1 //===- CoroSplit.cpp - Converts a coroutine into a state machine ----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 // This pass builds the coroutine frame and outlines resume and destroy parts
9 // of the coroutine into separate functions.
10 //
11 // We present a coroutine to an LLVM as an ordinary function with suspension
12 // points marked up with intrinsics. We let the optimizer party on the coroutine
13 // as a single function for as long as possible. Shortly before the coroutine is
14 // eligible to be inlined into its callers, we split up the coroutine into parts
15 // corresponding to an initial, resume and destroy invocations of the coroutine,
16 // add them to the current SCC and restart the IPO pipeline to optimize the
17 // coroutine subfunctions we extracted before proceeding to the caller of the
18 // coroutine.
19 //===----------------------------------------------------------------------===//
20 
21 #include "llvm/Transforms/Coroutines/CoroSplit.h"
22 #include "CoroInstr.h"
23 #include "CoroInternal.h"
24 #include "llvm/ADT/DenseMap.h"
25 #include "llvm/ADT/SmallPtrSet.h"
26 #include "llvm/ADT/SmallVector.h"
27 #include "llvm/ADT/StringRef.h"
28 #include "llvm/ADT/Twine.h"
29 #include "llvm/Analysis/CFG.h"
30 #include "llvm/Analysis/CallGraph.h"
31 #include "llvm/Analysis/CallGraphSCCPass.h"
32 #include "llvm/Analysis/ConstantFolding.h"
33 #include "llvm/Analysis/LazyCallGraph.h"
34 #include "llvm/IR/Argument.h"
35 #include "llvm/IR/Attributes.h"
36 #include "llvm/IR/BasicBlock.h"
37 #include "llvm/IR/CFG.h"
38 #include "llvm/IR/CallingConv.h"
39 #include "llvm/IR/Constants.h"
40 #include "llvm/IR/DataLayout.h"
41 #include "llvm/IR/DerivedTypes.h"
42 #include "llvm/IR/Dominators.h"
43 #include "llvm/IR/Function.h"
44 #include "llvm/IR/GlobalValue.h"
45 #include "llvm/IR/GlobalVariable.h"
46 #include "llvm/IR/IRBuilder.h"
47 #include "llvm/IR/InstIterator.h"
48 #include "llvm/IR/InstrTypes.h"
49 #include "llvm/IR/Instruction.h"
50 #include "llvm/IR/Instructions.h"
51 #include "llvm/IR/IntrinsicInst.h"
52 #include "llvm/IR/LLVMContext.h"
53 #include "llvm/IR/LegacyPassManager.h"
54 #include "llvm/IR/Module.h"
55 #include "llvm/IR/Type.h"
56 #include "llvm/IR/Value.h"
57 #include "llvm/IR/Verifier.h"
58 #include "llvm/InitializePasses.h"
59 #include "llvm/Pass.h"
60 #include "llvm/Support/Casting.h"
61 #include "llvm/Support/Debug.h"
62 #include "llvm/Support/PrettyStackTrace.h"
63 #include "llvm/Support/raw_ostream.h"
64 #include "llvm/Transforms/Scalar.h"
65 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
66 #include "llvm/Transforms/Utils/CallGraphUpdater.h"
67 #include "llvm/Transforms/Utils/Cloning.h"
68 #include "llvm/Transforms/Utils/Local.h"
69 #include "llvm/Transforms/Utils/ValueMapper.h"
70 #include <cassert>
71 #include <cstddef>
72 #include <cstdint>
73 #include <initializer_list>
74 #include <iterator>
75 
76 using namespace llvm;
77 
78 #define DEBUG_TYPE "coro-split"
79 
80 namespace {
81 
82 /// A little helper class for building
83 class CoroCloner {
84 public:
85   enum class Kind {
86     /// The shared resume function for a switch lowering.
87     SwitchResume,
88 
89     /// The shared unwind function for a switch lowering.
90     SwitchUnwind,
91 
92     /// The shared cleanup function for a switch lowering.
93     SwitchCleanup,
94 
95     /// An individual continuation function.
96     Continuation,
97 
98     /// An async resume function.
99     Async,
100   };
101 
102 private:
103   Function &OrigF;
104   Function *NewF;
105   const Twine &Suffix;
106   coro::Shape &Shape;
107   Kind FKind;
108   ValueToValueMapTy VMap;
109   IRBuilder<> Builder;
110   Value *NewFramePtr = nullptr;
111 
112   /// The active suspend instruction; meaningful only for continuation and async
113   /// ABIs.
114   AnyCoroSuspendInst *ActiveSuspend = nullptr;
115 
116 public:
117   /// Create a cloner for a switch lowering.
118   CoroCloner(Function &OrigF, const Twine &Suffix, coro::Shape &Shape,
119              Kind FKind)
120     : OrigF(OrigF), NewF(nullptr), Suffix(Suffix), Shape(Shape),
121       FKind(FKind), Builder(OrigF.getContext()) {
122     assert(Shape.ABI == coro::ABI::Switch);
123   }
124 
125   /// Create a cloner for a continuation lowering.
126   CoroCloner(Function &OrigF, const Twine &Suffix, coro::Shape &Shape,
127              Function *NewF, AnyCoroSuspendInst *ActiveSuspend)
128       : OrigF(OrigF), NewF(NewF), Suffix(Suffix), Shape(Shape),
129         FKind(Shape.ABI == coro::ABI::Async ? Kind::Async : Kind::Continuation),
130         Builder(OrigF.getContext()), ActiveSuspend(ActiveSuspend) {
131     assert(Shape.ABI == coro::ABI::Retcon ||
132            Shape.ABI == coro::ABI::RetconOnce || Shape.ABI == coro::ABI::Async);
133     assert(NewF && "need existing function for continuation");
134     assert(ActiveSuspend && "need active suspend point for continuation");
135   }
136 
137   Function *getFunction() const {
138     assert(NewF != nullptr && "declaration not yet set");
139     return NewF;
140   }
141 
142   void create();
143 
144 private:
145   bool isSwitchDestroyFunction() {
146     switch (FKind) {
147     case Kind::Async:
148     case Kind::Continuation:
149     case Kind::SwitchResume:
150       return false;
151     case Kind::SwitchUnwind:
152     case Kind::SwitchCleanup:
153       return true;
154     }
155     llvm_unreachable("Unknown CoroCloner::Kind enum");
156   }
157 
158   void replaceEntryBlock();
159   Value *deriveNewFramePointer();
160   void replaceRetconOrAsyncSuspendUses();
161   void replaceCoroSuspends();
162   void replaceCoroEnds();
163   void replaceSwiftErrorOps();
164   void salvageDebugInfo();
165   void handleFinalSuspend();
166 };
167 
168 } // end anonymous namespace
169 
170 static void maybeFreeRetconStorage(IRBuilder<> &Builder,
171                                    const coro::Shape &Shape, Value *FramePtr,
172                                    CallGraph *CG) {
173   assert(Shape.ABI == coro::ABI::Retcon ||
174          Shape.ABI == coro::ABI::RetconOnce);
175   if (Shape.RetconLowering.IsFrameInlineInStorage)
176     return;
177 
178   Shape.emitDealloc(Builder, FramePtr, CG);
179 }
180 
181 /// Replace an llvm.coro.end.async.
182 /// Will inline the must tail call function call if there is one.
183 /// \returns true if cleanup of the coro.end block is needed, false otherwise.
184 static bool replaceCoroEndAsync(AnyCoroEndInst *End) {
185   IRBuilder<> Builder(End);
186 
187   auto *EndAsync = dyn_cast<CoroAsyncEndInst>(End);
188   if (!EndAsync) {
189     Builder.CreateRetVoid();
190     return true /*needs cleanup of coro.end block*/;
191   }
192 
193   auto *MustTailCallFunc = EndAsync->getMustTailCallFunction();
194   if (!MustTailCallFunc) {
195     Builder.CreateRetVoid();
196     return true /*needs cleanup of coro.end block*/;
197   }
198 
199   // Move the must tail call from the predecessor block into the end block.
200   auto *CoroEndBlock = End->getParent();
201   auto *MustTailCallFuncBlock = CoroEndBlock->getSinglePredecessor();
202   assert(MustTailCallFuncBlock && "Must have a single predecessor block");
203   auto It = MustTailCallFuncBlock->getTerminator()->getIterator();
204   auto *MustTailCall = cast<CallInst>(&*std::prev(It));
205   CoroEndBlock->getInstList().splice(
206       End->getIterator(), MustTailCallFuncBlock->getInstList(), MustTailCall);
207 
208   // Insert the return instruction.
209   Builder.SetInsertPoint(End);
210   Builder.CreateRetVoid();
211   InlineFunctionInfo FnInfo;
212 
213   // Remove the rest of the block, by splitting it into an unreachable block.
214   auto *BB = End->getParent();
215   BB->splitBasicBlock(End);
216   BB->getTerminator()->eraseFromParent();
217 
218   auto InlineRes = InlineFunction(*MustTailCall, FnInfo);
219   assert(InlineRes.isSuccess() && "Expected inlining to succeed");
220   (void)InlineRes;
221 
222   // We have cleaned up the coro.end block above.
223   return false;
224 }
225 
226 /// Replace a non-unwind call to llvm.coro.end.
227 static void replaceFallthroughCoroEnd(AnyCoroEndInst *End,
228                                       const coro::Shape &Shape, Value *FramePtr,
229                                       bool InResume, CallGraph *CG) {
230   // Start inserting right before the coro.end.
231   IRBuilder<> Builder(End);
232 
233   // Create the return instruction.
234   switch (Shape.ABI) {
235   // The cloned functions in switch-lowering always return void.
236   case coro::ABI::Switch:
237     // coro.end doesn't immediately end the coroutine in the main function
238     // in this lowering, because we need to deallocate the coroutine.
239     if (!InResume)
240       return;
241     Builder.CreateRetVoid();
242     break;
243 
244   // In async lowering this returns.
245   case coro::ABI::Async: {
246     bool CoroEndBlockNeedsCleanup = replaceCoroEndAsync(End);
247     if (!CoroEndBlockNeedsCleanup)
248       return;
249     break;
250   }
251 
252   // In unique continuation lowering, the continuations always return void.
253   // But we may have implicitly allocated storage.
254   case coro::ABI::RetconOnce:
255     maybeFreeRetconStorage(Builder, Shape, FramePtr, CG);
256     Builder.CreateRetVoid();
257     break;
258 
259   // In non-unique continuation lowering, we signal completion by returning
260   // a null continuation.
261   case coro::ABI::Retcon: {
262     maybeFreeRetconStorage(Builder, Shape, FramePtr, CG);
263     auto RetTy = Shape.getResumeFunctionType()->getReturnType();
264     auto RetStructTy = dyn_cast<StructType>(RetTy);
265     PointerType *ContinuationTy =
266       cast<PointerType>(RetStructTy ? RetStructTy->getElementType(0) : RetTy);
267 
268     Value *ReturnValue = ConstantPointerNull::get(ContinuationTy);
269     if (RetStructTy) {
270       ReturnValue = Builder.CreateInsertValue(UndefValue::get(RetStructTy),
271                                               ReturnValue, 0);
272     }
273     Builder.CreateRet(ReturnValue);
274     break;
275   }
276   }
277 
278   // Remove the rest of the block, by splitting it into an unreachable block.
279   auto *BB = End->getParent();
280   BB->splitBasicBlock(End);
281   BB->getTerminator()->eraseFromParent();
282 }
283 
284 // Mark a coroutine as done, which implies that the coroutine is finished and
285 // never get resumed.
286 //
287 // In resume-switched ABI, the done state is represented by storing zero in
288 // ResumeFnAddr.
289 //
290 // NOTE: We couldn't omit the argument `FramePtr`. It is necessary because the
291 // pointer to the frame in splitted function is not stored in `Shape`.
292 static void markCoroutineAsDone(IRBuilder<> &Builder, const coro::Shape &Shape,
293                                 Value *FramePtr) {
294   assert(
295       Shape.ABI == coro::ABI::Switch &&
296       "markCoroutineAsDone is only supported for Switch-Resumed ABI for now.");
297   auto *GepIndex = Builder.CreateStructGEP(
298       Shape.FrameTy, FramePtr, coro::Shape::SwitchFieldIndex::Resume,
299       "ResumeFn.addr");
300   auto *NullPtr = ConstantPointerNull::get(cast<PointerType>(
301       Shape.FrameTy->getTypeAtIndex(coro::Shape::SwitchFieldIndex::Resume)));
302   Builder.CreateStore(NullPtr, GepIndex);
303 }
304 
305 /// Replace an unwind call to llvm.coro.end.
306 static void replaceUnwindCoroEnd(AnyCoroEndInst *End, const coro::Shape &Shape,
307                                  Value *FramePtr, bool InResume,
308                                  CallGraph *CG) {
309   IRBuilder<> Builder(End);
310 
311   switch (Shape.ABI) {
312   // In switch-lowering, this does nothing in the main function.
313   case coro::ABI::Switch: {
314     // In C++'s specification, the coroutine should be marked as done
315     // if promise.unhandled_exception() throws.  The frontend will
316     // call coro.end(true) along this path.
317     //
318     // FIXME: We should refactor this once there is other language
319     // which uses Switch-Resumed style other than C++.
320     markCoroutineAsDone(Builder, Shape, FramePtr);
321     if (!InResume)
322       return;
323     break;
324   }
325   // In async lowering this does nothing.
326   case coro::ABI::Async:
327     break;
328   // In continuation-lowering, this frees the continuation storage.
329   case coro::ABI::Retcon:
330   case coro::ABI::RetconOnce:
331     maybeFreeRetconStorage(Builder, Shape, FramePtr, CG);
332     break;
333   }
334 
335   // If coro.end has an associated bundle, add cleanupret instruction.
336   if (auto Bundle = End->getOperandBundle(LLVMContext::OB_funclet)) {
337     auto *FromPad = cast<CleanupPadInst>(Bundle->Inputs[0]);
338     auto *CleanupRet = Builder.CreateCleanupRet(FromPad, nullptr);
339     End->getParent()->splitBasicBlock(End);
340     CleanupRet->getParent()->getTerminator()->eraseFromParent();
341   }
342 }
343 
344 static void replaceCoroEnd(AnyCoroEndInst *End, const coro::Shape &Shape,
345                            Value *FramePtr, bool InResume, CallGraph *CG) {
346   if (End->isUnwind())
347     replaceUnwindCoroEnd(End, Shape, FramePtr, InResume, CG);
348   else
349     replaceFallthroughCoroEnd(End, Shape, FramePtr, InResume, CG);
350 
351   auto &Context = End->getContext();
352   End->replaceAllUsesWith(InResume ? ConstantInt::getTrue(Context)
353                                    : ConstantInt::getFalse(Context));
354   End->eraseFromParent();
355 }
356 
357 // Create an entry block for a resume function with a switch that will jump to
358 // suspend points.
359 static void createResumeEntryBlock(Function &F, coro::Shape &Shape) {
360   assert(Shape.ABI == coro::ABI::Switch);
361   LLVMContext &C = F.getContext();
362 
363   // resume.entry:
364   //  %index.addr = getelementptr inbounds %f.Frame, %f.Frame* %FramePtr, i32 0,
365   //  i32 2
366   //  % index = load i32, i32* %index.addr
367   //  switch i32 %index, label %unreachable [
368   //    i32 0, label %resume.0
369   //    i32 1, label %resume.1
370   //    ...
371   //  ]
372 
373   auto *NewEntry = BasicBlock::Create(C, "resume.entry", &F);
374   auto *UnreachBB = BasicBlock::Create(C, "unreachable", &F);
375 
376   IRBuilder<> Builder(NewEntry);
377   auto *FramePtr = Shape.FramePtr;
378   auto *FrameTy = Shape.FrameTy;
379   auto *GepIndex = Builder.CreateStructGEP(
380       FrameTy, FramePtr, Shape.getSwitchIndexField(), "index.addr");
381   auto *Index = Builder.CreateLoad(Shape.getIndexType(), GepIndex, "index");
382   auto *Switch =
383       Builder.CreateSwitch(Index, UnreachBB, Shape.CoroSuspends.size());
384   Shape.SwitchLowering.ResumeSwitch = Switch;
385 
386   size_t SuspendIndex = 0;
387   for (auto *AnyS : Shape.CoroSuspends) {
388     auto *S = cast<CoroSuspendInst>(AnyS);
389     ConstantInt *IndexVal = Shape.getIndex(SuspendIndex);
390 
391     // Replace CoroSave with a store to Index:
392     //    %index.addr = getelementptr %f.frame... (index field number)
393     //    store i32 0, i32* %index.addr1
394     auto *Save = S->getCoroSave();
395     Builder.SetInsertPoint(Save);
396     if (S->isFinal()) {
397       // The coroutine should be marked done if it reaches the final suspend
398       // point.
399       markCoroutineAsDone(Builder, Shape, FramePtr);
400     } else {
401       auto *GepIndex = Builder.CreateStructGEP(
402           FrameTy, FramePtr, Shape.getSwitchIndexField(), "index.addr");
403       Builder.CreateStore(IndexVal, GepIndex);
404     }
405     Save->replaceAllUsesWith(ConstantTokenNone::get(C));
406     Save->eraseFromParent();
407 
408     // Split block before and after coro.suspend and add a jump from an entry
409     // switch:
410     //
411     //  whateverBB:
412     //    whatever
413     //    %0 = call i8 @llvm.coro.suspend(token none, i1 false)
414     //    switch i8 %0, label %suspend[i8 0, label %resume
415     //                                 i8 1, label %cleanup]
416     // becomes:
417     //
418     //  whateverBB:
419     //     whatever
420     //     br label %resume.0.landing
421     //
422     //  resume.0: ; <--- jump from the switch in the resume.entry
423     //     %0 = tail call i8 @llvm.coro.suspend(token none, i1 false)
424     //     br label %resume.0.landing
425     //
426     //  resume.0.landing:
427     //     %1 = phi i8[-1, %whateverBB], [%0, %resume.0]
428     //     switch i8 % 1, label %suspend [i8 0, label %resume
429     //                                    i8 1, label %cleanup]
430 
431     auto *SuspendBB = S->getParent();
432     auto *ResumeBB =
433         SuspendBB->splitBasicBlock(S, "resume." + Twine(SuspendIndex));
434     auto *LandingBB = ResumeBB->splitBasicBlock(
435         S->getNextNode(), ResumeBB->getName() + Twine(".landing"));
436     Switch->addCase(IndexVal, ResumeBB);
437 
438     cast<BranchInst>(SuspendBB->getTerminator())->setSuccessor(0, LandingBB);
439     auto *PN = PHINode::Create(Builder.getInt8Ty(), 2, "", &LandingBB->front());
440     S->replaceAllUsesWith(PN);
441     PN->addIncoming(Builder.getInt8(-1), SuspendBB);
442     PN->addIncoming(S, ResumeBB);
443 
444     ++SuspendIndex;
445   }
446 
447   Builder.SetInsertPoint(UnreachBB);
448   Builder.CreateUnreachable();
449 
450   Shape.SwitchLowering.ResumeEntryBlock = NewEntry;
451 }
452 
453 
454 // Rewrite final suspend point handling. We do not use suspend index to
455 // represent the final suspend point. Instead we zero-out ResumeFnAddr in the
456 // coroutine frame, since it is undefined behavior to resume a coroutine
457 // suspended at the final suspend point. Thus, in the resume function, we can
458 // simply remove the last case (when coro::Shape is built, the final suspend
459 // point (if present) is always the last element of CoroSuspends array).
460 // In the destroy function, we add a code sequence to check if ResumeFnAddress
461 // is Null, and if so, jump to the appropriate label to handle cleanup from the
462 // final suspend point.
463 void CoroCloner::handleFinalSuspend() {
464   assert(Shape.ABI == coro::ABI::Switch &&
465          Shape.SwitchLowering.HasFinalSuspend);
466   auto *Switch = cast<SwitchInst>(VMap[Shape.SwitchLowering.ResumeSwitch]);
467   auto FinalCaseIt = std::prev(Switch->case_end());
468   BasicBlock *ResumeBB = FinalCaseIt->getCaseSuccessor();
469   Switch->removeCase(FinalCaseIt);
470   if (isSwitchDestroyFunction()) {
471     BasicBlock *OldSwitchBB = Switch->getParent();
472     auto *NewSwitchBB = OldSwitchBB->splitBasicBlock(Switch, "Switch");
473     Builder.SetInsertPoint(OldSwitchBB->getTerminator());
474     auto *GepIndex = Builder.CreateStructGEP(Shape.FrameTy, NewFramePtr,
475                                        coro::Shape::SwitchFieldIndex::Resume,
476                                              "ResumeFn.addr");
477     auto *Load = Builder.CreateLoad(Shape.getSwitchResumePointerType(),
478                                     GepIndex);
479     auto *Cond = Builder.CreateIsNull(Load);
480     Builder.CreateCondBr(Cond, ResumeBB, NewSwitchBB);
481     OldSwitchBB->getTerminator()->eraseFromParent();
482   }
483 }
484 
485 static FunctionType *
486 getFunctionTypeFromAsyncSuspend(AnyCoroSuspendInst *Suspend) {
487   auto *AsyncSuspend = cast<CoroSuspendAsyncInst>(Suspend);
488   auto *StructTy = cast<StructType>(AsyncSuspend->getType());
489   auto &Context = Suspend->getParent()->getParent()->getContext();
490   auto *VoidTy = Type::getVoidTy(Context);
491   return FunctionType::get(VoidTy, StructTy->elements(), false);
492 }
493 
494 static Function *createCloneDeclaration(Function &OrigF, coro::Shape &Shape,
495                                         const Twine &Suffix,
496                                         Module::iterator InsertBefore,
497                                         AnyCoroSuspendInst *ActiveSuspend) {
498   Module *M = OrigF.getParent();
499   auto *FnTy = (Shape.ABI != coro::ABI::Async)
500                    ? Shape.getResumeFunctionType()
501                    : getFunctionTypeFromAsyncSuspend(ActiveSuspend);
502 
503   Function *NewF =
504       Function::Create(FnTy, GlobalValue::LinkageTypes::InternalLinkage,
505                        OrigF.getName() + Suffix);
506   if (Shape.ABI != coro::ABI::Async)
507     NewF->addParamAttr(0, Attribute::NonNull);
508 
509   // For the async lowering ABI we can't guarantee that the context argument is
510   // not access via a different pointer not based on the argument.
511   if (Shape.ABI != coro::ABI::Async)
512     NewF->addParamAttr(0, Attribute::NoAlias);
513 
514   M->getFunctionList().insert(InsertBefore, NewF);
515 
516   return NewF;
517 }
518 
519 /// Replace uses of the active llvm.coro.suspend.retcon/async call with the
520 /// arguments to the continuation function.
521 ///
522 /// This assumes that the builder has a meaningful insertion point.
523 void CoroCloner::replaceRetconOrAsyncSuspendUses() {
524   assert(Shape.ABI == coro::ABI::Retcon || Shape.ABI == coro::ABI::RetconOnce ||
525          Shape.ABI == coro::ABI::Async);
526 
527   auto NewS = VMap[ActiveSuspend];
528   if (NewS->use_empty()) return;
529 
530   // Copy out all the continuation arguments after the buffer pointer into
531   // an easily-indexed data structure for convenience.
532   SmallVector<Value*, 8> Args;
533   // The async ABI includes all arguments -- including the first argument.
534   bool IsAsyncABI = Shape.ABI == coro::ABI::Async;
535   for (auto I = IsAsyncABI ? NewF->arg_begin() : std::next(NewF->arg_begin()),
536             E = NewF->arg_end();
537        I != E; ++I)
538     Args.push_back(&*I);
539 
540   // If the suspend returns a single scalar value, we can just do a simple
541   // replacement.
542   if (!isa<StructType>(NewS->getType())) {
543     assert(Args.size() == 1);
544     NewS->replaceAllUsesWith(Args.front());
545     return;
546   }
547 
548   // Try to peephole extracts of an aggregate return.
549   for (Use &U : llvm::make_early_inc_range(NewS->uses())) {
550     auto *EVI = dyn_cast<ExtractValueInst>(U.getUser());
551     if (!EVI || EVI->getNumIndices() != 1)
552       continue;
553 
554     EVI->replaceAllUsesWith(Args[EVI->getIndices().front()]);
555     EVI->eraseFromParent();
556   }
557 
558   // If we have no remaining uses, we're done.
559   if (NewS->use_empty()) return;
560 
561   // Otherwise, we need to create an aggregate.
562   Value *Agg = UndefValue::get(NewS->getType());
563   for (size_t I = 0, E = Args.size(); I != E; ++I)
564     Agg = Builder.CreateInsertValue(Agg, Args[I], I);
565 
566   NewS->replaceAllUsesWith(Agg);
567 }
568 
569 void CoroCloner::replaceCoroSuspends() {
570   Value *SuspendResult;
571 
572   switch (Shape.ABI) {
573   // In switch lowering, replace coro.suspend with the appropriate value
574   // for the type of function we're extracting.
575   // Replacing coro.suspend with (0) will result in control flow proceeding to
576   // a resume label associated with a suspend point, replacing it with (1) will
577   // result in control flow proceeding to a cleanup label associated with this
578   // suspend point.
579   case coro::ABI::Switch:
580     SuspendResult = Builder.getInt8(isSwitchDestroyFunction() ? 1 : 0);
581     break;
582 
583   // In async lowering there are no uses of the result.
584   case coro::ABI::Async:
585     return;
586 
587   // In returned-continuation lowering, the arguments from earlier
588   // continuations are theoretically arbitrary, and they should have been
589   // spilled.
590   case coro::ABI::RetconOnce:
591   case coro::ABI::Retcon:
592     return;
593   }
594 
595   for (AnyCoroSuspendInst *CS : Shape.CoroSuspends) {
596     // The active suspend was handled earlier.
597     if (CS == ActiveSuspend) continue;
598 
599     auto *MappedCS = cast<AnyCoroSuspendInst>(VMap[CS]);
600     MappedCS->replaceAllUsesWith(SuspendResult);
601     MappedCS->eraseFromParent();
602   }
603 }
604 
605 void CoroCloner::replaceCoroEnds() {
606   for (AnyCoroEndInst *CE : Shape.CoroEnds) {
607     // We use a null call graph because there's no call graph node for
608     // the cloned function yet.  We'll just be rebuilding that later.
609     auto *NewCE = cast<AnyCoroEndInst>(VMap[CE]);
610     replaceCoroEnd(NewCE, Shape, NewFramePtr, /*in resume*/ true, nullptr);
611   }
612 }
613 
614 static void replaceSwiftErrorOps(Function &F, coro::Shape &Shape,
615                                  ValueToValueMapTy *VMap) {
616   if (Shape.ABI == coro::ABI::Async && Shape.CoroSuspends.empty())
617     return;
618   Value *CachedSlot = nullptr;
619   auto getSwiftErrorSlot = [&](Type *ValueTy) -> Value * {
620     if (CachedSlot) {
621       assert(CachedSlot->getType()->getPointerElementType() == ValueTy &&
622              "multiple swifterror slots in function with different types");
623       return CachedSlot;
624     }
625 
626     // Check if the function has a swifterror argument.
627     for (auto &Arg : F.args()) {
628       if (Arg.isSwiftError()) {
629         CachedSlot = &Arg;
630         assert(Arg.getType()->getPointerElementType() == ValueTy &&
631                "swifterror argument does not have expected type");
632         return &Arg;
633       }
634     }
635 
636     // Create a swifterror alloca.
637     IRBuilder<> Builder(F.getEntryBlock().getFirstNonPHIOrDbg());
638     auto Alloca = Builder.CreateAlloca(ValueTy);
639     Alloca->setSwiftError(true);
640 
641     CachedSlot = Alloca;
642     return Alloca;
643   };
644 
645   for (CallInst *Op : Shape.SwiftErrorOps) {
646     auto MappedOp = VMap ? cast<CallInst>((*VMap)[Op]) : Op;
647     IRBuilder<> Builder(MappedOp);
648 
649     // If there are no arguments, this is a 'get' operation.
650     Value *MappedResult;
651     if (Op->arg_empty()) {
652       auto ValueTy = Op->getType();
653       auto Slot = getSwiftErrorSlot(ValueTy);
654       MappedResult = Builder.CreateLoad(ValueTy, Slot);
655     } else {
656       assert(Op->arg_size() == 1);
657       auto Value = MappedOp->getArgOperand(0);
658       auto ValueTy = Value->getType();
659       auto Slot = getSwiftErrorSlot(ValueTy);
660       Builder.CreateStore(Value, Slot);
661       MappedResult = Slot;
662     }
663 
664     MappedOp->replaceAllUsesWith(MappedResult);
665     MappedOp->eraseFromParent();
666   }
667 
668   // If we're updating the original function, we've invalidated SwiftErrorOps.
669   if (VMap == nullptr) {
670     Shape.SwiftErrorOps.clear();
671   }
672 }
673 
674 void CoroCloner::replaceSwiftErrorOps() {
675   ::replaceSwiftErrorOps(*NewF, Shape, &VMap);
676 }
677 
678 void CoroCloner::salvageDebugInfo() {
679   SmallVector<DbgVariableIntrinsic *, 8> Worklist;
680   SmallDenseMap<llvm::Value *, llvm::AllocaInst *, 4> DbgPtrAllocaCache;
681   for (auto &BB : *NewF)
682     for (auto &I : BB)
683       if (auto *DVI = dyn_cast<DbgVariableIntrinsic>(&I))
684         Worklist.push_back(DVI);
685   for (DbgVariableIntrinsic *DVI : Worklist)
686     coro::salvageDebugInfo(DbgPtrAllocaCache, DVI, Shape.OptimizeFrame);
687 
688   // Remove all salvaged dbg.declare intrinsics that became
689   // either unreachable or stale due to the CoroSplit transformation.
690   DominatorTree DomTree(*NewF);
691   auto IsUnreachableBlock = [&](BasicBlock *BB) {
692     return !isPotentiallyReachable(&NewF->getEntryBlock(), BB, nullptr,
693                                    &DomTree);
694   };
695   for (DbgVariableIntrinsic *DVI : Worklist) {
696     if (IsUnreachableBlock(DVI->getParent()))
697       DVI->eraseFromParent();
698     else if (isa_and_nonnull<AllocaInst>(DVI->getVariableLocationOp(0))) {
699       // Count all non-debuginfo uses in reachable blocks.
700       unsigned Uses = 0;
701       for (auto *User : DVI->getVariableLocationOp(0)->users())
702         if (auto *I = dyn_cast<Instruction>(User))
703           if (!isa<AllocaInst>(I) && !IsUnreachableBlock(I->getParent()))
704             ++Uses;
705       if (!Uses)
706         DVI->eraseFromParent();
707     }
708   }
709 }
710 
711 void CoroCloner::replaceEntryBlock() {
712   // In the original function, the AllocaSpillBlock is a block immediately
713   // following the allocation of the frame object which defines GEPs for
714   // all the allocas that have been moved into the frame, and it ends by
715   // branching to the original beginning of the coroutine.  Make this
716   // the entry block of the cloned function.
717   auto *Entry = cast<BasicBlock>(VMap[Shape.AllocaSpillBlock]);
718   auto *OldEntry = &NewF->getEntryBlock();
719   Entry->setName("entry" + Suffix);
720   Entry->moveBefore(OldEntry);
721   Entry->getTerminator()->eraseFromParent();
722 
723   // Clear all predecessors of the new entry block.  There should be
724   // exactly one predecessor, which we created when splitting out
725   // AllocaSpillBlock to begin with.
726   assert(Entry->hasOneUse());
727   auto BranchToEntry = cast<BranchInst>(Entry->user_back());
728   assert(BranchToEntry->isUnconditional());
729   Builder.SetInsertPoint(BranchToEntry);
730   Builder.CreateUnreachable();
731   BranchToEntry->eraseFromParent();
732 
733   // Branch from the entry to the appropriate place.
734   Builder.SetInsertPoint(Entry);
735   switch (Shape.ABI) {
736   case coro::ABI::Switch: {
737     // In switch-lowering, we built a resume-entry block in the original
738     // function.  Make the entry block branch to this.
739     auto *SwitchBB =
740       cast<BasicBlock>(VMap[Shape.SwitchLowering.ResumeEntryBlock]);
741     Builder.CreateBr(SwitchBB);
742     break;
743   }
744   case coro::ABI::Async:
745   case coro::ABI::Retcon:
746   case coro::ABI::RetconOnce: {
747     // In continuation ABIs, we want to branch to immediately after the
748     // active suspend point.  Earlier phases will have put the suspend in its
749     // own basic block, so just thread our jump directly to its successor.
750     assert((Shape.ABI == coro::ABI::Async &&
751             isa<CoroSuspendAsyncInst>(ActiveSuspend)) ||
752            ((Shape.ABI == coro::ABI::Retcon ||
753              Shape.ABI == coro::ABI::RetconOnce) &&
754             isa<CoroSuspendRetconInst>(ActiveSuspend)));
755     auto *MappedCS = cast<AnyCoroSuspendInst>(VMap[ActiveSuspend]);
756     auto Branch = cast<BranchInst>(MappedCS->getNextNode());
757     assert(Branch->isUnconditional());
758     Builder.CreateBr(Branch->getSuccessor(0));
759     break;
760   }
761   }
762 
763   // Any static alloca that's still being used but not reachable from the new
764   // entry needs to be moved to the new entry.
765   Function *F = OldEntry->getParent();
766   DominatorTree DT{*F};
767   for (Instruction &I : llvm::make_early_inc_range(instructions(F))) {
768     auto *Alloca = dyn_cast<AllocaInst>(&I);
769     if (!Alloca || I.use_empty())
770       continue;
771     if (DT.isReachableFromEntry(I.getParent()) ||
772         !isa<ConstantInt>(Alloca->getArraySize()))
773       continue;
774     I.moveBefore(*Entry, Entry->getFirstInsertionPt());
775   }
776 }
777 
778 /// Derive the value of the new frame pointer.
779 Value *CoroCloner::deriveNewFramePointer() {
780   // Builder should be inserting to the front of the new entry block.
781 
782   switch (Shape.ABI) {
783   // In switch-lowering, the argument is the frame pointer.
784   case coro::ABI::Switch:
785     return &*NewF->arg_begin();
786   // In async-lowering, one of the arguments is an async context as determined
787   // by the `llvm.coro.id.async` intrinsic. We can retrieve the async context of
788   // the resume function from the async context projection function associated
789   // with the active suspend. The frame is located as a tail to the async
790   // context header.
791   case coro::ABI::Async: {
792     auto *ActiveAsyncSuspend = cast<CoroSuspendAsyncInst>(ActiveSuspend);
793     auto ContextIdx = ActiveAsyncSuspend->getStorageArgumentIndex() & 0xff;
794     auto *CalleeContext = NewF->getArg(ContextIdx);
795     auto *FramePtrTy = Shape.FrameTy->getPointerTo();
796     auto *ProjectionFunc =
797         ActiveAsyncSuspend->getAsyncContextProjectionFunction();
798     auto DbgLoc =
799         cast<CoroSuspendAsyncInst>(VMap[ActiveSuspend])->getDebugLoc();
800     // Calling i8* (i8*)
801     auto *CallerContext = Builder.CreateCall(ProjectionFunc->getFunctionType(),
802                                              ProjectionFunc, CalleeContext);
803     CallerContext->setCallingConv(ProjectionFunc->getCallingConv());
804     CallerContext->setDebugLoc(DbgLoc);
805     // The frame is located after the async_context header.
806     auto &Context = Builder.getContext();
807     auto *FramePtrAddr = Builder.CreateConstInBoundsGEP1_32(
808         Type::getInt8Ty(Context), CallerContext,
809         Shape.AsyncLowering.FrameOffset, "async.ctx.frameptr");
810     // Inline the projection function.
811     InlineFunctionInfo InlineInfo;
812     auto InlineRes = InlineFunction(*CallerContext, InlineInfo);
813     assert(InlineRes.isSuccess());
814     (void)InlineRes;
815     return Builder.CreateBitCast(FramePtrAddr, FramePtrTy);
816   }
817   // In continuation-lowering, the argument is the opaque storage.
818   case coro::ABI::Retcon:
819   case coro::ABI::RetconOnce: {
820     Argument *NewStorage = &*NewF->arg_begin();
821     auto FramePtrTy = Shape.FrameTy->getPointerTo();
822 
823     // If the storage is inline, just bitcast to the storage to the frame type.
824     if (Shape.RetconLowering.IsFrameInlineInStorage)
825       return Builder.CreateBitCast(NewStorage, FramePtrTy);
826 
827     // Otherwise, load the real frame from the opaque storage.
828     auto FramePtrPtr =
829       Builder.CreateBitCast(NewStorage, FramePtrTy->getPointerTo());
830     return Builder.CreateLoad(FramePtrTy, FramePtrPtr);
831   }
832   }
833   llvm_unreachable("bad ABI");
834 }
835 
836 static void addFramePointerAttrs(AttributeList &Attrs, LLVMContext &Context,
837                                  unsigned ParamIndex,
838                                  uint64_t Size, Align Alignment) {
839   AttrBuilder ParamAttrs(Context);
840   ParamAttrs.addAttribute(Attribute::NonNull);
841   ParamAttrs.addAttribute(Attribute::NoAlias);
842   ParamAttrs.addAlignmentAttr(Alignment);
843   ParamAttrs.addDereferenceableAttr(Size);
844   Attrs = Attrs.addParamAttributes(Context, ParamIndex, ParamAttrs);
845 }
846 
847 static void addAsyncContextAttrs(AttributeList &Attrs, LLVMContext &Context,
848                                  unsigned ParamIndex) {
849   AttrBuilder ParamAttrs(Context);
850   ParamAttrs.addAttribute(Attribute::SwiftAsync);
851   Attrs = Attrs.addParamAttributes(Context, ParamIndex, ParamAttrs);
852 }
853 
854 static void addSwiftSelfAttrs(AttributeList &Attrs, LLVMContext &Context,
855                               unsigned ParamIndex) {
856   AttrBuilder ParamAttrs(Context);
857   ParamAttrs.addAttribute(Attribute::SwiftSelf);
858   Attrs = Attrs.addParamAttributes(Context, ParamIndex, ParamAttrs);
859 }
860 
861 /// Clone the body of the original function into a resume function of
862 /// some sort.
863 void CoroCloner::create() {
864   // Create the new function if we don't already have one.
865   if (!NewF) {
866     NewF = createCloneDeclaration(OrigF, Shape, Suffix,
867                                   OrigF.getParent()->end(), ActiveSuspend);
868   }
869 
870   // Replace all args with undefs. The buildCoroutineFrame algorithm already
871   // rewritten access to the args that occurs after suspend points with loads
872   // and stores to/from the coroutine frame.
873   for (Argument &A : OrigF.args())
874     VMap[&A] = UndefValue::get(A.getType());
875 
876   SmallVector<ReturnInst *, 4> Returns;
877 
878   // Ignore attempts to change certain attributes of the function.
879   // TODO: maybe there should be a way to suppress this during cloning?
880   auto savedVisibility = NewF->getVisibility();
881   auto savedUnnamedAddr = NewF->getUnnamedAddr();
882   auto savedDLLStorageClass = NewF->getDLLStorageClass();
883 
884   // NewF's linkage (which CloneFunctionInto does *not* change) might not
885   // be compatible with the visibility of OrigF (which it *does* change),
886   // so protect against that.
887   auto savedLinkage = NewF->getLinkage();
888   NewF->setLinkage(llvm::GlobalValue::ExternalLinkage);
889 
890   CloneFunctionInto(NewF, &OrigF, VMap,
891                     CloneFunctionChangeType::LocalChangesOnly, Returns);
892 
893   auto &Context = NewF->getContext();
894 
895   // For async functions / continuations, adjust the scope line of the
896   // clone to the line number of the suspend point. However, only
897   // adjust the scope line when the files are the same. This ensures
898   // line number and file name belong together. The scope line is
899   // associated with all pre-prologue instructions. This avoids a jump
900   // in the linetable from the function declaration to the suspend point.
901   if (DISubprogram *SP = NewF->getSubprogram()) {
902     assert(SP != OrigF.getSubprogram() && SP->isDistinct());
903     if (ActiveSuspend)
904       if (auto DL = ActiveSuspend->getDebugLoc())
905         if (SP->getFile() == DL->getFile())
906           SP->setScopeLine(DL->getLine());
907     // Update the linkage name to reflect the modified symbol name. It
908     // is necessary to update the linkage name in Swift, since the
909     // mangling changes for resume functions. It might also be the
910     // right thing to do in C++, but due to a limitation in LLVM's
911     // AsmPrinter we can only do this if the function doesn't have an
912     // abstract specification, since the DWARF backend expects the
913     // abstract specification to contain the linkage name and asserts
914     // that they are identical.
915     if (!SP->getDeclaration() && SP->getUnit() &&
916         SP->getUnit()->getSourceLanguage() == dwarf::DW_LANG_Swift)
917       SP->replaceLinkageName(MDString::get(Context, NewF->getName()));
918   }
919 
920   NewF->setLinkage(savedLinkage);
921   NewF->setVisibility(savedVisibility);
922   NewF->setUnnamedAddr(savedUnnamedAddr);
923   NewF->setDLLStorageClass(savedDLLStorageClass);
924 
925   // Replace the attributes of the new function:
926   auto OrigAttrs = NewF->getAttributes();
927   auto NewAttrs = AttributeList();
928 
929   switch (Shape.ABI) {
930   case coro::ABI::Switch:
931     // Bootstrap attributes by copying function attributes from the
932     // original function.  This should include optimization settings and so on.
933     NewAttrs = NewAttrs.addFnAttributes(Context, AttrBuilder(Context, OrigAttrs.getFnAttrs()));
934 
935     addFramePointerAttrs(NewAttrs, Context, 0,
936                          Shape.FrameSize, Shape.FrameAlign);
937     break;
938   case coro::ABI::Async: {
939     auto *ActiveAsyncSuspend = cast<CoroSuspendAsyncInst>(ActiveSuspend);
940     if (OrigF.hasParamAttribute(Shape.AsyncLowering.ContextArgNo,
941                                 Attribute::SwiftAsync)) {
942       uint32_t ArgAttributeIndices =
943           ActiveAsyncSuspend->getStorageArgumentIndex();
944       auto ContextArgIndex = ArgAttributeIndices & 0xff;
945       addAsyncContextAttrs(NewAttrs, Context, ContextArgIndex);
946 
947       // `swiftasync` must preceed `swiftself` so 0 is not a valid index for
948       // `swiftself`.
949       auto SwiftSelfIndex = ArgAttributeIndices >> 8;
950       if (SwiftSelfIndex)
951         addSwiftSelfAttrs(NewAttrs, Context, SwiftSelfIndex);
952     }
953 
954     // Transfer the original function's attributes.
955     auto FnAttrs = OrigF.getAttributes().getFnAttrs();
956     NewAttrs = NewAttrs.addFnAttributes(Context, AttrBuilder(Context, FnAttrs));
957     break;
958   }
959   case coro::ABI::Retcon:
960   case coro::ABI::RetconOnce:
961     // If we have a continuation prototype, just use its attributes,
962     // full-stop.
963     NewAttrs = Shape.RetconLowering.ResumePrototype->getAttributes();
964 
965     addFramePointerAttrs(NewAttrs, Context, 0,
966                          Shape.getRetconCoroId()->getStorageSize(),
967                          Shape.getRetconCoroId()->getStorageAlignment());
968     break;
969   }
970 
971   switch (Shape.ABI) {
972   // In these ABIs, the cloned functions always return 'void', and the
973   // existing return sites are meaningless.  Note that for unique
974   // continuations, this includes the returns associated with suspends;
975   // this is fine because we can't suspend twice.
976   case coro::ABI::Switch:
977   case coro::ABI::RetconOnce:
978     // Remove old returns.
979     for (ReturnInst *Return : Returns)
980       changeToUnreachable(Return);
981     break;
982 
983   // With multi-suspend continuations, we'll already have eliminated the
984   // original returns and inserted returns before all the suspend points,
985   // so we want to leave any returns in place.
986   case coro::ABI::Retcon:
987     break;
988   // Async lowering will insert musttail call functions at all suspend points
989   // followed by a return.
990   // Don't change returns to unreachable because that will trip up the verifier.
991   // These returns should be unreachable from the clone.
992   case coro::ABI::Async:
993     break;
994   }
995 
996   NewF->setAttributes(NewAttrs);
997   NewF->setCallingConv(Shape.getResumeFunctionCC());
998 
999   // Set up the new entry block.
1000   replaceEntryBlock();
1001 
1002   Builder.SetInsertPoint(&NewF->getEntryBlock().front());
1003   NewFramePtr = deriveNewFramePointer();
1004 
1005   // Remap frame pointer.
1006   Value *OldFramePtr = VMap[Shape.FramePtr];
1007   NewFramePtr->takeName(OldFramePtr);
1008   OldFramePtr->replaceAllUsesWith(NewFramePtr);
1009 
1010   // Remap vFrame pointer.
1011   auto *NewVFrame = Builder.CreateBitCast(
1012       NewFramePtr, Type::getInt8PtrTy(Builder.getContext()), "vFrame");
1013   Value *OldVFrame = cast<Value>(VMap[Shape.CoroBegin]);
1014   OldVFrame->replaceAllUsesWith(NewVFrame);
1015 
1016   switch (Shape.ABI) {
1017   case coro::ABI::Switch:
1018     // Rewrite final suspend handling as it is not done via switch (allows to
1019     // remove final case from the switch, since it is undefined behavior to
1020     // resume the coroutine suspended at the final suspend point.
1021     if (Shape.SwitchLowering.HasFinalSuspend)
1022       handleFinalSuspend();
1023     break;
1024   case coro::ABI::Async:
1025   case coro::ABI::Retcon:
1026   case coro::ABI::RetconOnce:
1027     // Replace uses of the active suspend with the corresponding
1028     // continuation-function arguments.
1029     assert(ActiveSuspend != nullptr &&
1030            "no active suspend when lowering a continuation-style coroutine");
1031     replaceRetconOrAsyncSuspendUses();
1032     break;
1033   }
1034 
1035   // Handle suspends.
1036   replaceCoroSuspends();
1037 
1038   // Handle swifterror.
1039   replaceSwiftErrorOps();
1040 
1041   // Remove coro.end intrinsics.
1042   replaceCoroEnds();
1043 
1044   // Salvage debug info that points into the coroutine frame.
1045   salvageDebugInfo();
1046 
1047   // Eliminate coro.free from the clones, replacing it with 'null' in cleanup,
1048   // to suppress deallocation code.
1049   if (Shape.ABI == coro::ABI::Switch)
1050     coro::replaceCoroFree(cast<CoroIdInst>(VMap[Shape.CoroBegin->getId()]),
1051                           /*Elide=*/ FKind == CoroCloner::Kind::SwitchCleanup);
1052 }
1053 
1054 // Create a resume clone by cloning the body of the original function, setting
1055 // new entry block and replacing coro.suspend an appropriate value to force
1056 // resume or cleanup pass for every suspend point.
1057 static Function *createClone(Function &F, const Twine &Suffix,
1058                              coro::Shape &Shape, CoroCloner::Kind FKind) {
1059   CoroCloner Cloner(F, Suffix, Shape, FKind);
1060   Cloner.create();
1061   return Cloner.getFunction();
1062 }
1063 
1064 /// Remove calls to llvm.coro.end in the original function.
1065 static void removeCoroEnds(const coro::Shape &Shape, CallGraph *CG) {
1066   for (auto End : Shape.CoroEnds) {
1067     replaceCoroEnd(End, Shape, Shape.FramePtr, /*in resume*/ false, CG);
1068   }
1069 }
1070 
1071 static void updateAsyncFuncPointerContextSize(coro::Shape &Shape) {
1072   assert(Shape.ABI == coro::ABI::Async);
1073 
1074   auto *FuncPtrStruct = cast<ConstantStruct>(
1075       Shape.AsyncLowering.AsyncFuncPointer->getInitializer());
1076   auto *OrigRelativeFunOffset = FuncPtrStruct->getOperand(0);
1077   auto *OrigContextSize = FuncPtrStruct->getOperand(1);
1078   auto *NewContextSize = ConstantInt::get(OrigContextSize->getType(),
1079                                           Shape.AsyncLowering.ContextSize);
1080   auto *NewFuncPtrStruct = ConstantStruct::get(
1081       FuncPtrStruct->getType(), OrigRelativeFunOffset, NewContextSize);
1082 
1083   Shape.AsyncLowering.AsyncFuncPointer->setInitializer(NewFuncPtrStruct);
1084 }
1085 
1086 static void replaceFrameSize(coro::Shape &Shape) {
1087   if (Shape.ABI == coro::ABI::Async)
1088     updateAsyncFuncPointerContextSize(Shape);
1089 
1090   if (Shape.CoroSizes.empty())
1091     return;
1092 
1093   // In the same function all coro.sizes should have the same result type.
1094   auto *SizeIntrin = Shape.CoroSizes.back();
1095   Module *M = SizeIntrin->getModule();
1096   const DataLayout &DL = M->getDataLayout();
1097   auto Size = DL.getTypeAllocSize(Shape.FrameTy);
1098   auto *SizeConstant = ConstantInt::get(SizeIntrin->getType(), Size);
1099 
1100   for (CoroSizeInst *CS : Shape.CoroSizes) {
1101     CS->replaceAllUsesWith(SizeConstant);
1102     CS->eraseFromParent();
1103   }
1104 }
1105 
1106 // Create a global constant array containing pointers to functions provided and
1107 // set Info parameter of CoroBegin to point at this constant. Example:
1108 //
1109 //   @f.resumers = internal constant [2 x void(%f.frame*)*]
1110 //                    [void(%f.frame*)* @f.resume, void(%f.frame*)* @f.destroy]
1111 //   define void @f() {
1112 //     ...
1113 //     call i8* @llvm.coro.begin(i8* null, i32 0, i8* null,
1114 //                    i8* bitcast([2 x void(%f.frame*)*] * @f.resumers to i8*))
1115 //
1116 // Assumes that all the functions have the same signature.
1117 static void setCoroInfo(Function &F, coro::Shape &Shape,
1118                         ArrayRef<Function *> Fns) {
1119   // This only works under the switch-lowering ABI because coro elision
1120   // only works on the switch-lowering ABI.
1121   assert(Shape.ABI == coro::ABI::Switch);
1122 
1123   SmallVector<Constant *, 4> Args(Fns.begin(), Fns.end());
1124   assert(!Args.empty());
1125   Function *Part = *Fns.begin();
1126   Module *M = Part->getParent();
1127   auto *ArrTy = ArrayType::get(Part->getType(), Args.size());
1128 
1129   auto *ConstVal = ConstantArray::get(ArrTy, Args);
1130   auto *GV = new GlobalVariable(*M, ConstVal->getType(), /*isConstant=*/true,
1131                                 GlobalVariable::PrivateLinkage, ConstVal,
1132                                 F.getName() + Twine(".resumers"));
1133 
1134   // Update coro.begin instruction to refer to this constant.
1135   LLVMContext &C = F.getContext();
1136   auto *BC = ConstantExpr::getPointerCast(GV, Type::getInt8PtrTy(C));
1137   Shape.getSwitchCoroId()->setInfo(BC);
1138 }
1139 
1140 // Store addresses of Resume/Destroy/Cleanup functions in the coroutine frame.
1141 static void updateCoroFrame(coro::Shape &Shape, Function *ResumeFn,
1142                             Function *DestroyFn, Function *CleanupFn) {
1143   assert(Shape.ABI == coro::ABI::Switch);
1144 
1145   IRBuilder<> Builder(Shape.FramePtr->getNextNode());
1146   auto *ResumeAddr = Builder.CreateStructGEP(
1147       Shape.FrameTy, Shape.FramePtr, coro::Shape::SwitchFieldIndex::Resume,
1148       "resume.addr");
1149   Builder.CreateStore(ResumeFn, ResumeAddr);
1150 
1151   Value *DestroyOrCleanupFn = DestroyFn;
1152 
1153   CoroIdInst *CoroId = Shape.getSwitchCoroId();
1154   if (CoroAllocInst *CA = CoroId->getCoroAlloc()) {
1155     // If there is a CoroAlloc and it returns false (meaning we elide the
1156     // allocation, use CleanupFn instead of DestroyFn).
1157     DestroyOrCleanupFn = Builder.CreateSelect(CA, DestroyFn, CleanupFn);
1158   }
1159 
1160   auto *DestroyAddr = Builder.CreateStructGEP(
1161       Shape.FrameTy, Shape.FramePtr, coro::Shape::SwitchFieldIndex::Destroy,
1162       "destroy.addr");
1163   Builder.CreateStore(DestroyOrCleanupFn, DestroyAddr);
1164 }
1165 
1166 static void postSplitCleanup(Function &F) {
1167   removeUnreachableBlocks(F);
1168 
1169 #ifndef NDEBUG
1170   // For now, we do a mandatory verification step because we don't
1171   // entirely trust this pass.  Note that we don't want to add a verifier
1172   // pass to FPM below because it will also verify all the global data.
1173   if (verifyFunction(F, &errs()))
1174     report_fatal_error("Broken function");
1175 #endif
1176 }
1177 
1178 // Assuming we arrived at the block NewBlock from Prev instruction, store
1179 // PHI's incoming values in the ResolvedValues map.
1180 static void
1181 scanPHIsAndUpdateValueMap(Instruction *Prev, BasicBlock *NewBlock,
1182                           DenseMap<Value *, Value *> &ResolvedValues) {
1183   auto *PrevBB = Prev->getParent();
1184   for (PHINode &PN : NewBlock->phis()) {
1185     auto V = PN.getIncomingValueForBlock(PrevBB);
1186     // See if we already resolved it.
1187     auto VI = ResolvedValues.find(V);
1188     if (VI != ResolvedValues.end())
1189       V = VI->second;
1190     // Remember the value.
1191     ResolvedValues[&PN] = V;
1192   }
1193 }
1194 
1195 // Replace a sequence of branches leading to a ret, with a clone of a ret
1196 // instruction. Suspend instruction represented by a switch, track the PHI
1197 // values and select the correct case successor when possible.
1198 static bool simplifyTerminatorLeadingToRet(Instruction *InitialInst) {
1199   DenseMap<Value *, Value *> ResolvedValues;
1200   BasicBlock *UnconditionalSucc = nullptr;
1201   assert(InitialInst->getModule());
1202   const DataLayout &DL = InitialInst->getModule()->getDataLayout();
1203 
1204   auto GetFirstValidInstruction = [](Instruction *I) {
1205     while (I) {
1206       // BitCastInst wouldn't generate actual code so that we could skip it.
1207       if (isa<BitCastInst>(I) || I->isDebugOrPseudoInst() ||
1208           I->isLifetimeStartOrEnd())
1209         I = I->getNextNode();
1210       else if (isInstructionTriviallyDead(I))
1211         // Duing we are in the middle of the transformation, we need to erase
1212         // the dead instruction manually.
1213         I = &*I->eraseFromParent();
1214       else
1215         break;
1216     }
1217     return I;
1218   };
1219 
1220   auto TryResolveConstant = [&ResolvedValues](Value *V) {
1221     auto It = ResolvedValues.find(V);
1222     if (It != ResolvedValues.end())
1223       V = It->second;
1224     return dyn_cast<ConstantInt>(V);
1225   };
1226 
1227   Instruction *I = InitialInst;
1228   while (I->isTerminator() || isa<CmpInst>(I)) {
1229     if (isa<ReturnInst>(I)) {
1230       if (I != InitialInst) {
1231         // If InitialInst is an unconditional branch,
1232         // remove PHI values that come from basic block of InitialInst
1233         if (UnconditionalSucc)
1234           UnconditionalSucc->removePredecessor(InitialInst->getParent(), true);
1235         ReplaceInstWithInst(InitialInst, I->clone());
1236       }
1237       return true;
1238     }
1239     if (auto *BR = dyn_cast<BranchInst>(I)) {
1240       if (BR->isUnconditional()) {
1241         BasicBlock *Succ = BR->getSuccessor(0);
1242         if (I == InitialInst)
1243           UnconditionalSucc = Succ;
1244         scanPHIsAndUpdateValueMap(I, Succ, ResolvedValues);
1245         I = GetFirstValidInstruction(Succ->getFirstNonPHIOrDbgOrLifetime());
1246         continue;
1247       }
1248 
1249       BasicBlock *BB = BR->getParent();
1250       // Handle the case the condition of the conditional branch is constant.
1251       // e.g.,
1252       //
1253       //     br i1 false, label %cleanup, label %CoroEnd
1254       //
1255       // It is possible during the transformation. We could continue the
1256       // simplifying in this case.
1257       if (ConstantFoldTerminator(BB, /*DeleteDeadConditions=*/true)) {
1258         // Handle this branch in next iteration.
1259         I = BB->getTerminator();
1260         continue;
1261       }
1262     } else if (auto *CondCmp = dyn_cast<CmpInst>(I)) {
1263       // If the case number of suspended switch instruction is reduced to
1264       // 1, then it is simplified to CmpInst in llvm::ConstantFoldTerminator.
1265       auto *BR = dyn_cast<BranchInst>(
1266           GetFirstValidInstruction(CondCmp->getNextNode()));
1267       if (!BR || !BR->isConditional() || CondCmp != BR->getCondition())
1268         return false;
1269 
1270       // And the comparsion looks like : %cond = icmp eq i8 %V, constant.
1271       // So we try to resolve constant for the first operand only since the
1272       // second operand should be literal constant by design.
1273       ConstantInt *Cond0 = TryResolveConstant(CondCmp->getOperand(0));
1274       auto *Cond1 = dyn_cast<ConstantInt>(CondCmp->getOperand(1));
1275       if (!Cond0 || !Cond1)
1276         return false;
1277 
1278       // Both operands of the CmpInst are Constant. So that we could evaluate
1279       // it immediately to get the destination.
1280       auto *ConstResult =
1281           dyn_cast_or_null<ConstantInt>(ConstantFoldCompareInstOperands(
1282               CondCmp->getPredicate(), Cond0, Cond1, DL));
1283       if (!ConstResult)
1284         return false;
1285 
1286       CondCmp->replaceAllUsesWith(ConstResult);
1287       CondCmp->eraseFromParent();
1288 
1289       // Handle this branch in next iteration.
1290       I = BR;
1291       continue;
1292     } else if (auto *SI = dyn_cast<SwitchInst>(I)) {
1293       ConstantInt *Cond = TryResolveConstant(SI->getCondition());
1294       if (!Cond)
1295         return false;
1296 
1297       BasicBlock *BB = SI->findCaseValue(Cond)->getCaseSuccessor();
1298       scanPHIsAndUpdateValueMap(I, BB, ResolvedValues);
1299       I = GetFirstValidInstruction(BB->getFirstNonPHIOrDbgOrLifetime());
1300       continue;
1301     }
1302 
1303     return false;
1304   }
1305   return false;
1306 }
1307 
1308 // Check whether CI obeys the rules of musttail attribute.
1309 static bool shouldBeMustTail(const CallInst &CI, const Function &F) {
1310   if (CI.isInlineAsm())
1311     return false;
1312 
1313   // Match prototypes and calling conventions of resume function.
1314   FunctionType *CalleeTy = CI.getFunctionType();
1315   if (!CalleeTy->getReturnType()->isVoidTy() || (CalleeTy->getNumParams() != 1))
1316     return false;
1317 
1318   Type *CalleeParmTy = CalleeTy->getParamType(0);
1319   if (!CalleeParmTy->isPointerTy() ||
1320       (CalleeParmTy->getPointerAddressSpace() != 0))
1321     return false;
1322 
1323   if (CI.getCallingConv() != F.getCallingConv())
1324     return false;
1325 
1326   // CI should not has any ABI-impacting function attributes.
1327   static const Attribute::AttrKind ABIAttrs[] = {
1328       Attribute::StructRet,    Attribute::ByVal,     Attribute::InAlloca,
1329       Attribute::Preallocated, Attribute::InReg,     Attribute::Returned,
1330       Attribute::SwiftSelf,    Attribute::SwiftError};
1331   AttributeList Attrs = CI.getAttributes();
1332   for (auto AK : ABIAttrs)
1333     if (Attrs.hasParamAttr(0, AK))
1334       return false;
1335 
1336   return true;
1337 }
1338 
1339 // Add musttail to any resume instructions that is immediately followed by a
1340 // suspend (i.e. ret). We do this even in -O0 to support guaranteed tail call
1341 // for symmetrical coroutine control transfer (C++ Coroutines TS extension).
1342 // This transformation is done only in the resume part of the coroutine that has
1343 // identical signature and calling convention as the coro.resume call.
1344 static void addMustTailToCoroResumes(Function &F) {
1345   bool changed = false;
1346 
1347   // Collect potential resume instructions.
1348   SmallVector<CallInst *, 4> Resumes;
1349   for (auto &I : instructions(F))
1350     if (auto *Call = dyn_cast<CallInst>(&I))
1351       if (shouldBeMustTail(*Call, F))
1352         Resumes.push_back(Call);
1353 
1354   // Set musttail on those that are followed by a ret instruction.
1355   for (CallInst *Call : Resumes)
1356     if (simplifyTerminatorLeadingToRet(Call->getNextNode())) {
1357       Call->setTailCallKind(CallInst::TCK_MustTail);
1358       changed = true;
1359     }
1360 
1361   if (changed)
1362     removeUnreachableBlocks(F);
1363 }
1364 
1365 // Coroutine has no suspend points. Remove heap allocation for the coroutine
1366 // frame if possible.
1367 static void handleNoSuspendCoroutine(coro::Shape &Shape) {
1368   auto *CoroBegin = Shape.CoroBegin;
1369   auto *CoroId = CoroBegin->getId();
1370   auto *AllocInst = CoroId->getCoroAlloc();
1371   switch (Shape.ABI) {
1372   case coro::ABI::Switch: {
1373     auto SwitchId = cast<CoroIdInst>(CoroId);
1374     coro::replaceCoroFree(SwitchId, /*Elide=*/AllocInst != nullptr);
1375     if (AllocInst) {
1376       IRBuilder<> Builder(AllocInst);
1377       auto *Frame = Builder.CreateAlloca(Shape.FrameTy);
1378       Frame->setAlignment(Shape.FrameAlign);
1379       auto *VFrame = Builder.CreateBitCast(Frame, Builder.getInt8PtrTy());
1380       AllocInst->replaceAllUsesWith(Builder.getFalse());
1381       AllocInst->eraseFromParent();
1382       CoroBegin->replaceAllUsesWith(VFrame);
1383     } else {
1384       CoroBegin->replaceAllUsesWith(CoroBegin->getMem());
1385     }
1386 
1387     break;
1388   }
1389   case coro::ABI::Async:
1390   case coro::ABI::Retcon:
1391   case coro::ABI::RetconOnce:
1392     CoroBegin->replaceAllUsesWith(UndefValue::get(CoroBegin->getType()));
1393     break;
1394   }
1395 
1396   CoroBegin->eraseFromParent();
1397 }
1398 
1399 // SimplifySuspendPoint needs to check that there is no calls between
1400 // coro_save and coro_suspend, since any of the calls may potentially resume
1401 // the coroutine and if that is the case we cannot eliminate the suspend point.
1402 static bool hasCallsInBlockBetween(Instruction *From, Instruction *To) {
1403   for (Instruction *I = From; I != To; I = I->getNextNode()) {
1404     // Assume that no intrinsic can resume the coroutine.
1405     if (isa<IntrinsicInst>(I))
1406       continue;
1407 
1408     if (isa<CallBase>(I))
1409       return true;
1410   }
1411   return false;
1412 }
1413 
1414 static bool hasCallsInBlocksBetween(BasicBlock *SaveBB, BasicBlock *ResDesBB) {
1415   SmallPtrSet<BasicBlock *, 8> Set;
1416   SmallVector<BasicBlock *, 8> Worklist;
1417 
1418   Set.insert(SaveBB);
1419   Worklist.push_back(ResDesBB);
1420 
1421   // Accumulate all blocks between SaveBB and ResDesBB. Because CoroSaveIntr
1422   // returns a token consumed by suspend instruction, all blocks in between
1423   // will have to eventually hit SaveBB when going backwards from ResDesBB.
1424   while (!Worklist.empty()) {
1425     auto *BB = Worklist.pop_back_val();
1426     Set.insert(BB);
1427     for (auto *Pred : predecessors(BB))
1428       if (!Set.contains(Pred))
1429         Worklist.push_back(Pred);
1430   }
1431 
1432   // SaveBB and ResDesBB are checked separately in hasCallsBetween.
1433   Set.erase(SaveBB);
1434   Set.erase(ResDesBB);
1435 
1436   for (auto *BB : Set)
1437     if (hasCallsInBlockBetween(BB->getFirstNonPHI(), nullptr))
1438       return true;
1439 
1440   return false;
1441 }
1442 
1443 static bool hasCallsBetween(Instruction *Save, Instruction *ResumeOrDestroy) {
1444   auto *SaveBB = Save->getParent();
1445   auto *ResumeOrDestroyBB = ResumeOrDestroy->getParent();
1446 
1447   if (SaveBB == ResumeOrDestroyBB)
1448     return hasCallsInBlockBetween(Save->getNextNode(), ResumeOrDestroy);
1449 
1450   // Any calls from Save to the end of the block?
1451   if (hasCallsInBlockBetween(Save->getNextNode(), nullptr))
1452     return true;
1453 
1454   // Any calls from begging of the block up to ResumeOrDestroy?
1455   if (hasCallsInBlockBetween(ResumeOrDestroyBB->getFirstNonPHI(),
1456                              ResumeOrDestroy))
1457     return true;
1458 
1459   // Any calls in all of the blocks between SaveBB and ResumeOrDestroyBB?
1460   if (hasCallsInBlocksBetween(SaveBB, ResumeOrDestroyBB))
1461     return true;
1462 
1463   return false;
1464 }
1465 
1466 // If a SuspendIntrin is preceded by Resume or Destroy, we can eliminate the
1467 // suspend point and replace it with nornal control flow.
1468 static bool simplifySuspendPoint(CoroSuspendInst *Suspend,
1469                                  CoroBeginInst *CoroBegin) {
1470   Instruction *Prev = Suspend->getPrevNode();
1471   if (!Prev) {
1472     auto *Pred = Suspend->getParent()->getSinglePredecessor();
1473     if (!Pred)
1474       return false;
1475     Prev = Pred->getTerminator();
1476   }
1477 
1478   CallBase *CB = dyn_cast<CallBase>(Prev);
1479   if (!CB)
1480     return false;
1481 
1482   auto *Callee = CB->getCalledOperand()->stripPointerCasts();
1483 
1484   // See if the callsite is for resumption or destruction of the coroutine.
1485   auto *SubFn = dyn_cast<CoroSubFnInst>(Callee);
1486   if (!SubFn)
1487     return false;
1488 
1489   // Does not refer to the current coroutine, we cannot do anything with it.
1490   if (SubFn->getFrame() != CoroBegin)
1491     return false;
1492 
1493   // See if the transformation is safe. Specifically, see if there are any
1494   // calls in between Save and CallInstr. They can potenitally resume the
1495   // coroutine rendering this optimization unsafe.
1496   auto *Save = Suspend->getCoroSave();
1497   if (hasCallsBetween(Save, CB))
1498     return false;
1499 
1500   // Replace llvm.coro.suspend with the value that results in resumption over
1501   // the resume or cleanup path.
1502   Suspend->replaceAllUsesWith(SubFn->getRawIndex());
1503   Suspend->eraseFromParent();
1504   Save->eraseFromParent();
1505 
1506   // No longer need a call to coro.resume or coro.destroy.
1507   if (auto *Invoke = dyn_cast<InvokeInst>(CB)) {
1508     BranchInst::Create(Invoke->getNormalDest(), Invoke);
1509   }
1510 
1511   // Grab the CalledValue from CB before erasing the CallInstr.
1512   auto *CalledValue = CB->getCalledOperand();
1513   CB->eraseFromParent();
1514 
1515   // If no more users remove it. Usually it is a bitcast of SubFn.
1516   if (CalledValue != SubFn && CalledValue->user_empty())
1517     if (auto *I = dyn_cast<Instruction>(CalledValue))
1518       I->eraseFromParent();
1519 
1520   // Now we are good to remove SubFn.
1521   if (SubFn->user_empty())
1522     SubFn->eraseFromParent();
1523 
1524   return true;
1525 }
1526 
1527 // Remove suspend points that are simplified.
1528 static void simplifySuspendPoints(coro::Shape &Shape) {
1529   // Currently, the only simplification we do is switch-lowering-specific.
1530   if (Shape.ABI != coro::ABI::Switch)
1531     return;
1532 
1533   auto &S = Shape.CoroSuspends;
1534   size_t I = 0, N = S.size();
1535   if (N == 0)
1536     return;
1537   while (true) {
1538     auto SI = cast<CoroSuspendInst>(S[I]);
1539     // Leave final.suspend to handleFinalSuspend since it is undefined behavior
1540     // to resume a coroutine suspended at the final suspend point.
1541     if (!SI->isFinal() && simplifySuspendPoint(SI, Shape.CoroBegin)) {
1542       if (--N == I)
1543         break;
1544       std::swap(S[I], S[N]);
1545       continue;
1546     }
1547     if (++I == N)
1548       break;
1549   }
1550   S.resize(N);
1551 }
1552 
1553 static void splitSwitchCoroutine(Function &F, coro::Shape &Shape,
1554                                  SmallVectorImpl<Function *> &Clones) {
1555   assert(Shape.ABI == coro::ABI::Switch);
1556 
1557   createResumeEntryBlock(F, Shape);
1558   auto ResumeClone = createClone(F, ".resume", Shape,
1559                                  CoroCloner::Kind::SwitchResume);
1560   auto DestroyClone = createClone(F, ".destroy", Shape,
1561                                   CoroCloner::Kind::SwitchUnwind);
1562   auto CleanupClone = createClone(F, ".cleanup", Shape,
1563                                   CoroCloner::Kind::SwitchCleanup);
1564 
1565   postSplitCleanup(*ResumeClone);
1566   postSplitCleanup(*DestroyClone);
1567   postSplitCleanup(*CleanupClone);
1568 
1569   addMustTailToCoroResumes(*ResumeClone);
1570 
1571   // Store addresses resume/destroy/cleanup functions in the coroutine frame.
1572   updateCoroFrame(Shape, ResumeClone, DestroyClone, CleanupClone);
1573 
1574   assert(Clones.empty());
1575   Clones.push_back(ResumeClone);
1576   Clones.push_back(DestroyClone);
1577   Clones.push_back(CleanupClone);
1578 
1579   // Create a constant array referring to resume/destroy/clone functions pointed
1580   // by the last argument of @llvm.coro.info, so that CoroElide pass can
1581   // determined correct function to call.
1582   setCoroInfo(F, Shape, Clones);
1583 }
1584 
1585 static void replaceAsyncResumeFunction(CoroSuspendAsyncInst *Suspend,
1586                                        Value *Continuation) {
1587   auto *ResumeIntrinsic = Suspend->getResumeFunction();
1588   auto &Context = Suspend->getParent()->getParent()->getContext();
1589   auto *Int8PtrTy = Type::getInt8PtrTy(Context);
1590 
1591   IRBuilder<> Builder(ResumeIntrinsic);
1592   auto *Val = Builder.CreateBitOrPointerCast(Continuation, Int8PtrTy);
1593   ResumeIntrinsic->replaceAllUsesWith(Val);
1594   ResumeIntrinsic->eraseFromParent();
1595   Suspend->setOperand(CoroSuspendAsyncInst::ResumeFunctionArg,
1596                       UndefValue::get(Int8PtrTy));
1597 }
1598 
1599 /// Coerce the arguments in \p FnArgs according to \p FnTy in \p CallArgs.
1600 static void coerceArguments(IRBuilder<> &Builder, FunctionType *FnTy,
1601                             ArrayRef<Value *> FnArgs,
1602                             SmallVectorImpl<Value *> &CallArgs) {
1603   size_t ArgIdx = 0;
1604   for (auto paramTy : FnTy->params()) {
1605     assert(ArgIdx < FnArgs.size());
1606     if (paramTy != FnArgs[ArgIdx]->getType())
1607       CallArgs.push_back(
1608           Builder.CreateBitOrPointerCast(FnArgs[ArgIdx], paramTy));
1609     else
1610       CallArgs.push_back(FnArgs[ArgIdx]);
1611     ++ArgIdx;
1612   }
1613 }
1614 
1615 CallInst *coro::createMustTailCall(DebugLoc Loc, Function *MustTailCallFn,
1616                                    ArrayRef<Value *> Arguments,
1617                                    IRBuilder<> &Builder) {
1618   auto *FnTy = MustTailCallFn->getFunctionType();
1619   // Coerce the arguments, llvm optimizations seem to ignore the types in
1620   // vaarg functions and throws away casts in optimized mode.
1621   SmallVector<Value *, 8> CallArgs;
1622   coerceArguments(Builder, FnTy, Arguments, CallArgs);
1623 
1624   auto *TailCall = Builder.CreateCall(FnTy, MustTailCallFn, CallArgs);
1625   TailCall->setTailCallKind(CallInst::TCK_MustTail);
1626   TailCall->setDebugLoc(Loc);
1627   TailCall->setCallingConv(MustTailCallFn->getCallingConv());
1628   return TailCall;
1629 }
1630 
1631 static void splitAsyncCoroutine(Function &F, coro::Shape &Shape,
1632                                 SmallVectorImpl<Function *> &Clones) {
1633   assert(Shape.ABI == coro::ABI::Async);
1634   assert(Clones.empty());
1635   // Reset various things that the optimizer might have decided it
1636   // "knows" about the coroutine function due to not seeing a return.
1637   F.removeFnAttr(Attribute::NoReturn);
1638   F.removeRetAttr(Attribute::NoAlias);
1639   F.removeRetAttr(Attribute::NonNull);
1640 
1641   auto &Context = F.getContext();
1642   auto *Int8PtrTy = Type::getInt8PtrTy(Context);
1643 
1644   auto *Id = cast<CoroIdAsyncInst>(Shape.CoroBegin->getId());
1645   IRBuilder<> Builder(Id);
1646 
1647   auto *FramePtr = Id->getStorage();
1648   FramePtr = Builder.CreateBitOrPointerCast(FramePtr, Int8PtrTy);
1649   FramePtr = Builder.CreateConstInBoundsGEP1_32(
1650       Type::getInt8Ty(Context), FramePtr, Shape.AsyncLowering.FrameOffset,
1651       "async.ctx.frameptr");
1652 
1653   // Map all uses of llvm.coro.begin to the allocated frame pointer.
1654   {
1655     // Make sure we don't invalidate Shape.FramePtr.
1656     TrackingVH<Instruction> Handle(Shape.FramePtr);
1657     Shape.CoroBegin->replaceAllUsesWith(FramePtr);
1658     Shape.FramePtr = Handle.getValPtr();
1659   }
1660 
1661   // Create all the functions in order after the main function.
1662   auto NextF = std::next(F.getIterator());
1663 
1664   // Create a continuation function for each of the suspend points.
1665   Clones.reserve(Shape.CoroSuspends.size());
1666   for (size_t Idx = 0, End = Shape.CoroSuspends.size(); Idx != End; ++Idx) {
1667     auto *Suspend = cast<CoroSuspendAsyncInst>(Shape.CoroSuspends[Idx]);
1668 
1669     // Create the clone declaration.
1670     auto ResumeNameSuffix = ".resume.";
1671     auto ProjectionFunctionName =
1672         Suspend->getAsyncContextProjectionFunction()->getName();
1673     bool UseSwiftMangling = false;
1674     if (ProjectionFunctionName.equals("__swift_async_resume_project_context")) {
1675       ResumeNameSuffix = "TQ";
1676       UseSwiftMangling = true;
1677     } else if (ProjectionFunctionName.equals(
1678                    "__swift_async_resume_get_context")) {
1679       ResumeNameSuffix = "TY";
1680       UseSwiftMangling = true;
1681     }
1682     auto *Continuation = createCloneDeclaration(
1683         F, Shape,
1684         UseSwiftMangling ? ResumeNameSuffix + Twine(Idx) + "_"
1685                          : ResumeNameSuffix + Twine(Idx),
1686         NextF, Suspend);
1687     Clones.push_back(Continuation);
1688 
1689     // Insert a branch to a new return block immediately before the suspend
1690     // point.
1691     auto *SuspendBB = Suspend->getParent();
1692     auto *NewSuspendBB = SuspendBB->splitBasicBlock(Suspend);
1693     auto *Branch = cast<BranchInst>(SuspendBB->getTerminator());
1694 
1695     // Place it before the first suspend.
1696     auto *ReturnBB =
1697         BasicBlock::Create(F.getContext(), "coro.return", &F, NewSuspendBB);
1698     Branch->setSuccessor(0, ReturnBB);
1699 
1700     IRBuilder<> Builder(ReturnBB);
1701 
1702     // Insert the call to the tail call function and inline it.
1703     auto *Fn = Suspend->getMustTailCallFunction();
1704     SmallVector<Value *, 8> Args(Suspend->args());
1705     auto FnArgs = ArrayRef<Value *>(Args).drop_front(
1706         CoroSuspendAsyncInst::MustTailCallFuncArg + 1);
1707     auto *TailCall =
1708         coro::createMustTailCall(Suspend->getDebugLoc(), Fn, FnArgs, Builder);
1709     Builder.CreateRetVoid();
1710     InlineFunctionInfo FnInfo;
1711     auto InlineRes = InlineFunction(*TailCall, FnInfo);
1712     assert(InlineRes.isSuccess() && "Expected inlining to succeed");
1713     (void)InlineRes;
1714 
1715     // Replace the lvm.coro.async.resume intrisic call.
1716     replaceAsyncResumeFunction(Suspend, Continuation);
1717   }
1718 
1719   assert(Clones.size() == Shape.CoroSuspends.size());
1720   for (size_t Idx = 0, End = Shape.CoroSuspends.size(); Idx != End; ++Idx) {
1721     auto *Suspend = Shape.CoroSuspends[Idx];
1722     auto *Clone = Clones[Idx];
1723 
1724     CoroCloner(F, "resume." + Twine(Idx), Shape, Clone, Suspend).create();
1725   }
1726 }
1727 
1728 static void splitRetconCoroutine(Function &F, coro::Shape &Shape,
1729                                  SmallVectorImpl<Function *> &Clones) {
1730   assert(Shape.ABI == coro::ABI::Retcon ||
1731          Shape.ABI == coro::ABI::RetconOnce);
1732   assert(Clones.empty());
1733 
1734   // Reset various things that the optimizer might have decided it
1735   // "knows" about the coroutine function due to not seeing a return.
1736   F.removeFnAttr(Attribute::NoReturn);
1737   F.removeRetAttr(Attribute::NoAlias);
1738   F.removeRetAttr(Attribute::NonNull);
1739 
1740   // Allocate the frame.
1741   auto *Id = cast<AnyCoroIdRetconInst>(Shape.CoroBegin->getId());
1742   Value *RawFramePtr;
1743   if (Shape.RetconLowering.IsFrameInlineInStorage) {
1744     RawFramePtr = Id->getStorage();
1745   } else {
1746     IRBuilder<> Builder(Id);
1747 
1748     // Determine the size of the frame.
1749     const DataLayout &DL = F.getParent()->getDataLayout();
1750     auto Size = DL.getTypeAllocSize(Shape.FrameTy);
1751 
1752     // Allocate.  We don't need to update the call graph node because we're
1753     // going to recompute it from scratch after splitting.
1754     // FIXME: pass the required alignment
1755     RawFramePtr = Shape.emitAlloc(Builder, Builder.getInt64(Size), nullptr);
1756     RawFramePtr =
1757       Builder.CreateBitCast(RawFramePtr, Shape.CoroBegin->getType());
1758 
1759     // Stash the allocated frame pointer in the continuation storage.
1760     auto Dest = Builder.CreateBitCast(Id->getStorage(),
1761                                       RawFramePtr->getType()->getPointerTo());
1762     Builder.CreateStore(RawFramePtr, Dest);
1763   }
1764 
1765   // Map all uses of llvm.coro.begin to the allocated frame pointer.
1766   {
1767     // Make sure we don't invalidate Shape.FramePtr.
1768     TrackingVH<Instruction> Handle(Shape.FramePtr);
1769     Shape.CoroBegin->replaceAllUsesWith(RawFramePtr);
1770     Shape.FramePtr = Handle.getValPtr();
1771   }
1772 
1773   // Create a unique return block.
1774   BasicBlock *ReturnBB = nullptr;
1775   SmallVector<PHINode *, 4> ReturnPHIs;
1776 
1777   // Create all the functions in order after the main function.
1778   auto NextF = std::next(F.getIterator());
1779 
1780   // Create a continuation function for each of the suspend points.
1781   Clones.reserve(Shape.CoroSuspends.size());
1782   for (size_t i = 0, e = Shape.CoroSuspends.size(); i != e; ++i) {
1783     auto Suspend = cast<CoroSuspendRetconInst>(Shape.CoroSuspends[i]);
1784 
1785     // Create the clone declaration.
1786     auto Continuation =
1787         createCloneDeclaration(F, Shape, ".resume." + Twine(i), NextF, nullptr);
1788     Clones.push_back(Continuation);
1789 
1790     // Insert a branch to the unified return block immediately before
1791     // the suspend point.
1792     auto SuspendBB = Suspend->getParent();
1793     auto NewSuspendBB = SuspendBB->splitBasicBlock(Suspend);
1794     auto Branch = cast<BranchInst>(SuspendBB->getTerminator());
1795 
1796     // Create the unified return block.
1797     if (!ReturnBB) {
1798       // Place it before the first suspend.
1799       ReturnBB = BasicBlock::Create(F.getContext(), "coro.return", &F,
1800                                     NewSuspendBB);
1801       Shape.RetconLowering.ReturnBlock = ReturnBB;
1802 
1803       IRBuilder<> Builder(ReturnBB);
1804 
1805       // Create PHIs for all the return values.
1806       assert(ReturnPHIs.empty());
1807 
1808       // First, the continuation.
1809       ReturnPHIs.push_back(Builder.CreatePHI(Continuation->getType(),
1810                                              Shape.CoroSuspends.size()));
1811 
1812       // Next, all the directly-yielded values.
1813       for (auto ResultTy : Shape.getRetconResultTypes())
1814         ReturnPHIs.push_back(Builder.CreatePHI(ResultTy,
1815                                                Shape.CoroSuspends.size()));
1816 
1817       // Build the return value.
1818       auto RetTy = F.getReturnType();
1819 
1820       // Cast the continuation value if necessary.
1821       // We can't rely on the types matching up because that type would
1822       // have to be infinite.
1823       auto CastedContinuationTy =
1824         (ReturnPHIs.size() == 1 ? RetTy : RetTy->getStructElementType(0));
1825       auto *CastedContinuation =
1826         Builder.CreateBitCast(ReturnPHIs[0], CastedContinuationTy);
1827 
1828       Value *RetV;
1829       if (ReturnPHIs.size() == 1) {
1830         RetV = CastedContinuation;
1831       } else {
1832         RetV = UndefValue::get(RetTy);
1833         RetV = Builder.CreateInsertValue(RetV, CastedContinuation, 0);
1834         for (size_t I = 1, E = ReturnPHIs.size(); I != E; ++I)
1835           RetV = Builder.CreateInsertValue(RetV, ReturnPHIs[I], I);
1836       }
1837 
1838       Builder.CreateRet(RetV);
1839     }
1840 
1841     // Branch to the return block.
1842     Branch->setSuccessor(0, ReturnBB);
1843     ReturnPHIs[0]->addIncoming(Continuation, SuspendBB);
1844     size_t NextPHIIndex = 1;
1845     for (auto &VUse : Suspend->value_operands())
1846       ReturnPHIs[NextPHIIndex++]->addIncoming(&*VUse, SuspendBB);
1847     assert(NextPHIIndex == ReturnPHIs.size());
1848   }
1849 
1850   assert(Clones.size() == Shape.CoroSuspends.size());
1851   for (size_t i = 0, e = Shape.CoroSuspends.size(); i != e; ++i) {
1852     auto Suspend = Shape.CoroSuspends[i];
1853     auto Clone = Clones[i];
1854 
1855     CoroCloner(F, "resume." + Twine(i), Shape, Clone, Suspend).create();
1856   }
1857 }
1858 
1859 namespace {
1860   class PrettyStackTraceFunction : public PrettyStackTraceEntry {
1861     Function &F;
1862   public:
1863     PrettyStackTraceFunction(Function &F) : F(F) {}
1864     void print(raw_ostream &OS) const override {
1865       OS << "While splitting coroutine ";
1866       F.printAsOperand(OS, /*print type*/ false, F.getParent());
1867       OS << "\n";
1868     }
1869   };
1870 }
1871 
1872 static coro::Shape splitCoroutine(Function &F,
1873                                   SmallVectorImpl<Function *> &Clones,
1874                                   bool OptimizeFrame) {
1875   PrettyStackTraceFunction prettyStackTrace(F);
1876 
1877   // The suspend-crossing algorithm in buildCoroutineFrame get tripped
1878   // up by uses in unreachable blocks, so remove them as a first pass.
1879   removeUnreachableBlocks(F);
1880 
1881   coro::Shape Shape(F, OptimizeFrame);
1882   if (!Shape.CoroBegin)
1883     return Shape;
1884 
1885   simplifySuspendPoints(Shape);
1886   buildCoroutineFrame(F, Shape);
1887   replaceFrameSize(Shape);
1888 
1889   // If there are no suspend points, no split required, just remove
1890   // the allocation and deallocation blocks, they are not needed.
1891   if (Shape.CoroSuspends.empty()) {
1892     handleNoSuspendCoroutine(Shape);
1893   } else {
1894     switch (Shape.ABI) {
1895     case coro::ABI::Switch:
1896       splitSwitchCoroutine(F, Shape, Clones);
1897       break;
1898     case coro::ABI::Async:
1899       splitAsyncCoroutine(F, Shape, Clones);
1900       break;
1901     case coro::ABI::Retcon:
1902     case coro::ABI::RetconOnce:
1903       splitRetconCoroutine(F, Shape, Clones);
1904       break;
1905     }
1906   }
1907 
1908   // Replace all the swifterror operations in the original function.
1909   // This invalidates SwiftErrorOps in the Shape.
1910   replaceSwiftErrorOps(F, Shape, nullptr);
1911 
1912   return Shape;
1913 }
1914 
1915 static void
1916 updateCallGraphAfterCoroutineSplit(Function &F, const coro::Shape &Shape,
1917                                    const SmallVectorImpl<Function *> &Clones,
1918                                    CallGraph &CG, CallGraphSCC &SCC) {
1919   if (!Shape.CoroBegin)
1920     return;
1921 
1922   removeCoroEnds(Shape, &CG);
1923   postSplitCleanup(F);
1924 
1925   // Update call graph and add the functions we created to the SCC.
1926   coro::updateCallGraph(F, Clones, CG, SCC);
1927 }
1928 
1929 static void updateCallGraphAfterCoroutineSplit(
1930     LazyCallGraph::Node &N, const coro::Shape &Shape,
1931     const SmallVectorImpl<Function *> &Clones, LazyCallGraph::SCC &C,
1932     LazyCallGraph &CG, CGSCCAnalysisManager &AM, CGSCCUpdateResult &UR,
1933     FunctionAnalysisManager &FAM) {
1934   if (!Shape.CoroBegin)
1935     return;
1936 
1937   for (llvm::AnyCoroEndInst *End : Shape.CoroEnds) {
1938     auto &Context = End->getContext();
1939     End->replaceAllUsesWith(ConstantInt::getFalse(Context));
1940     End->eraseFromParent();
1941   }
1942 
1943   if (!Clones.empty()) {
1944     switch (Shape.ABI) {
1945     case coro::ABI::Switch:
1946       // Each clone in the Switch lowering is independent of the other clones.
1947       // Let the LazyCallGraph know about each one separately.
1948       for (Function *Clone : Clones)
1949         CG.addSplitFunction(N.getFunction(), *Clone);
1950       break;
1951     case coro::ABI::Async:
1952     case coro::ABI::Retcon:
1953     case coro::ABI::RetconOnce:
1954       // Each clone in the Async/Retcon lowering references of the other clones.
1955       // Let the LazyCallGraph know about all of them at once.
1956       if (!Clones.empty())
1957         CG.addSplitRefRecursiveFunctions(N.getFunction(), Clones);
1958       break;
1959     }
1960 
1961     // Let the CGSCC infra handle the changes to the original function.
1962     updateCGAndAnalysisManagerForCGSCCPass(CG, C, N, AM, UR, FAM);
1963   }
1964 
1965   // Do some cleanup and let the CGSCC infra see if we've cleaned up any edges
1966   // to the split functions.
1967   postSplitCleanup(N.getFunction());
1968   updateCGAndAnalysisManagerForFunctionPass(CG, C, N, AM, UR, FAM);
1969 }
1970 
1971 // When we see the coroutine the first time, we insert an indirect call to a
1972 // devirt trigger function and mark the coroutine that it is now ready for
1973 // split.
1974 // Async lowering uses this after it has split the function to restart the
1975 // pipeline.
1976 static void prepareForSplit(Function &F, CallGraph &CG,
1977                             bool MarkForAsyncRestart = false) {
1978   Module &M = *F.getParent();
1979   LLVMContext &Context = F.getContext();
1980 #ifndef NDEBUG
1981   Function *DevirtFn = M.getFunction(CORO_DEVIRT_TRIGGER_FN);
1982   assert(DevirtFn && "coro.devirt.trigger function not found");
1983 #endif
1984 
1985   F.addFnAttr(CORO_PRESPLIT_ATTR, MarkForAsyncRestart
1986                                       ? ASYNC_RESTART_AFTER_SPLIT
1987                                       : PREPARED_FOR_SPLIT);
1988 
1989   // Insert an indirect call sequence that will be devirtualized by CoroElide
1990   // pass:
1991   //    %0 = call i8* @llvm.coro.subfn.addr(i8* null, i8 -1)
1992   //    %1 = bitcast i8* %0 to void(i8*)*
1993   //    call void %1(i8* null)
1994   coro::LowererBase Lowerer(M);
1995   Instruction *InsertPt =
1996       MarkForAsyncRestart ? F.getEntryBlock().getFirstNonPHIOrDbgOrLifetime()
1997                           : F.getEntryBlock().getTerminator();
1998   auto *Null = ConstantPointerNull::get(Type::getInt8PtrTy(Context));
1999   auto *DevirtFnAddr =
2000       Lowerer.makeSubFnCall(Null, CoroSubFnInst::RestartTrigger, InsertPt);
2001   FunctionType *FnTy = FunctionType::get(Type::getVoidTy(Context),
2002                                          {Type::getInt8PtrTy(Context)}, false);
2003   auto *IndirectCall = CallInst::Create(FnTy, DevirtFnAddr, Null, "", InsertPt);
2004 
2005   // Update CG graph with an indirect call we just added.
2006   CG[&F]->addCalledFunction(IndirectCall, CG.getCallsExternalNode());
2007 }
2008 
2009 // Make sure that there is a devirtualization trigger function that the
2010 // coro-split pass uses to force a restart of the CGSCC pipeline. If the devirt
2011 // trigger function is not found, we will create one and add it to the current
2012 // SCC.
2013 static void createDevirtTriggerFunc(CallGraph &CG, CallGraphSCC &SCC) {
2014   Module &M = CG.getModule();
2015   if (M.getFunction(CORO_DEVIRT_TRIGGER_FN))
2016     return;
2017 
2018   LLVMContext &C = M.getContext();
2019   auto *FnTy = FunctionType::get(Type::getVoidTy(C), Type::getInt8PtrTy(C),
2020                                  /*isVarArg=*/false);
2021   Function *DevirtFn =
2022       Function::Create(FnTy, GlobalValue::LinkageTypes::PrivateLinkage,
2023                        CORO_DEVIRT_TRIGGER_FN, &M);
2024   DevirtFn->addFnAttr(Attribute::AlwaysInline);
2025   auto *Entry = BasicBlock::Create(C, "entry", DevirtFn);
2026   ReturnInst::Create(C, Entry);
2027 
2028   auto *Node = CG.getOrInsertFunction(DevirtFn);
2029 
2030   SmallVector<CallGraphNode *, 8> Nodes(SCC.begin(), SCC.end());
2031   Nodes.push_back(Node);
2032   SCC.initialize(Nodes);
2033 }
2034 
2035 /// Replace a call to llvm.coro.prepare.retcon.
2036 static void replacePrepare(CallInst *Prepare, LazyCallGraph &CG,
2037                            LazyCallGraph::SCC &C) {
2038   auto CastFn = Prepare->getArgOperand(0); // as an i8*
2039   auto Fn = CastFn->stripPointerCasts();   // as its original type
2040 
2041   // Attempt to peephole this pattern:
2042   //    %0 = bitcast [[TYPE]] @some_function to i8*
2043   //    %1 = call @llvm.coro.prepare.retcon(i8* %0)
2044   //    %2 = bitcast %1 to [[TYPE]]
2045   // ==>
2046   //    %2 = @some_function
2047   for (Use &U : llvm::make_early_inc_range(Prepare->uses())) {
2048     // Look for bitcasts back to the original function type.
2049     auto *Cast = dyn_cast<BitCastInst>(U.getUser());
2050     if (!Cast || Cast->getType() != Fn->getType())
2051       continue;
2052 
2053     // Replace and remove the cast.
2054     Cast->replaceAllUsesWith(Fn);
2055     Cast->eraseFromParent();
2056   }
2057 
2058   // Replace any remaining uses with the function as an i8*.
2059   // This can never directly be a callee, so we don't need to update CG.
2060   Prepare->replaceAllUsesWith(CastFn);
2061   Prepare->eraseFromParent();
2062 
2063   // Kill dead bitcasts.
2064   while (auto *Cast = dyn_cast<BitCastInst>(CastFn)) {
2065     if (!Cast->use_empty())
2066       break;
2067     CastFn = Cast->getOperand(0);
2068     Cast->eraseFromParent();
2069   }
2070 }
2071 /// Replace a call to llvm.coro.prepare.retcon.
2072 static void replacePrepare(CallInst *Prepare, CallGraph &CG) {
2073   auto CastFn = Prepare->getArgOperand(0); // as an i8*
2074   auto Fn = CastFn->stripPointerCasts(); // as its original type
2075 
2076   // Find call graph nodes for the preparation.
2077   CallGraphNode *PrepareUserNode = nullptr, *FnNode = nullptr;
2078   if (auto ConcreteFn = dyn_cast<Function>(Fn)) {
2079     PrepareUserNode = CG[Prepare->getFunction()];
2080     FnNode = CG[ConcreteFn];
2081   }
2082 
2083   // Attempt to peephole this pattern:
2084   //    %0 = bitcast [[TYPE]] @some_function to i8*
2085   //    %1 = call @llvm.coro.prepare.retcon(i8* %0)
2086   //    %2 = bitcast %1 to [[TYPE]]
2087   // ==>
2088   //    %2 = @some_function
2089   for (Use &U : llvm::make_early_inc_range(Prepare->uses())) {
2090     // Look for bitcasts back to the original function type.
2091     auto *Cast = dyn_cast<BitCastInst>(U.getUser());
2092     if (!Cast || Cast->getType() != Fn->getType()) continue;
2093 
2094     // Check whether the replacement will introduce new direct calls.
2095     // If so, we'll need to update the call graph.
2096     if (PrepareUserNode) {
2097       for (auto &Use : Cast->uses()) {
2098         if (auto *CB = dyn_cast<CallBase>(Use.getUser())) {
2099           if (!CB->isCallee(&Use))
2100             continue;
2101           PrepareUserNode->removeCallEdgeFor(*CB);
2102           PrepareUserNode->addCalledFunction(CB, FnNode);
2103         }
2104       }
2105     }
2106 
2107     // Replace and remove the cast.
2108     Cast->replaceAllUsesWith(Fn);
2109     Cast->eraseFromParent();
2110   }
2111 
2112   // Replace any remaining uses with the function as an i8*.
2113   // This can never directly be a callee, so we don't need to update CG.
2114   Prepare->replaceAllUsesWith(CastFn);
2115   Prepare->eraseFromParent();
2116 
2117   // Kill dead bitcasts.
2118   while (auto *Cast = dyn_cast<BitCastInst>(CastFn)) {
2119     if (!Cast->use_empty()) break;
2120     CastFn = Cast->getOperand(0);
2121     Cast->eraseFromParent();
2122   }
2123 }
2124 
2125 static bool replaceAllPrepares(Function *PrepareFn, LazyCallGraph &CG,
2126                                LazyCallGraph::SCC &C) {
2127   bool Changed = false;
2128   for (Use &P : llvm::make_early_inc_range(PrepareFn->uses())) {
2129     // Intrinsics can only be used in calls.
2130     auto *Prepare = cast<CallInst>(P.getUser());
2131     replacePrepare(Prepare, CG, C);
2132     Changed = true;
2133   }
2134 
2135   return Changed;
2136 }
2137 
2138 /// Remove calls to llvm.coro.prepare.retcon, a barrier meant to prevent
2139 /// IPO from operating on calls to a retcon coroutine before it's been
2140 /// split.  This is only safe to do after we've split all retcon
2141 /// coroutines in the module.  We can do that this in this pass because
2142 /// this pass does promise to split all retcon coroutines (as opposed to
2143 /// switch coroutines, which are lowered in multiple stages).
2144 static bool replaceAllPrepares(Function *PrepareFn, CallGraph &CG) {
2145   bool Changed = false;
2146   for (Use &P : llvm::make_early_inc_range(PrepareFn->uses())) {
2147     // Intrinsics can only be used in calls.
2148     auto *Prepare = cast<CallInst>(P.getUser());
2149     replacePrepare(Prepare, CG);
2150     Changed = true;
2151   }
2152 
2153   return Changed;
2154 }
2155 
2156 static bool declaresCoroSplitIntrinsics(const Module &M) {
2157   return coro::declaresIntrinsics(M, {"llvm.coro.begin",
2158                                       "llvm.coro.prepare.retcon",
2159                                       "llvm.coro.prepare.async"});
2160 }
2161 
2162 static void addPrepareFunction(const Module &M,
2163                                SmallVectorImpl<Function *> &Fns,
2164                                StringRef Name) {
2165   auto *PrepareFn = M.getFunction(Name);
2166   if (PrepareFn && !PrepareFn->use_empty())
2167     Fns.push_back(PrepareFn);
2168 }
2169 
2170 PreservedAnalyses CoroSplitPass::run(LazyCallGraph::SCC &C,
2171                                      CGSCCAnalysisManager &AM,
2172                                      LazyCallGraph &CG, CGSCCUpdateResult &UR) {
2173   // NB: One invariant of a valid LazyCallGraph::SCC is that it must contain a
2174   //     non-zero number of nodes, so we assume that here and grab the first
2175   //     node's function's module.
2176   Module &M = *C.begin()->getFunction().getParent();
2177   auto &FAM =
2178       AM.getResult<FunctionAnalysisManagerCGSCCProxy>(C, CG).getManager();
2179 
2180   if (!declaresCoroSplitIntrinsics(M))
2181     return PreservedAnalyses::all();
2182 
2183   // Check for uses of llvm.coro.prepare.retcon/async.
2184   SmallVector<Function *, 2> PrepareFns;
2185   addPrepareFunction(M, PrepareFns, "llvm.coro.prepare.retcon");
2186   addPrepareFunction(M, PrepareFns, "llvm.coro.prepare.async");
2187 
2188   // Find coroutines for processing.
2189   SmallVector<LazyCallGraph::Node *, 4> Coroutines;
2190   for (LazyCallGraph::Node &N : C)
2191     if (N.getFunction().hasFnAttribute(CORO_PRESPLIT_ATTR))
2192       Coroutines.push_back(&N);
2193 
2194   if (Coroutines.empty() && PrepareFns.empty())
2195     return PreservedAnalyses::all();
2196 
2197   if (Coroutines.empty()) {
2198     for (auto *PrepareFn : PrepareFns) {
2199       replaceAllPrepares(PrepareFn, CG, C);
2200     }
2201   }
2202 
2203   // Split all the coroutines.
2204   for (LazyCallGraph::Node *N : Coroutines) {
2205     Function &F = N->getFunction();
2206     LLVM_DEBUG(dbgs() << "CoroSplit: Processing coroutine '" << F.getName()
2207                       << "' state: "
2208                       << F.getFnAttribute(CORO_PRESPLIT_ATTR).getValueAsString()
2209                       << "\n");
2210     F.removeFnAttr(CORO_PRESPLIT_ATTR);
2211 
2212     SmallVector<Function *, 4> Clones;
2213     const coro::Shape Shape = splitCoroutine(F, Clones, OptimizeFrame);
2214     updateCallGraphAfterCoroutineSplit(*N, Shape, Clones, C, CG, AM, UR, FAM);
2215 
2216     if (!Shape.CoroSuspends.empty()) {
2217       // Run the CGSCC pipeline on the original and newly split functions.
2218       UR.CWorklist.insert(&C);
2219       for (Function *Clone : Clones)
2220         UR.CWorklist.insert(CG.lookupSCC(CG.get(*Clone)));
2221     }
2222   }
2223 
2224   if (!PrepareFns.empty()) {
2225     for (auto *PrepareFn : PrepareFns) {
2226       replaceAllPrepares(PrepareFn, CG, C);
2227     }
2228   }
2229 
2230   return PreservedAnalyses::none();
2231 }
2232 
2233 namespace {
2234 
2235 // We present a coroutine to LLVM as an ordinary function with suspension
2236 // points marked up with intrinsics. We let the optimizer party on the coroutine
2237 // as a single function for as long as possible. Shortly before the coroutine is
2238 // eligible to be inlined into its callers, we split up the coroutine into parts
2239 // corresponding to initial, resume and destroy invocations of the coroutine,
2240 // add them to the current SCC and restart the IPO pipeline to optimize the
2241 // coroutine subfunctions we extracted before proceeding to the caller of the
2242 // coroutine.
2243 struct CoroSplitLegacy : public CallGraphSCCPass {
2244   static char ID; // Pass identification, replacement for typeid
2245 
2246   CoroSplitLegacy(bool OptimizeFrame = false)
2247       : CallGraphSCCPass(ID), OptimizeFrame(OptimizeFrame) {
2248     initializeCoroSplitLegacyPass(*PassRegistry::getPassRegistry());
2249   }
2250 
2251   bool Run = false;
2252   bool OptimizeFrame;
2253 
2254   // A coroutine is identified by the presence of coro.begin intrinsic, if
2255   // we don't have any, this pass has nothing to do.
2256   bool doInitialization(CallGraph &CG) override {
2257     Run = declaresCoroSplitIntrinsics(CG.getModule());
2258     return CallGraphSCCPass::doInitialization(CG);
2259   }
2260 
2261   bool runOnSCC(CallGraphSCC &SCC) override {
2262     if (!Run)
2263       return false;
2264 
2265     // Check for uses of llvm.coro.prepare.retcon.
2266     SmallVector<Function *, 2> PrepareFns;
2267     auto &M = SCC.getCallGraph().getModule();
2268     addPrepareFunction(M, PrepareFns, "llvm.coro.prepare.retcon");
2269     addPrepareFunction(M, PrepareFns, "llvm.coro.prepare.async");
2270 
2271     // Find coroutines for processing.
2272     SmallVector<Function *, 4> Coroutines;
2273     for (CallGraphNode *CGN : SCC)
2274       if (auto *F = CGN->getFunction())
2275         if (F->hasFnAttribute(CORO_PRESPLIT_ATTR))
2276           Coroutines.push_back(F);
2277 
2278     if (Coroutines.empty() && PrepareFns.empty())
2279       return false;
2280 
2281     CallGraph &CG = getAnalysis<CallGraphWrapperPass>().getCallGraph();
2282 
2283     if (Coroutines.empty()) {
2284       bool Changed = false;
2285       for (auto *PrepareFn : PrepareFns)
2286         Changed |= replaceAllPrepares(PrepareFn, CG);
2287       return Changed;
2288     }
2289 
2290     createDevirtTriggerFunc(CG, SCC);
2291 
2292     // Split all the coroutines.
2293     for (Function *F : Coroutines) {
2294       Attribute Attr = F->getFnAttribute(CORO_PRESPLIT_ATTR);
2295       StringRef Value = Attr.getValueAsString();
2296       LLVM_DEBUG(dbgs() << "CoroSplit: Processing coroutine '" << F->getName()
2297                         << "' state: " << Value << "\n");
2298       // Async lowering marks coroutines to trigger a restart of the pipeline
2299       // after it has split them.
2300       if (Value == ASYNC_RESTART_AFTER_SPLIT) {
2301         F->removeFnAttr(CORO_PRESPLIT_ATTR);
2302         continue;
2303       }
2304       if (Value == UNPREPARED_FOR_SPLIT) {
2305         prepareForSplit(*F, CG);
2306         continue;
2307       }
2308       F->removeFnAttr(CORO_PRESPLIT_ATTR);
2309 
2310       SmallVector<Function *, 4> Clones;
2311       const coro::Shape Shape = splitCoroutine(*F, Clones, OptimizeFrame);
2312       updateCallGraphAfterCoroutineSplit(*F, Shape, Clones, CG, SCC);
2313       if (Shape.ABI == coro::ABI::Async) {
2314         // Restart SCC passes.
2315         // Mark function for CoroElide pass. It will devirtualize causing a
2316         // restart of the SCC pipeline.
2317         prepareForSplit(*F, CG, true /*MarkForAsyncRestart*/);
2318       }
2319     }
2320 
2321     for (auto *PrepareFn : PrepareFns)
2322       replaceAllPrepares(PrepareFn, CG);
2323 
2324     return true;
2325   }
2326 
2327   void getAnalysisUsage(AnalysisUsage &AU) const override {
2328     CallGraphSCCPass::getAnalysisUsage(AU);
2329   }
2330 
2331   StringRef getPassName() const override { return "Coroutine Splitting"; }
2332 };
2333 
2334 } // end anonymous namespace
2335 
2336 char CoroSplitLegacy::ID = 0;
2337 
2338 INITIALIZE_PASS_BEGIN(
2339     CoroSplitLegacy, "coro-split",
2340     "Split coroutine into a set of functions driving its state machine", false,
2341     false)
2342 INITIALIZE_PASS_DEPENDENCY(CallGraphWrapperPass)
2343 INITIALIZE_PASS_END(
2344     CoroSplitLegacy, "coro-split",
2345     "Split coroutine into a set of functions driving its state machine", false,
2346     false)
2347 
2348 Pass *llvm::createCoroSplitLegacyPass(bool OptimizeFrame) {
2349   return new CoroSplitLegacy(OptimizeFrame);
2350 }
2351