder.h" 68 #include "llvm/IR/PassManager.h" 69 #include "llvm/IR/Type.h" 70 #include "llvm/IR/Use.h" 71 #include "llvm/IR/User.h" 72 #include "llvm/IR/Value.h" 73 #include "llvm/Pass.h" 74 #include "llvm/Support/Casting.h" 75 #include "llvm/Support/Debug.h" 76 #include "llvm/Support/raw_ostream.h" 77 #include "llvm/Transforms/IPO.h" 78 #include <algorithm> 79 #include <cassert> 80 #include <cstdint> 81 #include <functional> 82 #include <iterator> 83 #include <map> 84 #include <set> 85 #include <string> 86 #include <utility> 87 #include <vector> 88 89 using namespace llvm; 90 91 #define DEBUG_TYPE "argpromotion" 92 93 STATISTIC(NumArgumentsPromoted, "Number of pointer arguments promoted"); 94 STATISTIC(NumAggregatesPromoted, "Number of aggregate arguments promoted"); 95 STATISTIC(NumByValArgsPromoted, "Number of byval arguments promoted"); 96 STATISTIC(NumArgumentsDead, "Number of dead pointer args eliminated"); 97 98 /// A vector used to hold the indices of a single GEP instruction 99 using IndicesVector = std::vector<uint64_t>; 100 101 /// DoPromotion - This method actually performs the promotion of the specified 102 /// arguments, and returns the new function. At this point, we know that it's 103 /// safe to do so. 104 static Function * 105 doPromotion(Function *F, SmallPtrSetImpl<Argument *> &ArgsToPromote, 106 SmallPtrSetImpl<Argument *> &ByValArgsToTransform, 107 Optional<function_ref<void(CallSite OldCS, CallSite NewCS)>> 108 ReplaceCallSite) { 109 // Start by computing a new prototype for the function, which is the same as 110 // the old function, but has modified arguments. 111 FunctionType *FTy = F->getFunctionType(); 112 std::vector<Type *> Params; 113 114 using ScalarizeTable = std::set<std::pair<Type *, IndicesVector>>; 115 116 // ScalarizedElements - If we are promoting a pointer that has elements 117 // accessed out of it, keep track of which elements are accessed so that we 118 // can add one argument for each. 119 // 120 // Arguments that are directly loaded will have a zero element value here, to 121 // handle cases where there are both a direct load and GEP accesses. 122 std::map<Argument *, ScalarizeTable> ScalarizedElements; 123 124 // OriginalLoads - Keep track of a representative load instruction from the 125 // original function so that we can tell the alias analysis implementation 126 // what the new GEP/Load instructions we are inserting look like. 127 // We need to keep the original loads for each argument and the elements 128 // of the argument that are accessed. 129 std::map<std::pair<Argument *, IndicesVector>, LoadInst *> OriginalLoads; 130 131 // Attribute - Keep track of the parameter attributes for the arguments 132 // that we are *not* promoting. For the ones that we do promote, the parameter 133 // attributes are lost 134 SmallVector<AttributeSet, 8> ArgAttrVec; 135 AttributeList PAL = F->getAttributes(); 136 137 // First, determine the new argument list 138 unsigned ArgNo = 0; 139 for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E; 140 ++I, ++ArgNo) { 141 if (ByValArgsToTransform.count(&*I)) { 142 // Simple byval argument? Just add all the struct element types. 143 Type *AgTy = cast<PointerType>(I->getType())->getElementType(); 144 StructType *STy = cast<StructType>(AgTy); 145 Params.insert(Params.end(), STy->element_begin(), STy->element_end()); 146 ArgAttrVec.insert(ArgAttrVec.end(), STy->getNumElements(), 147 AttributeSet()); 148 ++NumByValArgsPromoted; 149 } else if (!ArgsToPromote.count(&*I)) { 150 // Unchanged argument 151 Params.push_back(I->getType()); 152 ArgAttrVec.push_back(PAL.getParamAttributes(ArgNo)); 153 } else if (I->use_empty()) { 154 // Dead argument (which are always marked as promotable) 155 ++NumArgumentsDead; 156 157 // There may be remaining metadata uses of the argument for things like 158 // llvm.dbg.value. Replace them with undef. 159 I->replaceAllUsesWith(UndefValue::get(I->getType())); 160 } else { 161 // Okay, this is being promoted. This means that the only uses are loads 162 // or GEPs which are only used by loads 163 164 // In this table, we will track which indices are loaded from the argument 165 // (where direct loads are tracked as no indices). 166 ScalarizeTable &ArgIndices = ScalarizedElements[&*I]; 167 for (User *U : I->users()) { 168 Instruction *UI = cast<Instruction>(U); 169 Type *SrcTy; 170 if (LoadInst *L = dyn_cast<LoadInst>(UI)) 171 SrcTy = L->getType(); 172 else 173 SrcTy = cast<GetElementPtrInst>(UI)->getSourceElementType(); 174 IndicesVector Indices; 175 Indices.reserve(UI->getNumOperands() - 1); 176 // Since loads will only have a single operand, and GEPs only a single 177 // non-index operand, this will record direct loads without any indices, 178 // and gep+loads with the GEP indices. 179 for (User::op_iterator II = UI->op_begin() + 1, IE = UI->op_end(); 180 II != IE; ++II) 181 Indices.push_back(cast<ConstantInt>(*II)->getSExtValue()); 182 // GEPs with a single 0 index can be merged with direct loads 183 if (Indices.size() == 1 && Indices.front() == 0) 184 Indices.clear(); 185 ArgIndices.insert(std::make_pair(SrcTy, Indices)); 186 LoadInst *OrigLoad; 187 if (LoadInst *L = dyn_cast<LoadInst>(UI)) 188 OrigLoad = L; 189 else 190 // Take any load, we will use it only to update Alias Analysis 191 OrigLoad = cast<LoadInst>(UI->user_back()); 192 OriginalLoads[std::make_pair(&*I, Indices)] = OrigLoad; 193 } 194 195 // Add a parameter to the function for each element passed in. 196 for (const auto &ArgIndex : ArgIndices) { 197 // not allowed to dereference ->begin() if size() is 0 198 Params.push_back(GetElementPtrInst::getIndexedType( 199 cast<PointerType>(I->getType()->getScalarType())->getElementType(), 200 ArgIndex.second)); 201 ArgAttrVec.push_back(AttributeSet()); 202 assert(Params.back()); 203 } 204 205 if (ArgIndices.size() == 1 && ArgIndices.begin()->second.empty()) 206 ++NumArgumentsPromoted; 207 else 208 ++NumAggregatesPromoted; 209 } 210 } 211 212 Type *RetTy = FTy->getReturnType(); 213 214 // Construct the new function type using the new arguments. 215 FunctionType *NFTy = FunctionType::get(RetTy, Params, FTy->isVarArg()); 216 217 // Create the new function body and insert it into the module. 218 Function *NF = Function::Create(NFTy, F->getLinkage(), F->getAddressSpace(), 219 F->getName()); 220 NF->copyAttributesFrom(F); 221 222 // Patch the pointer to LLVM function in debug info descriptor. 223 NF->setSubprogram(F->getSubprogram()); 224 F->setSubprogram(nullptr); 225 226 LLVM_DEBUG(dbgs() << "ARG PROMOTION: Promoting to:" << *NF << "\n" 227 << "From: " << *F); 228 229 // Recompute the parameter attributes list based on the new arguments for 230 // the function. 231 NF->setAttributes(AttributeList::get(F->getContext(), PAL.getFnAttributes(), 232 PAL.getRetAttributes(), ArgAttrVec)); 233 ArgAttrVec.clear(); 234 235 F->getParent()->getFunctionList().insert(F->getIterator(), NF); 236 NF->takeName(F); 237 238 // Loop over all of the callers of the function, transforming the call sites 239 // to pass in the loaded pointers. 240 // 241 SmallVector<Value *, 16> Args; 242 while (!F->use_empty()) { 243 CallSite CS(F->user_back()); 244 assert(CS.getCalledFunction() == F); 245 Instruction *Call = CS.getInstruction(); 246 const AttributeList &CallPAL = CS.getAttributes(); 247 IRBuilder<NoFolder> IRB(Call); 248 249 // Loop over the operands, inserting GEP and loads in the caller as 250 // appropriate. 251 CallSite::arg_iterator AI = CS.arg_begin(); 252 ArgNo = 0; 253 for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E; 254 ++I, ++AI, ++ArgNo) 255 if (!ArgsToPromote.count(&*I) && !ByValArgsToTransform.count(&*I)) { 256 Args.push_back(*AI); // Unmodified argument 257 ArgAttrVec.push_back(CallPAL.getParamAttributes(ArgNo)); 258 } else if (ByValArgsToTransform.count(&*I)) { 259 // Emit a GEP and load for each element of the struct. 260 Type *AgTy = cast<PointerType>(I->getType())->getElementType(); 261 StructType *STy = cast<StructType>(AgTy); 262 Value *Idxs[2] = { 263 ConstantInt::get(Type::getInt32Ty(F->getContext()), 0), nullptr}; 264 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 265 Idxs[1] = ConstantInt::get(Type::getInt32Ty(F->getContext()), i); 266 auto *Idx = 267 IRB.CreateGEP(STy, *AI, Idxs, (*AI)->getName() + "." + Twine(i)); 268 // TODO: Tell AA about the new values? 269 Args.push_back(IRB.CreateLoad(STy->getElementType(i), Idx, 270 Idx->getName() + ".val")); 271 ArgAttrVec.push_back(AttributeSet()); 272 } 273 } else if (!I->use_empty()) { 274 // Non-dead argument: insert GEPs and loads as appropriate. 275 ScalarizeTable &ArgIndices = ScalarizedElements[&*I]; 276 // Store the Value* version of the indices in here, but declare it now 277 // for reuse. 278 std::vector<Value *> Ops; 279 for (const auto &ArgIndex : ArgIndices) { 280 Value *V = *AI; 281 LoadInst *OrigLoad = 282 OriginalLoads[std::make_pair(&*I, ArgIndex.second)]; 283 if (!ArgIndex.second.empty()) { 284 Ops.reserve(ArgIndex.second.size()); 285 Type *ElTy = V->getType(); 286 for (auto II : ArgIndex.second) { 287 // Use i32 to index structs, and i64 for others (pointers/arrays). 288 // This satisfies GEP constraints. 289 Type *IdxTy = 290 (ElTy->isStructTy() ? Type::getInt32Ty(F->getContext()) 291 : Type::getInt64Ty(F->getContext())); 292 Ops.push_back(ConstantInt::get(IdxTy, II)); 293 // Keep track of the type we're currently indexing. 294 if (auto *ElPTy = dyn_cast<PointerType>(ElTy)) 295 ElTy = ElPTy->getElementType(); 296 else 297 ElTy = cast<CompositeType>(ElTy)->getTypeAtIndex(II); 298 } 299 // And create a GEP to extract those indices. 300 V = IRB.CreateGEP(ArgIndex.first, V, Ops, V->getName() + ".idx"); 301 Ops.clear(); 302 } 303 // Since we're replacing a load make sure we take the alignment 304 // of the previous load. 305 LoadInst *newLoad = 306 IRB.CreateLoad(OrigLoad->getType(), V, V->getName() + ".val"); 307 newLoad->setAlignment(MaybeAlign(OrigLoad->getAlignment())); 308 // Transfer the AA info too. 309 AAMDNodes AAInfo; 310 OrigLoad->getAAMetadata(AAInfo); 311 newLoad->setAAMetadata(AAInfo); 312 313 Args.push_back(newLoad); 314 ArgAttrVec.push_back(AttributeSet()); 315 } 316 } 317 318 // Push any varargs arguments on the list. 319 for (; AI != CS.arg_end(); ++AI, ++ArgNo) { 320 Args.push_back(*AI); 321 ArgAttrVec.push_back(CallPAL.getParamAttributes(ArgNo)); 322 } 323 324 SmallVector<OperandBundleDef, 1> OpBundles; 325 CS.getOperandBundlesAsDefs(OpBundles); 326 327 CallSite NewCS; 328 if (InvokeInst *II = dyn_cast<InvokeInst>(Call)) { 329 NewCS = InvokeInst::Create(NF, II->getNormalDest(), II->getUnwindDest(), 330 Args, OpBundles, "", Call); 331 } else { 332 auto *NewCall = CallInst::Create(NF, Args, OpBundles, "", Call); 333 NewCall->setTailCallKind(cast<CallInst>(Call)->getTailCallKind()); 334 NewCS = NewCall; 335 } 336 NewCS.setCallingConv(CS.getCallingConv()); 337 NewCS.setAttributes( 338 AttributeList::get(F->getContext(), CallPAL.getFnAttributes(), 339 CallPAL.getRetAttributes(), ArgAttrVec)); 340 NewCS->setDebugLoc(Call->getDebugLoc()); 341 uint64_t W; 342 if (Call->extractProfTotalWeight(W)) 343 NewCS->setProfWeight(W); 344 Args.clear(); 345 ArgAttrVec.clear(); 346 347 // Update the callgraph to know that the callsite has been transformed. 348 if (ReplaceCallSite) 349 (*ReplaceCallSite)(CS, NewCS); 350 351 if (!Call->use_empty()) { 352 Call->replaceAllUsesWith(NewCS.getInstruction()); 353 NewCS->takeName(Call); 354 } 355 356 // Finally, remove the old call from the program, reducing the use-count of 357 // F. 358 Call->eraseFromParent(); 359 } 360 361 const DataLayout &DL = F->getParent()->getDataLayout(); 362 363 // Since we have now created the new function, splice the body of the old 364 // function right into the new function, leaving the old rotting hulk of the 365 // function empty. 366 NF->getBasicBlockList().splice(NF->begin(), F->getBasicBlockList()); 367 368 // Loop over the argument list, transferring uses of the old arguments over to 369 // the new arguments, also transferring over the names as well. 370 for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(), 371 I2 = NF->arg_begin(); 372 I != E; ++I) { 373 if (!ArgsToPromote.count(&*I) && !ByValArgsToTransform.count(&*I)) { 374 // If this is an unmodified argument, move the name and users over to the 375 // new version. 376 I->replaceAllUsesWith(&*I2); 377 I2->takeName(&*I); 378 ++I2; 379 continue; 380 } 381 382 if (ByValArgsToTransform.count(&*I)) { 383 // In the callee, we create an alloca, and store each of the new incoming 384 // arguments into the alloca. 385 Instruction *InsertPt = &NF->begin()->front(); 386 387 // Just add all the struct element types. 388 Type *AgTy = cast<PointerType>(I->getType())->getElementType(); 389 Value *TheAlloca = 390 new AllocaInst(AgTy, DL.getAllocaAddrSpace(), nullptr, 391 MaybeAlign(I->getParamAlignment()), "", InsertPt); 392 StructType *STy = cast<StructType>(AgTy); 393 Value *Idxs[2] = {ConstantInt::get(Type::getInt32Ty(F->getContext()), 0), 394 nullptr}; 395 396 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 397 Idxs[1] = ConstantInt::get(Type::getInt32Ty(F->getContext()), i); 398 Value *Idx = GetElementPtrInst::Create( 399 AgTy, TheAlloca, Idxs, TheAlloca->getName() + "." + Twine(i), 400 InsertPt); 401 I2->setName(I->getName() + "." + Twine(i)); 402 new StoreInst(&*I2++, Idx, InsertPt); 403 } 404 405 // Anything that used the arg should now use the alloca. 406 I->replaceAllUsesWith(TheAlloca); 407 TheAlloca->takeName(&*I); 408 409 // If the alloca is used in a call, we must clear the tail flag since 410 // the callee now uses an alloca from the caller. 411 for (User *U : TheAlloca->users()) { 412 CallInst *Call = dyn_cast<CallInst>(U); 413 if (!Call) 414 continue; 415 Call->setTailCall(false); 416 } 417 continue; 418 } 419 420 if (I->use_empty()) 421 continue; 422 423 // Otherwise, if we promoted this argument, then all users are load 424 // instructions (or GEPs with only load users), and all loads should be 425 // using the new argument that we added. 426 ScalarizeTable &ArgIndices = ScalarizedElements[&*I]; 427 428 while (!I->use_empty()) { 429 if (LoadInst *LI = dyn_cast<LoadInst>(I->user_back())) { 430 assert(ArgIndices.begin()->second.empty() && 431 "Load element should sort to front!"); 432 I2->setName(I->getName() + ".val"); 433 LI->replaceAllUsesWith(&*I2); 434 LI->eraseFromParent(); 435 LLVM_DEBUG(dbgs() << "*** Promoted load of argument '" << I->getName() 436 << "' in function '" << F->getName() << "'\n"); 437 } else { 438 GetElementPtrInst *GEP = cast<GetElementPtrInst>(I->user_back()); 439 IndicesVector Operands; 440 Operands.reserve(GEP->getNumIndices()); 441 for (User::op_iterator II = GEP->idx_begin(), IE = GEP->idx_end(); 442 II != IE; ++II) 443 Operands.push_back(cast<ConstantInt>(*II)->getSExtValue()); 444 445 // GEPs with a single 0 index can be merged with direct loads 446 if (Operands.size() == 1 && Operands.front() == 0) 447 Operands.clear(); 448 449 Function::arg_iterator TheArg = I2; 450 for (ScalarizeTable::iterator It = ArgIndices.begin(); 451 It->second != Operands; ++It, ++TheArg) { 452 assert(It != ArgIndices.end() && "GEP not handled??"); 453 } 454 455 std::string NewName = I->getName(); 456 for (unsigned i = 0, e = Operands.size(); i != e; ++i) { 457 NewName += "." + utostr(Operands[i]); 458 } 459 NewName += ".val"; 460 TheArg->setName(NewName); 461 462 LLVM_DEBUG(dbgs() << "*** Promoted agg argument '" << TheArg->getName() 463 << "' of function '" << NF->getName() << "'\n"); 464 465 // All of the uses must be load instructions. Replace them all with 466 // the argument specified by ArgNo. 467 while (!GEP->use_empty()) { 468 LoadInst *L = cast<LoadInst>(GEP->user_back()); 469 L->replaceAllUsesWith(&*TheArg); 470 L->eraseFromParent(); 471 } 472 GEP->eraseFromParent(); 473 } 474 } 475 476 // Increment I2 past all of the arguments added for this promoted pointer. 477 std::advance(I2, ArgIndices.size()); 478 } 479 480 return NF; 481 } 482 483 /// Return true if we can prove that all callees pass in a valid pointer for the 484 /// specified function argument. 485 static bool allCallersPassValidPointerForArgument(Argument *Arg, Type *Ty) { 486 Function *Callee = Arg->getParent(); 487 const DataLayout &DL = Callee->getParent()->getDataLayout(); 488 489 unsigned ArgNo = Arg->getArgNo(); 490 491 // Look at all call sites of the function. At this point we know we only have 492 // direct callees. 493 for (User *U : Callee->users()) { 494 CallSite CS(U); 495 assert(CS && "Should only have direct calls!"); 496 497 if (!isDereferenceablePointer(CS.getArgument(ArgNo), Ty, DL)) 498 return false; 499 } 500 return true; 501 } 502 503 /// Returns true if Prefix is a prefix of longer. That means, Longer has a size 504 /// that is greater than or equal to the size of prefix, and each of the 505 /// elements in Prefix is the same as the corresponding elements in Longer. 506 /// 507 /// This means it also returns true when Prefix and Longer are equal! 508 static bool isPrefix(const IndicesVector &Prefix, const IndicesVector &Longer) { 509 if (Prefix.size() > Longer.size()) 510 return false; 511 return std::equal(Prefix.begin(), Prefix.end(), Longer.begin()); 512 } 513 514 /// Checks if Indices, or a prefix of Indices, is in Set. 515 static bool prefixIn(const IndicesVector &Indices, 516 std::set<IndicesVector> &Set) { 517 std::set<IndicesVector>::iterator Low; 518 Low = Set.upper_bound(Indices); 519 if (Low != Set.begin()) 520 Low--; 521 // Low is now the last element smaller than or equal to Indices. This means 522 // it points to a prefix of Indices (possibly Indices itself), if such 523 // prefix exists. 524 // 525 // This load is safe if any prefix of its operands is safe to load. 526 return Low != Set.end() && isPrefix(*Low, Indices); 527 } 528 529 /// Mark the given indices (ToMark) as safe in the given set of indices 530 /// (Safe). Marking safe usually means adding ToMark to Safe. However, if there 531 /// is already a prefix of Indices in Safe, Indices are implicitely marked safe 532 /// already. Furthermore, any indices that Indices is itself a prefix of, are 533 /// removed from Safe (since they are implicitely safe because of Indices now). 534 static void markIndicesSafe(const IndicesVector &ToMark, 535 std::set<IndicesVector> &Safe) { 536 std::set<IndicesVector>::iterator Low; 537 Low = Safe.upper_bound(ToMark); 538 // Guard against the case where Safe is empty 539 if (Low != Safe.begin()) 540 Low--; 541 // Low is now the last element smaller than or equal to Indices. This 542 // means it points to a prefix of Indices (possibly Indices itself), if 543 // such prefix exists. 544 if (Low != Safe.end()) { 545 if (isPrefix(*Low, ToMark)) 546 // If there is already a prefix of these indices (or exactly these 547 // indices) marked a safe, don't bother adding these indices 548 return; 549 550 // Increment Low, so we can use it as a "insert before" hint 551 ++Low; 552 } 553 // Insert 554 Low = Safe.insert(Low, ToMark); 555 ++Low; 556 // If there we're a prefix of longer index list(s), remove those 557 std::set<IndicesVector>::iterator End = Safe.end(); 558 while (Low != End && isPrefix(ToMark, *Low)) { 559 std::set<IndicesVector>::iterator Remove = Low; 560 ++Low; 561 Safe.erase(Remove); 562 } 563 } 564 565 /// isSafeToPromoteArgument - As you might guess from the name of this method, 566 /// it checks to see if it is both safe and useful to promote the argument. 567 /// This method limits promotion of aggregates to only promote up to three 568 /// elements of the aggregate in order to avoid exploding the number of 569 /// arguments passed in. 570 static bool isSafeToPromoteArgument(Argument *Arg, Type *ByValTy, AAResults &AAR, 571 unsigned MaxElements) { 572 using GEPIndicesSet = std::set<IndicesVector>; 573 574 // Quick exit for unused arguments 575 if (Arg->use_empty()) 576 return true; 577 578 // We can only promote this argument if all of the uses are loads, or are GEP 579 // instructions (with constant indices) that are subsequently loaded. 580 // 581 // Promoting the argument causes it to be loaded in the caller 582 // unconditionally. This is only safe if we can prove that either the load 583 // would have happened in the callee anyway (ie, there is a load in the entry 584 // block) or the pointer passed in at every call site is guaranteed to be 585 // valid. 586 // In the former case, invalid loads can happen, but would have happened 587 // anyway, in the latter case, invalid loads won't happen. This prevents us 588 // from introducing an invalid load that wouldn't have happened in the 589 // original code. 590 // 591 // This set will contain all sets of indices that are loaded in the entry 592 // block, and thus are safe to unconditionally load in the caller. 593 GEPIndicesSet SafeToUnconditionallyLoad; 594 595 // This set contains all the sets of indices that we are planning to promote. 596 // This makes it possible to limit the number of arguments added. 597 GEPIndicesSet ToPromote; 598 599 // If the pointer is always valid, any load with first index 0 is valid. 600 601 if (ByValTy) 602 SafeToUnconditionallyLoad.insert(IndicesVector(1, 0)); 603 604 // Whenever a new underlying type for the operand is found, make sure it's 605 // consistent with the GEPs and loads we've already seen and, if necessary, 606 // use it to see if all incoming pointers are valid (which implies the 0-index 607 // is safe). 608 Type *BaseTy = ByValTy; 609 auto UpdateBaseTy = [&](Type *NewBaseTy) { 610 if (BaseTy) 611 return BaseTy == NewBaseTy; 612 613 BaseTy = NewBaseTy; 614 if (allCallersPassValidPointerForArgument(Arg, BaseTy)) { 615 assert(SafeToUnconditionallyLoad.empty()); 616 SafeToUnconditionallyLoad.insert(IndicesVector(1, 0)); 617 } 618 619 return true; 620 }; 621 622 // First, iterate the entry block and mark loads of (geps of) arguments as 623 // safe. 624 BasicBlock &EntryBlock = Arg->getParent()->front(); 625 // Declare this here so we can reuse it 626 IndicesVector Indices; 627 for (Instruction &I : EntryBlock) 628 if (LoadInst *LI = dyn_cast<LoadInst>(&I)) { 629 Value *V = LI->getPointerOperand(); 630 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(V)) { 631 V = GEP->getPointerOperand(); 632 if (V == Arg) { 633 // This load actually loads (part of) Arg? Check the indices then. 634 Indices.reserve(GEP->getNumIndices()); 635 for (User::op_iterator II = GEP->idx_begin(), IE = GEP->idx_end(); 636 II != IE; ++II) 637 if (ConstantInt *CI = dyn_cast<ConstantInt>(*II)) 638 Indices.push_back(CI->getSExtValue()); 639 else 640 // We found a non-constant GEP index for this argument? Bail out 641 // right away, can't promote this argument at all. 642 return false; 643 644 if (!UpdateBaseTy(GEP->getSourceElementType())) 645 return false; 646 647 // Indices checked out, mark them as safe 648 markIndicesSafe(Indices, SafeToUnconditionallyLoad); 649 Indices.clear(); 650 } 651 } else if (V == Arg) { 652 // Direct loads are equivalent to a GEP with a single 0 index. 653 markIndicesSafe(IndicesVector(1, 0), SafeToUnconditionallyLoad); 654 655 if (BaseTy && LI->getType() != BaseTy) 656 return false; 657 658 BaseTy = LI->getType(); 659 } 660 } 661 662 // Now, iterate all uses of the argument to see if there are any uses that are 663 // not (GEP+)loads, or any (GEP+)loads that are not safe to promote. 664 SmallVector<LoadInst *, 16> Loads; 665 IndicesVector Operands; 666 for (Use &U : Arg->uses()) { 667 User *UR = U.getUser(); 668 Operands.clear(); 669 if (LoadInst *LI = dyn_cast<LoadInst>(UR)) { 670 // Don't hack volatile/atomic loads 671 if (!LI->isSimple()) 672 return false; 673 Loads.push_back(LI); 674 // Direct loads are equivalent to a GEP with a zero index and then a load. 675 Operands.push_back(0); 676 677 if (!UpdateBaseTy(LI->getType())) 678 return false; 679 } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(UR)) { 680 if (GEP->use_empty()) { 681 // Dead GEP's cause trouble later. Just remove them if we run into 682 // them. 683 GEP->eraseFromParent(); 684 // TODO: This runs the above loop over and over again for dead GEPs 685 // Couldn't we just do increment the UI iterator earlier and erase the 686 // use? 687 return isSafeToPromoteArgument(Arg, ByValTy, AAR, MaxElements); 688 } 689 690 if (!UpdateBaseTy(GEP->getSourceElementType())) 691 return false; 692 693 // Ensure that all of the indices are constants. 694 for (User::op_iterator i = GEP->idx_begin(), e = GEP->idx_end(); i != e; 695 ++i) 696 if (ConstantInt *C = dyn_cast<ConstantInt>(*i)) 697 Operands.push_back(C->getSExtValue()); 698 else 699 return false; // Not a constant operand GEP! 700 701 // Ensure that the only users of the GEP are load instructions. 702 for (User *GEPU : GEP->users()) 703 if (LoadInst *LI = dyn_cast<LoadInst>(GEPU)) { 704 // Don't hack volatile/atomic loads 705 if (!LI->isSimple()) 706 return false; 707 Loads.push_back(LI); 708 } else { 709 // Other uses than load? 710 return false; 711 } 712 } else { 713 return false; // Not a load or a GEP. 714 } 715 716 // Now, see if it is safe to promote this load / loads of this GEP. Loading 717 // is safe if Operands, or a prefix of Operands, is marked as safe. 718 if (!prefixIn(Operands, SafeToUnconditionallyLoad)) 719 return false; 720 721 // See if we are already promoting a load with these indices. If not, check 722 // to make sure that we aren't promoting too many elements. If so, nothing 723 // to do. 724 if (ToPromote.find(Operands) == ToPromote.end()) { 725 if (MaxElements > 0 && ToPromote.size() == MaxElements) { 726 LLVM_DEBUG(dbgs() << "argpromotion not promoting argument '" 727 << Arg->getName() 728 << "' because it would require adding more " 729 << "than " << MaxElements 730 << " arguments to the function.\n"); 731 // We limit aggregate promotion to only promoting up to a fixed number 732 // of elements of the aggregate. 733 return false; 734 } 735 ToPromote.insert(std::move(Operands)); 736 } 737 } 738 739 if (Loads.empty()) 740 return true; // No users, this is a dead argument. 741 742 // Okay, now we know that the argument is only used by load instructions and 743 // it is safe to unconditionally perform all of them. Use alias analysis to 744 // check to see if the pointer is guaranteed to not be modified from entry of 745 // the function to each of the load instructions. 746 747 // Because there could be several/many load instructions, remember which 748 // blocks we know to be transparent to the load. 749 df_iterator_default_set<BasicBlock *, 16> TranspBlocks; 750 751 for (LoadInst *Load : Loads) { 752 // Check to see if the load is invalidated from the start of the block to 753 // the load itself. 754 BasicBlock *BB = Load->getParent(); 755 756 MemoryLocation Loc = MemoryLocation::get(Load); 757 if (AAR.canInstructionRangeModRef(BB->front(), *Load, Loc, ModRefInfo::Mod)) 758 return false; // Pointer is invalidated! 759 760 // Now check every path from the entry block to the load for transparency. 761 // To do this, we perform a depth first search on the inverse CFG from the 762 // loading block. 763 for (BasicBlock *P : predecessors(BB)) { 764 for (BasicBlock *TranspBB : inverse_depth_first_ext(P, TranspBlocks)) 765 if (AAR.canBasicBlockModify(*TranspBB, Loc)) 766 return false; 767 } 768 } 769 770 // If the path from the entry of the function to each load is free of 771 // instructions that potentially invalidate the load, we can make the 772 // transformation! 773 return true; 774 } 775 776 /// Checks if a type could have padding bytes. 777 static bool isDenselyPacked(Type *type, const DataLayout &DL) { 778 // There is no size information, so be conservative. 779 if (!type->isSized()) 780 return false; 781 782 // If the alloc size is not equal to the storage size, then there are padding 783 // bytes. For x86_fp80 on x86-64, size: 80 alloc size: 128. 784 if (DL.getTypeSizeInBits(type) != DL.getTypeAllocSizeInBits(type)) 785 return false; 786 787 if (!isa<CompositeType>(type)) 788 return true; 789 790 // For homogenous sequential types, check for padding within members. 791 if (SequentialType *seqTy = dyn_cast<SequentialType>(type)) 792 return isDenselyPacked(seqTy->getElementType(), DL); 793 794 // Check for padding within and between elements of a struct. 795 StructType *StructTy = cast<StructType>(type); 796 const StructLayout *Layout = DL.getStructLayout(StructTy); 797 uint64_t StartPos = 0; 798 for (unsigned i = 0, E = StructTy->getNumElements(); i < E; ++i) { 799 Type *ElTy = StructTy->getElementType(i); 800 if (!isDenselyPacked(ElTy, DL)) 801 return false; 802 if (StartPos != Layout->getElementOffsetInBits(i)) 803 return false; 804 StartPos += DL.getTypeAllocSizeInBits(ElTy); 805 } 806 807 return true; 808 } 809 810 /// Checks if the padding bytes of an argument could be accessed. 811 static bool canPaddingBeAccessed(Argument *arg) { 812 assert(arg->hasByValAttr()); 813 814 // Track all the pointers to the argument to make sure they are not captured. 815 SmallPtrSet<Value *, 16> PtrValues; 816 PtrValues.insert(arg); 817 818 // Track all of the stores. 819 SmallVector<StoreInst *, 16> Stores; 820 821 // Scan through the uses recursively to make sure the pointer is always used 822 // sanely. 823 SmallVector<Value *, 16> WorkList; 824 WorkList.insert(WorkList.end(), arg->user_begin(), arg->user_end()); 825 while (!WorkList.empty()) { 826 Value *V = WorkList.back(); 827 WorkList.pop_back(); 828 if (isa<GetElementPtrInst>(V) || isa<PHINode>(V)) { 829 if (PtrValues.insert(V).second) 830 WorkList.insert(WorkList.end(), V->user_begin(), V->user_end()); 831 } else if (StoreInst *Store = dyn_cast<StoreInst>(V)) { 832 Stores.push_back(Store); 833 } else if (!isa<LoadInst>(V)) { 834 return true; 835 } 836 } 837 838 // Check to make sure the pointers aren't captured 839 for (StoreInst *Store : Stores) 840 if (PtrValues.count(Store->getValueOperand())) 841 return true; 842 843 return false; 844 } 845 846 static bool areFunctionArgsABICompatible( 847 const Function &F, const TargetTransformInfo &TTI, 848 SmallPtrSetImpl<Argument *> &ArgsToPromote, 849 SmallPtrSetImpl<Argument *> &ByValArgsToTransform) { 850 for (const Use &U : F.uses()) { 851 CallSite CS(U.getUser()); 852 const Function *Caller = CS.getCaller(); 853 const Function *Callee = CS.getCalledFunction(); 854 if (!TTI.areFunctionArgsABICompatible(Caller, Callee, ArgsToPromote) || 855 !TTI.areFunctionArgsABICompatible(Caller, Callee, ByValArgsToTransform)) 856 return false; 857 } 858 return true; 859 } 860 861 /// PromoteArguments - This method checks the specified function to see if there 862 /// are any promotable arguments and if it is safe to promote the function (for 863 /// example, all callers are direct). If safe to promote some arguments, it 864 /// calls the DoPromotion method. 865 static Function * 866 promoteArguments(Function *F, function_ref<AAResults &(Function &F)> AARGetter, 867 unsigned MaxElements, 868 Optional<function_ref<void(CallSite OldCS, CallSite NewCS)>> 869 ReplaceCallSite, 870 const TargetTransformInfo &TTI) { 871 // Don't perform argument promotion for naked functions; otherwise we can end 872 // up removing parameters that are seemingly 'not used' as they are referred 873 // to in the assembly. 874 if(F->hasFnAttribute(Attribute::Naked)) 875 return nullptr; 876 877 // Make sure that it is local to this module. 878 if (!F->hasLocalLinkage()) 879 return nullptr; 880 881 // Don't promote arguments for variadic functions. Adding, removing, or 882 // changing non-pack parameters can change the classification of pack 883 // parameters. Frontends encode that classification at the call site in the 884 // IR, while in the callee the classification is determined dynamically based 885 // on the number of registers consumed so far. 886 if (F->isVarArg()) 887 return nullptr; 888 889 // Don't transform functions that receive inallocas, as the transformation may 890 // not be safe depending on calling convention. 891 if (F->getAttributes().hasAttrSomewhere(Attribute::InAlloca)) 892 return nullptr; 893 894 // First check: see if there are any pointer arguments! If not, quick exit. 895 SmallVector<Argument *, 16> PointerArgs; 896 for (Argument &I : F->args()) 897 if (I.getType()->isPointerTy()) 898 PointerArgs.push_back(&I); 899 if (PointerArgs.empty()) 900 return nullptr; 901 902 // Second check: make sure that all callers are direct callers. We can't 903 // transform functions that have indirect callers. Also see if the function 904 // is self-recursive and check that target features are compatible. 905 bool isSelfRecursive = false; 906 for (Use &U : F->uses()) { 907 CallSite CS(U.getUser()); 908 // Must be a direct call. 909 if (CS.getInstruction() == nullptr || !CS.isCallee(&U)) 910 return nullptr; 911 912 // Can't change signature of musttail callee 913 if (CS.isMustTailCall()) 914 return nullptr; 915 916 if (CS.getInstruction()->getParent()->getParent() == F) 917 isSelfRecursive = true; 918 } 919 920 // Can't change signature of musttail caller 921 // FIXME: Support promoting whole chain of musttail functions 922 for (BasicBlock &BB : *F) 923 if (BB.getTerminatingMustTailCall()) 924 return nullptr; 925 926 const DataLayout &DL = F->getParent()->getDataLayout(); 927 928 AAResults &AAR = AARGetter(*F); 929 930 // Check to see which arguments are promotable. If an argument is promotable, 931 // add it to ArgsToPromote. 932 SmallPtrSet<Argument *, 8> ArgsToPromote; 933 SmallPtrSet<Argument *, 8> ByValArgsToTransform; 934 for (Argument *PtrArg : PointerArgs) { 935 Type *AgTy = cast<PointerType>(PtrArg->getType())->getElementType(); 936 937 // Replace sret attribute with noalias. This reduces register pressure by 938 // avoiding a register copy. 939 if (PtrArg->hasStructRetAttr()) { 940 unsigned ArgNo = PtrArg->getArgNo(); 941 F->removeParamAttr(ArgNo, Attribute::StructRet); 942 F->addParamAttr(ArgNo, Attribute::NoAlias); 943 for (Use &U : F->uses()) { 944 CallSite CS(U.getUser()); 945 CS.removeParamAttr(ArgNo, Attribute::StructRet); 946 CS.addParamAttr(ArgNo, Attribute::NoAlias); 947 } 948 } 949 950 // If this is a byval argument, and if the aggregate type is small, just 951 // pass the elements, which is always safe, if the passed value is densely 952 // packed or if we can prove the padding bytes are never accessed. 953 bool isSafeToPromote = 954 PtrArg->hasByValAttr() && 955 (isDenselyPacked(AgTy, DL) || !canPaddingBeAccessed(PtrArg)); 956 if (isSafeToPromote) { 957 if (StructType *STy = dyn_cast<StructType>(AgTy)) { 958 if (MaxElements > 0 && STy->getNumElements() > MaxElements) { 959 LLVM_DEBUG(dbgs() << "argpromotion disable promoting argument '" 960 << PtrArg->getName() 961 << "' because it would require adding more" 962 << " than " << MaxElements 963 << " arguments to the function.\n"); 964 continue; 965 } 966 967 // If all the elements are single-value types, we can promote it. 968 bool AllSimple = true; 969 for (const auto *EltTy : STy->elements()) { 970 if (!EltTy->isSingleValueType()) { 971 AllSimple = false; 972 break; 973 } 974 } 975 976 // Safe to transform, don't even bother trying to "promote" it. 977 // Passing the elements as a scalar will allow sroa to hack on 978 // the new alloca we introduce. 979 if (AllSimple) { 980 ByValArgsToTransform.insert(PtrArg); 981 continue; 982 } 983 } 984 } 985 986 // If the argument is a recursive type and we're in a recursive 987 // function, we could end up infinitely peeling the function argument. 988 if (isSelfRecursive) { 989 if (StructType *STy = dyn_cast<StructType>(AgTy)) { 990 bool RecursiveType = false; 991 for (const auto *EltTy : STy->elements()) { 992 if (EltTy == PtrArg->getType()) { 993 RecursiveType = true; 994 break; 995 } 996 } 997 if (RecursiveType) 998 continue; 999 } 1000 } 1001 1002 // Otherwise, see if we can promote the pointer to its value. 1003 Type *ByValTy = 1004 PtrArg->hasByValAttr() ? PtrArg->getParamByValType() : nullptr; 1005 if (isSafeToPromoteArgument(PtrArg, ByValTy, AAR, MaxElements)) 1006 ArgsToPromote.insert(PtrArg); 1007 } 1008 1009 // No promotable pointer arguments. 1010 if (ArgsToPromote.empty() && ByValArgsToTransform.empty()) 1011 return nullptr; 1012 1013 if (!areFunctionArgsABICompatible(*F, TTI, ArgsToPromote, 1014 ByValArgsToTransform)) 1015 return nullptr; 1016 1017 return doPromotion(F, ArgsToPromote, ByValArgsToTransform, ReplaceCallSite); 1018 } 1019 1020 PreservedAnalyses ArgumentPromotionPass::run(LazyCallGraph::SCC &C, 1021 CGSCCAnalysisManager &AM, 1022 LazyCallGraph &CG, 1023 CGSCCUpdateResult &UR) { 1024 bool Changed = false, LocalChange; 1025 1026 // Iterate until we stop promoting from this SCC. 1027 do { 1028 LocalChange = false; 1029 1030 for (LazyCallGraph::Node &N : C) { 1031 Function &OldF = N.getFunction(); 1032 1033 FunctionAnalysisManager &FAM = 1034 AM.getResult<FunctionAnalysisManagerCGSCCProxy>(C, CG).getManager(); 1035 // FIXME: This lambda must only be used with this function. We should 1036 // skip the lambda and just get the AA results directly. 1037 auto AARGetter = [&](Function &F) -> AAResults & { 1038 assert(&F == &OldF && "Called with an unexpected function!"); 1039 return FAM.getResult<AAManager>(F); 1040 }; 1041 1042 const TargetTransformInfo &TTI = FAM.getResult<TargetIRAnalysis>(OldF); 1043 Function *NewF = 1044 promoteArguments(&OldF, AARGetter, MaxElements, None, TTI); 1045 if (!NewF) 1046 continue; 1047 LocalChange = true; 1048 1049 // Directly substitute the functions in the call graph. Note that this 1050 // requires the old function to be completely dead and completely 1051 // replaced by the new function. It does no call graph updates, it merely 1052 // swaps out the particular function mapped to a particular node in the 1053 // graph. 1054 C.getOuterRefSCC().replaceNodeFunction(N, *NewF); 1055 OldF.eraseFromParent(); 1056 } 1057 1058 Changed |= LocalChange; 1059 } while (LocalChange); 1060 1061 if (!Changed) 1062 return PreservedAnalyses::all(); 1063 1064 return PreservedAnalyses::none(); 1065 } 1066 1067 namespace { 1068 1069 /// ArgPromotion - The 'by reference' to 'by value' argument promotion pass. 1070 struct ArgPromotion : public CallGraphSCCPass { 1071 // Pass identification, replacement for typeid 1072 static char ID; 1073 1074 explicit ArgPromotion(unsigned MaxElements = 3) 1075 : CallGraphSCCPass(ID), MaxElements(MaxElements) { 1076 initializeArgPromotionPass(*PassRegistry::getPassRegistry()); 1077 } 1078 1079 void getAnalysisUsage(AnalysisUsage &AU) const override { 1080 AU.addRequired<AssumptionCacheTracker>(); 1081 AU.addRequired<TargetLibraryInfoWrapperPass>(); 1082 AU.addRequired<TargetTransformInfoWrapperPass>(); 1083 getAAResultsAnalysisUsage(AU); 1084 CallGraphSCCPass::getAnalysisUsage(AU); 1085 } 1086 1087 bool runOnSCC(CallGraphSCC &SCC) override; 1088 1089 private: 1090 using llvm::Pass::doInitialization; 1091 1092 bool doInitialization(CallGraph &CG) override; 1093 1094 /// The maximum number of elements to expand, or 0 for unlimited. 1095 unsigned MaxElements; 1096 }; 1097 1098 } // end anonymous namespace 1099 1100 char ArgPromotion::ID = 0; 1101 1102 INITIALIZE_PASS_BEGIN(ArgPromotion, "argpromotion", 1103 "Promote 'by reference' arguments to scalars", false, 1104 false) 1105 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 1106 INITIALIZE_PASS_DEPENDENCY(CallGraphWrapperPass) 1107 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 1108 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 1109 INITIALIZE_PASS_END(ArgPromotion, "argpromotion", 1110 "Promote 'by reference' arguments to scalars", false, false) 1111 1112 Pass *llvm::createArgumentPromotionPass(unsigned MaxElements) { 1113 return new ArgPromotion(MaxElements); 1114 } 1115 1116 bool ArgPromotion::runOnSCC(CallGraphSCC &SCC) { 1117 if (skipSCC(SCC)) 1118 return false; 1119 1120 // Get the callgraph information that we need to update to reflect our 1121 // changes. 1122 CallGraph &CG = getAnalysis<CallGraphWrapperPass>().getCallGraph(); 1123 1124 LegacyAARGetter AARGetter(*this); 1125 1126 bool Changed = false, LocalChange; 1127 1128 // Iterate until we stop promoting from this SCC. 1129 do { 1130 LocalChange = false; 1131 // Attempt to promote arguments from all functions in this SCC. 1132 for (CallGraphNode *OldNode : SCC) { 1133 Function *OldF = OldNode->getFunction(); 1134 if (!OldF) 1135 continue; 1136 1137 auto ReplaceCallSite = [&](CallSite OldCS, CallSite NewCS) { 1138 Function *Caller = OldCS.getInstruction()->getParent()->getParent(); 1139 CallGraphNode *NewCalleeNode = 1140 CG.getOrInsertFunction(NewCS.getCalledFunction()); 1141 CallGraphNode *CallerNode = CG[Caller]; 1142 CallerNode->replaceCallEdge(*cast<CallBase>(OldCS.getInstruction()), 1143 *cast<CallBase>(NewCS.getInstruction()), 1144 NewCalleeNode); 1145 }; 1146 1147 const TargetTransformInfo &TTI = 1148 getAnalysis<TargetTransformInfoWrapperPass>().getTTI(*OldF); 1149 if (Function *NewF = promoteArguments(OldF, AARGetter, MaxElements, 1150 {ReplaceCallSite}, TTI)) { 1151 LocalChange = true; 1152 1153 // Update the call graph for the newly promoted function. 1154 CallGraphNode *NewNode = CG.getOrInsertFunction(NewF); 1155 NewNode->stealCalledFunctionsFrom(OldNode); 1156 if (OldNode->getNumReferences() == 0) 1157 delete CG.removeFunctionFromModule(OldNode); 1158 else 1159 OldF->setLinkage(Function::ExternalLinkage); 1160 1161 // And updat ethe SCC we're iterating as well. 1162 SCC.ReplaceNode(OldNode, NewNode); 1163 } 1164 } 1165 // Remember that we changed something. 1166 Changed |= LocalChange; 1167 } while (LocalChange); 1168 1169 return Changed; 1170 } 1171 1172 bool ArgPromotion::doInitialization(CallGraph &CG) { 1173 return CallGraphSCCPass::doInitialization(CG); 1174 } 1175