1 //===- CoroFrame.cpp - Builds and manipulates coroutine frame -------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 // This file contains classes used to discover if for a particular value
10 // there from sue to definition that crosses a suspend block.
11 //
12 // Using the information discovered we form a Coroutine Frame structure to
13 // contain those values. All uses of those values are replaced with appropriate
14 // GEP + load from the coroutine frame. At the point of the definition we spill
15 // the value into the coroutine frame.
16 //
17 // TODO: pack values tightly using liveness info.
18 //===----------------------------------------------------------------------===//
19 
20 #include "CoroInternal.h"
21 #include "llvm/ADT/BitVector.h"
22 #include "llvm/IR/CFG.h"
23 #include "llvm/IR/Dominators.h"
24 #include "llvm/IR/IRBuilder.h"
25 #include "llvm/IR/InstIterator.h"
26 #include "llvm/Support/Debug.h"
27 #include "llvm/Support/MathExtras.h"
28 #include "llvm/Support/circular_raw_ostream.h"
29 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
30 #include "llvm/Transforms/Utils/Local.h"
31 
32 using namespace llvm;
33 
34 // The "coro-suspend-crossing" flag is very noisy. There is another debug type,
35 // "coro-frame", which results in leaner debug spew.
36 #define DEBUG_TYPE "coro-suspend-crossing"
37 
38 enum { SmallVectorThreshold = 32 };
39 
40 // Provides two way mapping between the blocks and numbers.
41 namespace {
42 class BlockToIndexMapping {
43   SmallVector<BasicBlock *, SmallVectorThreshold> V;
44 
45 public:
46   size_t size() const { return V.size(); }
47 
48   BlockToIndexMapping(Function &F) {
49     for (BasicBlock &BB : F)
50       V.push_back(&BB);
51     std::sort(V.begin(), V.end());
52   }
53 
54   size_t blockToIndex(BasicBlock *BB) const {
55     auto *I = std::lower_bound(V.begin(), V.end(), BB);
56     assert(I != V.end() && *I == BB && "BasicBlockNumberng: Unknown block");
57     return I - V.begin();
58   }
59 
60   BasicBlock *indexToBlock(unsigned Index) const { return V[Index]; }
61 };
62 } // end anonymous namespace
63 
64 // The SuspendCrossingInfo maintains data that allows to answer a question
65 // whether given two BasicBlocks A and B there is a path from A to B that
66 // passes through a suspend point.
67 //
68 // For every basic block 'i' it maintains a BlockData that consists of:
69 //   Consumes:  a bit vector which contains a set of indices of blocks that can
70 //              reach block 'i'
71 //   Kills: a bit vector which contains a set of indices of blocks that can
72 //          reach block 'i', but one of the path will cross a suspend point
73 //   Suspend: a boolean indicating whether block 'i' contains a suspend point.
74 //   End: a boolean indicating whether block 'i' contains a coro.end intrinsic.
75 //
76 namespace {
77 struct SuspendCrossingInfo {
78   BlockToIndexMapping Mapping;
79 
80   struct BlockData {
81     BitVector Consumes;
82     BitVector Kills;
83     bool Suspend = false;
84     bool End = false;
85   };
86   SmallVector<BlockData, SmallVectorThreshold> Block;
87 
88   iterator_range<succ_iterator> successors(BlockData const &BD) const {
89     BasicBlock *BB = Mapping.indexToBlock(&BD - &Block[0]);
90     return llvm::successors(BB);
91   }
92 
93   BlockData &getBlockData(BasicBlock *BB) {
94     return Block[Mapping.blockToIndex(BB)];
95   }
96 
97   void dump() const;
98   void dump(StringRef Label, BitVector const &BV) const;
99 
100   SuspendCrossingInfo(Function &F, coro::Shape &Shape);
101 
102   bool hasPathCrossingSuspendPoint(BasicBlock *DefBB, BasicBlock *UseBB) const {
103     size_t const DefIndex = Mapping.blockToIndex(DefBB);
104     size_t const UseIndex = Mapping.blockToIndex(UseBB);
105 
106     assert(Block[UseIndex].Consumes[DefIndex] && "use must consume def");
107     bool const Result = Block[UseIndex].Kills[DefIndex];
108     DEBUG(dbgs() << UseBB->getName() << " => " << DefBB->getName()
109                  << " answer is " << Result << "\n");
110     return Result;
111   }
112 
113   bool isDefinitionAcrossSuspend(BasicBlock *DefBB, User *U) const {
114     auto *I = cast<Instruction>(U);
115 
116     // We rewrote PHINodes, so that only the ones with exactly one incoming
117     // value need to be analyzed.
118     if (auto *PN = dyn_cast<PHINode>(I))
119       if (PN->getNumIncomingValues() > 1)
120         return false;
121 
122     BasicBlock *UseBB = I->getParent();
123     return hasPathCrossingSuspendPoint(DefBB, UseBB);
124   }
125 
126   bool isDefinitionAcrossSuspend(Argument &A, User *U) const {
127     return isDefinitionAcrossSuspend(&A.getParent()->getEntryBlock(), U);
128   }
129 
130   bool isDefinitionAcrossSuspend(Instruction &I, User *U) const {
131     return isDefinitionAcrossSuspend(I.getParent(), U);
132   }
133 };
134 } // end anonymous namespace
135 
136 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
137 LLVM_DUMP_METHOD void SuspendCrossingInfo::dump(StringRef Label,
138                                                 BitVector const &BV) const {
139   dbgs() << Label << ":";
140   for (size_t I = 0, N = BV.size(); I < N; ++I)
141     if (BV[I])
142       dbgs() << " " << Mapping.indexToBlock(I)->getName();
143   dbgs() << "\n";
144 }
145 
146 LLVM_DUMP_METHOD void SuspendCrossingInfo::dump() const {
147   for (size_t I = 0, N = Block.size(); I < N; ++I) {
148     BasicBlock *const B = Mapping.indexToBlock(I);
149     dbgs() << B->getName() << ":\n";
150     dump("   Consumes", Block[I].Consumes);
151     dump("      Kills", Block[I].Kills);
152   }
153   dbgs() << "\n";
154 }
155 #endif
156 
157 SuspendCrossingInfo::SuspendCrossingInfo(Function &F, coro::Shape &Shape)
158     : Mapping(F) {
159   const size_t N = Mapping.size();
160   Block.resize(N);
161 
162   // Initialize every block so that it consumes itself
163   for (size_t I = 0; I < N; ++I) {
164     auto &B = Block[I];
165     B.Consumes.resize(N);
166     B.Kills.resize(N);
167     B.Consumes.set(I);
168   }
169 
170   // Mark all CoroEnd Blocks. We do not propagate Kills beyond coro.ends as
171   // the code beyond coro.end is reachable during initial invocation of the
172   // coroutine.
173   for (auto *CE : Shape.CoroEnds)
174     getBlockData(CE->getParent()).End = true;
175 
176   // Mark all suspend blocks and indicate that they kill everything they
177   // consume. Note, that crossing coro.save also requires a spill, as any code
178   // between coro.save and coro.suspend may resume the coroutine and all of the
179   // state needs to be saved by that time.
180   auto markSuspendBlock = [&](IntrinsicInst* BarrierInst) {
181     BasicBlock *SuspendBlock = BarrierInst->getParent();
182     auto &B = getBlockData(SuspendBlock);
183     B.Suspend = true;
184     B.Kills |= B.Consumes;
185   };
186   for (CoroSuspendInst *CSI : Shape.CoroSuspends) {
187     markSuspendBlock(CSI);
188     markSuspendBlock(CSI->getCoroSave());
189   }
190 
191   // Iterate propagating consumes and kills until they stop changing.
192   int Iteration = 0;
193   (void)Iteration;
194 
195   bool Changed;
196   do {
197     DEBUG(dbgs() << "iteration " << ++Iteration);
198     DEBUG(dbgs() << "==============\n");
199 
200     Changed = false;
201     for (size_t I = 0; I < N; ++I) {
202       auto &B = Block[I];
203       for (BasicBlock *SI : successors(B)) {
204 
205         auto SuccNo = Mapping.blockToIndex(SI);
206 
207         // Saved Consumes and Kills bitsets so that it is easy to see
208         // if anything changed after propagation.
209         auto &S = Block[SuccNo];
210         auto SavedConsumes = S.Consumes;
211         auto SavedKills = S.Kills;
212 
213         // Propagate Kills and Consumes from block B into its successor S.
214         S.Consumes |= B.Consumes;
215         S.Kills |= B.Kills;
216 
217         // If block B is a suspend block, it should propagate kills into the
218         // its successor for every block B consumes.
219         if (B.Suspend) {
220           S.Kills |= B.Consumes;
221         }
222         if (S.Suspend) {
223           // If block S is a suspend block, it should kill all of the blocks it
224           // consumes.
225           S.Kills |= S.Consumes;
226         } else if (S.End) {
227           // If block S is an end block, it should not propagate kills as the
228           // blocks following coro.end() are reached during initial invocation
229           // of the coroutine while all the data are still available on the
230           // stack or in the registers.
231           S.Kills.reset();
232         } else {
233           // This is reached when S block it not Suspend nor coro.end and it
234           // need to make sure that it is not in the kill set.
235           S.Kills.reset(SuccNo);
236         }
237 
238         // See if anything changed.
239         Changed |= (S.Kills != SavedKills) || (S.Consumes != SavedConsumes);
240 
241         if (S.Kills != SavedKills) {
242           DEBUG(dbgs() << "\nblock " << I << " follower " << SI->getName()
243                        << "\n");
244           DEBUG(dump("S.Kills", S.Kills));
245           DEBUG(dump("SavedKills", SavedKills));
246         }
247         if (S.Consumes != SavedConsumes) {
248           DEBUG(dbgs() << "\nblock " << I << " follower " << SI << "\n");
249           DEBUG(dump("S.Consume", S.Consumes));
250           DEBUG(dump("SavedCons", SavedConsumes));
251         }
252       }
253     }
254   } while (Changed);
255   DEBUG(dump());
256 }
257 
258 #undef DEBUG_TYPE // "coro-suspend-crossing"
259 #define DEBUG_TYPE "coro-frame"
260 
261 // We build up the list of spills for every case where a use is separated
262 // from the definition by a suspend point.
263 
264 struct Spill : std::pair<Value *, Instruction *> {
265   using base = std::pair<Value *, Instruction *>;
266 
267   Spill(Value *Def, User *U) : base(Def, cast<Instruction>(U)) {}
268 
269   Value *def() const { return first; }
270   Instruction *user() const { return second; }
271   BasicBlock *userBlock() const { return second->getParent(); }
272 
273   std::pair<Value *, BasicBlock *> getKey() const {
274     return {def(), userBlock()};
275   }
276 
277   bool operator<(Spill const &rhs) const { return getKey() < rhs.getKey(); }
278 };
279 
280 // Note that there may be more than one record with the same value of Def in
281 // the SpillInfo vector.
282 using SpillInfo = SmallVector<Spill, 8>;
283 
284 #ifndef NDEBUG
285 static void dump(StringRef Title, SpillInfo const &Spills) {
286   dbgs() << "------------- " << Title << "--------------\n";
287   Value *CurrentValue = nullptr;
288   for (auto const &E : Spills) {
289     if (CurrentValue != E.def()) {
290       CurrentValue = E.def();
291       CurrentValue->dump();
292     }
293     dbgs() << "   user: ";
294     E.user()->dump();
295   }
296 }
297 #endif
298 
299 // Build a struct that will keep state for an active coroutine.
300 //   struct f.frame {
301 //     ResumeFnTy ResumeFnAddr;
302 //     ResumeFnTy DestroyFnAddr;
303 //     int ResumeIndex;
304 //     ... promise (if present) ...
305 //     ... spills ...
306 //   };
307 static StructType *buildFrameType(Function &F, coro::Shape &Shape,
308                                   SpillInfo &Spills) {
309   LLVMContext &C = F.getContext();
310   SmallString<32> Name(F.getName());
311   Name.append(".Frame");
312   StructType *FrameTy = StructType::create(C, Name);
313   auto *FramePtrTy = FrameTy->getPointerTo();
314   auto *FnTy = FunctionType::get(Type::getVoidTy(C), FramePtrTy,
315                                  /*IsVarArgs=*/false);
316   auto *FnPtrTy = FnTy->getPointerTo();
317 
318   // Figure out how wide should be an integer type storing the suspend index.
319   unsigned IndexBits = std::max(1U, Log2_64_Ceil(Shape.CoroSuspends.size()));
320   Type *PromiseType = Shape.PromiseAlloca
321                           ? Shape.PromiseAlloca->getType()->getElementType()
322                           : Type::getInt1Ty(C);
323   SmallVector<Type *, 8> Types{FnPtrTy, FnPtrTy, PromiseType,
324                                Type::getIntNTy(C, IndexBits)};
325   Value *CurrentDef = nullptr;
326 
327   // Create an entry for every spilled value.
328   for (auto const &S : Spills) {
329     if (CurrentDef == S.def())
330       continue;
331 
332     CurrentDef = S.def();
333     // PromiseAlloca was already added to Types array earlier.
334     if (CurrentDef == Shape.PromiseAlloca)
335       continue;
336 
337     Type *Ty = nullptr;
338     if (auto *AI = dyn_cast<AllocaInst>(CurrentDef))
339       Ty = AI->getAllocatedType();
340     else
341       Ty = CurrentDef->getType();
342 
343     Types.push_back(Ty);
344   }
345   FrameTy->setBody(Types);
346 
347   return FrameTy;
348 }
349 
350 // Replace all alloca and SSA values that are accessed across suspend points
351 // with GetElementPointer from coroutine frame + loads and stores. Create an
352 // AllocaSpillBB that will become the new entry block for the resume parts of
353 // the coroutine:
354 //
355 //    %hdl = coro.begin(...)
356 //    whatever
357 //
358 // becomes:
359 //
360 //    %hdl = coro.begin(...)
361 //    %FramePtr = bitcast i8* hdl to %f.frame*
362 //    br label %AllocaSpillBB
363 //
364 //  AllocaSpillBB:
365 //    ; geps corresponding to allocas that were moved to coroutine frame
366 //    br label PostSpill
367 //
368 //  PostSpill:
369 //    whatever
370 //
371 //
372 static Instruction *insertSpills(SpillInfo &Spills, coro::Shape &Shape) {
373   auto *CB = Shape.CoroBegin;
374   IRBuilder<> Builder(CB->getNextNode());
375   PointerType *FramePtrTy = Shape.FrameTy->getPointerTo();
376   auto *FramePtr =
377       cast<Instruction>(Builder.CreateBitCast(CB, FramePtrTy, "FramePtr"));
378   Type *FrameTy = FramePtrTy->getElementType();
379 
380   Value *CurrentValue = nullptr;
381   BasicBlock *CurrentBlock = nullptr;
382   Value *CurrentReload = nullptr;
383   unsigned Index = coro::Shape::LastKnownField;
384 
385   // We need to keep track of any allocas that need "spilling"
386   // since they will live in the coroutine frame now, all access to them
387   // need to be changed, not just the access across suspend points
388   // we remember allocas and their indices to be handled once we processed
389   // all the spills.
390   SmallVector<std::pair<AllocaInst *, unsigned>, 4> Allocas;
391   // Promise alloca (if present) has a fixed field number (Shape::PromiseField)
392   if (Shape.PromiseAlloca)
393     Allocas.emplace_back(Shape.PromiseAlloca, coro::Shape::PromiseField);
394 
395   // Create a load instruction to reload the spilled value from the coroutine
396   // frame.
397   auto CreateReload = [&](Instruction *InsertBefore) {
398     Builder.SetInsertPoint(InsertBefore);
399     auto *G = Builder.CreateConstInBoundsGEP2_32(FrameTy, FramePtr, 0, Index,
400                                                  CurrentValue->getName() +
401                                                      Twine(".reload.addr"));
402     return isa<AllocaInst>(CurrentValue)
403                ? G
404                : Builder.CreateLoad(G,
405                                     CurrentValue->getName() + Twine(".reload"));
406   };
407 
408   for (auto const &E : Spills) {
409     // If we have not seen the value, generate a spill.
410     if (CurrentValue != E.def()) {
411       CurrentValue = E.def();
412       CurrentBlock = nullptr;
413       CurrentReload = nullptr;
414 
415       ++Index;
416 
417       if (auto *AI = dyn_cast<AllocaInst>(CurrentValue)) {
418         // Spilled AllocaInst will be replaced with GEP from the coroutine frame
419         // there is no spill required.
420         Allocas.emplace_back(AI, Index);
421         if (!AI->isStaticAlloca())
422           report_fatal_error("Coroutines cannot handle non static allocas yet");
423       } else {
424         // Otherwise, create a store instruction storing the value into the
425         // coroutine frame.
426 
427         Instruction *InsertPt = nullptr;
428         if (isa<Argument>(CurrentValue)) {
429           // For arguments, we will place the store instruction right after
430           // the coroutine frame pointer instruction, i.e. bitcast of
431           // coro.begin from i8* to %f.frame*.
432           InsertPt = FramePtr->getNextNode();
433         } else if (auto *II = dyn_cast<InvokeInst>(CurrentValue)) {
434           // If we are spilling the result of the invoke instruction, split the
435           // normal edge and insert the spill in the new block.
436           auto NewBB = SplitEdge(II->getParent(), II->getNormalDest());
437           InsertPt = NewBB->getTerminator();
438         } else {
439           // For all other values, the spill is placed immediately after
440           // the definition.
441           assert(!isa<TerminatorInst>(E.def()) && "unexpected terminator");
442           InsertPt = cast<Instruction>(E.def())->getNextNode();
443         }
444 
445         Builder.SetInsertPoint(InsertPt);
446         auto *G = Builder.CreateConstInBoundsGEP2_32(
447             FrameTy, FramePtr, 0, Index,
448             CurrentValue->getName() + Twine(".spill.addr"));
449         Builder.CreateStore(CurrentValue, G);
450       }
451     }
452 
453     // If we have not seen the use block, generate a reload in it.
454     if (CurrentBlock != E.userBlock()) {
455       CurrentBlock = E.userBlock();
456       CurrentReload = CreateReload(&*CurrentBlock->getFirstInsertionPt());
457     }
458 
459     // If we have a single edge PHINode, remove it and replace it with a reload
460     // from the coroutine frame. (We already took care of multi edge PHINodes
461     // by rewriting them in the rewritePHIs function).
462     if (auto *PN = dyn_cast<PHINode>(E.user())) {
463       assert(PN->getNumIncomingValues() == 1 && "unexpected number of incoming "
464                                                 "values in the PHINode");
465       PN->replaceAllUsesWith(CurrentReload);
466       PN->eraseFromParent();
467       continue;
468     }
469 
470     // Replace all uses of CurrentValue in the current instruction with reload.
471     E.user()->replaceUsesOfWith(CurrentValue, CurrentReload);
472   }
473 
474   BasicBlock *FramePtrBB = FramePtr->getParent();
475   Shape.AllocaSpillBlock =
476       FramePtrBB->splitBasicBlock(FramePtr->getNextNode(), "AllocaSpillBB");
477   Shape.AllocaSpillBlock->splitBasicBlock(&Shape.AllocaSpillBlock->front(),
478                                           "PostSpill");
479 
480   Builder.SetInsertPoint(&Shape.AllocaSpillBlock->front());
481   // If we found any allocas, replace all of their remaining uses with Geps.
482   for (auto &P : Allocas) {
483     auto *G =
484         Builder.CreateConstInBoundsGEP2_32(FrameTy, FramePtr, 0, P.second);
485     // We are not using ReplaceInstWithInst(P.first, cast<Instruction>(G)) here,
486     // as we are changing location of the instruction.
487     G->takeName(P.first);
488     P.first->replaceAllUsesWith(G);
489     P.first->eraseFromParent();
490   }
491   return FramePtr;
492 }
493 
494 static void rewritePHIs(BasicBlock &BB) {
495   // For every incoming edge we will create a block holding all
496   // incoming values in a single PHI nodes.
497   //
498   // loop:
499   //    %n.val = phi i32[%n, %entry], [%inc, %loop]
500   //
501   // It will create:
502   //
503   // loop.from.entry:
504   //    %n.loop.pre = phi i32 [%n, %entry]
505   //    br %label loop
506   // loop.from.loop:
507   //    %inc.loop.pre = phi i32 [%inc, %loop]
508   //    br %label loop
509   //
510   // After this rewrite, further analysis will ignore any phi nodes with more
511   // than one incoming edge.
512 
513   // TODO: Simplify PHINodes in the basic block to remove duplicate
514   // predecessors.
515 
516   SmallVector<BasicBlock *, 8> Preds(pred_begin(&BB), pred_end(&BB));
517   for (BasicBlock *Pred : Preds) {
518     auto *IncomingBB = SplitEdge(Pred, &BB);
519     IncomingBB->setName(BB.getName() + Twine(".from.") + Pred->getName());
520     auto *PN = cast<PHINode>(&BB.front());
521     do {
522       int Index = PN->getBasicBlockIndex(IncomingBB);
523       Value *V = PN->getIncomingValue(Index);
524       PHINode *InputV = PHINode::Create(
525           V->getType(), 1, V->getName() + Twine(".") + BB.getName(),
526           &IncomingBB->front());
527       InputV->addIncoming(V, Pred);
528       PN->setIncomingValue(Index, InputV);
529       PN = dyn_cast<PHINode>(PN->getNextNode());
530     } while (PN);
531   }
532 }
533 
534 static void rewritePHIs(Function &F) {
535   SmallVector<BasicBlock *, 8> WorkList;
536 
537   for (BasicBlock &BB : F)
538     if (auto *PN = dyn_cast<PHINode>(&BB.front()))
539       if (PN->getNumIncomingValues() > 1)
540         WorkList.push_back(&BB);
541 
542   for (BasicBlock *BB : WorkList)
543     rewritePHIs(*BB);
544 }
545 
546 // Check for instructions that we can recreate on resume as opposed to spill
547 // the result into a coroutine frame.
548 static bool materializable(Instruction &V) {
549   return isa<CastInst>(&V) || isa<GetElementPtrInst>(&V) ||
550          isa<BinaryOperator>(&V) || isa<CmpInst>(&V) || isa<SelectInst>(&V);
551 }
552 
553 // Check for structural coroutine intrinsics that should not be spilled into
554 // the coroutine frame.
555 static bool isCoroutineStructureIntrinsic(Instruction &I) {
556   return isa<CoroIdInst>(&I) || isa<CoroBeginInst>(&I) ||
557          isa<CoroSaveInst>(&I) || isa<CoroSuspendInst>(&I);
558 }
559 
560 // For every use of the value that is across suspend point, recreate that value
561 // after a suspend point.
562 static void rewriteMaterializableInstructions(IRBuilder<> &IRB,
563                                               SpillInfo const &Spills) {
564   BasicBlock *CurrentBlock = nullptr;
565   Instruction *CurrentMaterialization = nullptr;
566   Instruction *CurrentDef = nullptr;
567 
568   for (auto const &E : Spills) {
569     // If it is a new definition, update CurrentXXX variables.
570     if (CurrentDef != E.def()) {
571       CurrentDef = cast<Instruction>(E.def());
572       CurrentBlock = nullptr;
573       CurrentMaterialization = nullptr;
574     }
575 
576     // If we have not seen this block, materialize the value.
577     if (CurrentBlock != E.userBlock()) {
578       CurrentBlock = E.userBlock();
579       CurrentMaterialization = cast<Instruction>(CurrentDef)->clone();
580       CurrentMaterialization->setName(CurrentDef->getName());
581       CurrentMaterialization->insertBefore(
582           &*CurrentBlock->getFirstInsertionPt());
583     }
584 
585     if (auto *PN = dyn_cast<PHINode>(E.user())) {
586       assert(PN->getNumIncomingValues() == 1 && "unexpected number of incoming "
587                                                 "values in the PHINode");
588       PN->replaceAllUsesWith(CurrentMaterialization);
589       PN->eraseFromParent();
590       continue;
591     }
592 
593     // Replace all uses of CurrentDef in the current instruction with the
594     // CurrentMaterialization for the block.
595     E.user()->replaceUsesOfWith(CurrentDef, CurrentMaterialization);
596   }
597 }
598 
599 // Move early uses of spilled variable after CoroBegin.
600 // For example, if a parameter had address taken, we may end up with the code
601 // like:
602 //        define @f(i32 %n) {
603 //          %n.addr = alloca i32
604 //          store %n, %n.addr
605 //          ...
606 //          call @coro.begin
607 //    we need to move the store after coro.begin
608 static void moveSpillUsesAfterCoroBegin(Function &F, SpillInfo const &Spills,
609                                         CoroBeginInst *CoroBegin) {
610   DominatorTree DT(F);
611   SmallVector<Instruction *, 8> NeedsMoving;
612 
613   Value *CurrentValue = nullptr;
614 
615   for (auto const &E : Spills) {
616     if (CurrentValue == E.def())
617       continue;
618 
619     CurrentValue = E.def();
620 
621     for (User *U : CurrentValue->users()) {
622       Instruction *I = cast<Instruction>(U);
623       if (!DT.dominates(CoroBegin, I)) {
624         // TODO: Make this more robust. Currently if we run into a situation
625         // where simple instruction move won't work we panic and
626         // report_fatal_error.
627         for (User *UI : I->users()) {
628           if (!DT.dominates(CoroBegin, cast<Instruction>(UI)))
629             report_fatal_error("cannot move instruction since its users are not"
630                                " dominated by CoroBegin");
631         }
632 
633         DEBUG(dbgs() << "will move: " << *I << "\n");
634         NeedsMoving.push_back(I);
635       }
636     }
637   }
638 
639   Instruction *InsertPt = CoroBegin->getNextNode();
640   for (Instruction *I : NeedsMoving)
641     I->moveBefore(InsertPt);
642 }
643 
644 // Splits the block at a particular instruction unless it is the first
645 // instruction in the block with a single predecessor.
646 static BasicBlock *splitBlockIfNotFirst(Instruction *I, const Twine &Name) {
647   auto *BB = I->getParent();
648   if (&BB->front() == I) {
649     if (BB->getSinglePredecessor()) {
650       BB->setName(Name);
651       return BB;
652     }
653   }
654   return BB->splitBasicBlock(I, Name);
655 }
656 
657 // Split above and below a particular instruction so that it
658 // will be all alone by itself in a block.
659 static void splitAround(Instruction *I, const Twine &Name) {
660   splitBlockIfNotFirst(I, Name);
661   splitBlockIfNotFirst(I->getNextNode(), "After" + Name);
662 }
663 
664 void coro::buildCoroutineFrame(Function &F, Shape &Shape) {
665   // Lower coro.dbg.declare to coro.dbg.value, since we are going to rewrite
666   // access to local variables.
667   LowerDbgDeclare(F);
668 
669   Shape.PromiseAlloca = Shape.CoroBegin->getId()->getPromise();
670   if (Shape.PromiseAlloca) {
671     Shape.CoroBegin->getId()->clearPromise();
672   }
673 
674   // Make sure that all coro.save, coro.suspend and the fallthrough coro.end
675   // intrinsics are in their own blocks to simplify the logic of building up
676   // SuspendCrossing data.
677   for (CoroSuspendInst *CSI : Shape.CoroSuspends) {
678     splitAround(CSI->getCoroSave(), "CoroSave");
679     splitAround(CSI, "CoroSuspend");
680   }
681 
682   // Put fallthrough CoroEnd into its own block. Note: Shape::buildFrom places
683   // the fallthrough coro.end as the first element of CoroEnds array.
684   splitAround(Shape.CoroEnds.front(), "CoroEnd");
685 
686   // Transforms multi-edge PHI Nodes, so that any value feeding into a PHI will
687   // never has its definition separated from the PHI by the suspend point.
688   rewritePHIs(F);
689 
690   // Build suspend crossing info.
691   SuspendCrossingInfo Checker(F, Shape);
692 
693   IRBuilder<> Builder(F.getContext());
694   SpillInfo Spills;
695 
696   // See if there are materializable instructions across suspend points.
697   for (Instruction &I : instructions(F))
698     if (materializable(I))
699       for (User *U : I.users())
700         if (Checker.isDefinitionAcrossSuspend(I, U))
701           Spills.emplace_back(&I, U);
702 
703   // Rewrite materializable instructions to be materialized at the use point.
704   std::sort(Spills.begin(), Spills.end());
705   DEBUG(dump("Materializations", Spills));
706   rewriteMaterializableInstructions(Builder, Spills);
707 
708   // Collect the spills for arguments and other not-materializable values.
709   Spills.clear();
710   for (Argument &A : F.getArgumentList())
711     for (User *U : A.users())
712       if (Checker.isDefinitionAcrossSuspend(A, U))
713         Spills.emplace_back(&A, U);
714 
715   for (Instruction &I : instructions(F)) {
716     // Values returned from coroutine structure intrinsics should not be part
717     // of the Coroutine Frame.
718     if (isCoroutineStructureIntrinsic(I))
719       continue;
720     // The Coroutine Promise always included into coroutine frame, no need to
721     // check for suspend crossing.
722     if (Shape.PromiseAlloca == &I)
723       continue;
724 
725     for (User *U : I.users())
726       if (Checker.isDefinitionAcrossSuspend(I, U)) {
727         // We cannot spill a token.
728         if (I.getType()->isTokenTy())
729           report_fatal_error(
730               "token definition is separated from the use by a suspend point");
731         assert(!materializable(I) &&
732                "rewriteMaterializable did not do its job");
733         Spills.emplace_back(&I, U);
734       }
735   }
736   std::sort(Spills.begin(), Spills.end());
737   DEBUG(dump("Spills", Spills));
738   moveSpillUsesAfterCoroBegin(F, Spills, Shape.CoroBegin);
739   Shape.FrameTy = buildFrameType(F, Shape, Spills);
740   Shape.FramePtr = insertSpills(Spills, Shape);
741 }
742