1 //===- ArgumentPromotion.cpp - Promote by-reference arguments -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass promotes "by reference" arguments to be "by value" arguments.  In
10 // practice, this means looking for internal functions that have pointer
11 // arguments.  If it can prove, through the use of alias analysis, that an
12 // argument is *only* loaded, then it can pass the value into the function
13 // instead of the address of the value.  This can cause recursive simplification
14 // of code and lead to the elimination of allocas (especially in C++ template
15 // code like the STL).
16 //
17 // This pass also handles aggregate arguments that are passed into a function,
18 // scalarizing them if the elements of the aggregate are only loaded.  Note that
19 // by default it refuses to scalarize aggregates which would require passing in
20 // more than three operands to the function, because passing thousands of
21 // operands for a large array or structure is unprofitable! This limit can be
22 // configured or disabled, however.
23 //
24 // Note that this transformation could also be done for arguments that are only
25 // stored to (returning the value instead), but does not currently.  This case
26 // would be best handled when and if LLVM begins supporting multiple return
27 // values from functions.
28 //
29 //===----------------------------------------------------------------------===//
30 
31 #include "llvm/Transforms/IPO/ArgumentPromotion.h"
32 #include "llvm/ADT/DepthFirstIterator.h"
33 #include "llvm/ADT/None.h"
34 #include "llvm/ADT/Optional.h"
35 #include "llvm/ADT/STLExtras.h"
36 #include "llvm/ADT/SmallPtrSet.h"
37 #include "llvm/ADT/SmallVector.h"
38 #include "llvm/ADT/Statistic.h"
39 #include "llvm/ADT/StringExtras.h"
40 #include "llvm/ADT/Twine.h"
41 #include "llvm/Analysis/AliasAnalysis.h"
42 #include "llvm/Analysis/AssumptionCache.h"
43 #include "llvm/Analysis/BasicAliasAnalysis.h"
44 #include "llvm/Analysis/CGSCCPassManager.h"
45 #include "llvm/Analysis/CallGraph.h"
46 #include "llvm/Analysis/CallGraphSCCPass.h"
47 #include "llvm/Analysis/LazyCallGraph.h"
48 #include "llvm/Analysis/Loads.h"
49 #include "llvm/Analysis/MemoryLocation.h"
50 #include "llvm/Analysis/TargetLibraryInfo.h"
51 #include "llvm/Analysis/TargetTransformInfo.h"
52 #include "llvm/IR/Argument.h"
53 #include "llvm/IR/Attributes.h"
54 #include "llvm/IR/BasicBlock.h"
55 #include "llvm/IR/CFG.h"
56 #include "llvm/IR/CallSite.h"
57 #include "llvm/IR/Constants.h"
58 #include "llvm/IR/DataLayout.h"
59 #include "llvm/IR/DerivedTypes.h"
60 #include "llvm/IR/Function.h"
61 #include "llvm/IR/InstrTypes.h"
62 #include "llvm/IR/Instruction.h"
63 #include "llvm/IR/Instructions.h"
64 #include "llvm/IR/Metadata.h"
65 #include "llvm/IR/Module.h"
66 #include "llvm/IR/PassManager.h"
67 #include "llvm/IR/Type.h"
68 #include "llvm/IR/Use.h"
69 #include "llvm/IR/User.h"
70 #include "llvm/IR/Value.h"
71 #include "llvm/Pass.h"
72 #include "llvm/Support/Casting.h"
73 #include "llvm/Support/Debug.h"
74 #include "llvm/Support/raw_ostream.h"
75 #include "llvm/Transforms/IPO.h"
76 #include <algorithm>
77 #include <cassert>
78 #include <cstdint>
79 #include <functional>
80 #include <iterator>
81 #include <map>
82 #include <set>
83 #include <string>
84 #include <utility>
85 #include <vector>
86 
87 using namespace llvm;
88 
89 #define DEBUG_TYPE "argpromotion"
90 
91 STATISTIC(NumArgumentsPromoted, "Number of pointer arguments promoted");
92 STATISTIC(NumAggregatesPromoted, "Number of aggregate arguments promoted");
93 STATISTIC(NumByValArgsPromoted, "Number of byval arguments promoted");
94 STATISTIC(NumArgumentsDead, "Number of dead pointer args eliminated");
95 
96 /// A vector used to hold the indices of a single GEP instruction
97 using IndicesVector = std::vector<uint64_t>;
98 
99 /// DoPromotion - This method actually performs the promotion of the specified
100 /// arguments, and returns the new function.  At this point, we know that it's
101 /// safe to do so.
102 static Function *
103 doPromotion(Function *F, SmallPtrSetImpl<Argument *> &ArgsToPromote,
104             SmallPtrSetImpl<Argument *> &ByValArgsToTransform,
105             Optional<function_ref<void(CallSite OldCS, CallSite NewCS)>>
106                 ReplaceCallSite) {
107   // Start by computing a new prototype for the function, which is the same as
108   // the old function, but has modified arguments.
109   FunctionType *FTy = F->getFunctionType();
110   std::vector<Type *> Params;
111 
112   using ScalarizeTable = std::set<std::pair<Type *, IndicesVector>>;
113 
114   // ScalarizedElements - If we are promoting a pointer that has elements
115   // accessed out of it, keep track of which elements are accessed so that we
116   // can add one argument for each.
117   //
118   // Arguments that are directly loaded will have a zero element value here, to
119   // handle cases where there are both a direct load and GEP accesses.
120   std::map<Argument *, ScalarizeTable> ScalarizedElements;
121 
122   // OriginalLoads - Keep track of a representative load instruction from the
123   // original function so that we can tell the alias analysis implementation
124   // what the new GEP/Load instructions we are inserting look like.
125   // We need to keep the original loads for each argument and the elements
126   // of the argument that are accessed.
127   std::map<std::pair<Argument *, IndicesVector>, LoadInst *> OriginalLoads;
128 
129   // Attribute - Keep track of the parameter attributes for the arguments
130   // that we are *not* promoting. For the ones that we do promote, the parameter
131   // attributes are lost
132   SmallVector<AttributeSet, 8> ArgAttrVec;
133   AttributeList PAL = F->getAttributes();
134 
135   // First, determine the new argument list
136   unsigned ArgNo = 0;
137   for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E;
138        ++I, ++ArgNo) {
139     if (ByValArgsToTransform.count(&*I)) {
140       // Simple byval argument? Just add all the struct element types.
141       Type *AgTy = cast<PointerType>(I->getType())->getElementType();
142       StructType *STy = cast<StructType>(AgTy);
143       Params.insert(Params.end(), STy->element_begin(), STy->element_end());
144       ArgAttrVec.insert(ArgAttrVec.end(), STy->getNumElements(),
145                         AttributeSet());
146       ++NumByValArgsPromoted;
147     } else if (!ArgsToPromote.count(&*I)) {
148       // Unchanged argument
149       Params.push_back(I->getType());
150       ArgAttrVec.push_back(PAL.getParamAttributes(ArgNo));
151     } else if (I->use_empty()) {
152       // Dead argument (which are always marked as promotable)
153       ++NumArgumentsDead;
154 
155       // There may be remaining metadata uses of the argument for things like
156       // llvm.dbg.value. Replace them with undef.
157       I->replaceAllUsesWith(UndefValue::get(I->getType()));
158     } else {
159       // Okay, this is being promoted. This means that the only uses are loads
160       // or GEPs which are only used by loads
161 
162       // In this table, we will track which indices are loaded from the argument
163       // (where direct loads are tracked as no indices).
164       ScalarizeTable &ArgIndices = ScalarizedElements[&*I];
165       for (User *U : I->users()) {
166         Instruction *UI = cast<Instruction>(U);
167         Type *SrcTy;
168         if (LoadInst *L = dyn_cast<LoadInst>(UI))
169           SrcTy = L->getType();
170         else
171           SrcTy = cast<GetElementPtrInst>(UI)->getSourceElementType();
172         IndicesVector Indices;
173         Indices.reserve(UI->getNumOperands() - 1);
174         // Since loads will only have a single operand, and GEPs only a single
175         // non-index operand, this will record direct loads without any indices,
176         // and gep+loads with the GEP indices.
177         for (User::op_iterator II = UI->op_begin() + 1, IE = UI->op_end();
178              II != IE; ++II)
179           Indices.push_back(cast<ConstantInt>(*II)->getSExtValue());
180         // GEPs with a single 0 index can be merged with direct loads
181         if (Indices.size() == 1 && Indices.front() == 0)
182           Indices.clear();
183         ArgIndices.insert(std::make_pair(SrcTy, Indices));
184         LoadInst *OrigLoad;
185         if (LoadInst *L = dyn_cast<LoadInst>(UI))
186           OrigLoad = L;
187         else
188           // Take any load, we will use it only to update Alias Analysis
189           OrigLoad = cast<LoadInst>(UI->user_back());
190         OriginalLoads[std::make_pair(&*I, Indices)] = OrigLoad;
191       }
192 
193       // Add a parameter to the function for each element passed in.
194       for (const auto &ArgIndex : ArgIndices) {
195         // not allowed to dereference ->begin() if size() is 0
196         Params.push_back(GetElementPtrInst::getIndexedType(
197             cast<PointerType>(I->getType()->getScalarType())->getElementType(),
198             ArgIndex.second));
199         ArgAttrVec.push_back(AttributeSet());
200         assert(Params.back());
201       }
202 
203       if (ArgIndices.size() == 1 && ArgIndices.begin()->second.empty())
204         ++NumArgumentsPromoted;
205       else
206         ++NumAggregatesPromoted;
207     }
208   }
209 
210   Type *RetTy = FTy->getReturnType();
211 
212   // Construct the new function type using the new arguments.
213   FunctionType *NFTy = FunctionType::get(RetTy, Params, FTy->isVarArg());
214 
215   // Create the new function body and insert it into the module.
216   Function *NF = Function::Create(NFTy, F->getLinkage(), F->getAddressSpace(),
217                                   F->getName());
218   NF->copyAttributesFrom(F);
219   NF->copyMetadata(F, 0);
220   F->clearMetadata();
221 
222   LLVM_DEBUG(dbgs() << "ARG PROMOTION:  Promoting to:" << *NF << "\n"
223                     << "From: " << *F);
224 
225   // Recompute the parameter attributes list based on the new arguments for
226   // the function.
227   NF->setAttributes(AttributeList::get(F->getContext(), PAL.getFnAttributes(),
228                                        PAL.getRetAttributes(), ArgAttrVec));
229   ArgAttrVec.clear();
230 
231   F->getParent()->getFunctionList().insert(F->getIterator(), NF);
232   NF->takeName(F);
233 
234   // Loop over all of the callers of the function, transforming the call sites
235   // to pass in the loaded pointers.
236   //
237   SmallVector<Value *, 16> Args;
238   while (!F->use_empty()) {
239     CallSite CS(F->user_back());
240     assert(CS.getCalledFunction() == F);
241     Instruction *Call = CS.getInstruction();
242     const AttributeList &CallPAL = CS.getAttributes();
243 
244     // Loop over the operands, inserting GEP and loads in the caller as
245     // appropriate.
246     CallSite::arg_iterator AI = CS.arg_begin();
247     ArgNo = 0;
248     for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E;
249          ++I, ++AI, ++ArgNo)
250       if (!ArgsToPromote.count(&*I) && !ByValArgsToTransform.count(&*I)) {
251         Args.push_back(*AI); // Unmodified argument
252         ArgAttrVec.push_back(CallPAL.getParamAttributes(ArgNo));
253       } else if (ByValArgsToTransform.count(&*I)) {
254         // Emit a GEP and load for each element of the struct.
255         Type *AgTy = cast<PointerType>(I->getType())->getElementType();
256         StructType *STy = cast<StructType>(AgTy);
257         Value *Idxs[2] = {
258             ConstantInt::get(Type::getInt32Ty(F->getContext()), 0), nullptr};
259         for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
260           Idxs[1] = ConstantInt::get(Type::getInt32Ty(F->getContext()), i);
261           Value *Idx = GetElementPtrInst::Create(
262               STy, *AI, Idxs, (*AI)->getName() + "." + Twine(i), Call);
263           // TODO: Tell AA about the new values?
264           Args.push_back(new LoadInst(STy->getElementType(i), Idx,
265                                       Idx->getName() + ".val", Call));
266           ArgAttrVec.push_back(AttributeSet());
267         }
268       } else if (!I->use_empty()) {
269         // Non-dead argument: insert GEPs and loads as appropriate.
270         ScalarizeTable &ArgIndices = ScalarizedElements[&*I];
271         // Store the Value* version of the indices in here, but declare it now
272         // for reuse.
273         std::vector<Value *> Ops;
274         for (const auto &ArgIndex : ArgIndices) {
275           Value *V = *AI;
276           LoadInst *OrigLoad =
277               OriginalLoads[std::make_pair(&*I, ArgIndex.second)];
278           if (!ArgIndex.second.empty()) {
279             Ops.reserve(ArgIndex.second.size());
280             Type *ElTy = V->getType();
281             for (auto II : ArgIndex.second) {
282               // Use i32 to index structs, and i64 for others (pointers/arrays).
283               // This satisfies GEP constraints.
284               Type *IdxTy =
285                   (ElTy->isStructTy() ? Type::getInt32Ty(F->getContext())
286                                       : Type::getInt64Ty(F->getContext()));
287               Ops.push_back(ConstantInt::get(IdxTy, II));
288               // Keep track of the type we're currently indexing.
289               if (auto *ElPTy = dyn_cast<PointerType>(ElTy))
290                 ElTy = ElPTy->getElementType();
291               else
292                 ElTy = cast<CompositeType>(ElTy)->getTypeAtIndex(II);
293             }
294             // And create a GEP to extract those indices.
295             V = GetElementPtrInst::Create(ArgIndex.first, V, Ops,
296                                           V->getName() + ".idx", Call);
297             Ops.clear();
298           }
299           // Since we're replacing a load make sure we take the alignment
300           // of the previous load.
301           LoadInst *newLoad =
302               new LoadInst(OrigLoad->getType(), V, V->getName() + ".val", Call);
303           newLoad->setAlignment(OrigLoad->getAlignment());
304           // Transfer the AA info too.
305           AAMDNodes AAInfo;
306           OrigLoad->getAAMetadata(AAInfo);
307           newLoad->setAAMetadata(AAInfo);
308 
309           Args.push_back(newLoad);
310           ArgAttrVec.push_back(AttributeSet());
311         }
312       }
313 
314     // Push any varargs arguments on the list.
315     for (; AI != CS.arg_end(); ++AI, ++ArgNo) {
316       Args.push_back(*AI);
317       ArgAttrVec.push_back(CallPAL.getParamAttributes(ArgNo));
318     }
319 
320     SmallVector<OperandBundleDef, 1> OpBundles;
321     CS.getOperandBundlesAsDefs(OpBundles);
322 
323     CallSite NewCS;
324     if (InvokeInst *II = dyn_cast<InvokeInst>(Call)) {
325       NewCS = InvokeInst::Create(NF, II->getNormalDest(), II->getUnwindDest(),
326                                  Args, OpBundles, "", Call);
327     } else {
328       auto *NewCall = CallInst::Create(NF, Args, OpBundles, "", Call);
329       NewCall->setTailCallKind(cast<CallInst>(Call)->getTailCallKind());
330       NewCS = NewCall;
331     }
332     NewCS.setCallingConv(CS.getCallingConv());
333     NewCS.setAttributes(
334         AttributeList::get(F->getContext(), CallPAL.getFnAttributes(),
335                            CallPAL.getRetAttributes(), ArgAttrVec));
336     NewCS->setDebugLoc(Call->getDebugLoc());
337     uint64_t W;
338     if (Call->extractProfTotalWeight(W))
339       NewCS->setProfWeight(W);
340     Args.clear();
341     ArgAttrVec.clear();
342 
343     // Update the callgraph to know that the callsite has been transformed.
344     if (ReplaceCallSite)
345       (*ReplaceCallSite)(CS, NewCS);
346 
347     if (!Call->use_empty()) {
348       Call->replaceAllUsesWith(NewCS.getInstruction());
349       NewCS->takeName(Call);
350     }
351 
352     // Finally, remove the old call from the program, reducing the use-count of
353     // F.
354     Call->eraseFromParent();
355   }
356 
357   const DataLayout &DL = F->getParent()->getDataLayout();
358 
359   // Since we have now created the new function, splice the body of the old
360   // function right into the new function, leaving the old rotting hulk of the
361   // function empty.
362   NF->getBasicBlockList().splice(NF->begin(), F->getBasicBlockList());
363 
364   // Loop over the argument list, transferring uses of the old arguments over to
365   // the new arguments, also transferring over the names as well.
366   for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(),
367                               I2 = NF->arg_begin();
368        I != E; ++I) {
369     if (!ArgsToPromote.count(&*I) && !ByValArgsToTransform.count(&*I)) {
370       // If this is an unmodified argument, move the name and users over to the
371       // new version.
372       I->replaceAllUsesWith(&*I2);
373       I2->takeName(&*I);
374       ++I2;
375       continue;
376     }
377 
378     if (ByValArgsToTransform.count(&*I)) {
379       // In the callee, we create an alloca, and store each of the new incoming
380       // arguments into the alloca.
381       Instruction *InsertPt = &NF->begin()->front();
382 
383       // Just add all the struct element types.
384       Type *AgTy = cast<PointerType>(I->getType())->getElementType();
385       Value *TheAlloca = new AllocaInst(AgTy, DL.getAllocaAddrSpace(), nullptr,
386                                         I->getParamAlignment(), "", InsertPt);
387       StructType *STy = cast<StructType>(AgTy);
388       Value *Idxs[2] = {ConstantInt::get(Type::getInt32Ty(F->getContext()), 0),
389                         nullptr};
390 
391       for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
392         Idxs[1] = ConstantInt::get(Type::getInt32Ty(F->getContext()), i);
393         Value *Idx = GetElementPtrInst::Create(
394             AgTy, TheAlloca, Idxs, TheAlloca->getName() + "." + Twine(i),
395             InsertPt);
396         I2->setName(I->getName() + "." + Twine(i));
397         new StoreInst(&*I2++, Idx, InsertPt);
398       }
399 
400       // Anything that used the arg should now use the alloca.
401       I->replaceAllUsesWith(TheAlloca);
402       TheAlloca->takeName(&*I);
403 
404       // If the alloca is used in a call, we must clear the tail flag since
405       // the callee now uses an alloca from the caller.
406       for (User *U : TheAlloca->users()) {
407         CallInst *Call = dyn_cast<CallInst>(U);
408         if (!Call)
409           continue;
410         Call->setTailCall(false);
411       }
412       continue;
413     }
414 
415     if (I->use_empty())
416       continue;
417 
418     // Otherwise, if we promoted this argument, then all users are load
419     // instructions (or GEPs with only load users), and all loads should be
420     // using the new argument that we added.
421     ScalarizeTable &ArgIndices = ScalarizedElements[&*I];
422 
423     while (!I->use_empty()) {
424       if (LoadInst *LI = dyn_cast<LoadInst>(I->user_back())) {
425         assert(ArgIndices.begin()->second.empty() &&
426                "Load element should sort to front!");
427         I2->setName(I->getName() + ".val");
428         LI->replaceAllUsesWith(&*I2);
429         LI->eraseFromParent();
430         LLVM_DEBUG(dbgs() << "*** Promoted load of argument '" << I->getName()
431                           << "' in function '" << F->getName() << "'\n");
432       } else {
433         GetElementPtrInst *GEP = cast<GetElementPtrInst>(I->user_back());
434         IndicesVector Operands;
435         Operands.reserve(GEP->getNumIndices());
436         for (User::op_iterator II = GEP->idx_begin(), IE = GEP->idx_end();
437              II != IE; ++II)
438           Operands.push_back(cast<ConstantInt>(*II)->getSExtValue());
439 
440         // GEPs with a single 0 index can be merged with direct loads
441         if (Operands.size() == 1 && Operands.front() == 0)
442           Operands.clear();
443 
444         Function::arg_iterator TheArg = I2;
445         for (ScalarizeTable::iterator It = ArgIndices.begin();
446              It->second != Operands; ++It, ++TheArg) {
447           assert(It != ArgIndices.end() && "GEP not handled??");
448         }
449 
450         std::string NewName = I->getName();
451         for (unsigned i = 0, e = Operands.size(); i != e; ++i) {
452           NewName += "." + utostr(Operands[i]);
453         }
454         NewName += ".val";
455         TheArg->setName(NewName);
456 
457         LLVM_DEBUG(dbgs() << "*** Promoted agg argument '" << TheArg->getName()
458                           << "' of function '" << NF->getName() << "'\n");
459 
460         // All of the uses must be load instructions.  Replace them all with
461         // the argument specified by ArgNo.
462         while (!GEP->use_empty()) {
463           LoadInst *L = cast<LoadInst>(GEP->user_back());
464           L->replaceAllUsesWith(&*TheArg);
465           L->eraseFromParent();
466         }
467         GEP->eraseFromParent();
468       }
469     }
470 
471     // Increment I2 past all of the arguments added for this promoted pointer.
472     std::advance(I2, ArgIndices.size());
473   }
474 
475   assert(F->isDeclaration());
476   return NF;
477 }
478 
479 /// AllCallersPassInValidPointerForArgument - Return true if we can prove that
480 /// all callees pass in a valid pointer for the specified function argument.
481 static bool allCallersPassInValidPointerForArgument(Argument *Arg) {
482   Function *Callee = Arg->getParent();
483   const DataLayout &DL = Callee->getParent()->getDataLayout();
484 
485   unsigned ArgNo = Arg->getArgNo();
486 
487   // Look at all call sites of the function.  At this point we know we only have
488   // direct callees.
489   for (User *U : Callee->users()) {
490     CallSite CS(U);
491     assert(CS && "Should only have direct calls!");
492 
493     if (!isDereferenceablePointer(CS.getArgument(ArgNo), DL))
494       return false;
495   }
496   return true;
497 }
498 
499 /// Returns true if Prefix is a prefix of longer. That means, Longer has a size
500 /// that is greater than or equal to the size of prefix, and each of the
501 /// elements in Prefix is the same as the corresponding elements in Longer.
502 ///
503 /// This means it also returns true when Prefix and Longer are equal!
504 static bool isPrefix(const IndicesVector &Prefix, const IndicesVector &Longer) {
505   if (Prefix.size() > Longer.size())
506     return false;
507   return std::equal(Prefix.begin(), Prefix.end(), Longer.begin());
508 }
509 
510 /// Checks if Indices, or a prefix of Indices, is in Set.
511 static bool prefixIn(const IndicesVector &Indices,
512                      std::set<IndicesVector> &Set) {
513   std::set<IndicesVector>::iterator Low;
514   Low = Set.upper_bound(Indices);
515   if (Low != Set.begin())
516     Low--;
517   // Low is now the last element smaller than or equal to Indices. This means
518   // it points to a prefix of Indices (possibly Indices itself), if such
519   // prefix exists.
520   //
521   // This load is safe if any prefix of its operands is safe to load.
522   return Low != Set.end() && isPrefix(*Low, Indices);
523 }
524 
525 /// Mark the given indices (ToMark) as safe in the given set of indices
526 /// (Safe). Marking safe usually means adding ToMark to Safe. However, if there
527 /// is already a prefix of Indices in Safe, Indices are implicitely marked safe
528 /// already. Furthermore, any indices that Indices is itself a prefix of, are
529 /// removed from Safe (since they are implicitely safe because of Indices now).
530 static void markIndicesSafe(const IndicesVector &ToMark,
531                             std::set<IndicesVector> &Safe) {
532   std::set<IndicesVector>::iterator Low;
533   Low = Safe.upper_bound(ToMark);
534   // Guard against the case where Safe is empty
535   if (Low != Safe.begin())
536     Low--;
537   // Low is now the last element smaller than or equal to Indices. This
538   // means it points to a prefix of Indices (possibly Indices itself), if
539   // such prefix exists.
540   if (Low != Safe.end()) {
541     if (isPrefix(*Low, ToMark))
542       // If there is already a prefix of these indices (or exactly these
543       // indices) marked a safe, don't bother adding these indices
544       return;
545 
546     // Increment Low, so we can use it as a "insert before" hint
547     ++Low;
548   }
549   // Insert
550   Low = Safe.insert(Low, ToMark);
551   ++Low;
552   // If there we're a prefix of longer index list(s), remove those
553   std::set<IndicesVector>::iterator End = Safe.end();
554   while (Low != End && isPrefix(ToMark, *Low)) {
555     std::set<IndicesVector>::iterator Remove = Low;
556     ++Low;
557     Safe.erase(Remove);
558   }
559 }
560 
561 /// isSafeToPromoteArgument - As you might guess from the name of this method,
562 /// it checks to see if it is both safe and useful to promote the argument.
563 /// This method limits promotion of aggregates to only promote up to three
564 /// elements of the aggregate in order to avoid exploding the number of
565 /// arguments passed in.
566 static bool isSafeToPromoteArgument(Argument *Arg, bool isByValOrInAlloca,
567                                     AAResults &AAR, unsigned MaxElements) {
568   using GEPIndicesSet = std::set<IndicesVector>;
569 
570   // Quick exit for unused arguments
571   if (Arg->use_empty())
572     return true;
573 
574   // We can only promote this argument if all of the uses are loads, or are GEP
575   // instructions (with constant indices) that are subsequently loaded.
576   //
577   // Promoting the argument causes it to be loaded in the caller
578   // unconditionally. This is only safe if we can prove that either the load
579   // would have happened in the callee anyway (ie, there is a load in the entry
580   // block) or the pointer passed in at every call site is guaranteed to be
581   // valid.
582   // In the former case, invalid loads can happen, but would have happened
583   // anyway, in the latter case, invalid loads won't happen. This prevents us
584   // from introducing an invalid load that wouldn't have happened in the
585   // original code.
586   //
587   // This set will contain all sets of indices that are loaded in the entry
588   // block, and thus are safe to unconditionally load in the caller.
589   //
590   // This optimization is also safe for InAlloca parameters, because it verifies
591   // that the address isn't captured.
592   GEPIndicesSet SafeToUnconditionallyLoad;
593 
594   // This set contains all the sets of indices that we are planning to promote.
595   // This makes it possible to limit the number of arguments added.
596   GEPIndicesSet ToPromote;
597 
598   // If the pointer is always valid, any load with first index 0 is valid.
599   if (isByValOrInAlloca || allCallersPassInValidPointerForArgument(Arg))
600     SafeToUnconditionallyLoad.insert(IndicesVector(1, 0));
601 
602   // First, iterate the entry block and mark loads of (geps of) arguments as
603   // safe.
604   BasicBlock &EntryBlock = Arg->getParent()->front();
605   // Declare this here so we can reuse it
606   IndicesVector Indices;
607   for (Instruction &I : EntryBlock)
608     if (LoadInst *LI = dyn_cast<LoadInst>(&I)) {
609       Value *V = LI->getPointerOperand();
610       if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(V)) {
611         V = GEP->getPointerOperand();
612         if (V == Arg) {
613           // This load actually loads (part of) Arg? Check the indices then.
614           Indices.reserve(GEP->getNumIndices());
615           for (User::op_iterator II = GEP->idx_begin(), IE = GEP->idx_end();
616                II != IE; ++II)
617             if (ConstantInt *CI = dyn_cast<ConstantInt>(*II))
618               Indices.push_back(CI->getSExtValue());
619             else
620               // We found a non-constant GEP index for this argument? Bail out
621               // right away, can't promote this argument at all.
622               return false;
623 
624           // Indices checked out, mark them as safe
625           markIndicesSafe(Indices, SafeToUnconditionallyLoad);
626           Indices.clear();
627         }
628       } else if (V == Arg) {
629         // Direct loads are equivalent to a GEP with a single 0 index.
630         markIndicesSafe(IndicesVector(1, 0), SafeToUnconditionallyLoad);
631       }
632     }
633 
634   // Now, iterate all uses of the argument to see if there are any uses that are
635   // not (GEP+)loads, or any (GEP+)loads that are not safe to promote.
636   SmallVector<LoadInst *, 16> Loads;
637   IndicesVector Operands;
638   for (Use &U : Arg->uses()) {
639     User *UR = U.getUser();
640     Operands.clear();
641     if (LoadInst *LI = dyn_cast<LoadInst>(UR)) {
642       // Don't hack volatile/atomic loads
643       if (!LI->isSimple())
644         return false;
645       Loads.push_back(LI);
646       // Direct loads are equivalent to a GEP with a zero index and then a load.
647       Operands.push_back(0);
648     } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(UR)) {
649       if (GEP->use_empty()) {
650         // Dead GEP's cause trouble later.  Just remove them if we run into
651         // them.
652         GEP->eraseFromParent();
653         // TODO: This runs the above loop over and over again for dead GEPs
654         // Couldn't we just do increment the UI iterator earlier and erase the
655         // use?
656         return isSafeToPromoteArgument(Arg, isByValOrInAlloca, AAR,
657                                        MaxElements);
658       }
659 
660       // Ensure that all of the indices are constants.
661       for (User::op_iterator i = GEP->idx_begin(), e = GEP->idx_end(); i != e;
662            ++i)
663         if (ConstantInt *C = dyn_cast<ConstantInt>(*i))
664           Operands.push_back(C->getSExtValue());
665         else
666           return false; // Not a constant operand GEP!
667 
668       // Ensure that the only users of the GEP are load instructions.
669       for (User *GEPU : GEP->users())
670         if (LoadInst *LI = dyn_cast<LoadInst>(GEPU)) {
671           // Don't hack volatile/atomic loads
672           if (!LI->isSimple())
673             return false;
674           Loads.push_back(LI);
675         } else {
676           // Other uses than load?
677           return false;
678         }
679     } else {
680       return false; // Not a load or a GEP.
681     }
682 
683     // Now, see if it is safe to promote this load / loads of this GEP. Loading
684     // is safe if Operands, or a prefix of Operands, is marked as safe.
685     if (!prefixIn(Operands, SafeToUnconditionallyLoad))
686       return false;
687 
688     // See if we are already promoting a load with these indices. If not, check
689     // to make sure that we aren't promoting too many elements.  If so, nothing
690     // to do.
691     if (ToPromote.find(Operands) == ToPromote.end()) {
692       if (MaxElements > 0 && ToPromote.size() == MaxElements) {
693         LLVM_DEBUG(dbgs() << "argpromotion not promoting argument '"
694                           << Arg->getName()
695                           << "' because it would require adding more "
696                           << "than " << MaxElements
697                           << " arguments to the function.\n");
698         // We limit aggregate promotion to only promoting up to a fixed number
699         // of elements of the aggregate.
700         return false;
701       }
702       ToPromote.insert(std::move(Operands));
703     }
704   }
705 
706   if (Loads.empty())
707     return true; // No users, this is a dead argument.
708 
709   // Okay, now we know that the argument is only used by load instructions and
710   // it is safe to unconditionally perform all of them. Use alias analysis to
711   // check to see if the pointer is guaranteed to not be modified from entry of
712   // the function to each of the load instructions.
713 
714   // Because there could be several/many load instructions, remember which
715   // blocks we know to be transparent to the load.
716   df_iterator_default_set<BasicBlock *, 16> TranspBlocks;
717 
718   for (LoadInst *Load : Loads) {
719     // Check to see if the load is invalidated from the start of the block to
720     // the load itself.
721     BasicBlock *BB = Load->getParent();
722 
723     MemoryLocation Loc = MemoryLocation::get(Load);
724     if (AAR.canInstructionRangeModRef(BB->front(), *Load, Loc, ModRefInfo::Mod))
725       return false; // Pointer is invalidated!
726 
727     // Now check every path from the entry block to the load for transparency.
728     // To do this, we perform a depth first search on the inverse CFG from the
729     // loading block.
730     for (BasicBlock *P : predecessors(BB)) {
731       for (BasicBlock *TranspBB : inverse_depth_first_ext(P, TranspBlocks))
732         if (AAR.canBasicBlockModify(*TranspBB, Loc))
733           return false;
734     }
735   }
736 
737   // If the path from the entry of the function to each load is free of
738   // instructions that potentially invalidate the load, we can make the
739   // transformation!
740   return true;
741 }
742 
743 /// Checks if a type could have padding bytes.
744 static bool isDenselyPacked(Type *type, const DataLayout &DL) {
745   // There is no size information, so be conservative.
746   if (!type->isSized())
747     return false;
748 
749   // If the alloc size is not equal to the storage size, then there are padding
750   // bytes. For x86_fp80 on x86-64, size: 80 alloc size: 128.
751   if (DL.getTypeSizeInBits(type) != DL.getTypeAllocSizeInBits(type))
752     return false;
753 
754   if (!isa<CompositeType>(type))
755     return true;
756 
757   // For homogenous sequential types, check for padding within members.
758   if (SequentialType *seqTy = dyn_cast<SequentialType>(type))
759     return isDenselyPacked(seqTy->getElementType(), DL);
760 
761   // Check for padding within and between elements of a struct.
762   StructType *StructTy = cast<StructType>(type);
763   const StructLayout *Layout = DL.getStructLayout(StructTy);
764   uint64_t StartPos = 0;
765   for (unsigned i = 0, E = StructTy->getNumElements(); i < E; ++i) {
766     Type *ElTy = StructTy->getElementType(i);
767     if (!isDenselyPacked(ElTy, DL))
768       return false;
769     if (StartPos != Layout->getElementOffsetInBits(i))
770       return false;
771     StartPos += DL.getTypeAllocSizeInBits(ElTy);
772   }
773 
774   return true;
775 }
776 
777 /// Checks if the padding bytes of an argument could be accessed.
778 static bool canPaddingBeAccessed(Argument *arg) {
779   assert(arg->hasByValAttr());
780 
781   // Track all the pointers to the argument to make sure they are not captured.
782   SmallPtrSet<Value *, 16> PtrValues;
783   PtrValues.insert(arg);
784 
785   // Track all of the stores.
786   SmallVector<StoreInst *, 16> Stores;
787 
788   // Scan through the uses recursively to make sure the pointer is always used
789   // sanely.
790   SmallVector<Value *, 16> WorkList;
791   WorkList.insert(WorkList.end(), arg->user_begin(), arg->user_end());
792   while (!WorkList.empty()) {
793     Value *V = WorkList.back();
794     WorkList.pop_back();
795     if (isa<GetElementPtrInst>(V) || isa<PHINode>(V)) {
796       if (PtrValues.insert(V).second)
797         WorkList.insert(WorkList.end(), V->user_begin(), V->user_end());
798     } else if (StoreInst *Store = dyn_cast<StoreInst>(V)) {
799       Stores.push_back(Store);
800     } else if (!isa<LoadInst>(V)) {
801       return true;
802     }
803   }
804 
805   // Check to make sure the pointers aren't captured
806   for (StoreInst *Store : Stores)
807     if (PtrValues.count(Store->getValueOperand()))
808       return true;
809 
810   return false;
811 }
812 
813 static bool areFunctionArgsABICompatible(
814     const Function &F, const TargetTransformInfo &TTI,
815     SmallPtrSetImpl<Argument *> &ArgsToPromote,
816     SmallPtrSetImpl<Argument *> &ByValArgsToTransform) {
817   for (const Use &U : F.uses()) {
818     CallSite CS(U.getUser());
819     const Function *Caller = CS.getCaller();
820     const Function *Callee = CS.getCalledFunction();
821     if (!TTI.areFunctionArgsABICompatible(Caller, Callee, ArgsToPromote) ||
822         !TTI.areFunctionArgsABICompatible(Caller, Callee, ByValArgsToTransform))
823       return false;
824   }
825   return true;
826 }
827 
828 /// PromoteArguments - This method checks the specified function to see if there
829 /// are any promotable arguments and if it is safe to promote the function (for
830 /// example, all callers are direct).  If safe to promote some arguments, it
831 /// calls the DoPromotion method.
832 static Function *
833 promoteArguments(Function *F, function_ref<AAResults &(Function &F)> AARGetter,
834                  unsigned MaxElements,
835                  Optional<function_ref<void(CallSite OldCS, CallSite NewCS)>>
836                      ReplaceCallSite,
837                  const TargetTransformInfo &TTI) {
838   // Don't perform argument promotion for naked functions; otherwise we can end
839   // up removing parameters that are seemingly 'not used' as they are referred
840   // to in the assembly.
841   if(F->hasFnAttribute(Attribute::Naked))
842     return nullptr;
843 
844   // Make sure that it is local to this module.
845   if (!F->hasLocalLinkage())
846     return nullptr;
847 
848   // Don't promote arguments for variadic functions. Adding, removing, or
849   // changing non-pack parameters can change the classification of pack
850   // parameters. Frontends encode that classification at the call site in the
851   // IR, while in the callee the classification is determined dynamically based
852   // on the number of registers consumed so far.
853   if (F->isVarArg())
854     return nullptr;
855 
856   // First check: see if there are any pointer arguments!  If not, quick exit.
857   SmallVector<Argument *, 16> PointerArgs;
858   for (Argument &I : F->args())
859     if (I.getType()->isPointerTy())
860       PointerArgs.push_back(&I);
861   if (PointerArgs.empty())
862     return nullptr;
863 
864   // Second check: make sure that all callers are direct callers.  We can't
865   // transform functions that have indirect callers.  Also see if the function
866   // is self-recursive and check that target features are compatible.
867   bool isSelfRecursive = false;
868   for (Use &U : F->uses()) {
869     CallSite CS(U.getUser());
870     // Must be a direct call.
871     if (CS.getInstruction() == nullptr || !CS.isCallee(&U))
872       return nullptr;
873 
874     // Can't change signature of musttail callee
875     if (CS.isMustTailCall())
876       return nullptr;
877 
878     if (CS.getInstruction()->getParent()->getParent() == F)
879       isSelfRecursive = true;
880   }
881 
882   // Can't change signature of musttail caller
883   // FIXME: Support promoting whole chain of musttail functions
884   for (BasicBlock &BB : *F)
885     if (BB.getTerminatingMustTailCall())
886       return nullptr;
887 
888   const DataLayout &DL = F->getParent()->getDataLayout();
889 
890   AAResults &AAR = AARGetter(*F);
891 
892   // Check to see which arguments are promotable.  If an argument is promotable,
893   // add it to ArgsToPromote.
894   SmallPtrSet<Argument *, 8> ArgsToPromote;
895   SmallPtrSet<Argument *, 8> ByValArgsToTransform;
896   for (Argument *PtrArg : PointerArgs) {
897     Type *AgTy = cast<PointerType>(PtrArg->getType())->getElementType();
898 
899     // Replace sret attribute with noalias. This reduces register pressure by
900     // avoiding a register copy.
901     if (PtrArg->hasStructRetAttr()) {
902       unsigned ArgNo = PtrArg->getArgNo();
903       F->removeParamAttr(ArgNo, Attribute::StructRet);
904       F->addParamAttr(ArgNo, Attribute::NoAlias);
905       for (Use &U : F->uses()) {
906         CallSite CS(U.getUser());
907         CS.removeParamAttr(ArgNo, Attribute::StructRet);
908         CS.addParamAttr(ArgNo, Attribute::NoAlias);
909       }
910     }
911 
912     // If this is a byval argument, and if the aggregate type is small, just
913     // pass the elements, which is always safe, if the passed value is densely
914     // packed or if we can prove the padding bytes are never accessed. This does
915     // not apply to inalloca.
916     bool isSafeToPromote =
917         PtrArg->hasByValAttr() &&
918         (isDenselyPacked(AgTy, DL) || !canPaddingBeAccessed(PtrArg));
919     if (isSafeToPromote) {
920       if (StructType *STy = dyn_cast<StructType>(AgTy)) {
921         if (MaxElements > 0 && STy->getNumElements() > MaxElements) {
922           LLVM_DEBUG(dbgs() << "argpromotion disable promoting argument '"
923                             << PtrArg->getName()
924                             << "' because it would require adding more"
925                             << " than " << MaxElements
926                             << " arguments to the function.\n");
927           continue;
928         }
929 
930         // If all the elements are single-value types, we can promote it.
931         bool AllSimple = true;
932         for (const auto *EltTy : STy->elements()) {
933           if (!EltTy->isSingleValueType()) {
934             AllSimple = false;
935             break;
936           }
937         }
938 
939         // Safe to transform, don't even bother trying to "promote" it.
940         // Passing the elements as a scalar will allow sroa to hack on
941         // the new alloca we introduce.
942         if (AllSimple) {
943           ByValArgsToTransform.insert(PtrArg);
944           continue;
945         }
946       }
947     }
948 
949     // If the argument is a recursive type and we're in a recursive
950     // function, we could end up infinitely peeling the function argument.
951     if (isSelfRecursive) {
952       if (StructType *STy = dyn_cast<StructType>(AgTy)) {
953         bool RecursiveType = false;
954         for (const auto *EltTy : STy->elements()) {
955           if (EltTy == PtrArg->getType()) {
956             RecursiveType = true;
957             break;
958           }
959         }
960         if (RecursiveType)
961           continue;
962       }
963     }
964 
965     // Otherwise, see if we can promote the pointer to its value.
966     if (isSafeToPromoteArgument(PtrArg, PtrArg->hasByValOrInAllocaAttr(), AAR,
967                                 MaxElements))
968       ArgsToPromote.insert(PtrArg);
969   }
970 
971   // No promotable pointer arguments.
972   if (ArgsToPromote.empty() && ByValArgsToTransform.empty())
973     return nullptr;
974 
975   if (!areFunctionArgsABICompatible(*F, TTI, ArgsToPromote,
976                                     ByValArgsToTransform))
977     return nullptr;
978 
979   return doPromotion(F, ArgsToPromote, ByValArgsToTransform, ReplaceCallSite);
980 }
981 
982 PreservedAnalyses ArgumentPromotionPass::run(LazyCallGraph::SCC &C,
983                                              CGSCCAnalysisManager &AM,
984                                              LazyCallGraph &CG,
985                                              CGSCCUpdateResult &UR) {
986   bool Changed = false, LocalChange;
987 
988   // Iterate until we stop promoting from this SCC.
989   do {
990     LocalChange = false;
991 
992     for (LazyCallGraph::Node &N : C) {
993       Function &OldF = N.getFunction();
994 
995       FunctionAnalysisManager &FAM =
996           AM.getResult<FunctionAnalysisManagerCGSCCProxy>(C, CG).getManager();
997       // FIXME: This lambda must only be used with this function. We should
998       // skip the lambda and just get the AA results directly.
999       auto AARGetter = [&](Function &F) -> AAResults & {
1000         assert(&F == &OldF && "Called with an unexpected function!");
1001         return FAM.getResult<AAManager>(F);
1002       };
1003 
1004       const TargetTransformInfo &TTI = FAM.getResult<TargetIRAnalysis>(OldF);
1005       Function *NewF =
1006           promoteArguments(&OldF, AARGetter, MaxElements, None, TTI);
1007       if (!NewF)
1008         continue;
1009       LocalChange = true;
1010 
1011       // Directly substitute the functions in the call graph. Note that this
1012       // requires the old function to be completely dead and completely
1013       // replaced by the new function. It does no call graph updates, it merely
1014       // swaps out the particular function mapped to a particular node in the
1015       // graph.
1016       C.getOuterRefSCC().replaceNodeFunction(N, *NewF);
1017       OldF.eraseFromParent();
1018     }
1019 
1020     Changed |= LocalChange;
1021   } while (LocalChange);
1022 
1023   if (!Changed)
1024     return PreservedAnalyses::all();
1025 
1026   return PreservedAnalyses::none();
1027 }
1028 
1029 namespace {
1030 
1031 /// ArgPromotion - The 'by reference' to 'by value' argument promotion pass.
1032 struct ArgPromotion : public CallGraphSCCPass {
1033   // Pass identification, replacement for typeid
1034   static char ID;
1035 
1036   explicit ArgPromotion(unsigned MaxElements = 3)
1037       : CallGraphSCCPass(ID), MaxElements(MaxElements) {
1038     initializeArgPromotionPass(*PassRegistry::getPassRegistry());
1039   }
1040 
1041   void getAnalysisUsage(AnalysisUsage &AU) const override {
1042     AU.addRequired<AssumptionCacheTracker>();
1043     AU.addRequired<TargetLibraryInfoWrapperPass>();
1044     AU.addRequired<TargetTransformInfoWrapperPass>();
1045     getAAResultsAnalysisUsage(AU);
1046     CallGraphSCCPass::getAnalysisUsage(AU);
1047   }
1048 
1049   bool runOnSCC(CallGraphSCC &SCC) override;
1050 
1051 private:
1052   using llvm::Pass::doInitialization;
1053 
1054   bool doInitialization(CallGraph &CG) override;
1055 
1056   /// The maximum number of elements to expand, or 0 for unlimited.
1057   unsigned MaxElements;
1058 };
1059 
1060 } // end anonymous namespace
1061 
1062 char ArgPromotion::ID = 0;
1063 
1064 INITIALIZE_PASS_BEGIN(ArgPromotion, "argpromotion",
1065                       "Promote 'by reference' arguments to scalars", false,
1066                       false)
1067 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
1068 INITIALIZE_PASS_DEPENDENCY(CallGraphWrapperPass)
1069 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
1070 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
1071 INITIALIZE_PASS_END(ArgPromotion, "argpromotion",
1072                     "Promote 'by reference' arguments to scalars", false, false)
1073 
1074 Pass *llvm::createArgumentPromotionPass(unsigned MaxElements) {
1075   return new ArgPromotion(MaxElements);
1076 }
1077 
1078 bool ArgPromotion::runOnSCC(CallGraphSCC &SCC) {
1079   if (skipSCC(SCC))
1080     return false;
1081 
1082   // Get the callgraph information that we need to update to reflect our
1083   // changes.
1084   CallGraph &CG = getAnalysis<CallGraphWrapperPass>().getCallGraph();
1085 
1086   LegacyAARGetter AARGetter(*this);
1087 
1088   bool Changed = false, LocalChange;
1089 
1090   // Iterate until we stop promoting from this SCC.
1091   do {
1092     LocalChange = false;
1093     // Attempt to promote arguments from all functions in this SCC.
1094     for (CallGraphNode *OldNode : SCC) {
1095       Function *OldF = OldNode->getFunction();
1096       if (!OldF)
1097         continue;
1098 
1099       auto ReplaceCallSite = [&](CallSite OldCS, CallSite NewCS) {
1100         Function *Caller = OldCS.getInstruction()->getParent()->getParent();
1101         CallGraphNode *NewCalleeNode =
1102             CG.getOrInsertFunction(NewCS.getCalledFunction());
1103         CallGraphNode *CallerNode = CG[Caller];
1104         CallerNode->replaceCallEdge(OldCS, NewCS, NewCalleeNode);
1105       };
1106 
1107       const TargetTransformInfo &TTI =
1108           getAnalysis<TargetTransformInfoWrapperPass>().getTTI(*OldF);
1109       if (Function *NewF = promoteArguments(OldF, AARGetter, MaxElements,
1110                                             {ReplaceCallSite}, TTI)) {
1111         LocalChange = true;
1112 
1113         // Update the call graph for the newly promoted function.
1114         CallGraphNode *NewNode = CG.getOrInsertFunction(NewF);
1115         NewNode->stealCalledFunctionsFrom(OldNode);
1116         if (OldNode->getNumReferences() == 0)
1117           delete CG.removeFunctionFromModule(OldNode);
1118         else
1119           OldF->setLinkage(Function::ExternalLinkage);
1120 
1121         // And updat ethe SCC we're iterating as well.
1122         SCC.ReplaceNode(OldNode, NewNode);
1123       }
1124     }
1125     // Remember that we changed something.
1126     Changed |= LocalChange;
1127   } while (LocalChange);
1128 
1129   return Changed;
1130 }
1131 
1132 bool ArgPromotion::doInitialization(CallGraph &CG) {
1133   return CallGraphSCCPass::doInitialization(CG);
1134 }
1135