1 //===- AggressiveInstCombine.cpp ------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the aggressive expression pattern combiner classes.
10 // Currently, it handles expression patterns for:
11 //  * Truncate instruction
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/Transforms/AggressiveInstCombine/AggressiveInstCombine.h"
16 #include "AggressiveInstCombineInternal.h"
17 #include "llvm-c/Initialization.h"
18 #include "llvm-c/Transforms/AggressiveInstCombine.h"
19 #include "llvm/ADT/Statistic.h"
20 #include "llvm/Analysis/AliasAnalysis.h"
21 #include "llvm/Analysis/BasicAliasAnalysis.h"
22 #include "llvm/Analysis/GlobalsModRef.h"
23 #include "llvm/Analysis/TargetLibraryInfo.h"
24 #include "llvm/IR/DataLayout.h"
25 #include "llvm/IR/Dominators.h"
26 #include "llvm/IR/Function.h"
27 #include "llvm/IR/IRBuilder.h"
28 #include "llvm/IR/LegacyPassManager.h"
29 #include "llvm/IR/PatternMatch.h"
30 #include "llvm/InitializePasses.h"
31 #include "llvm/Pass.h"
32 #include "llvm/Transforms/Utils/Local.h"
33 
34 using namespace llvm;
35 using namespace PatternMatch;
36 
37 #define DEBUG_TYPE "aggressive-instcombine"
38 
39 STATISTIC(NumAnyOrAllBitsSet, "Number of any/all-bits-set patterns folded");
40 STATISTIC(NumGuardedRotates,
41           "Number of guarded rotates transformed into funnel shifts");
42 STATISTIC(NumPopCountRecognized, "Number of popcount idioms recognized");
43 
44 namespace {
45 /// Contains expression pattern combiner logic.
46 /// This class provides both the logic to combine expression patterns and
47 /// combine them. It differs from InstCombiner class in that each pattern
48 /// combiner runs only once as opposed to InstCombine's multi-iteration,
49 /// which allows pattern combiner to have higher complexity than the O(1)
50 /// required by the instruction combiner.
51 class AggressiveInstCombinerLegacyPass : public FunctionPass {
52 public:
53   static char ID; // Pass identification, replacement for typeid
54 
55   AggressiveInstCombinerLegacyPass() : FunctionPass(ID) {
56     initializeAggressiveInstCombinerLegacyPassPass(
57         *PassRegistry::getPassRegistry());
58   }
59 
60   void getAnalysisUsage(AnalysisUsage &AU) const override;
61 
62   /// Run all expression pattern optimizations on the given /p F function.
63   ///
64   /// \param F function to optimize.
65   /// \returns true if the IR is changed.
66   bool runOnFunction(Function &F) override;
67 };
68 } // namespace
69 
70 /// Match a pattern for a bitwise rotate operation that partially guards
71 /// against undefined behavior by branching around the rotation when the shift
72 /// amount is 0.
73 static bool foldGuardedRotateToFunnelShift(Instruction &I) {
74   if (I.getOpcode() != Instruction::PHI || I.getNumOperands() != 2)
75     return false;
76 
77   // As with the one-use checks below, this is not strictly necessary, but we
78   // are being cautious to avoid potential perf regressions on targets that
79   // do not actually have a rotate instruction (where the funnel shift would be
80   // expanded back into math/shift/logic ops).
81   if (!isPowerOf2_32(I.getType()->getScalarSizeInBits()))
82     return false;
83 
84   // Match V to funnel shift left/right and capture the source operands and
85   // shift amount.
86   auto matchFunnelShift = [](Value *V, Value *&ShVal0, Value *&ShVal1,
87                              Value *&ShAmt) {
88     Value *SubAmt;
89     unsigned Width = V->getType()->getScalarSizeInBits();
90 
91     // fshl(ShVal0, ShVal1, ShAmt)
92     //  == (ShVal0 << ShAmt) | (ShVal1 >> (Width -ShAmt))
93     if (match(V, m_OneUse(m_c_Or(
94                      m_Shl(m_Value(ShVal0), m_Value(ShAmt)),
95                      m_LShr(m_Value(ShVal1),
96                             m_Sub(m_SpecificInt(Width), m_Value(SubAmt))))))) {
97       if (ShAmt == SubAmt) // TODO: Use m_Specific
98         return Intrinsic::fshl;
99     }
100 
101     // fshr(ShVal0, ShVal1, ShAmt)
102     //  == (ShVal0 >> ShAmt) | (ShVal1 << (Width - ShAmt))
103     if (match(V,
104               m_OneUse(m_c_Or(m_Shl(m_Value(ShVal0), m_Sub(m_SpecificInt(Width),
105                                                            m_Value(SubAmt))),
106                               m_LShr(m_Value(ShVal1), m_Value(ShAmt)))))) {
107       if (ShAmt == SubAmt) // TODO: Use m_Specific
108         return Intrinsic::fshr;
109     }
110 
111     return Intrinsic::not_intrinsic;
112   };
113 
114   // One phi operand must be a rotate operation, and the other phi operand must
115   // be the source value of that rotate operation:
116   // phi [ rotate(RotSrc, ShAmt), FunnelBB ], [ RotSrc, GuardBB ]
117   PHINode &Phi = cast<PHINode>(I);
118   unsigned FunnelOp = 0, GuardOp = 1;
119   Value *P0 = Phi.getOperand(0), *P1 = Phi.getOperand(1);
120   Value *ShVal0, *ShVal1, *ShAmt;
121   Intrinsic::ID IID = matchFunnelShift(P0, ShVal0, ShVal1, ShAmt);
122   if (IID == Intrinsic::not_intrinsic || ShVal0 != ShVal1 || ShVal0 != P1) {
123     IID = matchFunnelShift(P1, ShVal0, ShVal1, ShAmt);
124     if (IID == Intrinsic::not_intrinsic || ShVal0 != ShVal1 || ShVal0 != P0)
125       return false;
126     assert((IID == Intrinsic::fshl || IID == Intrinsic::fshr) &&
127            "Pattern must match funnel shift left or right");
128     std::swap(FunnelOp, GuardOp);
129   }
130   assert(ShVal0 == ShVal1 && "Rotation funnel shift pattern expected");
131 
132   // The incoming block with our source operand must be the "guard" block.
133   // That must contain a cmp+branch to avoid the rotate when the shift amount
134   // is equal to 0. The other incoming block is the block with the rotate.
135   BasicBlock *GuardBB = Phi.getIncomingBlock(GuardOp);
136   BasicBlock *FunnelBB = Phi.getIncomingBlock(FunnelOp);
137   Instruction *TermI = GuardBB->getTerminator();
138   ICmpInst::Predicate Pred;
139   BasicBlock *PhiBB = Phi.getParent();
140   if (!match(TermI, m_Br(m_ICmp(Pred, m_Specific(ShAmt), m_ZeroInt()),
141                          m_SpecificBB(PhiBB), m_SpecificBB(FunnelBB))))
142     return false;
143 
144   if (Pred != CmpInst::ICMP_EQ)
145     return false;
146 
147   // We matched a variation of this IR pattern:
148   // GuardBB:
149   //   %cmp = icmp eq i32 %ShAmt, 0
150   //   br i1 %cmp, label %PhiBB, label %FunnelBB
151   // FunnelBB:
152   //   %sub = sub i32 32, %ShAmt
153   //   %shr = lshr i32 %RotSrc, %sub
154   //   %shl = shl i32 %RotSrc, %ShAmt
155   //   %rot = or i32 %shr, %shl
156   //   br label %PhiBB
157   // PhiBB:
158   //   %cond = phi i32 [ %RotSrc, %FunnelBB ], [ %RotSrc, %GuardBB ]
159   // -->
160   // llvm.fshl.i32(i32 %RotSrc, i32 %RotSrc, i32 %ShAmt)
161   IRBuilder<> Builder(PhiBB, PhiBB->getFirstInsertionPt());
162   Function *F = Intrinsic::getDeclaration(Phi.getModule(), IID, Phi.getType());
163   Phi.replaceAllUsesWith(Builder.CreateCall(F, {ShVal0, ShVal1, ShAmt}));
164   ++NumGuardedRotates;
165   return true;
166 }
167 
168 /// This is used by foldAnyOrAllBitsSet() to capture a source value (Root) and
169 /// the bit indexes (Mask) needed by a masked compare. If we're matching a chain
170 /// of 'and' ops, then we also need to capture the fact that we saw an
171 /// "and X, 1", so that's an extra return value for that case.
172 struct MaskOps {
173   Value *Root;
174   APInt Mask;
175   bool MatchAndChain;
176   bool FoundAnd1;
177 
178   MaskOps(unsigned BitWidth, bool MatchAnds)
179       : Root(nullptr), Mask(APInt::getNullValue(BitWidth)),
180         MatchAndChain(MatchAnds), FoundAnd1(false) {}
181 };
182 
183 /// This is a recursive helper for foldAnyOrAllBitsSet() that walks through a
184 /// chain of 'and' or 'or' instructions looking for shift ops of a common source
185 /// value. Examples:
186 ///   or (or (or X, (X >> 3)), (X >> 5)), (X >> 8)
187 /// returns { X, 0x129 }
188 ///   and (and (X >> 1), 1), (X >> 4)
189 /// returns { X, 0x12 }
190 static bool matchAndOrChain(Value *V, MaskOps &MOps) {
191   Value *Op0, *Op1;
192   if (MOps.MatchAndChain) {
193     // Recurse through a chain of 'and' operands. This requires an extra check
194     // vs. the 'or' matcher: we must find an "and X, 1" instruction somewhere
195     // in the chain to know that all of the high bits are cleared.
196     if (match(V, m_And(m_Value(Op0), m_One()))) {
197       MOps.FoundAnd1 = true;
198       return matchAndOrChain(Op0, MOps);
199     }
200     if (match(V, m_And(m_Value(Op0), m_Value(Op1))))
201       return matchAndOrChain(Op0, MOps) && matchAndOrChain(Op1, MOps);
202   } else {
203     // Recurse through a chain of 'or' operands.
204     if (match(V, m_Or(m_Value(Op0), m_Value(Op1))))
205       return matchAndOrChain(Op0, MOps) && matchAndOrChain(Op1, MOps);
206   }
207 
208   // We need a shift-right or a bare value representing a compare of bit 0 of
209   // the original source operand.
210   Value *Candidate;
211   const APInt *BitIndex = nullptr;
212   if (!match(V, m_LShr(m_Value(Candidate), m_APInt(BitIndex))))
213     Candidate = V;
214 
215   // Initialize result source operand.
216   if (!MOps.Root)
217     MOps.Root = Candidate;
218 
219   // The shift constant is out-of-range? This code hasn't been simplified.
220   if (BitIndex && BitIndex->uge(MOps.Mask.getBitWidth()))
221     return false;
222 
223   // Fill in the mask bit derived from the shift constant.
224   MOps.Mask.setBit(BitIndex ? BitIndex->getZExtValue() : 0);
225   return MOps.Root == Candidate;
226 }
227 
228 /// Match patterns that correspond to "any-bits-set" and "all-bits-set".
229 /// These will include a chain of 'or' or 'and'-shifted bits from a
230 /// common source value:
231 /// and (or  (lshr X, C), ...), 1 --> (X & CMask) != 0
232 /// and (and (lshr X, C), ...), 1 --> (X & CMask) == CMask
233 /// Note: "any-bits-clear" and "all-bits-clear" are variations of these patterns
234 /// that differ only with a final 'not' of the result. We expect that final
235 /// 'not' to be folded with the compare that we create here (invert predicate).
236 static bool foldAnyOrAllBitsSet(Instruction &I) {
237   // The 'any-bits-set' ('or' chain) pattern is simpler to match because the
238   // final "and X, 1" instruction must be the final op in the sequence.
239   bool MatchAllBitsSet;
240   if (match(&I, m_c_And(m_OneUse(m_And(m_Value(), m_Value())), m_Value())))
241     MatchAllBitsSet = true;
242   else if (match(&I, m_And(m_OneUse(m_Or(m_Value(), m_Value())), m_One())))
243     MatchAllBitsSet = false;
244   else
245     return false;
246 
247   MaskOps MOps(I.getType()->getScalarSizeInBits(), MatchAllBitsSet);
248   if (MatchAllBitsSet) {
249     if (!matchAndOrChain(cast<BinaryOperator>(&I), MOps) || !MOps.FoundAnd1)
250       return false;
251   } else {
252     if (!matchAndOrChain(cast<BinaryOperator>(&I)->getOperand(0), MOps))
253       return false;
254   }
255 
256   // The pattern was found. Create a masked compare that replaces all of the
257   // shift and logic ops.
258   IRBuilder<> Builder(&I);
259   Constant *Mask = ConstantInt::get(I.getType(), MOps.Mask);
260   Value *And = Builder.CreateAnd(MOps.Root, Mask);
261   Value *Cmp = MatchAllBitsSet ? Builder.CreateICmpEQ(And, Mask)
262                                : Builder.CreateIsNotNull(And);
263   Value *Zext = Builder.CreateZExt(Cmp, I.getType());
264   I.replaceAllUsesWith(Zext);
265   ++NumAnyOrAllBitsSet;
266   return true;
267 }
268 
269 // Try to recognize below function as popcount intrinsic.
270 // This is the "best" algorithm from
271 // http://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel
272 // Also used in TargetLowering::expandCTPOP().
273 //
274 // int popcount(unsigned int i) {
275 //   i = i - ((i >> 1) & 0x55555555);
276 //   i = (i & 0x33333333) + ((i >> 2) & 0x33333333);
277 //   i = ((i + (i >> 4)) & 0x0F0F0F0F);
278 //   return (i * 0x01010101) >> 24;
279 // }
280 static bool tryToRecognizePopCount(Instruction &I) {
281   if (I.getOpcode() != Instruction::LShr)
282     return false;
283 
284   Type *Ty = I.getType();
285   if (!Ty->isIntOrIntVectorTy())
286     return false;
287 
288   unsigned Len = Ty->getScalarSizeInBits();
289   // FIXME: fix Len == 8 and other irregular type lengths.
290   if (!(Len <= 128 && Len > 8 && Len % 8 == 0))
291     return false;
292 
293   APInt Mask55 = APInt::getSplat(Len, APInt(8, 0x55));
294   APInt Mask33 = APInt::getSplat(Len, APInt(8, 0x33));
295   APInt Mask0F = APInt::getSplat(Len, APInt(8, 0x0F));
296   APInt Mask01 = APInt::getSplat(Len, APInt(8, 0x01));
297   APInt MaskShift = APInt(Len, Len - 8);
298 
299   Value *Op0 = I.getOperand(0);
300   Value *Op1 = I.getOperand(1);
301   Value *MulOp0;
302   // Matching "(i * 0x01010101...) >> 24".
303   if ((match(Op0, m_Mul(m_Value(MulOp0), m_SpecificInt(Mask01)))) &&
304        match(Op1, m_SpecificInt(MaskShift))) {
305     Value *ShiftOp0;
306     // Matching "((i + (i >> 4)) & 0x0F0F0F0F...)".
307     if (match(MulOp0, m_And(m_c_Add(m_LShr(m_Value(ShiftOp0), m_SpecificInt(4)),
308                                     m_Deferred(ShiftOp0)),
309                             m_SpecificInt(Mask0F)))) {
310       Value *AndOp0;
311       // Matching "(i & 0x33333333...) + ((i >> 2) & 0x33333333...)".
312       if (match(ShiftOp0,
313                 m_c_Add(m_And(m_Value(AndOp0), m_SpecificInt(Mask33)),
314                         m_And(m_LShr(m_Deferred(AndOp0), m_SpecificInt(2)),
315                               m_SpecificInt(Mask33))))) {
316         Value *Root, *SubOp1;
317         // Matching "i - ((i >> 1) & 0x55555555...)".
318         if (match(AndOp0, m_Sub(m_Value(Root), m_Value(SubOp1))) &&
319             match(SubOp1, m_And(m_LShr(m_Specific(Root), m_SpecificInt(1)),
320                                 m_SpecificInt(Mask55)))) {
321           LLVM_DEBUG(dbgs() << "Recognized popcount intrinsic\n");
322           IRBuilder<> Builder(&I);
323           Function *Func = Intrinsic::getDeclaration(
324               I.getModule(), Intrinsic::ctpop, I.getType());
325           I.replaceAllUsesWith(Builder.CreateCall(Func, {Root}));
326           ++NumPopCountRecognized;
327           return true;
328         }
329       }
330     }
331   }
332 
333   return false;
334 }
335 
336 /// This is the entry point for folds that could be implemented in regular
337 /// InstCombine, but they are separated because they are not expected to
338 /// occur frequently and/or have more than a constant-length pattern match.
339 static bool foldUnusualPatterns(Function &F, DominatorTree &DT) {
340   bool MadeChange = false;
341   for (BasicBlock &BB : F) {
342     // Ignore unreachable basic blocks.
343     if (!DT.isReachableFromEntry(&BB))
344       continue;
345     // Do not delete instructions under here and invalidate the iterator.
346     // Walk the block backwards for efficiency. We're matching a chain of
347     // use->defs, so we're more likely to succeed by starting from the bottom.
348     // Also, we want to avoid matching partial patterns.
349     // TODO: It would be more efficient if we removed dead instructions
350     // iteratively in this loop rather than waiting until the end.
351     for (Instruction &I : make_range(BB.rbegin(), BB.rend())) {
352       MadeChange |= foldAnyOrAllBitsSet(I);
353       MadeChange |= foldGuardedRotateToFunnelShift(I);
354       MadeChange |= tryToRecognizePopCount(I);
355     }
356   }
357 
358   // We're done with transforms, so remove dead instructions.
359   if (MadeChange)
360     for (BasicBlock &BB : F)
361       SimplifyInstructionsInBlock(&BB);
362 
363   return MadeChange;
364 }
365 
366 /// This is the entry point for all transforms. Pass manager differences are
367 /// handled in the callers of this function.
368 static bool runImpl(Function &F, TargetLibraryInfo &TLI, DominatorTree &DT) {
369   bool MadeChange = false;
370   const DataLayout &DL = F.getParent()->getDataLayout();
371   TruncInstCombine TIC(TLI, DL, DT);
372   MadeChange |= TIC.run(F);
373   MadeChange |= foldUnusualPatterns(F, DT);
374   return MadeChange;
375 }
376 
377 void AggressiveInstCombinerLegacyPass::getAnalysisUsage(
378     AnalysisUsage &AU) const {
379   AU.setPreservesCFG();
380   AU.addRequired<DominatorTreeWrapperPass>();
381   AU.addRequired<TargetLibraryInfoWrapperPass>();
382   AU.addPreserved<AAResultsWrapperPass>();
383   AU.addPreserved<BasicAAWrapperPass>();
384   AU.addPreserved<DominatorTreeWrapperPass>();
385   AU.addPreserved<GlobalsAAWrapperPass>();
386 }
387 
388 bool AggressiveInstCombinerLegacyPass::runOnFunction(Function &F) {
389   auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
390   auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
391   return runImpl(F, TLI, DT);
392 }
393 
394 PreservedAnalyses AggressiveInstCombinePass::run(Function &F,
395                                                  FunctionAnalysisManager &AM) {
396   auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
397   auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
398   if (!runImpl(F, TLI, DT)) {
399     // No changes, all analyses are preserved.
400     return PreservedAnalyses::all();
401   }
402   // Mark all the analyses that instcombine updates as preserved.
403   PreservedAnalyses PA;
404   PA.preserveSet<CFGAnalyses>();
405   PA.preserve<AAManager>();
406   PA.preserve<GlobalsAA>();
407   return PA;
408 }
409 
410 char AggressiveInstCombinerLegacyPass::ID = 0;
411 INITIALIZE_PASS_BEGIN(AggressiveInstCombinerLegacyPass,
412                       "aggressive-instcombine",
413                       "Combine pattern based expressions", false, false)
414 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
415 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
416 INITIALIZE_PASS_END(AggressiveInstCombinerLegacyPass, "aggressive-instcombine",
417                     "Combine pattern based expressions", false, false)
418 
419 // Initialization Routines
420 void llvm::initializeAggressiveInstCombine(PassRegistry &Registry) {
421   initializeAggressiveInstCombinerLegacyPassPass(Registry);
422 }
423 
424 void LLVMInitializeAggressiveInstCombiner(LLVMPassRegistryRef R) {
425   initializeAggressiveInstCombinerLegacyPassPass(*unwrap(R));
426 }
427 
428 FunctionPass *llvm::createAggressiveInstCombinerPass() {
429   return new AggressiveInstCombinerLegacyPass();
430 }
431 
432 void LLVMAddAggressiveInstCombinerPass(LLVMPassManagerRef PM) {
433   unwrap(PM)->add(createAggressiveInstCombinerPass());
434 }
435