1 //===- AggressiveInstCombine.cpp ------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the aggressive expression pattern combiner classes.
10 // Currently, it handles expression patterns for:
11 //  * Truncate instruction
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/Transforms/AggressiveInstCombine/AggressiveInstCombine.h"
16 #include "AggressiveInstCombineInternal.h"
17 #include "llvm-c/Initialization.h"
18 #include "llvm-c/Transforms/AggressiveInstCombine.h"
19 #include "llvm/ADT/Statistic.h"
20 #include "llvm/Analysis/AliasAnalysis.h"
21 #include "llvm/Analysis/BasicAliasAnalysis.h"
22 #include "llvm/Analysis/GlobalsModRef.h"
23 #include "llvm/Analysis/TargetLibraryInfo.h"
24 #include "llvm/IR/DataLayout.h"
25 #include "llvm/IR/Dominators.h"
26 #include "llvm/IR/Function.h"
27 #include "llvm/IR/IRBuilder.h"
28 #include "llvm/IR/LegacyPassManager.h"
29 #include "llvm/IR/PatternMatch.h"
30 #include "llvm/InitializePasses.h"
31 #include "llvm/Pass.h"
32 #include "llvm/Transforms/Utils/Local.h"
33 
34 using namespace llvm;
35 using namespace PatternMatch;
36 
37 #define DEBUG_TYPE "aggressive-instcombine"
38 
39 STATISTIC(NumAnyOrAllBitsSet, "Number of any/all-bits-set patterns folded");
40 STATISTIC(NumGuardedRotates,
41           "Number of guarded rotates transformed into funnel shifts");
42 STATISTIC(NumPopCountRecognized, "Number of popcount idioms recognized");
43 
44 namespace {
45 /// Contains expression pattern combiner logic.
46 /// This class provides both the logic to combine expression patterns and
47 /// combine them. It differs from InstCombiner class in that each pattern
48 /// combiner runs only once as opposed to InstCombine's multi-iteration,
49 /// which allows pattern combiner to have higher complexity than the O(1)
50 /// required by the instruction combiner.
51 class AggressiveInstCombinerLegacyPass : public FunctionPass {
52 public:
53   static char ID; // Pass identification, replacement for typeid
54 
55   AggressiveInstCombinerLegacyPass() : FunctionPass(ID) {
56     initializeAggressiveInstCombinerLegacyPassPass(
57         *PassRegistry::getPassRegistry());
58   }
59 
60   void getAnalysisUsage(AnalysisUsage &AU) const override;
61 
62   /// Run all expression pattern optimizations on the given /p F function.
63   ///
64   /// \param F function to optimize.
65   /// \returns true if the IR is changed.
66   bool runOnFunction(Function &F) override;
67 };
68 } // namespace
69 
70 /// Match a pattern for a bitwise rotate operation that partially guards
71 /// against undefined behavior by branching around the rotation when the shift
72 /// amount is 0.
73 static bool foldGuardedRotateToFunnelShift(Instruction &I) {
74   if (I.getOpcode() != Instruction::PHI || I.getNumOperands() != 2)
75     return false;
76 
77   // As with the one-use checks below, this is not strictly necessary, but we
78   // are being cautious to avoid potential perf regressions on targets that
79   // do not actually have a rotate instruction (where the funnel shift would be
80   // expanded back into math/shift/logic ops).
81   if (!isPowerOf2_32(I.getType()->getScalarSizeInBits()))
82     return false;
83 
84   // Match V to funnel shift left/right and capture the source operand and
85   // shift amount in X and Y.
86   auto matchRotate = [](Value *V, Value *&X, Value *&Y) {
87     Value *L0, *L1, *R0, *R1;
88     unsigned Width = V->getType()->getScalarSizeInBits();
89     auto Sub = m_Sub(m_SpecificInt(Width), m_Value(R1));
90 
91     // rotate_left(X, Y) == (X << Y) | (X >> (Width - Y))
92     auto RotL = m_OneUse(
93         m_c_Or(m_Shl(m_Value(L0), m_Value(L1)), m_LShr(m_Value(R0), Sub)));
94     if (RotL.match(V) && L0 == R0 && L1 == R1) {
95       X = L0;
96       Y = L1;
97       return Intrinsic::fshl;
98     }
99 
100     // rotate_right(X, Y) == (X >> Y) | (X << (Width - Y))
101     auto RotR = m_OneUse(
102         m_c_Or(m_LShr(m_Value(L0), m_Value(L1)), m_Shl(m_Value(R0), Sub)));
103     if (RotR.match(V) && L0 == R0 && L1 == R1) {
104       X = L0;
105       Y = L1;
106       return Intrinsic::fshr;
107     }
108 
109     return Intrinsic::not_intrinsic;
110   };
111 
112   // One phi operand must be a rotate operation, and the other phi operand must
113   // be the source value of that rotate operation:
114   // phi [ rotate(RotSrc, RotAmt), RotBB ], [ RotSrc, GuardBB ]
115   PHINode &Phi = cast<PHINode>(I);
116   Value *P0 = Phi.getOperand(0), *P1 = Phi.getOperand(1);
117   Value *RotSrc, *RotAmt;
118   Intrinsic::ID IID = matchRotate(P0, RotSrc, RotAmt);
119   if (IID == Intrinsic::not_intrinsic || RotSrc != P1) {
120     IID = matchRotate(P1, RotSrc, RotAmt);
121     if (IID == Intrinsic::not_intrinsic || RotSrc != P0)
122       return false;
123     assert((IID == Intrinsic::fshl || IID == Intrinsic::fshr) &&
124            "Pattern must match funnel shift left or right");
125   }
126 
127   // The incoming block with our source operand must be the "guard" block.
128   // That must contain a cmp+branch to avoid the rotate when the shift amount
129   // is equal to 0. The other incoming block is the block with the rotate.
130   BasicBlock *GuardBB = Phi.getIncomingBlock(RotSrc == P1);
131   BasicBlock *RotBB = Phi.getIncomingBlock(RotSrc != P1);
132   Instruction *TermI = GuardBB->getTerminator();
133   ICmpInst::Predicate Pred;
134   BasicBlock *PhiBB = Phi.getParent();
135   if (!match(TermI, m_Br(m_ICmp(Pred, m_Specific(RotAmt), m_ZeroInt()),
136                          m_SpecificBB(PhiBB), m_SpecificBB(RotBB))))
137     return false;
138 
139   if (Pred != CmpInst::ICMP_EQ)
140     return false;
141 
142   // We matched a variation of this IR pattern:
143   // GuardBB:
144   //   %cmp = icmp eq i32 %RotAmt, 0
145   //   br i1 %cmp, label %PhiBB, label %RotBB
146   // RotBB:
147   //   %sub = sub i32 32, %RotAmt
148   //   %shr = lshr i32 %X, %sub
149   //   %shl = shl i32 %X, %RotAmt
150   //   %rot = or i32 %shr, %shl
151   //   br label %PhiBB
152   // PhiBB:
153   //   %cond = phi i32 [ %rot, %RotBB ], [ %X, %GuardBB ]
154   // -->
155   // llvm.fshl.i32(i32 %X, i32 %RotAmt)
156   IRBuilder<> Builder(PhiBB, PhiBB->getFirstInsertionPt());
157   Function *F = Intrinsic::getDeclaration(Phi.getModule(), IID, Phi.getType());
158   Phi.replaceAllUsesWith(Builder.CreateCall(F, {RotSrc, RotSrc, RotAmt}));
159   ++NumGuardedRotates;
160   return true;
161 }
162 
163 /// This is used by foldAnyOrAllBitsSet() to capture a source value (Root) and
164 /// the bit indexes (Mask) needed by a masked compare. If we're matching a chain
165 /// of 'and' ops, then we also need to capture the fact that we saw an
166 /// "and X, 1", so that's an extra return value for that case.
167 struct MaskOps {
168   Value *Root;
169   APInt Mask;
170   bool MatchAndChain;
171   bool FoundAnd1;
172 
173   MaskOps(unsigned BitWidth, bool MatchAnds)
174       : Root(nullptr), Mask(APInt::getNullValue(BitWidth)),
175         MatchAndChain(MatchAnds), FoundAnd1(false) {}
176 };
177 
178 /// This is a recursive helper for foldAnyOrAllBitsSet() that walks through a
179 /// chain of 'and' or 'or' instructions looking for shift ops of a common source
180 /// value. Examples:
181 ///   or (or (or X, (X >> 3)), (X >> 5)), (X >> 8)
182 /// returns { X, 0x129 }
183 ///   and (and (X >> 1), 1), (X >> 4)
184 /// returns { X, 0x12 }
185 static bool matchAndOrChain(Value *V, MaskOps &MOps) {
186   Value *Op0, *Op1;
187   if (MOps.MatchAndChain) {
188     // Recurse through a chain of 'and' operands. This requires an extra check
189     // vs. the 'or' matcher: we must find an "and X, 1" instruction somewhere
190     // in the chain to know that all of the high bits are cleared.
191     if (match(V, m_And(m_Value(Op0), m_One()))) {
192       MOps.FoundAnd1 = true;
193       return matchAndOrChain(Op0, MOps);
194     }
195     if (match(V, m_And(m_Value(Op0), m_Value(Op1))))
196       return matchAndOrChain(Op0, MOps) && matchAndOrChain(Op1, MOps);
197   } else {
198     // Recurse through a chain of 'or' operands.
199     if (match(V, m_Or(m_Value(Op0), m_Value(Op1))))
200       return matchAndOrChain(Op0, MOps) && matchAndOrChain(Op1, MOps);
201   }
202 
203   // We need a shift-right or a bare value representing a compare of bit 0 of
204   // the original source operand.
205   Value *Candidate;
206   const APInt *BitIndex = nullptr;
207   if (!match(V, m_LShr(m_Value(Candidate), m_APInt(BitIndex))))
208     Candidate = V;
209 
210   // Initialize result source operand.
211   if (!MOps.Root)
212     MOps.Root = Candidate;
213 
214   // The shift constant is out-of-range? This code hasn't been simplified.
215   if (BitIndex && BitIndex->uge(MOps.Mask.getBitWidth()))
216     return false;
217 
218   // Fill in the mask bit derived from the shift constant.
219   MOps.Mask.setBit(BitIndex ? BitIndex->getZExtValue() : 0);
220   return MOps.Root == Candidate;
221 }
222 
223 /// Match patterns that correspond to "any-bits-set" and "all-bits-set".
224 /// These will include a chain of 'or' or 'and'-shifted bits from a
225 /// common source value:
226 /// and (or  (lshr X, C), ...), 1 --> (X & CMask) != 0
227 /// and (and (lshr X, C), ...), 1 --> (X & CMask) == CMask
228 /// Note: "any-bits-clear" and "all-bits-clear" are variations of these patterns
229 /// that differ only with a final 'not' of the result. We expect that final
230 /// 'not' to be folded with the compare that we create here (invert predicate).
231 static bool foldAnyOrAllBitsSet(Instruction &I) {
232   // The 'any-bits-set' ('or' chain) pattern is simpler to match because the
233   // final "and X, 1" instruction must be the final op in the sequence.
234   bool MatchAllBitsSet;
235   if (match(&I, m_c_And(m_OneUse(m_And(m_Value(), m_Value())), m_Value())))
236     MatchAllBitsSet = true;
237   else if (match(&I, m_And(m_OneUse(m_Or(m_Value(), m_Value())), m_One())))
238     MatchAllBitsSet = false;
239   else
240     return false;
241 
242   MaskOps MOps(I.getType()->getScalarSizeInBits(), MatchAllBitsSet);
243   if (MatchAllBitsSet) {
244     if (!matchAndOrChain(cast<BinaryOperator>(&I), MOps) || !MOps.FoundAnd1)
245       return false;
246   } else {
247     if (!matchAndOrChain(cast<BinaryOperator>(&I)->getOperand(0), MOps))
248       return false;
249   }
250 
251   // The pattern was found. Create a masked compare that replaces all of the
252   // shift and logic ops.
253   IRBuilder<> Builder(&I);
254   Constant *Mask = ConstantInt::get(I.getType(), MOps.Mask);
255   Value *And = Builder.CreateAnd(MOps.Root, Mask);
256   Value *Cmp = MatchAllBitsSet ? Builder.CreateICmpEQ(And, Mask)
257                                : Builder.CreateIsNotNull(And);
258   Value *Zext = Builder.CreateZExt(Cmp, I.getType());
259   I.replaceAllUsesWith(Zext);
260   ++NumAnyOrAllBitsSet;
261   return true;
262 }
263 
264 // Try to recognize below function as popcount intrinsic.
265 // This is the "best" algorithm from
266 // http://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel
267 // Also used in TargetLowering::expandCTPOP().
268 //
269 // int popcount(unsigned int i) {
270 //   i = i - ((i >> 1) & 0x55555555);
271 //   i = (i & 0x33333333) + ((i >> 2) & 0x33333333);
272 //   i = ((i + (i >> 4)) & 0x0F0F0F0F);
273 //   return (i * 0x01010101) >> 24;
274 // }
275 static bool tryToRecognizePopCount(Instruction &I) {
276   if (I.getOpcode() != Instruction::LShr)
277     return false;
278 
279   Type *Ty = I.getType();
280   if (!Ty->isIntOrIntVectorTy())
281     return false;
282 
283   unsigned Len = Ty->getScalarSizeInBits();
284   // FIXME: fix Len == 8 and other irregular type lengths.
285   if (!(Len <= 128 && Len > 8 && Len % 8 == 0))
286     return false;
287 
288   APInt Mask55 = APInt::getSplat(Len, APInt(8, 0x55));
289   APInt Mask33 = APInt::getSplat(Len, APInt(8, 0x33));
290   APInt Mask0F = APInt::getSplat(Len, APInt(8, 0x0F));
291   APInt Mask01 = APInt::getSplat(Len, APInt(8, 0x01));
292   APInt MaskShift = APInt(Len, Len - 8);
293 
294   Value *Op0 = I.getOperand(0);
295   Value *Op1 = I.getOperand(1);
296   Value *MulOp0;
297   // Matching "(i * 0x01010101...) >> 24".
298   if ((match(Op0, m_Mul(m_Value(MulOp0), m_SpecificInt(Mask01)))) &&
299        match(Op1, m_SpecificInt(MaskShift))) {
300     Value *ShiftOp0;
301     // Matching "((i + (i >> 4)) & 0x0F0F0F0F...)".
302     if (match(MulOp0, m_And(m_c_Add(m_LShr(m_Value(ShiftOp0), m_SpecificInt(4)),
303                                     m_Deferred(ShiftOp0)),
304                             m_SpecificInt(Mask0F)))) {
305       Value *AndOp0;
306       // Matching "(i & 0x33333333...) + ((i >> 2) & 0x33333333...)".
307       if (match(ShiftOp0,
308                 m_c_Add(m_And(m_Value(AndOp0), m_SpecificInt(Mask33)),
309                         m_And(m_LShr(m_Deferred(AndOp0), m_SpecificInt(2)),
310                               m_SpecificInt(Mask33))))) {
311         Value *Root, *SubOp1;
312         // Matching "i - ((i >> 1) & 0x55555555...)".
313         if (match(AndOp0, m_Sub(m_Value(Root), m_Value(SubOp1))) &&
314             match(SubOp1, m_And(m_LShr(m_Specific(Root), m_SpecificInt(1)),
315                                 m_SpecificInt(Mask55)))) {
316           LLVM_DEBUG(dbgs() << "Recognized popcount intrinsic\n");
317           IRBuilder<> Builder(&I);
318           Function *Func = Intrinsic::getDeclaration(
319               I.getModule(), Intrinsic::ctpop, I.getType());
320           I.replaceAllUsesWith(Builder.CreateCall(Func, {Root}));
321           ++NumPopCountRecognized;
322           return true;
323         }
324       }
325     }
326   }
327 
328   return false;
329 }
330 
331 /// This is the entry point for folds that could be implemented in regular
332 /// InstCombine, but they are separated because they are not expected to
333 /// occur frequently and/or have more than a constant-length pattern match.
334 static bool foldUnusualPatterns(Function &F, DominatorTree &DT) {
335   bool MadeChange = false;
336   for (BasicBlock &BB : F) {
337     // Ignore unreachable basic blocks.
338     if (!DT.isReachableFromEntry(&BB))
339       continue;
340     // Do not delete instructions under here and invalidate the iterator.
341     // Walk the block backwards for efficiency. We're matching a chain of
342     // use->defs, so we're more likely to succeed by starting from the bottom.
343     // Also, we want to avoid matching partial patterns.
344     // TODO: It would be more efficient if we removed dead instructions
345     // iteratively in this loop rather than waiting until the end.
346     for (Instruction &I : make_range(BB.rbegin(), BB.rend())) {
347       MadeChange |= foldAnyOrAllBitsSet(I);
348       MadeChange |= foldGuardedRotateToFunnelShift(I);
349       MadeChange |= tryToRecognizePopCount(I);
350     }
351   }
352 
353   // We're done with transforms, so remove dead instructions.
354   if (MadeChange)
355     for (BasicBlock &BB : F)
356       SimplifyInstructionsInBlock(&BB);
357 
358   return MadeChange;
359 }
360 
361 /// This is the entry point for all transforms. Pass manager differences are
362 /// handled in the callers of this function.
363 static bool runImpl(Function &F, TargetLibraryInfo &TLI, DominatorTree &DT) {
364   bool MadeChange = false;
365   const DataLayout &DL = F.getParent()->getDataLayout();
366   TruncInstCombine TIC(TLI, DL, DT);
367   MadeChange |= TIC.run(F);
368   MadeChange |= foldUnusualPatterns(F, DT);
369   return MadeChange;
370 }
371 
372 void AggressiveInstCombinerLegacyPass::getAnalysisUsage(
373     AnalysisUsage &AU) const {
374   AU.setPreservesCFG();
375   AU.addRequired<DominatorTreeWrapperPass>();
376   AU.addRequired<TargetLibraryInfoWrapperPass>();
377   AU.addPreserved<AAResultsWrapperPass>();
378   AU.addPreserved<BasicAAWrapperPass>();
379   AU.addPreserved<DominatorTreeWrapperPass>();
380   AU.addPreserved<GlobalsAAWrapperPass>();
381 }
382 
383 bool AggressiveInstCombinerLegacyPass::runOnFunction(Function &F) {
384   auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
385   auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
386   return runImpl(F, TLI, DT);
387 }
388 
389 PreservedAnalyses AggressiveInstCombinePass::run(Function &F,
390                                                  FunctionAnalysisManager &AM) {
391   auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
392   auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
393   if (!runImpl(F, TLI, DT)) {
394     // No changes, all analyses are preserved.
395     return PreservedAnalyses::all();
396   }
397   // Mark all the analyses that instcombine updates as preserved.
398   PreservedAnalyses PA;
399   PA.preserveSet<CFGAnalyses>();
400   PA.preserve<AAManager>();
401   PA.preserve<GlobalsAA>();
402   return PA;
403 }
404 
405 char AggressiveInstCombinerLegacyPass::ID = 0;
406 INITIALIZE_PASS_BEGIN(AggressiveInstCombinerLegacyPass,
407                       "aggressive-instcombine",
408                       "Combine pattern based expressions", false, false)
409 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
410 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
411 INITIALIZE_PASS_END(AggressiveInstCombinerLegacyPass, "aggressive-instcombine",
412                     "Combine pattern based expressions", false, false)
413 
414 // Initialization Routines
415 void llvm::initializeAggressiveInstCombine(PassRegistry &Registry) {
416   initializeAggressiveInstCombinerLegacyPassPass(Registry);
417 }
418 
419 void LLVMInitializeAggressiveInstCombiner(LLVMPassRegistryRef R) {
420   initializeAggressiveInstCombinerLegacyPassPass(*unwrap(R));
421 }
422 
423 FunctionPass *llvm::createAggressiveInstCombinerPass() {
424   return new AggressiveInstCombinerLegacyPass();
425 }
426 
427 void LLVMAddAggressiveInstCombinerPass(LLVMPassManagerRef PM) {
428   unwrap(PM)->add(createAggressiveInstCombinerPass());
429 }
430