1 //===- ArgumentPromotion.cpp - Promote by-reference arguments -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass promotes "by reference" arguments to be "by value" arguments.  In
10 // practice, this means looking for internal functions that have pointer
11 // arguments.  If it can prove, through the use of alias analysis, that an
12 // argument is *only* loaded, then it can pass the value into the function
13 // instead of the address of the value.  This can cause recursive simplification
14 // of code and lead to the elimination of allocas (especially in C++ template
15 // code like the STL).
16 //
17 // This pass also handles aggregate arguments that are passed into a function,
18 // scalarizing them if the elements of the aggregate are only loaded.  Note that
19 // by default it refuses to scalarize aggregates which would require passing in
20 // more than three operands to the function, because passing thousands of
21 // operands for a large array or structure is unprofitable! This limit can be
22 // configured or disabled, however.
23 //
24 // Note that this transformation could also be done for arguments that are only
25 // stored to (returning the value instead), but does not currently.  This case
26 // would be best handled when and if LLVM begins supporting multiple return
27 // values from functions.
28 //
29 //===----------------------------------------------------------------------===//
30 
31 #include "llvm/Transforms/IPO/ArgumentPromotion.h"
32 #include "llvm/ADT/DepthFirstIterator.h"
33 #include "llvm/ADT/None.h"
34 #include "llvm/ADT/Optional.h"
35 #include "llvm/ADT/STLExtras.h"
36 #include "llvm/ADT/SmallPtrSet.h"
37 #include "llvm/ADT/SmallVector.h"
38 #include "llvm/ADT/Statistic.h"
39 #include "llvm/ADT/StringExtras.h"
40 #include "llvm/ADT/Twine.h"
41 #include "llvm/Analysis/AliasAnalysis.h"
42 #include "llvm/Analysis/AssumptionCache.h"
43 #include "llvm/Analysis/BasicAliasAnalysis.h"
44 #include "llvm/Analysis/CGSCCPassManager.h"
45 #include "llvm/Analysis/CallGraph.h"
46 #include "llvm/Analysis/CallGraphSCCPass.h"
47 #include "llvm/Analysis/LazyCallGraph.h"
48 #include "llvm/Analysis/Loads.h"
49 #include "llvm/Analysis/MemoryLocation.h"
50 #include "llvm/Analysis/TargetLibraryInfo.h"
51 #include "llvm/Analysis/TargetTransformInfo.h"
52 #include "llvm/IR/Argument.h"
53 #include "llvm/IR/Attributes.h"
54 #include "llvm/IR/BasicBlock.h"
55 #include "llvm/IR/CFG.h"
56 #include "llvm/IR/CallSite.h"
57 #include "llvm/IR/Constants.h"
58 #include "llvm/IR/DataLayout.h"
59 #include "llvm/IR/DerivedTypes.h"
60 #include "llvm/IR/Function.h"
61 #include "llvm/IR/IRBuilder.h"
62 #include "llvm/IR/InstrTypes.h"
63 #include "llvm/IR/Instruction.h"
64 #include "llvm/IR/Instructions.h"
65 #include "llvm/IR/Metadata.h"
66 #include "llvm/IR/Module.h"
67 #include "llvm/IR/NoFolder.h"
68 #include "llvm/IR/PassManager.h"
69 #include "llvm/IR/Type.h"
70 #include "llvm/IR/Use.h"
71 #include "llvm/IR/User.h"
72 #include "llvm/IR/Value.h"
73 #include "llvm/Pass.h"
74 #include "llvm/Support/Casting.h"
75 #include "llvm/Support/Debug.h"
76 #include "llvm/Support/raw_ostream.h"
77 #include "llvm/Transforms/IPO.h"
78 #include <algorithm>
79 #include <cassert>
80 #include <cstdint>
81 #include <functional>
82 #include <iterator>
83 #include <map>
84 #include <set>
85 #include <string>
86 #include <utility>
87 #include <vector>
88 
89 using namespace llvm;
90 
91 #define DEBUG_TYPE "argpromotion"
92 
93 STATISTIC(NumArgumentsPromoted, "Number of pointer arguments promoted");
94 STATISTIC(NumAggregatesPromoted, "Number of aggregate arguments promoted");
95 STATISTIC(NumByValArgsPromoted, "Number of byval arguments promoted");
96 STATISTIC(NumArgumentsDead, "Number of dead pointer args eliminated");
97 
98 /// A vector used to hold the indices of a single GEP instruction
99 using IndicesVector = std::vector<uint64_t>;
100 
101 /// DoPromotion - This method actually performs the promotion of the specified
102 /// arguments, and returns the new function.  At this point, we know that it's
103 /// safe to do so.
104 static Function *
105 doPromotion(Function *F, SmallPtrSetImpl<Argument *> &ArgsToPromote,
106             SmallPtrSetImpl<Argument *> &ByValArgsToTransform,
107             Optional<function_ref<void(CallSite OldCS, CallSite NewCS)>>
108                 ReplaceCallSite) {
109   // Start by computing a new prototype for the function, which is the same as
110   // the old function, but has modified arguments.
111   FunctionType *FTy = F->getFunctionType();
112   std::vector<Type *> Params;
113 
114   using ScalarizeTable = std::set<std::pair<Type *, IndicesVector>>;
115 
116   // ScalarizedElements - If we are promoting a pointer that has elements
117   // accessed out of it, keep track of which elements are accessed so that we
118   // can add one argument for each.
119   //
120   // Arguments that are directly loaded will have a zero element value here, to
121   // handle cases where there are both a direct load and GEP accesses.
122   std::map<Argument *, ScalarizeTable> ScalarizedElements;
123 
124   // OriginalLoads - Keep track of a representative load instruction from the
125   // original function so that we can tell the alias analysis implementation
126   // what the new GEP/Load instructions we are inserting look like.
127   // We need to keep the original loads for each argument and the elements
128   // of the argument that are accessed.
129   std::map<std::pair<Argument *, IndicesVector>, LoadInst *> OriginalLoads;
130 
131   // Attribute - Keep track of the parameter attributes for the arguments
132   // that we are *not* promoting. For the ones that we do promote, the parameter
133   // attributes are lost
134   SmallVector<AttributeSet, 8> ArgAttrVec;
135   AttributeList PAL = F->getAttributes();
136 
137   // First, determine the new argument list
138   unsigned ArgNo = 0;
139   for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E;
140        ++I, ++ArgNo) {
141     if (ByValArgsToTransform.count(&*I)) {
142       // Simple byval argument? Just add all the struct element types.
143       Type *AgTy = cast<PointerType>(I->getType())->getElementType();
144       StructType *STy = cast<StructType>(AgTy);
145       Params.insert(Params.end(), STy->element_begin(), STy->element_end());
146       ArgAttrVec.insert(ArgAttrVec.end(), STy->getNumElements(),
147                         AttributeSet());
148       ++NumByValArgsPromoted;
149     } else if (!ArgsToPromote.count(&*I)) {
150       // Unchanged argument
151       Params.push_back(I->getType());
152       ArgAttrVec.push_back(PAL.getParamAttributes(ArgNo));
153     } else if (I->use_empty()) {
154       // Dead argument (which are always marked as promotable)
155       ++NumArgumentsDead;
156 
157       // There may be remaining metadata uses of the argument for things like
158       // llvm.dbg.value. Replace them with undef.
159       I->replaceAllUsesWith(UndefValue::get(I->getType()));
160     } else {
161       // Okay, this is being promoted. This means that the only uses are loads
162       // or GEPs which are only used by loads
163 
164       // In this table, we will track which indices are loaded from the argument
165       // (where direct loads are tracked as no indices).
166       ScalarizeTable &ArgIndices = ScalarizedElements[&*I];
167       for (User *U : I->users()) {
168         Instruction *UI = cast<Instruction>(U);
169         Type *SrcTy;
170         if (LoadInst *L = dyn_cast<LoadInst>(UI))
171           SrcTy = L->getType();
172         else
173           SrcTy = cast<GetElementPtrInst>(UI)->getSourceElementType();
174         IndicesVector Indices;
175         Indices.reserve(UI->getNumOperands() - 1);
176         // Since loads will only have a single operand, and GEPs only a single
177         // non-index operand, this will record direct loads without any indices,
178         // and gep+loads with the GEP indices.
179         for (User::op_iterator II = UI->op_begin() + 1, IE = UI->op_end();
180              II != IE; ++II)
181           Indices.push_back(cast<ConstantInt>(*II)->getSExtValue());
182         // GEPs with a single 0 index can be merged with direct loads
183         if (Indices.size() == 1 && Indices.front() == 0)
184           Indices.clear();
185         ArgIndices.insert(std::make_pair(SrcTy, Indices));
186         LoadInst *OrigLoad;
187         if (LoadInst *L = dyn_cast<LoadInst>(UI))
188           OrigLoad = L;
189         else
190           // Take any load, we will use it only to update Alias Analysis
191           OrigLoad = cast<LoadInst>(UI->user_back());
192         OriginalLoads[std::make_pair(&*I, Indices)] = OrigLoad;
193       }
194 
195       // Add a parameter to the function for each element passed in.
196       for (const auto &ArgIndex : ArgIndices) {
197         // not allowed to dereference ->begin() if size() is 0
198         Params.push_back(GetElementPtrInst::getIndexedType(
199             cast<PointerType>(I->getType()->getScalarType())->getElementType(),
200             ArgIndex.second));
201         ArgAttrVec.push_back(AttributeSet());
202         assert(Params.back());
203       }
204 
205       if (ArgIndices.size() == 1 && ArgIndices.begin()->second.empty())
206         ++NumArgumentsPromoted;
207       else
208         ++NumAggregatesPromoted;
209     }
210   }
211 
212   Type *RetTy = FTy->getReturnType();
213 
214   // Construct the new function type using the new arguments.
215   FunctionType *NFTy = FunctionType::get(RetTy, Params, FTy->isVarArg());
216 
217   // Create the new function body and insert it into the module.
218   Function *NF = Function::Create(NFTy, F->getLinkage(), F->getAddressSpace(),
219                                   F->getName());
220   NF->copyAttributesFrom(F);
221 
222   // Patch the pointer to LLVM function in debug info descriptor.
223   NF->setSubprogram(F->getSubprogram());
224   F->setSubprogram(nullptr);
225 
226   LLVM_DEBUG(dbgs() << "ARG PROMOTION:  Promoting to:" << *NF << "\n"
227                     << "From: " << *F);
228 
229   // Recompute the parameter attributes list based on the new arguments for
230   // the function.
231   NF->setAttributes(AttributeList::get(F->getContext(), PAL.getFnAttributes(),
232                                        PAL.getRetAttributes(), ArgAttrVec));
233   ArgAttrVec.clear();
234 
235   F->getParent()->getFunctionList().insert(F->getIterator(), NF);
236   NF->takeName(F);
237 
238   // Loop over all of the callers of the function, transforming the call sites
239   // to pass in the loaded pointers.
240   //
241   SmallVector<Value *, 16> Args;
242   while (!F->use_empty()) {
243     CallSite CS(F->user_back());
244     assert(CS.getCalledFunction() == F);
245     Instruction *Call = CS.getInstruction();
246     const AttributeList &CallPAL = CS.getAttributes();
247     IRBuilder<NoFolder> IRB(Call);
248 
249     // Loop over the operands, inserting GEP and loads in the caller as
250     // appropriate.
251     CallSite::arg_iterator AI = CS.arg_begin();
252     ArgNo = 0;
253     for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E;
254          ++I, ++AI, ++ArgNo)
255       if (!ArgsToPromote.count(&*I) && !ByValArgsToTransform.count(&*I)) {
256         Args.push_back(*AI); // Unmodified argument
257         ArgAttrVec.push_back(CallPAL.getParamAttributes(ArgNo));
258       } else if (ByValArgsToTransform.count(&*I)) {
259         // Emit a GEP and load for each element of the struct.
260         Type *AgTy = cast<PointerType>(I->getType())->getElementType();
261         StructType *STy = cast<StructType>(AgTy);
262         Value *Idxs[2] = {
263             ConstantInt::get(Type::getInt32Ty(F->getContext()), 0), nullptr};
264         for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
265           Idxs[1] = ConstantInt::get(Type::getInt32Ty(F->getContext()), i);
266           auto *Idx =
267               IRB.CreateGEP(STy, *AI, Idxs, (*AI)->getName() + "." + Twine(i));
268           // TODO: Tell AA about the new values?
269           Args.push_back(IRB.CreateLoad(STy->getElementType(i), Idx,
270                                         Idx->getName() + ".val"));
271           ArgAttrVec.push_back(AttributeSet());
272         }
273       } else if (!I->use_empty()) {
274         // Non-dead argument: insert GEPs and loads as appropriate.
275         ScalarizeTable &ArgIndices = ScalarizedElements[&*I];
276         // Store the Value* version of the indices in here, but declare it now
277         // for reuse.
278         std::vector<Value *> Ops;
279         for (const auto &ArgIndex : ArgIndices) {
280           Value *V = *AI;
281           LoadInst *OrigLoad =
282               OriginalLoads[std::make_pair(&*I, ArgIndex.second)];
283           if (!ArgIndex.second.empty()) {
284             Ops.reserve(ArgIndex.second.size());
285             Type *ElTy = V->getType();
286             for (auto II : ArgIndex.second) {
287               // Use i32 to index structs, and i64 for others (pointers/arrays).
288               // This satisfies GEP constraints.
289               Type *IdxTy =
290                   (ElTy->isStructTy() ? Type::getInt32Ty(F->getContext())
291                                       : Type::getInt64Ty(F->getContext()));
292               Ops.push_back(ConstantInt::get(IdxTy, II));
293               // Keep track of the type we're currently indexing.
294               if (auto *ElPTy = dyn_cast<PointerType>(ElTy))
295                 ElTy = ElPTy->getElementType();
296               else
297                 ElTy = cast<CompositeType>(ElTy)->getTypeAtIndex(II);
298             }
299             // And create a GEP to extract those indices.
300             V = IRB.CreateGEP(ArgIndex.first, V, Ops, V->getName() + ".idx");
301             Ops.clear();
302           }
303           // Since we're replacing a load make sure we take the alignment
304           // of the previous load.
305           LoadInst *newLoad =
306               IRB.CreateLoad(OrigLoad->getType(), V, V->getName() + ".val");
307           newLoad->setAlignment(OrigLoad->getAlignment());
308           // Transfer the AA info too.
309           AAMDNodes AAInfo;
310           OrigLoad->getAAMetadata(AAInfo);
311           newLoad->setAAMetadata(AAInfo);
312 
313           Args.push_back(newLoad);
314           ArgAttrVec.push_back(AttributeSet());
315         }
316       }
317 
318     // Push any varargs arguments on the list.
319     for (; AI != CS.arg_end(); ++AI, ++ArgNo) {
320       Args.push_back(*AI);
321       ArgAttrVec.push_back(CallPAL.getParamAttributes(ArgNo));
322     }
323 
324     SmallVector<OperandBundleDef, 1> OpBundles;
325     CS.getOperandBundlesAsDefs(OpBundles);
326 
327     CallSite NewCS;
328     if (InvokeInst *II = dyn_cast<InvokeInst>(Call)) {
329       NewCS = InvokeInst::Create(NF, II->getNormalDest(), II->getUnwindDest(),
330                                  Args, OpBundles, "", Call);
331     } else {
332       auto *NewCall = CallInst::Create(NF, Args, OpBundles, "", Call);
333       NewCall->setTailCallKind(cast<CallInst>(Call)->getTailCallKind());
334       NewCS = NewCall;
335     }
336     NewCS.setCallingConv(CS.getCallingConv());
337     NewCS.setAttributes(
338         AttributeList::get(F->getContext(), CallPAL.getFnAttributes(),
339                            CallPAL.getRetAttributes(), ArgAttrVec));
340     NewCS->setDebugLoc(Call->getDebugLoc());
341     uint64_t W;
342     if (Call->extractProfTotalWeight(W))
343       NewCS->setProfWeight(W);
344     Args.clear();
345     ArgAttrVec.clear();
346 
347     // Update the callgraph to know that the callsite has been transformed.
348     if (ReplaceCallSite)
349       (*ReplaceCallSite)(CS, NewCS);
350 
351     if (!Call->use_empty()) {
352       Call->replaceAllUsesWith(NewCS.getInstruction());
353       NewCS->takeName(Call);
354     }
355 
356     // Finally, remove the old call from the program, reducing the use-count of
357     // F.
358     Call->eraseFromParent();
359   }
360 
361   const DataLayout &DL = F->getParent()->getDataLayout();
362 
363   // Since we have now created the new function, splice the body of the old
364   // function right into the new function, leaving the old rotting hulk of the
365   // function empty.
366   NF->getBasicBlockList().splice(NF->begin(), F->getBasicBlockList());
367 
368   // Loop over the argument list, transferring uses of the old arguments over to
369   // the new arguments, also transferring over the names as well.
370   for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(),
371                               I2 = NF->arg_begin();
372        I != E; ++I) {
373     if (!ArgsToPromote.count(&*I) && !ByValArgsToTransform.count(&*I)) {
374       // If this is an unmodified argument, move the name and users over to the
375       // new version.
376       I->replaceAllUsesWith(&*I2);
377       I2->takeName(&*I);
378       ++I2;
379       continue;
380     }
381 
382     if (ByValArgsToTransform.count(&*I)) {
383       // In the callee, we create an alloca, and store each of the new incoming
384       // arguments into the alloca.
385       Instruction *InsertPt = &NF->begin()->front();
386 
387       // Just add all the struct element types.
388       Type *AgTy = cast<PointerType>(I->getType())->getElementType();
389       Value *TheAlloca = new AllocaInst(AgTy, DL.getAllocaAddrSpace(), nullptr,
390                                         I->getParamAlignment(), "", InsertPt);
391       StructType *STy = cast<StructType>(AgTy);
392       Value *Idxs[2] = {ConstantInt::get(Type::getInt32Ty(F->getContext()), 0),
393                         nullptr};
394 
395       for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
396         Idxs[1] = ConstantInt::get(Type::getInt32Ty(F->getContext()), i);
397         Value *Idx = GetElementPtrInst::Create(
398             AgTy, TheAlloca, Idxs, TheAlloca->getName() + "." + Twine(i),
399             InsertPt);
400         I2->setName(I->getName() + "." + Twine(i));
401         new StoreInst(&*I2++, Idx, InsertPt);
402       }
403 
404       // Anything that used the arg should now use the alloca.
405       I->replaceAllUsesWith(TheAlloca);
406       TheAlloca->takeName(&*I);
407 
408       // If the alloca is used in a call, we must clear the tail flag since
409       // the callee now uses an alloca from the caller.
410       for (User *U : TheAlloca->users()) {
411         CallInst *Call = dyn_cast<CallInst>(U);
412         if (!Call)
413           continue;
414         Call->setTailCall(false);
415       }
416       continue;
417     }
418 
419     if (I->use_empty())
420       continue;
421 
422     // Otherwise, if we promoted this argument, then all users are load
423     // instructions (or GEPs with only load users), and all loads should be
424     // using the new argument that we added.
425     ScalarizeTable &ArgIndices = ScalarizedElements[&*I];
426 
427     while (!I->use_empty()) {
428       if (LoadInst *LI = dyn_cast<LoadInst>(I->user_back())) {
429         assert(ArgIndices.begin()->second.empty() &&
430                "Load element should sort to front!");
431         I2->setName(I->getName() + ".val");
432         LI->replaceAllUsesWith(&*I2);
433         LI->eraseFromParent();
434         LLVM_DEBUG(dbgs() << "*** Promoted load of argument '" << I->getName()
435                           << "' in function '" << F->getName() << "'\n");
436       } else {
437         GetElementPtrInst *GEP = cast<GetElementPtrInst>(I->user_back());
438         IndicesVector Operands;
439         Operands.reserve(GEP->getNumIndices());
440         for (User::op_iterator II = GEP->idx_begin(), IE = GEP->idx_end();
441              II != IE; ++II)
442           Operands.push_back(cast<ConstantInt>(*II)->getSExtValue());
443 
444         // GEPs with a single 0 index can be merged with direct loads
445         if (Operands.size() == 1 && Operands.front() == 0)
446           Operands.clear();
447 
448         Function::arg_iterator TheArg = I2;
449         for (ScalarizeTable::iterator It = ArgIndices.begin();
450              It->second != Operands; ++It, ++TheArg) {
451           assert(It != ArgIndices.end() && "GEP not handled??");
452         }
453 
454         std::string NewName = I->getName();
455         for (unsigned i = 0, e = Operands.size(); i != e; ++i) {
456           NewName += "." + utostr(Operands[i]);
457         }
458         NewName += ".val";
459         TheArg->setName(NewName);
460 
461         LLVM_DEBUG(dbgs() << "*** Promoted agg argument '" << TheArg->getName()
462                           << "' of function '" << NF->getName() << "'\n");
463 
464         // All of the uses must be load instructions.  Replace them all with
465         // the argument specified by ArgNo.
466         while (!GEP->use_empty()) {
467           LoadInst *L = cast<LoadInst>(GEP->user_back());
468           L->replaceAllUsesWith(&*TheArg);
469           L->eraseFromParent();
470         }
471         GEP->eraseFromParent();
472       }
473     }
474 
475     // Increment I2 past all of the arguments added for this promoted pointer.
476     std::advance(I2, ArgIndices.size());
477   }
478 
479   return NF;
480 }
481 
482 /// AllCallersPassInValidPointerForArgument - Return true if we can prove that
483 /// all callees pass in a valid pointer for the specified function argument.
484 static bool allCallersPassInValidPointerForArgument(Argument *Arg) {
485   Function *Callee = Arg->getParent();
486   const DataLayout &DL = Callee->getParent()->getDataLayout();
487 
488   unsigned ArgNo = Arg->getArgNo();
489 
490   // Look at all call sites of the function.  At this point we know we only have
491   // direct callees.
492   for (User *U : Callee->users()) {
493     CallSite CS(U);
494     assert(CS && "Should only have direct calls!");
495 
496     if (!isDereferenceablePointer(CS.getArgument(ArgNo), DL))
497       return false;
498   }
499   return true;
500 }
501 
502 /// Returns true if Prefix is a prefix of longer. That means, Longer has a size
503 /// that is greater than or equal to the size of prefix, and each of the
504 /// elements in Prefix is the same as the corresponding elements in Longer.
505 ///
506 /// This means it also returns true when Prefix and Longer are equal!
507 static bool isPrefix(const IndicesVector &Prefix, const IndicesVector &Longer) {
508   if (Prefix.size() > Longer.size())
509     return false;
510   return std::equal(Prefix.begin(), Prefix.end(), Longer.begin());
511 }
512 
513 /// Checks if Indices, or a prefix of Indices, is in Set.
514 static bool prefixIn(const IndicesVector &Indices,
515                      std::set<IndicesVector> &Set) {
516   std::set<IndicesVector>::iterator Low;
517   Low = Set.upper_bound(Indices);
518   if (Low != Set.begin())
519     Low--;
520   // Low is now the last element smaller than or equal to Indices. This means
521   // it points to a prefix of Indices (possibly Indices itself), if such
522   // prefix exists.
523   //
524   // This load is safe if any prefix of its operands is safe to load.
525   return Low != Set.end() && isPrefix(*Low, Indices);
526 }
527 
528 /// Mark the given indices (ToMark) as safe in the given set of indices
529 /// (Safe). Marking safe usually means adding ToMark to Safe. However, if there
530 /// is already a prefix of Indices in Safe, Indices are implicitely marked safe
531 /// already. Furthermore, any indices that Indices is itself a prefix of, are
532 /// removed from Safe (since they are implicitely safe because of Indices now).
533 static void markIndicesSafe(const IndicesVector &ToMark,
534                             std::set<IndicesVector> &Safe) {
535   std::set<IndicesVector>::iterator Low;
536   Low = Safe.upper_bound(ToMark);
537   // Guard against the case where Safe is empty
538   if (Low != Safe.begin())
539     Low--;
540   // Low is now the last element smaller than or equal to Indices. This
541   // means it points to a prefix of Indices (possibly Indices itself), if
542   // such prefix exists.
543   if (Low != Safe.end()) {
544     if (isPrefix(*Low, ToMark))
545       // If there is already a prefix of these indices (or exactly these
546       // indices) marked a safe, don't bother adding these indices
547       return;
548 
549     // Increment Low, so we can use it as a "insert before" hint
550     ++Low;
551   }
552   // Insert
553   Low = Safe.insert(Low, ToMark);
554   ++Low;
555   // If there we're a prefix of longer index list(s), remove those
556   std::set<IndicesVector>::iterator End = Safe.end();
557   while (Low != End && isPrefix(ToMark, *Low)) {
558     std::set<IndicesVector>::iterator Remove = Low;
559     ++Low;
560     Safe.erase(Remove);
561   }
562 }
563 
564 /// isSafeToPromoteArgument - As you might guess from the name of this method,
565 /// it checks to see if it is both safe and useful to promote the argument.
566 /// This method limits promotion of aggregates to only promote up to three
567 /// elements of the aggregate in order to avoid exploding the number of
568 /// arguments passed in.
569 static bool isSafeToPromoteArgument(Argument *Arg, bool isByValOrInAlloca,
570                                     AAResults &AAR, unsigned MaxElements) {
571   using GEPIndicesSet = std::set<IndicesVector>;
572 
573   // Quick exit for unused arguments
574   if (Arg->use_empty())
575     return true;
576 
577   // We can only promote this argument if all of the uses are loads, or are GEP
578   // instructions (with constant indices) that are subsequently loaded.
579   //
580   // Promoting the argument causes it to be loaded in the caller
581   // unconditionally. This is only safe if we can prove that either the load
582   // would have happened in the callee anyway (ie, there is a load in the entry
583   // block) or the pointer passed in at every call site is guaranteed to be
584   // valid.
585   // In the former case, invalid loads can happen, but would have happened
586   // anyway, in the latter case, invalid loads won't happen. This prevents us
587   // from introducing an invalid load that wouldn't have happened in the
588   // original code.
589   //
590   // This set will contain all sets of indices that are loaded in the entry
591   // block, and thus are safe to unconditionally load in the caller.
592   //
593   // This optimization is also safe for InAlloca parameters, because it verifies
594   // that the address isn't captured.
595   GEPIndicesSet SafeToUnconditionallyLoad;
596 
597   // This set contains all the sets of indices that we are planning to promote.
598   // This makes it possible to limit the number of arguments added.
599   GEPIndicesSet ToPromote;
600 
601   // If the pointer is always valid, any load with first index 0 is valid.
602   if (isByValOrInAlloca || allCallersPassInValidPointerForArgument(Arg))
603     SafeToUnconditionallyLoad.insert(IndicesVector(1, 0));
604 
605   // First, iterate the entry block and mark loads of (geps of) arguments as
606   // safe.
607   BasicBlock &EntryBlock = Arg->getParent()->front();
608   // Declare this here so we can reuse it
609   IndicesVector Indices;
610   for (Instruction &I : EntryBlock)
611     if (LoadInst *LI = dyn_cast<LoadInst>(&I)) {
612       Value *V = LI->getPointerOperand();
613       if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(V)) {
614         V = GEP->getPointerOperand();
615         if (V == Arg) {
616           // This load actually loads (part of) Arg? Check the indices then.
617           Indices.reserve(GEP->getNumIndices());
618           for (User::op_iterator II = GEP->idx_begin(), IE = GEP->idx_end();
619                II != IE; ++II)
620             if (ConstantInt *CI = dyn_cast<ConstantInt>(*II))
621               Indices.push_back(CI->getSExtValue());
622             else
623               // We found a non-constant GEP index for this argument? Bail out
624               // right away, can't promote this argument at all.
625               return false;
626 
627           // Indices checked out, mark them as safe
628           markIndicesSafe(Indices, SafeToUnconditionallyLoad);
629           Indices.clear();
630         }
631       } else if (V == Arg) {
632         // Direct loads are equivalent to a GEP with a single 0 index.
633         markIndicesSafe(IndicesVector(1, 0), SafeToUnconditionallyLoad);
634       }
635     }
636 
637   // Now, iterate all uses of the argument to see if there are any uses that are
638   // not (GEP+)loads, or any (GEP+)loads that are not safe to promote.
639   SmallVector<LoadInst *, 16> Loads;
640   IndicesVector Operands;
641   for (Use &U : Arg->uses()) {
642     User *UR = U.getUser();
643     Operands.clear();
644     if (LoadInst *LI = dyn_cast<LoadInst>(UR)) {
645       // Don't hack volatile/atomic loads
646       if (!LI->isSimple())
647         return false;
648       Loads.push_back(LI);
649       // Direct loads are equivalent to a GEP with a zero index and then a load.
650       Operands.push_back(0);
651     } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(UR)) {
652       if (GEP->use_empty()) {
653         // Dead GEP's cause trouble later.  Just remove them if we run into
654         // them.
655         GEP->eraseFromParent();
656         // TODO: This runs the above loop over and over again for dead GEPs
657         // Couldn't we just do increment the UI iterator earlier and erase the
658         // use?
659         return isSafeToPromoteArgument(Arg, isByValOrInAlloca, AAR,
660                                        MaxElements);
661       }
662 
663       // Ensure that all of the indices are constants.
664       for (User::op_iterator i = GEP->idx_begin(), e = GEP->idx_end(); i != e;
665            ++i)
666         if (ConstantInt *C = dyn_cast<ConstantInt>(*i))
667           Operands.push_back(C->getSExtValue());
668         else
669           return false; // Not a constant operand GEP!
670 
671       // Ensure that the only users of the GEP are load instructions.
672       for (User *GEPU : GEP->users())
673         if (LoadInst *LI = dyn_cast<LoadInst>(GEPU)) {
674           // Don't hack volatile/atomic loads
675           if (!LI->isSimple())
676             return false;
677           Loads.push_back(LI);
678         } else {
679           // Other uses than load?
680           return false;
681         }
682     } else {
683       return false; // Not a load or a GEP.
684     }
685 
686     // Now, see if it is safe to promote this load / loads of this GEP. Loading
687     // is safe if Operands, or a prefix of Operands, is marked as safe.
688     if (!prefixIn(Operands, SafeToUnconditionallyLoad))
689       return false;
690 
691     // See if we are already promoting a load with these indices. If not, check
692     // to make sure that we aren't promoting too many elements.  If so, nothing
693     // to do.
694     if (ToPromote.find(Operands) == ToPromote.end()) {
695       if (MaxElements > 0 && ToPromote.size() == MaxElements) {
696         LLVM_DEBUG(dbgs() << "argpromotion not promoting argument '"
697                           << Arg->getName()
698                           << "' because it would require adding more "
699                           << "than " << MaxElements
700                           << " arguments to the function.\n");
701         // We limit aggregate promotion to only promoting up to a fixed number
702         // of elements of the aggregate.
703         return false;
704       }
705       ToPromote.insert(std::move(Operands));
706     }
707   }
708 
709   if (Loads.empty())
710     return true; // No users, this is a dead argument.
711 
712   // Okay, now we know that the argument is only used by load instructions and
713   // it is safe to unconditionally perform all of them. Use alias analysis to
714   // check to see if the pointer is guaranteed to not be modified from entry of
715   // the function to each of the load instructions.
716 
717   // Because there could be several/many load instructions, remember which
718   // blocks we know to be transparent to the load.
719   df_iterator_default_set<BasicBlock *, 16> TranspBlocks;
720 
721   for (LoadInst *Load : Loads) {
722     // Check to see if the load is invalidated from the start of the block to
723     // the load itself.
724     BasicBlock *BB = Load->getParent();
725 
726     MemoryLocation Loc = MemoryLocation::get(Load);
727     if (AAR.canInstructionRangeModRef(BB->front(), *Load, Loc, ModRefInfo::Mod))
728       return false; // Pointer is invalidated!
729 
730     // Now check every path from the entry block to the load for transparency.
731     // To do this, we perform a depth first search on the inverse CFG from the
732     // loading block.
733     for (BasicBlock *P : predecessors(BB)) {
734       for (BasicBlock *TranspBB : inverse_depth_first_ext(P, TranspBlocks))
735         if (AAR.canBasicBlockModify(*TranspBB, Loc))
736           return false;
737     }
738   }
739 
740   // If the path from the entry of the function to each load is free of
741   // instructions that potentially invalidate the load, we can make the
742   // transformation!
743   return true;
744 }
745 
746 /// Checks if a type could have padding bytes.
747 static bool isDenselyPacked(Type *type, const DataLayout &DL) {
748   // There is no size information, so be conservative.
749   if (!type->isSized())
750     return false;
751 
752   // If the alloc size is not equal to the storage size, then there are padding
753   // bytes. For x86_fp80 on x86-64, size: 80 alloc size: 128.
754   if (DL.getTypeSizeInBits(type) != DL.getTypeAllocSizeInBits(type))
755     return false;
756 
757   if (!isa<CompositeType>(type))
758     return true;
759 
760   // For homogenous sequential types, check for padding within members.
761   if (SequentialType *seqTy = dyn_cast<SequentialType>(type))
762     return isDenselyPacked(seqTy->getElementType(), DL);
763 
764   // Check for padding within and between elements of a struct.
765   StructType *StructTy = cast<StructType>(type);
766   const StructLayout *Layout = DL.getStructLayout(StructTy);
767   uint64_t StartPos = 0;
768   for (unsigned i = 0, E = StructTy->getNumElements(); i < E; ++i) {
769     Type *ElTy = StructTy->getElementType(i);
770     if (!isDenselyPacked(ElTy, DL))
771       return false;
772     if (StartPos != Layout->getElementOffsetInBits(i))
773       return false;
774     StartPos += DL.getTypeAllocSizeInBits(ElTy);
775   }
776 
777   return true;
778 }
779 
780 /// Checks if the padding bytes of an argument could be accessed.
781 static bool canPaddingBeAccessed(Argument *arg) {
782   assert(arg->hasByValAttr());
783 
784   // Track all the pointers to the argument to make sure they are not captured.
785   SmallPtrSet<Value *, 16> PtrValues;
786   PtrValues.insert(arg);
787 
788   // Track all of the stores.
789   SmallVector<StoreInst *, 16> Stores;
790 
791   // Scan through the uses recursively to make sure the pointer is always used
792   // sanely.
793   SmallVector<Value *, 16> WorkList;
794   WorkList.insert(WorkList.end(), arg->user_begin(), arg->user_end());
795   while (!WorkList.empty()) {
796     Value *V = WorkList.back();
797     WorkList.pop_back();
798     if (isa<GetElementPtrInst>(V) || isa<PHINode>(V)) {
799       if (PtrValues.insert(V).second)
800         WorkList.insert(WorkList.end(), V->user_begin(), V->user_end());
801     } else if (StoreInst *Store = dyn_cast<StoreInst>(V)) {
802       Stores.push_back(Store);
803     } else if (!isa<LoadInst>(V)) {
804       return true;
805     }
806   }
807 
808   // Check to make sure the pointers aren't captured
809   for (StoreInst *Store : Stores)
810     if (PtrValues.count(Store->getValueOperand()))
811       return true;
812 
813   return false;
814 }
815 
816 static bool areFunctionArgsABICompatible(
817     const Function &F, const TargetTransformInfo &TTI,
818     SmallPtrSetImpl<Argument *> &ArgsToPromote,
819     SmallPtrSetImpl<Argument *> &ByValArgsToTransform) {
820   for (const Use &U : F.uses()) {
821     CallSite CS(U.getUser());
822     const Function *Caller = CS.getCaller();
823     const Function *Callee = CS.getCalledFunction();
824     if (!TTI.areFunctionArgsABICompatible(Caller, Callee, ArgsToPromote) ||
825         !TTI.areFunctionArgsABICompatible(Caller, Callee, ByValArgsToTransform))
826       return false;
827   }
828   return true;
829 }
830 
831 /// PromoteArguments - This method checks the specified function to see if there
832 /// are any promotable arguments and if it is safe to promote the function (for
833 /// example, all callers are direct).  If safe to promote some arguments, it
834 /// calls the DoPromotion method.
835 static Function *
836 promoteArguments(Function *F, function_ref<AAResults &(Function &F)> AARGetter,
837                  unsigned MaxElements,
838                  Optional<function_ref<void(CallSite OldCS, CallSite NewCS)>>
839                      ReplaceCallSite,
840                  const TargetTransformInfo &TTI) {
841   // Don't perform argument promotion for naked functions; otherwise we can end
842   // up removing parameters that are seemingly 'not used' as they are referred
843   // to in the assembly.
844   if(F->hasFnAttribute(Attribute::Naked))
845     return nullptr;
846 
847   // Make sure that it is local to this module.
848   if (!F->hasLocalLinkage())
849     return nullptr;
850 
851   // Don't promote arguments for variadic functions. Adding, removing, or
852   // changing non-pack parameters can change the classification of pack
853   // parameters. Frontends encode that classification at the call site in the
854   // IR, while in the callee the classification is determined dynamically based
855   // on the number of registers consumed so far.
856   if (F->isVarArg())
857     return nullptr;
858 
859   // First check: see if there are any pointer arguments!  If not, quick exit.
860   SmallVector<Argument *, 16> PointerArgs;
861   for (Argument &I : F->args())
862     if (I.getType()->isPointerTy())
863       PointerArgs.push_back(&I);
864   if (PointerArgs.empty())
865     return nullptr;
866 
867   // Second check: make sure that all callers are direct callers.  We can't
868   // transform functions that have indirect callers.  Also see if the function
869   // is self-recursive and check that target features are compatible.
870   bool isSelfRecursive = false;
871   for (Use &U : F->uses()) {
872     CallSite CS(U.getUser());
873     // Must be a direct call.
874     if (CS.getInstruction() == nullptr || !CS.isCallee(&U))
875       return nullptr;
876 
877     // Can't change signature of musttail callee
878     if (CS.isMustTailCall())
879       return nullptr;
880 
881     if (CS.getInstruction()->getParent()->getParent() == F)
882       isSelfRecursive = true;
883   }
884 
885   // Can't change signature of musttail caller
886   // FIXME: Support promoting whole chain of musttail functions
887   for (BasicBlock &BB : *F)
888     if (BB.getTerminatingMustTailCall())
889       return nullptr;
890 
891   const DataLayout &DL = F->getParent()->getDataLayout();
892 
893   AAResults &AAR = AARGetter(*F);
894 
895   // Check to see which arguments are promotable.  If an argument is promotable,
896   // add it to ArgsToPromote.
897   SmallPtrSet<Argument *, 8> ArgsToPromote;
898   SmallPtrSet<Argument *, 8> ByValArgsToTransform;
899   for (Argument *PtrArg : PointerArgs) {
900     Type *AgTy = cast<PointerType>(PtrArg->getType())->getElementType();
901 
902     // Replace sret attribute with noalias. This reduces register pressure by
903     // avoiding a register copy.
904     if (PtrArg->hasStructRetAttr()) {
905       unsigned ArgNo = PtrArg->getArgNo();
906       F->removeParamAttr(ArgNo, Attribute::StructRet);
907       F->addParamAttr(ArgNo, Attribute::NoAlias);
908       for (Use &U : F->uses()) {
909         CallSite CS(U.getUser());
910         CS.removeParamAttr(ArgNo, Attribute::StructRet);
911         CS.addParamAttr(ArgNo, Attribute::NoAlias);
912       }
913     }
914 
915     // If this is a byval argument, and if the aggregate type is small, just
916     // pass the elements, which is always safe, if the passed value is densely
917     // packed or if we can prove the padding bytes are never accessed. This does
918     // not apply to inalloca.
919     bool isSafeToPromote =
920         PtrArg->hasByValAttr() &&
921         (isDenselyPacked(AgTy, DL) || !canPaddingBeAccessed(PtrArg));
922     if (isSafeToPromote) {
923       if (StructType *STy = dyn_cast<StructType>(AgTy)) {
924         if (MaxElements > 0 && STy->getNumElements() > MaxElements) {
925           LLVM_DEBUG(dbgs() << "argpromotion disable promoting argument '"
926                             << PtrArg->getName()
927                             << "' because it would require adding more"
928                             << " than " << MaxElements
929                             << " arguments to the function.\n");
930           continue;
931         }
932 
933         // If all the elements are single-value types, we can promote it.
934         bool AllSimple = true;
935         for (const auto *EltTy : STy->elements()) {
936           if (!EltTy->isSingleValueType()) {
937             AllSimple = false;
938             break;
939           }
940         }
941 
942         // Safe to transform, don't even bother trying to "promote" it.
943         // Passing the elements as a scalar will allow sroa to hack on
944         // the new alloca we introduce.
945         if (AllSimple) {
946           ByValArgsToTransform.insert(PtrArg);
947           continue;
948         }
949       }
950     }
951 
952     // If the argument is a recursive type and we're in a recursive
953     // function, we could end up infinitely peeling the function argument.
954     if (isSelfRecursive) {
955       if (StructType *STy = dyn_cast<StructType>(AgTy)) {
956         bool RecursiveType = false;
957         for (const auto *EltTy : STy->elements()) {
958           if (EltTy == PtrArg->getType()) {
959             RecursiveType = true;
960             break;
961           }
962         }
963         if (RecursiveType)
964           continue;
965       }
966     }
967 
968     // Otherwise, see if we can promote the pointer to its value.
969     if (isSafeToPromoteArgument(PtrArg, PtrArg->hasByValOrInAllocaAttr(), AAR,
970                                 MaxElements))
971       ArgsToPromote.insert(PtrArg);
972   }
973 
974   // No promotable pointer arguments.
975   if (ArgsToPromote.empty() && ByValArgsToTransform.empty())
976     return nullptr;
977 
978   if (!areFunctionArgsABICompatible(*F, TTI, ArgsToPromote,
979                                     ByValArgsToTransform))
980     return nullptr;
981 
982   return doPromotion(F, ArgsToPromote, ByValArgsToTransform, ReplaceCallSite);
983 }
984 
985 PreservedAnalyses ArgumentPromotionPass::run(LazyCallGraph::SCC &C,
986                                              CGSCCAnalysisManager &AM,
987                                              LazyCallGraph &CG,
988                                              CGSCCUpdateResult &UR) {
989   bool Changed = false, LocalChange;
990 
991   // Iterate until we stop promoting from this SCC.
992   do {
993     LocalChange = false;
994 
995     for (LazyCallGraph::Node &N : C) {
996       Function &OldF = N.getFunction();
997 
998       FunctionAnalysisManager &FAM =
999           AM.getResult<FunctionAnalysisManagerCGSCCProxy>(C, CG).getManager();
1000       // FIXME: This lambda must only be used with this function. We should
1001       // skip the lambda and just get the AA results directly.
1002       auto AARGetter = [&](Function &F) -> AAResults & {
1003         assert(&F == &OldF && "Called with an unexpected function!");
1004         return FAM.getResult<AAManager>(F);
1005       };
1006 
1007       const TargetTransformInfo &TTI = FAM.getResult<TargetIRAnalysis>(OldF);
1008       Function *NewF =
1009           promoteArguments(&OldF, AARGetter, MaxElements, None, TTI);
1010       if (!NewF)
1011         continue;
1012       LocalChange = true;
1013 
1014       // Directly substitute the functions in the call graph. Note that this
1015       // requires the old function to be completely dead and completely
1016       // replaced by the new function. It does no call graph updates, it merely
1017       // swaps out the particular function mapped to a particular node in the
1018       // graph.
1019       C.getOuterRefSCC().replaceNodeFunction(N, *NewF);
1020       OldF.eraseFromParent();
1021     }
1022 
1023     Changed |= LocalChange;
1024   } while (LocalChange);
1025 
1026   if (!Changed)
1027     return PreservedAnalyses::all();
1028 
1029   return PreservedAnalyses::none();
1030 }
1031 
1032 namespace {
1033 
1034 /// ArgPromotion - The 'by reference' to 'by value' argument promotion pass.
1035 struct ArgPromotion : public CallGraphSCCPass {
1036   // Pass identification, replacement for typeid
1037   static char ID;
1038 
1039   explicit ArgPromotion(unsigned MaxElements = 3)
1040       : CallGraphSCCPass(ID), MaxElements(MaxElements) {
1041     initializeArgPromotionPass(*PassRegistry::getPassRegistry());
1042   }
1043 
1044   void getAnalysisUsage(AnalysisUsage &AU) const override {
1045     AU.addRequired<AssumptionCacheTracker>();
1046     AU.addRequired<TargetLibraryInfoWrapperPass>();
1047     AU.addRequired<TargetTransformInfoWrapperPass>();
1048     getAAResultsAnalysisUsage(AU);
1049     CallGraphSCCPass::getAnalysisUsage(AU);
1050   }
1051 
1052   bool runOnSCC(CallGraphSCC &SCC) override;
1053 
1054 private:
1055   using llvm::Pass::doInitialization;
1056 
1057   bool doInitialization(CallGraph &CG) override;
1058 
1059   /// The maximum number of elements to expand, or 0 for unlimited.
1060   unsigned MaxElements;
1061 };
1062 
1063 } // end anonymous namespace
1064 
1065 char ArgPromotion::ID = 0;
1066 
1067 INITIALIZE_PASS_BEGIN(ArgPromotion, "argpromotion",
1068                       "Promote 'by reference' arguments to scalars", false,
1069                       false)
1070 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
1071 INITIALIZE_PASS_DEPENDENCY(CallGraphWrapperPass)
1072 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
1073 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
1074 INITIALIZE_PASS_END(ArgPromotion, "argpromotion",
1075                     "Promote 'by reference' arguments to scalars", false, false)
1076 
1077 Pass *llvm::createArgumentPromotionPass(unsigned MaxElements) {
1078   return new ArgPromotion(MaxElements);
1079 }
1080 
1081 bool ArgPromotion::runOnSCC(CallGraphSCC &SCC) {
1082   if (skipSCC(SCC))
1083     return false;
1084 
1085   // Get the callgraph information that we need to update to reflect our
1086   // changes.
1087   CallGraph &CG = getAnalysis<CallGraphWrapperPass>().getCallGraph();
1088 
1089   LegacyAARGetter AARGetter(*this);
1090 
1091   bool Changed = false, LocalChange;
1092 
1093   // Iterate until we stop promoting from this SCC.
1094   do {
1095     LocalChange = false;
1096     // Attempt to promote arguments from all functions in this SCC.
1097     for (CallGraphNode *OldNode : SCC) {
1098       Function *OldF = OldNode->getFunction();
1099       if (!OldF)
1100         continue;
1101 
1102       auto ReplaceCallSite = [&](CallSite OldCS, CallSite NewCS) {
1103         Function *Caller = OldCS.getInstruction()->getParent()->getParent();
1104         CallGraphNode *NewCalleeNode =
1105             CG.getOrInsertFunction(NewCS.getCalledFunction());
1106         CallGraphNode *CallerNode = CG[Caller];
1107         CallerNode->replaceCallEdge(OldCS, NewCS, NewCalleeNode);
1108       };
1109 
1110       const TargetTransformInfo &TTI =
1111           getAnalysis<TargetTransformInfoWrapperPass>().getTTI(*OldF);
1112       if (Function *NewF = promoteArguments(OldF, AARGetter, MaxElements,
1113                                             {ReplaceCallSite}, TTI)) {
1114         LocalChange = true;
1115 
1116         // Update the call graph for the newly promoted function.
1117         CallGraphNode *NewNode = CG.getOrInsertFunction(NewF);
1118         NewNode->stealCalledFunctionsFrom(OldNode);
1119         if (OldNode->getNumReferences() == 0)
1120           delete CG.removeFunctionFromModule(OldNode);
1121         else
1122           OldF->setLinkage(Function::ExternalLinkage);
1123 
1124         // And updat ethe SCC we're iterating as well.
1125         SCC.ReplaceNode(OldNode, NewNode);
1126       }
1127     }
1128     // Remember that we changed something.
1129     Changed |= LocalChange;
1130   } while (LocalChange);
1131 
1132   return Changed;
1133 }
1134 
1135 bool ArgPromotion::doInitialization(CallGraph &CG) {
1136   return CallGraphSCCPass::doInitialization(CG);
1137 }
1138