1 //===- CoroFrame.cpp - Builds and manipulates coroutine frame -------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // This file contains classes used to discover if for a particular value 9 // there from sue to definition that crosses a suspend block. 10 // 11 // Using the information discovered we form a Coroutine Frame structure to 12 // contain those values. All uses of those values are replaced with appropriate 13 // GEP + load from the coroutine frame. At the point of the definition we spill 14 // the value into the coroutine frame. 15 //===----------------------------------------------------------------------===// 16 17 #include "CoroInternal.h" 18 #include "llvm/ADT/BitVector.h" 19 #include "llvm/ADT/SmallString.h" 20 #include "llvm/Analysis/PtrUseVisitor.h" 21 #include "llvm/Analysis/StackLifetime.h" 22 #include "llvm/Config/llvm-config.h" 23 #include "llvm/IR/CFG.h" 24 #include "llvm/IR/DIBuilder.h" 25 #include "llvm/IR/Dominators.h" 26 #include "llvm/IR/IRBuilder.h" 27 #include "llvm/IR/InstIterator.h" 28 #include "llvm/Support/CommandLine.h" 29 #include "llvm/Support/Debug.h" 30 #include "llvm/Support/MathExtras.h" 31 #include "llvm/Support/OptimizedStructLayout.h" 32 #include "llvm/Support/circular_raw_ostream.h" 33 #include "llvm/Support/raw_ostream.h" 34 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 35 #include "llvm/Transforms/Utils/Local.h" 36 #include "llvm/Transforms/Utils/PromoteMemToReg.h" 37 #include <algorithm> 38 39 using namespace llvm; 40 41 // The "coro-suspend-crossing" flag is very noisy. There is another debug type, 42 // "coro-frame", which results in leaner debug spew. 43 #define DEBUG_TYPE "coro-suspend-crossing" 44 45 static cl::opt<bool> EnableReuseStorageInFrame( 46 "reuse-storage-in-coroutine-frame", cl::Hidden, 47 cl::desc( 48 "Enable the optimization which would reuse the storage in the coroutine \ 49 frame for allocas whose liferanges are not overlapped, for testing purposes"), 50 llvm::cl::init(false)); 51 52 enum { SmallVectorThreshold = 32 }; 53 54 // Provides two way mapping between the blocks and numbers. 55 namespace { 56 class BlockToIndexMapping { 57 SmallVector<BasicBlock *, SmallVectorThreshold> V; 58 59 public: 60 size_t size() const { return V.size(); } 61 62 BlockToIndexMapping(Function &F) { 63 for (BasicBlock &BB : F) 64 V.push_back(&BB); 65 llvm::sort(V); 66 } 67 68 size_t blockToIndex(BasicBlock *BB) const { 69 auto *I = llvm::lower_bound(V, BB); 70 assert(I != V.end() && *I == BB && "BasicBlockNumberng: Unknown block"); 71 return I - V.begin(); 72 } 73 74 BasicBlock *indexToBlock(unsigned Index) const { return V[Index]; } 75 }; 76 } // end anonymous namespace 77 78 // The SuspendCrossingInfo maintains data that allows to answer a question 79 // whether given two BasicBlocks A and B there is a path from A to B that 80 // passes through a suspend point. 81 // 82 // For every basic block 'i' it maintains a BlockData that consists of: 83 // Consumes: a bit vector which contains a set of indices of blocks that can 84 // reach block 'i' 85 // Kills: a bit vector which contains a set of indices of blocks that can 86 // reach block 'i', but one of the path will cross a suspend point 87 // Suspend: a boolean indicating whether block 'i' contains a suspend point. 88 // End: a boolean indicating whether block 'i' contains a coro.end intrinsic. 89 // 90 namespace { 91 struct SuspendCrossingInfo { 92 BlockToIndexMapping Mapping; 93 94 struct BlockData { 95 BitVector Consumes; 96 BitVector Kills; 97 bool Suspend = false; 98 bool End = false; 99 }; 100 SmallVector<BlockData, SmallVectorThreshold> Block; 101 102 iterator_range<succ_iterator> successors(BlockData const &BD) const { 103 BasicBlock *BB = Mapping.indexToBlock(&BD - &Block[0]); 104 return llvm::successors(BB); 105 } 106 107 BlockData &getBlockData(BasicBlock *BB) { 108 return Block[Mapping.blockToIndex(BB)]; 109 } 110 111 void dump() const; 112 void dump(StringRef Label, BitVector const &BV) const; 113 114 SuspendCrossingInfo(Function &F, coro::Shape &Shape); 115 116 bool hasPathCrossingSuspendPoint(BasicBlock *DefBB, BasicBlock *UseBB) const { 117 size_t const DefIndex = Mapping.blockToIndex(DefBB); 118 size_t const UseIndex = Mapping.blockToIndex(UseBB); 119 120 bool const Result = Block[UseIndex].Kills[DefIndex]; 121 LLVM_DEBUG(dbgs() << UseBB->getName() << " => " << DefBB->getName() 122 << " answer is " << Result << "\n"); 123 return Result; 124 } 125 126 bool isDefinitionAcrossSuspend(BasicBlock *DefBB, User *U) const { 127 auto *I = cast<Instruction>(U); 128 129 // We rewrote PHINodes, so that only the ones with exactly one incoming 130 // value need to be analyzed. 131 if (auto *PN = dyn_cast<PHINode>(I)) 132 if (PN->getNumIncomingValues() > 1) 133 return false; 134 135 BasicBlock *UseBB = I->getParent(); 136 137 // As a special case, treat uses by an llvm.coro.suspend.retcon or an 138 // llvm.coro.suspend.async as if they were uses in the suspend's single 139 // predecessor: the uses conceptually occur before the suspend. 140 if (isa<CoroSuspendRetconInst>(I) || isa<CoroSuspendAsyncInst>(I)) { 141 UseBB = UseBB->getSinglePredecessor(); 142 assert(UseBB && "should have split coro.suspend into its own block"); 143 } 144 145 return hasPathCrossingSuspendPoint(DefBB, UseBB); 146 } 147 148 bool isDefinitionAcrossSuspend(Argument &A, User *U) const { 149 return isDefinitionAcrossSuspend(&A.getParent()->getEntryBlock(), U); 150 } 151 152 bool isDefinitionAcrossSuspend(Instruction &I, User *U) const { 153 auto *DefBB = I.getParent(); 154 155 // As a special case, treat values produced by an llvm.coro.suspend.* 156 // as if they were defined in the single successor: the uses 157 // conceptually occur after the suspend. 158 if (isa<AnyCoroSuspendInst>(I)) { 159 DefBB = DefBB->getSingleSuccessor(); 160 assert(DefBB && "should have split coro.suspend into its own block"); 161 } 162 163 return isDefinitionAcrossSuspend(DefBB, U); 164 } 165 166 bool isDefinitionAcrossSuspend(Value &V, User *U) const { 167 if (auto *Arg = dyn_cast<Argument>(&V)) 168 return isDefinitionAcrossSuspend(*Arg, U); 169 if (auto *Inst = dyn_cast<Instruction>(&V)) 170 return isDefinitionAcrossSuspend(*Inst, U); 171 172 llvm_unreachable( 173 "Coroutine could only collect Argument and Instruction now."); 174 } 175 }; 176 } // end anonymous namespace 177 178 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 179 LLVM_DUMP_METHOD void SuspendCrossingInfo::dump(StringRef Label, 180 BitVector const &BV) const { 181 dbgs() << Label << ":"; 182 for (size_t I = 0, N = BV.size(); I < N; ++I) 183 if (BV[I]) 184 dbgs() << " " << Mapping.indexToBlock(I)->getName(); 185 dbgs() << "\n"; 186 } 187 188 LLVM_DUMP_METHOD void SuspendCrossingInfo::dump() const { 189 for (size_t I = 0, N = Block.size(); I < N; ++I) { 190 BasicBlock *const B = Mapping.indexToBlock(I); 191 dbgs() << B->getName() << ":\n"; 192 dump(" Consumes", Block[I].Consumes); 193 dump(" Kills", Block[I].Kills); 194 } 195 dbgs() << "\n"; 196 } 197 #endif 198 199 SuspendCrossingInfo::SuspendCrossingInfo(Function &F, coro::Shape &Shape) 200 : Mapping(F) { 201 const size_t N = Mapping.size(); 202 Block.resize(N); 203 204 // Initialize every block so that it consumes itself 205 for (size_t I = 0; I < N; ++I) { 206 auto &B = Block[I]; 207 B.Consumes.resize(N); 208 B.Kills.resize(N); 209 B.Consumes.set(I); 210 } 211 212 // Mark all CoroEnd Blocks. We do not propagate Kills beyond coro.ends as 213 // the code beyond coro.end is reachable during initial invocation of the 214 // coroutine. 215 for (auto *CE : Shape.CoroEnds) 216 getBlockData(CE->getParent()).End = true; 217 218 // Mark all suspend blocks and indicate that they kill everything they 219 // consume. Note, that crossing coro.save also requires a spill, as any code 220 // between coro.save and coro.suspend may resume the coroutine and all of the 221 // state needs to be saved by that time. 222 auto markSuspendBlock = [&](IntrinsicInst *BarrierInst) { 223 BasicBlock *SuspendBlock = BarrierInst->getParent(); 224 auto &B = getBlockData(SuspendBlock); 225 B.Suspend = true; 226 B.Kills |= B.Consumes; 227 }; 228 for (auto *CSI : Shape.CoroSuspends) { 229 markSuspendBlock(CSI); 230 if (auto *Save = CSI->getCoroSave()) 231 markSuspendBlock(Save); 232 } 233 234 // Iterate propagating consumes and kills until they stop changing. 235 int Iteration = 0; 236 (void)Iteration; 237 238 bool Changed; 239 do { 240 LLVM_DEBUG(dbgs() << "iteration " << ++Iteration); 241 LLVM_DEBUG(dbgs() << "==============\n"); 242 243 Changed = false; 244 for (size_t I = 0; I < N; ++I) { 245 auto &B = Block[I]; 246 for (BasicBlock *SI : successors(B)) { 247 248 auto SuccNo = Mapping.blockToIndex(SI); 249 250 // Saved Consumes and Kills bitsets so that it is easy to see 251 // if anything changed after propagation. 252 auto &S = Block[SuccNo]; 253 auto SavedConsumes = S.Consumes; 254 auto SavedKills = S.Kills; 255 256 // Propagate Kills and Consumes from block B into its successor S. 257 S.Consumes |= B.Consumes; 258 S.Kills |= B.Kills; 259 260 // If block B is a suspend block, it should propagate kills into the 261 // its successor for every block B consumes. 262 if (B.Suspend) { 263 S.Kills |= B.Consumes; 264 } 265 if (S.Suspend) { 266 // If block S is a suspend block, it should kill all of the blocks it 267 // consumes. 268 S.Kills |= S.Consumes; 269 } else if (S.End) { 270 // If block S is an end block, it should not propagate kills as the 271 // blocks following coro.end() are reached during initial invocation 272 // of the coroutine while all the data are still available on the 273 // stack or in the registers. 274 S.Kills.reset(); 275 } else { 276 // This is reached when S block it not Suspend nor coro.end and it 277 // need to make sure that it is not in the kill set. 278 S.Kills.reset(SuccNo); 279 } 280 281 // See if anything changed. 282 Changed |= (S.Kills != SavedKills) || (S.Consumes != SavedConsumes); 283 284 if (S.Kills != SavedKills) { 285 LLVM_DEBUG(dbgs() << "\nblock " << I << " follower " << SI->getName() 286 << "\n"); 287 LLVM_DEBUG(dump("S.Kills", S.Kills)); 288 LLVM_DEBUG(dump("SavedKills", SavedKills)); 289 } 290 if (S.Consumes != SavedConsumes) { 291 LLVM_DEBUG(dbgs() << "\nblock " << I << " follower " << SI << "\n"); 292 LLVM_DEBUG(dump("S.Consume", S.Consumes)); 293 LLVM_DEBUG(dump("SavedCons", SavedConsumes)); 294 } 295 } 296 } 297 } while (Changed); 298 LLVM_DEBUG(dump()); 299 } 300 301 #undef DEBUG_TYPE // "coro-suspend-crossing" 302 #define DEBUG_TYPE "coro-frame" 303 304 namespace { 305 class FrameTypeBuilder; 306 // Mapping from the to-be-spilled value to all the users that need reload. 307 using SpillInfo = SmallMapVector<Value *, SmallVector<Instruction *, 2>, 8>; 308 struct AllocaInfo { 309 AllocaInst *Alloca; 310 DenseMap<Instruction *, llvm::Optional<APInt>> Aliases; 311 bool MayWriteBeforeCoroBegin; 312 AllocaInfo(AllocaInst *Alloca, 313 DenseMap<Instruction *, llvm::Optional<APInt>> Aliases, 314 bool MayWriteBeforeCoroBegin) 315 : Alloca(Alloca), Aliases(std::move(Aliases)), 316 MayWriteBeforeCoroBegin(MayWriteBeforeCoroBegin) {} 317 }; 318 struct FrameDataInfo { 319 // All the values (that are not allocas) that needs to be spilled to the 320 // frame. 321 SpillInfo Spills; 322 // Allocas contains all values defined as allocas that need to live in the 323 // frame. 324 SmallVector<AllocaInfo, 8> Allocas; 325 326 SmallVector<Value *, 8> getAllDefs() const { 327 SmallVector<Value *, 8> Defs; 328 for (const auto &P : Spills) 329 Defs.push_back(P.first); 330 for (const auto &A : Allocas) 331 Defs.push_back(A.Alloca); 332 return Defs; 333 } 334 335 uint32_t getFieldIndex(Value *V) const { 336 auto Itr = FieldIndexMap.find(V); 337 assert(Itr != FieldIndexMap.end() && 338 "Value does not have a frame field index"); 339 return Itr->second; 340 } 341 342 void setFieldIndex(Value *V, uint32_t Index) { 343 assert((LayoutIndexUpdateStarted || FieldIndexMap.count(V) == 0) && 344 "Cannot set the index for the same field twice."); 345 FieldIndexMap[V] = Index; 346 } 347 348 uint64_t getAlign(Value *V) const { 349 auto Iter = FieldAlignMap.find(V); 350 assert(Iter != FieldAlignMap.end()); 351 return Iter->second; 352 } 353 354 void setAlign(Value *V, uint64_t Align) { 355 assert(FieldAlignMap.count(V) == 0); 356 FieldAlignMap.insert({V, Align}); 357 } 358 359 uint64_t getOffset(Value *V) const { 360 auto Iter = FieldOffsetMap.find(V); 361 assert(Iter != FieldOffsetMap.end()); 362 return Iter->second; 363 } 364 365 void setOffset(Value *V, uint64_t Offset) { 366 assert(FieldOffsetMap.count(V) == 0); 367 FieldOffsetMap.insert({V, Offset}); 368 } 369 370 // Remap the index of every field in the frame, using the final layout index. 371 void updateLayoutIndex(FrameTypeBuilder &B); 372 373 private: 374 // LayoutIndexUpdateStarted is used to avoid updating the index of any field 375 // twice by mistake. 376 bool LayoutIndexUpdateStarted = false; 377 // Map from values to their slot indexes on the frame. They will be first set 378 // with their original insertion field index. After the frame is built, their 379 // indexes will be updated into the final layout index. 380 DenseMap<Value *, uint32_t> FieldIndexMap; 381 // Map from values to their alignment on the frame. They would be set after 382 // the frame is built. 383 DenseMap<Value *, uint64_t> FieldAlignMap; 384 // Map from values to their offset on the frame. They would be set after 385 // the frame is built. 386 DenseMap<Value *, uint64_t> FieldOffsetMap; 387 }; 388 } // namespace 389 390 #ifndef NDEBUG 391 static void dumpSpills(StringRef Title, const SpillInfo &Spills) { 392 dbgs() << "------------- " << Title << "--------------\n"; 393 for (const auto &E : Spills) { 394 E.first->dump(); 395 dbgs() << " user: "; 396 for (auto *I : E.second) 397 I->dump(); 398 } 399 } 400 401 static void dumpAllocas(const SmallVectorImpl<AllocaInfo> &Allocas) { 402 dbgs() << "------------- Allocas --------------\n"; 403 for (const auto &A : Allocas) { 404 A.Alloca->dump(); 405 } 406 } 407 #endif 408 409 namespace { 410 using FieldIDType = size_t; 411 // We cannot rely solely on natural alignment of a type when building a 412 // coroutine frame and if the alignment specified on the Alloca instruction 413 // differs from the natural alignment of the alloca type we will need to insert 414 // padding. 415 class FrameTypeBuilder { 416 private: 417 struct Field { 418 uint64_t Size; 419 uint64_t Offset; 420 Type *Ty; 421 FieldIDType LayoutFieldIndex; 422 Align Alignment; 423 Align TyAlignment; 424 }; 425 426 const DataLayout &DL; 427 LLVMContext &Context; 428 uint64_t StructSize = 0; 429 Align StructAlign; 430 bool IsFinished = false; 431 432 SmallVector<Field, 8> Fields; 433 DenseMap<Value*, unsigned> FieldIndexByKey; 434 435 public: 436 FrameTypeBuilder(LLVMContext &Context, DataLayout const &DL) 437 : DL(DL), Context(Context) {} 438 439 /// Add a field to this structure for the storage of an `alloca` 440 /// instruction. 441 LLVM_NODISCARD FieldIDType addFieldForAlloca(AllocaInst *AI, 442 bool IsHeader = false) { 443 Type *Ty = AI->getAllocatedType(); 444 445 // Make an array type if this is a static array allocation. 446 if (AI->isArrayAllocation()) { 447 if (auto *CI = dyn_cast<ConstantInt>(AI->getArraySize())) 448 Ty = ArrayType::get(Ty, CI->getValue().getZExtValue()); 449 else 450 report_fatal_error("Coroutines cannot handle non static allocas yet"); 451 } 452 453 return addField(Ty, AI->getAlign(), IsHeader); 454 } 455 456 /// We want to put the allocas whose lifetime-ranges are not overlapped 457 /// into one slot of coroutine frame. 458 /// Consider the example at:https://bugs.llvm.org/show_bug.cgi?id=45566 459 /// 460 /// cppcoro::task<void> alternative_paths(bool cond) { 461 /// if (cond) { 462 /// big_structure a; 463 /// process(a); 464 /// co_await something(); 465 /// } else { 466 /// big_structure b; 467 /// process2(b); 468 /// co_await something(); 469 /// } 470 /// } 471 /// 472 /// We want to put variable a and variable b in the same slot to 473 /// reduce the size of coroutine frame. 474 /// 475 /// This function use StackLifetime algorithm to partition the AllocaInsts in 476 /// Spills to non-overlapped sets in order to put Alloca in the same 477 /// non-overlapped set into the same slot in the Coroutine Frame. Then add 478 /// field for the allocas in the same non-overlapped set by using the largest 479 /// type as the field type. 480 /// 481 /// Side Effects: Because We sort the allocas, the order of allocas in the 482 /// frame may be different with the order in the source code. 483 void addFieldForAllocas(const Function &F, FrameDataInfo &FrameData, 484 coro::Shape &Shape); 485 486 /// Add a field to this structure. 487 LLVM_NODISCARD FieldIDType addField(Type *Ty, MaybeAlign FieldAlignment, 488 bool IsHeader = false) { 489 assert(!IsFinished && "adding fields to a finished builder"); 490 assert(Ty && "must provide a type for a field"); 491 492 // The field size is always the alloc size of the type. 493 uint64_t FieldSize = DL.getTypeAllocSize(Ty); 494 495 // For an alloca with size=0, we don't need to add a field and they 496 // can just point to any index in the frame. Use index 0. 497 if (FieldSize == 0) { 498 return 0; 499 } 500 501 // The field alignment might not be the type alignment, but we need 502 // to remember the type alignment anyway to build the type. 503 Align TyAlignment = DL.getABITypeAlign(Ty); 504 if (!FieldAlignment) FieldAlignment = TyAlignment; 505 506 // Lay out header fields immediately. 507 uint64_t Offset; 508 if (IsHeader) { 509 Offset = alignTo(StructSize, FieldAlignment); 510 StructSize = Offset + FieldSize; 511 512 // Everything else has a flexible offset. 513 } else { 514 Offset = OptimizedStructLayoutField::FlexibleOffset; 515 } 516 517 Fields.push_back({FieldSize, Offset, Ty, 0, *FieldAlignment, TyAlignment}); 518 return Fields.size() - 1; 519 } 520 521 /// Finish the layout and set the body on the given type. 522 void finish(StructType *Ty); 523 524 uint64_t getStructSize() const { 525 assert(IsFinished && "not yet finished!"); 526 return StructSize; 527 } 528 529 Align getStructAlign() const { 530 assert(IsFinished && "not yet finished!"); 531 return StructAlign; 532 } 533 534 FieldIDType getLayoutFieldIndex(FieldIDType Id) const { 535 assert(IsFinished && "not yet finished!"); 536 return Fields[Id].LayoutFieldIndex; 537 } 538 539 Field getLayoutField(FieldIDType Id) const { 540 assert(IsFinished && "not yet finished!"); 541 return Fields[Id]; 542 } 543 }; 544 } // namespace 545 546 void FrameDataInfo::updateLayoutIndex(FrameTypeBuilder &B) { 547 auto Updater = [&](Value *I) { 548 auto Field = B.getLayoutField(getFieldIndex(I)); 549 setFieldIndex(I, Field.LayoutFieldIndex); 550 setAlign(I, Field.Alignment.value()); 551 setOffset(I, Field.Offset); 552 }; 553 LayoutIndexUpdateStarted = true; 554 for (auto &S : Spills) 555 Updater(S.first); 556 for (const auto &A : Allocas) 557 Updater(A.Alloca); 558 LayoutIndexUpdateStarted = false; 559 } 560 561 void FrameTypeBuilder::addFieldForAllocas(const Function &F, 562 FrameDataInfo &FrameData, 563 coro::Shape &Shape) { 564 using AllocaSetType = SmallVector<AllocaInst *, 4>; 565 SmallVector<AllocaSetType, 4> NonOverlapedAllocas; 566 567 // We need to add field for allocas at the end of this function. However, this 568 // function has multiple exits, so we use this helper to avoid redundant code. 569 struct RTTIHelper { 570 std::function<void()> func; 571 RTTIHelper(std::function<void()> &&func) : func(func) {} 572 ~RTTIHelper() { func(); } 573 } Helper([&]() { 574 for (auto AllocaList : NonOverlapedAllocas) { 575 auto *LargestAI = *AllocaList.begin(); 576 FieldIDType Id = addFieldForAlloca(LargestAI); 577 for (auto *Alloca : AllocaList) 578 FrameData.setFieldIndex(Alloca, Id); 579 } 580 }); 581 582 if (!Shape.ReuseFrameSlot && !EnableReuseStorageInFrame) { 583 for (const auto &A : FrameData.Allocas) { 584 AllocaInst *Alloca = A.Alloca; 585 NonOverlapedAllocas.emplace_back(AllocaSetType(1, Alloca)); 586 } 587 return; 588 } 589 590 // Because there are pathes from the lifetime.start to coro.end 591 // for each alloca, the liferanges for every alloca is overlaped 592 // in the blocks who contain coro.end and the successor blocks. 593 // So we choose to skip there blocks when we calculates the liferange 594 // for each alloca. It should be reasonable since there shouldn't be uses 595 // in these blocks and the coroutine frame shouldn't be used outside the 596 // coroutine body. 597 // 598 // Note that the user of coro.suspend may not be SwitchInst. However, this 599 // case seems too complex to handle. And it is harmless to skip these 600 // patterns since it just prevend putting the allocas to live in the same 601 // slot. 602 DenseMap<SwitchInst *, BasicBlock *> DefaultSuspendDest; 603 for (auto CoroSuspendInst : Shape.CoroSuspends) { 604 for (auto U : CoroSuspendInst->users()) { 605 if (auto *ConstSWI = dyn_cast<SwitchInst>(U)) { 606 auto *SWI = const_cast<SwitchInst *>(ConstSWI); 607 DefaultSuspendDest[SWI] = SWI->getDefaultDest(); 608 SWI->setDefaultDest(SWI->getSuccessor(1)); 609 } 610 } 611 } 612 613 auto ExtractAllocas = [&]() { 614 AllocaSetType Allocas; 615 Allocas.reserve(FrameData.Allocas.size()); 616 for (const auto &A : FrameData.Allocas) 617 Allocas.push_back(A.Alloca); 618 return Allocas; 619 }; 620 StackLifetime StackLifetimeAnalyzer(F, ExtractAllocas(), 621 StackLifetime::LivenessType::May); 622 StackLifetimeAnalyzer.run(); 623 auto IsAllocaInferenre = [&](const AllocaInst *AI1, const AllocaInst *AI2) { 624 return StackLifetimeAnalyzer.getLiveRange(AI1).overlaps( 625 StackLifetimeAnalyzer.getLiveRange(AI2)); 626 }; 627 auto GetAllocaSize = [&](const AllocaInfo &A) { 628 Optional<TypeSize> RetSize = A.Alloca->getAllocationSizeInBits(DL); 629 assert(RetSize && "Variable Length Arrays (VLA) are not supported.\n"); 630 assert(!RetSize->isScalable() && "Scalable vectors are not yet supported"); 631 return RetSize->getFixedSize(); 632 }; 633 // Put larger allocas in the front. So the larger allocas have higher 634 // priority to merge, which can save more space potentially. Also each 635 // AllocaSet would be ordered. So we can get the largest Alloca in one 636 // AllocaSet easily. 637 sort(FrameData.Allocas, [&](const auto &Iter1, const auto &Iter2) { 638 return GetAllocaSize(Iter1) > GetAllocaSize(Iter2); 639 }); 640 for (const auto &A : FrameData.Allocas) { 641 AllocaInst *Alloca = A.Alloca; 642 bool Merged = false; 643 // Try to find if the Alloca is not inferenced with any existing 644 // NonOverlappedAllocaSet. If it is true, insert the alloca to that 645 // NonOverlappedAllocaSet. 646 for (auto &AllocaSet : NonOverlapedAllocas) { 647 assert(!AllocaSet.empty() && "Processing Alloca Set is not empty.\n"); 648 bool NoInference = none_of(AllocaSet, [&](auto Iter) { 649 return IsAllocaInferenre(Alloca, Iter); 650 }); 651 // If the alignment of A is multiple of the alignment of B, the address 652 // of A should satisfy the requirement for aligning for B. 653 // 654 // There may be other more fine-grained strategies to handle the alignment 655 // infomation during the merging process. But it seems hard to handle 656 // these strategies and benefit little. 657 bool Alignable = [&]() -> bool { 658 auto *LargestAlloca = *AllocaSet.begin(); 659 return LargestAlloca->getAlign().value() % Alloca->getAlign().value() == 660 0; 661 }(); 662 bool CouldMerge = NoInference && Alignable; 663 if (!CouldMerge) 664 continue; 665 AllocaSet.push_back(Alloca); 666 Merged = true; 667 break; 668 } 669 if (!Merged) { 670 NonOverlapedAllocas.emplace_back(AllocaSetType(1, Alloca)); 671 } 672 } 673 // Recover the default target destination for each Switch statement 674 // reserved. 675 for (auto SwitchAndDefaultDest : DefaultSuspendDest) { 676 SwitchInst *SWI = SwitchAndDefaultDest.first; 677 BasicBlock *DestBB = SwitchAndDefaultDest.second; 678 SWI->setDefaultDest(DestBB); 679 } 680 // This Debug Info could tell us which allocas are merged into one slot. 681 LLVM_DEBUG(for (auto &AllocaSet 682 : NonOverlapedAllocas) { 683 if (AllocaSet.size() > 1) { 684 dbgs() << "In Function:" << F.getName() << "\n"; 685 dbgs() << "Find Union Set " 686 << "\n"; 687 dbgs() << "\tAllocas are \n"; 688 for (auto Alloca : AllocaSet) 689 dbgs() << "\t\t" << *Alloca << "\n"; 690 } 691 }); 692 } 693 694 void FrameTypeBuilder::finish(StructType *Ty) { 695 assert(!IsFinished && "already finished!"); 696 697 // Prepare the optimal-layout field array. 698 // The Id in the layout field is a pointer to our Field for it. 699 SmallVector<OptimizedStructLayoutField, 8> LayoutFields; 700 LayoutFields.reserve(Fields.size()); 701 for (auto &Field : Fields) { 702 LayoutFields.emplace_back(&Field, Field.Size, Field.Alignment, 703 Field.Offset); 704 } 705 706 // Perform layout. 707 auto SizeAndAlign = performOptimizedStructLayout(LayoutFields); 708 StructSize = SizeAndAlign.first; 709 StructAlign = SizeAndAlign.second; 710 711 auto getField = [](const OptimizedStructLayoutField &LayoutField) -> Field & { 712 return *static_cast<Field *>(const_cast<void*>(LayoutField.Id)); 713 }; 714 715 // We need to produce a packed struct type if there's a field whose 716 // assigned offset isn't a multiple of its natural type alignment. 717 bool Packed = [&] { 718 for (auto &LayoutField : LayoutFields) { 719 auto &F = getField(LayoutField); 720 if (!isAligned(F.TyAlignment, LayoutField.Offset)) 721 return true; 722 } 723 return false; 724 }(); 725 726 // Build the struct body. 727 SmallVector<Type*, 16> FieldTypes; 728 FieldTypes.reserve(LayoutFields.size() * 3 / 2); 729 uint64_t LastOffset = 0; 730 for (auto &LayoutField : LayoutFields) { 731 auto &F = getField(LayoutField); 732 733 auto Offset = LayoutField.Offset; 734 735 // Add a padding field if there's a padding gap and we're either 736 // building a packed struct or the padding gap is more than we'd 737 // get from aligning to the field type's natural alignment. 738 assert(Offset >= LastOffset); 739 if (Offset != LastOffset) { 740 if (Packed || alignTo(LastOffset, F.TyAlignment) != Offset) 741 FieldTypes.push_back(ArrayType::get(Type::getInt8Ty(Context), 742 Offset - LastOffset)); 743 } 744 745 F.Offset = Offset; 746 F.LayoutFieldIndex = FieldTypes.size(); 747 748 FieldTypes.push_back(F.Ty); 749 LastOffset = Offset + F.Size; 750 } 751 752 Ty->setBody(FieldTypes, Packed); 753 754 #ifndef NDEBUG 755 // Check that the IR layout matches the offsets we expect. 756 auto Layout = DL.getStructLayout(Ty); 757 for (auto &F : Fields) { 758 assert(Ty->getElementType(F.LayoutFieldIndex) == F.Ty); 759 assert(Layout->getElementOffset(F.LayoutFieldIndex) == F.Offset); 760 } 761 #endif 762 763 IsFinished = true; 764 } 765 766 static void cacheDIVar(FrameDataInfo &FrameData, 767 DenseMap<Value *, DILocalVariable *> &DIVarCache) { 768 for (auto *V : FrameData.getAllDefs()) { 769 if (DIVarCache.find(V) != DIVarCache.end()) 770 continue; 771 772 auto DDIs = FindDbgDeclareUses(V); 773 auto *I = llvm::find_if(DDIs, [](DbgDeclareInst *DDI) { 774 return DDI->getExpression()->getNumElements() == 0; 775 }); 776 if (I != DDIs.end()) 777 DIVarCache.insert({V, (*I)->getVariable()}); 778 } 779 } 780 781 /// Create name for Type. It uses MDString to store new created string to 782 /// avoid memory leak. 783 static StringRef solveTypeName(Type *Ty) { 784 if (Ty->isIntegerTy()) { 785 // The longest name in common may be '__int_128', which has 9 bits. 786 SmallString<16> Buffer; 787 raw_svector_ostream OS(Buffer); 788 OS << "__int_" << cast<IntegerType>(Ty)->getBitWidth(); 789 auto *MDName = MDString::get(Ty->getContext(), OS.str()); 790 return MDName->getString(); 791 } 792 793 if (Ty->isFloatingPointTy()) { 794 if (Ty->isFloatTy()) 795 return "__float_"; 796 if (Ty->isDoubleTy()) 797 return "__double_"; 798 return "__floating_type_"; 799 } 800 801 if (Ty->isPointerTy()) { 802 auto *PtrTy = cast<PointerType>(Ty); 803 Type *PointeeTy = PtrTy->getElementType(); 804 auto Name = solveTypeName(PointeeTy); 805 if (Name == "UnknownType") 806 return "PointerType"; 807 SmallString<16> Buffer; 808 Twine(Name + "_Ptr").toStringRef(Buffer); 809 auto *MDName = MDString::get(Ty->getContext(), Buffer.str()); 810 return MDName->getString(); 811 } 812 813 if (Ty->isStructTy()) { 814 if (!cast<StructType>(Ty)->hasName()) 815 return "__LiteralStructType_"; 816 817 auto Name = Ty->getStructName(); 818 819 SmallString<16> Buffer(Name); 820 for_each(Buffer, [](auto &Iter) { 821 if (Iter == '.' || Iter == ':') 822 Iter = '_'; 823 }); 824 auto *MDName = MDString::get(Ty->getContext(), Buffer.str()); 825 return MDName->getString(); 826 } 827 828 return "UnknownType"; 829 } 830 831 static DIType *solveDIType(DIBuilder &Builder, Type *Ty, DataLayout &Layout, 832 DIScope *Scope, unsigned LineNum, 833 DenseMap<Type *, DIType *> &DITypeCache) { 834 if (DIType *DT = DITypeCache.lookup(Ty)) 835 return DT; 836 837 StringRef Name = solveTypeName(Ty); 838 839 DIType *RetType = nullptr; 840 841 if (Ty->isIntegerTy()) { 842 auto BitWidth = cast<IntegerType>(Ty)->getBitWidth(); 843 RetType = Builder.createBasicType(Name, BitWidth, dwarf::DW_ATE_signed, 844 llvm::DINode::FlagArtificial); 845 } else if (Ty->isFloatingPointTy()) { 846 RetType = Builder.createBasicType(Name, Layout.getTypeSizeInBits(Ty), 847 dwarf::DW_ATE_float, 848 llvm::DINode::FlagArtificial); 849 } else if (Ty->isPointerTy()) { 850 // Construct BasicType instead of PointerType to avoid infinite 851 // search problem. 852 // For example, we would be in trouble if we traverse recursively: 853 // 854 // struct Node { 855 // Node* ptr; 856 // }; 857 RetType = Builder.createBasicType(Name, Layout.getTypeSizeInBits(Ty), 858 dwarf::DW_ATE_address, 859 llvm::DINode::FlagArtificial); 860 } else if (Ty->isStructTy()) { 861 auto *DIStruct = Builder.createStructType( 862 Scope, Name, Scope->getFile(), LineNum, Layout.getTypeSizeInBits(Ty), 863 Layout.getPrefTypeAlignment(Ty), llvm::DINode::FlagArtificial, nullptr, 864 llvm::DINodeArray()); 865 866 auto *StructTy = cast<StructType>(Ty); 867 SmallVector<Metadata *, 16> Elements; 868 for (unsigned I = 0; I < StructTy->getNumElements(); I++) { 869 DIType *DITy = solveDIType(Builder, StructTy->getElementType(I), Layout, 870 Scope, LineNum, DITypeCache); 871 assert(DITy); 872 Elements.push_back(Builder.createMemberType( 873 Scope, DITy->getName(), Scope->getFile(), LineNum, 874 DITy->getSizeInBits(), DITy->getAlignInBits(), 875 Layout.getStructLayout(StructTy)->getElementOffsetInBits(I), 876 llvm::DINode::FlagArtificial, DITy)); 877 } 878 879 Builder.replaceArrays(DIStruct, Builder.getOrCreateArray(Elements)); 880 881 RetType = DIStruct; 882 } else { 883 LLVM_DEBUG(dbgs() << "Unresolved Type: " << *Ty << "\n";); 884 SmallString<32> Buffer; 885 raw_svector_ostream OS(Buffer); 886 OS << Name.str() << "_" << Layout.getTypeSizeInBits(Ty); 887 RetType = Builder.createBasicType(OS.str(), Layout.getTypeSizeInBits(Ty), 888 dwarf::DW_ATE_address, 889 llvm::DINode::FlagArtificial); 890 } 891 892 DITypeCache.insert({Ty, RetType}); 893 return RetType; 894 } 895 896 /// Build artificial debug info for C++ coroutine frames to allow users to 897 /// inspect the contents of the frame directly 898 /// 899 /// Create Debug information for coroutine frame with debug name "__coro_frame". 900 /// The debug information for the fields of coroutine frame is constructed from 901 /// the following way: 902 /// 1. For all the value in the Frame, we search the use of dbg.declare to find 903 /// the corresponding debug variables for the value. If we can find the 904 /// debug variable, we can get full and accurate debug information. 905 /// 2. If we can't get debug information in step 1 and 2, we could only try to 906 /// build the DIType by Type. We did this in solveDIType. We only handle 907 /// integer, float, double, integer type and struct type for now. 908 static void buildFrameDebugInfo(Function &F, coro::Shape &Shape, 909 FrameDataInfo &FrameData) { 910 DISubprogram *DIS = F.getSubprogram(); 911 // If there is no DISubprogram for F, it implies the Function are not compiled 912 // with debug info. So we also don't need to generate debug info for the frame 913 // neither. 914 if (!DIS || !DIS->getUnit() || 915 !dwarf::isCPlusPlus( 916 (dwarf::SourceLanguage)DIS->getUnit()->getSourceLanguage())) 917 return; 918 919 assert(Shape.ABI == coro::ABI::Switch && 920 "We could only build debug infomation for C++ coroutine now.\n"); 921 922 DIBuilder DBuilder(*F.getParent(), /*AllowUnresolved*/ false); 923 924 AllocaInst *PromiseAlloca = Shape.getPromiseAlloca(); 925 assert(PromiseAlloca && 926 "Coroutine with switch ABI should own Promise alloca"); 927 928 TinyPtrVector<DbgDeclareInst *> DIs = FindDbgDeclareUses(PromiseAlloca); 929 if (DIs.empty()) 930 return; 931 932 DbgDeclareInst *PromiseDDI = DIs.front(); 933 DILocalVariable *PromiseDIVariable = PromiseDDI->getVariable(); 934 DILocalScope *PromiseDIScope = PromiseDIVariable->getScope(); 935 DIFile *DFile = PromiseDIScope->getFile(); 936 DILocation *DILoc = PromiseDDI->getDebugLoc().get(); 937 unsigned LineNum = PromiseDIVariable->getLine(); 938 939 DICompositeType *FrameDITy = DBuilder.createStructType( 940 PromiseDIScope, "__coro_frame_ty", DFile, LineNum, Shape.FrameSize * 8, 941 Shape.FrameAlign.value() * 8, llvm::DINode::FlagArtificial, nullptr, 942 llvm::DINodeArray()); 943 StructType *FrameTy = Shape.FrameTy; 944 SmallVector<Metadata *, 16> Elements; 945 DataLayout Layout = F.getParent()->getDataLayout(); 946 947 DenseMap<Value *, DILocalVariable *> DIVarCache; 948 cacheDIVar(FrameData, DIVarCache); 949 950 unsigned ResumeIndex = coro::Shape::SwitchFieldIndex::Resume; 951 unsigned DestroyIndex = coro::Shape::SwitchFieldIndex::Destroy; 952 unsigned IndexIndex = Shape.SwitchLowering.IndexField; 953 954 DenseMap<unsigned, StringRef> NameCache; 955 NameCache.insert({ResumeIndex, "__resume_fn"}); 956 NameCache.insert({DestroyIndex, "__destroy_fn"}); 957 NameCache.insert({IndexIndex, "__coro_index"}); 958 959 Type *ResumeFnTy = FrameTy->getElementType(ResumeIndex), 960 *DestroyFnTy = FrameTy->getElementType(DestroyIndex), 961 *IndexTy = FrameTy->getElementType(IndexIndex); 962 963 DenseMap<unsigned, DIType *> TyCache; 964 TyCache.insert({ResumeIndex, 965 DBuilder.createBasicType("__resume_fn", 966 Layout.getTypeSizeInBits(ResumeFnTy), 967 dwarf::DW_ATE_address)}); 968 TyCache.insert( 969 {DestroyIndex, DBuilder.createBasicType( 970 "__destroy_fn", Layout.getTypeSizeInBits(DestroyFnTy), 971 dwarf::DW_ATE_address)}); 972 973 /// FIXME: If we fill the field `SizeInBits` with the actual size of 974 /// __coro_index in bits, then __coro_index wouldn't show in the debugger. 975 TyCache.insert({IndexIndex, DBuilder.createBasicType( 976 "__coro_index", 977 (Layout.getTypeSizeInBits(IndexTy) < 8) 978 ? 8 979 : Layout.getTypeSizeInBits(IndexTy), 980 dwarf::DW_ATE_unsigned_char)}); 981 982 for (auto *V : FrameData.getAllDefs()) { 983 if (DIVarCache.find(V) == DIVarCache.end()) 984 continue; 985 986 auto Index = FrameData.getFieldIndex(V); 987 988 NameCache.insert({Index, DIVarCache[V]->getName()}); 989 TyCache.insert({Index, DIVarCache[V]->getType()}); 990 } 991 992 // Cache from index to (Align, Offset Pair) 993 DenseMap<unsigned, std::pair<unsigned, unsigned>> OffsetCache; 994 // The Align and Offset of Resume function and Destroy function are fixed. 995 OffsetCache.insert({ResumeIndex, {8, 0}}); 996 OffsetCache.insert({DestroyIndex, {8, 8}}); 997 OffsetCache.insert( 998 {IndexIndex, 999 {Shape.SwitchLowering.IndexAlign, Shape.SwitchLowering.IndexOffset}}); 1000 1001 for (auto *V : FrameData.getAllDefs()) { 1002 auto Index = FrameData.getFieldIndex(V); 1003 1004 OffsetCache.insert( 1005 {Index, {FrameData.getAlign(V), FrameData.getOffset(V)}}); 1006 } 1007 1008 DenseMap<Type *, DIType *> DITypeCache; 1009 // This counter is used to avoid same type names. e.g., there would be 1010 // many i32 and i64 types in one coroutine. And we would use i32_0 and 1011 // i32_1 to avoid the same type. Since it makes no sense the name of the 1012 // fields confilicts with each other. 1013 unsigned UnknownTypeNum = 0; 1014 for (unsigned Index = 0; Index < FrameTy->getNumElements(); Index++) { 1015 if (OffsetCache.find(Index) == OffsetCache.end()) 1016 continue; 1017 1018 std::string Name; 1019 uint64_t SizeInBits; 1020 uint32_t AlignInBits; 1021 uint64_t OffsetInBits; 1022 DIType *DITy = nullptr; 1023 1024 Type *Ty = FrameTy->getElementType(Index); 1025 assert(Ty->isSized() && "We can't handle type which is not sized.\n"); 1026 SizeInBits = Layout.getTypeSizeInBits(Ty).getFixedSize(); 1027 AlignInBits = OffsetCache[Index].first * 8; 1028 OffsetInBits = OffsetCache[Index].second * 8; 1029 1030 if (NameCache.find(Index) != NameCache.end()) { 1031 Name = NameCache[Index].str(); 1032 DITy = TyCache[Index]; 1033 } else { 1034 DITy = solveDIType(DBuilder, Ty, Layout, PromiseDIScope, LineNum, 1035 DITypeCache); 1036 assert(DITy && "SolveDIType shouldn't return nullptr.\n"); 1037 Name = DITy->getName().str(); 1038 Name += "_" + std::to_string(UnknownTypeNum); 1039 UnknownTypeNum++; 1040 } 1041 1042 Elements.push_back(DBuilder.createMemberType( 1043 PromiseDIScope, Name, DFile, LineNum, SizeInBits, AlignInBits, 1044 OffsetInBits, llvm::DINode::FlagArtificial, DITy)); 1045 } 1046 1047 DBuilder.replaceArrays(FrameDITy, DBuilder.getOrCreateArray(Elements)); 1048 1049 auto *FrameDIVar = DBuilder.createAutoVariable(PromiseDIScope, "__coro_frame", 1050 DFile, LineNum, FrameDITy, 1051 true, DINode::FlagArtificial); 1052 assert(FrameDIVar->isValidLocationForIntrinsic(PromiseDDI->getDebugLoc())); 1053 1054 // Subprogram would have ContainedNodes field which records the debug 1055 // variables it contained. So we need to add __coro_frame to the 1056 // ContainedNodes of it. 1057 // 1058 // If we don't add __coro_frame to the RetainedNodes, user may get 1059 // `no symbol __coro_frame in context` rather than `__coro_frame` 1060 // is optimized out, which is more precise. 1061 if (auto *SubProgram = dyn_cast<DISubprogram>(PromiseDIScope)) { 1062 auto RetainedNodes = SubProgram->getRetainedNodes(); 1063 SmallVector<Metadata *, 32> RetainedNodesVec(RetainedNodes.begin(), 1064 RetainedNodes.end()); 1065 RetainedNodesVec.push_back(FrameDIVar); 1066 SubProgram->replaceOperandWith( 1067 7, (MDTuple::get(F.getContext(), RetainedNodesVec))); 1068 } 1069 1070 DBuilder.insertDeclare(Shape.FramePtr, FrameDIVar, 1071 DBuilder.createExpression(), DILoc, 1072 Shape.FramePtr->getNextNode()); 1073 } 1074 1075 // Build a struct that will keep state for an active coroutine. 1076 // struct f.frame { 1077 // ResumeFnTy ResumeFnAddr; 1078 // ResumeFnTy DestroyFnAddr; 1079 // int ResumeIndex; 1080 // ... promise (if present) ... 1081 // ... spills ... 1082 // }; 1083 static StructType *buildFrameType(Function &F, coro::Shape &Shape, 1084 FrameDataInfo &FrameData) { 1085 LLVMContext &C = F.getContext(); 1086 const DataLayout &DL = F.getParent()->getDataLayout(); 1087 StructType *FrameTy = [&] { 1088 SmallString<32> Name(F.getName()); 1089 Name.append(".Frame"); 1090 return StructType::create(C, Name); 1091 }(); 1092 1093 FrameTypeBuilder B(C, DL); 1094 1095 AllocaInst *PromiseAlloca = Shape.getPromiseAlloca(); 1096 Optional<FieldIDType> SwitchIndexFieldId; 1097 1098 if (Shape.ABI == coro::ABI::Switch) { 1099 auto *FramePtrTy = FrameTy->getPointerTo(); 1100 auto *FnTy = FunctionType::get(Type::getVoidTy(C), FramePtrTy, 1101 /*IsVarArg=*/false); 1102 auto *FnPtrTy = FnTy->getPointerTo(); 1103 1104 // Add header fields for the resume and destroy functions. 1105 // We can rely on these being perfectly packed. 1106 (void)B.addField(FnPtrTy, None, /*header*/ true); 1107 (void)B.addField(FnPtrTy, None, /*header*/ true); 1108 1109 // PromiseAlloca field needs to be explicitly added here because it's 1110 // a header field with a fixed offset based on its alignment. Hence it 1111 // needs special handling and cannot be added to FrameData.Allocas. 1112 if (PromiseAlloca) 1113 FrameData.setFieldIndex( 1114 PromiseAlloca, B.addFieldForAlloca(PromiseAlloca, /*header*/ true)); 1115 1116 // Add a field to store the suspend index. This doesn't need to 1117 // be in the header. 1118 unsigned IndexBits = std::max(1U, Log2_64_Ceil(Shape.CoroSuspends.size())); 1119 Type *IndexType = Type::getIntNTy(C, IndexBits); 1120 1121 SwitchIndexFieldId = B.addField(IndexType, None); 1122 } else { 1123 assert(PromiseAlloca == nullptr && "lowering doesn't support promises"); 1124 } 1125 1126 // Because multiple allocas may own the same field slot, 1127 // we add allocas to field here. 1128 B.addFieldForAllocas(F, FrameData, Shape); 1129 // Add PromiseAlloca to Allocas list so that 1130 // 1. updateLayoutIndex could update its index after 1131 // `performOptimizedStructLayout` 1132 // 2. it is processed in insertSpills. 1133 if (Shape.ABI == coro::ABI::Switch && PromiseAlloca) 1134 // We assume that the promise alloca won't be modified before 1135 // CoroBegin and no alias will be create before CoroBegin. 1136 FrameData.Allocas.emplace_back( 1137 PromiseAlloca, DenseMap<Instruction *, llvm::Optional<APInt>>{}, false); 1138 // Create an entry for every spilled value. 1139 for (auto &S : FrameData.Spills) { 1140 FieldIDType Id = B.addField(S.first->getType(), None); 1141 FrameData.setFieldIndex(S.first, Id); 1142 } 1143 1144 B.finish(FrameTy); 1145 FrameData.updateLayoutIndex(B); 1146 Shape.FrameAlign = B.getStructAlign(); 1147 Shape.FrameSize = B.getStructSize(); 1148 1149 switch (Shape.ABI) { 1150 case coro::ABI::Switch: { 1151 // In the switch ABI, remember the switch-index field. 1152 auto IndexField = B.getLayoutField(*SwitchIndexFieldId); 1153 Shape.SwitchLowering.IndexField = IndexField.LayoutFieldIndex; 1154 Shape.SwitchLowering.IndexAlign = IndexField.Alignment.value(); 1155 Shape.SwitchLowering.IndexOffset = IndexField.Offset; 1156 1157 // Also round the frame size up to a multiple of its alignment, as is 1158 // generally expected in C/C++. 1159 Shape.FrameSize = alignTo(Shape.FrameSize, Shape.FrameAlign); 1160 break; 1161 } 1162 1163 // In the retcon ABI, remember whether the frame is inline in the storage. 1164 case coro::ABI::Retcon: 1165 case coro::ABI::RetconOnce: { 1166 auto Id = Shape.getRetconCoroId(); 1167 Shape.RetconLowering.IsFrameInlineInStorage 1168 = (B.getStructSize() <= Id->getStorageSize() && 1169 B.getStructAlign() <= Id->getStorageAlignment()); 1170 break; 1171 } 1172 case coro::ABI::Async: { 1173 Shape.AsyncLowering.FrameOffset = 1174 alignTo(Shape.AsyncLowering.ContextHeaderSize, Shape.FrameAlign); 1175 // Also make the final context size a multiple of the context alignment to 1176 // make allocation easier for allocators. 1177 Shape.AsyncLowering.ContextSize = 1178 alignTo(Shape.AsyncLowering.FrameOffset + Shape.FrameSize, 1179 Shape.AsyncLowering.getContextAlignment()); 1180 if (Shape.AsyncLowering.getContextAlignment() < Shape.FrameAlign) { 1181 report_fatal_error( 1182 "The alignment requirment of frame variables cannot be higher than " 1183 "the alignment of the async function context"); 1184 } 1185 break; 1186 } 1187 } 1188 1189 return FrameTy; 1190 } 1191 1192 // We use a pointer use visitor to track how an alloca is being used. 1193 // The goal is to be able to answer the following three questions: 1194 // 1. Should this alloca be allocated on the frame instead. 1195 // 2. Could the content of the alloca be modified prior to CoroBegn, which would 1196 // require copying the data from alloca to the frame after CoroBegin. 1197 // 3. Is there any alias created for this alloca prior to CoroBegin, but used 1198 // after CoroBegin. In that case, we will need to recreate the alias after 1199 // CoroBegin based off the frame. To answer question 1, we track two things: 1200 // a. List of all BasicBlocks that use this alloca or any of the aliases of 1201 // the alloca. In the end, we check if there exists any two basic blocks that 1202 // cross suspension points. If so, this alloca must be put on the frame. b. 1203 // Whether the alloca or any alias of the alloca is escaped at some point, 1204 // either by storing the address somewhere, or the address is used in a 1205 // function call that might capture. If it's ever escaped, this alloca must be 1206 // put on the frame conservatively. 1207 // To answer quetion 2, we track through the variable MayWriteBeforeCoroBegin. 1208 // Whenever a potential write happens, either through a store instruction, a 1209 // function call or any of the memory intrinsics, we check whether this 1210 // instruction is prior to CoroBegin. To answer question 3, we track the offsets 1211 // of all aliases created for the alloca prior to CoroBegin but used after 1212 // CoroBegin. llvm::Optional is used to be able to represent the case when the 1213 // offset is unknown (e.g. when you have a PHINode that takes in different 1214 // offset values). We cannot handle unknown offsets and will assert. This is the 1215 // potential issue left out. An ideal solution would likely require a 1216 // significant redesign. 1217 namespace { 1218 struct AllocaUseVisitor : PtrUseVisitor<AllocaUseVisitor> { 1219 using Base = PtrUseVisitor<AllocaUseVisitor>; 1220 AllocaUseVisitor(const DataLayout &DL, const DominatorTree &DT, 1221 const CoroBeginInst &CB, const SuspendCrossingInfo &Checker) 1222 : PtrUseVisitor(DL), DT(DT), CoroBegin(CB), Checker(Checker) {} 1223 1224 void visit(Instruction &I) { 1225 Users.insert(&I); 1226 Base::visit(I); 1227 // If the pointer is escaped prior to CoroBegin, we have to assume it would 1228 // be written into before CoroBegin as well. 1229 if (PI.isEscaped() && !DT.dominates(&CoroBegin, PI.getEscapingInst())) { 1230 MayWriteBeforeCoroBegin = true; 1231 } 1232 } 1233 // We need to provide this overload as PtrUseVisitor uses a pointer based 1234 // visiting function. 1235 void visit(Instruction *I) { return visit(*I); } 1236 1237 void visitPHINode(PHINode &I) { 1238 enqueueUsers(I); 1239 handleAlias(I); 1240 } 1241 1242 void visitSelectInst(SelectInst &I) { 1243 enqueueUsers(I); 1244 handleAlias(I); 1245 } 1246 1247 void visitStoreInst(StoreInst &SI) { 1248 // Regardless whether the alias of the alloca is the value operand or the 1249 // pointer operand, we need to assume the alloca is been written. 1250 handleMayWrite(SI); 1251 1252 if (SI.getValueOperand() != U->get()) 1253 return; 1254 1255 // We are storing the pointer into a memory location, potentially escaping. 1256 // As an optimization, we try to detect simple cases where it doesn't 1257 // actually escape, for example: 1258 // %ptr = alloca .. 1259 // %addr = alloca .. 1260 // store %ptr, %addr 1261 // %x = load %addr 1262 // .. 1263 // If %addr is only used by loading from it, we could simply treat %x as 1264 // another alias of %ptr, and not considering %ptr being escaped. 1265 auto IsSimpleStoreThenLoad = [&]() { 1266 auto *AI = dyn_cast<AllocaInst>(SI.getPointerOperand()); 1267 // If the memory location we are storing to is not an alloca, it 1268 // could be an alias of some other memory locations, which is difficult 1269 // to analyze. 1270 if (!AI) 1271 return false; 1272 // StoreAliases contains aliases of the memory location stored into. 1273 SmallVector<Instruction *, 4> StoreAliases = {AI}; 1274 while (!StoreAliases.empty()) { 1275 Instruction *I = StoreAliases.pop_back_val(); 1276 for (User *U : I->users()) { 1277 // If we are loading from the memory location, we are creating an 1278 // alias of the original pointer. 1279 if (auto *LI = dyn_cast<LoadInst>(U)) { 1280 enqueueUsers(*LI); 1281 handleAlias(*LI); 1282 continue; 1283 } 1284 // If we are overriding the memory location, the pointer certainly 1285 // won't escape. 1286 if (auto *S = dyn_cast<StoreInst>(U)) 1287 if (S->getPointerOperand() == I) 1288 continue; 1289 if (auto *II = dyn_cast<IntrinsicInst>(U)) 1290 if (II->isLifetimeStartOrEnd()) 1291 continue; 1292 // BitCastInst creats aliases of the memory location being stored 1293 // into. 1294 if (auto *BI = dyn_cast<BitCastInst>(U)) { 1295 StoreAliases.push_back(BI); 1296 continue; 1297 } 1298 return false; 1299 } 1300 } 1301 1302 return true; 1303 }; 1304 1305 if (!IsSimpleStoreThenLoad()) 1306 PI.setEscaped(&SI); 1307 } 1308 1309 // All mem intrinsics modify the data. 1310 void visitMemIntrinsic(MemIntrinsic &MI) { handleMayWrite(MI); } 1311 1312 void visitBitCastInst(BitCastInst &BC) { 1313 Base::visitBitCastInst(BC); 1314 handleAlias(BC); 1315 } 1316 1317 void visitAddrSpaceCastInst(AddrSpaceCastInst &ASC) { 1318 Base::visitAddrSpaceCastInst(ASC); 1319 handleAlias(ASC); 1320 } 1321 1322 void visitGetElementPtrInst(GetElementPtrInst &GEPI) { 1323 // The base visitor will adjust Offset accordingly. 1324 Base::visitGetElementPtrInst(GEPI); 1325 handleAlias(GEPI); 1326 } 1327 1328 void visitIntrinsicInst(IntrinsicInst &II) { 1329 if (II.getIntrinsicID() != Intrinsic::lifetime_start) 1330 return Base::visitIntrinsicInst(II); 1331 LifetimeStarts.insert(&II); 1332 } 1333 1334 void visitCallBase(CallBase &CB) { 1335 for (unsigned Op = 0, OpCount = CB.getNumArgOperands(); Op < OpCount; ++Op) 1336 if (U->get() == CB.getArgOperand(Op) && !CB.doesNotCapture(Op)) 1337 PI.setEscaped(&CB); 1338 handleMayWrite(CB); 1339 } 1340 1341 bool getShouldLiveOnFrame() const { 1342 if (!ShouldLiveOnFrame) 1343 ShouldLiveOnFrame = computeShouldLiveOnFrame(); 1344 return ShouldLiveOnFrame.getValue(); 1345 } 1346 1347 bool getMayWriteBeforeCoroBegin() const { return MayWriteBeforeCoroBegin; } 1348 1349 DenseMap<Instruction *, llvm::Optional<APInt>> getAliasesCopy() const { 1350 assert(getShouldLiveOnFrame() && "This method should only be called if the " 1351 "alloca needs to live on the frame."); 1352 for (const auto &P : AliasOffetMap) 1353 if (!P.second) 1354 report_fatal_error("Unable to handle an alias with unknown offset " 1355 "created before CoroBegin."); 1356 return AliasOffetMap; 1357 } 1358 1359 private: 1360 const DominatorTree &DT; 1361 const CoroBeginInst &CoroBegin; 1362 const SuspendCrossingInfo &Checker; 1363 // All alias to the original AllocaInst, created before CoroBegin and used 1364 // after CoroBegin. Each entry contains the instruction and the offset in the 1365 // original Alloca. They need to be recreated after CoroBegin off the frame. 1366 DenseMap<Instruction *, llvm::Optional<APInt>> AliasOffetMap{}; 1367 SmallPtrSet<Instruction *, 4> Users{}; 1368 SmallPtrSet<IntrinsicInst *, 2> LifetimeStarts{}; 1369 bool MayWriteBeforeCoroBegin{false}; 1370 1371 mutable llvm::Optional<bool> ShouldLiveOnFrame{}; 1372 1373 bool computeShouldLiveOnFrame() const { 1374 // If lifetime information is available, we check it first since it's 1375 // more precise. We look at every pair of lifetime.start intrinsic and 1376 // every basic block that uses the pointer to see if they cross suspension 1377 // points. The uses cover both direct uses as well as indirect uses. 1378 if (!LifetimeStarts.empty()) { 1379 for (auto *I : Users) 1380 for (auto *S : LifetimeStarts) 1381 if (Checker.isDefinitionAcrossSuspend(*S, I)) 1382 return true; 1383 return false; 1384 } 1385 // FIXME: Ideally the isEscaped check should come at the beginning. 1386 // However there are a few loose ends that need to be fixed first before 1387 // we can do that. We need to make sure we are not over-conservative, so 1388 // that the data accessed in-between await_suspend and symmetric transfer 1389 // is always put on the stack, and also data accessed after coro.end is 1390 // always put on the stack (esp the return object). To fix that, we need 1391 // to: 1392 // 1) Potentially treat sret as nocapture in calls 1393 // 2) Special handle the return object and put it on the stack 1394 // 3) Utilize lifetime.end intrinsic 1395 if (PI.isEscaped()) 1396 return true; 1397 1398 for (auto *U1 : Users) 1399 for (auto *U2 : Users) 1400 if (Checker.isDefinitionAcrossSuspend(*U1, U2)) 1401 return true; 1402 1403 return false; 1404 } 1405 1406 void handleMayWrite(const Instruction &I) { 1407 if (!DT.dominates(&CoroBegin, &I)) 1408 MayWriteBeforeCoroBegin = true; 1409 } 1410 1411 bool usedAfterCoroBegin(Instruction &I) { 1412 for (auto &U : I.uses()) 1413 if (DT.dominates(&CoroBegin, U)) 1414 return true; 1415 return false; 1416 } 1417 1418 void handleAlias(Instruction &I) { 1419 // We track all aliases created prior to CoroBegin but used after. 1420 // These aliases may need to be recreated after CoroBegin if the alloca 1421 // need to live on the frame. 1422 if (DT.dominates(&CoroBegin, &I) || !usedAfterCoroBegin(I)) 1423 return; 1424 1425 if (!IsOffsetKnown) { 1426 AliasOffetMap[&I].reset(); 1427 } else { 1428 auto Itr = AliasOffetMap.find(&I); 1429 if (Itr == AliasOffetMap.end()) { 1430 AliasOffetMap[&I] = Offset; 1431 } else if (Itr->second.hasValue() && Itr->second.getValue() != Offset) { 1432 // If we have seen two different possible values for this alias, we set 1433 // it to empty. 1434 AliasOffetMap[&I].reset(); 1435 } 1436 } 1437 } 1438 }; 1439 } // namespace 1440 1441 // We need to make room to insert a spill after initial PHIs, but before 1442 // catchswitch instruction. Placing it before violates the requirement that 1443 // catchswitch, like all other EHPads must be the first nonPHI in a block. 1444 // 1445 // Split away catchswitch into a separate block and insert in its place: 1446 // 1447 // cleanuppad <InsertPt> cleanupret. 1448 // 1449 // cleanupret instruction will act as an insert point for the spill. 1450 static Instruction *splitBeforeCatchSwitch(CatchSwitchInst *CatchSwitch) { 1451 BasicBlock *CurrentBlock = CatchSwitch->getParent(); 1452 BasicBlock *NewBlock = CurrentBlock->splitBasicBlock(CatchSwitch); 1453 CurrentBlock->getTerminator()->eraseFromParent(); 1454 1455 auto *CleanupPad = 1456 CleanupPadInst::Create(CatchSwitch->getParentPad(), {}, "", CurrentBlock); 1457 auto *CleanupRet = 1458 CleanupReturnInst::Create(CleanupPad, NewBlock, CurrentBlock); 1459 return CleanupRet; 1460 } 1461 1462 static void createFramePtr(coro::Shape &Shape) { 1463 auto *CB = Shape.CoroBegin; 1464 IRBuilder<> Builder(CB->getNextNode()); 1465 StructType *FrameTy = Shape.FrameTy; 1466 PointerType *FramePtrTy = FrameTy->getPointerTo(); 1467 Shape.FramePtr = 1468 cast<Instruction>(Builder.CreateBitCast(CB, FramePtrTy, "FramePtr")); 1469 } 1470 1471 // Replace all alloca and SSA values that are accessed across suspend points 1472 // with GetElementPointer from coroutine frame + loads and stores. Create an 1473 // AllocaSpillBB that will become the new entry block for the resume parts of 1474 // the coroutine: 1475 // 1476 // %hdl = coro.begin(...) 1477 // whatever 1478 // 1479 // becomes: 1480 // 1481 // %hdl = coro.begin(...) 1482 // %FramePtr = bitcast i8* hdl to %f.frame* 1483 // br label %AllocaSpillBB 1484 // 1485 // AllocaSpillBB: 1486 // ; geps corresponding to allocas that were moved to coroutine frame 1487 // br label PostSpill 1488 // 1489 // PostSpill: 1490 // whatever 1491 // 1492 // 1493 static Instruction *insertSpills(const FrameDataInfo &FrameData, 1494 coro::Shape &Shape) { 1495 auto *CB = Shape.CoroBegin; 1496 LLVMContext &C = CB->getContext(); 1497 IRBuilder<> Builder(C); 1498 StructType *FrameTy = Shape.FrameTy; 1499 Instruction *FramePtr = Shape.FramePtr; 1500 DominatorTree DT(*CB->getFunction()); 1501 SmallDenseMap<llvm::Value *, llvm::AllocaInst *, 4> DbgPtrAllocaCache; 1502 1503 // Create a GEP with the given index into the coroutine frame for the original 1504 // value Orig. Appends an extra 0 index for array-allocas, preserving the 1505 // original type. 1506 auto GetFramePointer = [&](Value *Orig) -> Value * { 1507 FieldIDType Index = FrameData.getFieldIndex(Orig); 1508 SmallVector<Value *, 3> Indices = { 1509 ConstantInt::get(Type::getInt32Ty(C), 0), 1510 ConstantInt::get(Type::getInt32Ty(C), Index), 1511 }; 1512 1513 if (auto *AI = dyn_cast<AllocaInst>(Orig)) { 1514 if (auto *CI = dyn_cast<ConstantInt>(AI->getArraySize())) { 1515 auto Count = CI->getValue().getZExtValue(); 1516 if (Count > 1) { 1517 Indices.push_back(ConstantInt::get(Type::getInt32Ty(C), 0)); 1518 } 1519 } else { 1520 report_fatal_error("Coroutines cannot handle non static allocas yet"); 1521 } 1522 } 1523 1524 auto GEP = cast<GetElementPtrInst>( 1525 Builder.CreateInBoundsGEP(FrameTy, FramePtr, Indices)); 1526 if (isa<AllocaInst>(Orig)) { 1527 // If the type of GEP is not equal to the type of AllocaInst, it implies 1528 // that the AllocaInst may be reused in the Frame slot of other 1529 // AllocaInst. So We cast GEP to the AllocaInst here to re-use 1530 // the Frame storage. 1531 // 1532 // Note: If we change the strategy dealing with alignment, we need to refine 1533 // this casting. 1534 if (GEP->getResultElementType() != Orig->getType()) 1535 return Builder.CreateBitCast(GEP, Orig->getType(), 1536 Orig->getName() + Twine(".cast")); 1537 } 1538 return GEP; 1539 }; 1540 1541 for (auto const &E : FrameData.Spills) { 1542 Value *Def = E.first; 1543 // Create a store instruction storing the value into the 1544 // coroutine frame. 1545 Instruction *InsertPt = nullptr; 1546 if (auto *Arg = dyn_cast<Argument>(Def)) { 1547 // For arguments, we will place the store instruction right after 1548 // the coroutine frame pointer instruction, i.e. bitcast of 1549 // coro.begin from i8* to %f.frame*. 1550 InsertPt = FramePtr->getNextNode(); 1551 1552 // If we're spilling an Argument, make sure we clear 'nocapture' 1553 // from the coroutine function. 1554 Arg->getParent()->removeParamAttr(Arg->getArgNo(), Attribute::NoCapture); 1555 1556 } else if (auto *CSI = dyn_cast<AnyCoroSuspendInst>(Def)) { 1557 // Don't spill immediately after a suspend; splitting assumes 1558 // that the suspend will be followed by a branch. 1559 InsertPt = CSI->getParent()->getSingleSuccessor()->getFirstNonPHI(); 1560 } else { 1561 auto *I = cast<Instruction>(Def); 1562 if (!DT.dominates(CB, I)) { 1563 // If it is not dominated by CoroBegin, then spill should be 1564 // inserted immediately after CoroFrame is computed. 1565 InsertPt = FramePtr->getNextNode(); 1566 } else if (auto *II = dyn_cast<InvokeInst>(I)) { 1567 // If we are spilling the result of the invoke instruction, split 1568 // the normal edge and insert the spill in the new block. 1569 auto *NewBB = SplitEdge(II->getParent(), II->getNormalDest()); 1570 InsertPt = NewBB->getTerminator(); 1571 } else if (isa<PHINode>(I)) { 1572 // Skip the PHINodes and EH pads instructions. 1573 BasicBlock *DefBlock = I->getParent(); 1574 if (auto *CSI = dyn_cast<CatchSwitchInst>(DefBlock->getTerminator())) 1575 InsertPt = splitBeforeCatchSwitch(CSI); 1576 else 1577 InsertPt = &*DefBlock->getFirstInsertionPt(); 1578 } else { 1579 assert(!I->isTerminator() && "unexpected terminator"); 1580 // For all other values, the spill is placed immediately after 1581 // the definition. 1582 InsertPt = I->getNextNode(); 1583 } 1584 } 1585 1586 auto Index = FrameData.getFieldIndex(Def); 1587 Builder.SetInsertPoint(InsertPt); 1588 auto *G = Builder.CreateConstInBoundsGEP2_32( 1589 FrameTy, FramePtr, 0, Index, Def->getName() + Twine(".spill.addr")); 1590 Builder.CreateStore(Def, G); 1591 1592 BasicBlock *CurrentBlock = nullptr; 1593 Value *CurrentReload = nullptr; 1594 for (auto *U : E.second) { 1595 // If we have not seen the use block, create a load instruction to reload 1596 // the spilled value from the coroutine frame. Populates the Value pointer 1597 // reference provided with the frame GEP. 1598 if (CurrentBlock != U->getParent()) { 1599 CurrentBlock = U->getParent(); 1600 Builder.SetInsertPoint(&*CurrentBlock->getFirstInsertionPt()); 1601 1602 auto *GEP = GetFramePointer(E.first); 1603 GEP->setName(E.first->getName() + Twine(".reload.addr")); 1604 CurrentReload = Builder.CreateLoad( 1605 FrameTy->getElementType(FrameData.getFieldIndex(E.first)), GEP, 1606 E.first->getName() + Twine(".reload")); 1607 1608 TinyPtrVector<DbgDeclareInst *> DIs = FindDbgDeclareUses(Def); 1609 for (DbgDeclareInst *DDI : DIs) { 1610 bool AllowUnresolved = false; 1611 // This dbg.declare is preserved for all coro-split function 1612 // fragments. It will be unreachable in the main function, and 1613 // processed by coro::salvageDebugInfo() by CoroCloner. 1614 DIBuilder(*CurrentBlock->getParent()->getParent(), AllowUnresolved) 1615 .insertDeclare(CurrentReload, DDI->getVariable(), 1616 DDI->getExpression(), DDI->getDebugLoc(), 1617 &*Builder.GetInsertPoint()); 1618 // This dbg.declare is for the main function entry point. It 1619 // will be deleted in all coro-split functions. 1620 coro::salvageDebugInfo(DbgPtrAllocaCache, DDI, Shape.ReuseFrameSlot); 1621 } 1622 } 1623 1624 // If we have a single edge PHINode, remove it and replace it with a 1625 // reload from the coroutine frame. (We already took care of multi edge 1626 // PHINodes by rewriting them in the rewritePHIs function). 1627 if (auto *PN = dyn_cast<PHINode>(U)) { 1628 assert(PN->getNumIncomingValues() == 1 && 1629 "unexpected number of incoming " 1630 "values in the PHINode"); 1631 PN->replaceAllUsesWith(CurrentReload); 1632 PN->eraseFromParent(); 1633 continue; 1634 } 1635 1636 // Replace all uses of CurrentValue in the current instruction with 1637 // reload. 1638 U->replaceUsesOfWith(Def, CurrentReload); 1639 } 1640 } 1641 1642 BasicBlock *FramePtrBB = FramePtr->getParent(); 1643 1644 auto SpillBlock = 1645 FramePtrBB->splitBasicBlock(FramePtr->getNextNode(), "AllocaSpillBB"); 1646 SpillBlock->splitBasicBlock(&SpillBlock->front(), "PostSpill"); 1647 Shape.AllocaSpillBlock = SpillBlock; 1648 1649 // retcon and retcon.once lowering assumes all uses have been sunk. 1650 if (Shape.ABI == coro::ABI::Retcon || Shape.ABI == coro::ABI::RetconOnce || 1651 Shape.ABI == coro::ABI::Async) { 1652 // If we found any allocas, replace all of their remaining uses with Geps. 1653 Builder.SetInsertPoint(&SpillBlock->front()); 1654 for (const auto &P : FrameData.Allocas) { 1655 AllocaInst *Alloca = P.Alloca; 1656 auto *G = GetFramePointer(Alloca); 1657 1658 // We are not using ReplaceInstWithInst(P.first, cast<Instruction>(G)) 1659 // here, as we are changing location of the instruction. 1660 G->takeName(Alloca); 1661 Alloca->replaceAllUsesWith(G); 1662 Alloca->eraseFromParent(); 1663 } 1664 return FramePtr; 1665 } 1666 1667 // If we found any alloca, replace all of their remaining uses with GEP 1668 // instructions. To remain debugbility, we replace the uses of allocas for 1669 // dbg.declares and dbg.values with the reload from the frame. 1670 // Note: We cannot replace the alloca with GEP instructions indiscriminately, 1671 // as some of the uses may not be dominated by CoroBegin. 1672 Builder.SetInsertPoint(&Shape.AllocaSpillBlock->front()); 1673 SmallVector<Instruction *, 4> UsersToUpdate; 1674 for (const auto &A : FrameData.Allocas) { 1675 AllocaInst *Alloca = A.Alloca; 1676 UsersToUpdate.clear(); 1677 for (User *U : Alloca->users()) { 1678 auto *I = cast<Instruction>(U); 1679 if (DT.dominates(CB, I)) 1680 UsersToUpdate.push_back(I); 1681 } 1682 if (UsersToUpdate.empty()) 1683 continue; 1684 auto *G = GetFramePointer(Alloca); 1685 G->setName(Alloca->getName() + Twine(".reload.addr")); 1686 1687 SmallVector<DbgVariableIntrinsic *, 4> DIs; 1688 findDbgUsers(DIs, Alloca); 1689 for (auto *DVI : DIs) 1690 DVI->replaceUsesOfWith(Alloca, G); 1691 1692 for (Instruction *I : UsersToUpdate) 1693 I->replaceUsesOfWith(Alloca, G); 1694 } 1695 Builder.SetInsertPoint(FramePtr->getNextNode()); 1696 for (const auto &A : FrameData.Allocas) { 1697 AllocaInst *Alloca = A.Alloca; 1698 if (A.MayWriteBeforeCoroBegin) { 1699 // isEscaped really means potentially modified before CoroBegin. 1700 if (Alloca->isArrayAllocation()) 1701 report_fatal_error( 1702 "Coroutines cannot handle copying of array allocas yet"); 1703 1704 auto *G = GetFramePointer(Alloca); 1705 auto *Value = Builder.CreateLoad(Alloca->getAllocatedType(), Alloca); 1706 Builder.CreateStore(Value, G); 1707 } 1708 // For each alias to Alloca created before CoroBegin but used after 1709 // CoroBegin, we recreate them after CoroBegin by appplying the offset 1710 // to the pointer in the frame. 1711 for (const auto &Alias : A.Aliases) { 1712 auto *FramePtr = GetFramePointer(Alloca); 1713 auto *FramePtrRaw = 1714 Builder.CreateBitCast(FramePtr, Type::getInt8PtrTy(C)); 1715 auto *AliasPtr = Builder.CreateGEP( 1716 FramePtrRaw, 1717 ConstantInt::get(Type::getInt64Ty(C), Alias.second.getValue())); 1718 auto *AliasPtrTyped = 1719 Builder.CreateBitCast(AliasPtr, Alias.first->getType()); 1720 Alias.first->replaceUsesWithIf( 1721 AliasPtrTyped, [&](Use &U) { return DT.dominates(CB, U); }); 1722 } 1723 } 1724 return FramePtr; 1725 } 1726 1727 // Moves the values in the PHIs in SuccBB that correspong to PredBB into a new 1728 // PHI in InsertedBB. 1729 static void movePHIValuesToInsertedBlock(BasicBlock *SuccBB, 1730 BasicBlock *InsertedBB, 1731 BasicBlock *PredBB, 1732 PHINode *UntilPHI = nullptr) { 1733 auto *PN = cast<PHINode>(&SuccBB->front()); 1734 do { 1735 int Index = PN->getBasicBlockIndex(InsertedBB); 1736 Value *V = PN->getIncomingValue(Index); 1737 PHINode *InputV = PHINode::Create( 1738 V->getType(), 1, V->getName() + Twine(".") + SuccBB->getName(), 1739 &InsertedBB->front()); 1740 InputV->addIncoming(V, PredBB); 1741 PN->setIncomingValue(Index, InputV); 1742 PN = dyn_cast<PHINode>(PN->getNextNode()); 1743 } while (PN != UntilPHI); 1744 } 1745 1746 // Rewrites the PHI Nodes in a cleanuppad. 1747 static void rewritePHIsForCleanupPad(BasicBlock *CleanupPadBB, 1748 CleanupPadInst *CleanupPad) { 1749 // For every incoming edge to a CleanupPad we will create a new block holding 1750 // all incoming values in single-value PHI nodes. We will then create another 1751 // block to act as a dispather (as all unwind edges for related EH blocks 1752 // must be the same). 1753 // 1754 // cleanuppad: 1755 // %2 = phi i32[%0, %catchswitch], [%1, %catch.1] 1756 // %3 = cleanuppad within none [] 1757 // 1758 // It will create: 1759 // 1760 // cleanuppad.corodispatch 1761 // %2 = phi i8[0, %catchswitch], [1, %catch.1] 1762 // %3 = cleanuppad within none [] 1763 // switch i8 % 2, label %unreachable 1764 // [i8 0, label %cleanuppad.from.catchswitch 1765 // i8 1, label %cleanuppad.from.catch.1] 1766 // cleanuppad.from.catchswitch: 1767 // %4 = phi i32 [%0, %catchswitch] 1768 // br %label cleanuppad 1769 // cleanuppad.from.catch.1: 1770 // %6 = phi i32 [%1, %catch.1] 1771 // br %label cleanuppad 1772 // cleanuppad: 1773 // %8 = phi i32 [%4, %cleanuppad.from.catchswitch], 1774 // [%6, %cleanuppad.from.catch.1] 1775 1776 // Unreachable BB, in case switching on an invalid value in the dispatcher. 1777 auto *UnreachBB = BasicBlock::Create( 1778 CleanupPadBB->getContext(), "unreachable", CleanupPadBB->getParent()); 1779 IRBuilder<> Builder(UnreachBB); 1780 Builder.CreateUnreachable(); 1781 1782 // Create a new cleanuppad which will be the dispatcher. 1783 auto *NewCleanupPadBB = 1784 BasicBlock::Create(CleanupPadBB->getContext(), 1785 CleanupPadBB->getName() + Twine(".corodispatch"), 1786 CleanupPadBB->getParent(), CleanupPadBB); 1787 Builder.SetInsertPoint(NewCleanupPadBB); 1788 auto *SwitchType = Builder.getInt8Ty(); 1789 auto *SetDispatchValuePN = 1790 Builder.CreatePHI(SwitchType, pred_size(CleanupPadBB)); 1791 CleanupPad->removeFromParent(); 1792 CleanupPad->insertAfter(SetDispatchValuePN); 1793 auto *SwitchOnDispatch = Builder.CreateSwitch(SetDispatchValuePN, UnreachBB, 1794 pred_size(CleanupPadBB)); 1795 1796 int SwitchIndex = 0; 1797 SmallVector<BasicBlock *, 8> Preds(predecessors(CleanupPadBB)); 1798 for (BasicBlock *Pred : Preds) { 1799 // Create a new cleanuppad and move the PHI values to there. 1800 auto *CaseBB = BasicBlock::Create(CleanupPadBB->getContext(), 1801 CleanupPadBB->getName() + 1802 Twine(".from.") + Pred->getName(), 1803 CleanupPadBB->getParent(), CleanupPadBB); 1804 updatePhiNodes(CleanupPadBB, Pred, CaseBB); 1805 CaseBB->setName(CleanupPadBB->getName() + Twine(".from.") + 1806 Pred->getName()); 1807 Builder.SetInsertPoint(CaseBB); 1808 Builder.CreateBr(CleanupPadBB); 1809 movePHIValuesToInsertedBlock(CleanupPadBB, CaseBB, NewCleanupPadBB); 1810 1811 // Update this Pred to the new unwind point. 1812 setUnwindEdgeTo(Pred->getTerminator(), NewCleanupPadBB); 1813 1814 // Setup the switch in the dispatcher. 1815 auto *SwitchConstant = ConstantInt::get(SwitchType, SwitchIndex); 1816 SetDispatchValuePN->addIncoming(SwitchConstant, Pred); 1817 SwitchOnDispatch->addCase(SwitchConstant, CaseBB); 1818 SwitchIndex++; 1819 } 1820 } 1821 1822 static void rewritePHIs(BasicBlock &BB) { 1823 // For every incoming edge we will create a block holding all 1824 // incoming values in a single PHI nodes. 1825 // 1826 // loop: 1827 // %n.val = phi i32[%n, %entry], [%inc, %loop] 1828 // 1829 // It will create: 1830 // 1831 // loop.from.entry: 1832 // %n.loop.pre = phi i32 [%n, %entry] 1833 // br %label loop 1834 // loop.from.loop: 1835 // %inc.loop.pre = phi i32 [%inc, %loop] 1836 // br %label loop 1837 // 1838 // After this rewrite, further analysis will ignore any phi nodes with more 1839 // than one incoming edge. 1840 1841 // TODO: Simplify PHINodes in the basic block to remove duplicate 1842 // predecessors. 1843 1844 // Special case for CleanupPad: all EH blocks must have the same unwind edge 1845 // so we need to create an additional "dispatcher" block. 1846 if (auto *CleanupPad = 1847 dyn_cast_or_null<CleanupPadInst>(BB.getFirstNonPHI())) { 1848 SmallVector<BasicBlock *, 8> Preds(predecessors(&BB)); 1849 for (BasicBlock *Pred : Preds) { 1850 if (CatchSwitchInst *CS = 1851 dyn_cast<CatchSwitchInst>(Pred->getTerminator())) { 1852 // CleanupPad with a CatchSwitch predecessor: therefore this is an 1853 // unwind destination that needs to be handle specially. 1854 assert(CS->getUnwindDest() == &BB); 1855 (void)CS; 1856 rewritePHIsForCleanupPad(&BB, CleanupPad); 1857 return; 1858 } 1859 } 1860 } 1861 1862 LandingPadInst *LandingPad = nullptr; 1863 PHINode *ReplPHI = nullptr; 1864 if ((LandingPad = dyn_cast_or_null<LandingPadInst>(BB.getFirstNonPHI()))) { 1865 // ehAwareSplitEdge will clone the LandingPad in all the edge blocks. 1866 // We replace the original landing pad with a PHINode that will collect the 1867 // results from all of them. 1868 ReplPHI = PHINode::Create(LandingPad->getType(), 1, "", LandingPad); 1869 ReplPHI->takeName(LandingPad); 1870 LandingPad->replaceAllUsesWith(ReplPHI); 1871 // We will erase the original landing pad at the end of this function after 1872 // ehAwareSplitEdge cloned it in the transition blocks. 1873 } 1874 1875 SmallVector<BasicBlock *, 8> Preds(predecessors(&BB)); 1876 for (BasicBlock *Pred : Preds) { 1877 auto *IncomingBB = ehAwareSplitEdge(Pred, &BB, LandingPad, ReplPHI); 1878 IncomingBB->setName(BB.getName() + Twine(".from.") + Pred->getName()); 1879 1880 // Stop the moving of values at ReplPHI, as this is either null or the PHI 1881 // that replaced the landing pad. 1882 movePHIValuesToInsertedBlock(&BB, IncomingBB, Pred, ReplPHI); 1883 } 1884 1885 if (LandingPad) { 1886 // Calls to ehAwareSplitEdge function cloned the original lading pad. 1887 // No longer need it. 1888 LandingPad->eraseFromParent(); 1889 } 1890 } 1891 1892 static void rewritePHIs(Function &F) { 1893 SmallVector<BasicBlock *, 8> WorkList; 1894 1895 for (BasicBlock &BB : F) 1896 if (auto *PN = dyn_cast<PHINode>(&BB.front())) 1897 if (PN->getNumIncomingValues() > 1) 1898 WorkList.push_back(&BB); 1899 1900 for (BasicBlock *BB : WorkList) 1901 rewritePHIs(*BB); 1902 } 1903 1904 // Check for instructions that we can recreate on resume as opposed to spill 1905 // the result into a coroutine frame. 1906 static bool materializable(Instruction &V) { 1907 return isa<CastInst>(&V) || isa<GetElementPtrInst>(&V) || 1908 isa<BinaryOperator>(&V) || isa<CmpInst>(&V) || isa<SelectInst>(&V); 1909 } 1910 1911 // Check for structural coroutine intrinsics that should not be spilled into 1912 // the coroutine frame. 1913 static bool isCoroutineStructureIntrinsic(Instruction &I) { 1914 return isa<CoroIdInst>(&I) || isa<CoroSaveInst>(&I) || 1915 isa<CoroSuspendInst>(&I); 1916 } 1917 1918 // For every use of the value that is across suspend point, recreate that value 1919 // after a suspend point. 1920 static void rewriteMaterializableInstructions(IRBuilder<> &IRB, 1921 const SpillInfo &Spills) { 1922 for (const auto &E : Spills) { 1923 Value *Def = E.first; 1924 BasicBlock *CurrentBlock = nullptr; 1925 Instruction *CurrentMaterialization = nullptr; 1926 for (Instruction *U : E.second) { 1927 // If we have not seen this block, materialize the value. 1928 if (CurrentBlock != U->getParent()) { 1929 CurrentBlock = U->getParent(); 1930 CurrentMaterialization = cast<Instruction>(Def)->clone(); 1931 CurrentMaterialization->setName(Def->getName()); 1932 CurrentMaterialization->insertBefore( 1933 &*CurrentBlock->getFirstInsertionPt()); 1934 } 1935 if (auto *PN = dyn_cast<PHINode>(U)) { 1936 assert(PN->getNumIncomingValues() == 1 && 1937 "unexpected number of incoming " 1938 "values in the PHINode"); 1939 PN->replaceAllUsesWith(CurrentMaterialization); 1940 PN->eraseFromParent(); 1941 continue; 1942 } 1943 // Replace all uses of Def in the current instruction with the 1944 // CurrentMaterialization for the block. 1945 U->replaceUsesOfWith(Def, CurrentMaterialization); 1946 } 1947 } 1948 } 1949 1950 // Splits the block at a particular instruction unless it is the first 1951 // instruction in the block with a single predecessor. 1952 static BasicBlock *splitBlockIfNotFirst(Instruction *I, const Twine &Name) { 1953 auto *BB = I->getParent(); 1954 if (&BB->front() == I) { 1955 if (BB->getSinglePredecessor()) { 1956 BB->setName(Name); 1957 return BB; 1958 } 1959 } 1960 return BB->splitBasicBlock(I, Name); 1961 } 1962 1963 // Split above and below a particular instruction so that it 1964 // will be all alone by itself in a block. 1965 static void splitAround(Instruction *I, const Twine &Name) { 1966 splitBlockIfNotFirst(I, Name); 1967 splitBlockIfNotFirst(I->getNextNode(), "After" + Name); 1968 } 1969 1970 static bool isSuspendBlock(BasicBlock *BB) { 1971 return isa<AnyCoroSuspendInst>(BB->front()); 1972 } 1973 1974 typedef SmallPtrSet<BasicBlock*, 8> VisitedBlocksSet; 1975 1976 /// Does control flow starting at the given block ever reach a suspend 1977 /// instruction before reaching a block in VisitedOrFreeBBs? 1978 static bool isSuspendReachableFrom(BasicBlock *From, 1979 VisitedBlocksSet &VisitedOrFreeBBs) { 1980 // Eagerly try to add this block to the visited set. If it's already 1981 // there, stop recursing; this path doesn't reach a suspend before 1982 // either looping or reaching a freeing block. 1983 if (!VisitedOrFreeBBs.insert(From).second) 1984 return false; 1985 1986 // We assume that we'll already have split suspends into their own blocks. 1987 if (isSuspendBlock(From)) 1988 return true; 1989 1990 // Recurse on the successors. 1991 for (auto Succ : successors(From)) { 1992 if (isSuspendReachableFrom(Succ, VisitedOrFreeBBs)) 1993 return true; 1994 } 1995 1996 return false; 1997 } 1998 1999 /// Is the given alloca "local", i.e. bounded in lifetime to not cross a 2000 /// suspend point? 2001 static bool isLocalAlloca(CoroAllocaAllocInst *AI) { 2002 // Seed the visited set with all the basic blocks containing a free 2003 // so that we won't pass them up. 2004 VisitedBlocksSet VisitedOrFreeBBs; 2005 for (auto User : AI->users()) { 2006 if (auto FI = dyn_cast<CoroAllocaFreeInst>(User)) 2007 VisitedOrFreeBBs.insert(FI->getParent()); 2008 } 2009 2010 return !isSuspendReachableFrom(AI->getParent(), VisitedOrFreeBBs); 2011 } 2012 2013 /// After we split the coroutine, will the given basic block be along 2014 /// an obvious exit path for the resumption function? 2015 static bool willLeaveFunctionImmediatelyAfter(BasicBlock *BB, 2016 unsigned depth = 3) { 2017 // If we've bottomed out our depth count, stop searching and assume 2018 // that the path might loop back. 2019 if (depth == 0) return false; 2020 2021 // If this is a suspend block, we're about to exit the resumption function. 2022 if (isSuspendBlock(BB)) return true; 2023 2024 // Recurse into the successors. 2025 for (auto Succ : successors(BB)) { 2026 if (!willLeaveFunctionImmediatelyAfter(Succ, depth - 1)) 2027 return false; 2028 } 2029 2030 // If none of the successors leads back in a loop, we're on an exit/abort. 2031 return true; 2032 } 2033 2034 static bool localAllocaNeedsStackSave(CoroAllocaAllocInst *AI) { 2035 // Look for a free that isn't sufficiently obviously followed by 2036 // either a suspend or a termination, i.e. something that will leave 2037 // the coro resumption frame. 2038 for (auto U : AI->users()) { 2039 auto FI = dyn_cast<CoroAllocaFreeInst>(U); 2040 if (!FI) continue; 2041 2042 if (!willLeaveFunctionImmediatelyAfter(FI->getParent())) 2043 return true; 2044 } 2045 2046 // If we never found one, we don't need a stack save. 2047 return false; 2048 } 2049 2050 /// Turn each of the given local allocas into a normal (dynamic) alloca 2051 /// instruction. 2052 static void lowerLocalAllocas(ArrayRef<CoroAllocaAllocInst*> LocalAllocas, 2053 SmallVectorImpl<Instruction*> &DeadInsts) { 2054 for (auto AI : LocalAllocas) { 2055 auto M = AI->getModule(); 2056 IRBuilder<> Builder(AI); 2057 2058 // Save the stack depth. Try to avoid doing this if the stackrestore 2059 // is going to immediately precede a return or something. 2060 Value *StackSave = nullptr; 2061 if (localAllocaNeedsStackSave(AI)) 2062 StackSave = Builder.CreateCall( 2063 Intrinsic::getDeclaration(M, Intrinsic::stacksave)); 2064 2065 // Allocate memory. 2066 auto Alloca = Builder.CreateAlloca(Builder.getInt8Ty(), AI->getSize()); 2067 Alloca->setAlignment(Align(AI->getAlignment())); 2068 2069 for (auto U : AI->users()) { 2070 // Replace gets with the allocation. 2071 if (isa<CoroAllocaGetInst>(U)) { 2072 U->replaceAllUsesWith(Alloca); 2073 2074 // Replace frees with stackrestores. This is safe because 2075 // alloca.alloc is required to obey a stack discipline, although we 2076 // don't enforce that structurally. 2077 } else { 2078 auto FI = cast<CoroAllocaFreeInst>(U); 2079 if (StackSave) { 2080 Builder.SetInsertPoint(FI); 2081 Builder.CreateCall( 2082 Intrinsic::getDeclaration(M, Intrinsic::stackrestore), 2083 StackSave); 2084 } 2085 } 2086 DeadInsts.push_back(cast<Instruction>(U)); 2087 } 2088 2089 DeadInsts.push_back(AI); 2090 } 2091 } 2092 2093 /// Turn the given coro.alloca.alloc call into a dynamic allocation. 2094 /// This happens during the all-instructions iteration, so it must not 2095 /// delete the call. 2096 static Instruction *lowerNonLocalAlloca(CoroAllocaAllocInst *AI, 2097 coro::Shape &Shape, 2098 SmallVectorImpl<Instruction*> &DeadInsts) { 2099 IRBuilder<> Builder(AI); 2100 auto Alloc = Shape.emitAlloc(Builder, AI->getSize(), nullptr); 2101 2102 for (User *U : AI->users()) { 2103 if (isa<CoroAllocaGetInst>(U)) { 2104 U->replaceAllUsesWith(Alloc); 2105 } else { 2106 auto FI = cast<CoroAllocaFreeInst>(U); 2107 Builder.SetInsertPoint(FI); 2108 Shape.emitDealloc(Builder, Alloc, nullptr); 2109 } 2110 DeadInsts.push_back(cast<Instruction>(U)); 2111 } 2112 2113 // Push this on last so that it gets deleted after all the others. 2114 DeadInsts.push_back(AI); 2115 2116 // Return the new allocation value so that we can check for needed spills. 2117 return cast<Instruction>(Alloc); 2118 } 2119 2120 /// Get the current swifterror value. 2121 static Value *emitGetSwiftErrorValue(IRBuilder<> &Builder, Type *ValueTy, 2122 coro::Shape &Shape) { 2123 // Make a fake function pointer as a sort of intrinsic. 2124 auto FnTy = FunctionType::get(ValueTy, {}, false); 2125 auto Fn = ConstantPointerNull::get(FnTy->getPointerTo()); 2126 2127 auto Call = Builder.CreateCall(FnTy, Fn, {}); 2128 Shape.SwiftErrorOps.push_back(Call); 2129 2130 return Call; 2131 } 2132 2133 /// Set the given value as the current swifterror value. 2134 /// 2135 /// Returns a slot that can be used as a swifterror slot. 2136 static Value *emitSetSwiftErrorValue(IRBuilder<> &Builder, Value *V, 2137 coro::Shape &Shape) { 2138 // Make a fake function pointer as a sort of intrinsic. 2139 auto FnTy = FunctionType::get(V->getType()->getPointerTo(), 2140 {V->getType()}, false); 2141 auto Fn = ConstantPointerNull::get(FnTy->getPointerTo()); 2142 2143 auto Call = Builder.CreateCall(FnTy, Fn, { V }); 2144 Shape.SwiftErrorOps.push_back(Call); 2145 2146 return Call; 2147 } 2148 2149 /// Set the swifterror value from the given alloca before a call, 2150 /// then put in back in the alloca afterwards. 2151 /// 2152 /// Returns an address that will stand in for the swifterror slot 2153 /// until splitting. 2154 static Value *emitSetAndGetSwiftErrorValueAround(Instruction *Call, 2155 AllocaInst *Alloca, 2156 coro::Shape &Shape) { 2157 auto ValueTy = Alloca->getAllocatedType(); 2158 IRBuilder<> Builder(Call); 2159 2160 // Load the current value from the alloca and set it as the 2161 // swifterror value. 2162 auto ValueBeforeCall = Builder.CreateLoad(ValueTy, Alloca); 2163 auto Addr = emitSetSwiftErrorValue(Builder, ValueBeforeCall, Shape); 2164 2165 // Move to after the call. Since swifterror only has a guaranteed 2166 // value on normal exits, we can ignore implicit and explicit unwind 2167 // edges. 2168 if (isa<CallInst>(Call)) { 2169 Builder.SetInsertPoint(Call->getNextNode()); 2170 } else { 2171 auto Invoke = cast<InvokeInst>(Call); 2172 Builder.SetInsertPoint(Invoke->getNormalDest()->getFirstNonPHIOrDbg()); 2173 } 2174 2175 // Get the current swifterror value and store it to the alloca. 2176 auto ValueAfterCall = emitGetSwiftErrorValue(Builder, ValueTy, Shape); 2177 Builder.CreateStore(ValueAfterCall, Alloca); 2178 2179 return Addr; 2180 } 2181 2182 /// Eliminate a formerly-swifterror alloca by inserting the get/set 2183 /// intrinsics and attempting to MemToReg the alloca away. 2184 static void eliminateSwiftErrorAlloca(Function &F, AllocaInst *Alloca, 2185 coro::Shape &Shape) { 2186 for (auto UI = Alloca->use_begin(), UE = Alloca->use_end(); UI != UE; ) { 2187 // We're likely changing the use list, so use a mutation-safe 2188 // iteration pattern. 2189 auto &Use = *UI; 2190 ++UI; 2191 2192 // swifterror values can only be used in very specific ways. 2193 // We take advantage of that here. 2194 auto User = Use.getUser(); 2195 if (isa<LoadInst>(User) || isa<StoreInst>(User)) 2196 continue; 2197 2198 assert(isa<CallInst>(User) || isa<InvokeInst>(User)); 2199 auto Call = cast<Instruction>(User); 2200 2201 auto Addr = emitSetAndGetSwiftErrorValueAround(Call, Alloca, Shape); 2202 2203 // Use the returned slot address as the call argument. 2204 Use.set(Addr); 2205 } 2206 2207 // All the uses should be loads and stores now. 2208 assert(isAllocaPromotable(Alloca)); 2209 } 2210 2211 /// "Eliminate" a swifterror argument by reducing it to the alloca case 2212 /// and then loading and storing in the prologue and epilog. 2213 /// 2214 /// The argument keeps the swifterror flag. 2215 static void eliminateSwiftErrorArgument(Function &F, Argument &Arg, 2216 coro::Shape &Shape, 2217 SmallVectorImpl<AllocaInst*> &AllocasToPromote) { 2218 IRBuilder<> Builder(F.getEntryBlock().getFirstNonPHIOrDbg()); 2219 2220 auto ArgTy = cast<PointerType>(Arg.getType()); 2221 auto ValueTy = ArgTy->getElementType(); 2222 2223 // Reduce to the alloca case: 2224 2225 // Create an alloca and replace all uses of the arg with it. 2226 auto Alloca = Builder.CreateAlloca(ValueTy, ArgTy->getAddressSpace()); 2227 Arg.replaceAllUsesWith(Alloca); 2228 2229 // Set an initial value in the alloca. swifterror is always null on entry. 2230 auto InitialValue = Constant::getNullValue(ValueTy); 2231 Builder.CreateStore(InitialValue, Alloca); 2232 2233 // Find all the suspends in the function and save and restore around them. 2234 for (auto Suspend : Shape.CoroSuspends) { 2235 (void) emitSetAndGetSwiftErrorValueAround(Suspend, Alloca, Shape); 2236 } 2237 2238 // Find all the coro.ends in the function and restore the error value. 2239 for (auto End : Shape.CoroEnds) { 2240 Builder.SetInsertPoint(End); 2241 auto FinalValue = Builder.CreateLoad(ValueTy, Alloca); 2242 (void) emitSetSwiftErrorValue(Builder, FinalValue, Shape); 2243 } 2244 2245 // Now we can use the alloca logic. 2246 AllocasToPromote.push_back(Alloca); 2247 eliminateSwiftErrorAlloca(F, Alloca, Shape); 2248 } 2249 2250 /// Eliminate all problematic uses of swifterror arguments and allocas 2251 /// from the function. We'll fix them up later when splitting the function. 2252 static void eliminateSwiftError(Function &F, coro::Shape &Shape) { 2253 SmallVector<AllocaInst*, 4> AllocasToPromote; 2254 2255 // Look for a swifterror argument. 2256 for (auto &Arg : F.args()) { 2257 if (!Arg.hasSwiftErrorAttr()) continue; 2258 2259 eliminateSwiftErrorArgument(F, Arg, Shape, AllocasToPromote); 2260 break; 2261 } 2262 2263 // Look for swifterror allocas. 2264 for (auto &Inst : F.getEntryBlock()) { 2265 auto Alloca = dyn_cast<AllocaInst>(&Inst); 2266 if (!Alloca || !Alloca->isSwiftError()) continue; 2267 2268 // Clear the swifterror flag. 2269 Alloca->setSwiftError(false); 2270 2271 AllocasToPromote.push_back(Alloca); 2272 eliminateSwiftErrorAlloca(F, Alloca, Shape); 2273 } 2274 2275 // If we have any allocas to promote, compute a dominator tree and 2276 // promote them en masse. 2277 if (!AllocasToPromote.empty()) { 2278 DominatorTree DT(F); 2279 PromoteMemToReg(AllocasToPromote, DT); 2280 } 2281 } 2282 2283 /// retcon and retcon.once conventions assume that all spill uses can be sunk 2284 /// after the coro.begin intrinsic. 2285 static void sinkSpillUsesAfterCoroBegin(Function &F, 2286 const FrameDataInfo &FrameData, 2287 CoroBeginInst *CoroBegin) { 2288 DominatorTree Dom(F); 2289 2290 SmallSetVector<Instruction *, 32> ToMove; 2291 SmallVector<Instruction *, 32> Worklist; 2292 2293 // Collect all users that precede coro.begin. 2294 for (auto *Def : FrameData.getAllDefs()) { 2295 for (User *U : Def->users()) { 2296 auto Inst = cast<Instruction>(U); 2297 if (Inst->getParent() != CoroBegin->getParent() || 2298 Dom.dominates(CoroBegin, Inst)) 2299 continue; 2300 if (ToMove.insert(Inst)) 2301 Worklist.push_back(Inst); 2302 } 2303 } 2304 // Recursively collect users before coro.begin. 2305 while (!Worklist.empty()) { 2306 auto *Def = Worklist.pop_back_val(); 2307 for (User *U : Def->users()) { 2308 auto Inst = cast<Instruction>(U); 2309 if (Dom.dominates(CoroBegin, Inst)) 2310 continue; 2311 if (ToMove.insert(Inst)) 2312 Worklist.push_back(Inst); 2313 } 2314 } 2315 2316 // Sort by dominance. 2317 SmallVector<Instruction *, 64> InsertionList(ToMove.begin(), ToMove.end()); 2318 llvm::sort(InsertionList, [&Dom](Instruction *A, Instruction *B) -> bool { 2319 // If a dominates b it should preceed (<) b. 2320 return Dom.dominates(A, B); 2321 }); 2322 2323 Instruction *InsertPt = CoroBegin->getNextNode(); 2324 for (Instruction *Inst : InsertionList) 2325 Inst->moveBefore(InsertPt); 2326 } 2327 2328 /// For each local variable that all of its user are only used inside one of 2329 /// suspended region, we sink their lifetime.start markers to the place where 2330 /// after the suspend block. Doing so minimizes the lifetime of each variable, 2331 /// hence minimizing the amount of data we end up putting on the frame. 2332 static void sinkLifetimeStartMarkers(Function &F, coro::Shape &Shape, 2333 SuspendCrossingInfo &Checker) { 2334 DominatorTree DT(F); 2335 2336 // Collect all possible basic blocks which may dominate all uses of allocas. 2337 SmallPtrSet<BasicBlock *, 4> DomSet; 2338 DomSet.insert(&F.getEntryBlock()); 2339 for (auto *CSI : Shape.CoroSuspends) { 2340 BasicBlock *SuspendBlock = CSI->getParent(); 2341 assert(isSuspendBlock(SuspendBlock) && SuspendBlock->getSingleSuccessor() && 2342 "should have split coro.suspend into its own block"); 2343 DomSet.insert(SuspendBlock->getSingleSuccessor()); 2344 } 2345 2346 for (Instruction &I : instructions(F)) { 2347 AllocaInst* AI = dyn_cast<AllocaInst>(&I); 2348 if (!AI) 2349 continue; 2350 2351 for (BasicBlock *DomBB : DomSet) { 2352 bool Valid = true; 2353 SmallVector<Instruction *, 1> Lifetimes; 2354 2355 auto isLifetimeStart = [](Instruction* I) { 2356 if (auto* II = dyn_cast<IntrinsicInst>(I)) 2357 return II->getIntrinsicID() == Intrinsic::lifetime_start; 2358 return false; 2359 }; 2360 2361 auto collectLifetimeStart = [&](Instruction *U, AllocaInst *AI) { 2362 if (isLifetimeStart(U)) { 2363 Lifetimes.push_back(U); 2364 return true; 2365 } 2366 if (!U->hasOneUse() || U->stripPointerCasts() != AI) 2367 return false; 2368 if (isLifetimeStart(U->user_back())) { 2369 Lifetimes.push_back(U->user_back()); 2370 return true; 2371 } 2372 return false; 2373 }; 2374 2375 for (User *U : AI->users()) { 2376 Instruction *UI = cast<Instruction>(U); 2377 // For all users except lifetime.start markers, if they are all 2378 // dominated by one of the basic blocks and do not cross 2379 // suspend points as well, then there is no need to spill the 2380 // instruction. 2381 if (!DT.dominates(DomBB, UI->getParent()) || 2382 Checker.isDefinitionAcrossSuspend(DomBB, UI)) { 2383 // Skip lifetime.start, GEP and bitcast used by lifetime.start 2384 // markers. 2385 if (collectLifetimeStart(UI, AI)) 2386 continue; 2387 Valid = false; 2388 break; 2389 } 2390 } 2391 // Sink lifetime.start markers to dominate block when they are 2392 // only used outside the region. 2393 if (Valid && Lifetimes.size() != 0) { 2394 // May be AI itself, when the type of AI is i8* 2395 auto *NewBitCast = [&](AllocaInst *AI) -> Value* { 2396 if (isa<AllocaInst>(Lifetimes[0]->getOperand(1))) 2397 return AI; 2398 auto *Int8PtrTy = Type::getInt8PtrTy(F.getContext()); 2399 return CastInst::Create(Instruction::BitCast, AI, Int8PtrTy, "", 2400 DomBB->getTerminator()); 2401 }(AI); 2402 2403 auto *NewLifetime = Lifetimes[0]->clone(); 2404 NewLifetime->replaceUsesOfWith(NewLifetime->getOperand(1), NewBitCast); 2405 NewLifetime->insertBefore(DomBB->getTerminator()); 2406 2407 // All the outsided lifetime.start markers are no longer necessary. 2408 for (Instruction *S : Lifetimes) 2409 S->eraseFromParent(); 2410 2411 break; 2412 } 2413 } 2414 } 2415 } 2416 2417 static void collectFrameAllocas(Function &F, coro::Shape &Shape, 2418 const SuspendCrossingInfo &Checker, 2419 SmallVectorImpl<AllocaInfo> &Allocas) { 2420 for (Instruction &I : instructions(F)) { 2421 auto *AI = dyn_cast<AllocaInst>(&I); 2422 if (!AI) 2423 continue; 2424 // The PromiseAlloca will be specially handled since it needs to be in a 2425 // fixed position in the frame. 2426 if (AI == Shape.SwitchLowering.PromiseAlloca) { 2427 continue; 2428 } 2429 DominatorTree DT(F); 2430 AllocaUseVisitor Visitor{F.getParent()->getDataLayout(), DT, 2431 *Shape.CoroBegin, Checker}; 2432 Visitor.visitPtr(*AI); 2433 if (!Visitor.getShouldLiveOnFrame()) 2434 continue; 2435 Allocas.emplace_back(AI, Visitor.getAliasesCopy(), 2436 Visitor.getMayWriteBeforeCoroBegin()); 2437 } 2438 } 2439 2440 void coro::salvageDebugInfo( 2441 SmallDenseMap<llvm::Value *, llvm::AllocaInst *, 4> &DbgPtrAllocaCache, 2442 DbgVariableIntrinsic *DVI, bool ReuseFrameSlot) { 2443 Function *F = DVI->getFunction(); 2444 IRBuilder<> Builder(F->getContext()); 2445 auto InsertPt = F->getEntryBlock().getFirstInsertionPt(); 2446 while (isa<IntrinsicInst>(InsertPt)) 2447 ++InsertPt; 2448 Builder.SetInsertPoint(&F->getEntryBlock(), InsertPt); 2449 DIExpression *Expr = DVI->getExpression(); 2450 // Follow the pointer arithmetic all the way to the incoming 2451 // function argument and convert into a DIExpression. 2452 bool OutermostLoad = true; 2453 Value *Storage = DVI->getVariableLocationOp(0); 2454 Value *OriginalStorage = Storage; 2455 while (Storage) { 2456 if (auto *LdInst = dyn_cast<LoadInst>(Storage)) { 2457 Storage = LdInst->getOperand(0); 2458 // FIXME: This is a heuristic that works around the fact that 2459 // LLVM IR debug intrinsics cannot yet distinguish between 2460 // memory and value locations: Because a dbg.declare(alloca) is 2461 // implicitly a memory location no DW_OP_deref operation for the 2462 // last direct load from an alloca is necessary. This condition 2463 // effectively drops the *last* DW_OP_deref in the expression. 2464 if (!OutermostLoad) 2465 Expr = DIExpression::prepend(Expr, DIExpression::DerefBefore); 2466 OutermostLoad = false; 2467 } else if (auto *StInst = dyn_cast<StoreInst>(Storage)) { 2468 Storage = StInst->getOperand(0); 2469 } else if (auto *GEPInst = dyn_cast<GetElementPtrInst>(Storage)) { 2470 SmallVector<Value *> AdditionalValues; 2471 DIExpression *SalvagedExpr = llvm::salvageDebugInfoImpl( 2472 *GEPInst, Expr, 2473 /*WithStackValue=*/false, 0, AdditionalValues); 2474 // Debug declares cannot currently handle additional location 2475 // operands. 2476 if (!SalvagedExpr || !AdditionalValues.empty()) 2477 break; 2478 Expr = SalvagedExpr; 2479 Storage = GEPInst->getOperand(0); 2480 } else if (auto *BCInst = dyn_cast<llvm::BitCastInst>(Storage)) 2481 Storage = BCInst->getOperand(0); 2482 else 2483 break; 2484 } 2485 if (!Storage) 2486 return; 2487 2488 // Store a pointer to the coroutine frame object in an alloca so it 2489 // is available throughout the function when producing unoptimized 2490 // code. Extending the lifetime this way is correct because the 2491 // variable has been declared by a dbg.declare intrinsic. 2492 // 2493 // Avoid to create the alloca would be eliminated by optimization 2494 // passes and the corresponding dbg.declares would be invalid. 2495 if (!ReuseFrameSlot && !EnableReuseStorageInFrame) 2496 if (auto *Arg = dyn_cast<llvm::Argument>(Storage)) { 2497 auto &Cached = DbgPtrAllocaCache[Storage]; 2498 if (!Cached) { 2499 Cached = Builder.CreateAlloca(Storage->getType(), 0, nullptr, 2500 Arg->getName() + ".debug"); 2501 Builder.CreateStore(Storage, Cached); 2502 } 2503 Storage = Cached; 2504 // FIXME: LLVM lacks nuanced semantics to differentiate between 2505 // memory and direct locations at the IR level. The backend will 2506 // turn a dbg.declare(alloca, ..., DIExpression()) into a memory 2507 // location. Thus, if there are deref and offset operations in the 2508 // expression, we need to add a DW_OP_deref at the *start* of the 2509 // expression to first load the contents of the alloca before 2510 // adjusting it with the expression. 2511 if (Expr && Expr->isComplex()) 2512 Expr = DIExpression::prepend(Expr, DIExpression::DerefBefore); 2513 } 2514 2515 DVI->replaceVariableLocationOp(OriginalStorage, Storage); 2516 DVI->setExpression(Expr); 2517 /// It makes no sense to move the dbg.value intrinsic. 2518 if (!isa<DbgValueInst>(DVI)) { 2519 if (auto *InsertPt = dyn_cast<Instruction>(Storage)) 2520 DVI->moveAfter(InsertPt); 2521 else if (isa<Argument>(Storage)) 2522 DVI->moveAfter(F->getEntryBlock().getFirstNonPHI()); 2523 } 2524 } 2525 2526 void coro::buildCoroutineFrame(Function &F, Shape &Shape) { 2527 // Don't eliminate swifterror in async functions that won't be split. 2528 if (Shape.ABI != coro::ABI::Async || !Shape.CoroSuspends.empty()) 2529 eliminateSwiftError(F, Shape); 2530 2531 if (Shape.ABI == coro::ABI::Switch && 2532 Shape.SwitchLowering.PromiseAlloca) { 2533 Shape.getSwitchCoroId()->clearPromise(); 2534 } 2535 2536 // Make sure that all coro.save, coro.suspend and the fallthrough coro.end 2537 // intrinsics are in their own blocks to simplify the logic of building up 2538 // SuspendCrossing data. 2539 for (auto *CSI : Shape.CoroSuspends) { 2540 if (auto *Save = CSI->getCoroSave()) 2541 splitAround(Save, "CoroSave"); 2542 splitAround(CSI, "CoroSuspend"); 2543 } 2544 2545 // Put CoroEnds into their own blocks. 2546 for (AnyCoroEndInst *CE : Shape.CoroEnds) { 2547 splitAround(CE, "CoroEnd"); 2548 2549 // Emit the musttail call function in a new block before the CoroEnd. 2550 // We do this here so that the right suspend crossing info is computed for 2551 // the uses of the musttail call function call. (Arguments to the coro.end 2552 // instructions would be ignored) 2553 if (auto *AsyncEnd = dyn_cast<CoroAsyncEndInst>(CE)) { 2554 auto *MustTailCallFn = AsyncEnd->getMustTailCallFunction(); 2555 if (!MustTailCallFn) 2556 continue; 2557 IRBuilder<> Builder(AsyncEnd); 2558 SmallVector<Value *, 8> Args(AsyncEnd->args()); 2559 auto Arguments = ArrayRef<Value *>(Args).drop_front(3); 2560 auto *Call = createMustTailCall(AsyncEnd->getDebugLoc(), MustTailCallFn, 2561 Arguments, Builder); 2562 splitAround(Call, "MustTailCall.Before.CoroEnd"); 2563 } 2564 } 2565 2566 // Transforms multi-edge PHI Nodes, so that any value feeding into a PHI will 2567 // never has its definition separated from the PHI by the suspend point. 2568 rewritePHIs(F); 2569 2570 // Build suspend crossing info. 2571 SuspendCrossingInfo Checker(F, Shape); 2572 2573 IRBuilder<> Builder(F.getContext()); 2574 FrameDataInfo FrameData; 2575 SmallVector<CoroAllocaAllocInst*, 4> LocalAllocas; 2576 SmallVector<Instruction*, 4> DeadInstructions; 2577 2578 { 2579 SpillInfo Spills; 2580 for (int Repeat = 0; Repeat < 4; ++Repeat) { 2581 // See if there are materializable instructions across suspend points. 2582 for (Instruction &I : instructions(F)) 2583 if (materializable(I)) { 2584 for (User *U : I.users()) 2585 if (Checker.isDefinitionAcrossSuspend(I, U)) 2586 Spills[&I].push_back(cast<Instruction>(U)); 2587 2588 // Manually add dbg.value metadata uses of I. 2589 SmallVector<DbgValueInst *, 16> DVIs; 2590 findDbgValues(DVIs, &I); 2591 for (auto *DVI : DVIs) 2592 if (Checker.isDefinitionAcrossSuspend(I, DVI)) 2593 Spills[&I].push_back(DVI); 2594 } 2595 2596 if (Spills.empty()) 2597 break; 2598 2599 // Rewrite materializable instructions to be materialized at the use 2600 // point. 2601 LLVM_DEBUG(dumpSpills("Materializations", Spills)); 2602 rewriteMaterializableInstructions(Builder, Spills); 2603 Spills.clear(); 2604 } 2605 } 2606 2607 sinkLifetimeStartMarkers(F, Shape, Checker); 2608 if (Shape.ABI != coro::ABI::Async || !Shape.CoroSuspends.empty()) 2609 collectFrameAllocas(F, Shape, Checker, FrameData.Allocas); 2610 LLVM_DEBUG(dumpAllocas(FrameData.Allocas)); 2611 2612 // Collect the spills for arguments and other not-materializable values. 2613 for (Argument &A : F.args()) 2614 for (User *U : A.users()) 2615 if (Checker.isDefinitionAcrossSuspend(A, U)) 2616 FrameData.Spills[&A].push_back(cast<Instruction>(U)); 2617 2618 for (Instruction &I : instructions(F)) { 2619 // Values returned from coroutine structure intrinsics should not be part 2620 // of the Coroutine Frame. 2621 if (isCoroutineStructureIntrinsic(I) || &I == Shape.CoroBegin) 2622 continue; 2623 2624 // The Coroutine Promise always included into coroutine frame, no need to 2625 // check for suspend crossing. 2626 if (Shape.ABI == coro::ABI::Switch && 2627 Shape.SwitchLowering.PromiseAlloca == &I) 2628 continue; 2629 2630 // Handle alloca.alloc specially here. 2631 if (auto AI = dyn_cast<CoroAllocaAllocInst>(&I)) { 2632 // Check whether the alloca's lifetime is bounded by suspend points. 2633 if (isLocalAlloca(AI)) { 2634 LocalAllocas.push_back(AI); 2635 continue; 2636 } 2637 2638 // If not, do a quick rewrite of the alloca and then add spills of 2639 // the rewritten value. The rewrite doesn't invalidate anything in 2640 // Spills because the other alloca intrinsics have no other operands 2641 // besides AI, and it doesn't invalidate the iteration because we delay 2642 // erasing AI. 2643 auto Alloc = lowerNonLocalAlloca(AI, Shape, DeadInstructions); 2644 2645 for (User *U : Alloc->users()) { 2646 if (Checker.isDefinitionAcrossSuspend(*Alloc, U)) 2647 FrameData.Spills[Alloc].push_back(cast<Instruction>(U)); 2648 } 2649 continue; 2650 } 2651 2652 // Ignore alloca.get; we process this as part of coro.alloca.alloc. 2653 if (isa<CoroAllocaGetInst>(I)) 2654 continue; 2655 2656 if (isa<AllocaInst>(I)) 2657 continue; 2658 2659 for (User *U : I.users()) 2660 if (Checker.isDefinitionAcrossSuspend(I, U)) { 2661 // We cannot spill a token. 2662 if (I.getType()->isTokenTy()) 2663 report_fatal_error( 2664 "token definition is separated from the use by a suspend point"); 2665 FrameData.Spills[&I].push_back(cast<Instruction>(U)); 2666 } 2667 } 2668 2669 // We don't want the layout of coroutine frame to be affected 2670 // by debug information. So we only choose to salvage DbgValueInst for 2671 // whose value is already in the frame. 2672 // We would handle the dbg.values for allocas specially 2673 for (auto &Iter : FrameData.Spills) { 2674 auto *V = Iter.first; 2675 SmallVector<DbgValueInst *, 16> DVIs; 2676 findDbgValues(DVIs, V); 2677 llvm::for_each(DVIs, [&](DbgValueInst *DVI) { 2678 if (Checker.isDefinitionAcrossSuspend(*V, DVI)) 2679 FrameData.Spills[V].push_back(DVI); 2680 }); 2681 } 2682 2683 LLVM_DEBUG(dumpSpills("Spills", FrameData.Spills)); 2684 if (Shape.ABI == coro::ABI::Retcon || Shape.ABI == coro::ABI::RetconOnce || 2685 Shape.ABI == coro::ABI::Async) 2686 sinkSpillUsesAfterCoroBegin(F, FrameData, Shape.CoroBegin); 2687 Shape.FrameTy = buildFrameType(F, Shape, FrameData); 2688 createFramePtr(Shape); 2689 // For now, this works for C++ programs only. 2690 buildFrameDebugInfo(F, Shape, FrameData); 2691 insertSpills(FrameData, Shape); 2692 lowerLocalAllocas(LocalAllocas, DeadInstructions); 2693 2694 for (auto I : DeadInstructions) 2695 I->eraseFromParent(); 2696 } 2697