1 //===- AggressiveInstCombine.cpp ------------------------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the aggressive expression pattern combiner classes.
11 // Currently, it handles expression patterns for:
12 //  * Truncate instruction
13 //
14 //===----------------------------------------------------------------------===//
15 
16 #include "llvm/Transforms/AggressiveInstCombine/AggressiveInstCombine.h"
17 #include "AggressiveInstCombineInternal.h"
18 #include "llvm/Analysis/AliasAnalysis.h"
19 #include "llvm/Analysis/BasicAliasAnalysis.h"
20 #include "llvm/Analysis/GlobalsModRef.h"
21 #include "llvm/Analysis/TargetLibraryInfo.h"
22 #include "llvm/Analysis/Utils/Local.h"
23 #include "llvm/IR/DataLayout.h"
24 #include "llvm/IR/Dominators.h"
25 #include "llvm/IR/IRBuilder.h"
26 #include "llvm/IR/LegacyPassManager.h"
27 #include "llvm/IR/PatternMatch.h"
28 #include "llvm/Pass.h"
29 using namespace llvm;
30 using namespace PatternMatch;
31 
32 #define DEBUG_TYPE "aggressive-instcombine"
33 
34 namespace {
35 /// Contains expression pattern combiner logic.
36 /// This class provides both the logic to combine expression patterns and
37 /// combine them. It differs from InstCombiner class in that each pattern
38 /// combiner runs only once as opposed to InstCombine's multi-iteration,
39 /// which allows pattern combiner to have higher complexity than the O(1)
40 /// required by the instruction combiner.
41 class AggressiveInstCombinerLegacyPass : public FunctionPass {
42 public:
43   static char ID; // Pass identification, replacement for typeid
44 
45   AggressiveInstCombinerLegacyPass() : FunctionPass(ID) {
46     initializeAggressiveInstCombinerLegacyPassPass(
47         *PassRegistry::getPassRegistry());
48   }
49 
50   void getAnalysisUsage(AnalysisUsage &AU) const override;
51 
52   /// Run all expression pattern optimizations on the given /p F function.
53   ///
54   /// \param F function to optimize.
55   /// \returns true if the IR is changed.
56   bool runOnFunction(Function &F) override;
57 };
58 } // namespace
59 
60 /// This is used by foldAnyOrAllBitsSet() to capture a source value (Root) and
61 /// the bit indexes (Mask) needed by a masked compare. If we're matching a chain
62 /// of 'and' ops, then we also need to capture the fact that we saw an
63 /// "and X, 1", so that's an extra return value for that case.
64 struct MaskOps {
65   Value *Root;
66   APInt Mask;
67   bool MatchAndChain;
68   bool FoundAnd1;
69 
70   MaskOps(unsigned BitWidth, bool MatchAnds) :
71       Root(nullptr), Mask(APInt::getNullValue(BitWidth)),
72       MatchAndChain(MatchAnds), FoundAnd1(false) {}
73 };
74 
75 /// This is a recursive helper for foldAnyOrAllBitsSet() that walks through a
76 /// chain of 'and' or 'or' instructions looking for shift ops of a common source
77 /// value. Examples:
78 ///   or (or (or X, (X >> 3)), (X >> 5)), (X >> 8)
79 /// returns { X, 0x129 }
80 ///   and (and (X >> 1), 1), (X >> 4)
81 /// returns { X, 0x12 }
82 static bool matchAndOrChain(Value *V, MaskOps &MOps) {
83   Value *Op0, *Op1;
84   if (MOps.MatchAndChain) {
85     // Recurse through a chain of 'and' operands. This requires an extra check
86     // vs. the 'or' matcher: we must find an "and X, 1" instruction somewhere
87     // in the chain to know that all of the high bits are cleared.
88     if (match(V, m_And(m_Value(Op0), m_One()))) {
89       MOps.FoundAnd1 = true;
90       return matchAndOrChain(Op0, MOps);
91     }
92     if (match(V, m_And(m_Value(Op0), m_Value(Op1))))
93       return matchAndOrChain(Op0, MOps) && matchAndOrChain(Op1, MOps);
94   } else {
95     // Recurse through a chain of 'or' operands.
96     if (match(V, m_Or(m_Value(Op0), m_Value(Op1))))
97       return matchAndOrChain(Op0, MOps) && matchAndOrChain(Op1, MOps);
98   }
99 
100   // We need a shift-right or a bare value representing a compare of bit 0 of
101   // the original source operand.
102   Value *Candidate;
103   uint64_t BitIndex = 0;
104   if (!match(V, m_LShr(m_Value(Candidate), m_ConstantInt(BitIndex))))
105     Candidate = V;
106 
107   // Initialize result source operand.
108   if (!MOps.Root)
109     MOps.Root = Candidate;
110 
111   // The shift constant is out-of-range? This code hasn't been simplified.
112   if (BitIndex >= MOps.Mask.getBitWidth())
113     return false;
114 
115   // Fill in the mask bit derived from the shift constant.
116   MOps.Mask.setBit(BitIndex);
117   return MOps.Root == Candidate;
118 }
119 
120 /// Match patterns that correspond to "any-bits-set" and "all-bits-set".
121 /// These will include a chain of 'or' or 'and'-shifted bits from a
122 /// common source value:
123 /// and (or  (lshr X, C), ...), 1 --> (X & CMask) != 0
124 /// and (and (lshr X, C), ...), 1 --> (X & CMask) == CMask
125 /// Note: "any-bits-clear" and "all-bits-clear" are variations of these patterns
126 /// that differ only with a final 'not' of the result. We expect that final
127 /// 'not' to be folded with the compare that we create here (invert predicate).
128 static bool foldAnyOrAllBitsSet(Instruction &I) {
129   // The 'any-bits-set' ('or' chain) pattern is simpler to match because the
130   // final "and X, 1" instruction must be the final op in the sequence.
131   bool MatchAllBitsSet;
132   if (match(&I, m_c_And(m_OneUse(m_And(m_Value(), m_Value())), m_Value())))
133     MatchAllBitsSet = true;
134   else if (match(&I, m_And(m_OneUse(m_Or(m_Value(), m_Value())), m_One())))
135     MatchAllBitsSet = false;
136   else
137     return false;
138 
139   MaskOps MOps(I.getType()->getScalarSizeInBits(), MatchAllBitsSet);
140   if (MatchAllBitsSet) {
141     if (!matchAndOrChain(cast<BinaryOperator>(&I), MOps) || !MOps.FoundAnd1)
142       return false;
143   } else {
144     if (!matchAndOrChain(cast<BinaryOperator>(&I)->getOperand(0), MOps))
145       return false;
146   }
147 
148   // The pattern was found. Create a masked compare that replaces all of the
149   // shift and logic ops.
150   IRBuilder<> Builder(&I);
151   Constant *Mask = ConstantInt::get(I.getType(), MOps.Mask);
152   Value *And = Builder.CreateAnd(MOps.Root, Mask);
153   Value *Cmp = MatchAllBitsSet ? Builder.CreateICmpEQ(And, Mask) :
154                                  Builder.CreateIsNotNull(And);
155   Value *Zext = Builder.CreateZExt(Cmp, I.getType());
156   I.replaceAllUsesWith(Zext);
157   return true;
158 }
159 
160 /// This is the entry point for folds that could be implemented in regular
161 /// InstCombine, but they are separated because they are not expected to
162 /// occur frequently and/or have more than a constant-length pattern match.
163 static bool foldUnusualPatterns(Function &F, DominatorTree &DT) {
164   bool MadeChange = false;
165   for (BasicBlock &BB : F) {
166     // Ignore unreachable basic blocks.
167     if (!DT.isReachableFromEntry(&BB))
168       continue;
169     // Do not delete instructions under here and invalidate the iterator.
170     // Walk the block backwards for efficiency. We're matching a chain of
171     // use->defs, so we're more likely to succeed by starting from the bottom.
172     // Also, we want to avoid matching partial patterns.
173     // TODO: It would be more efficient if we removed dead instructions
174     // iteratively in this loop rather than waiting until the end.
175     for (Instruction &I : make_range(BB.rbegin(), BB.rend()))
176       MadeChange |= foldAnyOrAllBitsSet(I);
177   }
178 
179   // We're done with transforms, so remove dead instructions.
180   if (MadeChange)
181     for (BasicBlock &BB : F)
182       SimplifyInstructionsInBlock(&BB);
183 
184   return MadeChange;
185 }
186 
187 /// This is the entry point for all transforms. Pass manager differences are
188 /// handled in the callers of this function.
189 static bool runImpl(Function &F, TargetLibraryInfo &TLI, DominatorTree &DT) {
190   bool MadeChange = false;
191   const DataLayout &DL = F.getParent()->getDataLayout();
192   TruncInstCombine TIC(TLI, DL, DT);
193   MadeChange |= TIC.run(F);
194   MadeChange |= foldUnusualPatterns(F, DT);
195   return MadeChange;
196 }
197 
198 void AggressiveInstCombinerLegacyPass::getAnalysisUsage(
199     AnalysisUsage &AU) const {
200   AU.setPreservesCFG();
201   AU.addRequired<DominatorTreeWrapperPass>();
202   AU.addRequired<TargetLibraryInfoWrapperPass>();
203   AU.addPreserved<AAResultsWrapperPass>();
204   AU.addPreserved<BasicAAWrapperPass>();
205   AU.addPreserved<DominatorTreeWrapperPass>();
206   AU.addPreserved<GlobalsAAWrapperPass>();
207 }
208 
209 bool AggressiveInstCombinerLegacyPass::runOnFunction(Function &F) {
210   auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
211   auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
212   return runImpl(F, TLI, DT);
213 }
214 
215 PreservedAnalyses AggressiveInstCombinePass::run(Function &F,
216                                                  FunctionAnalysisManager &AM) {
217   auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
218   auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
219   if (!runImpl(F, TLI, DT)) {
220     // No changes, all analyses are preserved.
221     return PreservedAnalyses::all();
222   }
223   // Mark all the analyses that instcombine updates as preserved.
224   PreservedAnalyses PA;
225   PA.preserveSet<CFGAnalyses>();
226   PA.preserve<AAManager>();
227   PA.preserve<GlobalsAA>();
228   return PA;
229 }
230 
231 char AggressiveInstCombinerLegacyPass::ID = 0;
232 INITIALIZE_PASS_BEGIN(AggressiveInstCombinerLegacyPass,
233                       "aggressive-instcombine",
234                       "Combine pattern based expressions", false, false)
235 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
236 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
237 INITIALIZE_PASS_END(AggressiveInstCombinerLegacyPass, "aggressive-instcombine",
238                     "Combine pattern based expressions", false, false)
239 
240 // Initialization Routines
241 void llvm::initializeAggressiveInstCombine(PassRegistry &Registry) {
242   initializeAggressiveInstCombinerLegacyPassPass(Registry);
243 }
244 
245 void LLVMInitializeAggressiveInstCombiner(LLVMPassRegistryRef R) {
246   initializeAggressiveInstCombinerLegacyPassPass(*unwrap(R));
247 }
248 
249 FunctionPass *llvm::createAggressiveInstCombinerPass() {
250   return new AggressiveInstCombinerLegacyPass();
251 }
252 
253 void LLVMAddAggressiveInstCombinerPass(LLVMPassManagerRef PM) {
254   unwrap(PM)->add(createAggressiveInstCombinerPass());
255 }
256