1 //===- CoroSplit.cpp - Converts a coroutine into a state machine ----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 // This pass builds the coroutine frame and outlines resume and destroy parts
9 // of the coroutine into separate functions.
10 //
11 // We present a coroutine to an LLVM as an ordinary function with suspension
12 // points marked up with intrinsics. We let the optimizer party on the coroutine
13 // as a single function for as long as possible. Shortly before the coroutine is
14 // eligible to be inlined into its callers, we split up the coroutine into parts
15 // corresponding to an initial, resume and destroy invocations of the coroutine,
16 // add them to the current SCC and restart the IPO pipeline to optimize the
17 // coroutine subfunctions we extracted before proceeding to the caller of the
18 // coroutine.
19 //===----------------------------------------------------------------------===//
20 
21 #include "llvm/Transforms/Coroutines/CoroSplit.h"
22 #include "CoroInstr.h"
23 #include "CoroInternal.h"
24 #include "llvm/ADT/DenseMap.h"
25 #include "llvm/ADT/SmallPtrSet.h"
26 #include "llvm/ADT/SmallVector.h"
27 #include "llvm/ADT/StringRef.h"
28 #include "llvm/ADT/Twine.h"
29 #include "llvm/Analysis/CFG.h"
30 #include "llvm/Analysis/CallGraph.h"
31 #include "llvm/Analysis/CallGraphSCCPass.h"
32 #include "llvm/Analysis/LazyCallGraph.h"
33 #include "llvm/IR/Argument.h"
34 #include "llvm/IR/Attributes.h"
35 #include "llvm/IR/BasicBlock.h"
36 #include "llvm/IR/CFG.h"
37 #include "llvm/IR/CallingConv.h"
38 #include "llvm/IR/Constants.h"
39 #include "llvm/IR/DataLayout.h"
40 #include "llvm/IR/DerivedTypes.h"
41 #include "llvm/IR/Dominators.h"
42 #include "llvm/IR/Function.h"
43 #include "llvm/IR/GlobalValue.h"
44 #include "llvm/IR/GlobalVariable.h"
45 #include "llvm/IR/IRBuilder.h"
46 #include "llvm/IR/InstIterator.h"
47 #include "llvm/IR/InstrTypes.h"
48 #include "llvm/IR/Instruction.h"
49 #include "llvm/IR/Instructions.h"
50 #include "llvm/IR/IntrinsicInst.h"
51 #include "llvm/IR/LLVMContext.h"
52 #include "llvm/IR/LegacyPassManager.h"
53 #include "llvm/IR/Module.h"
54 #include "llvm/IR/Type.h"
55 #include "llvm/IR/Value.h"
56 #include "llvm/IR/Verifier.h"
57 #include "llvm/InitializePasses.h"
58 #include "llvm/Pass.h"
59 #include "llvm/Support/Casting.h"
60 #include "llvm/Support/Debug.h"
61 #include "llvm/Support/PrettyStackTrace.h"
62 #include "llvm/Support/raw_ostream.h"
63 #include "llvm/Transforms/Scalar.h"
64 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
65 #include "llvm/Transforms/Utils/CallGraphUpdater.h"
66 #include "llvm/Transforms/Utils/Cloning.h"
67 #include "llvm/Transforms/Utils/Local.h"
68 #include "llvm/Transforms/Utils/ValueMapper.h"
69 #include <cassert>
70 #include <cstddef>
71 #include <cstdint>
72 #include <initializer_list>
73 #include <iterator>
74 
75 using namespace llvm;
76 
77 #define DEBUG_TYPE "coro-split"
78 
79 namespace {
80 
81 /// A little helper class for building
82 class CoroCloner {
83 public:
84   enum class Kind {
85     /// The shared resume function for a switch lowering.
86     SwitchResume,
87 
88     /// The shared unwind function for a switch lowering.
89     SwitchUnwind,
90 
91     /// The shared cleanup function for a switch lowering.
92     SwitchCleanup,
93 
94     /// An individual continuation function.
95     Continuation,
96 
97     /// An async resume function.
98     Async,
99   };
100 
101 private:
102   Function &OrigF;
103   Function *NewF;
104   const Twine &Suffix;
105   coro::Shape &Shape;
106   Kind FKind;
107   ValueToValueMapTy VMap;
108   IRBuilder<> Builder;
109   Value *NewFramePtr = nullptr;
110 
111   /// The active suspend instruction; meaningful only for continuation and async
112   /// ABIs.
113   AnyCoroSuspendInst *ActiveSuspend = nullptr;
114 
115 public:
116   /// Create a cloner for a switch lowering.
117   CoroCloner(Function &OrigF, const Twine &Suffix, coro::Shape &Shape,
118              Kind FKind)
119     : OrigF(OrigF), NewF(nullptr), Suffix(Suffix), Shape(Shape),
120       FKind(FKind), Builder(OrigF.getContext()) {
121     assert(Shape.ABI == coro::ABI::Switch);
122   }
123 
124   /// Create a cloner for a continuation lowering.
125   CoroCloner(Function &OrigF, const Twine &Suffix, coro::Shape &Shape,
126              Function *NewF, AnyCoroSuspendInst *ActiveSuspend)
127       : OrigF(OrigF), NewF(NewF), Suffix(Suffix), Shape(Shape),
128         FKind(Shape.ABI == coro::ABI::Async ? Kind::Async : Kind::Continuation),
129         Builder(OrigF.getContext()), ActiveSuspend(ActiveSuspend) {
130     assert(Shape.ABI == coro::ABI::Retcon ||
131            Shape.ABI == coro::ABI::RetconOnce || Shape.ABI == coro::ABI::Async);
132     assert(NewF && "need existing function for continuation");
133     assert(ActiveSuspend && "need active suspend point for continuation");
134   }
135 
136   Function *getFunction() const {
137     assert(NewF != nullptr && "declaration not yet set");
138     return NewF;
139   }
140 
141   void create();
142 
143 private:
144   bool isSwitchDestroyFunction() {
145     switch (FKind) {
146     case Kind::Async:
147     case Kind::Continuation:
148     case Kind::SwitchResume:
149       return false;
150     case Kind::SwitchUnwind:
151     case Kind::SwitchCleanup:
152       return true;
153     }
154     llvm_unreachable("Unknown CoroCloner::Kind enum");
155   }
156 
157   void replaceEntryBlock();
158   Value *deriveNewFramePointer();
159   void replaceRetconOrAsyncSuspendUses();
160   void replaceCoroSuspends();
161   void replaceCoroEnds();
162   void replaceSwiftErrorOps();
163   void salvageDebugInfo();
164   void handleFinalSuspend();
165 };
166 
167 } // end anonymous namespace
168 
169 static void maybeFreeRetconStorage(IRBuilder<> &Builder,
170                                    const coro::Shape &Shape, Value *FramePtr,
171                                    CallGraph *CG) {
172   assert(Shape.ABI == coro::ABI::Retcon ||
173          Shape.ABI == coro::ABI::RetconOnce);
174   if (Shape.RetconLowering.IsFrameInlineInStorage)
175     return;
176 
177   Shape.emitDealloc(Builder, FramePtr, CG);
178 }
179 
180 /// Replace an llvm.coro.end.async.
181 /// Will inline the must tail call function call if there is one.
182 /// \returns true if cleanup of the coro.end block is needed, false otherwise.
183 static bool replaceCoroEndAsync(AnyCoroEndInst *End) {
184   IRBuilder<> Builder(End);
185 
186   auto *EndAsync = dyn_cast<CoroAsyncEndInst>(End);
187   if (!EndAsync) {
188     Builder.CreateRetVoid();
189     return true /*needs cleanup of coro.end block*/;
190   }
191 
192   auto *MustTailCallFunc = EndAsync->getMustTailCallFunction();
193   if (!MustTailCallFunc) {
194     Builder.CreateRetVoid();
195     return true /*needs cleanup of coro.end block*/;
196   }
197 
198   // Move the must tail call from the predecessor block into the end block.
199   auto *CoroEndBlock = End->getParent();
200   auto *MustTailCallFuncBlock = CoroEndBlock->getSinglePredecessor();
201   assert(MustTailCallFuncBlock && "Must have a single predecessor block");
202   auto It = MustTailCallFuncBlock->getTerminator()->getIterator();
203   auto *MustTailCall = cast<CallInst>(&*std::prev(It));
204   CoroEndBlock->getInstList().splice(
205       End->getIterator(), MustTailCallFuncBlock->getInstList(), MustTailCall);
206 
207   // Insert the return instruction.
208   Builder.SetInsertPoint(End);
209   Builder.CreateRetVoid();
210   InlineFunctionInfo FnInfo;
211 
212   // Remove the rest of the block, by splitting it into an unreachable block.
213   auto *BB = End->getParent();
214   BB->splitBasicBlock(End);
215   BB->getTerminator()->eraseFromParent();
216 
217   auto InlineRes = InlineFunction(*MustTailCall, FnInfo);
218   assert(InlineRes.isSuccess() && "Expected inlining to succeed");
219   (void)InlineRes;
220 
221   // We have cleaned up the coro.end block above.
222   return false;
223 }
224 
225 /// Replace a non-unwind call to llvm.coro.end.
226 static void replaceFallthroughCoroEnd(AnyCoroEndInst *End,
227                                       const coro::Shape &Shape, Value *FramePtr,
228                                       bool InResume, CallGraph *CG) {
229   // Start inserting right before the coro.end.
230   IRBuilder<> Builder(End);
231 
232   // Create the return instruction.
233   switch (Shape.ABI) {
234   // The cloned functions in switch-lowering always return void.
235   case coro::ABI::Switch:
236     // coro.end doesn't immediately end the coroutine in the main function
237     // in this lowering, because we need to deallocate the coroutine.
238     if (!InResume)
239       return;
240     Builder.CreateRetVoid();
241     break;
242 
243   // In async lowering this returns.
244   case coro::ABI::Async: {
245     bool CoroEndBlockNeedsCleanup = replaceCoroEndAsync(End);
246     if (!CoroEndBlockNeedsCleanup)
247       return;
248     break;
249   }
250 
251   // In unique continuation lowering, the continuations always return void.
252   // But we may have implicitly allocated storage.
253   case coro::ABI::RetconOnce:
254     maybeFreeRetconStorage(Builder, Shape, FramePtr, CG);
255     Builder.CreateRetVoid();
256     break;
257 
258   // In non-unique continuation lowering, we signal completion by returning
259   // a null continuation.
260   case coro::ABI::Retcon: {
261     maybeFreeRetconStorage(Builder, Shape, FramePtr, CG);
262     auto RetTy = Shape.getResumeFunctionType()->getReturnType();
263     auto RetStructTy = dyn_cast<StructType>(RetTy);
264     PointerType *ContinuationTy =
265       cast<PointerType>(RetStructTy ? RetStructTy->getElementType(0) : RetTy);
266 
267     Value *ReturnValue = ConstantPointerNull::get(ContinuationTy);
268     if (RetStructTy) {
269       ReturnValue = Builder.CreateInsertValue(UndefValue::get(RetStructTy),
270                                               ReturnValue, 0);
271     }
272     Builder.CreateRet(ReturnValue);
273     break;
274   }
275   }
276 
277   // Remove the rest of the block, by splitting it into an unreachable block.
278   auto *BB = End->getParent();
279   BB->splitBasicBlock(End);
280   BB->getTerminator()->eraseFromParent();
281 }
282 
283 /// Replace an unwind call to llvm.coro.end.
284 static void replaceUnwindCoroEnd(AnyCoroEndInst *End, const coro::Shape &Shape,
285                                  Value *FramePtr, bool InResume,
286                                  CallGraph *CG) {
287   IRBuilder<> Builder(End);
288 
289   switch (Shape.ABI) {
290   // In switch-lowering, this does nothing in the main function.
291   case coro::ABI::Switch:
292     if (!InResume)
293       return;
294     break;
295   // In async lowering this does nothing.
296   case coro::ABI::Async:
297     break;
298   // In continuation-lowering, this frees the continuation storage.
299   case coro::ABI::Retcon:
300   case coro::ABI::RetconOnce:
301     maybeFreeRetconStorage(Builder, Shape, FramePtr, CG);
302     break;
303   }
304 
305   // If coro.end has an associated bundle, add cleanupret instruction.
306   if (auto Bundle = End->getOperandBundle(LLVMContext::OB_funclet)) {
307     auto *FromPad = cast<CleanupPadInst>(Bundle->Inputs[0]);
308     auto *CleanupRet = Builder.CreateCleanupRet(FromPad, nullptr);
309     End->getParent()->splitBasicBlock(End);
310     CleanupRet->getParent()->getTerminator()->eraseFromParent();
311   }
312 }
313 
314 static void replaceCoroEnd(AnyCoroEndInst *End, const coro::Shape &Shape,
315                            Value *FramePtr, bool InResume, CallGraph *CG) {
316   if (End->isUnwind())
317     replaceUnwindCoroEnd(End, Shape, FramePtr, InResume, CG);
318   else
319     replaceFallthroughCoroEnd(End, Shape, FramePtr, InResume, CG);
320 
321   auto &Context = End->getContext();
322   End->replaceAllUsesWith(InResume ? ConstantInt::getTrue(Context)
323                                    : ConstantInt::getFalse(Context));
324   End->eraseFromParent();
325 }
326 
327 // Create an entry block for a resume function with a switch that will jump to
328 // suspend points.
329 static void createResumeEntryBlock(Function &F, coro::Shape &Shape) {
330   assert(Shape.ABI == coro::ABI::Switch);
331   LLVMContext &C = F.getContext();
332 
333   // resume.entry:
334   //  %index.addr = getelementptr inbounds %f.Frame, %f.Frame* %FramePtr, i32 0,
335   //  i32 2
336   //  % index = load i32, i32* %index.addr
337   //  switch i32 %index, label %unreachable [
338   //    i32 0, label %resume.0
339   //    i32 1, label %resume.1
340   //    ...
341   //  ]
342 
343   auto *NewEntry = BasicBlock::Create(C, "resume.entry", &F);
344   auto *UnreachBB = BasicBlock::Create(C, "unreachable", &F);
345 
346   IRBuilder<> Builder(NewEntry);
347   auto *FramePtr = Shape.FramePtr;
348   auto *FrameTy = Shape.FrameTy;
349   auto *GepIndex = Builder.CreateStructGEP(
350       FrameTy, FramePtr, Shape.getSwitchIndexField(), "index.addr");
351   auto *Index = Builder.CreateLoad(Shape.getIndexType(), GepIndex, "index");
352   auto *Switch =
353       Builder.CreateSwitch(Index, UnreachBB, Shape.CoroSuspends.size());
354   Shape.SwitchLowering.ResumeSwitch = Switch;
355 
356   size_t SuspendIndex = 0;
357   for (auto *AnyS : Shape.CoroSuspends) {
358     auto *S = cast<CoroSuspendInst>(AnyS);
359     ConstantInt *IndexVal = Shape.getIndex(SuspendIndex);
360 
361     // Replace CoroSave with a store to Index:
362     //    %index.addr = getelementptr %f.frame... (index field number)
363     //    store i32 0, i32* %index.addr1
364     auto *Save = S->getCoroSave();
365     Builder.SetInsertPoint(Save);
366     if (S->isFinal()) {
367       // Final suspend point is represented by storing zero in ResumeFnAddr.
368       auto *GepIndex = Builder.CreateStructGEP(FrameTy, FramePtr,
369                                  coro::Shape::SwitchFieldIndex::Resume,
370                                   "ResumeFn.addr");
371       auto *NullPtr = ConstantPointerNull::get(cast<PointerType>(
372           FrameTy->getTypeAtIndex(coro::Shape::SwitchFieldIndex::Resume)));
373       Builder.CreateStore(NullPtr, GepIndex);
374     } else {
375       auto *GepIndex = Builder.CreateStructGEP(
376           FrameTy, FramePtr, Shape.getSwitchIndexField(), "index.addr");
377       Builder.CreateStore(IndexVal, GepIndex);
378     }
379     Save->replaceAllUsesWith(ConstantTokenNone::get(C));
380     Save->eraseFromParent();
381 
382     // Split block before and after coro.suspend and add a jump from an entry
383     // switch:
384     //
385     //  whateverBB:
386     //    whatever
387     //    %0 = call i8 @llvm.coro.suspend(token none, i1 false)
388     //    switch i8 %0, label %suspend[i8 0, label %resume
389     //                                 i8 1, label %cleanup]
390     // becomes:
391     //
392     //  whateverBB:
393     //     whatever
394     //     br label %resume.0.landing
395     //
396     //  resume.0: ; <--- jump from the switch in the resume.entry
397     //     %0 = tail call i8 @llvm.coro.suspend(token none, i1 false)
398     //     br label %resume.0.landing
399     //
400     //  resume.0.landing:
401     //     %1 = phi i8[-1, %whateverBB], [%0, %resume.0]
402     //     switch i8 % 1, label %suspend [i8 0, label %resume
403     //                                    i8 1, label %cleanup]
404 
405     auto *SuspendBB = S->getParent();
406     auto *ResumeBB =
407         SuspendBB->splitBasicBlock(S, "resume." + Twine(SuspendIndex));
408     auto *LandingBB = ResumeBB->splitBasicBlock(
409         S->getNextNode(), ResumeBB->getName() + Twine(".landing"));
410     Switch->addCase(IndexVal, ResumeBB);
411 
412     cast<BranchInst>(SuspendBB->getTerminator())->setSuccessor(0, LandingBB);
413     auto *PN = PHINode::Create(Builder.getInt8Ty(), 2, "", &LandingBB->front());
414     S->replaceAllUsesWith(PN);
415     PN->addIncoming(Builder.getInt8(-1), SuspendBB);
416     PN->addIncoming(S, ResumeBB);
417 
418     ++SuspendIndex;
419   }
420 
421   Builder.SetInsertPoint(UnreachBB);
422   Builder.CreateUnreachable();
423 
424   Shape.SwitchLowering.ResumeEntryBlock = NewEntry;
425 }
426 
427 
428 // Rewrite final suspend point handling. We do not use suspend index to
429 // represent the final suspend point. Instead we zero-out ResumeFnAddr in the
430 // coroutine frame, since it is undefined behavior to resume a coroutine
431 // suspended at the final suspend point. Thus, in the resume function, we can
432 // simply remove the last case (when coro::Shape is built, the final suspend
433 // point (if present) is always the last element of CoroSuspends array).
434 // In the destroy function, we add a code sequence to check if ResumeFnAddress
435 // is Null, and if so, jump to the appropriate label to handle cleanup from the
436 // final suspend point.
437 void CoroCloner::handleFinalSuspend() {
438   assert(Shape.ABI == coro::ABI::Switch &&
439          Shape.SwitchLowering.HasFinalSuspend);
440   auto *Switch = cast<SwitchInst>(VMap[Shape.SwitchLowering.ResumeSwitch]);
441   auto FinalCaseIt = std::prev(Switch->case_end());
442   BasicBlock *ResumeBB = FinalCaseIt->getCaseSuccessor();
443   Switch->removeCase(FinalCaseIt);
444   if (isSwitchDestroyFunction()) {
445     BasicBlock *OldSwitchBB = Switch->getParent();
446     auto *NewSwitchBB = OldSwitchBB->splitBasicBlock(Switch, "Switch");
447     Builder.SetInsertPoint(OldSwitchBB->getTerminator());
448     auto *GepIndex = Builder.CreateStructGEP(Shape.FrameTy, NewFramePtr,
449                                        coro::Shape::SwitchFieldIndex::Resume,
450                                              "ResumeFn.addr");
451     auto *Load = Builder.CreateLoad(Shape.getSwitchResumePointerType(),
452                                     GepIndex);
453     auto *Cond = Builder.CreateIsNull(Load);
454     Builder.CreateCondBr(Cond, ResumeBB, NewSwitchBB);
455     OldSwitchBB->getTerminator()->eraseFromParent();
456   }
457 }
458 
459 static FunctionType *
460 getFunctionTypeFromAsyncSuspend(AnyCoroSuspendInst *Suspend) {
461   auto *AsyncSuspend = cast<CoroSuspendAsyncInst>(Suspend);
462   auto *StructTy = cast<StructType>(AsyncSuspend->getType());
463   auto &Context = Suspend->getParent()->getParent()->getContext();
464   auto *VoidTy = Type::getVoidTy(Context);
465   return FunctionType::get(VoidTy, StructTy->elements(), false);
466 }
467 
468 static Function *createCloneDeclaration(Function &OrigF, coro::Shape &Shape,
469                                         const Twine &Suffix,
470                                         Module::iterator InsertBefore,
471                                         AnyCoroSuspendInst *ActiveSuspend) {
472   Module *M = OrigF.getParent();
473   auto *FnTy = (Shape.ABI != coro::ABI::Async)
474                    ? Shape.getResumeFunctionType()
475                    : getFunctionTypeFromAsyncSuspend(ActiveSuspend);
476 
477   Function *NewF =
478       Function::Create(FnTy, GlobalValue::LinkageTypes::InternalLinkage,
479                        OrigF.getName() + Suffix);
480   if (Shape.ABI != coro::ABI::Async)
481     NewF->addParamAttr(0, Attribute::NonNull);
482 
483   // For the async lowering ABI we can't guarantee that the context argument is
484   // not access via a different pointer not based on the argument.
485   if (Shape.ABI != coro::ABI::Async)
486     NewF->addParamAttr(0, Attribute::NoAlias);
487 
488   M->getFunctionList().insert(InsertBefore, NewF);
489 
490   return NewF;
491 }
492 
493 /// Replace uses of the active llvm.coro.suspend.retcon/async call with the
494 /// arguments to the continuation function.
495 ///
496 /// This assumes that the builder has a meaningful insertion point.
497 void CoroCloner::replaceRetconOrAsyncSuspendUses() {
498   assert(Shape.ABI == coro::ABI::Retcon || Shape.ABI == coro::ABI::RetconOnce ||
499          Shape.ABI == coro::ABI::Async);
500 
501   auto NewS = VMap[ActiveSuspend];
502   if (NewS->use_empty()) return;
503 
504   // Copy out all the continuation arguments after the buffer pointer into
505   // an easily-indexed data structure for convenience.
506   SmallVector<Value*, 8> Args;
507   // The async ABI includes all arguments -- including the first argument.
508   bool IsAsyncABI = Shape.ABI == coro::ABI::Async;
509   for (auto I = IsAsyncABI ? NewF->arg_begin() : std::next(NewF->arg_begin()),
510             E = NewF->arg_end();
511        I != E; ++I)
512     Args.push_back(&*I);
513 
514   // If the suspend returns a single scalar value, we can just do a simple
515   // replacement.
516   if (!isa<StructType>(NewS->getType())) {
517     assert(Args.size() == 1);
518     NewS->replaceAllUsesWith(Args.front());
519     return;
520   }
521 
522   // Try to peephole extracts of an aggregate return.
523   for (auto UI = NewS->use_begin(), UE = NewS->use_end(); UI != UE; ) {
524     auto EVI = dyn_cast<ExtractValueInst>((UI++)->getUser());
525     if (!EVI || EVI->getNumIndices() != 1)
526       continue;
527 
528     EVI->replaceAllUsesWith(Args[EVI->getIndices().front()]);
529     EVI->eraseFromParent();
530   }
531 
532   // If we have no remaining uses, we're done.
533   if (NewS->use_empty()) return;
534 
535   // Otherwise, we need to create an aggregate.
536   Value *Agg = UndefValue::get(NewS->getType());
537   for (size_t I = 0, E = Args.size(); I != E; ++I)
538     Agg = Builder.CreateInsertValue(Agg, Args[I], I);
539 
540   NewS->replaceAllUsesWith(Agg);
541 }
542 
543 void CoroCloner::replaceCoroSuspends() {
544   Value *SuspendResult;
545 
546   switch (Shape.ABI) {
547   // In switch lowering, replace coro.suspend with the appropriate value
548   // for the type of function we're extracting.
549   // Replacing coro.suspend with (0) will result in control flow proceeding to
550   // a resume label associated with a suspend point, replacing it with (1) will
551   // result in control flow proceeding to a cleanup label associated with this
552   // suspend point.
553   case coro::ABI::Switch:
554     SuspendResult = Builder.getInt8(isSwitchDestroyFunction() ? 1 : 0);
555     break;
556 
557   // In async lowering there are no uses of the result.
558   case coro::ABI::Async:
559     return;
560 
561   // In returned-continuation lowering, the arguments from earlier
562   // continuations are theoretically arbitrary, and they should have been
563   // spilled.
564   case coro::ABI::RetconOnce:
565   case coro::ABI::Retcon:
566     return;
567   }
568 
569   for (AnyCoroSuspendInst *CS : Shape.CoroSuspends) {
570     // The active suspend was handled earlier.
571     if (CS == ActiveSuspend) continue;
572 
573     auto *MappedCS = cast<AnyCoroSuspendInst>(VMap[CS]);
574     MappedCS->replaceAllUsesWith(SuspendResult);
575     MappedCS->eraseFromParent();
576   }
577 }
578 
579 void CoroCloner::replaceCoroEnds() {
580   for (AnyCoroEndInst *CE : Shape.CoroEnds) {
581     // We use a null call graph because there's no call graph node for
582     // the cloned function yet.  We'll just be rebuilding that later.
583     auto *NewCE = cast<AnyCoroEndInst>(VMap[CE]);
584     replaceCoroEnd(NewCE, Shape, NewFramePtr, /*in resume*/ true, nullptr);
585   }
586 }
587 
588 static void replaceSwiftErrorOps(Function &F, coro::Shape &Shape,
589                                  ValueToValueMapTy *VMap) {
590   if (Shape.ABI == coro::ABI::Async && Shape.CoroSuspends.empty())
591     return;
592   Value *CachedSlot = nullptr;
593   auto getSwiftErrorSlot = [&](Type *ValueTy) -> Value * {
594     if (CachedSlot) {
595       assert(CachedSlot->getType()->getPointerElementType() == ValueTy &&
596              "multiple swifterror slots in function with different types");
597       return CachedSlot;
598     }
599 
600     // Check if the function has a swifterror argument.
601     for (auto &Arg : F.args()) {
602       if (Arg.isSwiftError()) {
603         CachedSlot = &Arg;
604         assert(Arg.getType()->getPointerElementType() == ValueTy &&
605                "swifterror argument does not have expected type");
606         return &Arg;
607       }
608     }
609 
610     // Create a swifterror alloca.
611     IRBuilder<> Builder(F.getEntryBlock().getFirstNonPHIOrDbg());
612     auto Alloca = Builder.CreateAlloca(ValueTy);
613     Alloca->setSwiftError(true);
614 
615     CachedSlot = Alloca;
616     return Alloca;
617   };
618 
619   for (CallInst *Op : Shape.SwiftErrorOps) {
620     auto MappedOp = VMap ? cast<CallInst>((*VMap)[Op]) : Op;
621     IRBuilder<> Builder(MappedOp);
622 
623     // If there are no arguments, this is a 'get' operation.
624     Value *MappedResult;
625     if (Op->arg_empty()) {
626       auto ValueTy = Op->getType();
627       auto Slot = getSwiftErrorSlot(ValueTy);
628       MappedResult = Builder.CreateLoad(ValueTy, Slot);
629     } else {
630       assert(Op->arg_size() == 1);
631       auto Value = MappedOp->getArgOperand(0);
632       auto ValueTy = Value->getType();
633       auto Slot = getSwiftErrorSlot(ValueTy);
634       Builder.CreateStore(Value, Slot);
635       MappedResult = Slot;
636     }
637 
638     MappedOp->replaceAllUsesWith(MappedResult);
639     MappedOp->eraseFromParent();
640   }
641 
642   // If we're updating the original function, we've invalidated SwiftErrorOps.
643   if (VMap == nullptr) {
644     Shape.SwiftErrorOps.clear();
645   }
646 }
647 
648 void CoroCloner::replaceSwiftErrorOps() {
649   ::replaceSwiftErrorOps(*NewF, Shape, &VMap);
650 }
651 
652 void CoroCloner::salvageDebugInfo() {
653   SmallVector<DbgVariableIntrinsic *, 8> Worklist;
654   SmallDenseMap<llvm::Value *, llvm::AllocaInst *, 4> DbgPtrAllocaCache;
655   for (auto &BB : *NewF)
656     for (auto &I : BB)
657       if (auto *DVI = dyn_cast<DbgVariableIntrinsic>(&I))
658         Worklist.push_back(DVI);
659   for (DbgVariableIntrinsic *DVI : Worklist)
660     coro::salvageDebugInfo(DbgPtrAllocaCache, DVI, Shape.ReuseFrameSlot);
661 
662   // Remove all salvaged dbg.declare intrinsics that became
663   // either unreachable or stale due to the CoroSplit transformation.
664   DominatorTree DomTree(*NewF);
665   auto IsUnreachableBlock = [&](BasicBlock *BB) {
666     return !isPotentiallyReachable(&NewF->getEntryBlock(), BB, nullptr,
667                                    &DomTree);
668   };
669   for (DbgVariableIntrinsic *DVI : Worklist) {
670     if (IsUnreachableBlock(DVI->getParent()))
671       DVI->eraseFromParent();
672     else if (dyn_cast_or_null<AllocaInst>(DVI->getVariableLocationOp(0))) {
673       // Count all non-debuginfo uses in reachable blocks.
674       unsigned Uses = 0;
675       for (auto *User : DVI->getVariableLocationOp(0)->users())
676         if (auto *I = dyn_cast<Instruction>(User))
677           if (!isa<AllocaInst>(I) && !IsUnreachableBlock(I->getParent()))
678             ++Uses;
679       if (!Uses)
680         DVI->eraseFromParent();
681     }
682   }
683 }
684 
685 void CoroCloner::replaceEntryBlock() {
686   // In the original function, the AllocaSpillBlock is a block immediately
687   // following the allocation of the frame object which defines GEPs for
688   // all the allocas that have been moved into the frame, and it ends by
689   // branching to the original beginning of the coroutine.  Make this
690   // the entry block of the cloned function.
691   auto *Entry = cast<BasicBlock>(VMap[Shape.AllocaSpillBlock]);
692   auto *OldEntry = &NewF->getEntryBlock();
693   Entry->setName("entry" + Suffix);
694   Entry->moveBefore(OldEntry);
695   Entry->getTerminator()->eraseFromParent();
696 
697   // Clear all predecessors of the new entry block.  There should be
698   // exactly one predecessor, which we created when splitting out
699   // AllocaSpillBlock to begin with.
700   assert(Entry->hasOneUse());
701   auto BranchToEntry = cast<BranchInst>(Entry->user_back());
702   assert(BranchToEntry->isUnconditional());
703   Builder.SetInsertPoint(BranchToEntry);
704   Builder.CreateUnreachable();
705   BranchToEntry->eraseFromParent();
706 
707   // Branch from the entry to the appropriate place.
708   Builder.SetInsertPoint(Entry);
709   switch (Shape.ABI) {
710   case coro::ABI::Switch: {
711     // In switch-lowering, we built a resume-entry block in the original
712     // function.  Make the entry block branch to this.
713     auto *SwitchBB =
714       cast<BasicBlock>(VMap[Shape.SwitchLowering.ResumeEntryBlock]);
715     Builder.CreateBr(SwitchBB);
716     break;
717   }
718   case coro::ABI::Async:
719   case coro::ABI::Retcon:
720   case coro::ABI::RetconOnce: {
721     // In continuation ABIs, we want to branch to immediately after the
722     // active suspend point.  Earlier phases will have put the suspend in its
723     // own basic block, so just thread our jump directly to its successor.
724     assert((Shape.ABI == coro::ABI::Async &&
725             isa<CoroSuspendAsyncInst>(ActiveSuspend)) ||
726            ((Shape.ABI == coro::ABI::Retcon ||
727              Shape.ABI == coro::ABI::RetconOnce) &&
728             isa<CoroSuspendRetconInst>(ActiveSuspend)));
729     auto *MappedCS = cast<AnyCoroSuspendInst>(VMap[ActiveSuspend]);
730     auto Branch = cast<BranchInst>(MappedCS->getNextNode());
731     assert(Branch->isUnconditional());
732     Builder.CreateBr(Branch->getSuccessor(0));
733     break;
734   }
735   }
736 
737   // Any static alloca that's still being used but not reachable from the new
738   // entry needs to be moved to the new entry.
739   Function *F = OldEntry->getParent();
740   DominatorTree DT{*F};
741   for (Instruction &I : llvm::make_early_inc_range(instructions(F))) {
742     auto *Alloca = dyn_cast<AllocaInst>(&I);
743     if (!Alloca || I.use_empty())
744       continue;
745     if (DT.isReachableFromEntry(I.getParent()) ||
746         !isa<ConstantInt>(Alloca->getArraySize()))
747       continue;
748     I.moveBefore(*Entry, Entry->getFirstInsertionPt());
749   }
750 }
751 
752 /// Derive the value of the new frame pointer.
753 Value *CoroCloner::deriveNewFramePointer() {
754   // Builder should be inserting to the front of the new entry block.
755 
756   switch (Shape.ABI) {
757   // In switch-lowering, the argument is the frame pointer.
758   case coro::ABI::Switch:
759     return &*NewF->arg_begin();
760   // In async-lowering, one of the arguments is an async context as determined
761   // by the `llvm.coro.id.async` intrinsic. We can retrieve the async context of
762   // the resume function from the async context projection function associated
763   // with the active suspend. The frame is located as a tail to the async
764   // context header.
765   case coro::ABI::Async: {
766     auto *ActiveAsyncSuspend = cast<CoroSuspendAsyncInst>(ActiveSuspend);
767     auto ContextIdx = ActiveAsyncSuspend->getStorageArgumentIndex() & 0xff;
768     auto *CalleeContext = NewF->getArg(ContextIdx);
769     auto *FramePtrTy = Shape.FrameTy->getPointerTo();
770     auto *ProjectionFunc =
771         ActiveAsyncSuspend->getAsyncContextProjectionFunction();
772     auto DbgLoc =
773         cast<CoroSuspendAsyncInst>(VMap[ActiveSuspend])->getDebugLoc();
774     // Calling i8* (i8*)
775     auto *CallerContext = Builder.CreateCall(ProjectionFunc->getFunctionType(),
776                                              ProjectionFunc, CalleeContext);
777     CallerContext->setCallingConv(ProjectionFunc->getCallingConv());
778     CallerContext->setDebugLoc(DbgLoc);
779     // The frame is located after the async_context header.
780     auto &Context = Builder.getContext();
781     auto *FramePtrAddr = Builder.CreateConstInBoundsGEP1_32(
782         Type::getInt8Ty(Context), CallerContext,
783         Shape.AsyncLowering.FrameOffset, "async.ctx.frameptr");
784     // Inline the projection function.
785     InlineFunctionInfo InlineInfo;
786     auto InlineRes = InlineFunction(*CallerContext, InlineInfo);
787     assert(InlineRes.isSuccess());
788     (void)InlineRes;
789     return Builder.CreateBitCast(FramePtrAddr, FramePtrTy);
790   }
791   // In continuation-lowering, the argument is the opaque storage.
792   case coro::ABI::Retcon:
793   case coro::ABI::RetconOnce: {
794     Argument *NewStorage = &*NewF->arg_begin();
795     auto FramePtrTy = Shape.FrameTy->getPointerTo();
796 
797     // If the storage is inline, just bitcast to the storage to the frame type.
798     if (Shape.RetconLowering.IsFrameInlineInStorage)
799       return Builder.CreateBitCast(NewStorage, FramePtrTy);
800 
801     // Otherwise, load the real frame from the opaque storage.
802     auto FramePtrPtr =
803       Builder.CreateBitCast(NewStorage, FramePtrTy->getPointerTo());
804     return Builder.CreateLoad(FramePtrTy, FramePtrPtr);
805   }
806   }
807   llvm_unreachable("bad ABI");
808 }
809 
810 static void addFramePointerAttrs(AttributeList &Attrs, LLVMContext &Context,
811                                  unsigned ParamIndex,
812                                  uint64_t Size, Align Alignment) {
813   AttrBuilder ParamAttrs;
814   ParamAttrs.addAttribute(Attribute::NonNull);
815   ParamAttrs.addAttribute(Attribute::NoAlias);
816   ParamAttrs.addAlignmentAttr(Alignment);
817   ParamAttrs.addDereferenceableAttr(Size);
818   Attrs = Attrs.addParamAttributes(Context, ParamIndex, ParamAttrs);
819 }
820 
821 static void addAsyncContextAttrs(AttributeList &Attrs, LLVMContext &Context,
822                                  unsigned ParamIndex) {
823   AttrBuilder ParamAttrs;
824   ParamAttrs.addAttribute(Attribute::SwiftAsync);
825   Attrs = Attrs.addParamAttributes(Context, ParamIndex, ParamAttrs);
826 }
827 
828 static void addSwiftSelfAttrs(AttributeList &Attrs, LLVMContext &Context,
829                               unsigned ParamIndex) {
830   AttrBuilder ParamAttrs;
831   ParamAttrs.addAttribute(Attribute::SwiftSelf);
832   Attrs = Attrs.addParamAttributes(Context, ParamIndex, ParamAttrs);
833 }
834 
835 /// Clone the body of the original function into a resume function of
836 /// some sort.
837 void CoroCloner::create() {
838   // Create the new function if we don't already have one.
839   if (!NewF) {
840     NewF = createCloneDeclaration(OrigF, Shape, Suffix,
841                                   OrigF.getParent()->end(), ActiveSuspend);
842   }
843 
844   // Replace all args with undefs. The buildCoroutineFrame algorithm already
845   // rewritten access to the args that occurs after suspend points with loads
846   // and stores to/from the coroutine frame.
847   for (Argument &A : OrigF.args())
848     VMap[&A] = UndefValue::get(A.getType());
849 
850   SmallVector<ReturnInst *, 4> Returns;
851 
852   // Ignore attempts to change certain attributes of the function.
853   // TODO: maybe there should be a way to suppress this during cloning?
854   auto savedVisibility = NewF->getVisibility();
855   auto savedUnnamedAddr = NewF->getUnnamedAddr();
856   auto savedDLLStorageClass = NewF->getDLLStorageClass();
857 
858   // NewF's linkage (which CloneFunctionInto does *not* change) might not
859   // be compatible with the visibility of OrigF (which it *does* change),
860   // so protect against that.
861   auto savedLinkage = NewF->getLinkage();
862   NewF->setLinkage(llvm::GlobalValue::ExternalLinkage);
863 
864   CloneFunctionInto(NewF, &OrigF, VMap,
865                     CloneFunctionChangeType::LocalChangesOnly, Returns);
866 
867   auto &Context = NewF->getContext();
868 
869   // For async functions / continuations, adjust the scope line of the
870   // clone to the line number of the suspend point. However, only
871   // adjust the scope line when the files are the same. This ensures
872   // line number and file name belong together. The scope line is
873   // associated with all pre-prologue instructions. This avoids a jump
874   // in the linetable from the function declaration to the suspend point.
875   if (DISubprogram *SP = NewF->getSubprogram()) {
876     assert(SP != OrigF.getSubprogram() && SP->isDistinct());
877     if (ActiveSuspend)
878       if (auto DL = ActiveSuspend->getDebugLoc())
879         if (SP->getFile() == DL->getFile())
880           SP->setScopeLine(DL->getLine());
881     // Update the linkage name to reflect the modified symbol name. It
882     // is necessary to update the linkage name in Swift, since the
883     // mangling changes for resume functions. It might also be the
884     // right thing to do in C++, but due to a limitation in LLVM's
885     // AsmPrinter we can only do this if the function doesn't have an
886     // abstract specification, since the DWARF backend expects the
887     // abstract specification to contain the linkage name and asserts
888     // that they are identical.
889     if (!SP->getDeclaration() && SP->getUnit() &&
890         SP->getUnit()->getSourceLanguage() == dwarf::DW_LANG_Swift)
891       SP->replaceLinkageName(MDString::get(Context, NewF->getName()));
892   }
893 
894   NewF->setLinkage(savedLinkage);
895   NewF->setVisibility(savedVisibility);
896   NewF->setUnnamedAddr(savedUnnamedAddr);
897   NewF->setDLLStorageClass(savedDLLStorageClass);
898 
899   // Replace the attributes of the new function:
900   auto OrigAttrs = NewF->getAttributes();
901   auto NewAttrs = AttributeList();
902 
903   switch (Shape.ABI) {
904   case coro::ABI::Switch:
905     // Bootstrap attributes by copying function attributes from the
906     // original function.  This should include optimization settings and so on.
907     NewAttrs = NewAttrs.addFnAttributes(Context, OrigAttrs.getFnAttrs());
908 
909     addFramePointerAttrs(NewAttrs, Context, 0,
910                          Shape.FrameSize, Shape.FrameAlign);
911     break;
912   case coro::ABI::Async: {
913     auto *ActiveAsyncSuspend = cast<CoroSuspendAsyncInst>(ActiveSuspend);
914     if (OrigF.hasParamAttribute(Shape.AsyncLowering.ContextArgNo,
915                                 Attribute::SwiftAsync)) {
916       uint32_t ArgAttributeIndices =
917           ActiveAsyncSuspend->getStorageArgumentIndex();
918       auto ContextArgIndex = ArgAttributeIndices & 0xff;
919       addAsyncContextAttrs(NewAttrs, Context, ContextArgIndex);
920 
921       // `swiftasync` must preceed `swiftself` so 0 is not a valid index for
922       // `swiftself`.
923       auto SwiftSelfIndex = ArgAttributeIndices >> 8;
924       if (SwiftSelfIndex)
925         addSwiftSelfAttrs(NewAttrs, Context, SwiftSelfIndex);
926     }
927 
928     // Transfer the original function's attributes.
929     auto FnAttrs = OrigF.getAttributes().getFnAttrs();
930     NewAttrs = NewAttrs.addFnAttributes(Context, FnAttrs);
931     break;
932   }
933   case coro::ABI::Retcon:
934   case coro::ABI::RetconOnce:
935     // If we have a continuation prototype, just use its attributes,
936     // full-stop.
937     NewAttrs = Shape.RetconLowering.ResumePrototype->getAttributes();
938 
939     addFramePointerAttrs(NewAttrs, Context, 0,
940                          Shape.getRetconCoroId()->getStorageSize(),
941                          Shape.getRetconCoroId()->getStorageAlignment());
942     break;
943   }
944 
945   switch (Shape.ABI) {
946   // In these ABIs, the cloned functions always return 'void', and the
947   // existing return sites are meaningless.  Note that for unique
948   // continuations, this includes the returns associated with suspends;
949   // this is fine because we can't suspend twice.
950   case coro::ABI::Switch:
951   case coro::ABI::RetconOnce:
952     // Remove old returns.
953     for (ReturnInst *Return : Returns)
954       changeToUnreachable(Return);
955     break;
956 
957   // With multi-suspend continuations, we'll already have eliminated the
958   // original returns and inserted returns before all the suspend points,
959   // so we want to leave any returns in place.
960   case coro::ABI::Retcon:
961     break;
962   // Async lowering will insert musttail call functions at all suspend points
963   // followed by a return.
964   // Don't change returns to unreachable because that will trip up the verifier.
965   // These returns should be unreachable from the clone.
966   case coro::ABI::Async:
967     break;
968   }
969 
970   NewF->setAttributes(NewAttrs);
971   NewF->setCallingConv(Shape.getResumeFunctionCC());
972 
973   // Set up the new entry block.
974   replaceEntryBlock();
975 
976   Builder.SetInsertPoint(&NewF->getEntryBlock().front());
977   NewFramePtr = deriveNewFramePointer();
978 
979   // Remap frame pointer.
980   Value *OldFramePtr = VMap[Shape.FramePtr];
981   NewFramePtr->takeName(OldFramePtr);
982   OldFramePtr->replaceAllUsesWith(NewFramePtr);
983 
984   // Remap vFrame pointer.
985   auto *NewVFrame = Builder.CreateBitCast(
986       NewFramePtr, Type::getInt8PtrTy(Builder.getContext()), "vFrame");
987   Value *OldVFrame = cast<Value>(VMap[Shape.CoroBegin]);
988   OldVFrame->replaceAllUsesWith(NewVFrame);
989 
990   switch (Shape.ABI) {
991   case coro::ABI::Switch:
992     // Rewrite final suspend handling as it is not done via switch (allows to
993     // remove final case from the switch, since it is undefined behavior to
994     // resume the coroutine suspended at the final suspend point.
995     if (Shape.SwitchLowering.HasFinalSuspend)
996       handleFinalSuspend();
997     break;
998   case coro::ABI::Async:
999   case coro::ABI::Retcon:
1000   case coro::ABI::RetconOnce:
1001     // Replace uses of the active suspend with the corresponding
1002     // continuation-function arguments.
1003     assert(ActiveSuspend != nullptr &&
1004            "no active suspend when lowering a continuation-style coroutine");
1005     replaceRetconOrAsyncSuspendUses();
1006     break;
1007   }
1008 
1009   // Handle suspends.
1010   replaceCoroSuspends();
1011 
1012   // Handle swifterror.
1013   replaceSwiftErrorOps();
1014 
1015   // Remove coro.end intrinsics.
1016   replaceCoroEnds();
1017 
1018   // Salvage debug info that points into the coroutine frame.
1019   salvageDebugInfo();
1020 
1021   // Eliminate coro.free from the clones, replacing it with 'null' in cleanup,
1022   // to suppress deallocation code.
1023   if (Shape.ABI == coro::ABI::Switch)
1024     coro::replaceCoroFree(cast<CoroIdInst>(VMap[Shape.CoroBegin->getId()]),
1025                           /*Elide=*/ FKind == CoroCloner::Kind::SwitchCleanup);
1026 }
1027 
1028 // Create a resume clone by cloning the body of the original function, setting
1029 // new entry block and replacing coro.suspend an appropriate value to force
1030 // resume or cleanup pass for every suspend point.
1031 static Function *createClone(Function &F, const Twine &Suffix,
1032                              coro::Shape &Shape, CoroCloner::Kind FKind) {
1033   CoroCloner Cloner(F, Suffix, Shape, FKind);
1034   Cloner.create();
1035   return Cloner.getFunction();
1036 }
1037 
1038 /// Remove calls to llvm.coro.end in the original function.
1039 static void removeCoroEnds(const coro::Shape &Shape, CallGraph *CG) {
1040   for (auto End : Shape.CoroEnds) {
1041     replaceCoroEnd(End, Shape, Shape.FramePtr, /*in resume*/ false, CG);
1042   }
1043 }
1044 
1045 static void updateAsyncFuncPointerContextSize(coro::Shape &Shape) {
1046   assert(Shape.ABI == coro::ABI::Async);
1047 
1048   auto *FuncPtrStruct = cast<ConstantStruct>(
1049       Shape.AsyncLowering.AsyncFuncPointer->getInitializer());
1050   auto *OrigRelativeFunOffset = FuncPtrStruct->getOperand(0);
1051   auto *OrigContextSize = FuncPtrStruct->getOperand(1);
1052   auto *NewContextSize = ConstantInt::get(OrigContextSize->getType(),
1053                                           Shape.AsyncLowering.ContextSize);
1054   auto *NewFuncPtrStruct = ConstantStruct::get(
1055       FuncPtrStruct->getType(), OrigRelativeFunOffset, NewContextSize);
1056 
1057   Shape.AsyncLowering.AsyncFuncPointer->setInitializer(NewFuncPtrStruct);
1058 }
1059 
1060 static void replaceFrameSize(coro::Shape &Shape) {
1061   if (Shape.ABI == coro::ABI::Async)
1062     updateAsyncFuncPointerContextSize(Shape);
1063 
1064   if (Shape.CoroSizes.empty())
1065     return;
1066 
1067   // In the same function all coro.sizes should have the same result type.
1068   auto *SizeIntrin = Shape.CoroSizes.back();
1069   Module *M = SizeIntrin->getModule();
1070   const DataLayout &DL = M->getDataLayout();
1071   auto Size = DL.getTypeAllocSize(Shape.FrameTy);
1072   auto *SizeConstant = ConstantInt::get(SizeIntrin->getType(), Size);
1073 
1074   for (CoroSizeInst *CS : Shape.CoroSizes) {
1075     CS->replaceAllUsesWith(SizeConstant);
1076     CS->eraseFromParent();
1077   }
1078 }
1079 
1080 // Create a global constant array containing pointers to functions provided and
1081 // set Info parameter of CoroBegin to point at this constant. Example:
1082 //
1083 //   @f.resumers = internal constant [2 x void(%f.frame*)*]
1084 //                    [void(%f.frame*)* @f.resume, void(%f.frame*)* @f.destroy]
1085 //   define void @f() {
1086 //     ...
1087 //     call i8* @llvm.coro.begin(i8* null, i32 0, i8* null,
1088 //                    i8* bitcast([2 x void(%f.frame*)*] * @f.resumers to i8*))
1089 //
1090 // Assumes that all the functions have the same signature.
1091 static void setCoroInfo(Function &F, coro::Shape &Shape,
1092                         ArrayRef<Function *> Fns) {
1093   // This only works under the switch-lowering ABI because coro elision
1094   // only works on the switch-lowering ABI.
1095   assert(Shape.ABI == coro::ABI::Switch);
1096 
1097   SmallVector<Constant *, 4> Args(Fns.begin(), Fns.end());
1098   assert(!Args.empty());
1099   Function *Part = *Fns.begin();
1100   Module *M = Part->getParent();
1101   auto *ArrTy = ArrayType::get(Part->getType(), Args.size());
1102 
1103   auto *ConstVal = ConstantArray::get(ArrTy, Args);
1104   auto *GV = new GlobalVariable(*M, ConstVal->getType(), /*isConstant=*/true,
1105                                 GlobalVariable::PrivateLinkage, ConstVal,
1106                                 F.getName() + Twine(".resumers"));
1107 
1108   // Update coro.begin instruction to refer to this constant.
1109   LLVMContext &C = F.getContext();
1110   auto *BC = ConstantExpr::getPointerCast(GV, Type::getInt8PtrTy(C));
1111   Shape.getSwitchCoroId()->setInfo(BC);
1112 }
1113 
1114 // Store addresses of Resume/Destroy/Cleanup functions in the coroutine frame.
1115 static void updateCoroFrame(coro::Shape &Shape, Function *ResumeFn,
1116                             Function *DestroyFn, Function *CleanupFn) {
1117   assert(Shape.ABI == coro::ABI::Switch);
1118 
1119   IRBuilder<> Builder(Shape.FramePtr->getNextNode());
1120   auto *ResumeAddr = Builder.CreateStructGEP(
1121       Shape.FrameTy, Shape.FramePtr, coro::Shape::SwitchFieldIndex::Resume,
1122       "resume.addr");
1123   Builder.CreateStore(ResumeFn, ResumeAddr);
1124 
1125   Value *DestroyOrCleanupFn = DestroyFn;
1126 
1127   CoroIdInst *CoroId = Shape.getSwitchCoroId();
1128   if (CoroAllocInst *CA = CoroId->getCoroAlloc()) {
1129     // If there is a CoroAlloc and it returns false (meaning we elide the
1130     // allocation, use CleanupFn instead of DestroyFn).
1131     DestroyOrCleanupFn = Builder.CreateSelect(CA, DestroyFn, CleanupFn);
1132   }
1133 
1134   auto *DestroyAddr = Builder.CreateStructGEP(
1135       Shape.FrameTy, Shape.FramePtr, coro::Shape::SwitchFieldIndex::Destroy,
1136       "destroy.addr");
1137   Builder.CreateStore(DestroyOrCleanupFn, DestroyAddr);
1138 }
1139 
1140 static void postSplitCleanup(Function &F) {
1141   removeUnreachableBlocks(F);
1142 
1143 #ifndef NDEBUG
1144   // For now, we do a mandatory verification step because we don't
1145   // entirely trust this pass.  Note that we don't want to add a verifier
1146   // pass to FPM below because it will also verify all the global data.
1147   if (verifyFunction(F, &errs()))
1148     report_fatal_error("Broken function");
1149 #endif
1150 }
1151 
1152 // Assuming we arrived at the block NewBlock from Prev instruction, store
1153 // PHI's incoming values in the ResolvedValues map.
1154 static void
1155 scanPHIsAndUpdateValueMap(Instruction *Prev, BasicBlock *NewBlock,
1156                           DenseMap<Value *, Value *> &ResolvedValues) {
1157   auto *PrevBB = Prev->getParent();
1158   for (PHINode &PN : NewBlock->phis()) {
1159     auto V = PN.getIncomingValueForBlock(PrevBB);
1160     // See if we already resolved it.
1161     auto VI = ResolvedValues.find(V);
1162     if (VI != ResolvedValues.end())
1163       V = VI->second;
1164     // Remember the value.
1165     ResolvedValues[&PN] = V;
1166   }
1167 }
1168 
1169 // Replace a sequence of branches leading to a ret, with a clone of a ret
1170 // instruction. Suspend instruction represented by a switch, track the PHI
1171 // values and select the correct case successor when possible.
1172 static bool simplifyTerminatorLeadingToRet(Instruction *InitialInst) {
1173   DenseMap<Value *, Value *> ResolvedValues;
1174   BasicBlock *UnconditionalSucc = nullptr;
1175 
1176   Instruction *I = InitialInst;
1177   while (I->isTerminator() ||
1178          (isa<CmpInst>(I) && I->getNextNode()->isTerminator())) {
1179     if (isa<ReturnInst>(I)) {
1180       if (I != InitialInst) {
1181         // If InitialInst is an unconditional branch,
1182         // remove PHI values that come from basic block of InitialInst
1183         if (UnconditionalSucc)
1184           UnconditionalSucc->removePredecessor(InitialInst->getParent(), true);
1185         ReplaceInstWithInst(InitialInst, I->clone());
1186       }
1187       return true;
1188     }
1189     if (auto *BR = dyn_cast<BranchInst>(I)) {
1190       if (BR->isUnconditional()) {
1191         BasicBlock *BB = BR->getSuccessor(0);
1192         if (I == InitialInst)
1193           UnconditionalSucc = BB;
1194         scanPHIsAndUpdateValueMap(I, BB, ResolvedValues);
1195         I = BB->getFirstNonPHIOrDbgOrLifetime();
1196         continue;
1197       }
1198     } else if (auto *CondCmp = dyn_cast<CmpInst>(I)) {
1199       auto *BR = dyn_cast<BranchInst>(I->getNextNode());
1200       if (BR && BR->isConditional() && CondCmp == BR->getCondition()) {
1201         // If the case number of suspended switch instruction is reduced to
1202         // 1, then it is simplified to CmpInst in llvm::ConstantFoldTerminator.
1203         // And the comparsion looks like : %cond = icmp eq i8 %V, constant.
1204         ConstantInt *CondConst = dyn_cast<ConstantInt>(CondCmp->getOperand(1));
1205         if (CondConst && CondCmp->getPredicate() == CmpInst::ICMP_EQ) {
1206           Value *V = CondCmp->getOperand(0);
1207           auto it = ResolvedValues.find(V);
1208           if (it != ResolvedValues.end())
1209             V = it->second;
1210 
1211           if (ConstantInt *Cond0 = dyn_cast<ConstantInt>(V)) {
1212             BasicBlock *BB = Cond0->equalsInt(CondConst->getZExtValue())
1213                                  ? BR->getSuccessor(0)
1214                                  : BR->getSuccessor(1);
1215             scanPHIsAndUpdateValueMap(I, BB, ResolvedValues);
1216             I = BB->getFirstNonPHIOrDbgOrLifetime();
1217             continue;
1218           }
1219         }
1220       }
1221     } else if (auto *SI = dyn_cast<SwitchInst>(I)) {
1222       Value *V = SI->getCondition();
1223       auto it = ResolvedValues.find(V);
1224       if (it != ResolvedValues.end())
1225         V = it->second;
1226       if (ConstantInt *Cond = dyn_cast<ConstantInt>(V)) {
1227         BasicBlock *BB = SI->findCaseValue(Cond)->getCaseSuccessor();
1228         scanPHIsAndUpdateValueMap(I, BB, ResolvedValues);
1229         I = BB->getFirstNonPHIOrDbgOrLifetime();
1230         continue;
1231       }
1232     }
1233     return false;
1234   }
1235   return false;
1236 }
1237 
1238 // Check whether CI obeys the rules of musttail attribute.
1239 static bool shouldBeMustTail(const CallInst &CI, const Function &F) {
1240   if (CI.isInlineAsm())
1241     return false;
1242 
1243   // Match prototypes and calling conventions of resume function.
1244   FunctionType *CalleeTy = CI.getFunctionType();
1245   if (!CalleeTy->getReturnType()->isVoidTy() || (CalleeTy->getNumParams() != 1))
1246     return false;
1247 
1248   Type *CalleeParmTy = CalleeTy->getParamType(0);
1249   if (!CalleeParmTy->isPointerTy() ||
1250       (CalleeParmTy->getPointerAddressSpace() != 0))
1251     return false;
1252 
1253   if (CI.getCallingConv() != F.getCallingConv())
1254     return false;
1255 
1256   // CI should not has any ABI-impacting function attributes.
1257   static const Attribute::AttrKind ABIAttrs[] = {
1258       Attribute::StructRet,    Attribute::ByVal,     Attribute::InAlloca,
1259       Attribute::Preallocated, Attribute::InReg,     Attribute::Returned,
1260       Attribute::SwiftSelf,    Attribute::SwiftError};
1261   AttributeList Attrs = CI.getAttributes();
1262   for (auto AK : ABIAttrs)
1263     if (Attrs.hasParamAttr(0, AK))
1264       return false;
1265 
1266   return true;
1267 }
1268 
1269 // Add musttail to any resume instructions that is immediately followed by a
1270 // suspend (i.e. ret). We do this even in -O0 to support guaranteed tail call
1271 // for symmetrical coroutine control transfer (C++ Coroutines TS extension).
1272 // This transformation is done only in the resume part of the coroutine that has
1273 // identical signature and calling convention as the coro.resume call.
1274 static void addMustTailToCoroResumes(Function &F) {
1275   bool changed = false;
1276 
1277   // Collect potential resume instructions.
1278   SmallVector<CallInst *, 4> Resumes;
1279   for (auto &I : instructions(F))
1280     if (auto *Call = dyn_cast<CallInst>(&I))
1281       if (shouldBeMustTail(*Call, F))
1282         Resumes.push_back(Call);
1283 
1284   // Set musttail on those that are followed by a ret instruction.
1285   for (CallInst *Call : Resumes)
1286     if (simplifyTerminatorLeadingToRet(Call->getNextNode())) {
1287       Call->setTailCallKind(CallInst::TCK_MustTail);
1288       changed = true;
1289     }
1290 
1291   if (changed)
1292     removeUnreachableBlocks(F);
1293 }
1294 
1295 // Coroutine has no suspend points. Remove heap allocation for the coroutine
1296 // frame if possible.
1297 static void handleNoSuspendCoroutine(coro::Shape &Shape) {
1298   auto *CoroBegin = Shape.CoroBegin;
1299   auto *CoroId = CoroBegin->getId();
1300   auto *AllocInst = CoroId->getCoroAlloc();
1301   switch (Shape.ABI) {
1302   case coro::ABI::Switch: {
1303     auto SwitchId = cast<CoroIdInst>(CoroId);
1304     coro::replaceCoroFree(SwitchId, /*Elide=*/AllocInst != nullptr);
1305     if (AllocInst) {
1306       IRBuilder<> Builder(AllocInst);
1307       auto *Frame = Builder.CreateAlloca(Shape.FrameTy);
1308       Frame->setAlignment(Shape.FrameAlign);
1309       auto *VFrame = Builder.CreateBitCast(Frame, Builder.getInt8PtrTy());
1310       AllocInst->replaceAllUsesWith(Builder.getFalse());
1311       AllocInst->eraseFromParent();
1312       CoroBegin->replaceAllUsesWith(VFrame);
1313     } else {
1314       CoroBegin->replaceAllUsesWith(CoroBegin->getMem());
1315     }
1316 
1317     break;
1318   }
1319   case coro::ABI::Async:
1320   case coro::ABI::Retcon:
1321   case coro::ABI::RetconOnce:
1322     CoroBegin->replaceAllUsesWith(UndefValue::get(CoroBegin->getType()));
1323     break;
1324   }
1325 
1326   CoroBegin->eraseFromParent();
1327 }
1328 
1329 // SimplifySuspendPoint needs to check that there is no calls between
1330 // coro_save and coro_suspend, since any of the calls may potentially resume
1331 // the coroutine and if that is the case we cannot eliminate the suspend point.
1332 static bool hasCallsInBlockBetween(Instruction *From, Instruction *To) {
1333   for (Instruction *I = From; I != To; I = I->getNextNode()) {
1334     // Assume that no intrinsic can resume the coroutine.
1335     if (isa<IntrinsicInst>(I))
1336       continue;
1337 
1338     if (isa<CallBase>(I))
1339       return true;
1340   }
1341   return false;
1342 }
1343 
1344 static bool hasCallsInBlocksBetween(BasicBlock *SaveBB, BasicBlock *ResDesBB) {
1345   SmallPtrSet<BasicBlock *, 8> Set;
1346   SmallVector<BasicBlock *, 8> Worklist;
1347 
1348   Set.insert(SaveBB);
1349   Worklist.push_back(ResDesBB);
1350 
1351   // Accumulate all blocks between SaveBB and ResDesBB. Because CoroSaveIntr
1352   // returns a token consumed by suspend instruction, all blocks in between
1353   // will have to eventually hit SaveBB when going backwards from ResDesBB.
1354   while (!Worklist.empty()) {
1355     auto *BB = Worklist.pop_back_val();
1356     Set.insert(BB);
1357     for (auto *Pred : predecessors(BB))
1358       if (!Set.contains(Pred))
1359         Worklist.push_back(Pred);
1360   }
1361 
1362   // SaveBB and ResDesBB are checked separately in hasCallsBetween.
1363   Set.erase(SaveBB);
1364   Set.erase(ResDesBB);
1365 
1366   for (auto *BB : Set)
1367     if (hasCallsInBlockBetween(BB->getFirstNonPHI(), nullptr))
1368       return true;
1369 
1370   return false;
1371 }
1372 
1373 static bool hasCallsBetween(Instruction *Save, Instruction *ResumeOrDestroy) {
1374   auto *SaveBB = Save->getParent();
1375   auto *ResumeOrDestroyBB = ResumeOrDestroy->getParent();
1376 
1377   if (SaveBB == ResumeOrDestroyBB)
1378     return hasCallsInBlockBetween(Save->getNextNode(), ResumeOrDestroy);
1379 
1380   // Any calls from Save to the end of the block?
1381   if (hasCallsInBlockBetween(Save->getNextNode(), nullptr))
1382     return true;
1383 
1384   // Any calls from begging of the block up to ResumeOrDestroy?
1385   if (hasCallsInBlockBetween(ResumeOrDestroyBB->getFirstNonPHI(),
1386                              ResumeOrDestroy))
1387     return true;
1388 
1389   // Any calls in all of the blocks between SaveBB and ResumeOrDestroyBB?
1390   if (hasCallsInBlocksBetween(SaveBB, ResumeOrDestroyBB))
1391     return true;
1392 
1393   return false;
1394 }
1395 
1396 // If a SuspendIntrin is preceded by Resume or Destroy, we can eliminate the
1397 // suspend point and replace it with nornal control flow.
1398 static bool simplifySuspendPoint(CoroSuspendInst *Suspend,
1399                                  CoroBeginInst *CoroBegin) {
1400   Instruction *Prev = Suspend->getPrevNode();
1401   if (!Prev) {
1402     auto *Pred = Suspend->getParent()->getSinglePredecessor();
1403     if (!Pred)
1404       return false;
1405     Prev = Pred->getTerminator();
1406   }
1407 
1408   CallBase *CB = dyn_cast<CallBase>(Prev);
1409   if (!CB)
1410     return false;
1411 
1412   auto *Callee = CB->getCalledOperand()->stripPointerCasts();
1413 
1414   // See if the callsite is for resumption or destruction of the coroutine.
1415   auto *SubFn = dyn_cast<CoroSubFnInst>(Callee);
1416   if (!SubFn)
1417     return false;
1418 
1419   // Does not refer to the current coroutine, we cannot do anything with it.
1420   if (SubFn->getFrame() != CoroBegin)
1421     return false;
1422 
1423   // See if the transformation is safe. Specifically, see if there are any
1424   // calls in between Save and CallInstr. They can potenitally resume the
1425   // coroutine rendering this optimization unsafe.
1426   auto *Save = Suspend->getCoroSave();
1427   if (hasCallsBetween(Save, CB))
1428     return false;
1429 
1430   // Replace llvm.coro.suspend with the value that results in resumption over
1431   // the resume or cleanup path.
1432   Suspend->replaceAllUsesWith(SubFn->getRawIndex());
1433   Suspend->eraseFromParent();
1434   Save->eraseFromParent();
1435 
1436   // No longer need a call to coro.resume or coro.destroy.
1437   if (auto *Invoke = dyn_cast<InvokeInst>(CB)) {
1438     BranchInst::Create(Invoke->getNormalDest(), Invoke);
1439   }
1440 
1441   // Grab the CalledValue from CB before erasing the CallInstr.
1442   auto *CalledValue = CB->getCalledOperand();
1443   CB->eraseFromParent();
1444 
1445   // If no more users remove it. Usually it is a bitcast of SubFn.
1446   if (CalledValue != SubFn && CalledValue->user_empty())
1447     if (auto *I = dyn_cast<Instruction>(CalledValue))
1448       I->eraseFromParent();
1449 
1450   // Now we are good to remove SubFn.
1451   if (SubFn->user_empty())
1452     SubFn->eraseFromParent();
1453 
1454   return true;
1455 }
1456 
1457 // Remove suspend points that are simplified.
1458 static void simplifySuspendPoints(coro::Shape &Shape) {
1459   // Currently, the only simplification we do is switch-lowering-specific.
1460   if (Shape.ABI != coro::ABI::Switch)
1461     return;
1462 
1463   auto &S = Shape.CoroSuspends;
1464   size_t I = 0, N = S.size();
1465   if (N == 0)
1466     return;
1467   while (true) {
1468     auto SI = cast<CoroSuspendInst>(S[I]);
1469     // Leave final.suspend to handleFinalSuspend since it is undefined behavior
1470     // to resume a coroutine suspended at the final suspend point.
1471     if (!SI->isFinal() && simplifySuspendPoint(SI, Shape.CoroBegin)) {
1472       if (--N == I)
1473         break;
1474       std::swap(S[I], S[N]);
1475       continue;
1476     }
1477     if (++I == N)
1478       break;
1479   }
1480   S.resize(N);
1481 }
1482 
1483 static void splitSwitchCoroutine(Function &F, coro::Shape &Shape,
1484                                  SmallVectorImpl<Function *> &Clones) {
1485   assert(Shape.ABI == coro::ABI::Switch);
1486 
1487   createResumeEntryBlock(F, Shape);
1488   auto ResumeClone = createClone(F, ".resume", Shape,
1489                                  CoroCloner::Kind::SwitchResume);
1490   auto DestroyClone = createClone(F, ".destroy", Shape,
1491                                   CoroCloner::Kind::SwitchUnwind);
1492   auto CleanupClone = createClone(F, ".cleanup", Shape,
1493                                   CoroCloner::Kind::SwitchCleanup);
1494 
1495   postSplitCleanup(*ResumeClone);
1496   postSplitCleanup(*DestroyClone);
1497   postSplitCleanup(*CleanupClone);
1498 
1499   addMustTailToCoroResumes(*ResumeClone);
1500 
1501   // Store addresses resume/destroy/cleanup functions in the coroutine frame.
1502   updateCoroFrame(Shape, ResumeClone, DestroyClone, CleanupClone);
1503 
1504   assert(Clones.empty());
1505   Clones.push_back(ResumeClone);
1506   Clones.push_back(DestroyClone);
1507   Clones.push_back(CleanupClone);
1508 
1509   // Create a constant array referring to resume/destroy/clone functions pointed
1510   // by the last argument of @llvm.coro.info, so that CoroElide pass can
1511   // determined correct function to call.
1512   setCoroInfo(F, Shape, Clones);
1513 }
1514 
1515 static void replaceAsyncResumeFunction(CoroSuspendAsyncInst *Suspend,
1516                                        Value *Continuation) {
1517   auto *ResumeIntrinsic = Suspend->getResumeFunction();
1518   auto &Context = Suspend->getParent()->getParent()->getContext();
1519   auto *Int8PtrTy = Type::getInt8PtrTy(Context);
1520 
1521   IRBuilder<> Builder(ResumeIntrinsic);
1522   auto *Val = Builder.CreateBitOrPointerCast(Continuation, Int8PtrTy);
1523   ResumeIntrinsic->replaceAllUsesWith(Val);
1524   ResumeIntrinsic->eraseFromParent();
1525   Suspend->setOperand(CoroSuspendAsyncInst::ResumeFunctionArg,
1526                       UndefValue::get(Int8PtrTy));
1527 }
1528 
1529 /// Coerce the arguments in \p FnArgs according to \p FnTy in \p CallArgs.
1530 static void coerceArguments(IRBuilder<> &Builder, FunctionType *FnTy,
1531                             ArrayRef<Value *> FnArgs,
1532                             SmallVectorImpl<Value *> &CallArgs) {
1533   size_t ArgIdx = 0;
1534   for (auto paramTy : FnTy->params()) {
1535     assert(ArgIdx < FnArgs.size());
1536     if (paramTy != FnArgs[ArgIdx]->getType())
1537       CallArgs.push_back(
1538           Builder.CreateBitOrPointerCast(FnArgs[ArgIdx], paramTy));
1539     else
1540       CallArgs.push_back(FnArgs[ArgIdx]);
1541     ++ArgIdx;
1542   }
1543 }
1544 
1545 CallInst *coro::createMustTailCall(DebugLoc Loc, Function *MustTailCallFn,
1546                                    ArrayRef<Value *> Arguments,
1547                                    IRBuilder<> &Builder) {
1548   auto *FnTy = MustTailCallFn->getFunctionType();
1549   // Coerce the arguments, llvm optimizations seem to ignore the types in
1550   // vaarg functions and throws away casts in optimized mode.
1551   SmallVector<Value *, 8> CallArgs;
1552   coerceArguments(Builder, FnTy, Arguments, CallArgs);
1553 
1554   auto *TailCall = Builder.CreateCall(FnTy, MustTailCallFn, CallArgs);
1555   TailCall->setTailCallKind(CallInst::TCK_MustTail);
1556   TailCall->setDebugLoc(Loc);
1557   TailCall->setCallingConv(MustTailCallFn->getCallingConv());
1558   return TailCall;
1559 }
1560 
1561 static void splitAsyncCoroutine(Function &F, coro::Shape &Shape,
1562                                 SmallVectorImpl<Function *> &Clones) {
1563   assert(Shape.ABI == coro::ABI::Async);
1564   assert(Clones.empty());
1565   // Reset various things that the optimizer might have decided it
1566   // "knows" about the coroutine function due to not seeing a return.
1567   F.removeFnAttr(Attribute::NoReturn);
1568   F.removeRetAttr(Attribute::NoAlias);
1569   F.removeRetAttr(Attribute::NonNull);
1570 
1571   auto &Context = F.getContext();
1572   auto *Int8PtrTy = Type::getInt8PtrTy(Context);
1573 
1574   auto *Id = cast<CoroIdAsyncInst>(Shape.CoroBegin->getId());
1575   IRBuilder<> Builder(Id);
1576 
1577   auto *FramePtr = Id->getStorage();
1578   FramePtr = Builder.CreateBitOrPointerCast(FramePtr, Int8PtrTy);
1579   FramePtr = Builder.CreateConstInBoundsGEP1_32(
1580       Type::getInt8Ty(Context), FramePtr, Shape.AsyncLowering.FrameOffset,
1581       "async.ctx.frameptr");
1582 
1583   // Map all uses of llvm.coro.begin to the allocated frame pointer.
1584   {
1585     // Make sure we don't invalidate Shape.FramePtr.
1586     TrackingVH<Instruction> Handle(Shape.FramePtr);
1587     Shape.CoroBegin->replaceAllUsesWith(FramePtr);
1588     Shape.FramePtr = Handle.getValPtr();
1589   }
1590 
1591   // Create all the functions in order after the main function.
1592   auto NextF = std::next(F.getIterator());
1593 
1594   // Create a continuation function for each of the suspend points.
1595   Clones.reserve(Shape.CoroSuspends.size());
1596   for (size_t Idx = 0, End = Shape.CoroSuspends.size(); Idx != End; ++Idx) {
1597     auto *Suspend = cast<CoroSuspendAsyncInst>(Shape.CoroSuspends[Idx]);
1598 
1599     // Create the clone declaration.
1600     auto ResumeNameSuffix = ".resume.";
1601     auto ProjectionFunctionName =
1602         Suspend->getAsyncContextProjectionFunction()->getName();
1603     bool UseSwiftMangling = false;
1604     if (ProjectionFunctionName.equals("__swift_async_resume_project_context")) {
1605       ResumeNameSuffix = "TQ";
1606       UseSwiftMangling = true;
1607     } else if (ProjectionFunctionName.equals(
1608                    "__swift_async_resume_get_context")) {
1609       ResumeNameSuffix = "TY";
1610       UseSwiftMangling = true;
1611     }
1612     auto *Continuation = createCloneDeclaration(
1613         F, Shape,
1614         UseSwiftMangling ? ResumeNameSuffix + Twine(Idx) + "_"
1615                          : ResumeNameSuffix + Twine(Idx),
1616         NextF, Suspend);
1617     Clones.push_back(Continuation);
1618 
1619     // Insert a branch to a new return block immediately before the suspend
1620     // point.
1621     auto *SuspendBB = Suspend->getParent();
1622     auto *NewSuspendBB = SuspendBB->splitBasicBlock(Suspend);
1623     auto *Branch = cast<BranchInst>(SuspendBB->getTerminator());
1624 
1625     // Place it before the first suspend.
1626     auto *ReturnBB =
1627         BasicBlock::Create(F.getContext(), "coro.return", &F, NewSuspendBB);
1628     Branch->setSuccessor(0, ReturnBB);
1629 
1630     IRBuilder<> Builder(ReturnBB);
1631 
1632     // Insert the call to the tail call function and inline it.
1633     auto *Fn = Suspend->getMustTailCallFunction();
1634     SmallVector<Value *, 8> Args(Suspend->args());
1635     auto FnArgs = ArrayRef<Value *>(Args).drop_front(
1636         CoroSuspendAsyncInst::MustTailCallFuncArg + 1);
1637     auto *TailCall =
1638         coro::createMustTailCall(Suspend->getDebugLoc(), Fn, FnArgs, Builder);
1639     Builder.CreateRetVoid();
1640     InlineFunctionInfo FnInfo;
1641     auto InlineRes = InlineFunction(*TailCall, FnInfo);
1642     assert(InlineRes.isSuccess() && "Expected inlining to succeed");
1643     (void)InlineRes;
1644 
1645     // Replace the lvm.coro.async.resume intrisic call.
1646     replaceAsyncResumeFunction(Suspend, Continuation);
1647   }
1648 
1649   assert(Clones.size() == Shape.CoroSuspends.size());
1650   for (size_t Idx = 0, End = Shape.CoroSuspends.size(); Idx != End; ++Idx) {
1651     auto *Suspend = Shape.CoroSuspends[Idx];
1652     auto *Clone = Clones[Idx];
1653 
1654     CoroCloner(F, "resume." + Twine(Idx), Shape, Clone, Suspend).create();
1655   }
1656 }
1657 
1658 static void splitRetconCoroutine(Function &F, coro::Shape &Shape,
1659                                  SmallVectorImpl<Function *> &Clones) {
1660   assert(Shape.ABI == coro::ABI::Retcon ||
1661          Shape.ABI == coro::ABI::RetconOnce);
1662   assert(Clones.empty());
1663 
1664   // Reset various things that the optimizer might have decided it
1665   // "knows" about the coroutine function due to not seeing a return.
1666   F.removeFnAttr(Attribute::NoReturn);
1667   F.removeRetAttr(Attribute::NoAlias);
1668   F.removeRetAttr(Attribute::NonNull);
1669 
1670   // Allocate the frame.
1671   auto *Id = cast<AnyCoroIdRetconInst>(Shape.CoroBegin->getId());
1672   Value *RawFramePtr;
1673   if (Shape.RetconLowering.IsFrameInlineInStorage) {
1674     RawFramePtr = Id->getStorage();
1675   } else {
1676     IRBuilder<> Builder(Id);
1677 
1678     // Determine the size of the frame.
1679     const DataLayout &DL = F.getParent()->getDataLayout();
1680     auto Size = DL.getTypeAllocSize(Shape.FrameTy);
1681 
1682     // Allocate.  We don't need to update the call graph node because we're
1683     // going to recompute it from scratch after splitting.
1684     // FIXME: pass the required alignment
1685     RawFramePtr = Shape.emitAlloc(Builder, Builder.getInt64(Size), nullptr);
1686     RawFramePtr =
1687       Builder.CreateBitCast(RawFramePtr, Shape.CoroBegin->getType());
1688 
1689     // Stash the allocated frame pointer in the continuation storage.
1690     auto Dest = Builder.CreateBitCast(Id->getStorage(),
1691                                       RawFramePtr->getType()->getPointerTo());
1692     Builder.CreateStore(RawFramePtr, Dest);
1693   }
1694 
1695   // Map all uses of llvm.coro.begin to the allocated frame pointer.
1696   {
1697     // Make sure we don't invalidate Shape.FramePtr.
1698     TrackingVH<Instruction> Handle(Shape.FramePtr);
1699     Shape.CoroBegin->replaceAllUsesWith(RawFramePtr);
1700     Shape.FramePtr = Handle.getValPtr();
1701   }
1702 
1703   // Create a unique return block.
1704   BasicBlock *ReturnBB = nullptr;
1705   SmallVector<PHINode *, 4> ReturnPHIs;
1706 
1707   // Create all the functions in order after the main function.
1708   auto NextF = std::next(F.getIterator());
1709 
1710   // Create a continuation function for each of the suspend points.
1711   Clones.reserve(Shape.CoroSuspends.size());
1712   for (size_t i = 0, e = Shape.CoroSuspends.size(); i != e; ++i) {
1713     auto Suspend = cast<CoroSuspendRetconInst>(Shape.CoroSuspends[i]);
1714 
1715     // Create the clone declaration.
1716     auto Continuation =
1717         createCloneDeclaration(F, Shape, ".resume." + Twine(i), NextF, nullptr);
1718     Clones.push_back(Continuation);
1719 
1720     // Insert a branch to the unified return block immediately before
1721     // the suspend point.
1722     auto SuspendBB = Suspend->getParent();
1723     auto NewSuspendBB = SuspendBB->splitBasicBlock(Suspend);
1724     auto Branch = cast<BranchInst>(SuspendBB->getTerminator());
1725 
1726     // Create the unified return block.
1727     if (!ReturnBB) {
1728       // Place it before the first suspend.
1729       ReturnBB = BasicBlock::Create(F.getContext(), "coro.return", &F,
1730                                     NewSuspendBB);
1731       Shape.RetconLowering.ReturnBlock = ReturnBB;
1732 
1733       IRBuilder<> Builder(ReturnBB);
1734 
1735       // Create PHIs for all the return values.
1736       assert(ReturnPHIs.empty());
1737 
1738       // First, the continuation.
1739       ReturnPHIs.push_back(Builder.CreatePHI(Continuation->getType(),
1740                                              Shape.CoroSuspends.size()));
1741 
1742       // Next, all the directly-yielded values.
1743       for (auto ResultTy : Shape.getRetconResultTypes())
1744         ReturnPHIs.push_back(Builder.CreatePHI(ResultTy,
1745                                                Shape.CoroSuspends.size()));
1746 
1747       // Build the return value.
1748       auto RetTy = F.getReturnType();
1749 
1750       // Cast the continuation value if necessary.
1751       // We can't rely on the types matching up because that type would
1752       // have to be infinite.
1753       auto CastedContinuationTy =
1754         (ReturnPHIs.size() == 1 ? RetTy : RetTy->getStructElementType(0));
1755       auto *CastedContinuation =
1756         Builder.CreateBitCast(ReturnPHIs[0], CastedContinuationTy);
1757 
1758       Value *RetV;
1759       if (ReturnPHIs.size() == 1) {
1760         RetV = CastedContinuation;
1761       } else {
1762         RetV = UndefValue::get(RetTy);
1763         RetV = Builder.CreateInsertValue(RetV, CastedContinuation, 0);
1764         for (size_t I = 1, E = ReturnPHIs.size(); I != E; ++I)
1765           RetV = Builder.CreateInsertValue(RetV, ReturnPHIs[I], I);
1766       }
1767 
1768       Builder.CreateRet(RetV);
1769     }
1770 
1771     // Branch to the return block.
1772     Branch->setSuccessor(0, ReturnBB);
1773     ReturnPHIs[0]->addIncoming(Continuation, SuspendBB);
1774     size_t NextPHIIndex = 1;
1775     for (auto &VUse : Suspend->value_operands())
1776       ReturnPHIs[NextPHIIndex++]->addIncoming(&*VUse, SuspendBB);
1777     assert(NextPHIIndex == ReturnPHIs.size());
1778   }
1779 
1780   assert(Clones.size() == Shape.CoroSuspends.size());
1781   for (size_t i = 0, e = Shape.CoroSuspends.size(); i != e; ++i) {
1782     auto Suspend = Shape.CoroSuspends[i];
1783     auto Clone = Clones[i];
1784 
1785     CoroCloner(F, "resume." + Twine(i), Shape, Clone, Suspend).create();
1786   }
1787 }
1788 
1789 namespace {
1790   class PrettyStackTraceFunction : public PrettyStackTraceEntry {
1791     Function &F;
1792   public:
1793     PrettyStackTraceFunction(Function &F) : F(F) {}
1794     void print(raw_ostream &OS) const override {
1795       OS << "While splitting coroutine ";
1796       F.printAsOperand(OS, /*print type*/ false, F.getParent());
1797       OS << "\n";
1798     }
1799   };
1800 }
1801 
1802 static coro::Shape splitCoroutine(Function &F,
1803                                   SmallVectorImpl<Function *> &Clones,
1804                                   bool ReuseFrameSlot) {
1805   PrettyStackTraceFunction prettyStackTrace(F);
1806 
1807   // The suspend-crossing algorithm in buildCoroutineFrame get tripped
1808   // up by uses in unreachable blocks, so remove them as a first pass.
1809   removeUnreachableBlocks(F);
1810 
1811   coro::Shape Shape(F, ReuseFrameSlot);
1812   if (!Shape.CoroBegin)
1813     return Shape;
1814 
1815   simplifySuspendPoints(Shape);
1816   buildCoroutineFrame(F, Shape);
1817   replaceFrameSize(Shape);
1818 
1819   // If there are no suspend points, no split required, just remove
1820   // the allocation and deallocation blocks, they are not needed.
1821   if (Shape.CoroSuspends.empty()) {
1822     handleNoSuspendCoroutine(Shape);
1823   } else {
1824     switch (Shape.ABI) {
1825     case coro::ABI::Switch:
1826       splitSwitchCoroutine(F, Shape, Clones);
1827       break;
1828     case coro::ABI::Async:
1829       splitAsyncCoroutine(F, Shape, Clones);
1830       break;
1831     case coro::ABI::Retcon:
1832     case coro::ABI::RetconOnce:
1833       splitRetconCoroutine(F, Shape, Clones);
1834       break;
1835     }
1836   }
1837 
1838   // Replace all the swifterror operations in the original function.
1839   // This invalidates SwiftErrorOps in the Shape.
1840   replaceSwiftErrorOps(F, Shape, nullptr);
1841 
1842   return Shape;
1843 }
1844 
1845 static void
1846 updateCallGraphAfterCoroutineSplit(Function &F, const coro::Shape &Shape,
1847                                    const SmallVectorImpl<Function *> &Clones,
1848                                    CallGraph &CG, CallGraphSCC &SCC) {
1849   if (!Shape.CoroBegin)
1850     return;
1851 
1852   removeCoroEnds(Shape, &CG);
1853   postSplitCleanup(F);
1854 
1855   // Update call graph and add the functions we created to the SCC.
1856   coro::updateCallGraph(F, Clones, CG, SCC);
1857 }
1858 
1859 static void updateCallGraphAfterCoroutineSplit(
1860     LazyCallGraph::Node &N, const coro::Shape &Shape,
1861     const SmallVectorImpl<Function *> &Clones, LazyCallGraph::SCC &C,
1862     LazyCallGraph &CG, CGSCCAnalysisManager &AM, CGSCCUpdateResult &UR,
1863     FunctionAnalysisManager &FAM) {
1864   if (!Shape.CoroBegin)
1865     return;
1866 
1867   for (llvm::AnyCoroEndInst *End : Shape.CoroEnds) {
1868     auto &Context = End->getContext();
1869     End->replaceAllUsesWith(ConstantInt::getFalse(Context));
1870     End->eraseFromParent();
1871   }
1872 
1873   if (!Clones.empty()) {
1874     switch (Shape.ABI) {
1875     case coro::ABI::Switch:
1876       // Each clone in the Switch lowering is independent of the other clones.
1877       // Let the LazyCallGraph know about each one separately.
1878       for (Function *Clone : Clones)
1879         CG.addSplitFunction(N.getFunction(), *Clone);
1880       break;
1881     case coro::ABI::Async:
1882     case coro::ABI::Retcon:
1883     case coro::ABI::RetconOnce:
1884       // Each clone in the Async/Retcon lowering references of the other clones.
1885       // Let the LazyCallGraph know about all of them at once.
1886       if (!Clones.empty())
1887         CG.addSplitRefRecursiveFunctions(N.getFunction(), Clones);
1888       break;
1889     }
1890 
1891     // Let the CGSCC infra handle the changes to the original function.
1892     updateCGAndAnalysisManagerForCGSCCPass(CG, C, N, AM, UR, FAM);
1893   }
1894 
1895   // Do some cleanup and let the CGSCC infra see if we've cleaned up any edges
1896   // to the split functions.
1897   postSplitCleanup(N.getFunction());
1898   updateCGAndAnalysisManagerForFunctionPass(CG, C, N, AM, UR, FAM);
1899 }
1900 
1901 // When we see the coroutine the first time, we insert an indirect call to a
1902 // devirt trigger function and mark the coroutine that it is now ready for
1903 // split.
1904 // Async lowering uses this after it has split the function to restart the
1905 // pipeline.
1906 static void prepareForSplit(Function &F, CallGraph &CG,
1907                             bool MarkForAsyncRestart = false) {
1908   Module &M = *F.getParent();
1909   LLVMContext &Context = F.getContext();
1910 #ifndef NDEBUG
1911   Function *DevirtFn = M.getFunction(CORO_DEVIRT_TRIGGER_FN);
1912   assert(DevirtFn && "coro.devirt.trigger function not found");
1913 #endif
1914 
1915   F.addFnAttr(CORO_PRESPLIT_ATTR, MarkForAsyncRestart
1916                                       ? ASYNC_RESTART_AFTER_SPLIT
1917                                       : PREPARED_FOR_SPLIT);
1918 
1919   // Insert an indirect call sequence that will be devirtualized by CoroElide
1920   // pass:
1921   //    %0 = call i8* @llvm.coro.subfn.addr(i8* null, i8 -1)
1922   //    %1 = bitcast i8* %0 to void(i8*)*
1923   //    call void %1(i8* null)
1924   coro::LowererBase Lowerer(M);
1925   Instruction *InsertPt =
1926       MarkForAsyncRestart ? F.getEntryBlock().getFirstNonPHIOrDbgOrLifetime()
1927                           : F.getEntryBlock().getTerminator();
1928   auto *Null = ConstantPointerNull::get(Type::getInt8PtrTy(Context));
1929   auto *DevirtFnAddr =
1930       Lowerer.makeSubFnCall(Null, CoroSubFnInst::RestartTrigger, InsertPt);
1931   FunctionType *FnTy = FunctionType::get(Type::getVoidTy(Context),
1932                                          {Type::getInt8PtrTy(Context)}, false);
1933   auto *IndirectCall = CallInst::Create(FnTy, DevirtFnAddr, Null, "", InsertPt);
1934 
1935   // Update CG graph with an indirect call we just added.
1936   CG[&F]->addCalledFunction(IndirectCall, CG.getCallsExternalNode());
1937 }
1938 
1939 // Make sure that there is a devirtualization trigger function that the
1940 // coro-split pass uses to force a restart of the CGSCC pipeline. If the devirt
1941 // trigger function is not found, we will create one and add it to the current
1942 // SCC.
1943 static void createDevirtTriggerFunc(CallGraph &CG, CallGraphSCC &SCC) {
1944   Module &M = CG.getModule();
1945   if (M.getFunction(CORO_DEVIRT_TRIGGER_FN))
1946     return;
1947 
1948   LLVMContext &C = M.getContext();
1949   auto *FnTy = FunctionType::get(Type::getVoidTy(C), Type::getInt8PtrTy(C),
1950                                  /*isVarArg=*/false);
1951   Function *DevirtFn =
1952       Function::Create(FnTy, GlobalValue::LinkageTypes::PrivateLinkage,
1953                        CORO_DEVIRT_TRIGGER_FN, &M);
1954   DevirtFn->addFnAttr(Attribute::AlwaysInline);
1955   auto *Entry = BasicBlock::Create(C, "entry", DevirtFn);
1956   ReturnInst::Create(C, Entry);
1957 
1958   auto *Node = CG.getOrInsertFunction(DevirtFn);
1959 
1960   SmallVector<CallGraphNode *, 8> Nodes(SCC.begin(), SCC.end());
1961   Nodes.push_back(Node);
1962   SCC.initialize(Nodes);
1963 }
1964 
1965 /// Replace a call to llvm.coro.prepare.retcon.
1966 static void replacePrepare(CallInst *Prepare, LazyCallGraph &CG,
1967                            LazyCallGraph::SCC &C) {
1968   auto CastFn = Prepare->getArgOperand(0); // as an i8*
1969   auto Fn = CastFn->stripPointerCasts();   // as its original type
1970 
1971   // Attempt to peephole this pattern:
1972   //    %0 = bitcast [[TYPE]] @some_function to i8*
1973   //    %1 = call @llvm.coro.prepare.retcon(i8* %0)
1974   //    %2 = bitcast %1 to [[TYPE]]
1975   // ==>
1976   //    %2 = @some_function
1977   for (auto UI = Prepare->use_begin(), UE = Prepare->use_end(); UI != UE;) {
1978     // Look for bitcasts back to the original function type.
1979     auto *Cast = dyn_cast<BitCastInst>((UI++)->getUser());
1980     if (!Cast || Cast->getType() != Fn->getType())
1981       continue;
1982 
1983     // Replace and remove the cast.
1984     Cast->replaceAllUsesWith(Fn);
1985     Cast->eraseFromParent();
1986   }
1987 
1988   // Replace any remaining uses with the function as an i8*.
1989   // This can never directly be a callee, so we don't need to update CG.
1990   Prepare->replaceAllUsesWith(CastFn);
1991   Prepare->eraseFromParent();
1992 
1993   // Kill dead bitcasts.
1994   while (auto *Cast = dyn_cast<BitCastInst>(CastFn)) {
1995     if (!Cast->use_empty())
1996       break;
1997     CastFn = Cast->getOperand(0);
1998     Cast->eraseFromParent();
1999   }
2000 }
2001 /// Replace a call to llvm.coro.prepare.retcon.
2002 static void replacePrepare(CallInst *Prepare, CallGraph &CG) {
2003   auto CastFn = Prepare->getArgOperand(0); // as an i8*
2004   auto Fn = CastFn->stripPointerCasts(); // as its original type
2005 
2006   // Find call graph nodes for the preparation.
2007   CallGraphNode *PrepareUserNode = nullptr, *FnNode = nullptr;
2008   if (auto ConcreteFn = dyn_cast<Function>(Fn)) {
2009     PrepareUserNode = CG[Prepare->getFunction()];
2010     FnNode = CG[ConcreteFn];
2011   }
2012 
2013   // Attempt to peephole this pattern:
2014   //    %0 = bitcast [[TYPE]] @some_function to i8*
2015   //    %1 = call @llvm.coro.prepare.retcon(i8* %0)
2016   //    %2 = bitcast %1 to [[TYPE]]
2017   // ==>
2018   //    %2 = @some_function
2019   for (auto UI = Prepare->use_begin(), UE = Prepare->use_end();
2020          UI != UE; ) {
2021     // Look for bitcasts back to the original function type.
2022     auto *Cast = dyn_cast<BitCastInst>((UI++)->getUser());
2023     if (!Cast || Cast->getType() != Fn->getType()) continue;
2024 
2025     // Check whether the replacement will introduce new direct calls.
2026     // If so, we'll need to update the call graph.
2027     if (PrepareUserNode) {
2028       for (auto &Use : Cast->uses()) {
2029         if (auto *CB = dyn_cast<CallBase>(Use.getUser())) {
2030           if (!CB->isCallee(&Use))
2031             continue;
2032           PrepareUserNode->removeCallEdgeFor(*CB);
2033           PrepareUserNode->addCalledFunction(CB, FnNode);
2034         }
2035       }
2036     }
2037 
2038     // Replace and remove the cast.
2039     Cast->replaceAllUsesWith(Fn);
2040     Cast->eraseFromParent();
2041   }
2042 
2043   // Replace any remaining uses with the function as an i8*.
2044   // This can never directly be a callee, so we don't need to update CG.
2045   Prepare->replaceAllUsesWith(CastFn);
2046   Prepare->eraseFromParent();
2047 
2048   // Kill dead bitcasts.
2049   while (auto *Cast = dyn_cast<BitCastInst>(CastFn)) {
2050     if (!Cast->use_empty()) break;
2051     CastFn = Cast->getOperand(0);
2052     Cast->eraseFromParent();
2053   }
2054 }
2055 
2056 static bool replaceAllPrepares(Function *PrepareFn, LazyCallGraph &CG,
2057                                LazyCallGraph::SCC &C) {
2058   bool Changed = false;
2059   for (auto PI = PrepareFn->use_begin(), PE = PrepareFn->use_end(); PI != PE;) {
2060     // Intrinsics can only be used in calls.
2061     auto *Prepare = cast<CallInst>((PI++)->getUser());
2062     replacePrepare(Prepare, CG, C);
2063     Changed = true;
2064   }
2065 
2066   return Changed;
2067 }
2068 
2069 /// Remove calls to llvm.coro.prepare.retcon, a barrier meant to prevent
2070 /// IPO from operating on calls to a retcon coroutine before it's been
2071 /// split.  This is only safe to do after we've split all retcon
2072 /// coroutines in the module.  We can do that this in this pass because
2073 /// this pass does promise to split all retcon coroutines (as opposed to
2074 /// switch coroutines, which are lowered in multiple stages).
2075 static bool replaceAllPrepares(Function *PrepareFn, CallGraph &CG) {
2076   bool Changed = false;
2077   for (auto PI = PrepareFn->use_begin(), PE = PrepareFn->use_end();
2078          PI != PE; ) {
2079     // Intrinsics can only be used in calls.
2080     auto *Prepare = cast<CallInst>((PI++)->getUser());
2081     replacePrepare(Prepare, CG);
2082     Changed = true;
2083   }
2084 
2085   return Changed;
2086 }
2087 
2088 static bool declaresCoroSplitIntrinsics(const Module &M) {
2089   return coro::declaresIntrinsics(M, {"llvm.coro.begin",
2090                                       "llvm.coro.prepare.retcon",
2091                                       "llvm.coro.prepare.async"});
2092 }
2093 
2094 static void addPrepareFunction(const Module &M,
2095                                SmallVectorImpl<Function *> &Fns,
2096                                StringRef Name) {
2097   auto *PrepareFn = M.getFunction(Name);
2098   if (PrepareFn && !PrepareFn->use_empty())
2099     Fns.push_back(PrepareFn);
2100 }
2101 
2102 PreservedAnalyses CoroSplitPass::run(LazyCallGraph::SCC &C,
2103                                      CGSCCAnalysisManager &AM,
2104                                      LazyCallGraph &CG, CGSCCUpdateResult &UR) {
2105   // NB: One invariant of a valid LazyCallGraph::SCC is that it must contain a
2106   //     non-zero number of nodes, so we assume that here and grab the first
2107   //     node's function's module.
2108   Module &M = *C.begin()->getFunction().getParent();
2109   auto &FAM =
2110       AM.getResult<FunctionAnalysisManagerCGSCCProxy>(C, CG).getManager();
2111 
2112   if (!declaresCoroSplitIntrinsics(M))
2113     return PreservedAnalyses::all();
2114 
2115   // Check for uses of llvm.coro.prepare.retcon/async.
2116   SmallVector<Function *, 2> PrepareFns;
2117   addPrepareFunction(M, PrepareFns, "llvm.coro.prepare.retcon");
2118   addPrepareFunction(M, PrepareFns, "llvm.coro.prepare.async");
2119 
2120   // Find coroutines for processing.
2121   SmallVector<LazyCallGraph::Node *, 4> Coroutines;
2122   for (LazyCallGraph::Node &N : C)
2123     if (N.getFunction().hasFnAttribute(CORO_PRESPLIT_ATTR))
2124       Coroutines.push_back(&N);
2125 
2126   if (Coroutines.empty() && PrepareFns.empty())
2127     return PreservedAnalyses::all();
2128 
2129   if (Coroutines.empty()) {
2130     for (auto *PrepareFn : PrepareFns) {
2131       replaceAllPrepares(PrepareFn, CG, C);
2132     }
2133   }
2134 
2135   // Split all the coroutines.
2136   for (LazyCallGraph::Node *N : Coroutines) {
2137     Function &F = N->getFunction();
2138     LLVM_DEBUG(dbgs() << "CoroSplit: Processing coroutine '" << F.getName()
2139                       << "' state: "
2140                       << F.getFnAttribute(CORO_PRESPLIT_ATTR).getValueAsString()
2141                       << "\n");
2142     F.removeFnAttr(CORO_PRESPLIT_ATTR);
2143 
2144     SmallVector<Function *, 4> Clones;
2145     const coro::Shape Shape = splitCoroutine(F, Clones, ReuseFrameSlot);
2146     updateCallGraphAfterCoroutineSplit(*N, Shape, Clones, C, CG, AM, UR, FAM);
2147 
2148     if (!Shape.CoroSuspends.empty()) {
2149       // Run the CGSCC pipeline on the original and newly split functions.
2150       UR.CWorklist.insert(&C);
2151       for (Function *Clone : Clones)
2152         UR.CWorklist.insert(CG.lookupSCC(CG.get(*Clone)));
2153     }
2154   }
2155 
2156   if (!PrepareFns.empty()) {
2157     for (auto *PrepareFn : PrepareFns) {
2158       replaceAllPrepares(PrepareFn, CG, C);
2159     }
2160   }
2161 
2162   return PreservedAnalyses::none();
2163 }
2164 
2165 namespace {
2166 
2167 // We present a coroutine to LLVM as an ordinary function with suspension
2168 // points marked up with intrinsics. We let the optimizer party on the coroutine
2169 // as a single function for as long as possible. Shortly before the coroutine is
2170 // eligible to be inlined into its callers, we split up the coroutine into parts
2171 // corresponding to initial, resume and destroy invocations of the coroutine,
2172 // add them to the current SCC and restart the IPO pipeline to optimize the
2173 // coroutine subfunctions we extracted before proceeding to the caller of the
2174 // coroutine.
2175 struct CoroSplitLegacy : public CallGraphSCCPass {
2176   static char ID; // Pass identification, replacement for typeid
2177 
2178   CoroSplitLegacy(bool ReuseFrameSlot = false)
2179       : CallGraphSCCPass(ID), ReuseFrameSlot(ReuseFrameSlot) {
2180     initializeCoroSplitLegacyPass(*PassRegistry::getPassRegistry());
2181   }
2182 
2183   bool Run = false;
2184   bool ReuseFrameSlot;
2185 
2186   // A coroutine is identified by the presence of coro.begin intrinsic, if
2187   // we don't have any, this pass has nothing to do.
2188   bool doInitialization(CallGraph &CG) override {
2189     Run = declaresCoroSplitIntrinsics(CG.getModule());
2190     return CallGraphSCCPass::doInitialization(CG);
2191   }
2192 
2193   bool runOnSCC(CallGraphSCC &SCC) override {
2194     if (!Run)
2195       return false;
2196 
2197     // Check for uses of llvm.coro.prepare.retcon.
2198     SmallVector<Function *, 2> PrepareFns;
2199     auto &M = SCC.getCallGraph().getModule();
2200     addPrepareFunction(M, PrepareFns, "llvm.coro.prepare.retcon");
2201     addPrepareFunction(M, PrepareFns, "llvm.coro.prepare.async");
2202 
2203     // Find coroutines for processing.
2204     SmallVector<Function *, 4> Coroutines;
2205     for (CallGraphNode *CGN : SCC)
2206       if (auto *F = CGN->getFunction())
2207         if (F->hasFnAttribute(CORO_PRESPLIT_ATTR))
2208           Coroutines.push_back(F);
2209 
2210     if (Coroutines.empty() && PrepareFns.empty())
2211       return false;
2212 
2213     CallGraph &CG = getAnalysis<CallGraphWrapperPass>().getCallGraph();
2214 
2215     if (Coroutines.empty()) {
2216       bool Changed = false;
2217       for (auto *PrepareFn : PrepareFns)
2218         Changed |= replaceAllPrepares(PrepareFn, CG);
2219       return Changed;
2220     }
2221 
2222     createDevirtTriggerFunc(CG, SCC);
2223 
2224     // Split all the coroutines.
2225     for (Function *F : Coroutines) {
2226       Attribute Attr = F->getFnAttribute(CORO_PRESPLIT_ATTR);
2227       StringRef Value = Attr.getValueAsString();
2228       LLVM_DEBUG(dbgs() << "CoroSplit: Processing coroutine '" << F->getName()
2229                         << "' state: " << Value << "\n");
2230       // Async lowering marks coroutines to trigger a restart of the pipeline
2231       // after it has split them.
2232       if (Value == ASYNC_RESTART_AFTER_SPLIT) {
2233         F->removeFnAttr(CORO_PRESPLIT_ATTR);
2234         continue;
2235       }
2236       if (Value == UNPREPARED_FOR_SPLIT) {
2237         prepareForSplit(*F, CG);
2238         continue;
2239       }
2240       F->removeFnAttr(CORO_PRESPLIT_ATTR);
2241 
2242       SmallVector<Function *, 4> Clones;
2243       const coro::Shape Shape = splitCoroutine(*F, Clones, ReuseFrameSlot);
2244       updateCallGraphAfterCoroutineSplit(*F, Shape, Clones, CG, SCC);
2245       if (Shape.ABI == coro::ABI::Async) {
2246         // Restart SCC passes.
2247         // Mark function for CoroElide pass. It will devirtualize causing a
2248         // restart of the SCC pipeline.
2249         prepareForSplit(*F, CG, true /*MarkForAsyncRestart*/);
2250       }
2251     }
2252 
2253     for (auto *PrepareFn : PrepareFns)
2254       replaceAllPrepares(PrepareFn, CG);
2255 
2256     return true;
2257   }
2258 
2259   void getAnalysisUsage(AnalysisUsage &AU) const override {
2260     CallGraphSCCPass::getAnalysisUsage(AU);
2261   }
2262 
2263   StringRef getPassName() const override { return "Coroutine Splitting"; }
2264 };
2265 
2266 } // end anonymous namespace
2267 
2268 char CoroSplitLegacy::ID = 0;
2269 
2270 INITIALIZE_PASS_BEGIN(
2271     CoroSplitLegacy, "coro-split",
2272     "Split coroutine into a set of functions driving its state machine", false,
2273     false)
2274 INITIALIZE_PASS_DEPENDENCY(CallGraphWrapperPass)
2275 INITIALIZE_PASS_END(
2276     CoroSplitLegacy, "coro-split",
2277     "Split coroutine into a set of functions driving its state machine", false,
2278     false)
2279 
2280 Pass *llvm::createCoroSplitLegacyPass(bool ReuseFrameSlot) {
2281   return new CoroSplitLegacy(ReuseFrameSlot);
2282 }
2283