1 //===-- ArgumentPromotion.cpp - Promote by-reference arguments ------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This pass promotes "by reference" arguments to be "by value" arguments. In 11 // practice, this means looking for internal functions that have pointer 12 // arguments. If it can prove, through the use of alias analysis, that an 13 // argument is *only* loaded, then it can pass the value into the function 14 // instead of the address of the value. This can cause recursive simplification 15 // of code and lead to the elimination of allocas (especially in C++ template 16 // code like the STL). 17 // 18 // This pass also handles aggregate arguments that are passed into a function, 19 // scalarizing them if the elements of the aggregate are only loaded. Note that 20 // by default it refuses to scalarize aggregates which would require passing in 21 // more than three operands to the function, because passing thousands of 22 // operands for a large array or structure is unprofitable! This limit can be 23 // configured or disabled, however. 24 // 25 // Note that this transformation could also be done for arguments that are only 26 // stored to (returning the value instead), but does not currently. This case 27 // would be best handled when and if LLVM begins supporting multiple return 28 // values from functions. 29 // 30 //===----------------------------------------------------------------------===// 31 32 #include "llvm/Transforms/IPO.h" 33 #include "llvm/ADT/DepthFirstIterator.h" 34 #include "llvm/ADT/Statistic.h" 35 #include "llvm/ADT/StringExtras.h" 36 #include "llvm/Analysis/AliasAnalysis.h" 37 #include "llvm/Analysis/CallGraph.h" 38 #include "llvm/Analysis/CallGraphSCCPass.h" 39 #include "llvm/Analysis/ValueTracking.h" 40 #include "llvm/IR/CFG.h" 41 #include "llvm/IR/CallSite.h" 42 #include "llvm/IR/Constants.h" 43 #include "llvm/IR/DataLayout.h" 44 #include "llvm/IR/DebugInfo.h" 45 #include "llvm/IR/DerivedTypes.h" 46 #include "llvm/IR/Instructions.h" 47 #include "llvm/IR/LLVMContext.h" 48 #include "llvm/IR/Module.h" 49 #include "llvm/Support/Debug.h" 50 #include "llvm/Support/raw_ostream.h" 51 #include <set> 52 using namespace llvm; 53 54 #define DEBUG_TYPE "argpromotion" 55 56 STATISTIC(NumArgumentsPromoted , "Number of pointer arguments promoted"); 57 STATISTIC(NumAggregatesPromoted, "Number of aggregate arguments promoted"); 58 STATISTIC(NumByValArgsPromoted , "Number of byval arguments promoted"); 59 STATISTIC(NumArgumentsDead , "Number of dead pointer args eliminated"); 60 61 namespace { 62 /// ArgPromotion - The 'by reference' to 'by value' argument promotion pass. 63 /// 64 struct ArgPromotion : public CallGraphSCCPass { 65 void getAnalysisUsage(AnalysisUsage &AU) const override { 66 AU.addRequired<AliasAnalysis>(); 67 CallGraphSCCPass::getAnalysisUsage(AU); 68 } 69 70 bool runOnSCC(CallGraphSCC &SCC) override; 71 static char ID; // Pass identification, replacement for typeid 72 explicit ArgPromotion(unsigned maxElements = 3) 73 : CallGraphSCCPass(ID), maxElements(maxElements) { 74 initializeArgPromotionPass(*PassRegistry::getPassRegistry()); 75 } 76 77 /// A vector used to hold the indices of a single GEP instruction 78 typedef std::vector<uint64_t> IndicesVector; 79 80 private: 81 bool isDenselyPacked(Type *type, const DataLayout &DL); 82 bool canPaddingBeAccessed(Argument *Arg); 83 CallGraphNode *PromoteArguments(CallGraphNode *CGN); 84 bool isSafeToPromoteArgument(Argument *Arg, bool isByVal) const; 85 CallGraphNode *DoPromotion(Function *F, 86 SmallPtrSetImpl<Argument*> &ArgsToPromote, 87 SmallPtrSetImpl<Argument*> &ByValArgsToTransform); 88 89 using llvm::Pass::doInitialization; 90 bool doInitialization(CallGraph &CG) override; 91 /// The maximum number of elements to expand, or 0 for unlimited. 92 unsigned maxElements; 93 DenseMap<const Function *, DISubprogram *> FunctionDIs; 94 }; 95 } 96 97 char ArgPromotion::ID = 0; 98 INITIALIZE_PASS_BEGIN(ArgPromotion, "argpromotion", 99 "Promote 'by reference' arguments to scalars", false, false) 100 INITIALIZE_AG_DEPENDENCY(AliasAnalysis) 101 INITIALIZE_PASS_DEPENDENCY(CallGraphWrapperPass) 102 INITIALIZE_PASS_END(ArgPromotion, "argpromotion", 103 "Promote 'by reference' arguments to scalars", false, false) 104 105 Pass *llvm::createArgumentPromotionPass(unsigned maxElements) { 106 return new ArgPromotion(maxElements); 107 } 108 109 bool ArgPromotion::runOnSCC(CallGraphSCC &SCC) { 110 bool Changed = false, LocalChange; 111 112 do { // Iterate until we stop promoting from this SCC. 113 LocalChange = false; 114 // Attempt to promote arguments from all functions in this SCC. 115 for (CallGraphSCC::iterator I = SCC.begin(), E = SCC.end(); I != E; ++I) { 116 if (CallGraphNode *CGN = PromoteArguments(*I)) { 117 LocalChange = true; 118 SCC.ReplaceNode(*I, CGN); 119 } 120 } 121 Changed |= LocalChange; // Remember that we changed something. 122 } while (LocalChange); 123 124 return Changed; 125 } 126 127 /// \brief Checks if a type could have padding bytes. 128 bool ArgPromotion::isDenselyPacked(Type *type, const DataLayout &DL) { 129 130 // There is no size information, so be conservative. 131 if (!type->isSized()) 132 return false; 133 134 // If the alloc size is not equal to the storage size, then there are padding 135 // bytes. For x86_fp80 on x86-64, size: 80 alloc size: 128. 136 if (DL.getTypeSizeInBits(type) != DL.getTypeAllocSizeInBits(type)) 137 return false; 138 139 if (!isa<CompositeType>(type)) 140 return true; 141 142 // For homogenous sequential types, check for padding within members. 143 if (SequentialType *seqTy = dyn_cast<SequentialType>(type)) 144 return isa<PointerType>(seqTy) || 145 isDenselyPacked(seqTy->getElementType(), DL); 146 147 // Check for padding within and between elements of a struct. 148 StructType *StructTy = cast<StructType>(type); 149 const StructLayout *Layout = DL.getStructLayout(StructTy); 150 uint64_t StartPos = 0; 151 for (unsigned i = 0, E = StructTy->getNumElements(); i < E; ++i) { 152 Type *ElTy = StructTy->getElementType(i); 153 if (!isDenselyPacked(ElTy, DL)) 154 return false; 155 if (StartPos != Layout->getElementOffsetInBits(i)) 156 return false; 157 StartPos += DL.getTypeAllocSizeInBits(ElTy); 158 } 159 160 return true; 161 } 162 163 /// \brief Checks if the padding bytes of an argument could be accessed. 164 bool ArgPromotion::canPaddingBeAccessed(Argument *arg) { 165 166 assert(arg->hasByValAttr()); 167 168 // Track all the pointers to the argument to make sure they are not captured. 169 SmallPtrSet<Value *, 16> PtrValues; 170 PtrValues.insert(arg); 171 172 // Track all of the stores. 173 SmallVector<StoreInst *, 16> Stores; 174 175 // Scan through the uses recursively to make sure the pointer is always used 176 // sanely. 177 SmallVector<Value *, 16> WorkList; 178 WorkList.insert(WorkList.end(), arg->user_begin(), arg->user_end()); 179 while (!WorkList.empty()) { 180 Value *V = WorkList.back(); 181 WorkList.pop_back(); 182 if (isa<GetElementPtrInst>(V) || isa<PHINode>(V)) { 183 if (PtrValues.insert(V).second) 184 WorkList.insert(WorkList.end(), V->user_begin(), V->user_end()); 185 } else if (StoreInst *Store = dyn_cast<StoreInst>(V)) { 186 Stores.push_back(Store); 187 } else if (!isa<LoadInst>(V)) { 188 return true; 189 } 190 } 191 192 // Check to make sure the pointers aren't captured 193 for (StoreInst *Store : Stores) 194 if (PtrValues.count(Store->getValueOperand())) 195 return true; 196 197 return false; 198 } 199 200 /// PromoteArguments - This method checks the specified function to see if there 201 /// are any promotable arguments and if it is safe to promote the function (for 202 /// example, all callers are direct). If safe to promote some arguments, it 203 /// calls the DoPromotion method. 204 /// 205 CallGraphNode *ArgPromotion::PromoteArguments(CallGraphNode *CGN) { 206 Function *F = CGN->getFunction(); 207 208 // Make sure that it is local to this module. 209 if (!F || !F->hasLocalLinkage()) return nullptr; 210 211 // Don't promote arguments for variadic functions. Adding, removing, or 212 // changing non-pack parameters can change the classification of pack 213 // parameters. Frontends encode that classification at the call site in the 214 // IR, while in the callee the classification is determined dynamically based 215 // on the number of registers consumed so far. 216 if (F->isVarArg()) return nullptr; 217 218 // First check: see if there are any pointer arguments! If not, quick exit. 219 SmallVector<Argument*, 16> PointerArgs; 220 for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E; ++I) 221 if (I->getType()->isPointerTy()) 222 PointerArgs.push_back(I); 223 if (PointerArgs.empty()) return nullptr; 224 225 // Second check: make sure that all callers are direct callers. We can't 226 // transform functions that have indirect callers. Also see if the function 227 // is self-recursive. 228 bool isSelfRecursive = false; 229 for (Use &U : F->uses()) { 230 CallSite CS(U.getUser()); 231 // Must be a direct call. 232 if (CS.getInstruction() == nullptr || !CS.isCallee(&U)) return nullptr; 233 234 if (CS.getInstruction()->getParent()->getParent() == F) 235 isSelfRecursive = true; 236 } 237 238 const DataLayout &DL = F->getParent()->getDataLayout(); 239 240 // Check to see which arguments are promotable. If an argument is promotable, 241 // add it to ArgsToPromote. 242 SmallPtrSet<Argument*, 8> ArgsToPromote; 243 SmallPtrSet<Argument*, 8> ByValArgsToTransform; 244 for (unsigned i = 0, e = PointerArgs.size(); i != e; ++i) { 245 Argument *PtrArg = PointerArgs[i]; 246 Type *AgTy = cast<PointerType>(PtrArg->getType())->getElementType(); 247 248 // Replace sret attribute with noalias. This reduces register pressure by 249 // avoiding a register copy. 250 if (PtrArg->hasStructRetAttr()) { 251 unsigned ArgNo = PtrArg->getArgNo(); 252 F->setAttributes( 253 F->getAttributes() 254 .removeAttribute(F->getContext(), ArgNo + 1, Attribute::StructRet) 255 .addAttribute(F->getContext(), ArgNo + 1, Attribute::NoAlias)); 256 for (Use &U : F->uses()) { 257 CallSite CS(U.getUser()); 258 CS.setAttributes( 259 CS.getAttributes() 260 .removeAttribute(F->getContext(), ArgNo + 1, 261 Attribute::StructRet) 262 .addAttribute(F->getContext(), ArgNo + 1, Attribute::NoAlias)); 263 } 264 } 265 266 // If this is a byval argument, and if the aggregate type is small, just 267 // pass the elements, which is always safe, if the passed value is densely 268 // packed or if we can prove the padding bytes are never accessed. This does 269 // not apply to inalloca. 270 bool isSafeToPromote = 271 PtrArg->hasByValAttr() && 272 (isDenselyPacked(AgTy, DL) || !canPaddingBeAccessed(PtrArg)); 273 if (isSafeToPromote) { 274 if (StructType *STy = dyn_cast<StructType>(AgTy)) { 275 if (maxElements > 0 && STy->getNumElements() > maxElements) { 276 DEBUG(dbgs() << "argpromotion disable promoting argument '" 277 << PtrArg->getName() << "' because it would require adding more" 278 << " than " << maxElements << " arguments to the function.\n"); 279 continue; 280 } 281 282 // If all the elements are single-value types, we can promote it. 283 bool AllSimple = true; 284 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 285 if (!STy->getElementType(i)->isSingleValueType()) { 286 AllSimple = false; 287 break; 288 } 289 } 290 291 // Safe to transform, don't even bother trying to "promote" it. 292 // Passing the elements as a scalar will allow scalarrepl to hack on 293 // the new alloca we introduce. 294 if (AllSimple) { 295 ByValArgsToTransform.insert(PtrArg); 296 continue; 297 } 298 } 299 } 300 301 // If the argument is a recursive type and we're in a recursive 302 // function, we could end up infinitely peeling the function argument. 303 if (isSelfRecursive) { 304 if (StructType *STy = dyn_cast<StructType>(AgTy)) { 305 bool RecursiveType = false; 306 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 307 if (STy->getElementType(i) == PtrArg->getType()) { 308 RecursiveType = true; 309 break; 310 } 311 } 312 if (RecursiveType) 313 continue; 314 } 315 } 316 317 // Otherwise, see if we can promote the pointer to its value. 318 if (isSafeToPromoteArgument(PtrArg, PtrArg->hasByValOrInAllocaAttr())) 319 ArgsToPromote.insert(PtrArg); 320 } 321 322 // No promotable pointer arguments. 323 if (ArgsToPromote.empty() && ByValArgsToTransform.empty()) 324 return nullptr; 325 326 return DoPromotion(F, ArgsToPromote, ByValArgsToTransform); 327 } 328 329 /// AllCallersPassInValidPointerForArgument - Return true if we can prove that 330 /// all callees pass in a valid pointer for the specified function argument. 331 static bool AllCallersPassInValidPointerForArgument(Argument *Arg) { 332 Function *Callee = Arg->getParent(); 333 const DataLayout &DL = Callee->getParent()->getDataLayout(); 334 335 unsigned ArgNo = Arg->getArgNo(); 336 337 // Look at all call sites of the function. At this pointer we know we only 338 // have direct callees. 339 for (User *U : Callee->users()) { 340 CallSite CS(U); 341 assert(CS && "Should only have direct calls!"); 342 343 if (!isDereferenceablePointer(CS.getArgument(ArgNo), DL)) 344 return false; 345 } 346 return true; 347 } 348 349 /// Returns true if Prefix is a prefix of longer. That means, Longer has a size 350 /// that is greater than or equal to the size of prefix, and each of the 351 /// elements in Prefix is the same as the corresponding elements in Longer. 352 /// 353 /// This means it also returns true when Prefix and Longer are equal! 354 static bool IsPrefix(const ArgPromotion::IndicesVector &Prefix, 355 const ArgPromotion::IndicesVector &Longer) { 356 if (Prefix.size() > Longer.size()) 357 return false; 358 return std::equal(Prefix.begin(), Prefix.end(), Longer.begin()); 359 } 360 361 362 /// Checks if Indices, or a prefix of Indices, is in Set. 363 static bool PrefixIn(const ArgPromotion::IndicesVector &Indices, 364 std::set<ArgPromotion::IndicesVector> &Set) { 365 std::set<ArgPromotion::IndicesVector>::iterator Low; 366 Low = Set.upper_bound(Indices); 367 if (Low != Set.begin()) 368 Low--; 369 // Low is now the last element smaller than or equal to Indices. This means 370 // it points to a prefix of Indices (possibly Indices itself), if such 371 // prefix exists. 372 // 373 // This load is safe if any prefix of its operands is safe to load. 374 return Low != Set.end() && IsPrefix(*Low, Indices); 375 } 376 377 /// Mark the given indices (ToMark) as safe in the given set of indices 378 /// (Safe). Marking safe usually means adding ToMark to Safe. However, if there 379 /// is already a prefix of Indices in Safe, Indices are implicitely marked safe 380 /// already. Furthermore, any indices that Indices is itself a prefix of, are 381 /// removed from Safe (since they are implicitely safe because of Indices now). 382 static void MarkIndicesSafe(const ArgPromotion::IndicesVector &ToMark, 383 std::set<ArgPromotion::IndicesVector> &Safe) { 384 std::set<ArgPromotion::IndicesVector>::iterator Low; 385 Low = Safe.upper_bound(ToMark); 386 // Guard against the case where Safe is empty 387 if (Low != Safe.begin()) 388 Low--; 389 // Low is now the last element smaller than or equal to Indices. This 390 // means it points to a prefix of Indices (possibly Indices itself), if 391 // such prefix exists. 392 if (Low != Safe.end()) { 393 if (IsPrefix(*Low, ToMark)) 394 // If there is already a prefix of these indices (or exactly these 395 // indices) marked a safe, don't bother adding these indices 396 return; 397 398 // Increment Low, so we can use it as a "insert before" hint 399 ++Low; 400 } 401 // Insert 402 Low = Safe.insert(Low, ToMark); 403 ++Low; 404 // If there we're a prefix of longer index list(s), remove those 405 std::set<ArgPromotion::IndicesVector>::iterator End = Safe.end(); 406 while (Low != End && IsPrefix(ToMark, *Low)) { 407 std::set<ArgPromotion::IndicesVector>::iterator Remove = Low; 408 ++Low; 409 Safe.erase(Remove); 410 } 411 } 412 413 /// isSafeToPromoteArgument - As you might guess from the name of this method, 414 /// it checks to see if it is both safe and useful to promote the argument. 415 /// This method limits promotion of aggregates to only promote up to three 416 /// elements of the aggregate in order to avoid exploding the number of 417 /// arguments passed in. 418 bool ArgPromotion::isSafeToPromoteArgument(Argument *Arg, 419 bool isByValOrInAlloca) const { 420 typedef std::set<IndicesVector> GEPIndicesSet; 421 422 // Quick exit for unused arguments 423 if (Arg->use_empty()) 424 return true; 425 426 // We can only promote this argument if all of the uses are loads, or are GEP 427 // instructions (with constant indices) that are subsequently loaded. 428 // 429 // Promoting the argument causes it to be loaded in the caller 430 // unconditionally. This is only safe if we can prove that either the load 431 // would have happened in the callee anyway (ie, there is a load in the entry 432 // block) or the pointer passed in at every call site is guaranteed to be 433 // valid. 434 // In the former case, invalid loads can happen, but would have happened 435 // anyway, in the latter case, invalid loads won't happen. This prevents us 436 // from introducing an invalid load that wouldn't have happened in the 437 // original code. 438 // 439 // This set will contain all sets of indices that are loaded in the entry 440 // block, and thus are safe to unconditionally load in the caller. 441 // 442 // This optimization is also safe for InAlloca parameters, because it verifies 443 // that the address isn't captured. 444 GEPIndicesSet SafeToUnconditionallyLoad; 445 446 // This set contains all the sets of indices that we are planning to promote. 447 // This makes it possible to limit the number of arguments added. 448 GEPIndicesSet ToPromote; 449 450 // If the pointer is always valid, any load with first index 0 is valid. 451 if (isByValOrInAlloca || AllCallersPassInValidPointerForArgument(Arg)) 452 SafeToUnconditionallyLoad.insert(IndicesVector(1, 0)); 453 454 // First, iterate the entry block and mark loads of (geps of) arguments as 455 // safe. 456 BasicBlock *EntryBlock = Arg->getParent()->begin(); 457 // Declare this here so we can reuse it 458 IndicesVector Indices; 459 for (BasicBlock::iterator I = EntryBlock->begin(), E = EntryBlock->end(); 460 I != E; ++I) 461 if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 462 Value *V = LI->getPointerOperand(); 463 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(V)) { 464 V = GEP->getPointerOperand(); 465 if (V == Arg) { 466 // This load actually loads (part of) Arg? Check the indices then. 467 Indices.reserve(GEP->getNumIndices()); 468 for (User::op_iterator II = GEP->idx_begin(), IE = GEP->idx_end(); 469 II != IE; ++II) 470 if (ConstantInt *CI = dyn_cast<ConstantInt>(*II)) 471 Indices.push_back(CI->getSExtValue()); 472 else 473 // We found a non-constant GEP index for this argument? Bail out 474 // right away, can't promote this argument at all. 475 return false; 476 477 // Indices checked out, mark them as safe 478 MarkIndicesSafe(Indices, SafeToUnconditionallyLoad); 479 Indices.clear(); 480 } 481 } else if (V == Arg) { 482 // Direct loads are equivalent to a GEP with a single 0 index. 483 MarkIndicesSafe(IndicesVector(1, 0), SafeToUnconditionallyLoad); 484 } 485 } 486 487 // Now, iterate all uses of the argument to see if there are any uses that are 488 // not (GEP+)loads, or any (GEP+)loads that are not safe to promote. 489 SmallVector<LoadInst*, 16> Loads; 490 IndicesVector Operands; 491 for (Use &U : Arg->uses()) { 492 User *UR = U.getUser(); 493 Operands.clear(); 494 if (LoadInst *LI = dyn_cast<LoadInst>(UR)) { 495 // Don't hack volatile/atomic loads 496 if (!LI->isSimple()) return false; 497 Loads.push_back(LI); 498 // Direct loads are equivalent to a GEP with a zero index and then a load. 499 Operands.push_back(0); 500 } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(UR)) { 501 if (GEP->use_empty()) { 502 // Dead GEP's cause trouble later. Just remove them if we run into 503 // them. 504 getAnalysis<AliasAnalysis>().deleteValue(GEP); 505 GEP->eraseFromParent(); 506 // TODO: This runs the above loop over and over again for dead GEPs 507 // Couldn't we just do increment the UI iterator earlier and erase the 508 // use? 509 return isSafeToPromoteArgument(Arg, isByValOrInAlloca); 510 } 511 512 // Ensure that all of the indices are constants. 513 for (User::op_iterator i = GEP->idx_begin(), e = GEP->idx_end(); 514 i != e; ++i) 515 if (ConstantInt *C = dyn_cast<ConstantInt>(*i)) 516 Operands.push_back(C->getSExtValue()); 517 else 518 return false; // Not a constant operand GEP! 519 520 // Ensure that the only users of the GEP are load instructions. 521 for (User *GEPU : GEP->users()) 522 if (LoadInst *LI = dyn_cast<LoadInst>(GEPU)) { 523 // Don't hack volatile/atomic loads 524 if (!LI->isSimple()) return false; 525 Loads.push_back(LI); 526 } else { 527 // Other uses than load? 528 return false; 529 } 530 } else { 531 return false; // Not a load or a GEP. 532 } 533 534 // Now, see if it is safe to promote this load / loads of this GEP. Loading 535 // is safe if Operands, or a prefix of Operands, is marked as safe. 536 if (!PrefixIn(Operands, SafeToUnconditionallyLoad)) 537 return false; 538 539 // See if we are already promoting a load with these indices. If not, check 540 // to make sure that we aren't promoting too many elements. If so, nothing 541 // to do. 542 if (ToPromote.find(Operands) == ToPromote.end()) { 543 if (maxElements > 0 && ToPromote.size() == maxElements) { 544 DEBUG(dbgs() << "argpromotion not promoting argument '" 545 << Arg->getName() << "' because it would require adding more " 546 << "than " << maxElements << " arguments to the function.\n"); 547 // We limit aggregate promotion to only promoting up to a fixed number 548 // of elements of the aggregate. 549 return false; 550 } 551 ToPromote.insert(std::move(Operands)); 552 } 553 } 554 555 if (Loads.empty()) return true; // No users, this is a dead argument. 556 557 // Okay, now we know that the argument is only used by load instructions and 558 // it is safe to unconditionally perform all of them. Use alias analysis to 559 // check to see if the pointer is guaranteed to not be modified from entry of 560 // the function to each of the load instructions. 561 562 // Because there could be several/many load instructions, remember which 563 // blocks we know to be transparent to the load. 564 SmallPtrSet<BasicBlock*, 16> TranspBlocks; 565 566 AliasAnalysis &AA = getAnalysis<AliasAnalysis>(); 567 568 for (unsigned i = 0, e = Loads.size(); i != e; ++i) { 569 // Check to see if the load is invalidated from the start of the block to 570 // the load itself. 571 LoadInst *Load = Loads[i]; 572 BasicBlock *BB = Load->getParent(); 573 574 MemoryLocation Loc = MemoryLocation::get(Load); 575 if (AA.canInstructionRangeModRef(BB->front(), *Load, Loc, 576 AliasAnalysis::Mod)) 577 return false; // Pointer is invalidated! 578 579 // Now check every path from the entry block to the load for transparency. 580 // To do this, we perform a depth first search on the inverse CFG from the 581 // loading block. 582 for (BasicBlock *P : predecessors(BB)) { 583 for (BasicBlock *TranspBB : inverse_depth_first_ext(P, TranspBlocks)) 584 if (AA.canBasicBlockModify(*TranspBB, Loc)) 585 return false; 586 } 587 } 588 589 // If the path from the entry of the function to each load is free of 590 // instructions that potentially invalidate the load, we can make the 591 // transformation! 592 return true; 593 } 594 595 /// DoPromotion - This method actually performs the promotion of the specified 596 /// arguments, and returns the new function. At this point, we know that it's 597 /// safe to do so. 598 CallGraphNode *ArgPromotion::DoPromotion(Function *F, 599 SmallPtrSetImpl<Argument*> &ArgsToPromote, 600 SmallPtrSetImpl<Argument*> &ByValArgsToTransform) { 601 602 // Start by computing a new prototype for the function, which is the same as 603 // the old function, but has modified arguments. 604 FunctionType *FTy = F->getFunctionType(); 605 std::vector<Type*> Params; 606 607 typedef std::set<std::pair<Type *, IndicesVector>> ScalarizeTable; 608 609 // ScalarizedElements - If we are promoting a pointer that has elements 610 // accessed out of it, keep track of which elements are accessed so that we 611 // can add one argument for each. 612 // 613 // Arguments that are directly loaded will have a zero element value here, to 614 // handle cases where there are both a direct load and GEP accesses. 615 // 616 std::map<Argument*, ScalarizeTable> ScalarizedElements; 617 618 // OriginalLoads - Keep track of a representative load instruction from the 619 // original function so that we can tell the alias analysis implementation 620 // what the new GEP/Load instructions we are inserting look like. 621 // We need to keep the original loads for each argument and the elements 622 // of the argument that are accessed. 623 std::map<std::pair<Argument*, IndicesVector>, LoadInst*> OriginalLoads; 624 625 // Attribute - Keep track of the parameter attributes for the arguments 626 // that we are *not* promoting. For the ones that we do promote, the parameter 627 // attributes are lost 628 SmallVector<AttributeSet, 8> AttributesVec; 629 const AttributeSet &PAL = F->getAttributes(); 630 631 // Add any return attributes. 632 if (PAL.hasAttributes(AttributeSet::ReturnIndex)) 633 AttributesVec.push_back(AttributeSet::get(F->getContext(), 634 PAL.getRetAttributes())); 635 636 // First, determine the new argument list 637 unsigned ArgIndex = 1; 638 for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E; 639 ++I, ++ArgIndex) { 640 if (ByValArgsToTransform.count(I)) { 641 // Simple byval argument? Just add all the struct element types. 642 Type *AgTy = cast<PointerType>(I->getType())->getElementType(); 643 StructType *STy = cast<StructType>(AgTy); 644 Params.insert(Params.end(), STy->element_begin(), STy->element_end()); 645 ++NumByValArgsPromoted; 646 } else if (!ArgsToPromote.count(I)) { 647 // Unchanged argument 648 Params.push_back(I->getType()); 649 AttributeSet attrs = PAL.getParamAttributes(ArgIndex); 650 if (attrs.hasAttributes(ArgIndex)) { 651 AttrBuilder B(attrs, ArgIndex); 652 AttributesVec. 653 push_back(AttributeSet::get(F->getContext(), Params.size(), B)); 654 } 655 } else if (I->use_empty()) { 656 // Dead argument (which are always marked as promotable) 657 ++NumArgumentsDead; 658 } else { 659 // Okay, this is being promoted. This means that the only uses are loads 660 // or GEPs which are only used by loads 661 662 // In this table, we will track which indices are loaded from the argument 663 // (where direct loads are tracked as no indices). 664 ScalarizeTable &ArgIndices = ScalarizedElements[I]; 665 for (User *U : I->users()) { 666 Instruction *UI = cast<Instruction>(U); 667 Type *SrcTy; 668 if (LoadInst *L = dyn_cast<LoadInst>(UI)) 669 SrcTy = L->getType(); 670 else 671 SrcTy = cast<GetElementPtrInst>(UI)->getSourceElementType(); 672 IndicesVector Indices; 673 Indices.reserve(UI->getNumOperands() - 1); 674 // Since loads will only have a single operand, and GEPs only a single 675 // non-index operand, this will record direct loads without any indices, 676 // and gep+loads with the GEP indices. 677 for (User::op_iterator II = UI->op_begin() + 1, IE = UI->op_end(); 678 II != IE; ++II) 679 Indices.push_back(cast<ConstantInt>(*II)->getSExtValue()); 680 // GEPs with a single 0 index can be merged with direct loads 681 if (Indices.size() == 1 && Indices.front() == 0) 682 Indices.clear(); 683 ArgIndices.insert(std::make_pair(SrcTy, Indices)); 684 LoadInst *OrigLoad; 685 if (LoadInst *L = dyn_cast<LoadInst>(UI)) 686 OrigLoad = L; 687 else 688 // Take any load, we will use it only to update Alias Analysis 689 OrigLoad = cast<LoadInst>(UI->user_back()); 690 OriginalLoads[std::make_pair(I, Indices)] = OrigLoad; 691 } 692 693 // Add a parameter to the function for each element passed in. 694 for (ScalarizeTable::iterator SI = ArgIndices.begin(), 695 E = ArgIndices.end(); SI != E; ++SI) { 696 // not allowed to dereference ->begin() if size() is 0 697 Params.push_back(GetElementPtrInst::getIndexedType( 698 cast<PointerType>(I->getType()->getScalarType())->getElementType(), 699 SI->second)); 700 assert(Params.back()); 701 } 702 703 if (ArgIndices.size() == 1 && ArgIndices.begin()->second.empty()) 704 ++NumArgumentsPromoted; 705 else 706 ++NumAggregatesPromoted; 707 } 708 } 709 710 // Add any function attributes. 711 if (PAL.hasAttributes(AttributeSet::FunctionIndex)) 712 AttributesVec.push_back(AttributeSet::get(FTy->getContext(), 713 PAL.getFnAttributes())); 714 715 Type *RetTy = FTy->getReturnType(); 716 717 // Construct the new function type using the new arguments. 718 FunctionType *NFTy = FunctionType::get(RetTy, Params, FTy->isVarArg()); 719 720 // Create the new function body and insert it into the module. 721 Function *NF = Function::Create(NFTy, F->getLinkage(), F->getName()); 722 NF->copyAttributesFrom(F); 723 724 // Patch the pointer to LLVM function in debug info descriptor. 725 auto DI = FunctionDIs.find(F); 726 if (DI != FunctionDIs.end()) { 727 DISubprogram *SP = DI->second; 728 SP->replaceFunction(NF); 729 // Ensure the map is updated so it can be reused on subsequent argument 730 // promotions of the same function. 731 FunctionDIs.erase(DI); 732 FunctionDIs[NF] = SP; 733 } 734 735 DEBUG(dbgs() << "ARG PROMOTION: Promoting to:" << *NF << "\n" 736 << "From: " << *F); 737 738 // Recompute the parameter attributes list based on the new arguments for 739 // the function. 740 NF->setAttributes(AttributeSet::get(F->getContext(), AttributesVec)); 741 AttributesVec.clear(); 742 743 F->getParent()->getFunctionList().insert(F, NF); 744 NF->takeName(F); 745 746 // Get the alias analysis information that we need to update to reflect our 747 // changes. 748 AliasAnalysis &AA = getAnalysis<AliasAnalysis>(); 749 750 // Get the callgraph information that we need to update to reflect our 751 // changes. 752 CallGraph &CG = getAnalysis<CallGraphWrapperPass>().getCallGraph(); 753 754 // Get a new callgraph node for NF. 755 CallGraphNode *NF_CGN = CG.getOrInsertFunction(NF); 756 757 // Loop over all of the callers of the function, transforming the call sites 758 // to pass in the loaded pointers. 759 // 760 SmallVector<Value*, 16> Args; 761 while (!F->use_empty()) { 762 CallSite CS(F->user_back()); 763 assert(CS.getCalledFunction() == F); 764 Instruction *Call = CS.getInstruction(); 765 const AttributeSet &CallPAL = CS.getAttributes(); 766 767 // Add any return attributes. 768 if (CallPAL.hasAttributes(AttributeSet::ReturnIndex)) 769 AttributesVec.push_back(AttributeSet::get(F->getContext(), 770 CallPAL.getRetAttributes())); 771 772 // Loop over the operands, inserting GEP and loads in the caller as 773 // appropriate. 774 CallSite::arg_iterator AI = CS.arg_begin(); 775 ArgIndex = 1; 776 for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); 777 I != E; ++I, ++AI, ++ArgIndex) 778 if (!ArgsToPromote.count(I) && !ByValArgsToTransform.count(I)) { 779 Args.push_back(*AI); // Unmodified argument 780 781 if (CallPAL.hasAttributes(ArgIndex)) { 782 AttrBuilder B(CallPAL, ArgIndex); 783 AttributesVec. 784 push_back(AttributeSet::get(F->getContext(), Args.size(), B)); 785 } 786 } else if (ByValArgsToTransform.count(I)) { 787 // Emit a GEP and load for each element of the struct. 788 Type *AgTy = cast<PointerType>(I->getType())->getElementType(); 789 StructType *STy = cast<StructType>(AgTy); 790 Value *Idxs[2] = { 791 ConstantInt::get(Type::getInt32Ty(F->getContext()), 0), nullptr }; 792 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 793 Idxs[1] = ConstantInt::get(Type::getInt32Ty(F->getContext()), i); 794 Value *Idx = GetElementPtrInst::Create( 795 STy, *AI, Idxs, (*AI)->getName() + "." + Twine(i), Call); 796 // TODO: Tell AA about the new values? 797 Args.push_back(new LoadInst(Idx, Idx->getName()+".val", Call)); 798 } 799 } else if (!I->use_empty()) { 800 // Non-dead argument: insert GEPs and loads as appropriate. 801 ScalarizeTable &ArgIndices = ScalarizedElements[I]; 802 // Store the Value* version of the indices in here, but declare it now 803 // for reuse. 804 std::vector<Value*> Ops; 805 for (ScalarizeTable::iterator SI = ArgIndices.begin(), 806 E = ArgIndices.end(); SI != E; ++SI) { 807 Value *V = *AI; 808 LoadInst *OrigLoad = OriginalLoads[std::make_pair(I, SI->second)]; 809 if (!SI->second.empty()) { 810 Ops.reserve(SI->second.size()); 811 Type *ElTy = V->getType(); 812 for (IndicesVector::const_iterator II = SI->second.begin(), 813 IE = SI->second.end(); 814 II != IE; ++II) { 815 // Use i32 to index structs, and i64 for others (pointers/arrays). 816 // This satisfies GEP constraints. 817 Type *IdxTy = (ElTy->isStructTy() ? 818 Type::getInt32Ty(F->getContext()) : 819 Type::getInt64Ty(F->getContext())); 820 Ops.push_back(ConstantInt::get(IdxTy, *II)); 821 // Keep track of the type we're currently indexing. 822 ElTy = cast<CompositeType>(ElTy)->getTypeAtIndex(*II); 823 } 824 // And create a GEP to extract those indices. 825 V = GetElementPtrInst::Create(SI->first, V, Ops, 826 V->getName() + ".idx", Call); 827 Ops.clear(); 828 AA.copyValue(OrigLoad->getOperand(0), V); 829 } 830 // Since we're replacing a load make sure we take the alignment 831 // of the previous load. 832 LoadInst *newLoad = new LoadInst(V, V->getName()+".val", Call); 833 newLoad->setAlignment(OrigLoad->getAlignment()); 834 // Transfer the AA info too. 835 AAMDNodes AAInfo; 836 OrigLoad->getAAMetadata(AAInfo); 837 newLoad->setAAMetadata(AAInfo); 838 839 Args.push_back(newLoad); 840 AA.copyValue(OrigLoad, Args.back()); 841 } 842 } 843 844 // Push any varargs arguments on the list. 845 for (; AI != CS.arg_end(); ++AI, ++ArgIndex) { 846 Args.push_back(*AI); 847 if (CallPAL.hasAttributes(ArgIndex)) { 848 AttrBuilder B(CallPAL, ArgIndex); 849 AttributesVec. 850 push_back(AttributeSet::get(F->getContext(), Args.size(), B)); 851 } 852 } 853 854 // Add any function attributes. 855 if (CallPAL.hasAttributes(AttributeSet::FunctionIndex)) 856 AttributesVec.push_back(AttributeSet::get(Call->getContext(), 857 CallPAL.getFnAttributes())); 858 859 Instruction *New; 860 if (InvokeInst *II = dyn_cast<InvokeInst>(Call)) { 861 New = InvokeInst::Create(NF, II->getNormalDest(), II->getUnwindDest(), 862 Args, "", Call); 863 cast<InvokeInst>(New)->setCallingConv(CS.getCallingConv()); 864 cast<InvokeInst>(New)->setAttributes(AttributeSet::get(II->getContext(), 865 AttributesVec)); 866 } else { 867 New = CallInst::Create(NF, Args, "", Call); 868 cast<CallInst>(New)->setCallingConv(CS.getCallingConv()); 869 cast<CallInst>(New)->setAttributes(AttributeSet::get(New->getContext(), 870 AttributesVec)); 871 if (cast<CallInst>(Call)->isTailCall()) 872 cast<CallInst>(New)->setTailCall(); 873 } 874 New->setDebugLoc(Call->getDebugLoc()); 875 Args.clear(); 876 AttributesVec.clear(); 877 878 // Update the alias analysis implementation to know that we are replacing 879 // the old call with a new one. 880 AA.replaceWithNewValue(Call, New); 881 882 // Update the callgraph to know that the callsite has been transformed. 883 CallGraphNode *CalleeNode = CG[Call->getParent()->getParent()]; 884 CalleeNode->replaceCallEdge(CS, CallSite(New), NF_CGN); 885 886 if (!Call->use_empty()) { 887 Call->replaceAllUsesWith(New); 888 New->takeName(Call); 889 } 890 891 // Finally, remove the old call from the program, reducing the use-count of 892 // F. 893 Call->eraseFromParent(); 894 } 895 896 // Since we have now created the new function, splice the body of the old 897 // function right into the new function, leaving the old rotting hulk of the 898 // function empty. 899 NF->getBasicBlockList().splice(NF->begin(), F->getBasicBlockList()); 900 901 // Loop over the argument list, transferring uses of the old arguments over to 902 // the new arguments, also transferring over the names as well. 903 // 904 for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(), 905 I2 = NF->arg_begin(); I != E; ++I) { 906 if (!ArgsToPromote.count(I) && !ByValArgsToTransform.count(I)) { 907 // If this is an unmodified argument, move the name and users over to the 908 // new version. 909 I->replaceAllUsesWith(I2); 910 I2->takeName(I); 911 AA.replaceWithNewValue(I, I2); 912 ++I2; 913 continue; 914 } 915 916 if (ByValArgsToTransform.count(I)) { 917 // In the callee, we create an alloca, and store each of the new incoming 918 // arguments into the alloca. 919 Instruction *InsertPt = NF->begin()->begin(); 920 921 // Just add all the struct element types. 922 Type *AgTy = cast<PointerType>(I->getType())->getElementType(); 923 Value *TheAlloca = new AllocaInst(AgTy, nullptr, "", InsertPt); 924 StructType *STy = cast<StructType>(AgTy); 925 Value *Idxs[2] = { 926 ConstantInt::get(Type::getInt32Ty(F->getContext()), 0), nullptr }; 927 928 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 929 Idxs[1] = ConstantInt::get(Type::getInt32Ty(F->getContext()), i); 930 Value *Idx = GetElementPtrInst::Create( 931 AgTy, TheAlloca, Idxs, TheAlloca->getName() + "." + Twine(i), 932 InsertPt); 933 I2->setName(I->getName()+"."+Twine(i)); 934 new StoreInst(I2++, Idx, InsertPt); 935 } 936 937 // Anything that used the arg should now use the alloca. 938 I->replaceAllUsesWith(TheAlloca); 939 TheAlloca->takeName(I); 940 AA.replaceWithNewValue(I, TheAlloca); 941 942 // If the alloca is used in a call, we must clear the tail flag since 943 // the callee now uses an alloca from the caller. 944 for (User *U : TheAlloca->users()) { 945 CallInst *Call = dyn_cast<CallInst>(U); 946 if (!Call) 947 continue; 948 Call->setTailCall(false); 949 } 950 continue; 951 } 952 953 if (I->use_empty()) { 954 AA.deleteValue(I); 955 continue; 956 } 957 958 // Otherwise, if we promoted this argument, then all users are load 959 // instructions (or GEPs with only load users), and all loads should be 960 // using the new argument that we added. 961 ScalarizeTable &ArgIndices = ScalarizedElements[I]; 962 963 while (!I->use_empty()) { 964 if (LoadInst *LI = dyn_cast<LoadInst>(I->user_back())) { 965 assert(ArgIndices.begin()->second.empty() && 966 "Load element should sort to front!"); 967 I2->setName(I->getName()+".val"); 968 LI->replaceAllUsesWith(I2); 969 AA.replaceWithNewValue(LI, I2); 970 LI->eraseFromParent(); 971 DEBUG(dbgs() << "*** Promoted load of argument '" << I->getName() 972 << "' in function '" << F->getName() << "'\n"); 973 } else { 974 GetElementPtrInst *GEP = cast<GetElementPtrInst>(I->user_back()); 975 IndicesVector Operands; 976 Operands.reserve(GEP->getNumIndices()); 977 for (User::op_iterator II = GEP->idx_begin(), IE = GEP->idx_end(); 978 II != IE; ++II) 979 Operands.push_back(cast<ConstantInt>(*II)->getSExtValue()); 980 981 // GEPs with a single 0 index can be merged with direct loads 982 if (Operands.size() == 1 && Operands.front() == 0) 983 Operands.clear(); 984 985 Function::arg_iterator TheArg = I2; 986 for (ScalarizeTable::iterator It = ArgIndices.begin(); 987 It->second != Operands; ++It, ++TheArg) { 988 assert(It != ArgIndices.end() && "GEP not handled??"); 989 } 990 991 std::string NewName = I->getName(); 992 for (unsigned i = 0, e = Operands.size(); i != e; ++i) { 993 NewName += "." + utostr(Operands[i]); 994 } 995 NewName += ".val"; 996 TheArg->setName(NewName); 997 998 DEBUG(dbgs() << "*** Promoted agg argument '" << TheArg->getName() 999 << "' of function '" << NF->getName() << "'\n"); 1000 1001 // All of the uses must be load instructions. Replace them all with 1002 // the argument specified by ArgNo. 1003 while (!GEP->use_empty()) { 1004 LoadInst *L = cast<LoadInst>(GEP->user_back()); 1005 L->replaceAllUsesWith(TheArg); 1006 AA.replaceWithNewValue(L, TheArg); 1007 L->eraseFromParent(); 1008 } 1009 AA.deleteValue(GEP); 1010 GEP->eraseFromParent(); 1011 } 1012 } 1013 1014 // Increment I2 past all of the arguments added for this promoted pointer. 1015 std::advance(I2, ArgIndices.size()); 1016 } 1017 1018 // Tell the alias analysis that the old function is about to disappear. 1019 AA.replaceWithNewValue(F, NF); 1020 1021 1022 NF_CGN->stealCalledFunctionsFrom(CG[F]); 1023 1024 // Now that the old function is dead, delete it. If there is a dangling 1025 // reference to the CallgraphNode, just leave the dead function around for 1026 // someone else to nuke. 1027 CallGraphNode *CGN = CG[F]; 1028 if (CGN->getNumReferences() == 0) 1029 delete CG.removeFunctionFromModule(CGN); 1030 else 1031 F->setLinkage(Function::ExternalLinkage); 1032 1033 return NF_CGN; 1034 } 1035 1036 bool ArgPromotion::doInitialization(CallGraph &CG) { 1037 FunctionDIs = makeSubprogramMap(CG.getModule()); 1038 return CallGraphSCCPass::doInitialization(CG); 1039 } 1040