1 //===- ArgumentPromotion.cpp - Promote by-reference arguments -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass promotes "by reference" arguments to be "by value" arguments.  In
10 // practice, this means looking for internal functions that have pointer
11 // arguments.  If it can prove, through the use of alias analysis, that an
12 // argument is *only* loaded, then it can pass the value into the function
13 // instead of the address of the value.  This can cause recursive simplification
14 // of code and lead to the elimination of allocas (especially in C++ template
15 // code like the STL).
16 //
17 // This pass also handles aggregate arguments that are passed into a function,
18 // scalarizing them if the elements of the aggregate are only loaded.  Note that
19 // by default it refuses to scalarize aggregates which would require passing in
20 // more than three operands to the function, because passing thousands of
21 // operands for a large array or structure is unprofitable! This limit can be
22 // configured or disabled, however.
23 //
24 // Note that this transformation could also be done for arguments that are only
25 // stored to (returning the value instead), but does not currently.  This case
26 // would be best handled when and if LLVM begins supporting multiple return
27 // values from functions.
28 //
29 //===----------------------------------------------------------------------===//
30 
31 #include "llvm/Transforms/IPO/ArgumentPromotion.h"
32 #include "llvm/ADT/DepthFirstIterator.h"
33 #include "llvm/ADT/None.h"
34 #include "llvm/ADT/Optional.h"
35 #include "llvm/ADT/STLExtras.h"
36 #include "llvm/ADT/SmallPtrSet.h"
37 #include "llvm/ADT/SmallVector.h"
38 #include "llvm/ADT/Statistic.h"
39 #include "llvm/ADT/StringExtras.h"
40 #include "llvm/ADT/Twine.h"
41 #include "llvm/Analysis/AliasAnalysis.h"
42 #include "llvm/Analysis/AssumptionCache.h"
43 #include "llvm/Analysis/BasicAliasAnalysis.h"
44 #include "llvm/Analysis/CGSCCPassManager.h"
45 #include "llvm/Analysis/CallGraph.h"
46 #include "llvm/Analysis/CallGraphSCCPass.h"
47 #include "llvm/Analysis/LazyCallGraph.h"
48 #include "llvm/Analysis/Loads.h"
49 #include "llvm/Analysis/MemoryLocation.h"
50 #include "llvm/Analysis/TargetLibraryInfo.h"
51 #include "llvm/Analysis/TargetTransformInfo.h"
52 #include "llvm/IR/Argument.h"
53 #include "llvm/IR/Attributes.h"
54 #include "llvm/IR/BasicBlock.h"
55 #include "llvm/IR/CFG.h"
56 #include "llvm/IR/CallSite.h"
57 #include "llvm/IR/Constants.h"
58 #include "llvm/IR/DataLayout.h"
59 #include "llvm/IR/DerivedTypes.h"
60 #include "llvm/IR/Function.h"
61 #include "llvm/IR/InstrTypes.h"
62 #include "llvm/IR/Instruction.h"
63 #include "llvm/IR/Instructions.h"
64 #include "llvm/IR/Metadata.h"
65 #include "llvm/IR/Module.h"
66 #include "llvm/IR/PassManager.h"
67 #include "llvm/IR/Type.h"
68 #include "llvm/IR/Use.h"
69 #include "llvm/IR/User.h"
70 #include "llvm/IR/Value.h"
71 #include "llvm/Pass.h"
72 #include "llvm/Support/Casting.h"
73 #include "llvm/Support/Debug.h"
74 #include "llvm/Support/raw_ostream.h"
75 #include "llvm/Transforms/IPO.h"
76 #include <algorithm>
77 #include <cassert>
78 #include <cstdint>
79 #include <functional>
80 #include <iterator>
81 #include <map>
82 #include <set>
83 #include <string>
84 #include <utility>
85 #include <vector>
86 
87 using namespace llvm;
88 
89 #define DEBUG_TYPE "argpromotion"
90 
91 STATISTIC(NumArgumentsPromoted, "Number of pointer arguments promoted");
92 STATISTIC(NumAggregatesPromoted, "Number of aggregate arguments promoted");
93 STATISTIC(NumByValArgsPromoted, "Number of byval arguments promoted");
94 STATISTIC(NumArgumentsDead, "Number of dead pointer args eliminated");
95 
96 /// A vector used to hold the indices of a single GEP instruction
97 using IndicesVector = std::vector<uint64_t>;
98 
99 /// DoPromotion - This method actually performs the promotion of the specified
100 /// arguments, and returns the new function.  At this point, we know that it's
101 /// safe to do so.
102 static Function *
103 doPromotion(Function *F, SmallPtrSetImpl<Argument *> &ArgsToPromote,
104             SmallPtrSetImpl<Argument *> &ByValArgsToTransform,
105             Optional<function_ref<void(CallSite OldCS, CallSite NewCS)>>
106                 ReplaceCallSite) {
107   // Start by computing a new prototype for the function, which is the same as
108   // the old function, but has modified arguments.
109   FunctionType *FTy = F->getFunctionType();
110   std::vector<Type *> Params;
111 
112   using ScalarizeTable = std::set<std::pair<Type *, IndicesVector>>;
113 
114   // ScalarizedElements - If we are promoting a pointer that has elements
115   // accessed out of it, keep track of which elements are accessed so that we
116   // can add one argument for each.
117   //
118   // Arguments that are directly loaded will have a zero element value here, to
119   // handle cases where there are both a direct load and GEP accesses.
120   std::map<Argument *, ScalarizeTable> ScalarizedElements;
121 
122   // OriginalLoads - Keep track of a representative load instruction from the
123   // original function so that we can tell the alias analysis implementation
124   // what the new GEP/Load instructions we are inserting look like.
125   // We need to keep the original loads for each argument and the elements
126   // of the argument that are accessed.
127   std::map<std::pair<Argument *, IndicesVector>, LoadInst *> OriginalLoads;
128 
129   // Attribute - Keep track of the parameter attributes for the arguments
130   // that we are *not* promoting. For the ones that we do promote, the parameter
131   // attributes are lost
132   SmallVector<AttributeSet, 8> ArgAttrVec;
133   AttributeList PAL = F->getAttributes();
134 
135   // First, determine the new argument list
136   unsigned ArgNo = 0;
137   for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E;
138        ++I, ++ArgNo) {
139     if (ByValArgsToTransform.count(&*I)) {
140       // Simple byval argument? Just add all the struct element types.
141       Type *AgTy = cast<PointerType>(I->getType())->getElementType();
142       StructType *STy = cast<StructType>(AgTy);
143       Params.insert(Params.end(), STy->element_begin(), STy->element_end());
144       ArgAttrVec.insert(ArgAttrVec.end(), STy->getNumElements(),
145                         AttributeSet());
146       ++NumByValArgsPromoted;
147     } else if (!ArgsToPromote.count(&*I)) {
148       // Unchanged argument
149       Params.push_back(I->getType());
150       ArgAttrVec.push_back(PAL.getParamAttributes(ArgNo));
151     } else if (I->use_empty()) {
152       // Dead argument (which are always marked as promotable)
153       ++NumArgumentsDead;
154 
155       // There may be remaining metadata uses of the argument for things like
156       // llvm.dbg.value. Replace them with undef.
157       I->replaceAllUsesWith(UndefValue::get(I->getType()));
158     } else {
159       // Okay, this is being promoted. This means that the only uses are loads
160       // or GEPs which are only used by loads
161 
162       // In this table, we will track which indices are loaded from the argument
163       // (where direct loads are tracked as no indices).
164       ScalarizeTable &ArgIndices = ScalarizedElements[&*I];
165       for (User *U : I->users()) {
166         Instruction *UI = cast<Instruction>(U);
167         Type *SrcTy;
168         if (LoadInst *L = dyn_cast<LoadInst>(UI))
169           SrcTy = L->getType();
170         else
171           SrcTy = cast<GetElementPtrInst>(UI)->getSourceElementType();
172         IndicesVector Indices;
173         Indices.reserve(UI->getNumOperands() - 1);
174         // Since loads will only have a single operand, and GEPs only a single
175         // non-index operand, this will record direct loads without any indices,
176         // and gep+loads with the GEP indices.
177         for (User::op_iterator II = UI->op_begin() + 1, IE = UI->op_end();
178              II != IE; ++II)
179           Indices.push_back(cast<ConstantInt>(*II)->getSExtValue());
180         // GEPs with a single 0 index can be merged with direct loads
181         if (Indices.size() == 1 && Indices.front() == 0)
182           Indices.clear();
183         ArgIndices.insert(std::make_pair(SrcTy, Indices));
184         LoadInst *OrigLoad;
185         if (LoadInst *L = dyn_cast<LoadInst>(UI))
186           OrigLoad = L;
187         else
188           // Take any load, we will use it only to update Alias Analysis
189           OrigLoad = cast<LoadInst>(UI->user_back());
190         OriginalLoads[std::make_pair(&*I, Indices)] = OrigLoad;
191       }
192 
193       // Add a parameter to the function for each element passed in.
194       for (const auto &ArgIndex : ArgIndices) {
195         // not allowed to dereference ->begin() if size() is 0
196         Params.push_back(GetElementPtrInst::getIndexedType(
197             cast<PointerType>(I->getType()->getScalarType())->getElementType(),
198             ArgIndex.second));
199         ArgAttrVec.push_back(AttributeSet());
200         assert(Params.back());
201       }
202 
203       if (ArgIndices.size() == 1 && ArgIndices.begin()->second.empty())
204         ++NumArgumentsPromoted;
205       else
206         ++NumAggregatesPromoted;
207     }
208   }
209 
210   Type *RetTy = FTy->getReturnType();
211 
212   // Construct the new function type using the new arguments.
213   FunctionType *NFTy = FunctionType::get(RetTy, Params, FTy->isVarArg());
214 
215   // Create the new function body and insert it into the module.
216   Function *NF = Function::Create(NFTy, F->getLinkage(), F->getAddressSpace(),
217                                   F->getName());
218   NF->copyAttributesFrom(F);
219 
220   // Patch the pointer to LLVM function in debug info descriptor.
221   NF->setSubprogram(F->getSubprogram());
222   F->setSubprogram(nullptr);
223 
224   LLVM_DEBUG(dbgs() << "ARG PROMOTION:  Promoting to:" << *NF << "\n"
225                     << "From: " << *F);
226 
227   // Recompute the parameter attributes list based on the new arguments for
228   // the function.
229   NF->setAttributes(AttributeList::get(F->getContext(), PAL.getFnAttributes(),
230                                        PAL.getRetAttributes(), ArgAttrVec));
231   ArgAttrVec.clear();
232 
233   F->getParent()->getFunctionList().insert(F->getIterator(), NF);
234   NF->takeName(F);
235 
236   // Loop over all of the callers of the function, transforming the call sites
237   // to pass in the loaded pointers.
238   //
239   SmallVector<Value *, 16> Args;
240   while (!F->use_empty()) {
241     CallSite CS(F->user_back());
242     assert(CS.getCalledFunction() == F);
243     Instruction *Call = CS.getInstruction();
244     const AttributeList &CallPAL = CS.getAttributes();
245 
246     // Loop over the operands, inserting GEP and loads in the caller as
247     // appropriate.
248     CallSite::arg_iterator AI = CS.arg_begin();
249     ArgNo = 0;
250     for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E;
251          ++I, ++AI, ++ArgNo)
252       if (!ArgsToPromote.count(&*I) && !ByValArgsToTransform.count(&*I)) {
253         Args.push_back(*AI); // Unmodified argument
254         ArgAttrVec.push_back(CallPAL.getParamAttributes(ArgNo));
255       } else if (ByValArgsToTransform.count(&*I)) {
256         // Emit a GEP and load for each element of the struct.
257         Type *AgTy = cast<PointerType>(I->getType())->getElementType();
258         StructType *STy = cast<StructType>(AgTy);
259         Value *Idxs[2] = {
260             ConstantInt::get(Type::getInt32Ty(F->getContext()), 0), nullptr};
261         for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
262           Idxs[1] = ConstantInt::get(Type::getInt32Ty(F->getContext()), i);
263           Value *Idx = GetElementPtrInst::Create(
264               STy, *AI, Idxs, (*AI)->getName() + "." + Twine(i), Call);
265           // TODO: Tell AA about the new values?
266           Args.push_back(new LoadInst(STy->getElementType(i), Idx,
267                                       Idx->getName() + ".val", Call));
268           ArgAttrVec.push_back(AttributeSet());
269         }
270       } else if (!I->use_empty()) {
271         // Non-dead argument: insert GEPs and loads as appropriate.
272         ScalarizeTable &ArgIndices = ScalarizedElements[&*I];
273         // Store the Value* version of the indices in here, but declare it now
274         // for reuse.
275         std::vector<Value *> Ops;
276         for (const auto &ArgIndex : ArgIndices) {
277           Value *V = *AI;
278           LoadInst *OrigLoad =
279               OriginalLoads[std::make_pair(&*I, ArgIndex.second)];
280           if (!ArgIndex.second.empty()) {
281             Ops.reserve(ArgIndex.second.size());
282             Type *ElTy = V->getType();
283             for (auto II : ArgIndex.second) {
284               // Use i32 to index structs, and i64 for others (pointers/arrays).
285               // This satisfies GEP constraints.
286               Type *IdxTy =
287                   (ElTy->isStructTy() ? Type::getInt32Ty(F->getContext())
288                                       : Type::getInt64Ty(F->getContext()));
289               Ops.push_back(ConstantInt::get(IdxTy, II));
290               // Keep track of the type we're currently indexing.
291               if (auto *ElPTy = dyn_cast<PointerType>(ElTy))
292                 ElTy = ElPTy->getElementType();
293               else
294                 ElTy = cast<CompositeType>(ElTy)->getTypeAtIndex(II);
295             }
296             // And create a GEP to extract those indices.
297             V = GetElementPtrInst::Create(ArgIndex.first, V, Ops,
298                                           V->getName() + ".idx", Call);
299             Ops.clear();
300           }
301           // Since we're replacing a load make sure we take the alignment
302           // of the previous load.
303           LoadInst *newLoad =
304               new LoadInst(OrigLoad->getType(), V, V->getName() + ".val", Call);
305           newLoad->setAlignment(OrigLoad->getAlignment());
306           // Transfer the AA info too.
307           AAMDNodes AAInfo;
308           OrigLoad->getAAMetadata(AAInfo);
309           newLoad->setAAMetadata(AAInfo);
310 
311           Args.push_back(newLoad);
312           ArgAttrVec.push_back(AttributeSet());
313         }
314       }
315 
316     // Push any varargs arguments on the list.
317     for (; AI != CS.arg_end(); ++AI, ++ArgNo) {
318       Args.push_back(*AI);
319       ArgAttrVec.push_back(CallPAL.getParamAttributes(ArgNo));
320     }
321 
322     SmallVector<OperandBundleDef, 1> OpBundles;
323     CS.getOperandBundlesAsDefs(OpBundles);
324 
325     CallSite NewCS;
326     if (InvokeInst *II = dyn_cast<InvokeInst>(Call)) {
327       NewCS = InvokeInst::Create(NF, II->getNormalDest(), II->getUnwindDest(),
328                                  Args, OpBundles, "", Call);
329     } else {
330       auto *NewCall = CallInst::Create(NF, Args, OpBundles, "", Call);
331       NewCall->setTailCallKind(cast<CallInst>(Call)->getTailCallKind());
332       NewCS = NewCall;
333     }
334     NewCS.setCallingConv(CS.getCallingConv());
335     NewCS.setAttributes(
336         AttributeList::get(F->getContext(), CallPAL.getFnAttributes(),
337                            CallPAL.getRetAttributes(), ArgAttrVec));
338     NewCS->setDebugLoc(Call->getDebugLoc());
339     uint64_t W;
340     if (Call->extractProfTotalWeight(W))
341       NewCS->setProfWeight(W);
342     Args.clear();
343     ArgAttrVec.clear();
344 
345     // Update the callgraph to know that the callsite has been transformed.
346     if (ReplaceCallSite)
347       (*ReplaceCallSite)(CS, NewCS);
348 
349     if (!Call->use_empty()) {
350       Call->replaceAllUsesWith(NewCS.getInstruction());
351       NewCS->takeName(Call);
352     }
353 
354     // Finally, remove the old call from the program, reducing the use-count of
355     // F.
356     Call->eraseFromParent();
357   }
358 
359   const DataLayout &DL = F->getParent()->getDataLayout();
360 
361   // Since we have now created the new function, splice the body of the old
362   // function right into the new function, leaving the old rotting hulk of the
363   // function empty.
364   NF->getBasicBlockList().splice(NF->begin(), F->getBasicBlockList());
365 
366   // Loop over the argument list, transferring uses of the old arguments over to
367   // the new arguments, also transferring over the names as well.
368   for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(),
369                               I2 = NF->arg_begin();
370        I != E; ++I) {
371     if (!ArgsToPromote.count(&*I) && !ByValArgsToTransform.count(&*I)) {
372       // If this is an unmodified argument, move the name and users over to the
373       // new version.
374       I->replaceAllUsesWith(&*I2);
375       I2->takeName(&*I);
376       ++I2;
377       continue;
378     }
379 
380     if (ByValArgsToTransform.count(&*I)) {
381       // In the callee, we create an alloca, and store each of the new incoming
382       // arguments into the alloca.
383       Instruction *InsertPt = &NF->begin()->front();
384 
385       // Just add all the struct element types.
386       Type *AgTy = cast<PointerType>(I->getType())->getElementType();
387       Value *TheAlloca = new AllocaInst(AgTy, DL.getAllocaAddrSpace(), nullptr,
388                                         I->getParamAlignment(), "", InsertPt);
389       StructType *STy = cast<StructType>(AgTy);
390       Value *Idxs[2] = {ConstantInt::get(Type::getInt32Ty(F->getContext()), 0),
391                         nullptr};
392 
393       for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
394         Idxs[1] = ConstantInt::get(Type::getInt32Ty(F->getContext()), i);
395         Value *Idx = GetElementPtrInst::Create(
396             AgTy, TheAlloca, Idxs, TheAlloca->getName() + "." + Twine(i),
397             InsertPt);
398         I2->setName(I->getName() + "." + Twine(i));
399         new StoreInst(&*I2++, Idx, InsertPt);
400       }
401 
402       // Anything that used the arg should now use the alloca.
403       I->replaceAllUsesWith(TheAlloca);
404       TheAlloca->takeName(&*I);
405 
406       // If the alloca is used in a call, we must clear the tail flag since
407       // the callee now uses an alloca from the caller.
408       for (User *U : TheAlloca->users()) {
409         CallInst *Call = dyn_cast<CallInst>(U);
410         if (!Call)
411           continue;
412         Call->setTailCall(false);
413       }
414       continue;
415     }
416 
417     if (I->use_empty())
418       continue;
419 
420     // Otherwise, if we promoted this argument, then all users are load
421     // instructions (or GEPs with only load users), and all loads should be
422     // using the new argument that we added.
423     ScalarizeTable &ArgIndices = ScalarizedElements[&*I];
424 
425     while (!I->use_empty()) {
426       if (LoadInst *LI = dyn_cast<LoadInst>(I->user_back())) {
427         assert(ArgIndices.begin()->second.empty() &&
428                "Load element should sort to front!");
429         I2->setName(I->getName() + ".val");
430         LI->replaceAllUsesWith(&*I2);
431         LI->eraseFromParent();
432         LLVM_DEBUG(dbgs() << "*** Promoted load of argument '" << I->getName()
433                           << "' in function '" << F->getName() << "'\n");
434       } else {
435         GetElementPtrInst *GEP = cast<GetElementPtrInst>(I->user_back());
436         IndicesVector Operands;
437         Operands.reserve(GEP->getNumIndices());
438         for (User::op_iterator II = GEP->idx_begin(), IE = GEP->idx_end();
439              II != IE; ++II)
440           Operands.push_back(cast<ConstantInt>(*II)->getSExtValue());
441 
442         // GEPs with a single 0 index can be merged with direct loads
443         if (Operands.size() == 1 && Operands.front() == 0)
444           Operands.clear();
445 
446         Function::arg_iterator TheArg = I2;
447         for (ScalarizeTable::iterator It = ArgIndices.begin();
448              It->second != Operands; ++It, ++TheArg) {
449           assert(It != ArgIndices.end() && "GEP not handled??");
450         }
451 
452         std::string NewName = I->getName();
453         for (unsigned i = 0, e = Operands.size(); i != e; ++i) {
454           NewName += "." + utostr(Operands[i]);
455         }
456         NewName += ".val";
457         TheArg->setName(NewName);
458 
459         LLVM_DEBUG(dbgs() << "*** Promoted agg argument '" << TheArg->getName()
460                           << "' of function '" << NF->getName() << "'\n");
461 
462         // All of the uses must be load instructions.  Replace them all with
463         // the argument specified by ArgNo.
464         while (!GEP->use_empty()) {
465           LoadInst *L = cast<LoadInst>(GEP->user_back());
466           L->replaceAllUsesWith(&*TheArg);
467           L->eraseFromParent();
468         }
469         GEP->eraseFromParent();
470       }
471     }
472 
473     // Increment I2 past all of the arguments added for this promoted pointer.
474     std::advance(I2, ArgIndices.size());
475   }
476 
477   return NF;
478 }
479 
480 /// AllCallersPassInValidPointerForArgument - Return true if we can prove that
481 /// all callees pass in a valid pointer for the specified function argument.
482 static bool allCallersPassInValidPointerForArgument(Argument *Arg) {
483   Function *Callee = Arg->getParent();
484   const DataLayout &DL = Callee->getParent()->getDataLayout();
485 
486   unsigned ArgNo = Arg->getArgNo();
487 
488   // Look at all call sites of the function.  At this point we know we only have
489   // direct callees.
490   for (User *U : Callee->users()) {
491     CallSite CS(U);
492     assert(CS && "Should only have direct calls!");
493 
494     if (!isDereferenceablePointer(CS.getArgument(ArgNo), DL))
495       return false;
496   }
497   return true;
498 }
499 
500 /// Returns true if Prefix is a prefix of longer. That means, Longer has a size
501 /// that is greater than or equal to the size of prefix, and each of the
502 /// elements in Prefix is the same as the corresponding elements in Longer.
503 ///
504 /// This means it also returns true when Prefix and Longer are equal!
505 static bool isPrefix(const IndicesVector &Prefix, const IndicesVector &Longer) {
506   if (Prefix.size() > Longer.size())
507     return false;
508   return std::equal(Prefix.begin(), Prefix.end(), Longer.begin());
509 }
510 
511 /// Checks if Indices, or a prefix of Indices, is in Set.
512 static bool prefixIn(const IndicesVector &Indices,
513                      std::set<IndicesVector> &Set) {
514   std::set<IndicesVector>::iterator Low;
515   Low = Set.upper_bound(Indices);
516   if (Low != Set.begin())
517     Low--;
518   // Low is now the last element smaller than or equal to Indices. This means
519   // it points to a prefix of Indices (possibly Indices itself), if such
520   // prefix exists.
521   //
522   // This load is safe if any prefix of its operands is safe to load.
523   return Low != Set.end() && isPrefix(*Low, Indices);
524 }
525 
526 /// Mark the given indices (ToMark) as safe in the given set of indices
527 /// (Safe). Marking safe usually means adding ToMark to Safe. However, if there
528 /// is already a prefix of Indices in Safe, Indices are implicitely marked safe
529 /// already. Furthermore, any indices that Indices is itself a prefix of, are
530 /// removed from Safe (since they are implicitely safe because of Indices now).
531 static void markIndicesSafe(const IndicesVector &ToMark,
532                             std::set<IndicesVector> &Safe) {
533   std::set<IndicesVector>::iterator Low;
534   Low = Safe.upper_bound(ToMark);
535   // Guard against the case where Safe is empty
536   if (Low != Safe.begin())
537     Low--;
538   // Low is now the last element smaller than or equal to Indices. This
539   // means it points to a prefix of Indices (possibly Indices itself), if
540   // such prefix exists.
541   if (Low != Safe.end()) {
542     if (isPrefix(*Low, ToMark))
543       // If there is already a prefix of these indices (or exactly these
544       // indices) marked a safe, don't bother adding these indices
545       return;
546 
547     // Increment Low, so we can use it as a "insert before" hint
548     ++Low;
549   }
550   // Insert
551   Low = Safe.insert(Low, ToMark);
552   ++Low;
553   // If there we're a prefix of longer index list(s), remove those
554   std::set<IndicesVector>::iterator End = Safe.end();
555   while (Low != End && isPrefix(ToMark, *Low)) {
556     std::set<IndicesVector>::iterator Remove = Low;
557     ++Low;
558     Safe.erase(Remove);
559   }
560 }
561 
562 /// isSafeToPromoteArgument - As you might guess from the name of this method,
563 /// it checks to see if it is both safe and useful to promote the argument.
564 /// This method limits promotion of aggregates to only promote up to three
565 /// elements of the aggregate in order to avoid exploding the number of
566 /// arguments passed in.
567 static bool isSafeToPromoteArgument(Argument *Arg, bool isByValOrInAlloca,
568                                     AAResults &AAR, unsigned MaxElements) {
569   using GEPIndicesSet = std::set<IndicesVector>;
570 
571   // Quick exit for unused arguments
572   if (Arg->use_empty())
573     return true;
574 
575   // We can only promote this argument if all of the uses are loads, or are GEP
576   // instructions (with constant indices) that are subsequently loaded.
577   //
578   // Promoting the argument causes it to be loaded in the caller
579   // unconditionally. This is only safe if we can prove that either the load
580   // would have happened in the callee anyway (ie, there is a load in the entry
581   // block) or the pointer passed in at every call site is guaranteed to be
582   // valid.
583   // In the former case, invalid loads can happen, but would have happened
584   // anyway, in the latter case, invalid loads won't happen. This prevents us
585   // from introducing an invalid load that wouldn't have happened in the
586   // original code.
587   //
588   // This set will contain all sets of indices that are loaded in the entry
589   // block, and thus are safe to unconditionally load in the caller.
590   //
591   // This optimization is also safe for InAlloca parameters, because it verifies
592   // that the address isn't captured.
593   GEPIndicesSet SafeToUnconditionallyLoad;
594 
595   // This set contains all the sets of indices that we are planning to promote.
596   // This makes it possible to limit the number of arguments added.
597   GEPIndicesSet ToPromote;
598 
599   // If the pointer is always valid, any load with first index 0 is valid.
600   if (isByValOrInAlloca || allCallersPassInValidPointerForArgument(Arg))
601     SafeToUnconditionallyLoad.insert(IndicesVector(1, 0));
602 
603   // First, iterate the entry block and mark loads of (geps of) arguments as
604   // safe.
605   BasicBlock &EntryBlock = Arg->getParent()->front();
606   // Declare this here so we can reuse it
607   IndicesVector Indices;
608   for (Instruction &I : EntryBlock)
609     if (LoadInst *LI = dyn_cast<LoadInst>(&I)) {
610       Value *V = LI->getPointerOperand();
611       if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(V)) {
612         V = GEP->getPointerOperand();
613         if (V == Arg) {
614           // This load actually loads (part of) Arg? Check the indices then.
615           Indices.reserve(GEP->getNumIndices());
616           for (User::op_iterator II = GEP->idx_begin(), IE = GEP->idx_end();
617                II != IE; ++II)
618             if (ConstantInt *CI = dyn_cast<ConstantInt>(*II))
619               Indices.push_back(CI->getSExtValue());
620             else
621               // We found a non-constant GEP index for this argument? Bail out
622               // right away, can't promote this argument at all.
623               return false;
624 
625           // Indices checked out, mark them as safe
626           markIndicesSafe(Indices, SafeToUnconditionallyLoad);
627           Indices.clear();
628         }
629       } else if (V == Arg) {
630         // Direct loads are equivalent to a GEP with a single 0 index.
631         markIndicesSafe(IndicesVector(1, 0), SafeToUnconditionallyLoad);
632       }
633     }
634 
635   // Now, iterate all uses of the argument to see if there are any uses that are
636   // not (GEP+)loads, or any (GEP+)loads that are not safe to promote.
637   SmallVector<LoadInst *, 16> Loads;
638   IndicesVector Operands;
639   for (Use &U : Arg->uses()) {
640     User *UR = U.getUser();
641     Operands.clear();
642     if (LoadInst *LI = dyn_cast<LoadInst>(UR)) {
643       // Don't hack volatile/atomic loads
644       if (!LI->isSimple())
645         return false;
646       Loads.push_back(LI);
647       // Direct loads are equivalent to a GEP with a zero index and then a load.
648       Operands.push_back(0);
649     } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(UR)) {
650       if (GEP->use_empty()) {
651         // Dead GEP's cause trouble later.  Just remove them if we run into
652         // them.
653         GEP->eraseFromParent();
654         // TODO: This runs the above loop over and over again for dead GEPs
655         // Couldn't we just do increment the UI iterator earlier and erase the
656         // use?
657         return isSafeToPromoteArgument(Arg, isByValOrInAlloca, AAR,
658                                        MaxElements);
659       }
660 
661       // Ensure that all of the indices are constants.
662       for (User::op_iterator i = GEP->idx_begin(), e = GEP->idx_end(); i != e;
663            ++i)
664         if (ConstantInt *C = dyn_cast<ConstantInt>(*i))
665           Operands.push_back(C->getSExtValue());
666         else
667           return false; // Not a constant operand GEP!
668 
669       // Ensure that the only users of the GEP are load instructions.
670       for (User *GEPU : GEP->users())
671         if (LoadInst *LI = dyn_cast<LoadInst>(GEPU)) {
672           // Don't hack volatile/atomic loads
673           if (!LI->isSimple())
674             return false;
675           Loads.push_back(LI);
676         } else {
677           // Other uses than load?
678           return false;
679         }
680     } else {
681       return false; // Not a load or a GEP.
682     }
683 
684     // Now, see if it is safe to promote this load / loads of this GEP. Loading
685     // is safe if Operands, or a prefix of Operands, is marked as safe.
686     if (!prefixIn(Operands, SafeToUnconditionallyLoad))
687       return false;
688 
689     // See if we are already promoting a load with these indices. If not, check
690     // to make sure that we aren't promoting too many elements.  If so, nothing
691     // to do.
692     if (ToPromote.find(Operands) == ToPromote.end()) {
693       if (MaxElements > 0 && ToPromote.size() == MaxElements) {
694         LLVM_DEBUG(dbgs() << "argpromotion not promoting argument '"
695                           << Arg->getName()
696                           << "' because it would require adding more "
697                           << "than " << MaxElements
698                           << " arguments to the function.\n");
699         // We limit aggregate promotion to only promoting up to a fixed number
700         // of elements of the aggregate.
701         return false;
702       }
703       ToPromote.insert(std::move(Operands));
704     }
705   }
706 
707   if (Loads.empty())
708     return true; // No users, this is a dead argument.
709 
710   // Okay, now we know that the argument is only used by load instructions and
711   // it is safe to unconditionally perform all of them. Use alias analysis to
712   // check to see if the pointer is guaranteed to not be modified from entry of
713   // the function to each of the load instructions.
714 
715   // Because there could be several/many load instructions, remember which
716   // blocks we know to be transparent to the load.
717   df_iterator_default_set<BasicBlock *, 16> TranspBlocks;
718 
719   for (LoadInst *Load : Loads) {
720     // Check to see if the load is invalidated from the start of the block to
721     // the load itself.
722     BasicBlock *BB = Load->getParent();
723 
724     MemoryLocation Loc = MemoryLocation::get(Load);
725     if (AAR.canInstructionRangeModRef(BB->front(), *Load, Loc, ModRefInfo::Mod))
726       return false; // Pointer is invalidated!
727 
728     // Now check every path from the entry block to the load for transparency.
729     // To do this, we perform a depth first search on the inverse CFG from the
730     // loading block.
731     for (BasicBlock *P : predecessors(BB)) {
732       for (BasicBlock *TranspBB : inverse_depth_first_ext(P, TranspBlocks))
733         if (AAR.canBasicBlockModify(*TranspBB, Loc))
734           return false;
735     }
736   }
737 
738   // If the path from the entry of the function to each load is free of
739   // instructions that potentially invalidate the load, we can make the
740   // transformation!
741   return true;
742 }
743 
744 /// Checks if a type could have padding bytes.
745 static bool isDenselyPacked(Type *type, const DataLayout &DL) {
746   // There is no size information, so be conservative.
747   if (!type->isSized())
748     return false;
749 
750   // If the alloc size is not equal to the storage size, then there are padding
751   // bytes. For x86_fp80 on x86-64, size: 80 alloc size: 128.
752   if (DL.getTypeSizeInBits(type) != DL.getTypeAllocSizeInBits(type))
753     return false;
754 
755   if (!isa<CompositeType>(type))
756     return true;
757 
758   // For homogenous sequential types, check for padding within members.
759   if (SequentialType *seqTy = dyn_cast<SequentialType>(type))
760     return isDenselyPacked(seqTy->getElementType(), DL);
761 
762   // Check for padding within and between elements of a struct.
763   StructType *StructTy = cast<StructType>(type);
764   const StructLayout *Layout = DL.getStructLayout(StructTy);
765   uint64_t StartPos = 0;
766   for (unsigned i = 0, E = StructTy->getNumElements(); i < E; ++i) {
767     Type *ElTy = StructTy->getElementType(i);
768     if (!isDenselyPacked(ElTy, DL))
769       return false;
770     if (StartPos != Layout->getElementOffsetInBits(i))
771       return false;
772     StartPos += DL.getTypeAllocSizeInBits(ElTy);
773   }
774 
775   return true;
776 }
777 
778 /// Checks if the padding bytes of an argument could be accessed.
779 static bool canPaddingBeAccessed(Argument *arg) {
780   assert(arg->hasByValAttr());
781 
782   // Track all the pointers to the argument to make sure they are not captured.
783   SmallPtrSet<Value *, 16> PtrValues;
784   PtrValues.insert(arg);
785 
786   // Track all of the stores.
787   SmallVector<StoreInst *, 16> Stores;
788 
789   // Scan through the uses recursively to make sure the pointer is always used
790   // sanely.
791   SmallVector<Value *, 16> WorkList;
792   WorkList.insert(WorkList.end(), arg->user_begin(), arg->user_end());
793   while (!WorkList.empty()) {
794     Value *V = WorkList.back();
795     WorkList.pop_back();
796     if (isa<GetElementPtrInst>(V) || isa<PHINode>(V)) {
797       if (PtrValues.insert(V).second)
798         WorkList.insert(WorkList.end(), V->user_begin(), V->user_end());
799     } else if (StoreInst *Store = dyn_cast<StoreInst>(V)) {
800       Stores.push_back(Store);
801     } else if (!isa<LoadInst>(V)) {
802       return true;
803     }
804   }
805 
806   // Check to make sure the pointers aren't captured
807   for (StoreInst *Store : Stores)
808     if (PtrValues.count(Store->getValueOperand()))
809       return true;
810 
811   return false;
812 }
813 
814 static bool areFunctionArgsABICompatible(
815     const Function &F, const TargetTransformInfo &TTI,
816     SmallPtrSetImpl<Argument *> &ArgsToPromote,
817     SmallPtrSetImpl<Argument *> &ByValArgsToTransform) {
818   for (const Use &U : F.uses()) {
819     CallSite CS(U.getUser());
820     const Function *Caller = CS.getCaller();
821     const Function *Callee = CS.getCalledFunction();
822     if (!TTI.areFunctionArgsABICompatible(Caller, Callee, ArgsToPromote) ||
823         !TTI.areFunctionArgsABICompatible(Caller, Callee, ByValArgsToTransform))
824       return false;
825   }
826   return true;
827 }
828 
829 /// PromoteArguments - This method checks the specified function to see if there
830 /// are any promotable arguments and if it is safe to promote the function (for
831 /// example, all callers are direct).  If safe to promote some arguments, it
832 /// calls the DoPromotion method.
833 static Function *
834 promoteArguments(Function *F, function_ref<AAResults &(Function &F)> AARGetter,
835                  unsigned MaxElements,
836                  Optional<function_ref<void(CallSite OldCS, CallSite NewCS)>>
837                      ReplaceCallSite,
838                  const TargetTransformInfo &TTI) {
839   // Don't perform argument promotion for naked functions; otherwise we can end
840   // up removing parameters that are seemingly 'not used' as they are referred
841   // to in the assembly.
842   if(F->hasFnAttribute(Attribute::Naked))
843     return nullptr;
844 
845   // Make sure that it is local to this module.
846   if (!F->hasLocalLinkage())
847     return nullptr;
848 
849   // Don't promote arguments for variadic functions. Adding, removing, or
850   // changing non-pack parameters can change the classification of pack
851   // parameters. Frontends encode that classification at the call site in the
852   // IR, while in the callee the classification is determined dynamically based
853   // on the number of registers consumed so far.
854   if (F->isVarArg())
855     return nullptr;
856 
857   // First check: see if there are any pointer arguments!  If not, quick exit.
858   SmallVector<Argument *, 16> PointerArgs;
859   for (Argument &I : F->args())
860     if (I.getType()->isPointerTy())
861       PointerArgs.push_back(&I);
862   if (PointerArgs.empty())
863     return nullptr;
864 
865   // Second check: make sure that all callers are direct callers.  We can't
866   // transform functions that have indirect callers.  Also see if the function
867   // is self-recursive and check that target features are compatible.
868   bool isSelfRecursive = false;
869   for (Use &U : F->uses()) {
870     CallSite CS(U.getUser());
871     // Must be a direct call.
872     if (CS.getInstruction() == nullptr || !CS.isCallee(&U))
873       return nullptr;
874 
875     // Can't change signature of musttail callee
876     if (CS.isMustTailCall())
877       return nullptr;
878 
879     if (CS.getInstruction()->getParent()->getParent() == F)
880       isSelfRecursive = true;
881   }
882 
883   // Can't change signature of musttail caller
884   // FIXME: Support promoting whole chain of musttail functions
885   for (BasicBlock &BB : *F)
886     if (BB.getTerminatingMustTailCall())
887       return nullptr;
888 
889   const DataLayout &DL = F->getParent()->getDataLayout();
890 
891   AAResults &AAR = AARGetter(*F);
892 
893   // Check to see which arguments are promotable.  If an argument is promotable,
894   // add it to ArgsToPromote.
895   SmallPtrSet<Argument *, 8> ArgsToPromote;
896   SmallPtrSet<Argument *, 8> ByValArgsToTransform;
897   for (Argument *PtrArg : PointerArgs) {
898     Type *AgTy = cast<PointerType>(PtrArg->getType())->getElementType();
899 
900     // Replace sret attribute with noalias. This reduces register pressure by
901     // avoiding a register copy.
902     if (PtrArg->hasStructRetAttr()) {
903       unsigned ArgNo = PtrArg->getArgNo();
904       F->removeParamAttr(ArgNo, Attribute::StructRet);
905       F->addParamAttr(ArgNo, Attribute::NoAlias);
906       for (Use &U : F->uses()) {
907         CallSite CS(U.getUser());
908         CS.removeParamAttr(ArgNo, Attribute::StructRet);
909         CS.addParamAttr(ArgNo, Attribute::NoAlias);
910       }
911     }
912 
913     // If this is a byval argument, and if the aggregate type is small, just
914     // pass the elements, which is always safe, if the passed value is densely
915     // packed or if we can prove the padding bytes are never accessed. This does
916     // not apply to inalloca.
917     bool isSafeToPromote =
918         PtrArg->hasByValAttr() &&
919         (isDenselyPacked(AgTy, DL) || !canPaddingBeAccessed(PtrArg));
920     if (isSafeToPromote) {
921       if (StructType *STy = dyn_cast<StructType>(AgTy)) {
922         if (MaxElements > 0 && STy->getNumElements() > MaxElements) {
923           LLVM_DEBUG(dbgs() << "argpromotion disable promoting argument '"
924                             << PtrArg->getName()
925                             << "' because it would require adding more"
926                             << " than " << MaxElements
927                             << " arguments to the function.\n");
928           continue;
929         }
930 
931         // If all the elements are single-value types, we can promote it.
932         bool AllSimple = true;
933         for (const auto *EltTy : STy->elements()) {
934           if (!EltTy->isSingleValueType()) {
935             AllSimple = false;
936             break;
937           }
938         }
939 
940         // Safe to transform, don't even bother trying to "promote" it.
941         // Passing the elements as a scalar will allow sroa to hack on
942         // the new alloca we introduce.
943         if (AllSimple) {
944           ByValArgsToTransform.insert(PtrArg);
945           continue;
946         }
947       }
948     }
949 
950     // If the argument is a recursive type and we're in a recursive
951     // function, we could end up infinitely peeling the function argument.
952     if (isSelfRecursive) {
953       if (StructType *STy = dyn_cast<StructType>(AgTy)) {
954         bool RecursiveType = false;
955         for (const auto *EltTy : STy->elements()) {
956           if (EltTy == PtrArg->getType()) {
957             RecursiveType = true;
958             break;
959           }
960         }
961         if (RecursiveType)
962           continue;
963       }
964     }
965 
966     // Otherwise, see if we can promote the pointer to its value.
967     if (isSafeToPromoteArgument(PtrArg, PtrArg->hasByValOrInAllocaAttr(), AAR,
968                                 MaxElements))
969       ArgsToPromote.insert(PtrArg);
970   }
971 
972   // No promotable pointer arguments.
973   if (ArgsToPromote.empty() && ByValArgsToTransform.empty())
974     return nullptr;
975 
976   if (!areFunctionArgsABICompatible(*F, TTI, ArgsToPromote,
977                                     ByValArgsToTransform))
978     return nullptr;
979 
980   return doPromotion(F, ArgsToPromote, ByValArgsToTransform, ReplaceCallSite);
981 }
982 
983 PreservedAnalyses ArgumentPromotionPass::run(LazyCallGraph::SCC &C,
984                                              CGSCCAnalysisManager &AM,
985                                              LazyCallGraph &CG,
986                                              CGSCCUpdateResult &UR) {
987   bool Changed = false, LocalChange;
988 
989   // Iterate until we stop promoting from this SCC.
990   do {
991     LocalChange = false;
992 
993     for (LazyCallGraph::Node &N : C) {
994       Function &OldF = N.getFunction();
995 
996       FunctionAnalysisManager &FAM =
997           AM.getResult<FunctionAnalysisManagerCGSCCProxy>(C, CG).getManager();
998       // FIXME: This lambda must only be used with this function. We should
999       // skip the lambda and just get the AA results directly.
1000       auto AARGetter = [&](Function &F) -> AAResults & {
1001         assert(&F == &OldF && "Called with an unexpected function!");
1002         return FAM.getResult<AAManager>(F);
1003       };
1004 
1005       const TargetTransformInfo &TTI = FAM.getResult<TargetIRAnalysis>(OldF);
1006       Function *NewF =
1007           promoteArguments(&OldF, AARGetter, MaxElements, None, TTI);
1008       if (!NewF)
1009         continue;
1010       LocalChange = true;
1011 
1012       // Directly substitute the functions in the call graph. Note that this
1013       // requires the old function to be completely dead and completely
1014       // replaced by the new function. It does no call graph updates, it merely
1015       // swaps out the particular function mapped to a particular node in the
1016       // graph.
1017       C.getOuterRefSCC().replaceNodeFunction(N, *NewF);
1018       OldF.eraseFromParent();
1019     }
1020 
1021     Changed |= LocalChange;
1022   } while (LocalChange);
1023 
1024   if (!Changed)
1025     return PreservedAnalyses::all();
1026 
1027   return PreservedAnalyses::none();
1028 }
1029 
1030 namespace {
1031 
1032 /// ArgPromotion - The 'by reference' to 'by value' argument promotion pass.
1033 struct ArgPromotion : public CallGraphSCCPass {
1034   // Pass identification, replacement for typeid
1035   static char ID;
1036 
1037   explicit ArgPromotion(unsigned MaxElements = 3)
1038       : CallGraphSCCPass(ID), MaxElements(MaxElements) {
1039     initializeArgPromotionPass(*PassRegistry::getPassRegistry());
1040   }
1041 
1042   void getAnalysisUsage(AnalysisUsage &AU) const override {
1043     AU.addRequired<AssumptionCacheTracker>();
1044     AU.addRequired<TargetLibraryInfoWrapperPass>();
1045     AU.addRequired<TargetTransformInfoWrapperPass>();
1046     getAAResultsAnalysisUsage(AU);
1047     CallGraphSCCPass::getAnalysisUsage(AU);
1048   }
1049 
1050   bool runOnSCC(CallGraphSCC &SCC) override;
1051 
1052 private:
1053   using llvm::Pass::doInitialization;
1054 
1055   bool doInitialization(CallGraph &CG) override;
1056 
1057   /// The maximum number of elements to expand, or 0 for unlimited.
1058   unsigned MaxElements;
1059 };
1060 
1061 } // end anonymous namespace
1062 
1063 char ArgPromotion::ID = 0;
1064 
1065 INITIALIZE_PASS_BEGIN(ArgPromotion, "argpromotion",
1066                       "Promote 'by reference' arguments to scalars", false,
1067                       false)
1068 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
1069 INITIALIZE_PASS_DEPENDENCY(CallGraphWrapperPass)
1070 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
1071 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
1072 INITIALIZE_PASS_END(ArgPromotion, "argpromotion",
1073                     "Promote 'by reference' arguments to scalars", false, false)
1074 
1075 Pass *llvm::createArgumentPromotionPass(unsigned MaxElements) {
1076   return new ArgPromotion(MaxElements);
1077 }
1078 
1079 bool ArgPromotion::runOnSCC(CallGraphSCC &SCC) {
1080   if (skipSCC(SCC))
1081     return false;
1082 
1083   // Get the callgraph information that we need to update to reflect our
1084   // changes.
1085   CallGraph &CG = getAnalysis<CallGraphWrapperPass>().getCallGraph();
1086 
1087   LegacyAARGetter AARGetter(*this);
1088 
1089   bool Changed = false, LocalChange;
1090 
1091   // Iterate until we stop promoting from this SCC.
1092   do {
1093     LocalChange = false;
1094     // Attempt to promote arguments from all functions in this SCC.
1095     for (CallGraphNode *OldNode : SCC) {
1096       Function *OldF = OldNode->getFunction();
1097       if (!OldF)
1098         continue;
1099 
1100       auto ReplaceCallSite = [&](CallSite OldCS, CallSite NewCS) {
1101         Function *Caller = OldCS.getInstruction()->getParent()->getParent();
1102         CallGraphNode *NewCalleeNode =
1103             CG.getOrInsertFunction(NewCS.getCalledFunction());
1104         CallGraphNode *CallerNode = CG[Caller];
1105         CallerNode->replaceCallEdge(OldCS, NewCS, NewCalleeNode);
1106       };
1107 
1108       const TargetTransformInfo &TTI =
1109           getAnalysis<TargetTransformInfoWrapperPass>().getTTI(*OldF);
1110       if (Function *NewF = promoteArguments(OldF, AARGetter, MaxElements,
1111                                             {ReplaceCallSite}, TTI)) {
1112         LocalChange = true;
1113 
1114         // Update the call graph for the newly promoted function.
1115         CallGraphNode *NewNode = CG.getOrInsertFunction(NewF);
1116         NewNode->stealCalledFunctionsFrom(OldNode);
1117         if (OldNode->getNumReferences() == 0)
1118           delete CG.removeFunctionFromModule(OldNode);
1119         else
1120           OldF->setLinkage(Function::ExternalLinkage);
1121 
1122         // And updat ethe SCC we're iterating as well.
1123         SCC.ReplaceNode(OldNode, NewNode);
1124       }
1125     }
1126     // Remember that we changed something.
1127     Changed |= LocalChange;
1128   } while (LocalChange);
1129 
1130   return Changed;
1131 }
1132 
1133 bool ArgPromotion::doInitialization(CallGraph &CG) {
1134   return CallGraphSCCPass::doInitialization(CG);
1135 }
1136