1 //===-- ArgumentPromotion.cpp - Promote by-reference arguments ------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This pass promotes "by reference" arguments to be "by value" arguments. In 11 // practice, this means looking for internal functions that have pointer 12 // arguments. If it can prove, through the use of alias analysis, that an 13 // argument is *only* loaded, then it can pass the value into the function 14 // instead of the address of the value. This can cause recursive simplification 15 // of code and lead to the elimination of allocas (especially in C++ template 16 // code like the STL). 17 // 18 // This pass also handles aggregate arguments that are passed into a function, 19 // scalarizing them if the elements of the aggregate are only loaded. Note that 20 // by default it refuses to scalarize aggregates which would require passing in 21 // more than three operands to the function, because passing thousands of 22 // operands for a large array or structure is unprofitable! This limit can be 23 // configured or disabled, however. 24 // 25 // Note that this transformation could also be done for arguments that are only 26 // stored to (returning the value instead), but does not currently. This case 27 // would be best handled when and if LLVM begins supporting multiple return 28 // values from functions. 29 // 30 //===----------------------------------------------------------------------===// 31 32 #include "llvm/Transforms/IPO/ArgumentPromotion.h" 33 #include "llvm/ADT/DepthFirstIterator.h" 34 #include "llvm/ADT/Optional.h" 35 #include "llvm/ADT/Statistic.h" 36 #include "llvm/ADT/StringExtras.h" 37 #include "llvm/Analysis/AliasAnalysis.h" 38 #include "llvm/Analysis/AssumptionCache.h" 39 #include "llvm/Analysis/BasicAliasAnalysis.h" 40 #include "llvm/Analysis/CallGraph.h" 41 #include "llvm/Analysis/CallGraphSCCPass.h" 42 #include "llvm/Analysis/LazyCallGraph.h" 43 #include "llvm/Analysis/Loads.h" 44 #include "llvm/Analysis/TargetLibraryInfo.h" 45 #include "llvm/IR/CFG.h" 46 #include "llvm/IR/CallSite.h" 47 #include "llvm/IR/Constants.h" 48 #include "llvm/IR/DataLayout.h" 49 #include "llvm/IR/DebugInfo.h" 50 #include "llvm/IR/DerivedTypes.h" 51 #include "llvm/IR/Instructions.h" 52 #include "llvm/IR/LLVMContext.h" 53 #include "llvm/IR/Module.h" 54 #include "llvm/Support/Debug.h" 55 #include "llvm/Support/raw_ostream.h" 56 #include "llvm/Transforms/IPO.h" 57 #include <set> 58 using namespace llvm; 59 60 #define DEBUG_TYPE "argpromotion" 61 62 STATISTIC(NumArgumentsPromoted, "Number of pointer arguments promoted"); 63 STATISTIC(NumAggregatesPromoted, "Number of aggregate arguments promoted"); 64 STATISTIC(NumByValArgsPromoted, "Number of byval arguments promoted"); 65 STATISTIC(NumArgumentsDead, "Number of dead pointer args eliminated"); 66 67 /// A vector used to hold the indices of a single GEP instruction 68 typedef std::vector<uint64_t> IndicesVector; 69 70 /// DoPromotion - This method actually performs the promotion of the specified 71 /// arguments, and returns the new function. At this point, we know that it's 72 /// safe to do so. 73 static Function * 74 doPromotion(Function *F, SmallPtrSetImpl<Argument *> &ArgsToPromote, 75 SmallPtrSetImpl<Argument *> &ByValArgsToTransform, 76 Optional<function_ref<void(CallSite OldCS, CallSite NewCS)>> 77 ReplaceCallSite) { 78 79 // Start by computing a new prototype for the function, which is the same as 80 // the old function, but has modified arguments. 81 FunctionType *FTy = F->getFunctionType(); 82 std::vector<Type *> Params; 83 84 typedef std::set<std::pair<Type *, IndicesVector>> ScalarizeTable; 85 86 // ScalarizedElements - If we are promoting a pointer that has elements 87 // accessed out of it, keep track of which elements are accessed so that we 88 // can add one argument for each. 89 // 90 // Arguments that are directly loaded will have a zero element value here, to 91 // handle cases where there are both a direct load and GEP accesses. 92 // 93 std::map<Argument *, ScalarizeTable> ScalarizedElements; 94 95 // OriginalLoads - Keep track of a representative load instruction from the 96 // original function so that we can tell the alias analysis implementation 97 // what the new GEP/Load instructions we are inserting look like. 98 // We need to keep the original loads for each argument and the elements 99 // of the argument that are accessed. 100 std::map<std::pair<Argument *, IndicesVector>, LoadInst *> OriginalLoads; 101 102 // Attribute - Keep track of the parameter attributes for the arguments 103 // that we are *not* promoting. For the ones that we do promote, the parameter 104 // attributes are lost 105 SmallVector<AttributeSet, 8> ArgAttrVec; 106 AttributeList PAL = F->getAttributes(); 107 108 // First, determine the new argument list 109 unsigned ArgNo = 0; 110 for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E; 111 ++I, ++ArgNo) { 112 if (ByValArgsToTransform.count(&*I)) { 113 // Simple byval argument? Just add all the struct element types. 114 Type *AgTy = cast<PointerType>(I->getType())->getElementType(); 115 StructType *STy = cast<StructType>(AgTy); 116 Params.insert(Params.end(), STy->element_begin(), STy->element_end()); 117 ArgAttrVec.insert(ArgAttrVec.end(), STy->getNumElements(), 118 AttributeSet()); 119 ++NumByValArgsPromoted; 120 } else if (!ArgsToPromote.count(&*I)) { 121 // Unchanged argument 122 Params.push_back(I->getType()); 123 ArgAttrVec.push_back(PAL.getParamAttributes(ArgNo)); 124 } else if (I->use_empty()) { 125 // Dead argument (which are always marked as promotable) 126 ++NumArgumentsDead; 127 } else { 128 // Okay, this is being promoted. This means that the only uses are loads 129 // or GEPs which are only used by loads 130 131 // In this table, we will track which indices are loaded from the argument 132 // (where direct loads are tracked as no indices). 133 ScalarizeTable &ArgIndices = ScalarizedElements[&*I]; 134 for (User *U : I->users()) { 135 Instruction *UI = cast<Instruction>(U); 136 Type *SrcTy; 137 if (LoadInst *L = dyn_cast<LoadInst>(UI)) 138 SrcTy = L->getType(); 139 else 140 SrcTy = cast<GetElementPtrInst>(UI)->getSourceElementType(); 141 IndicesVector Indices; 142 Indices.reserve(UI->getNumOperands() - 1); 143 // Since loads will only have a single operand, and GEPs only a single 144 // non-index operand, this will record direct loads without any indices, 145 // and gep+loads with the GEP indices. 146 for (User::op_iterator II = UI->op_begin() + 1, IE = UI->op_end(); 147 II != IE; ++II) 148 Indices.push_back(cast<ConstantInt>(*II)->getSExtValue()); 149 // GEPs with a single 0 index can be merged with direct loads 150 if (Indices.size() == 1 && Indices.front() == 0) 151 Indices.clear(); 152 ArgIndices.insert(std::make_pair(SrcTy, Indices)); 153 LoadInst *OrigLoad; 154 if (LoadInst *L = dyn_cast<LoadInst>(UI)) 155 OrigLoad = L; 156 else 157 // Take any load, we will use it only to update Alias Analysis 158 OrigLoad = cast<LoadInst>(UI->user_back()); 159 OriginalLoads[std::make_pair(&*I, Indices)] = OrigLoad; 160 } 161 162 // Add a parameter to the function for each element passed in. 163 for (const auto &ArgIndex : ArgIndices) { 164 // not allowed to dereference ->begin() if size() is 0 165 Params.push_back(GetElementPtrInst::getIndexedType( 166 cast<PointerType>(I->getType()->getScalarType())->getElementType(), 167 ArgIndex.second)); 168 ArgAttrVec.push_back(AttributeSet()); 169 assert(Params.back()); 170 } 171 172 if (ArgIndices.size() == 1 && ArgIndices.begin()->second.empty()) 173 ++NumArgumentsPromoted; 174 else 175 ++NumAggregatesPromoted; 176 } 177 } 178 179 Type *RetTy = FTy->getReturnType(); 180 181 // Construct the new function type using the new arguments. 182 FunctionType *NFTy = FunctionType::get(RetTy, Params, FTy->isVarArg()); 183 184 // Create the new function body and insert it into the module. 185 Function *NF = Function::Create(NFTy, F->getLinkage(), F->getName()); 186 NF->copyAttributesFrom(F); 187 188 // Patch the pointer to LLVM function in debug info descriptor. 189 NF->setSubprogram(F->getSubprogram()); 190 F->setSubprogram(nullptr); 191 192 DEBUG(dbgs() << "ARG PROMOTION: Promoting to:" << *NF << "\n" 193 << "From: " << *F); 194 195 // Recompute the parameter attributes list based on the new arguments for 196 // the function. 197 NF->setAttributes(AttributeList::get(F->getContext(), PAL.getFnAttributes(), 198 PAL.getRetAttributes(), ArgAttrVec)); 199 ArgAttrVec.clear(); 200 201 F->getParent()->getFunctionList().insert(F->getIterator(), NF); 202 NF->takeName(F); 203 204 // Loop over all of the callers of the function, transforming the call sites 205 // to pass in the loaded pointers. 206 // 207 SmallVector<Value *, 16> Args; 208 while (!F->use_empty()) { 209 CallSite CS(F->user_back()); 210 assert(CS.getCalledFunction() == F); 211 Instruction *Call = CS.getInstruction(); 212 const AttributeList &CallPAL = CS.getAttributes(); 213 214 // Loop over the operands, inserting GEP and loads in the caller as 215 // appropriate. 216 CallSite::arg_iterator AI = CS.arg_begin(); 217 ArgNo = 0; 218 for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E; 219 ++I, ++AI, ++ArgNo) 220 if (!ArgsToPromote.count(&*I) && !ByValArgsToTransform.count(&*I)) { 221 Args.push_back(*AI); // Unmodified argument 222 ArgAttrVec.push_back(CallPAL.getParamAttributes(ArgNo)); 223 } else if (ByValArgsToTransform.count(&*I)) { 224 // Emit a GEP and load for each element of the struct. 225 Type *AgTy = cast<PointerType>(I->getType())->getElementType(); 226 StructType *STy = cast<StructType>(AgTy); 227 Value *Idxs[2] = { 228 ConstantInt::get(Type::getInt32Ty(F->getContext()), 0), nullptr}; 229 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 230 Idxs[1] = ConstantInt::get(Type::getInt32Ty(F->getContext()), i); 231 Value *Idx = GetElementPtrInst::Create( 232 STy, *AI, Idxs, (*AI)->getName() + "." + Twine(i), Call); 233 // TODO: Tell AA about the new values? 234 Args.push_back(new LoadInst(Idx, Idx->getName() + ".val", Call)); 235 ArgAttrVec.push_back(AttributeSet()); 236 } 237 } else if (!I->use_empty()) { 238 // Non-dead argument: insert GEPs and loads as appropriate. 239 ScalarizeTable &ArgIndices = ScalarizedElements[&*I]; 240 // Store the Value* version of the indices in here, but declare it now 241 // for reuse. 242 std::vector<Value *> Ops; 243 for (const auto &ArgIndex : ArgIndices) { 244 Value *V = *AI; 245 LoadInst *OrigLoad = 246 OriginalLoads[std::make_pair(&*I, ArgIndex.second)]; 247 if (!ArgIndex.second.empty()) { 248 Ops.reserve(ArgIndex.second.size()); 249 Type *ElTy = V->getType(); 250 for (auto II : ArgIndex.second) { 251 // Use i32 to index structs, and i64 for others (pointers/arrays). 252 // This satisfies GEP constraints. 253 Type *IdxTy = 254 (ElTy->isStructTy() ? Type::getInt32Ty(F->getContext()) 255 : Type::getInt64Ty(F->getContext())); 256 Ops.push_back(ConstantInt::get(IdxTy, II)); 257 // Keep track of the type we're currently indexing. 258 if (auto *ElPTy = dyn_cast<PointerType>(ElTy)) 259 ElTy = ElPTy->getElementType(); 260 else 261 ElTy = cast<CompositeType>(ElTy)->getTypeAtIndex(II); 262 } 263 // And create a GEP to extract those indices. 264 V = GetElementPtrInst::Create(ArgIndex.first, V, Ops, 265 V->getName() + ".idx", Call); 266 Ops.clear(); 267 } 268 // Since we're replacing a load make sure we take the alignment 269 // of the previous load. 270 LoadInst *newLoad = new LoadInst(V, V->getName() + ".val", Call); 271 newLoad->setAlignment(OrigLoad->getAlignment()); 272 // Transfer the AA info too. 273 AAMDNodes AAInfo; 274 OrigLoad->getAAMetadata(AAInfo); 275 newLoad->setAAMetadata(AAInfo); 276 277 Args.push_back(newLoad); 278 ArgAttrVec.push_back(AttributeSet()); 279 } 280 } 281 282 // Push any varargs arguments on the list. 283 for (; AI != CS.arg_end(); ++AI, ++ArgNo) { 284 Args.push_back(*AI); 285 ArgAttrVec.push_back(CallPAL.getParamAttributes(ArgNo)); 286 } 287 288 SmallVector<OperandBundleDef, 1> OpBundles; 289 CS.getOperandBundlesAsDefs(OpBundles); 290 291 CallSite NewCS; 292 if (InvokeInst *II = dyn_cast<InvokeInst>(Call)) { 293 NewCS = InvokeInst::Create(NF, II->getNormalDest(), II->getUnwindDest(), 294 Args, OpBundles, "", Call); 295 } else { 296 auto *NewCall = CallInst::Create(NF, Args, OpBundles, "", Call); 297 NewCall->setTailCallKind(cast<CallInst>(Call)->getTailCallKind()); 298 NewCS = NewCall; 299 } 300 NewCS.setCallingConv(CS.getCallingConv()); 301 NewCS.setAttributes( 302 AttributeList::get(F->getContext(), CallPAL.getFnAttributes(), 303 CallPAL.getRetAttributes(), ArgAttrVec)); 304 NewCS->setDebugLoc(Call->getDebugLoc()); 305 uint64_t W; 306 if (Call->extractProfTotalWeight(W)) 307 NewCS->setProfWeight(W); 308 Args.clear(); 309 ArgAttrVec.clear(); 310 311 // Update the callgraph to know that the callsite has been transformed. 312 if (ReplaceCallSite) 313 (*ReplaceCallSite)(CS, NewCS); 314 315 if (!Call->use_empty()) { 316 Call->replaceAllUsesWith(NewCS.getInstruction()); 317 NewCS->takeName(Call); 318 } 319 320 // Finally, remove the old call from the program, reducing the use-count of 321 // F. 322 Call->eraseFromParent(); 323 } 324 325 const DataLayout &DL = F->getParent()->getDataLayout(); 326 327 // Since we have now created the new function, splice the body of the old 328 // function right into the new function, leaving the old rotting hulk of the 329 // function empty. 330 NF->getBasicBlockList().splice(NF->begin(), F->getBasicBlockList()); 331 332 // Loop over the argument list, transferring uses of the old arguments over to 333 // the new arguments, also transferring over the names as well. 334 // 335 for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(), 336 I2 = NF->arg_begin(); 337 I != E; ++I) { 338 if (!ArgsToPromote.count(&*I) && !ByValArgsToTransform.count(&*I)) { 339 // If this is an unmodified argument, move the name and users over to the 340 // new version. 341 I->replaceAllUsesWith(&*I2); 342 I2->takeName(&*I); 343 ++I2; 344 continue; 345 } 346 347 if (ByValArgsToTransform.count(&*I)) { 348 // In the callee, we create an alloca, and store each of the new incoming 349 // arguments into the alloca. 350 Instruction *InsertPt = &NF->begin()->front(); 351 352 // Just add all the struct element types. 353 Type *AgTy = cast<PointerType>(I->getType())->getElementType(); 354 Value *TheAlloca = new AllocaInst(AgTy, DL.getAllocaAddrSpace(), nullptr, 355 "", InsertPt); 356 StructType *STy = cast<StructType>(AgTy); 357 Value *Idxs[2] = {ConstantInt::get(Type::getInt32Ty(F->getContext()), 0), 358 nullptr}; 359 360 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 361 Idxs[1] = ConstantInt::get(Type::getInt32Ty(F->getContext()), i); 362 Value *Idx = GetElementPtrInst::Create( 363 AgTy, TheAlloca, Idxs, TheAlloca->getName() + "." + Twine(i), 364 InsertPt); 365 I2->setName(I->getName() + "." + Twine(i)); 366 new StoreInst(&*I2++, Idx, InsertPt); 367 } 368 369 // Anything that used the arg should now use the alloca. 370 I->replaceAllUsesWith(TheAlloca); 371 TheAlloca->takeName(&*I); 372 373 // If the alloca is used in a call, we must clear the tail flag since 374 // the callee now uses an alloca from the caller. 375 for (User *U : TheAlloca->users()) { 376 CallInst *Call = dyn_cast<CallInst>(U); 377 if (!Call) 378 continue; 379 Call->setTailCall(false); 380 } 381 continue; 382 } 383 384 if (I->use_empty()) 385 continue; 386 387 // Otherwise, if we promoted this argument, then all users are load 388 // instructions (or GEPs with only load users), and all loads should be 389 // using the new argument that we added. 390 ScalarizeTable &ArgIndices = ScalarizedElements[&*I]; 391 392 while (!I->use_empty()) { 393 if (LoadInst *LI = dyn_cast<LoadInst>(I->user_back())) { 394 assert(ArgIndices.begin()->second.empty() && 395 "Load element should sort to front!"); 396 I2->setName(I->getName() + ".val"); 397 LI->replaceAllUsesWith(&*I2); 398 LI->eraseFromParent(); 399 DEBUG(dbgs() << "*** Promoted load of argument '" << I->getName() 400 << "' in function '" << F->getName() << "'\n"); 401 } else { 402 GetElementPtrInst *GEP = cast<GetElementPtrInst>(I->user_back()); 403 IndicesVector Operands; 404 Operands.reserve(GEP->getNumIndices()); 405 for (User::op_iterator II = GEP->idx_begin(), IE = GEP->idx_end(); 406 II != IE; ++II) 407 Operands.push_back(cast<ConstantInt>(*II)->getSExtValue()); 408 409 // GEPs with a single 0 index can be merged with direct loads 410 if (Operands.size() == 1 && Operands.front() == 0) 411 Operands.clear(); 412 413 Function::arg_iterator TheArg = I2; 414 for (ScalarizeTable::iterator It = ArgIndices.begin(); 415 It->second != Operands; ++It, ++TheArg) { 416 assert(It != ArgIndices.end() && "GEP not handled??"); 417 } 418 419 std::string NewName = I->getName(); 420 for (unsigned i = 0, e = Operands.size(); i != e; ++i) { 421 NewName += "." + utostr(Operands[i]); 422 } 423 NewName += ".val"; 424 TheArg->setName(NewName); 425 426 DEBUG(dbgs() << "*** Promoted agg argument '" << TheArg->getName() 427 << "' of function '" << NF->getName() << "'\n"); 428 429 // All of the uses must be load instructions. Replace them all with 430 // the argument specified by ArgNo. 431 while (!GEP->use_empty()) { 432 LoadInst *L = cast<LoadInst>(GEP->user_back()); 433 L->replaceAllUsesWith(&*TheArg); 434 L->eraseFromParent(); 435 } 436 GEP->eraseFromParent(); 437 } 438 } 439 440 // Increment I2 past all of the arguments added for this promoted pointer. 441 std::advance(I2, ArgIndices.size()); 442 } 443 444 return NF; 445 } 446 447 /// AllCallersPassInValidPointerForArgument - Return true if we can prove that 448 /// all callees pass in a valid pointer for the specified function argument. 449 static bool allCallersPassInValidPointerForArgument(Argument *Arg) { 450 Function *Callee = Arg->getParent(); 451 const DataLayout &DL = Callee->getParent()->getDataLayout(); 452 453 unsigned ArgNo = Arg->getArgNo(); 454 455 // Look at all call sites of the function. At this point we know we only have 456 // direct callees. 457 for (User *U : Callee->users()) { 458 CallSite CS(U); 459 assert(CS && "Should only have direct calls!"); 460 461 if (!isDereferenceablePointer(CS.getArgument(ArgNo), DL)) 462 return false; 463 } 464 return true; 465 } 466 467 /// Returns true if Prefix is a prefix of longer. That means, Longer has a size 468 /// that is greater than or equal to the size of prefix, and each of the 469 /// elements in Prefix is the same as the corresponding elements in Longer. 470 /// 471 /// This means it also returns true when Prefix and Longer are equal! 472 static bool isPrefix(const IndicesVector &Prefix, const IndicesVector &Longer) { 473 if (Prefix.size() > Longer.size()) 474 return false; 475 return std::equal(Prefix.begin(), Prefix.end(), Longer.begin()); 476 } 477 478 /// Checks if Indices, or a prefix of Indices, is in Set. 479 static bool prefixIn(const IndicesVector &Indices, 480 std::set<IndicesVector> &Set) { 481 std::set<IndicesVector>::iterator Low; 482 Low = Set.upper_bound(Indices); 483 if (Low != Set.begin()) 484 Low--; 485 // Low is now the last element smaller than or equal to Indices. This means 486 // it points to a prefix of Indices (possibly Indices itself), if such 487 // prefix exists. 488 // 489 // This load is safe if any prefix of its operands is safe to load. 490 return Low != Set.end() && isPrefix(*Low, Indices); 491 } 492 493 /// Mark the given indices (ToMark) as safe in the given set of indices 494 /// (Safe). Marking safe usually means adding ToMark to Safe. However, if there 495 /// is already a prefix of Indices in Safe, Indices are implicitely marked safe 496 /// already. Furthermore, any indices that Indices is itself a prefix of, are 497 /// removed from Safe (since they are implicitely safe because of Indices now). 498 static void markIndicesSafe(const IndicesVector &ToMark, 499 std::set<IndicesVector> &Safe) { 500 std::set<IndicesVector>::iterator Low; 501 Low = Safe.upper_bound(ToMark); 502 // Guard against the case where Safe is empty 503 if (Low != Safe.begin()) 504 Low--; 505 // Low is now the last element smaller than or equal to Indices. This 506 // means it points to a prefix of Indices (possibly Indices itself), if 507 // such prefix exists. 508 if (Low != Safe.end()) { 509 if (isPrefix(*Low, ToMark)) 510 // If there is already a prefix of these indices (or exactly these 511 // indices) marked a safe, don't bother adding these indices 512 return; 513 514 // Increment Low, so we can use it as a "insert before" hint 515 ++Low; 516 } 517 // Insert 518 Low = Safe.insert(Low, ToMark); 519 ++Low; 520 // If there we're a prefix of longer index list(s), remove those 521 std::set<IndicesVector>::iterator End = Safe.end(); 522 while (Low != End && isPrefix(ToMark, *Low)) { 523 std::set<IndicesVector>::iterator Remove = Low; 524 ++Low; 525 Safe.erase(Remove); 526 } 527 } 528 529 /// isSafeToPromoteArgument - As you might guess from the name of this method, 530 /// it checks to see if it is both safe and useful to promote the argument. 531 /// This method limits promotion of aggregates to only promote up to three 532 /// elements of the aggregate in order to avoid exploding the number of 533 /// arguments passed in. 534 static bool isSafeToPromoteArgument(Argument *Arg, bool isByValOrInAlloca, 535 AAResults &AAR, unsigned MaxElements) { 536 typedef std::set<IndicesVector> GEPIndicesSet; 537 538 // Quick exit for unused arguments 539 if (Arg->use_empty()) 540 return true; 541 542 // We can only promote this argument if all of the uses are loads, or are GEP 543 // instructions (with constant indices) that are subsequently loaded. 544 // 545 // Promoting the argument causes it to be loaded in the caller 546 // unconditionally. This is only safe if we can prove that either the load 547 // would have happened in the callee anyway (ie, there is a load in the entry 548 // block) or the pointer passed in at every call site is guaranteed to be 549 // valid. 550 // In the former case, invalid loads can happen, but would have happened 551 // anyway, in the latter case, invalid loads won't happen. This prevents us 552 // from introducing an invalid load that wouldn't have happened in the 553 // original code. 554 // 555 // This set will contain all sets of indices that are loaded in the entry 556 // block, and thus are safe to unconditionally load in the caller. 557 // 558 // This optimization is also safe for InAlloca parameters, because it verifies 559 // that the address isn't captured. 560 GEPIndicesSet SafeToUnconditionallyLoad; 561 562 // This set contains all the sets of indices that we are planning to promote. 563 // This makes it possible to limit the number of arguments added. 564 GEPIndicesSet ToPromote; 565 566 // If the pointer is always valid, any load with first index 0 is valid. 567 if (isByValOrInAlloca || allCallersPassInValidPointerForArgument(Arg)) 568 SafeToUnconditionallyLoad.insert(IndicesVector(1, 0)); 569 570 // First, iterate the entry block and mark loads of (geps of) arguments as 571 // safe. 572 BasicBlock &EntryBlock = Arg->getParent()->front(); 573 // Declare this here so we can reuse it 574 IndicesVector Indices; 575 for (Instruction &I : EntryBlock) 576 if (LoadInst *LI = dyn_cast<LoadInst>(&I)) { 577 Value *V = LI->getPointerOperand(); 578 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(V)) { 579 V = GEP->getPointerOperand(); 580 if (V == Arg) { 581 // This load actually loads (part of) Arg? Check the indices then. 582 Indices.reserve(GEP->getNumIndices()); 583 for (User::op_iterator II = GEP->idx_begin(), IE = GEP->idx_end(); 584 II != IE; ++II) 585 if (ConstantInt *CI = dyn_cast<ConstantInt>(*II)) 586 Indices.push_back(CI->getSExtValue()); 587 else 588 // We found a non-constant GEP index for this argument? Bail out 589 // right away, can't promote this argument at all. 590 return false; 591 592 // Indices checked out, mark them as safe 593 markIndicesSafe(Indices, SafeToUnconditionallyLoad); 594 Indices.clear(); 595 } 596 } else if (V == Arg) { 597 // Direct loads are equivalent to a GEP with a single 0 index. 598 markIndicesSafe(IndicesVector(1, 0), SafeToUnconditionallyLoad); 599 } 600 } 601 602 // Now, iterate all uses of the argument to see if there are any uses that are 603 // not (GEP+)loads, or any (GEP+)loads that are not safe to promote. 604 SmallVector<LoadInst *, 16> Loads; 605 IndicesVector Operands; 606 for (Use &U : Arg->uses()) { 607 User *UR = U.getUser(); 608 Operands.clear(); 609 if (LoadInst *LI = dyn_cast<LoadInst>(UR)) { 610 // Don't hack volatile/atomic loads 611 if (!LI->isSimple()) 612 return false; 613 Loads.push_back(LI); 614 // Direct loads are equivalent to a GEP with a zero index and then a load. 615 Operands.push_back(0); 616 } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(UR)) { 617 if (GEP->use_empty()) { 618 // Dead GEP's cause trouble later. Just remove them if we run into 619 // them. 620 GEP->eraseFromParent(); 621 // TODO: This runs the above loop over and over again for dead GEPs 622 // Couldn't we just do increment the UI iterator earlier and erase the 623 // use? 624 return isSafeToPromoteArgument(Arg, isByValOrInAlloca, AAR, 625 MaxElements); 626 } 627 628 // Ensure that all of the indices are constants. 629 for (User::op_iterator i = GEP->idx_begin(), e = GEP->idx_end(); i != e; 630 ++i) 631 if (ConstantInt *C = dyn_cast<ConstantInt>(*i)) 632 Operands.push_back(C->getSExtValue()); 633 else 634 return false; // Not a constant operand GEP! 635 636 // Ensure that the only users of the GEP are load instructions. 637 for (User *GEPU : GEP->users()) 638 if (LoadInst *LI = dyn_cast<LoadInst>(GEPU)) { 639 // Don't hack volatile/atomic loads 640 if (!LI->isSimple()) 641 return false; 642 Loads.push_back(LI); 643 } else { 644 // Other uses than load? 645 return false; 646 } 647 } else { 648 return false; // Not a load or a GEP. 649 } 650 651 // Now, see if it is safe to promote this load / loads of this GEP. Loading 652 // is safe if Operands, or a prefix of Operands, is marked as safe. 653 if (!prefixIn(Operands, SafeToUnconditionallyLoad)) 654 return false; 655 656 // See if we are already promoting a load with these indices. If not, check 657 // to make sure that we aren't promoting too many elements. If so, nothing 658 // to do. 659 if (ToPromote.find(Operands) == ToPromote.end()) { 660 if (MaxElements > 0 && ToPromote.size() == MaxElements) { 661 DEBUG(dbgs() << "argpromotion not promoting argument '" 662 << Arg->getName() 663 << "' because it would require adding more " 664 << "than " << MaxElements 665 << " arguments to the function.\n"); 666 // We limit aggregate promotion to only promoting up to a fixed number 667 // of elements of the aggregate. 668 return false; 669 } 670 ToPromote.insert(std::move(Operands)); 671 } 672 } 673 674 if (Loads.empty()) 675 return true; // No users, this is a dead argument. 676 677 // Okay, now we know that the argument is only used by load instructions and 678 // it is safe to unconditionally perform all of them. Use alias analysis to 679 // check to see if the pointer is guaranteed to not be modified from entry of 680 // the function to each of the load instructions. 681 682 // Because there could be several/many load instructions, remember which 683 // blocks we know to be transparent to the load. 684 df_iterator_default_set<BasicBlock *, 16> TranspBlocks; 685 686 for (LoadInst *Load : Loads) { 687 // Check to see if the load is invalidated from the start of the block to 688 // the load itself. 689 BasicBlock *BB = Load->getParent(); 690 691 MemoryLocation Loc = MemoryLocation::get(Load); 692 if (AAR.canInstructionRangeModRef(BB->front(), *Load, Loc, MRI_Mod)) 693 return false; // Pointer is invalidated! 694 695 // Now check every path from the entry block to the load for transparency. 696 // To do this, we perform a depth first search on the inverse CFG from the 697 // loading block. 698 for (BasicBlock *P : predecessors(BB)) { 699 for (BasicBlock *TranspBB : inverse_depth_first_ext(P, TranspBlocks)) 700 if (AAR.canBasicBlockModify(*TranspBB, Loc)) 701 return false; 702 } 703 } 704 705 // If the path from the entry of the function to each load is free of 706 // instructions that potentially invalidate the load, we can make the 707 // transformation! 708 return true; 709 } 710 711 /// \brief Checks if a type could have padding bytes. 712 static bool isDenselyPacked(Type *type, const DataLayout &DL) { 713 714 // There is no size information, so be conservative. 715 if (!type->isSized()) 716 return false; 717 718 // If the alloc size is not equal to the storage size, then there are padding 719 // bytes. For x86_fp80 on x86-64, size: 80 alloc size: 128. 720 if (DL.getTypeSizeInBits(type) != DL.getTypeAllocSizeInBits(type)) 721 return false; 722 723 if (!isa<CompositeType>(type)) 724 return true; 725 726 // For homogenous sequential types, check for padding within members. 727 if (SequentialType *seqTy = dyn_cast<SequentialType>(type)) 728 return isDenselyPacked(seqTy->getElementType(), DL); 729 730 // Check for padding within and between elements of a struct. 731 StructType *StructTy = cast<StructType>(type); 732 const StructLayout *Layout = DL.getStructLayout(StructTy); 733 uint64_t StartPos = 0; 734 for (unsigned i = 0, E = StructTy->getNumElements(); i < E; ++i) { 735 Type *ElTy = StructTy->getElementType(i); 736 if (!isDenselyPacked(ElTy, DL)) 737 return false; 738 if (StartPos != Layout->getElementOffsetInBits(i)) 739 return false; 740 StartPos += DL.getTypeAllocSizeInBits(ElTy); 741 } 742 743 return true; 744 } 745 746 /// \brief Checks if the padding bytes of an argument could be accessed. 747 static bool canPaddingBeAccessed(Argument *arg) { 748 749 assert(arg->hasByValAttr()); 750 751 // Track all the pointers to the argument to make sure they are not captured. 752 SmallPtrSet<Value *, 16> PtrValues; 753 PtrValues.insert(arg); 754 755 // Track all of the stores. 756 SmallVector<StoreInst *, 16> Stores; 757 758 // Scan through the uses recursively to make sure the pointer is always used 759 // sanely. 760 SmallVector<Value *, 16> WorkList; 761 WorkList.insert(WorkList.end(), arg->user_begin(), arg->user_end()); 762 while (!WorkList.empty()) { 763 Value *V = WorkList.back(); 764 WorkList.pop_back(); 765 if (isa<GetElementPtrInst>(V) || isa<PHINode>(V)) { 766 if (PtrValues.insert(V).second) 767 WorkList.insert(WorkList.end(), V->user_begin(), V->user_end()); 768 } else if (StoreInst *Store = dyn_cast<StoreInst>(V)) { 769 Stores.push_back(Store); 770 } else if (!isa<LoadInst>(V)) { 771 return true; 772 } 773 } 774 775 // Check to make sure the pointers aren't captured 776 for (StoreInst *Store : Stores) 777 if (PtrValues.count(Store->getValueOperand())) 778 return true; 779 780 return false; 781 } 782 783 /// PromoteArguments - This method checks the specified function to see if there 784 /// are any promotable arguments and if it is safe to promote the function (for 785 /// example, all callers are direct). If safe to promote some arguments, it 786 /// calls the DoPromotion method. 787 /// 788 static Function * 789 promoteArguments(Function *F, function_ref<AAResults &(Function &F)> AARGetter, 790 unsigned MaxElements, 791 Optional<function_ref<void(CallSite OldCS, CallSite NewCS)>> 792 ReplaceCallSite) { 793 // Make sure that it is local to this module. 794 if (!F->hasLocalLinkage()) 795 return nullptr; 796 797 // Don't promote arguments for variadic functions. Adding, removing, or 798 // changing non-pack parameters can change the classification of pack 799 // parameters. Frontends encode that classification at the call site in the 800 // IR, while in the callee the classification is determined dynamically based 801 // on the number of registers consumed so far. 802 if (F->isVarArg()) 803 return nullptr; 804 805 // First check: see if there are any pointer arguments! If not, quick exit. 806 SmallVector<Argument *, 16> PointerArgs; 807 for (Argument &I : F->args()) 808 if (I.getType()->isPointerTy()) 809 PointerArgs.push_back(&I); 810 if (PointerArgs.empty()) 811 return nullptr; 812 813 // Second check: make sure that all callers are direct callers. We can't 814 // transform functions that have indirect callers. Also see if the function 815 // is self-recursive. 816 bool isSelfRecursive = false; 817 for (Use &U : F->uses()) { 818 CallSite CS(U.getUser()); 819 // Must be a direct call. 820 if (CS.getInstruction() == nullptr || !CS.isCallee(&U)) 821 return nullptr; 822 823 if (CS.getInstruction()->getParent()->getParent() == F) 824 isSelfRecursive = true; 825 } 826 827 const DataLayout &DL = F->getParent()->getDataLayout(); 828 829 AAResults &AAR = AARGetter(*F); 830 831 // Check to see which arguments are promotable. If an argument is promotable, 832 // add it to ArgsToPromote. 833 SmallPtrSet<Argument *, 8> ArgsToPromote; 834 SmallPtrSet<Argument *, 8> ByValArgsToTransform; 835 for (Argument *PtrArg : PointerArgs) { 836 Type *AgTy = cast<PointerType>(PtrArg->getType())->getElementType(); 837 838 // Replace sret attribute with noalias. This reduces register pressure by 839 // avoiding a register copy. 840 if (PtrArg->hasStructRetAttr()) { 841 unsigned ArgNo = PtrArg->getArgNo(); 842 F->removeParamAttr(ArgNo, Attribute::StructRet); 843 F->addParamAttr(ArgNo, Attribute::NoAlias); 844 for (Use &U : F->uses()) { 845 CallSite CS(U.getUser()); 846 CS.removeParamAttr(ArgNo, Attribute::StructRet); 847 CS.addParamAttr(ArgNo, Attribute::NoAlias); 848 } 849 } 850 851 // If this is a byval argument, and if the aggregate type is small, just 852 // pass the elements, which is always safe, if the passed value is densely 853 // packed or if we can prove the padding bytes are never accessed. This does 854 // not apply to inalloca. 855 bool isSafeToPromote = 856 PtrArg->hasByValAttr() && 857 (isDenselyPacked(AgTy, DL) || !canPaddingBeAccessed(PtrArg)); 858 if (isSafeToPromote) { 859 if (StructType *STy = dyn_cast<StructType>(AgTy)) { 860 if (MaxElements > 0 && STy->getNumElements() > MaxElements) { 861 DEBUG(dbgs() << "argpromotion disable promoting argument '" 862 << PtrArg->getName() 863 << "' because it would require adding more" 864 << " than " << MaxElements 865 << " arguments to the function.\n"); 866 continue; 867 } 868 869 // If all the elements are single-value types, we can promote it. 870 bool AllSimple = true; 871 for (const auto *EltTy : STy->elements()) { 872 if (!EltTy->isSingleValueType()) { 873 AllSimple = false; 874 break; 875 } 876 } 877 878 // Safe to transform, don't even bother trying to "promote" it. 879 // Passing the elements as a scalar will allow sroa to hack on 880 // the new alloca we introduce. 881 if (AllSimple) { 882 ByValArgsToTransform.insert(PtrArg); 883 continue; 884 } 885 } 886 } 887 888 // If the argument is a recursive type and we're in a recursive 889 // function, we could end up infinitely peeling the function argument. 890 if (isSelfRecursive) { 891 if (StructType *STy = dyn_cast<StructType>(AgTy)) { 892 bool RecursiveType = false; 893 for (const auto *EltTy : STy->elements()) { 894 if (EltTy == PtrArg->getType()) { 895 RecursiveType = true; 896 break; 897 } 898 } 899 if (RecursiveType) 900 continue; 901 } 902 } 903 904 // Otherwise, see if we can promote the pointer to its value. 905 if (isSafeToPromoteArgument(PtrArg, PtrArg->hasByValOrInAllocaAttr(), AAR, 906 MaxElements)) 907 ArgsToPromote.insert(PtrArg); 908 } 909 910 // No promotable pointer arguments. 911 if (ArgsToPromote.empty() && ByValArgsToTransform.empty()) 912 return nullptr; 913 914 return doPromotion(F, ArgsToPromote, ByValArgsToTransform, ReplaceCallSite); 915 } 916 917 PreservedAnalyses ArgumentPromotionPass::run(LazyCallGraph::SCC &C, 918 CGSCCAnalysisManager &AM, 919 LazyCallGraph &CG, 920 CGSCCUpdateResult &UR) { 921 bool Changed = false, LocalChange; 922 923 // Iterate until we stop promoting from this SCC. 924 do { 925 LocalChange = false; 926 927 for (LazyCallGraph::Node &N : C) { 928 Function &OldF = N.getFunction(); 929 930 FunctionAnalysisManager &FAM = 931 AM.getResult<FunctionAnalysisManagerCGSCCProxy>(C, CG).getManager(); 932 // FIXME: This lambda must only be used with this function. We should 933 // skip the lambda and just get the AA results directly. 934 auto AARGetter = [&](Function &F) -> AAResults & { 935 assert(&F == &OldF && "Called with an unexpected function!"); 936 return FAM.getResult<AAManager>(F); 937 }; 938 939 Function *NewF = promoteArguments(&OldF, AARGetter, 3u, None); 940 if (!NewF) 941 continue; 942 LocalChange = true; 943 944 // Directly substitute the functions in the call graph. Note that this 945 // requires the old function to be completely dead and completely 946 // replaced by the new function. It does no call graph updates, it merely 947 // swaps out the particular function mapped to a particular node in the 948 // graph. 949 C.getOuterRefSCC().replaceNodeFunction(N, *NewF); 950 OldF.eraseFromParent(); 951 } 952 953 Changed |= LocalChange; 954 } while (LocalChange); 955 956 if (!Changed) 957 return PreservedAnalyses::all(); 958 959 return PreservedAnalyses::none(); 960 } 961 962 namespace { 963 /// ArgPromotion - The 'by reference' to 'by value' argument promotion pass. 964 /// 965 struct ArgPromotion : public CallGraphSCCPass { 966 void getAnalysisUsage(AnalysisUsage &AU) const override { 967 AU.addRequired<AssumptionCacheTracker>(); 968 AU.addRequired<TargetLibraryInfoWrapperPass>(); 969 getAAResultsAnalysisUsage(AU); 970 CallGraphSCCPass::getAnalysisUsage(AU); 971 } 972 973 bool runOnSCC(CallGraphSCC &SCC) override; 974 static char ID; // Pass identification, replacement for typeid 975 explicit ArgPromotion(unsigned MaxElements = 3) 976 : CallGraphSCCPass(ID), MaxElements(MaxElements) { 977 initializeArgPromotionPass(*PassRegistry::getPassRegistry()); 978 } 979 980 private: 981 using llvm::Pass::doInitialization; 982 bool doInitialization(CallGraph &CG) override; 983 /// The maximum number of elements to expand, or 0 for unlimited. 984 unsigned MaxElements; 985 }; 986 } 987 988 char ArgPromotion::ID = 0; 989 INITIALIZE_PASS_BEGIN(ArgPromotion, "argpromotion", 990 "Promote 'by reference' arguments to scalars", false, 991 false) 992 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 993 INITIALIZE_PASS_DEPENDENCY(CallGraphWrapperPass) 994 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 995 INITIALIZE_PASS_END(ArgPromotion, "argpromotion", 996 "Promote 'by reference' arguments to scalars", false, false) 997 998 Pass *llvm::createArgumentPromotionPass(unsigned MaxElements) { 999 return new ArgPromotion(MaxElements); 1000 } 1001 1002 bool ArgPromotion::runOnSCC(CallGraphSCC &SCC) { 1003 if (skipSCC(SCC)) 1004 return false; 1005 1006 // Get the callgraph information that we need to update to reflect our 1007 // changes. 1008 CallGraph &CG = getAnalysis<CallGraphWrapperPass>().getCallGraph(); 1009 1010 LegacyAARGetter AARGetter(*this); 1011 1012 bool Changed = false, LocalChange; 1013 1014 // Iterate until we stop promoting from this SCC. 1015 do { 1016 LocalChange = false; 1017 // Attempt to promote arguments from all functions in this SCC. 1018 for (CallGraphNode *OldNode : SCC) { 1019 Function *OldF = OldNode->getFunction(); 1020 if (!OldF) 1021 continue; 1022 1023 auto ReplaceCallSite = [&](CallSite OldCS, CallSite NewCS) { 1024 Function *Caller = OldCS.getInstruction()->getParent()->getParent(); 1025 CallGraphNode *NewCalleeNode = 1026 CG.getOrInsertFunction(NewCS.getCalledFunction()); 1027 CallGraphNode *CallerNode = CG[Caller]; 1028 CallerNode->replaceCallEdge(OldCS, NewCS, NewCalleeNode); 1029 }; 1030 1031 if (Function *NewF = promoteArguments(OldF, AARGetter, MaxElements, 1032 {ReplaceCallSite})) { 1033 LocalChange = true; 1034 1035 // Update the call graph for the newly promoted function. 1036 CallGraphNode *NewNode = CG.getOrInsertFunction(NewF); 1037 NewNode->stealCalledFunctionsFrom(OldNode); 1038 if (OldNode->getNumReferences() == 0) 1039 delete CG.removeFunctionFromModule(OldNode); 1040 else 1041 OldF->setLinkage(Function::ExternalLinkage); 1042 1043 // And updat ethe SCC we're iterating as well. 1044 SCC.ReplaceNode(OldNode, NewNode); 1045 } 1046 } 1047 // Remember that we changed something. 1048 Changed |= LocalChange; 1049 } while (LocalChange); 1050 1051 return Changed; 1052 } 1053 1054 bool ArgPromotion::doInitialization(CallGraph &CG) { 1055 return CallGraphSCCPass::doInitialization(CG); 1056 } 1057