1 //===- CoroSplit.cpp - Converts a coroutine into a state machine ----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 // This pass builds the coroutine frame and outlines resume and destroy parts
9 // of the coroutine into separate functions.
10 //
11 // We present a coroutine to an LLVM as an ordinary function with suspension
12 // points marked up with intrinsics. We let the optimizer party on the coroutine
13 // as a single function for as long as possible. Shortly before the coroutine is
14 // eligible to be inlined into its callers, we split up the coroutine into parts
15 // corresponding to an initial, resume and destroy invocations of the coroutine,
16 // add them to the current SCC and restart the IPO pipeline to optimize the
17 // coroutine subfunctions we extracted before proceeding to the caller of the
18 // coroutine.
19 //===----------------------------------------------------------------------===//
20 
21 #include "llvm/Transforms/Coroutines/CoroSplit.h"
22 #include "CoroInstr.h"
23 #include "CoroInternal.h"
24 #include "llvm/ADT/DenseMap.h"
25 #include "llvm/ADT/SmallPtrSet.h"
26 #include "llvm/ADT/SmallVector.h"
27 #include "llvm/ADT/StringRef.h"
28 #include "llvm/ADT/Twine.h"
29 #include "llvm/Analysis/CallGraph.h"
30 #include "llvm/Analysis/CallGraphSCCPass.h"
31 #include "llvm/IR/Argument.h"
32 #include "llvm/IR/Attributes.h"
33 #include "llvm/IR/BasicBlock.h"
34 #include "llvm/IR/CFG.h"
35 #include "llvm/IR/CallingConv.h"
36 #include "llvm/IR/Constants.h"
37 #include "llvm/IR/DataLayout.h"
38 #include "llvm/IR/DerivedTypes.h"
39 #include "llvm/IR/Function.h"
40 #include "llvm/IR/GlobalValue.h"
41 #include "llvm/IR/GlobalVariable.h"
42 #include "llvm/IR/IRBuilder.h"
43 #include "llvm/IR/InstIterator.h"
44 #include "llvm/IR/InstrTypes.h"
45 #include "llvm/IR/Instruction.h"
46 #include "llvm/IR/Instructions.h"
47 #include "llvm/IR/IntrinsicInst.h"
48 #include "llvm/IR/LLVMContext.h"
49 #include "llvm/IR/LegacyPassManager.h"
50 #include "llvm/IR/Module.h"
51 #include "llvm/IR/Type.h"
52 #include "llvm/IR/Value.h"
53 #include "llvm/IR/Verifier.h"
54 #include "llvm/InitializePasses.h"
55 #include "llvm/Pass.h"
56 #include "llvm/Support/Casting.h"
57 #include "llvm/Support/Debug.h"
58 #include "llvm/Support/PrettyStackTrace.h"
59 #include "llvm/Support/raw_ostream.h"
60 #include "llvm/Transforms/Scalar.h"
61 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
62 #include "llvm/Transforms/Utils/CallGraphUpdater.h"
63 #include "llvm/Transforms/Utils/Cloning.h"
64 #include "llvm/Transforms/Utils/Local.h"
65 #include "llvm/Transforms/Utils/ValueMapper.h"
66 #include <cassert>
67 #include <cstddef>
68 #include <cstdint>
69 #include <initializer_list>
70 #include <iterator>
71 
72 using namespace llvm;
73 
74 #define DEBUG_TYPE "coro-split"
75 
76 namespace {
77 
78 /// A little helper class for building
79 class CoroCloner {
80 public:
81   enum class Kind {
82     /// The shared resume function for a switch lowering.
83     SwitchResume,
84 
85     /// The shared unwind function for a switch lowering.
86     SwitchUnwind,
87 
88     /// The shared cleanup function for a switch lowering.
89     SwitchCleanup,
90 
91     /// An individual continuation function.
92     Continuation,
93   };
94 private:
95   Function &OrigF;
96   Function *NewF;
97   const Twine &Suffix;
98   coro::Shape &Shape;
99   Kind FKind;
100   ValueToValueMapTy VMap;
101   IRBuilder<> Builder;
102   Value *NewFramePtr = nullptr;
103   Value *SwiftErrorSlot = nullptr;
104 
105   /// The active suspend instruction; meaningful only for continuation ABIs.
106   AnyCoroSuspendInst *ActiveSuspend = nullptr;
107 
108 public:
109   /// Create a cloner for a switch lowering.
110   CoroCloner(Function &OrigF, const Twine &Suffix, coro::Shape &Shape,
111              Kind FKind)
112     : OrigF(OrigF), NewF(nullptr), Suffix(Suffix), Shape(Shape),
113       FKind(FKind), Builder(OrigF.getContext()) {
114     assert(Shape.ABI == coro::ABI::Switch);
115   }
116 
117   /// Create a cloner for a continuation lowering.
118   CoroCloner(Function &OrigF, const Twine &Suffix, coro::Shape &Shape,
119              Function *NewF, AnyCoroSuspendInst *ActiveSuspend)
120     : OrigF(OrigF), NewF(NewF), Suffix(Suffix), Shape(Shape),
121       FKind(Kind::Continuation), Builder(OrigF.getContext()),
122       ActiveSuspend(ActiveSuspend) {
123     assert(Shape.ABI == coro::ABI::Retcon ||
124            Shape.ABI == coro::ABI::RetconOnce);
125     assert(NewF && "need existing function for continuation");
126     assert(ActiveSuspend && "need active suspend point for continuation");
127   }
128 
129   Function *getFunction() const {
130     assert(NewF != nullptr && "declaration not yet set");
131     return NewF;
132   }
133 
134   void create();
135 
136 private:
137   bool isSwitchDestroyFunction() {
138     switch (FKind) {
139     case Kind::Continuation:
140     case Kind::SwitchResume:
141       return false;
142     case Kind::SwitchUnwind:
143     case Kind::SwitchCleanup:
144       return true;
145     }
146     llvm_unreachable("Unknown CoroCloner::Kind enum");
147   }
148 
149   void createDeclaration();
150   void replaceEntryBlock();
151   Value *deriveNewFramePointer();
152   void replaceRetconSuspendUses();
153   void replaceCoroSuspends();
154   void replaceCoroEnds();
155   void replaceSwiftErrorOps();
156   void handleFinalSuspend();
157   void maybeFreeContinuationStorage();
158 };
159 
160 } // end anonymous namespace
161 
162 static void maybeFreeRetconStorage(IRBuilder<> &Builder,
163                                    const coro::Shape &Shape, Value *FramePtr,
164                                    CallGraph *CG) {
165   assert(Shape.ABI == coro::ABI::Retcon ||
166          Shape.ABI == coro::ABI::RetconOnce);
167   if (Shape.RetconLowering.IsFrameInlineInStorage)
168     return;
169 
170   Shape.emitDealloc(Builder, FramePtr, CG);
171 }
172 
173 /// Replace a non-unwind call to llvm.coro.end.
174 static void replaceFallthroughCoroEnd(CoroEndInst *End,
175                                       const coro::Shape &Shape, Value *FramePtr,
176                                       bool InResume, CallGraph *CG) {
177   // Start inserting right before the coro.end.
178   IRBuilder<> Builder(End);
179 
180   // Create the return instruction.
181   switch (Shape.ABI) {
182   // The cloned functions in switch-lowering always return void.
183   case coro::ABI::Switch:
184     // coro.end doesn't immediately end the coroutine in the main function
185     // in this lowering, because we need to deallocate the coroutine.
186     if (!InResume)
187       return;
188     Builder.CreateRetVoid();
189     break;
190 
191   // In unique continuation lowering, the continuations always return void.
192   // But we may have implicitly allocated storage.
193   case coro::ABI::RetconOnce:
194     maybeFreeRetconStorage(Builder, Shape, FramePtr, CG);
195     Builder.CreateRetVoid();
196     break;
197 
198   // In non-unique continuation lowering, we signal completion by returning
199   // a null continuation.
200   case coro::ABI::Retcon: {
201     maybeFreeRetconStorage(Builder, Shape, FramePtr, CG);
202     auto RetTy = Shape.getResumeFunctionType()->getReturnType();
203     auto RetStructTy = dyn_cast<StructType>(RetTy);
204     PointerType *ContinuationTy =
205       cast<PointerType>(RetStructTy ? RetStructTy->getElementType(0) : RetTy);
206 
207     Value *ReturnValue = ConstantPointerNull::get(ContinuationTy);
208     if (RetStructTy) {
209       ReturnValue = Builder.CreateInsertValue(UndefValue::get(RetStructTy),
210                                               ReturnValue, 0);
211     }
212     Builder.CreateRet(ReturnValue);
213     break;
214   }
215   }
216 
217   // Remove the rest of the block, by splitting it into an unreachable block.
218   auto *BB = End->getParent();
219   BB->splitBasicBlock(End);
220   BB->getTerminator()->eraseFromParent();
221 }
222 
223 /// Replace an unwind call to llvm.coro.end.
224 static void replaceUnwindCoroEnd(CoroEndInst *End, const coro::Shape &Shape,
225                                  Value *FramePtr, bool InResume, CallGraph *CG){
226   IRBuilder<> Builder(End);
227 
228   switch (Shape.ABI) {
229   // In switch-lowering, this does nothing in the main function.
230   case coro::ABI::Switch:
231     if (!InResume)
232       return;
233     break;
234 
235   // In continuation-lowering, this frees the continuation storage.
236   case coro::ABI::Retcon:
237   case coro::ABI::RetconOnce:
238     maybeFreeRetconStorage(Builder, Shape, FramePtr, CG);
239     break;
240   }
241 
242   // If coro.end has an associated bundle, add cleanupret instruction.
243   if (auto Bundle = End->getOperandBundle(LLVMContext::OB_funclet)) {
244     auto *FromPad = cast<CleanupPadInst>(Bundle->Inputs[0]);
245     auto *CleanupRet = Builder.CreateCleanupRet(FromPad, nullptr);
246     End->getParent()->splitBasicBlock(End);
247     CleanupRet->getParent()->getTerminator()->eraseFromParent();
248   }
249 }
250 
251 static void replaceCoroEnd(CoroEndInst *End, const coro::Shape &Shape,
252                            Value *FramePtr, bool InResume, CallGraph *CG) {
253   if (End->isUnwind())
254     replaceUnwindCoroEnd(End, Shape, FramePtr, InResume, CG);
255   else
256     replaceFallthroughCoroEnd(End, Shape, FramePtr, InResume, CG);
257 
258   auto &Context = End->getContext();
259   End->replaceAllUsesWith(InResume ? ConstantInt::getTrue(Context)
260                                    : ConstantInt::getFalse(Context));
261   End->eraseFromParent();
262 }
263 
264 // Create an entry block for a resume function with a switch that will jump to
265 // suspend points.
266 static void createResumeEntryBlock(Function &F, coro::Shape &Shape) {
267   assert(Shape.ABI == coro::ABI::Switch);
268   LLVMContext &C = F.getContext();
269 
270   // resume.entry:
271   //  %index.addr = getelementptr inbounds %f.Frame, %f.Frame* %FramePtr, i32 0,
272   //  i32 2
273   //  % index = load i32, i32* %index.addr
274   //  switch i32 %index, label %unreachable [
275   //    i32 0, label %resume.0
276   //    i32 1, label %resume.1
277   //    ...
278   //  ]
279 
280   auto *NewEntry = BasicBlock::Create(C, "resume.entry", &F);
281   auto *UnreachBB = BasicBlock::Create(C, "unreachable", &F);
282 
283   IRBuilder<> Builder(NewEntry);
284   auto *FramePtr = Shape.FramePtr;
285   auto *FrameTy = Shape.FrameTy;
286   auto *GepIndex = Builder.CreateStructGEP(
287       FrameTy, FramePtr, Shape.getSwitchIndexField(), "index.addr");
288   auto *Index = Builder.CreateLoad(Shape.getIndexType(), GepIndex, "index");
289   auto *Switch =
290       Builder.CreateSwitch(Index, UnreachBB, Shape.CoroSuspends.size());
291   Shape.SwitchLowering.ResumeSwitch = Switch;
292 
293   size_t SuspendIndex = 0;
294   for (auto *AnyS : Shape.CoroSuspends) {
295     auto *S = cast<CoroSuspendInst>(AnyS);
296     ConstantInt *IndexVal = Shape.getIndex(SuspendIndex);
297 
298     // Replace CoroSave with a store to Index:
299     //    %index.addr = getelementptr %f.frame... (index field number)
300     //    store i32 0, i32* %index.addr1
301     auto *Save = S->getCoroSave();
302     Builder.SetInsertPoint(Save);
303     if (S->isFinal()) {
304       // Final suspend point is represented by storing zero in ResumeFnAddr.
305       auto *GepIndex = Builder.CreateStructGEP(FrameTy, FramePtr,
306                                  coro::Shape::SwitchFieldIndex::Resume,
307                                   "ResumeFn.addr");
308       auto *NullPtr = ConstantPointerNull::get(cast<PointerType>(
309           cast<PointerType>(GepIndex->getType())->getElementType()));
310       Builder.CreateStore(NullPtr, GepIndex);
311     } else {
312       auto *GepIndex = Builder.CreateStructGEP(
313           FrameTy, FramePtr, Shape.getSwitchIndexField(), "index.addr");
314       Builder.CreateStore(IndexVal, GepIndex);
315     }
316     Save->replaceAllUsesWith(ConstantTokenNone::get(C));
317     Save->eraseFromParent();
318 
319     // Split block before and after coro.suspend and add a jump from an entry
320     // switch:
321     //
322     //  whateverBB:
323     //    whatever
324     //    %0 = call i8 @llvm.coro.suspend(token none, i1 false)
325     //    switch i8 %0, label %suspend[i8 0, label %resume
326     //                                 i8 1, label %cleanup]
327     // becomes:
328     //
329     //  whateverBB:
330     //     whatever
331     //     br label %resume.0.landing
332     //
333     //  resume.0: ; <--- jump from the switch in the resume.entry
334     //     %0 = tail call i8 @llvm.coro.suspend(token none, i1 false)
335     //     br label %resume.0.landing
336     //
337     //  resume.0.landing:
338     //     %1 = phi i8[-1, %whateverBB], [%0, %resume.0]
339     //     switch i8 % 1, label %suspend [i8 0, label %resume
340     //                                    i8 1, label %cleanup]
341 
342     auto *SuspendBB = S->getParent();
343     auto *ResumeBB =
344         SuspendBB->splitBasicBlock(S, "resume." + Twine(SuspendIndex));
345     auto *LandingBB = ResumeBB->splitBasicBlock(
346         S->getNextNode(), ResumeBB->getName() + Twine(".landing"));
347     Switch->addCase(IndexVal, ResumeBB);
348 
349     cast<BranchInst>(SuspendBB->getTerminator())->setSuccessor(0, LandingBB);
350     auto *PN = PHINode::Create(Builder.getInt8Ty(), 2, "", &LandingBB->front());
351     S->replaceAllUsesWith(PN);
352     PN->addIncoming(Builder.getInt8(-1), SuspendBB);
353     PN->addIncoming(S, ResumeBB);
354 
355     ++SuspendIndex;
356   }
357 
358   Builder.SetInsertPoint(UnreachBB);
359   Builder.CreateUnreachable();
360 
361   Shape.SwitchLowering.ResumeEntryBlock = NewEntry;
362 }
363 
364 
365 // Rewrite final suspend point handling. We do not use suspend index to
366 // represent the final suspend point. Instead we zero-out ResumeFnAddr in the
367 // coroutine frame, since it is undefined behavior to resume a coroutine
368 // suspended at the final suspend point. Thus, in the resume function, we can
369 // simply remove the last case (when coro::Shape is built, the final suspend
370 // point (if present) is always the last element of CoroSuspends array).
371 // In the destroy function, we add a code sequence to check if ResumeFnAddress
372 // is Null, and if so, jump to the appropriate label to handle cleanup from the
373 // final suspend point.
374 void CoroCloner::handleFinalSuspend() {
375   assert(Shape.ABI == coro::ABI::Switch &&
376          Shape.SwitchLowering.HasFinalSuspend);
377   auto *Switch = cast<SwitchInst>(VMap[Shape.SwitchLowering.ResumeSwitch]);
378   auto FinalCaseIt = std::prev(Switch->case_end());
379   BasicBlock *ResumeBB = FinalCaseIt->getCaseSuccessor();
380   Switch->removeCase(FinalCaseIt);
381   if (isSwitchDestroyFunction()) {
382     BasicBlock *OldSwitchBB = Switch->getParent();
383     auto *NewSwitchBB = OldSwitchBB->splitBasicBlock(Switch, "Switch");
384     Builder.SetInsertPoint(OldSwitchBB->getTerminator());
385     auto *GepIndex = Builder.CreateStructGEP(Shape.FrameTy, NewFramePtr,
386                                        coro::Shape::SwitchFieldIndex::Resume,
387                                              "ResumeFn.addr");
388     auto *Load = Builder.CreateLoad(Shape.getSwitchResumePointerType(),
389                                     GepIndex);
390     auto *Cond = Builder.CreateIsNull(Load);
391     Builder.CreateCondBr(Cond, ResumeBB, NewSwitchBB);
392     OldSwitchBB->getTerminator()->eraseFromParent();
393   }
394 }
395 
396 static Function *createCloneDeclaration(Function &OrigF, coro::Shape &Shape,
397                                         const Twine &Suffix,
398                                         Module::iterator InsertBefore) {
399   Module *M = OrigF.getParent();
400   auto *FnTy = Shape.getResumeFunctionType();
401 
402   Function *NewF =
403       Function::Create(FnTy, GlobalValue::LinkageTypes::InternalLinkage,
404                        OrigF.getName() + Suffix);
405   NewF->addParamAttr(0, Attribute::NonNull);
406   NewF->addParamAttr(0, Attribute::NoAlias);
407 
408   M->getFunctionList().insert(InsertBefore, NewF);
409 
410   return NewF;
411 }
412 
413 /// Replace uses of the active llvm.coro.suspend.retcon call with the
414 /// arguments to the continuation function.
415 ///
416 /// This assumes that the builder has a meaningful insertion point.
417 void CoroCloner::replaceRetconSuspendUses() {
418   assert(Shape.ABI == coro::ABI::Retcon ||
419          Shape.ABI == coro::ABI::RetconOnce);
420 
421   auto NewS = VMap[ActiveSuspend];
422   if (NewS->use_empty()) return;
423 
424   // Copy out all the continuation arguments after the buffer pointer into
425   // an easily-indexed data structure for convenience.
426   SmallVector<Value*, 8> Args;
427   for (auto I = std::next(NewF->arg_begin()), E = NewF->arg_end(); I != E; ++I)
428     Args.push_back(&*I);
429 
430   // If the suspend returns a single scalar value, we can just do a simple
431   // replacement.
432   if (!isa<StructType>(NewS->getType())) {
433     assert(Args.size() == 1);
434     NewS->replaceAllUsesWith(Args.front());
435     return;
436   }
437 
438   // Try to peephole extracts of an aggregate return.
439   for (auto UI = NewS->use_begin(), UE = NewS->use_end(); UI != UE; ) {
440     auto EVI = dyn_cast<ExtractValueInst>((UI++)->getUser());
441     if (!EVI || EVI->getNumIndices() != 1)
442       continue;
443 
444     EVI->replaceAllUsesWith(Args[EVI->getIndices().front()]);
445     EVI->eraseFromParent();
446   }
447 
448   // If we have no remaining uses, we're done.
449   if (NewS->use_empty()) return;
450 
451   // Otherwise, we need to create an aggregate.
452   Value *Agg = UndefValue::get(NewS->getType());
453   for (size_t I = 0, E = Args.size(); I != E; ++I)
454     Agg = Builder.CreateInsertValue(Agg, Args[I], I);
455 
456   NewS->replaceAllUsesWith(Agg);
457 }
458 
459 void CoroCloner::replaceCoroSuspends() {
460   Value *SuspendResult;
461 
462   switch (Shape.ABI) {
463   // In switch lowering, replace coro.suspend with the appropriate value
464   // for the type of function we're extracting.
465   // Replacing coro.suspend with (0) will result in control flow proceeding to
466   // a resume label associated with a suspend point, replacing it with (1) will
467   // result in control flow proceeding to a cleanup label associated with this
468   // suspend point.
469   case coro::ABI::Switch:
470     SuspendResult = Builder.getInt8(isSwitchDestroyFunction() ? 1 : 0);
471     break;
472 
473   // In returned-continuation lowering, the arguments from earlier
474   // continuations are theoretically arbitrary, and they should have been
475   // spilled.
476   case coro::ABI::RetconOnce:
477   case coro::ABI::Retcon:
478     return;
479   }
480 
481   for (AnyCoroSuspendInst *CS : Shape.CoroSuspends) {
482     // The active suspend was handled earlier.
483     if (CS == ActiveSuspend) continue;
484 
485     auto *MappedCS = cast<AnyCoroSuspendInst>(VMap[CS]);
486     MappedCS->replaceAllUsesWith(SuspendResult);
487     MappedCS->eraseFromParent();
488   }
489 }
490 
491 void CoroCloner::replaceCoroEnds() {
492   for (CoroEndInst *CE : Shape.CoroEnds) {
493     // We use a null call graph because there's no call graph node for
494     // the cloned function yet.  We'll just be rebuilding that later.
495     auto NewCE = cast<CoroEndInst>(VMap[CE]);
496     replaceCoroEnd(NewCE, Shape, NewFramePtr, /*in resume*/ true, nullptr);
497   }
498 }
499 
500 static void replaceSwiftErrorOps(Function &F, coro::Shape &Shape,
501                                  ValueToValueMapTy *VMap) {
502   Value *CachedSlot = nullptr;
503   auto getSwiftErrorSlot = [&](Type *ValueTy) -> Value * {
504     if (CachedSlot) {
505       assert(CachedSlot->getType()->getPointerElementType() == ValueTy &&
506              "multiple swifterror slots in function with different types");
507       return CachedSlot;
508     }
509 
510     // Check if the function has a swifterror argument.
511     for (auto &Arg : F.args()) {
512       if (Arg.isSwiftError()) {
513         CachedSlot = &Arg;
514         assert(Arg.getType()->getPointerElementType() == ValueTy &&
515                "swifterror argument does not have expected type");
516         return &Arg;
517       }
518     }
519 
520     // Create a swifterror alloca.
521     IRBuilder<> Builder(F.getEntryBlock().getFirstNonPHIOrDbg());
522     auto Alloca = Builder.CreateAlloca(ValueTy);
523     Alloca->setSwiftError(true);
524 
525     CachedSlot = Alloca;
526     return Alloca;
527   };
528 
529   for (CallInst *Op : Shape.SwiftErrorOps) {
530     auto MappedOp = VMap ? cast<CallInst>((*VMap)[Op]) : Op;
531     IRBuilder<> Builder(MappedOp);
532 
533     // If there are no arguments, this is a 'get' operation.
534     Value *MappedResult;
535     if (Op->getNumArgOperands() == 0) {
536       auto ValueTy = Op->getType();
537       auto Slot = getSwiftErrorSlot(ValueTy);
538       MappedResult = Builder.CreateLoad(ValueTy, Slot);
539     } else {
540       assert(Op->getNumArgOperands() == 1);
541       auto Value = MappedOp->getArgOperand(0);
542       auto ValueTy = Value->getType();
543       auto Slot = getSwiftErrorSlot(ValueTy);
544       Builder.CreateStore(Value, Slot);
545       MappedResult = Slot;
546     }
547 
548     MappedOp->replaceAllUsesWith(MappedResult);
549     MappedOp->eraseFromParent();
550   }
551 
552   // If we're updating the original function, we've invalidated SwiftErrorOps.
553   if (VMap == nullptr) {
554     Shape.SwiftErrorOps.clear();
555   }
556 }
557 
558 void CoroCloner::replaceSwiftErrorOps() {
559   ::replaceSwiftErrorOps(*NewF, Shape, &VMap);
560 }
561 
562 void CoroCloner::replaceEntryBlock() {
563   // In the original function, the AllocaSpillBlock is a block immediately
564   // following the allocation of the frame object which defines GEPs for
565   // all the allocas that have been moved into the frame, and it ends by
566   // branching to the original beginning of the coroutine.  Make this
567   // the entry block of the cloned function.
568   auto *Entry = cast<BasicBlock>(VMap[Shape.AllocaSpillBlock]);
569   auto *OldEntry = &NewF->getEntryBlock();
570   Entry->setName("entry" + Suffix);
571   Entry->moveBefore(OldEntry);
572   Entry->getTerminator()->eraseFromParent();
573 
574   // Clear all predecessors of the new entry block.  There should be
575   // exactly one predecessor, which we created when splitting out
576   // AllocaSpillBlock to begin with.
577   assert(Entry->hasOneUse());
578   auto BranchToEntry = cast<BranchInst>(Entry->user_back());
579   assert(BranchToEntry->isUnconditional());
580   Builder.SetInsertPoint(BranchToEntry);
581   Builder.CreateUnreachable();
582   BranchToEntry->eraseFromParent();
583 
584   // Move any allocas into Entry that weren't moved into the frame.
585   for (auto IT = OldEntry->begin(), End = OldEntry->end(); IT != End;) {
586     Instruction &I = *IT++;
587     if (!isa<AllocaInst>(&I) || I.use_empty())
588       continue;
589 
590     I.moveBefore(*Entry, Entry->getFirstInsertionPt());
591   }
592 
593   // Branch from the entry to the appropriate place.
594   Builder.SetInsertPoint(Entry);
595   switch (Shape.ABI) {
596   case coro::ABI::Switch: {
597     // In switch-lowering, we built a resume-entry block in the original
598     // function.  Make the entry block branch to this.
599     auto *SwitchBB =
600       cast<BasicBlock>(VMap[Shape.SwitchLowering.ResumeEntryBlock]);
601     Builder.CreateBr(SwitchBB);
602     break;
603   }
604 
605   case coro::ABI::Retcon:
606   case coro::ABI::RetconOnce: {
607     // In continuation ABIs, we want to branch to immediately after the
608     // active suspend point.  Earlier phases will have put the suspend in its
609     // own basic block, so just thread our jump directly to its successor.
610     auto MappedCS = cast<CoroSuspendRetconInst>(VMap[ActiveSuspend]);
611     auto Branch = cast<BranchInst>(MappedCS->getNextNode());
612     assert(Branch->isUnconditional());
613     Builder.CreateBr(Branch->getSuccessor(0));
614     break;
615   }
616   }
617 }
618 
619 /// Derive the value of the new frame pointer.
620 Value *CoroCloner::deriveNewFramePointer() {
621   // Builder should be inserting to the front of the new entry block.
622 
623   switch (Shape.ABI) {
624   // In switch-lowering, the argument is the frame pointer.
625   case coro::ABI::Switch:
626     return &*NewF->arg_begin();
627 
628   // In continuation-lowering, the argument is the opaque storage.
629   case coro::ABI::Retcon:
630   case coro::ABI::RetconOnce: {
631     Argument *NewStorage = &*NewF->arg_begin();
632     auto FramePtrTy = Shape.FrameTy->getPointerTo();
633 
634     // If the storage is inline, just bitcast to the storage to the frame type.
635     if (Shape.RetconLowering.IsFrameInlineInStorage)
636       return Builder.CreateBitCast(NewStorage, FramePtrTy);
637 
638     // Otherwise, load the real frame from the opaque storage.
639     auto FramePtrPtr =
640       Builder.CreateBitCast(NewStorage, FramePtrTy->getPointerTo());
641     return Builder.CreateLoad(FramePtrTy, FramePtrPtr);
642   }
643   }
644   llvm_unreachable("bad ABI");
645 }
646 
647 static void addFramePointerAttrs(AttributeList &Attrs, LLVMContext &Context,
648                                  unsigned ParamIndex,
649                                  uint64_t Size, Align Alignment) {
650   AttrBuilder ParamAttrs;
651   ParamAttrs.addAttribute(Attribute::NonNull);
652   ParamAttrs.addAttribute(Attribute::NoAlias);
653   ParamAttrs.addAlignmentAttr(Alignment);
654   ParamAttrs.addDereferenceableAttr(Size);
655   Attrs = Attrs.addParamAttributes(Context, ParamIndex, ParamAttrs);
656 }
657 
658 /// Clone the body of the original function into a resume function of
659 /// some sort.
660 void CoroCloner::create() {
661   // Create the new function if we don't already have one.
662   if (!NewF) {
663     NewF = createCloneDeclaration(OrigF, Shape, Suffix,
664                                   OrigF.getParent()->end());
665   }
666 
667   // Replace all args with undefs. The buildCoroutineFrame algorithm already
668   // rewritten access to the args that occurs after suspend points with loads
669   // and stores to/from the coroutine frame.
670   for (Argument &A : OrigF.args())
671     VMap[&A] = UndefValue::get(A.getType());
672 
673   SmallVector<ReturnInst *, 4> Returns;
674 
675   // Ignore attempts to change certain attributes of the function.
676   // TODO: maybe there should be a way to suppress this during cloning?
677   auto savedVisibility = NewF->getVisibility();
678   auto savedUnnamedAddr = NewF->getUnnamedAddr();
679   auto savedDLLStorageClass = NewF->getDLLStorageClass();
680 
681   // NewF's linkage (which CloneFunctionInto does *not* change) might not
682   // be compatible with the visibility of OrigF (which it *does* change),
683   // so protect against that.
684   auto savedLinkage = NewF->getLinkage();
685   NewF->setLinkage(llvm::GlobalValue::ExternalLinkage);
686 
687   CloneFunctionInto(NewF, &OrigF, VMap, /*ModuleLevelChanges=*/true, Returns);
688 
689   NewF->setLinkage(savedLinkage);
690   NewF->setVisibility(savedVisibility);
691   NewF->setUnnamedAddr(savedUnnamedAddr);
692   NewF->setDLLStorageClass(savedDLLStorageClass);
693 
694   auto &Context = NewF->getContext();
695 
696   // Replace the attributes of the new function:
697   auto OrigAttrs = NewF->getAttributes();
698   auto NewAttrs = AttributeList();
699 
700   switch (Shape.ABI) {
701   case coro::ABI::Switch:
702     // Bootstrap attributes by copying function attributes from the
703     // original function.  This should include optimization settings and so on.
704     NewAttrs = NewAttrs.addAttributes(Context, AttributeList::FunctionIndex,
705                                       OrigAttrs.getFnAttributes());
706 
707     addFramePointerAttrs(NewAttrs, Context, 0,
708                          Shape.FrameSize, Shape.FrameAlign);
709     break;
710 
711   case coro::ABI::Retcon:
712   case coro::ABI::RetconOnce:
713     // If we have a continuation prototype, just use its attributes,
714     // full-stop.
715     NewAttrs = Shape.RetconLowering.ResumePrototype->getAttributes();
716 
717     addFramePointerAttrs(NewAttrs, Context, 0,
718                          Shape.getRetconCoroId()->getStorageSize(),
719                          Shape.getRetconCoroId()->getStorageAlignment());
720     break;
721   }
722 
723   switch (Shape.ABI) {
724   // In these ABIs, the cloned functions always return 'void', and the
725   // existing return sites are meaningless.  Note that for unique
726   // continuations, this includes the returns associated with suspends;
727   // this is fine because we can't suspend twice.
728   case coro::ABI::Switch:
729   case coro::ABI::RetconOnce:
730     // Remove old returns.
731     for (ReturnInst *Return : Returns)
732       changeToUnreachable(Return, /*UseLLVMTrap=*/false);
733     break;
734 
735   // With multi-suspend continuations, we'll already have eliminated the
736   // original returns and inserted returns before all the suspend points,
737   // so we want to leave any returns in place.
738   case coro::ABI::Retcon:
739     break;
740   }
741 
742   NewF->setAttributes(NewAttrs);
743   NewF->setCallingConv(Shape.getResumeFunctionCC());
744 
745   // Set up the new entry block.
746   replaceEntryBlock();
747 
748   Builder.SetInsertPoint(&NewF->getEntryBlock().front());
749   NewFramePtr = deriveNewFramePointer();
750 
751   // Remap frame pointer.
752   Value *OldFramePtr = VMap[Shape.FramePtr];
753   NewFramePtr->takeName(OldFramePtr);
754   OldFramePtr->replaceAllUsesWith(NewFramePtr);
755 
756   // Remap vFrame pointer.
757   auto *NewVFrame = Builder.CreateBitCast(
758       NewFramePtr, Type::getInt8PtrTy(Builder.getContext()), "vFrame");
759   Value *OldVFrame = cast<Value>(VMap[Shape.CoroBegin]);
760   OldVFrame->replaceAllUsesWith(NewVFrame);
761 
762   switch (Shape.ABI) {
763   case coro::ABI::Switch:
764     // Rewrite final suspend handling as it is not done via switch (allows to
765     // remove final case from the switch, since it is undefined behavior to
766     // resume the coroutine suspended at the final suspend point.
767     if (Shape.SwitchLowering.HasFinalSuspend)
768       handleFinalSuspend();
769     break;
770 
771   case coro::ABI::Retcon:
772   case coro::ABI::RetconOnce:
773     // Replace uses of the active suspend with the corresponding
774     // continuation-function arguments.
775     assert(ActiveSuspend != nullptr &&
776            "no active suspend when lowering a continuation-style coroutine");
777     replaceRetconSuspendUses();
778     break;
779   }
780 
781   // Handle suspends.
782   replaceCoroSuspends();
783 
784   // Handle swifterror.
785   replaceSwiftErrorOps();
786 
787   // Remove coro.end intrinsics.
788   replaceCoroEnds();
789 
790   // Eliminate coro.free from the clones, replacing it with 'null' in cleanup,
791   // to suppress deallocation code.
792   if (Shape.ABI == coro::ABI::Switch)
793     coro::replaceCoroFree(cast<CoroIdInst>(VMap[Shape.CoroBegin->getId()]),
794                           /*Elide=*/ FKind == CoroCloner::Kind::SwitchCleanup);
795 }
796 
797 // Create a resume clone by cloning the body of the original function, setting
798 // new entry block and replacing coro.suspend an appropriate value to force
799 // resume or cleanup pass for every suspend point.
800 static Function *createClone(Function &F, const Twine &Suffix,
801                              coro::Shape &Shape, CoroCloner::Kind FKind) {
802   CoroCloner Cloner(F, Suffix, Shape, FKind);
803   Cloner.create();
804   return Cloner.getFunction();
805 }
806 
807 /// Remove calls to llvm.coro.end in the original function.
808 static void removeCoroEnds(const coro::Shape &Shape, CallGraph *CG) {
809   for (auto End : Shape.CoroEnds) {
810     replaceCoroEnd(End, Shape, Shape.FramePtr, /*in resume*/ false, CG);
811   }
812 }
813 
814 static void replaceFrameSize(coro::Shape &Shape) {
815   if (Shape.CoroSizes.empty())
816     return;
817 
818   // In the same function all coro.sizes should have the same result type.
819   auto *SizeIntrin = Shape.CoroSizes.back();
820   Module *M = SizeIntrin->getModule();
821   const DataLayout &DL = M->getDataLayout();
822   auto Size = DL.getTypeAllocSize(Shape.FrameTy);
823   auto *SizeConstant = ConstantInt::get(SizeIntrin->getType(), Size);
824 
825   for (CoroSizeInst *CS : Shape.CoroSizes) {
826     CS->replaceAllUsesWith(SizeConstant);
827     CS->eraseFromParent();
828   }
829 }
830 
831 // Create a global constant array containing pointers to functions provided and
832 // set Info parameter of CoroBegin to point at this constant. Example:
833 //
834 //   @f.resumers = internal constant [2 x void(%f.frame*)*]
835 //                    [void(%f.frame*)* @f.resume, void(%f.frame*)* @f.destroy]
836 //   define void @f() {
837 //     ...
838 //     call i8* @llvm.coro.begin(i8* null, i32 0, i8* null,
839 //                    i8* bitcast([2 x void(%f.frame*)*] * @f.resumers to i8*))
840 //
841 // Assumes that all the functions have the same signature.
842 static void setCoroInfo(Function &F, coro::Shape &Shape,
843                         ArrayRef<Function *> Fns) {
844   // This only works under the switch-lowering ABI because coro elision
845   // only works on the switch-lowering ABI.
846   assert(Shape.ABI == coro::ABI::Switch);
847 
848   SmallVector<Constant *, 4> Args(Fns.begin(), Fns.end());
849   assert(!Args.empty());
850   Function *Part = *Fns.begin();
851   Module *M = Part->getParent();
852   auto *ArrTy = ArrayType::get(Part->getType(), Args.size());
853 
854   auto *ConstVal = ConstantArray::get(ArrTy, Args);
855   auto *GV = new GlobalVariable(*M, ConstVal->getType(), /*isConstant=*/true,
856                                 GlobalVariable::PrivateLinkage, ConstVal,
857                                 F.getName() + Twine(".resumers"));
858 
859   // Update coro.begin instruction to refer to this constant.
860   LLVMContext &C = F.getContext();
861   auto *BC = ConstantExpr::getPointerCast(GV, Type::getInt8PtrTy(C));
862   Shape.getSwitchCoroId()->setInfo(BC);
863 }
864 
865 // Store addresses of Resume/Destroy/Cleanup functions in the coroutine frame.
866 static void updateCoroFrame(coro::Shape &Shape, Function *ResumeFn,
867                             Function *DestroyFn, Function *CleanupFn) {
868   assert(Shape.ABI == coro::ABI::Switch);
869 
870   IRBuilder<> Builder(Shape.FramePtr->getNextNode());
871   auto *ResumeAddr = Builder.CreateStructGEP(
872       Shape.FrameTy, Shape.FramePtr, coro::Shape::SwitchFieldIndex::Resume,
873       "resume.addr");
874   Builder.CreateStore(ResumeFn, ResumeAddr);
875 
876   Value *DestroyOrCleanupFn = DestroyFn;
877 
878   CoroIdInst *CoroId = Shape.getSwitchCoroId();
879   if (CoroAllocInst *CA = CoroId->getCoroAlloc()) {
880     // If there is a CoroAlloc and it returns false (meaning we elide the
881     // allocation, use CleanupFn instead of DestroyFn).
882     DestroyOrCleanupFn = Builder.CreateSelect(CA, DestroyFn, CleanupFn);
883   }
884 
885   auto *DestroyAddr = Builder.CreateStructGEP(
886       Shape.FrameTy, Shape.FramePtr, coro::Shape::SwitchFieldIndex::Destroy,
887       "destroy.addr");
888   Builder.CreateStore(DestroyOrCleanupFn, DestroyAddr);
889 }
890 
891 static void postSplitCleanup(Function &F) {
892   removeUnreachableBlocks(F);
893 
894   // For now, we do a mandatory verification step because we don't
895   // entirely trust this pass.  Note that we don't want to add a verifier
896   // pass to FPM below because it will also verify all the global data.
897   verifyFunction(F);
898 
899   legacy::FunctionPassManager FPM(F.getParent());
900 
901   FPM.add(createSCCPPass());
902   FPM.add(createCFGSimplificationPass());
903   FPM.add(createEarlyCSEPass());
904   FPM.add(createCFGSimplificationPass());
905 
906   FPM.doInitialization();
907   FPM.run(F);
908   FPM.doFinalization();
909 }
910 
911 // Assuming we arrived at the block NewBlock from Prev instruction, store
912 // PHI's incoming values in the ResolvedValues map.
913 static void
914 scanPHIsAndUpdateValueMap(Instruction *Prev, BasicBlock *NewBlock,
915                           DenseMap<Value *, Value *> &ResolvedValues) {
916   auto *PrevBB = Prev->getParent();
917   for (PHINode &PN : NewBlock->phis()) {
918     auto V = PN.getIncomingValueForBlock(PrevBB);
919     // See if we already resolved it.
920     auto VI = ResolvedValues.find(V);
921     if (VI != ResolvedValues.end())
922       V = VI->second;
923     // Remember the value.
924     ResolvedValues[&PN] = V;
925   }
926 }
927 
928 // Replace a sequence of branches leading to a ret, with a clone of a ret
929 // instruction. Suspend instruction represented by a switch, track the PHI
930 // values and select the correct case successor when possible.
931 static bool simplifyTerminatorLeadingToRet(Instruction *InitialInst) {
932   DenseMap<Value *, Value *> ResolvedValues;
933   BasicBlock *UnconditionalSucc = nullptr;
934 
935   Instruction *I = InitialInst;
936   while (I->isTerminator() ||
937          (isa<CmpInst>(I) && I->getNextNode()->isTerminator())) {
938     if (isa<ReturnInst>(I)) {
939       if (I != InitialInst) {
940         // If InitialInst is an unconditional branch,
941         // remove PHI values that come from basic block of InitialInst
942         if (UnconditionalSucc)
943           UnconditionalSucc->removePredecessor(InitialInst->getParent(), true);
944         ReplaceInstWithInst(InitialInst, I->clone());
945       }
946       return true;
947     }
948     if (auto *BR = dyn_cast<BranchInst>(I)) {
949       if (BR->isUnconditional()) {
950         BasicBlock *BB = BR->getSuccessor(0);
951         if (I == InitialInst)
952           UnconditionalSucc = BB;
953         scanPHIsAndUpdateValueMap(I, BB, ResolvedValues);
954         I = BB->getFirstNonPHIOrDbgOrLifetime();
955         continue;
956       }
957     } else if (auto *CondCmp = dyn_cast<CmpInst>(I)) {
958       auto *BR = dyn_cast<BranchInst>(I->getNextNode());
959       if (BR && BR->isConditional() && CondCmp == BR->getCondition()) {
960         // If the case number of suspended switch instruction is reduced to
961         // 1, then it is simplified to CmpInst in llvm::ConstantFoldTerminator.
962         // And the comparsion looks like : %cond = icmp eq i8 %V, constant.
963         ConstantInt *CondConst = dyn_cast<ConstantInt>(CondCmp->getOperand(1));
964         if (CondConst && CondCmp->getPredicate() == CmpInst::ICMP_EQ) {
965           Value *V = CondCmp->getOperand(0);
966           auto it = ResolvedValues.find(V);
967           if (it != ResolvedValues.end())
968             V = it->second;
969 
970           if (ConstantInt *Cond0 = dyn_cast<ConstantInt>(V)) {
971             BasicBlock *BB = Cond0->equalsInt(CondConst->getZExtValue())
972                                  ? BR->getSuccessor(0)
973                                  : BR->getSuccessor(1);
974             scanPHIsAndUpdateValueMap(I, BB, ResolvedValues);
975             I = BB->getFirstNonPHIOrDbgOrLifetime();
976             continue;
977           }
978         }
979       }
980     } else if (auto *SI = dyn_cast<SwitchInst>(I)) {
981       Value *V = SI->getCondition();
982       auto it = ResolvedValues.find(V);
983       if (it != ResolvedValues.end())
984         V = it->second;
985       if (ConstantInt *Cond = dyn_cast<ConstantInt>(V)) {
986         BasicBlock *BB = SI->findCaseValue(Cond)->getCaseSuccessor();
987         scanPHIsAndUpdateValueMap(I, BB, ResolvedValues);
988         I = BB->getFirstNonPHIOrDbgOrLifetime();
989         continue;
990       }
991     }
992     return false;
993   }
994   return false;
995 }
996 
997 // Check whether CI obeys the rules of musttail attribute.
998 static bool shouldBeMustTail(const CallInst &CI, const Function &F) {
999   if (CI.isInlineAsm())
1000     return false;
1001 
1002   // Match prototypes and calling conventions of resume function.
1003   FunctionType *CalleeTy = CI.getFunctionType();
1004   if (!CalleeTy->getReturnType()->isVoidTy() || (CalleeTy->getNumParams() != 1))
1005     return false;
1006 
1007   Type *CalleeParmTy = CalleeTy->getParamType(0);
1008   if (!CalleeParmTy->isPointerTy() ||
1009       (CalleeParmTy->getPointerAddressSpace() != 0))
1010     return false;
1011 
1012   if (CI.getCallingConv() != F.getCallingConv())
1013     return false;
1014 
1015   // CI should not has any ABI-impacting function attributes.
1016   static const Attribute::AttrKind ABIAttrs[] = {
1017       Attribute::StructRet, Attribute::ByVal,    Attribute::InAlloca,
1018       Attribute::InReg,     Attribute::Returned, Attribute::SwiftSelf,
1019       Attribute::SwiftError};
1020   AttributeList Attrs = CI.getAttributes();
1021   for (auto AK : ABIAttrs)
1022     if (Attrs.hasParamAttribute(0, AK))
1023       return false;
1024 
1025   return true;
1026 }
1027 
1028 // Add musttail to any resume instructions that is immediately followed by a
1029 // suspend (i.e. ret). We do this even in -O0 to support guaranteed tail call
1030 // for symmetrical coroutine control transfer (C++ Coroutines TS extension).
1031 // This transformation is done only in the resume part of the coroutine that has
1032 // identical signature and calling convention as the coro.resume call.
1033 static void addMustTailToCoroResumes(Function &F) {
1034   bool changed = false;
1035 
1036   // Collect potential resume instructions.
1037   SmallVector<CallInst *, 4> Resumes;
1038   for (auto &I : instructions(F))
1039     if (auto *Call = dyn_cast<CallInst>(&I))
1040       if (shouldBeMustTail(*Call, F))
1041         Resumes.push_back(Call);
1042 
1043   // Set musttail on those that are followed by a ret instruction.
1044   for (CallInst *Call : Resumes)
1045     if (simplifyTerminatorLeadingToRet(Call->getNextNode())) {
1046       Call->setTailCallKind(CallInst::TCK_MustTail);
1047       changed = true;
1048     }
1049 
1050   if (changed)
1051     removeUnreachableBlocks(F);
1052 }
1053 
1054 // Coroutine has no suspend points. Remove heap allocation for the coroutine
1055 // frame if possible.
1056 static void handleNoSuspendCoroutine(coro::Shape &Shape) {
1057   auto *CoroBegin = Shape.CoroBegin;
1058   auto *CoroId = CoroBegin->getId();
1059   auto *AllocInst = CoroId->getCoroAlloc();
1060   switch (Shape.ABI) {
1061   case coro::ABI::Switch: {
1062     auto SwitchId = cast<CoroIdInst>(CoroId);
1063     coro::replaceCoroFree(SwitchId, /*Elide=*/AllocInst != nullptr);
1064     if (AllocInst) {
1065       IRBuilder<> Builder(AllocInst);
1066       auto *Frame = Builder.CreateAlloca(Shape.FrameTy);
1067       Frame->setAlignment(Shape.FrameAlign);
1068       auto *VFrame = Builder.CreateBitCast(Frame, Builder.getInt8PtrTy());
1069       AllocInst->replaceAllUsesWith(Builder.getFalse());
1070       AllocInst->eraseFromParent();
1071       CoroBegin->replaceAllUsesWith(VFrame);
1072     } else {
1073       CoroBegin->replaceAllUsesWith(CoroBegin->getMem());
1074     }
1075     break;
1076   }
1077 
1078   case coro::ABI::Retcon:
1079   case coro::ABI::RetconOnce:
1080     CoroBegin->replaceAllUsesWith(UndefValue::get(CoroBegin->getType()));
1081     break;
1082   }
1083 
1084   CoroBegin->eraseFromParent();
1085 }
1086 
1087 // SimplifySuspendPoint needs to check that there is no calls between
1088 // coro_save and coro_suspend, since any of the calls may potentially resume
1089 // the coroutine and if that is the case we cannot eliminate the suspend point.
1090 static bool hasCallsInBlockBetween(Instruction *From, Instruction *To) {
1091   for (Instruction *I = From; I != To; I = I->getNextNode()) {
1092     // Assume that no intrinsic can resume the coroutine.
1093     if (isa<IntrinsicInst>(I))
1094       continue;
1095 
1096     if (isa<CallBase>(I))
1097       return true;
1098   }
1099   return false;
1100 }
1101 
1102 static bool hasCallsInBlocksBetween(BasicBlock *SaveBB, BasicBlock *ResDesBB) {
1103   SmallPtrSet<BasicBlock *, 8> Set;
1104   SmallVector<BasicBlock *, 8> Worklist;
1105 
1106   Set.insert(SaveBB);
1107   Worklist.push_back(ResDesBB);
1108 
1109   // Accumulate all blocks between SaveBB and ResDesBB. Because CoroSaveIntr
1110   // returns a token consumed by suspend instruction, all blocks in between
1111   // will have to eventually hit SaveBB when going backwards from ResDesBB.
1112   while (!Worklist.empty()) {
1113     auto *BB = Worklist.pop_back_val();
1114     Set.insert(BB);
1115     for (auto *Pred : predecessors(BB))
1116       if (Set.count(Pred) == 0)
1117         Worklist.push_back(Pred);
1118   }
1119 
1120   // SaveBB and ResDesBB are checked separately in hasCallsBetween.
1121   Set.erase(SaveBB);
1122   Set.erase(ResDesBB);
1123 
1124   for (auto *BB : Set)
1125     if (hasCallsInBlockBetween(BB->getFirstNonPHI(), nullptr))
1126       return true;
1127 
1128   return false;
1129 }
1130 
1131 static bool hasCallsBetween(Instruction *Save, Instruction *ResumeOrDestroy) {
1132   auto *SaveBB = Save->getParent();
1133   auto *ResumeOrDestroyBB = ResumeOrDestroy->getParent();
1134 
1135   if (SaveBB == ResumeOrDestroyBB)
1136     return hasCallsInBlockBetween(Save->getNextNode(), ResumeOrDestroy);
1137 
1138   // Any calls from Save to the end of the block?
1139   if (hasCallsInBlockBetween(Save->getNextNode(), nullptr))
1140     return true;
1141 
1142   // Any calls from begging of the block up to ResumeOrDestroy?
1143   if (hasCallsInBlockBetween(ResumeOrDestroyBB->getFirstNonPHI(),
1144                              ResumeOrDestroy))
1145     return true;
1146 
1147   // Any calls in all of the blocks between SaveBB and ResumeOrDestroyBB?
1148   if (hasCallsInBlocksBetween(SaveBB, ResumeOrDestroyBB))
1149     return true;
1150 
1151   return false;
1152 }
1153 
1154 // If a SuspendIntrin is preceded by Resume or Destroy, we can eliminate the
1155 // suspend point and replace it with nornal control flow.
1156 static bool simplifySuspendPoint(CoroSuspendInst *Suspend,
1157                                  CoroBeginInst *CoroBegin) {
1158   Instruction *Prev = Suspend->getPrevNode();
1159   if (!Prev) {
1160     auto *Pred = Suspend->getParent()->getSinglePredecessor();
1161     if (!Pred)
1162       return false;
1163     Prev = Pred->getTerminator();
1164   }
1165 
1166   CallBase *CB = dyn_cast<CallBase>(Prev);
1167   if (!CB)
1168     return false;
1169 
1170   auto *Callee = CB->getCalledOperand()->stripPointerCasts();
1171 
1172   // See if the callsite is for resumption or destruction of the coroutine.
1173   auto *SubFn = dyn_cast<CoroSubFnInst>(Callee);
1174   if (!SubFn)
1175     return false;
1176 
1177   // Does not refer to the current coroutine, we cannot do anything with it.
1178   if (SubFn->getFrame() != CoroBegin)
1179     return false;
1180 
1181   // See if the transformation is safe. Specifically, see if there are any
1182   // calls in between Save and CallInstr. They can potenitally resume the
1183   // coroutine rendering this optimization unsafe.
1184   auto *Save = Suspend->getCoroSave();
1185   if (hasCallsBetween(Save, CB))
1186     return false;
1187 
1188   // Replace llvm.coro.suspend with the value that results in resumption over
1189   // the resume or cleanup path.
1190   Suspend->replaceAllUsesWith(SubFn->getRawIndex());
1191   Suspend->eraseFromParent();
1192   Save->eraseFromParent();
1193 
1194   // No longer need a call to coro.resume or coro.destroy.
1195   if (auto *Invoke = dyn_cast<InvokeInst>(CB)) {
1196     BranchInst::Create(Invoke->getNormalDest(), Invoke);
1197   }
1198 
1199   // Grab the CalledValue from CB before erasing the CallInstr.
1200   auto *CalledValue = CB->getCalledOperand();
1201   CB->eraseFromParent();
1202 
1203   // If no more users remove it. Usually it is a bitcast of SubFn.
1204   if (CalledValue != SubFn && CalledValue->user_empty())
1205     if (auto *I = dyn_cast<Instruction>(CalledValue))
1206       I->eraseFromParent();
1207 
1208   // Now we are good to remove SubFn.
1209   if (SubFn->user_empty())
1210     SubFn->eraseFromParent();
1211 
1212   return true;
1213 }
1214 
1215 // Remove suspend points that are simplified.
1216 static void simplifySuspendPoints(coro::Shape &Shape) {
1217   // Currently, the only simplification we do is switch-lowering-specific.
1218   if (Shape.ABI != coro::ABI::Switch)
1219     return;
1220 
1221   auto &S = Shape.CoroSuspends;
1222   size_t I = 0, N = S.size();
1223   if (N == 0)
1224     return;
1225   while (true) {
1226     auto SI = cast<CoroSuspendInst>(S[I]);
1227     // Leave final.suspend to handleFinalSuspend since it is undefined behavior
1228     // to resume a coroutine suspended at the final suspend point.
1229     if (!SI->isFinal() && simplifySuspendPoint(SI, Shape.CoroBegin)) {
1230       if (--N == I)
1231         break;
1232       std::swap(S[I], S[N]);
1233       continue;
1234     }
1235     if (++I == N)
1236       break;
1237   }
1238   S.resize(N);
1239 }
1240 
1241 static void splitSwitchCoroutine(Function &F, coro::Shape &Shape,
1242                                  SmallVectorImpl<Function *> &Clones) {
1243   assert(Shape.ABI == coro::ABI::Switch);
1244 
1245   createResumeEntryBlock(F, Shape);
1246   auto ResumeClone = createClone(F, ".resume", Shape,
1247                                  CoroCloner::Kind::SwitchResume);
1248   auto DestroyClone = createClone(F, ".destroy", Shape,
1249                                   CoroCloner::Kind::SwitchUnwind);
1250   auto CleanupClone = createClone(F, ".cleanup", Shape,
1251                                   CoroCloner::Kind::SwitchCleanup);
1252 
1253   postSplitCleanup(*ResumeClone);
1254   postSplitCleanup(*DestroyClone);
1255   postSplitCleanup(*CleanupClone);
1256 
1257   addMustTailToCoroResumes(*ResumeClone);
1258 
1259   // Store addresses resume/destroy/cleanup functions in the coroutine frame.
1260   updateCoroFrame(Shape, ResumeClone, DestroyClone, CleanupClone);
1261 
1262   assert(Clones.empty());
1263   Clones.push_back(ResumeClone);
1264   Clones.push_back(DestroyClone);
1265   Clones.push_back(CleanupClone);
1266 
1267   // Create a constant array referring to resume/destroy/clone functions pointed
1268   // by the last argument of @llvm.coro.info, so that CoroElide pass can
1269   // determined correct function to call.
1270   setCoroInfo(F, Shape, Clones);
1271 }
1272 
1273 static void splitRetconCoroutine(Function &F, coro::Shape &Shape,
1274                                  SmallVectorImpl<Function *> &Clones) {
1275   assert(Shape.ABI == coro::ABI::Retcon ||
1276          Shape.ABI == coro::ABI::RetconOnce);
1277   assert(Clones.empty());
1278 
1279   // Reset various things that the optimizer might have decided it
1280   // "knows" about the coroutine function due to not seeing a return.
1281   F.removeFnAttr(Attribute::NoReturn);
1282   F.removeAttribute(AttributeList::ReturnIndex, Attribute::NoAlias);
1283   F.removeAttribute(AttributeList::ReturnIndex, Attribute::NonNull);
1284 
1285   // Allocate the frame.
1286   auto *Id = cast<AnyCoroIdRetconInst>(Shape.CoroBegin->getId());
1287   Value *RawFramePtr;
1288   if (Shape.RetconLowering.IsFrameInlineInStorage) {
1289     RawFramePtr = Id->getStorage();
1290   } else {
1291     IRBuilder<> Builder(Id);
1292 
1293     // Determine the size of the frame.
1294     const DataLayout &DL = F.getParent()->getDataLayout();
1295     auto Size = DL.getTypeAllocSize(Shape.FrameTy);
1296 
1297     // Allocate.  We don't need to update the call graph node because we're
1298     // going to recompute it from scratch after splitting.
1299     // FIXME: pass the required alignment
1300     RawFramePtr = Shape.emitAlloc(Builder, Builder.getInt64(Size), nullptr);
1301     RawFramePtr =
1302       Builder.CreateBitCast(RawFramePtr, Shape.CoroBegin->getType());
1303 
1304     // Stash the allocated frame pointer in the continuation storage.
1305     auto Dest = Builder.CreateBitCast(Id->getStorage(),
1306                                       RawFramePtr->getType()->getPointerTo());
1307     Builder.CreateStore(RawFramePtr, Dest);
1308   }
1309 
1310   // Map all uses of llvm.coro.begin to the allocated frame pointer.
1311   {
1312     // Make sure we don't invalidate Shape.FramePtr.
1313     TrackingVH<Instruction> Handle(Shape.FramePtr);
1314     Shape.CoroBegin->replaceAllUsesWith(RawFramePtr);
1315     Shape.FramePtr = Handle.getValPtr();
1316   }
1317 
1318   // Create a unique return block.
1319   BasicBlock *ReturnBB = nullptr;
1320   SmallVector<PHINode *, 4> ReturnPHIs;
1321 
1322   // Create all the functions in order after the main function.
1323   auto NextF = std::next(F.getIterator());
1324 
1325   // Create a continuation function for each of the suspend points.
1326   Clones.reserve(Shape.CoroSuspends.size());
1327   for (size_t i = 0, e = Shape.CoroSuspends.size(); i != e; ++i) {
1328     auto Suspend = cast<CoroSuspendRetconInst>(Shape.CoroSuspends[i]);
1329 
1330     // Create the clone declaration.
1331     auto Continuation =
1332       createCloneDeclaration(F, Shape, ".resume." + Twine(i), NextF);
1333     Clones.push_back(Continuation);
1334 
1335     // Insert a branch to the unified return block immediately before
1336     // the suspend point.
1337     auto SuspendBB = Suspend->getParent();
1338     auto NewSuspendBB = SuspendBB->splitBasicBlock(Suspend);
1339     auto Branch = cast<BranchInst>(SuspendBB->getTerminator());
1340 
1341     // Create the unified return block.
1342     if (!ReturnBB) {
1343       // Place it before the first suspend.
1344       ReturnBB = BasicBlock::Create(F.getContext(), "coro.return", &F,
1345                                     NewSuspendBB);
1346       Shape.RetconLowering.ReturnBlock = ReturnBB;
1347 
1348       IRBuilder<> Builder(ReturnBB);
1349 
1350       // Create PHIs for all the return values.
1351       assert(ReturnPHIs.empty());
1352 
1353       // First, the continuation.
1354       ReturnPHIs.push_back(Builder.CreatePHI(Continuation->getType(),
1355                                              Shape.CoroSuspends.size()));
1356 
1357       // Next, all the directly-yielded values.
1358       for (auto ResultTy : Shape.getRetconResultTypes())
1359         ReturnPHIs.push_back(Builder.CreatePHI(ResultTy,
1360                                                Shape.CoroSuspends.size()));
1361 
1362       // Build the return value.
1363       auto RetTy = F.getReturnType();
1364 
1365       // Cast the continuation value if necessary.
1366       // We can't rely on the types matching up because that type would
1367       // have to be infinite.
1368       auto CastedContinuationTy =
1369         (ReturnPHIs.size() == 1 ? RetTy : RetTy->getStructElementType(0));
1370       auto *CastedContinuation =
1371         Builder.CreateBitCast(ReturnPHIs[0], CastedContinuationTy);
1372 
1373       Value *RetV;
1374       if (ReturnPHIs.size() == 1) {
1375         RetV = CastedContinuation;
1376       } else {
1377         RetV = UndefValue::get(RetTy);
1378         RetV = Builder.CreateInsertValue(RetV, CastedContinuation, 0);
1379         for (size_t I = 1, E = ReturnPHIs.size(); I != E; ++I)
1380           RetV = Builder.CreateInsertValue(RetV, ReturnPHIs[I], I);
1381       }
1382 
1383       Builder.CreateRet(RetV);
1384     }
1385 
1386     // Branch to the return block.
1387     Branch->setSuccessor(0, ReturnBB);
1388     ReturnPHIs[0]->addIncoming(Continuation, SuspendBB);
1389     size_t NextPHIIndex = 1;
1390     for (auto &VUse : Suspend->value_operands())
1391       ReturnPHIs[NextPHIIndex++]->addIncoming(&*VUse, SuspendBB);
1392     assert(NextPHIIndex == ReturnPHIs.size());
1393   }
1394 
1395   assert(Clones.size() == Shape.CoroSuspends.size());
1396   for (size_t i = 0, e = Shape.CoroSuspends.size(); i != e; ++i) {
1397     auto Suspend = Shape.CoroSuspends[i];
1398     auto Clone = Clones[i];
1399 
1400     CoroCloner(F, "resume." + Twine(i), Shape, Clone, Suspend).create();
1401   }
1402 }
1403 
1404 namespace {
1405   class PrettyStackTraceFunction : public PrettyStackTraceEntry {
1406     Function &F;
1407   public:
1408     PrettyStackTraceFunction(Function &F) : F(F) {}
1409     void print(raw_ostream &OS) const override {
1410       OS << "While splitting coroutine ";
1411       F.printAsOperand(OS, /*print type*/ false, F.getParent());
1412       OS << "\n";
1413     }
1414   };
1415 }
1416 
1417 static coro::Shape splitCoroutine(Function &F,
1418                                   SmallVectorImpl<Function *> &Clones) {
1419   PrettyStackTraceFunction prettyStackTrace(F);
1420 
1421   // The suspend-crossing algorithm in buildCoroutineFrame get tripped
1422   // up by uses in unreachable blocks, so remove them as a first pass.
1423   removeUnreachableBlocks(F);
1424 
1425   coro::Shape Shape(F);
1426   if (!Shape.CoroBegin)
1427     return Shape;
1428 
1429   simplifySuspendPoints(Shape);
1430   buildCoroutineFrame(F, Shape);
1431   replaceFrameSize(Shape);
1432 
1433   // If there are no suspend points, no split required, just remove
1434   // the allocation and deallocation blocks, they are not needed.
1435   if (Shape.CoroSuspends.empty()) {
1436     handleNoSuspendCoroutine(Shape);
1437   } else {
1438     switch (Shape.ABI) {
1439     case coro::ABI::Switch:
1440       splitSwitchCoroutine(F, Shape, Clones);
1441       break;
1442     case coro::ABI::Retcon:
1443     case coro::ABI::RetconOnce:
1444       splitRetconCoroutine(F, Shape, Clones);
1445       break;
1446     }
1447   }
1448 
1449   // Replace all the swifterror operations in the original function.
1450   // This invalidates SwiftErrorOps in the Shape.
1451   replaceSwiftErrorOps(F, Shape, nullptr);
1452 
1453   return Shape;
1454 }
1455 
1456 static void
1457 updateCallGraphAfterCoroutineSplit(Function &F, const coro::Shape &Shape,
1458                                    const SmallVectorImpl<Function *> &Clones,
1459                                    CallGraph &CG, CallGraphSCC &SCC) {
1460   if (!Shape.CoroBegin)
1461     return;
1462 
1463   removeCoroEnds(Shape, &CG);
1464   postSplitCleanup(F);
1465 
1466   // Update call graph and add the functions we created to the SCC.
1467   coro::updateCallGraph(F, Clones, CG, SCC);
1468 }
1469 
1470 static void updateCallGraphAfterCoroutineSplit(
1471     LazyCallGraph::Node &N, const coro::Shape &Shape,
1472     const SmallVectorImpl<Function *> &Clones, LazyCallGraph::SCC &C,
1473     LazyCallGraph &CG, CGSCCAnalysisManager &AM, CGSCCUpdateResult &UR,
1474     FunctionAnalysisManager &FAM) {
1475   if (!Shape.CoroBegin)
1476     return;
1477 
1478   for (llvm::CoroEndInst *End : Shape.CoroEnds) {
1479     auto &Context = End->getContext();
1480     End->replaceAllUsesWith(ConstantInt::getFalse(Context));
1481     End->eraseFromParent();
1482   }
1483 
1484   postSplitCleanup(N.getFunction());
1485 
1486   // To insert the newly created coroutine funclets 'f.resume', 'f.destroy', and
1487   // 'f.cleanup' into the same SCC as the coroutine 'f' they were outlined from,
1488   // we make use of the CallGraphUpdater class, which can modify the internal
1489   // state of the LazyCallGraph.
1490   for (Function *Clone : Clones)
1491     CG.addNewFunctionIntoRefSCC(*Clone, C.getOuterRefSCC());
1492 
1493   // We've inserted instructions into coroutine 'f' that reference the three new
1494   // coroutine funclets. We must now update the call graph so that reference
1495   // edges between 'f' and its funclets are added to it. LazyCallGraph only
1496   // allows CGSCC passes to insert "trivial" reference edges. We've ensured
1497   // above, by inserting the funclets into the same SCC as the corutine, that
1498   // the edges are trivial.
1499   //
1500   // N.B.: If we didn't update the call graph here, a CGSCCToFunctionPassAdaptor
1501   // later in this CGSCC pass pipeline may be run, triggering a call graph
1502   // update of its own. Function passes run by the adaptor are not permitted to
1503   // add new edges of any kind to the graph, and the new edges inserted by this
1504   // pass would be misattributed to that unrelated function pass.
1505   updateCGAndAnalysisManagerForCGSCCPass(CG, C, N, AM, UR, FAM);
1506 }
1507 
1508 // When we see the coroutine the first time, we insert an indirect call to a
1509 // devirt trigger function and mark the coroutine that it is now ready for
1510 // split.
1511 static void prepareForSplit(Function &F, CallGraph &CG) {
1512   Module &M = *F.getParent();
1513   LLVMContext &Context = F.getContext();
1514 #ifndef NDEBUG
1515   Function *DevirtFn = M.getFunction(CORO_DEVIRT_TRIGGER_FN);
1516   assert(DevirtFn && "coro.devirt.trigger function not found");
1517 #endif
1518 
1519   F.addFnAttr(CORO_PRESPLIT_ATTR, PREPARED_FOR_SPLIT);
1520 
1521   // Insert an indirect call sequence that will be devirtualized by CoroElide
1522   // pass:
1523   //    %0 = call i8* @llvm.coro.subfn.addr(i8* null, i8 -1)
1524   //    %1 = bitcast i8* %0 to void(i8*)*
1525   //    call void %1(i8* null)
1526   coro::LowererBase Lowerer(M);
1527   Instruction *InsertPt = F.getEntryBlock().getTerminator();
1528   auto *Null = ConstantPointerNull::get(Type::getInt8PtrTy(Context));
1529   auto *DevirtFnAddr =
1530       Lowerer.makeSubFnCall(Null, CoroSubFnInst::RestartTrigger, InsertPt);
1531   FunctionType *FnTy = FunctionType::get(Type::getVoidTy(Context),
1532                                          {Type::getInt8PtrTy(Context)}, false);
1533   auto *IndirectCall = CallInst::Create(FnTy, DevirtFnAddr, Null, "", InsertPt);
1534 
1535   // Update CG graph with an indirect call we just added.
1536   CG[&F]->addCalledFunction(IndirectCall, CG.getCallsExternalNode());
1537 }
1538 
1539 // Make sure that there is a devirtualization trigger function that the
1540 // coro-split pass uses to force a restart of the CGSCC pipeline. If the devirt
1541 // trigger function is not found, we will create one and add it to the current
1542 // SCC.
1543 static void createDevirtTriggerFunc(CallGraph &CG, CallGraphSCC &SCC) {
1544   Module &M = CG.getModule();
1545   if (M.getFunction(CORO_DEVIRT_TRIGGER_FN))
1546     return;
1547 
1548   LLVMContext &C = M.getContext();
1549   auto *FnTy = FunctionType::get(Type::getVoidTy(C), Type::getInt8PtrTy(C),
1550                                  /*isVarArg=*/false);
1551   Function *DevirtFn =
1552       Function::Create(FnTy, GlobalValue::LinkageTypes::PrivateLinkage,
1553                        CORO_DEVIRT_TRIGGER_FN, &M);
1554   DevirtFn->addFnAttr(Attribute::AlwaysInline);
1555   auto *Entry = BasicBlock::Create(C, "entry", DevirtFn);
1556   ReturnInst::Create(C, Entry);
1557 
1558   auto *Node = CG.getOrInsertFunction(DevirtFn);
1559 
1560   SmallVector<CallGraphNode *, 8> Nodes(SCC.begin(), SCC.end());
1561   Nodes.push_back(Node);
1562   SCC.initialize(Nodes);
1563 }
1564 
1565 /// Replace a call to llvm.coro.prepare.retcon.
1566 static void replacePrepare(CallInst *Prepare, CallGraph &CG) {
1567   auto CastFn = Prepare->getArgOperand(0); // as an i8*
1568   auto Fn = CastFn->stripPointerCasts(); // as its original type
1569 
1570   // Find call graph nodes for the preparation.
1571   CallGraphNode *PrepareUserNode = nullptr, *FnNode = nullptr;
1572   if (auto ConcreteFn = dyn_cast<Function>(Fn)) {
1573     PrepareUserNode = CG[Prepare->getFunction()];
1574     FnNode = CG[ConcreteFn];
1575   }
1576 
1577   // Attempt to peephole this pattern:
1578   //    %0 = bitcast [[TYPE]] @some_function to i8*
1579   //    %1 = call @llvm.coro.prepare.retcon(i8* %0)
1580   //    %2 = bitcast %1 to [[TYPE]]
1581   // ==>
1582   //    %2 = @some_function
1583   for (auto UI = Prepare->use_begin(), UE = Prepare->use_end();
1584          UI != UE; ) {
1585     // Look for bitcasts back to the original function type.
1586     auto *Cast = dyn_cast<BitCastInst>((UI++)->getUser());
1587     if (!Cast || Cast->getType() != Fn->getType()) continue;
1588 
1589     // Check whether the replacement will introduce new direct calls.
1590     // If so, we'll need to update the call graph.
1591     if (PrepareUserNode) {
1592       for (auto &Use : Cast->uses()) {
1593         if (auto *CB = dyn_cast<CallBase>(Use.getUser())) {
1594           if (!CB->isCallee(&Use))
1595             continue;
1596           PrepareUserNode->removeCallEdgeFor(*CB);
1597           PrepareUserNode->addCalledFunction(CB, FnNode);
1598         }
1599       }
1600     }
1601 
1602     // Replace and remove the cast.
1603     Cast->replaceAllUsesWith(Fn);
1604     Cast->eraseFromParent();
1605   }
1606 
1607   // Replace any remaining uses with the function as an i8*.
1608   // This can never directly be a callee, so we don't need to update CG.
1609   Prepare->replaceAllUsesWith(CastFn);
1610   Prepare->eraseFromParent();
1611 
1612   // Kill dead bitcasts.
1613   while (auto *Cast = dyn_cast<BitCastInst>(CastFn)) {
1614     if (!Cast->use_empty()) break;
1615     CastFn = Cast->getOperand(0);
1616     Cast->eraseFromParent();
1617   }
1618 }
1619 
1620 /// Remove calls to llvm.coro.prepare.retcon, a barrier meant to prevent
1621 /// IPO from operating on calls to a retcon coroutine before it's been
1622 /// split.  This is only safe to do after we've split all retcon
1623 /// coroutines in the module.  We can do that this in this pass because
1624 /// this pass does promise to split all retcon coroutines (as opposed to
1625 /// switch coroutines, which are lowered in multiple stages).
1626 static bool replaceAllPrepares(Function *PrepareFn, CallGraph &CG) {
1627   bool Changed = false;
1628   for (auto PI = PrepareFn->use_begin(), PE = PrepareFn->use_end();
1629          PI != PE; ) {
1630     // Intrinsics can only be used in calls.
1631     auto *Prepare = cast<CallInst>((PI++)->getUser());
1632     replacePrepare(Prepare, CG);
1633     Changed = true;
1634   }
1635 
1636   return Changed;
1637 }
1638 
1639 static bool declaresCoroSplitIntrinsics(const Module &M) {
1640   return coro::declaresIntrinsics(
1641       M, {"llvm.coro.begin", "llvm.coro.prepare.retcon"});
1642 }
1643 
1644 PreservedAnalyses CoroSplitPass::run(LazyCallGraph::SCC &C,
1645                                      CGSCCAnalysisManager &AM,
1646                                      LazyCallGraph &CG, CGSCCUpdateResult &UR) {
1647   // NB: One invariant of a valid LazyCallGraph::SCC is that it must contain a
1648   //     non-zero number of nodes, so we assume that here and grab the first
1649   //     node's function's module.
1650   Module &M = *C.begin()->getFunction().getParent();
1651   auto &FAM =
1652       AM.getResult<FunctionAnalysisManagerCGSCCProxy>(C, CG).getManager();
1653 
1654   if (!declaresCoroSplitIntrinsics(M))
1655     return PreservedAnalyses::all();
1656 
1657   // Check for uses of llvm.coro.prepare.retcon.
1658   const auto *PrepareFn = M.getFunction("llvm.coro.prepare.retcon");
1659   if (PrepareFn && PrepareFn->use_empty())
1660     PrepareFn = nullptr;
1661 
1662   // Find coroutines for processing.
1663   SmallVector<LazyCallGraph::Node *, 4> Coroutines;
1664   for (LazyCallGraph::Node &N : C)
1665     if (N.getFunction().hasFnAttribute(CORO_PRESPLIT_ATTR))
1666       Coroutines.push_back(&N);
1667 
1668   if (Coroutines.empty() && !PrepareFn)
1669     return PreservedAnalyses::all();
1670 
1671   if (Coroutines.empty())
1672     llvm_unreachable("new pass manager cannot yet handle "
1673                      "'llvm.coro.prepare.retcon'");
1674 
1675   // Split all the coroutines.
1676   for (LazyCallGraph::Node *N : Coroutines) {
1677     Function &F = N->getFunction();
1678     Attribute Attr = F.getFnAttribute(CORO_PRESPLIT_ATTR);
1679     StringRef Value = Attr.getValueAsString();
1680     LLVM_DEBUG(dbgs() << "CoroSplit: Processing coroutine '" << F.getName()
1681                       << "' state: " << Value << "\n");
1682     if (Value == UNPREPARED_FOR_SPLIT) {
1683       // Enqueue a second iteration of the CGSCC pipeline.
1684       // N.B.:
1685       // The CoroSplitLegacy pass "triggers" a restart of the CGSCC pass
1686       // pipeline by inserting an indirect function call that the
1687       // CoroElideLegacy pass then replaces with a direct function call. The
1688       // legacy CGSCC pipeline's implicit behavior was as if wrapped in the new
1689       // pass manager abstraction DevirtSCCRepeatedPass.
1690       //
1691       // This pass does not need to "trigger" another run of the pipeline.
1692       // Instead, it simply enqueues the same RefSCC onto the pipeline's
1693       // worklist.
1694       UR.CWorklist.insert(&C);
1695       F.addFnAttr(CORO_PRESPLIT_ATTR, PREPARED_FOR_SPLIT);
1696       continue;
1697     }
1698     F.removeFnAttr(CORO_PRESPLIT_ATTR);
1699 
1700     SmallVector<Function *, 4> Clones;
1701     const coro::Shape Shape = splitCoroutine(F, Clones);
1702     updateCallGraphAfterCoroutineSplit(*N, Shape, Clones, C, CG, AM, UR, FAM);
1703   }
1704 
1705   if (PrepareFn)
1706     llvm_unreachable("new pass manager cannot yet handle "
1707                      "'llvm.coro.prepare.retcon'");
1708 
1709   return PreservedAnalyses::none();
1710 }
1711 
1712 namespace {
1713 
1714 // We present a coroutine to LLVM as an ordinary function with suspension
1715 // points marked up with intrinsics. We let the optimizer party on the coroutine
1716 // as a single function for as long as possible. Shortly before the coroutine is
1717 // eligible to be inlined into its callers, we split up the coroutine into parts
1718 // corresponding to initial, resume and destroy invocations of the coroutine,
1719 // add them to the current SCC and restart the IPO pipeline to optimize the
1720 // coroutine subfunctions we extracted before proceeding to the caller of the
1721 // coroutine.
1722 struct CoroSplitLegacy : public CallGraphSCCPass {
1723   static char ID; // Pass identification, replacement for typeid
1724 
1725   CoroSplitLegacy() : CallGraphSCCPass(ID) {
1726     initializeCoroSplitLegacyPass(*PassRegistry::getPassRegistry());
1727   }
1728 
1729   bool Run = false;
1730 
1731   // A coroutine is identified by the presence of coro.begin intrinsic, if
1732   // we don't have any, this pass has nothing to do.
1733   bool doInitialization(CallGraph &CG) override {
1734     Run = declaresCoroSplitIntrinsics(CG.getModule());
1735     return CallGraphSCCPass::doInitialization(CG);
1736   }
1737 
1738   bool runOnSCC(CallGraphSCC &SCC) override {
1739     if (!Run)
1740       return false;
1741 
1742     // Check for uses of llvm.coro.prepare.retcon.
1743     auto PrepareFn =
1744       SCC.getCallGraph().getModule().getFunction("llvm.coro.prepare.retcon");
1745     if (PrepareFn && PrepareFn->use_empty())
1746       PrepareFn = nullptr;
1747 
1748     // Find coroutines for processing.
1749     SmallVector<Function *, 4> Coroutines;
1750     for (CallGraphNode *CGN : SCC)
1751       if (auto *F = CGN->getFunction())
1752         if (F->hasFnAttribute(CORO_PRESPLIT_ATTR))
1753           Coroutines.push_back(F);
1754 
1755     if (Coroutines.empty() && !PrepareFn)
1756       return false;
1757 
1758     CallGraph &CG = getAnalysis<CallGraphWrapperPass>().getCallGraph();
1759 
1760     if (Coroutines.empty())
1761       return replaceAllPrepares(PrepareFn, CG);
1762 
1763     createDevirtTriggerFunc(CG, SCC);
1764 
1765     // Split all the coroutines.
1766     for (Function *F : Coroutines) {
1767       Attribute Attr = F->getFnAttribute(CORO_PRESPLIT_ATTR);
1768       StringRef Value = Attr.getValueAsString();
1769       LLVM_DEBUG(dbgs() << "CoroSplit: Processing coroutine '" << F->getName()
1770                         << "' state: " << Value << "\n");
1771       if (Value == UNPREPARED_FOR_SPLIT) {
1772         prepareForSplit(*F, CG);
1773         continue;
1774       }
1775       F->removeFnAttr(CORO_PRESPLIT_ATTR);
1776 
1777       SmallVector<Function *, 4> Clones;
1778       const coro::Shape Shape = splitCoroutine(*F, Clones);
1779       updateCallGraphAfterCoroutineSplit(*F, Shape, Clones, CG, SCC);
1780     }
1781 
1782     if (PrepareFn)
1783       replaceAllPrepares(PrepareFn, CG);
1784 
1785     return true;
1786   }
1787 
1788   void getAnalysisUsage(AnalysisUsage &AU) const override {
1789     CallGraphSCCPass::getAnalysisUsage(AU);
1790   }
1791 
1792   StringRef getPassName() const override { return "Coroutine Splitting"; }
1793 };
1794 
1795 } // end anonymous namespace
1796 
1797 char CoroSplitLegacy::ID = 0;
1798 
1799 INITIALIZE_PASS_BEGIN(
1800     CoroSplitLegacy, "coro-split",
1801     "Split coroutine into a set of functions driving its state machine", false,
1802     false)
1803 INITIALIZE_PASS_DEPENDENCY(CallGraphWrapperPass)
1804 INITIALIZE_PASS_END(
1805     CoroSplitLegacy, "coro-split",
1806     "Split coroutine into a set of functions driving its state machine", false,
1807     false)
1808 
1809 Pass *llvm::createCoroSplitLegacyPass() { return new CoroSplitLegacy(); }
1810