1 //===- AggressiveInstCombine.cpp ------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the aggressive expression pattern combiner classes. 10 // Currently, it handles expression patterns for: 11 // * Truncate instruction 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Transforms/AggressiveInstCombine/AggressiveInstCombine.h" 16 #include "AggressiveInstCombineInternal.h" 17 #include "llvm-c/Initialization.h" 18 #include "llvm-c/Transforms/AggressiveInstCombine.h" 19 #include "llvm/ADT/Statistic.h" 20 #include "llvm/Analysis/AliasAnalysis.h" 21 #include "llvm/Analysis/AssumptionCache.h" 22 #include "llvm/Analysis/BasicAliasAnalysis.h" 23 #include "llvm/Analysis/GlobalsModRef.h" 24 #include "llvm/Analysis/TargetLibraryInfo.h" 25 #include "llvm/Analysis/ValueTracking.h" 26 #include "llvm/IR/Dominators.h" 27 #include "llvm/IR/Function.h" 28 #include "llvm/IR/IRBuilder.h" 29 #include "llvm/IR/LegacyPassManager.h" 30 #include "llvm/IR/PatternMatch.h" 31 #include "llvm/InitializePasses.h" 32 #include "llvm/Pass.h" 33 #include "llvm/Transforms/Utils/Local.h" 34 35 using namespace llvm; 36 using namespace PatternMatch; 37 38 namespace llvm { 39 class DataLayout; 40 } 41 42 #define DEBUG_TYPE "aggressive-instcombine" 43 44 STATISTIC(NumAnyOrAllBitsSet, "Number of any/all-bits-set patterns folded"); 45 STATISTIC(NumGuardedRotates, 46 "Number of guarded rotates transformed into funnel shifts"); 47 STATISTIC(NumGuardedFunnelShifts, 48 "Number of guarded funnel shifts transformed into funnel shifts"); 49 STATISTIC(NumPopCountRecognized, "Number of popcount idioms recognized"); 50 51 namespace { 52 /// Contains expression pattern combiner logic. 53 /// This class provides both the logic to combine expression patterns and 54 /// combine them. It differs from InstCombiner class in that each pattern 55 /// combiner runs only once as opposed to InstCombine's multi-iteration, 56 /// which allows pattern combiner to have higher complexity than the O(1) 57 /// required by the instruction combiner. 58 class AggressiveInstCombinerLegacyPass : public FunctionPass { 59 public: 60 static char ID; // Pass identification, replacement for typeid 61 62 AggressiveInstCombinerLegacyPass() : FunctionPass(ID) { 63 initializeAggressiveInstCombinerLegacyPassPass( 64 *PassRegistry::getPassRegistry()); 65 } 66 67 void getAnalysisUsage(AnalysisUsage &AU) const override; 68 69 /// Run all expression pattern optimizations on the given /p F function. 70 /// 71 /// \param F function to optimize. 72 /// \returns true if the IR is changed. 73 bool runOnFunction(Function &F) override; 74 }; 75 } // namespace 76 77 /// Match a pattern for a bitwise funnel/rotate operation that partially guards 78 /// against undefined behavior by branching around the funnel-shift/rotation 79 /// when the shift amount is 0. 80 static bool foldGuardedFunnelShift(Instruction &I, const DominatorTree &DT) { 81 if (I.getOpcode() != Instruction::PHI || I.getNumOperands() != 2) 82 return false; 83 84 // As with the one-use checks below, this is not strictly necessary, but we 85 // are being cautious to avoid potential perf regressions on targets that 86 // do not actually have a funnel/rotate instruction (where the funnel shift 87 // would be expanded back into math/shift/logic ops). 88 if (!isPowerOf2_32(I.getType()->getScalarSizeInBits())) 89 return false; 90 91 // Match V to funnel shift left/right and capture the source operands and 92 // shift amount. 93 auto matchFunnelShift = [](Value *V, Value *&ShVal0, Value *&ShVal1, 94 Value *&ShAmt) { 95 Value *SubAmt; 96 unsigned Width = V->getType()->getScalarSizeInBits(); 97 98 // fshl(ShVal0, ShVal1, ShAmt) 99 // == (ShVal0 << ShAmt) | (ShVal1 >> (Width -ShAmt)) 100 if (match(V, m_OneUse(m_c_Or( 101 m_Shl(m_Value(ShVal0), m_Value(ShAmt)), 102 m_LShr(m_Value(ShVal1), 103 m_Sub(m_SpecificInt(Width), m_Value(SubAmt))))))) { 104 if (ShAmt == SubAmt) // TODO: Use m_Specific 105 return Intrinsic::fshl; 106 } 107 108 // fshr(ShVal0, ShVal1, ShAmt) 109 // == (ShVal0 >> ShAmt) | (ShVal1 << (Width - ShAmt)) 110 if (match(V, 111 m_OneUse(m_c_Or(m_Shl(m_Value(ShVal0), m_Sub(m_SpecificInt(Width), 112 m_Value(SubAmt))), 113 m_LShr(m_Value(ShVal1), m_Value(ShAmt)))))) { 114 if (ShAmt == SubAmt) // TODO: Use m_Specific 115 return Intrinsic::fshr; 116 } 117 118 return Intrinsic::not_intrinsic; 119 }; 120 121 // One phi operand must be a funnel/rotate operation, and the other phi 122 // operand must be the source value of that funnel/rotate operation: 123 // phi [ rotate(RotSrc, ShAmt), FunnelBB ], [ RotSrc, GuardBB ] 124 // phi [ fshl(ShVal0, ShVal1, ShAmt), FunnelBB ], [ ShVal0, GuardBB ] 125 // phi [ fshr(ShVal0, ShVal1, ShAmt), FunnelBB ], [ ShVal1, GuardBB ] 126 PHINode &Phi = cast<PHINode>(I); 127 unsigned FunnelOp = 0, GuardOp = 1; 128 Value *P0 = Phi.getOperand(0), *P1 = Phi.getOperand(1); 129 Value *ShVal0, *ShVal1, *ShAmt; 130 Intrinsic::ID IID = matchFunnelShift(P0, ShVal0, ShVal1, ShAmt); 131 if (IID == Intrinsic::not_intrinsic || 132 (IID == Intrinsic::fshl && ShVal0 != P1) || 133 (IID == Intrinsic::fshr && ShVal1 != P1)) { 134 IID = matchFunnelShift(P1, ShVal0, ShVal1, ShAmt); 135 if (IID == Intrinsic::not_intrinsic || 136 (IID == Intrinsic::fshl && ShVal0 != P0) || 137 (IID == Intrinsic::fshr && ShVal1 != P0)) 138 return false; 139 assert((IID == Intrinsic::fshl || IID == Intrinsic::fshr) && 140 "Pattern must match funnel shift left or right"); 141 std::swap(FunnelOp, GuardOp); 142 } 143 144 // The incoming block with our source operand must be the "guard" block. 145 // That must contain a cmp+branch to avoid the funnel/rotate when the shift 146 // amount is equal to 0. The other incoming block is the block with the 147 // funnel/rotate. 148 BasicBlock *GuardBB = Phi.getIncomingBlock(GuardOp); 149 BasicBlock *FunnelBB = Phi.getIncomingBlock(FunnelOp); 150 Instruction *TermI = GuardBB->getTerminator(); 151 152 // Ensure that the shift values dominate each block. 153 if (!DT.dominates(ShVal0, TermI) || !DT.dominates(ShVal1, TermI)) 154 return false; 155 156 ICmpInst::Predicate Pred; 157 BasicBlock *PhiBB = Phi.getParent(); 158 if (!match(TermI, m_Br(m_ICmp(Pred, m_Specific(ShAmt), m_ZeroInt()), 159 m_SpecificBB(PhiBB), m_SpecificBB(FunnelBB)))) 160 return false; 161 162 if (Pred != CmpInst::ICMP_EQ) 163 return false; 164 165 IRBuilder<> Builder(PhiBB, PhiBB->getFirstInsertionPt()); 166 167 if (ShVal0 == ShVal1) 168 ++NumGuardedRotates; 169 else 170 ++NumGuardedFunnelShifts; 171 172 // If this is not a rotate then the select was blocking poison from the 173 // 'shift-by-zero' non-TVal, but a funnel shift won't - so freeze it. 174 bool IsFshl = IID == Intrinsic::fshl; 175 if (ShVal0 != ShVal1) { 176 if (IsFshl && !llvm::isGuaranteedNotToBePoison(ShVal1)) 177 ShVal1 = Builder.CreateFreeze(ShVal1); 178 else if (!IsFshl && !llvm::isGuaranteedNotToBePoison(ShVal0)) 179 ShVal0 = Builder.CreateFreeze(ShVal0); 180 } 181 182 // We matched a variation of this IR pattern: 183 // GuardBB: 184 // %cmp = icmp eq i32 %ShAmt, 0 185 // br i1 %cmp, label %PhiBB, label %FunnelBB 186 // FunnelBB: 187 // %sub = sub i32 32, %ShAmt 188 // %shr = lshr i32 %ShVal1, %sub 189 // %shl = shl i32 %ShVal0, %ShAmt 190 // %fsh = or i32 %shr, %shl 191 // br label %PhiBB 192 // PhiBB: 193 // %cond = phi i32 [ %fsh, %FunnelBB ], [ %ShVal0, %GuardBB ] 194 // --> 195 // llvm.fshl.i32(i32 %ShVal0, i32 %ShVal1, i32 %ShAmt) 196 Function *F = Intrinsic::getDeclaration(Phi.getModule(), IID, Phi.getType()); 197 Phi.replaceAllUsesWith(Builder.CreateCall(F, {ShVal0, ShVal1, ShAmt})); 198 return true; 199 } 200 201 /// This is used by foldAnyOrAllBitsSet() to capture a source value (Root) and 202 /// the bit indexes (Mask) needed by a masked compare. If we're matching a chain 203 /// of 'and' ops, then we also need to capture the fact that we saw an 204 /// "and X, 1", so that's an extra return value for that case. 205 struct MaskOps { 206 Value *Root = nullptr; 207 APInt Mask; 208 bool MatchAndChain; 209 bool FoundAnd1 = false; 210 211 MaskOps(unsigned BitWidth, bool MatchAnds) 212 : Mask(APInt::getZero(BitWidth)), MatchAndChain(MatchAnds) {} 213 }; 214 215 /// This is a recursive helper for foldAnyOrAllBitsSet() that walks through a 216 /// chain of 'and' or 'or' instructions looking for shift ops of a common source 217 /// value. Examples: 218 /// or (or (or X, (X >> 3)), (X >> 5)), (X >> 8) 219 /// returns { X, 0x129 } 220 /// and (and (X >> 1), 1), (X >> 4) 221 /// returns { X, 0x12 } 222 static bool matchAndOrChain(Value *V, MaskOps &MOps) { 223 Value *Op0, *Op1; 224 if (MOps.MatchAndChain) { 225 // Recurse through a chain of 'and' operands. This requires an extra check 226 // vs. the 'or' matcher: we must find an "and X, 1" instruction somewhere 227 // in the chain to know that all of the high bits are cleared. 228 if (match(V, m_And(m_Value(Op0), m_One()))) { 229 MOps.FoundAnd1 = true; 230 return matchAndOrChain(Op0, MOps); 231 } 232 if (match(V, m_And(m_Value(Op0), m_Value(Op1)))) 233 return matchAndOrChain(Op0, MOps) && matchAndOrChain(Op1, MOps); 234 } else { 235 // Recurse through a chain of 'or' operands. 236 if (match(V, m_Or(m_Value(Op0), m_Value(Op1)))) 237 return matchAndOrChain(Op0, MOps) && matchAndOrChain(Op1, MOps); 238 } 239 240 // We need a shift-right or a bare value representing a compare of bit 0 of 241 // the original source operand. 242 Value *Candidate; 243 const APInt *BitIndex = nullptr; 244 if (!match(V, m_LShr(m_Value(Candidate), m_APInt(BitIndex)))) 245 Candidate = V; 246 247 // Initialize result source operand. 248 if (!MOps.Root) 249 MOps.Root = Candidate; 250 251 // The shift constant is out-of-range? This code hasn't been simplified. 252 if (BitIndex && BitIndex->uge(MOps.Mask.getBitWidth())) 253 return false; 254 255 // Fill in the mask bit derived from the shift constant. 256 MOps.Mask.setBit(BitIndex ? BitIndex->getZExtValue() : 0); 257 return MOps.Root == Candidate; 258 } 259 260 /// Match patterns that correspond to "any-bits-set" and "all-bits-set". 261 /// These will include a chain of 'or' or 'and'-shifted bits from a 262 /// common source value: 263 /// and (or (lshr X, C), ...), 1 --> (X & CMask) != 0 264 /// and (and (lshr X, C), ...), 1 --> (X & CMask) == CMask 265 /// Note: "any-bits-clear" and "all-bits-clear" are variations of these patterns 266 /// that differ only with a final 'not' of the result. We expect that final 267 /// 'not' to be folded with the compare that we create here (invert predicate). 268 static bool foldAnyOrAllBitsSet(Instruction &I) { 269 // The 'any-bits-set' ('or' chain) pattern is simpler to match because the 270 // final "and X, 1" instruction must be the final op in the sequence. 271 bool MatchAllBitsSet; 272 if (match(&I, m_c_And(m_OneUse(m_And(m_Value(), m_Value())), m_Value()))) 273 MatchAllBitsSet = true; 274 else if (match(&I, m_And(m_OneUse(m_Or(m_Value(), m_Value())), m_One()))) 275 MatchAllBitsSet = false; 276 else 277 return false; 278 279 MaskOps MOps(I.getType()->getScalarSizeInBits(), MatchAllBitsSet); 280 if (MatchAllBitsSet) { 281 if (!matchAndOrChain(cast<BinaryOperator>(&I), MOps) || !MOps.FoundAnd1) 282 return false; 283 } else { 284 if (!matchAndOrChain(cast<BinaryOperator>(&I)->getOperand(0), MOps)) 285 return false; 286 } 287 288 // The pattern was found. Create a masked compare that replaces all of the 289 // shift and logic ops. 290 IRBuilder<> Builder(&I); 291 Constant *Mask = ConstantInt::get(I.getType(), MOps.Mask); 292 Value *And = Builder.CreateAnd(MOps.Root, Mask); 293 Value *Cmp = MatchAllBitsSet ? Builder.CreateICmpEQ(And, Mask) 294 : Builder.CreateIsNotNull(And); 295 Value *Zext = Builder.CreateZExt(Cmp, I.getType()); 296 I.replaceAllUsesWith(Zext); 297 ++NumAnyOrAllBitsSet; 298 return true; 299 } 300 301 // Try to recognize below function as popcount intrinsic. 302 // This is the "best" algorithm from 303 // http://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel 304 // Also used in TargetLowering::expandCTPOP(). 305 // 306 // int popcount(unsigned int i) { 307 // i = i - ((i >> 1) & 0x55555555); 308 // i = (i & 0x33333333) + ((i >> 2) & 0x33333333); 309 // i = ((i + (i >> 4)) & 0x0F0F0F0F); 310 // return (i * 0x01010101) >> 24; 311 // } 312 static bool tryToRecognizePopCount(Instruction &I) { 313 if (I.getOpcode() != Instruction::LShr) 314 return false; 315 316 Type *Ty = I.getType(); 317 if (!Ty->isIntOrIntVectorTy()) 318 return false; 319 320 unsigned Len = Ty->getScalarSizeInBits(); 321 // FIXME: fix Len == 8 and other irregular type lengths. 322 if (!(Len <= 128 && Len > 8 && Len % 8 == 0)) 323 return false; 324 325 APInt Mask55 = APInt::getSplat(Len, APInt(8, 0x55)); 326 APInt Mask33 = APInt::getSplat(Len, APInt(8, 0x33)); 327 APInt Mask0F = APInt::getSplat(Len, APInt(8, 0x0F)); 328 APInt Mask01 = APInt::getSplat(Len, APInt(8, 0x01)); 329 APInt MaskShift = APInt(Len, Len - 8); 330 331 Value *Op0 = I.getOperand(0); 332 Value *Op1 = I.getOperand(1); 333 Value *MulOp0; 334 // Matching "(i * 0x01010101...) >> 24". 335 if ((match(Op0, m_Mul(m_Value(MulOp0), m_SpecificInt(Mask01)))) && 336 match(Op1, m_SpecificInt(MaskShift))) { 337 Value *ShiftOp0; 338 // Matching "((i + (i >> 4)) & 0x0F0F0F0F...)". 339 if (match(MulOp0, m_And(m_c_Add(m_LShr(m_Value(ShiftOp0), m_SpecificInt(4)), 340 m_Deferred(ShiftOp0)), 341 m_SpecificInt(Mask0F)))) { 342 Value *AndOp0; 343 // Matching "(i & 0x33333333...) + ((i >> 2) & 0x33333333...)". 344 if (match(ShiftOp0, 345 m_c_Add(m_And(m_Value(AndOp0), m_SpecificInt(Mask33)), 346 m_And(m_LShr(m_Deferred(AndOp0), m_SpecificInt(2)), 347 m_SpecificInt(Mask33))))) { 348 Value *Root, *SubOp1; 349 // Matching "i - ((i >> 1) & 0x55555555...)". 350 if (match(AndOp0, m_Sub(m_Value(Root), m_Value(SubOp1))) && 351 match(SubOp1, m_And(m_LShr(m_Specific(Root), m_SpecificInt(1)), 352 m_SpecificInt(Mask55)))) { 353 LLVM_DEBUG(dbgs() << "Recognized popcount intrinsic\n"); 354 IRBuilder<> Builder(&I); 355 Function *Func = Intrinsic::getDeclaration( 356 I.getModule(), Intrinsic::ctpop, I.getType()); 357 I.replaceAllUsesWith(Builder.CreateCall(Func, {Root})); 358 ++NumPopCountRecognized; 359 return true; 360 } 361 } 362 } 363 } 364 365 return false; 366 } 367 368 /// This is the entry point for folds that could be implemented in regular 369 /// InstCombine, but they are separated because they are not expected to 370 /// occur frequently and/or have more than a constant-length pattern match. 371 static bool foldUnusualPatterns(Function &F, DominatorTree &DT) { 372 bool MadeChange = false; 373 for (BasicBlock &BB : F) { 374 // Ignore unreachable basic blocks. 375 if (!DT.isReachableFromEntry(&BB)) 376 continue; 377 // Do not delete instructions under here and invalidate the iterator. 378 // Walk the block backwards for efficiency. We're matching a chain of 379 // use->defs, so we're more likely to succeed by starting from the bottom. 380 // Also, we want to avoid matching partial patterns. 381 // TODO: It would be more efficient if we removed dead instructions 382 // iteratively in this loop rather than waiting until the end. 383 for (Instruction &I : llvm::reverse(BB)) { 384 MadeChange |= foldAnyOrAllBitsSet(I); 385 MadeChange |= foldGuardedFunnelShift(I, DT); 386 MadeChange |= tryToRecognizePopCount(I); 387 } 388 } 389 390 // We're done with transforms, so remove dead instructions. 391 if (MadeChange) 392 for (BasicBlock &BB : F) 393 SimplifyInstructionsInBlock(&BB); 394 395 return MadeChange; 396 } 397 398 /// This is the entry point for all transforms. Pass manager differences are 399 /// handled in the callers of this function. 400 static bool runImpl(Function &F, AssumptionCache &AC, TargetLibraryInfo &TLI, 401 DominatorTree &DT) { 402 bool MadeChange = false; 403 const DataLayout &DL = F.getParent()->getDataLayout(); 404 TruncInstCombine TIC(AC, TLI, DL, DT); 405 MadeChange |= TIC.run(F); 406 MadeChange |= foldUnusualPatterns(F, DT); 407 return MadeChange; 408 } 409 410 void AggressiveInstCombinerLegacyPass::getAnalysisUsage( 411 AnalysisUsage &AU) const { 412 AU.setPreservesCFG(); 413 AU.addRequired<AssumptionCacheTracker>(); 414 AU.addRequired<DominatorTreeWrapperPass>(); 415 AU.addRequired<TargetLibraryInfoWrapperPass>(); 416 AU.addPreserved<AAResultsWrapperPass>(); 417 AU.addPreserved<BasicAAWrapperPass>(); 418 AU.addPreserved<DominatorTreeWrapperPass>(); 419 AU.addPreserved<GlobalsAAWrapperPass>(); 420 } 421 422 bool AggressiveInstCombinerLegacyPass::runOnFunction(Function &F) { 423 auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 424 auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F); 425 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 426 return runImpl(F, AC, TLI, DT); 427 } 428 429 PreservedAnalyses AggressiveInstCombinePass::run(Function &F, 430 FunctionAnalysisManager &AM) { 431 auto &AC = AM.getResult<AssumptionAnalysis>(F); 432 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F); 433 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 434 if (!runImpl(F, AC, TLI, DT)) { 435 // No changes, all analyses are preserved. 436 return PreservedAnalyses::all(); 437 } 438 // Mark all the analyses that instcombine updates as preserved. 439 PreservedAnalyses PA; 440 PA.preserveSet<CFGAnalyses>(); 441 return PA; 442 } 443 444 char AggressiveInstCombinerLegacyPass::ID = 0; 445 INITIALIZE_PASS_BEGIN(AggressiveInstCombinerLegacyPass, 446 "aggressive-instcombine", 447 "Combine pattern based expressions", false, false) 448 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 449 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 450 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 451 INITIALIZE_PASS_END(AggressiveInstCombinerLegacyPass, "aggressive-instcombine", 452 "Combine pattern based expressions", false, false) 453 454 // Initialization Routines 455 void llvm::initializeAggressiveInstCombine(PassRegistry &Registry) { 456 initializeAggressiveInstCombinerLegacyPassPass(Registry); 457 } 458 459 void LLVMInitializeAggressiveInstCombiner(LLVMPassRegistryRef R) { 460 initializeAggressiveInstCombinerLegacyPassPass(*unwrap(R)); 461 } 462 463 FunctionPass *llvm::createAggressiveInstCombinerPass() { 464 return new AggressiveInstCombinerLegacyPass(); 465 } 466 467 void LLVMAddAggressiveInstCombinerPass(LLVMPassManagerRef PM) { 468 unwrap(PM)->add(createAggressiveInstCombinerPass()); 469 } 470