1 //===-- X86TargetTransformInfo.cpp - X86 specific TTI pass ----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 /// \file
9 /// This file implements a TargetTransformInfo analysis pass specific to the
10 /// X86 target machine. It uses the target's detailed information to provide
11 /// more precise answers to certain TTI queries, while letting the target
12 /// independent and default TTI implementations handle the rest.
13 ///
14 //===----------------------------------------------------------------------===//
15 /// About Cost Model numbers used below it's necessary to say the following:
16 /// the numbers correspond to some "generic" X86 CPU instead of usage of
17 /// concrete CPU model. Usually the numbers correspond to CPU where the feature
18 /// apeared at the first time. For example, if we do Subtarget.hasSSE42() in
19 /// the lookups below the cost is based on Nehalem as that was the first CPU
20 /// to support that feature level and thus has most likely the worst case cost.
21 /// Some examples of other technologies/CPUs:
22 ///   SSE 3   - Pentium4 / Athlon64
23 ///   SSE 4.1 - Penryn
24 ///   SSE 4.2 - Nehalem
25 ///   AVX     - Sandy Bridge
26 ///   AVX2    - Haswell
27 ///   AVX-512 - Xeon Phi / Skylake
28 /// And some examples of instruction target dependent costs (latency)
29 ///                   divss     sqrtss          rsqrtss
30 ///   AMD K7            11-16     19              3
31 ///   Piledriver        9-24      13-15           5
32 ///   Jaguar            14        16              2
33 ///   Pentium II,III    18        30              2
34 ///   Nehalem           7-14      7-18            3
35 ///   Haswell           10-13     11              5
36 /// TODO: Develop and implement  the target dependent cost model and
37 /// specialize cost numbers for different Cost Model Targets such as throughput,
38 /// code size, latency and uop count.
39 //===----------------------------------------------------------------------===//
40 
41 #include "X86TargetTransformInfo.h"
42 #include "llvm/Analysis/TargetTransformInfo.h"
43 #include "llvm/CodeGen/BasicTTIImpl.h"
44 #include "llvm/CodeGen/CostTable.h"
45 #include "llvm/CodeGen/TargetLowering.h"
46 #include "llvm/IR/InstIterator.h"
47 #include "llvm/IR/IntrinsicInst.h"
48 #include "llvm/Support/Debug.h"
49 
50 using namespace llvm;
51 
52 #define DEBUG_TYPE "x86tti"
53 
54 //===----------------------------------------------------------------------===//
55 //
56 // X86 cost model.
57 //
58 //===----------------------------------------------------------------------===//
59 
60 TargetTransformInfo::PopcntSupportKind
61 X86TTIImpl::getPopcntSupport(unsigned TyWidth) {
62   assert(isPowerOf2_32(TyWidth) && "Ty width must be power of 2");
63   // TODO: Currently the __builtin_popcount() implementation using SSE3
64   //   instructions is inefficient. Once the problem is fixed, we should
65   //   call ST->hasSSE3() instead of ST->hasPOPCNT().
66   return ST->hasPOPCNT() ? TTI::PSK_FastHardware : TTI::PSK_Software;
67 }
68 
69 llvm::Optional<unsigned> X86TTIImpl::getCacheSize(
70   TargetTransformInfo::CacheLevel Level) const {
71   switch (Level) {
72   case TargetTransformInfo::CacheLevel::L1D:
73     //   - Penryn
74     //   - Nehalem
75     //   - Westmere
76     //   - Sandy Bridge
77     //   - Ivy Bridge
78     //   - Haswell
79     //   - Broadwell
80     //   - Skylake
81     //   - Kabylake
82     return 32 * 1024;  //  32 KByte
83   case TargetTransformInfo::CacheLevel::L2D:
84     //   - Penryn
85     //   - Nehalem
86     //   - Westmere
87     //   - Sandy Bridge
88     //   - Ivy Bridge
89     //   - Haswell
90     //   - Broadwell
91     //   - Skylake
92     //   - Kabylake
93     return 256 * 1024; // 256 KByte
94   }
95 
96   llvm_unreachable("Unknown TargetTransformInfo::CacheLevel");
97 }
98 
99 llvm::Optional<unsigned> X86TTIImpl::getCacheAssociativity(
100   TargetTransformInfo::CacheLevel Level) const {
101   //   - Penryn
102   //   - Nehalem
103   //   - Westmere
104   //   - Sandy Bridge
105   //   - Ivy Bridge
106   //   - Haswell
107   //   - Broadwell
108   //   - Skylake
109   //   - Kabylake
110   switch (Level) {
111   case TargetTransformInfo::CacheLevel::L1D:
112     LLVM_FALLTHROUGH;
113   case TargetTransformInfo::CacheLevel::L2D:
114     return 8;
115   }
116 
117   llvm_unreachable("Unknown TargetTransformInfo::CacheLevel");
118 }
119 
120 unsigned X86TTIImpl::getNumberOfRegisters(unsigned ClassID) const {
121   bool Vector = (ClassID == 1);
122   if (Vector && !ST->hasSSE1())
123     return 0;
124 
125   if (ST->is64Bit()) {
126     if (Vector && ST->hasAVX512())
127       return 32;
128     return 16;
129   }
130   return 8;
131 }
132 
133 TypeSize
134 X86TTIImpl::getRegisterBitWidth(TargetTransformInfo::RegisterKind K) const {
135   unsigned PreferVectorWidth = ST->getPreferVectorWidth();
136   switch (K) {
137   case TargetTransformInfo::RGK_Scalar:
138     return TypeSize::getFixed(ST->is64Bit() ? 64 : 32);
139   case TargetTransformInfo::RGK_FixedWidthVector:
140     if (ST->hasAVX512() && PreferVectorWidth >= 512)
141       return TypeSize::getFixed(512);
142     if (ST->hasAVX() && PreferVectorWidth >= 256)
143       return TypeSize::getFixed(256);
144     if (ST->hasSSE1() && PreferVectorWidth >= 128)
145       return TypeSize::getFixed(128);
146     return TypeSize::getFixed(0);
147   case TargetTransformInfo::RGK_ScalableVector:
148     return TypeSize::getScalable(0);
149   }
150 
151   llvm_unreachable("Unsupported register kind");
152 }
153 
154 unsigned X86TTIImpl::getLoadStoreVecRegBitWidth(unsigned) const {
155   return getRegisterBitWidth(TargetTransformInfo::RGK_FixedWidthVector)
156       .getFixedSize();
157 }
158 
159 unsigned X86TTIImpl::getMaxInterleaveFactor(unsigned VF) {
160   // If the loop will not be vectorized, don't interleave the loop.
161   // Let regular unroll to unroll the loop, which saves the overflow
162   // check and memory check cost.
163   if (VF == 1)
164     return 1;
165 
166   if (ST->isAtom())
167     return 1;
168 
169   // Sandybridge and Haswell have multiple execution ports and pipelined
170   // vector units.
171   if (ST->hasAVX())
172     return 4;
173 
174   return 2;
175 }
176 
177 InstructionCost X86TTIImpl::getArithmeticInstrCost(
178     unsigned Opcode, Type *Ty, TTI::TargetCostKind CostKind,
179     TTI::OperandValueKind Op1Info, TTI::OperandValueKind Op2Info,
180     TTI::OperandValueProperties Opd1PropInfo,
181     TTI::OperandValueProperties Opd2PropInfo, ArrayRef<const Value *> Args,
182     const Instruction *CxtI) {
183   // TODO: Handle more cost kinds.
184   if (CostKind != TTI::TCK_RecipThroughput)
185     return BaseT::getArithmeticInstrCost(Opcode, Ty, CostKind, Op1Info,
186                                          Op2Info, Opd1PropInfo,
187                                          Opd2PropInfo, Args, CxtI);
188 
189   // vXi8 multiplications are always promoted to vXi16.
190   if (Opcode == Instruction::Mul && Ty->isVectorTy() &&
191       Ty->getScalarSizeInBits() == 8) {
192     Type *WideVecTy =
193         VectorType::getExtendedElementVectorType(cast<VectorType>(Ty));
194     return getCastInstrCost(Instruction::ZExt, WideVecTy, Ty,
195                             TargetTransformInfo::CastContextHint::None,
196                             CostKind) +
197            getCastInstrCost(Instruction::Trunc, Ty, WideVecTy,
198                             TargetTransformInfo::CastContextHint::None,
199                             CostKind) +
200            getArithmeticInstrCost(Opcode, WideVecTy, CostKind, Op1Info, Op2Info,
201                                   Opd1PropInfo, Opd2PropInfo);
202   }
203 
204   // Legalize the type.
205   std::pair<InstructionCost, MVT> LT = TLI->getTypeLegalizationCost(DL, Ty);
206 
207   int ISD = TLI->InstructionOpcodeToISD(Opcode);
208   assert(ISD && "Invalid opcode");
209 
210   if (ISD == ISD::MUL && Args.size() == 2 && LT.second.isVector() &&
211       LT.second.getScalarType() == MVT::i32) {
212     // Check if the operands can be represented as a smaller datatype.
213     bool Op1Signed = false, Op2Signed = false;
214     unsigned Op1MinSize = BaseT::minRequiredElementSize(Args[0], Op1Signed);
215     unsigned Op2MinSize = BaseT::minRequiredElementSize(Args[1], Op2Signed);
216     unsigned OpMinSize = std::max(Op1MinSize, Op2MinSize);
217 
218     // If both are representable as i15 and at least one is constant,
219     // zero-extended, or sign-extended from vXi16 (or less pre-SSE41) then we
220     // can treat this as PMADDWD which has the same costs as a vXi16 multiply.
221     if (OpMinSize <= 15 && !ST->isPMADDWDSlow()) {
222       bool Op1Constant =
223           isa<ConstantDataVector>(Args[0]) || isa<ConstantVector>(Args[0]);
224       bool Op2Constant =
225           isa<ConstantDataVector>(Args[1]) || isa<ConstantVector>(Args[1]);
226       bool Op1Sext = isa<SExtInst>(Args[0]) &&
227                      (Op1MinSize == 15 || (Op1MinSize < 15 && !ST->hasSSE41()));
228       bool Op2Sext = isa<SExtInst>(Args[1]) &&
229                      (Op2MinSize == 15 || (Op2MinSize < 15 && !ST->hasSSE41()));
230 
231       bool IsZeroExtended = !Op1Signed || !Op2Signed;
232       bool IsConstant = Op1Constant || Op2Constant;
233       bool IsSext = Op1Sext || Op2Sext;
234       if (IsConstant || IsZeroExtended || IsSext)
235         LT.second =
236             MVT::getVectorVT(MVT::i16, 2 * LT.second.getVectorNumElements());
237     }
238   }
239 
240   // Vector multiply by pow2 will be simplified to shifts.
241   if (ISD == ISD::MUL &&
242       (Op2Info == TargetTransformInfo::OK_UniformConstantValue ||
243        Op2Info == TargetTransformInfo::OK_NonUniformConstantValue) &&
244       Opd2PropInfo == TargetTransformInfo::OP_PowerOf2)
245     return getArithmeticInstrCost(Instruction::Shl, Ty, CostKind, Op1Info,
246                                   Op2Info, TargetTransformInfo::OP_None,
247                                   TargetTransformInfo::OP_None);
248 
249   // On X86, vector signed division by constants power-of-two are
250   // normally expanded to the sequence SRA + SRL + ADD + SRA.
251   // The OperandValue properties may not be the same as that of the previous
252   // operation; conservatively assume OP_None.
253   if ((ISD == ISD::SDIV || ISD == ISD::SREM) &&
254       (Op2Info == TargetTransformInfo::OK_UniformConstantValue ||
255        Op2Info == TargetTransformInfo::OK_NonUniformConstantValue) &&
256       Opd2PropInfo == TargetTransformInfo::OP_PowerOf2) {
257     InstructionCost Cost =
258         2 * getArithmeticInstrCost(Instruction::AShr, Ty, CostKind, Op1Info,
259                                    Op2Info, TargetTransformInfo::OP_None,
260                                    TargetTransformInfo::OP_None);
261     Cost += getArithmeticInstrCost(Instruction::LShr, Ty, CostKind, Op1Info,
262                                    Op2Info, TargetTransformInfo::OP_None,
263                                    TargetTransformInfo::OP_None);
264     Cost += getArithmeticInstrCost(Instruction::Add, Ty, CostKind, Op1Info,
265                                    Op2Info, TargetTransformInfo::OP_None,
266                                    TargetTransformInfo::OP_None);
267 
268     if (ISD == ISD::SREM) {
269       // For SREM: (X % C) is the equivalent of (X - (X/C)*C)
270       Cost += getArithmeticInstrCost(Instruction::Mul, Ty, CostKind, Op1Info,
271                                      Op2Info);
272       Cost += getArithmeticInstrCost(Instruction::Sub, Ty, CostKind, Op1Info,
273                                      Op2Info);
274     }
275 
276     return Cost;
277   }
278 
279   // Vector unsigned division/remainder will be simplified to shifts/masks.
280   if ((ISD == ISD::UDIV || ISD == ISD::UREM) &&
281       (Op2Info == TargetTransformInfo::OK_UniformConstantValue ||
282        Op2Info == TargetTransformInfo::OK_NonUniformConstantValue) &&
283       Opd2PropInfo == TargetTransformInfo::OP_PowerOf2) {
284     if (ISD == ISD::UDIV)
285       return getArithmeticInstrCost(Instruction::LShr, Ty, CostKind, Op1Info,
286                                     Op2Info, TargetTransformInfo::OP_None,
287                                     TargetTransformInfo::OP_None);
288     // UREM
289     return getArithmeticInstrCost(Instruction::And, Ty, CostKind, Op1Info,
290                                   Op2Info, TargetTransformInfo::OP_None,
291                                   TargetTransformInfo::OP_None);
292   }
293 
294   static const CostTblEntry GLMCostTable[] = {
295     { ISD::FDIV,  MVT::f32,   18 }, // divss
296     { ISD::FDIV,  MVT::v4f32, 35 }, // divps
297     { ISD::FDIV,  MVT::f64,   33 }, // divsd
298     { ISD::FDIV,  MVT::v2f64, 65 }, // divpd
299   };
300 
301   if (ST->useGLMDivSqrtCosts())
302     if (const auto *Entry = CostTableLookup(GLMCostTable, ISD,
303                                             LT.second))
304       return LT.first * Entry->Cost;
305 
306   static const CostTblEntry SLMCostTable[] = {
307     { ISD::MUL,   MVT::v4i32, 11 }, // pmulld
308     { ISD::MUL,   MVT::v8i16, 2  }, // pmullw
309     { ISD::FMUL,  MVT::f64,   2  }, // mulsd
310     { ISD::FMUL,  MVT::v2f64, 4  }, // mulpd
311     { ISD::FMUL,  MVT::v4f32, 2  }, // mulps
312     { ISD::FDIV,  MVT::f32,   17 }, // divss
313     { ISD::FDIV,  MVT::v4f32, 39 }, // divps
314     { ISD::FDIV,  MVT::f64,   32 }, // divsd
315     { ISD::FDIV,  MVT::v2f64, 69 }, // divpd
316     { ISD::FADD,  MVT::v2f64, 2  }, // addpd
317     { ISD::FSUB,  MVT::v2f64, 2  }, // subpd
318     // v2i64/v4i64 mul is custom lowered as a series of long:
319     // multiplies(3), shifts(3) and adds(2)
320     // slm muldq version throughput is 2 and addq throughput 4
321     // thus: 3X2 (muldq throughput) + 3X1 (shift throughput) +
322     //       3X4 (addq throughput) = 17
323     { ISD::MUL,   MVT::v2i64, 17 },
324     // slm addq\subq throughput is 4
325     { ISD::ADD,   MVT::v2i64, 4  },
326     { ISD::SUB,   MVT::v2i64, 4  },
327   };
328 
329   if (ST->useSLMArithCosts()) {
330     if (Args.size() == 2 && ISD == ISD::MUL && LT.second == MVT::v4i32) {
331       // Check if the operands can be shrinked into a smaller datatype.
332       // TODO: Merge this into generiic vXi32 MUL patterns above.
333       bool Op1Signed = false;
334       unsigned Op1MinSize = BaseT::minRequiredElementSize(Args[0], Op1Signed);
335       bool Op2Signed = false;
336       unsigned Op2MinSize = BaseT::minRequiredElementSize(Args[1], Op2Signed);
337 
338       bool SignedMode = Op1Signed || Op2Signed;
339       unsigned OpMinSize = std::max(Op1MinSize, Op2MinSize);
340 
341       if (OpMinSize <= 7)
342         return LT.first * 3; // pmullw/sext
343       if (!SignedMode && OpMinSize <= 8)
344         return LT.first * 3; // pmullw/zext
345       if (OpMinSize <= 15)
346         return LT.first * 5; // pmullw/pmulhw/pshuf
347       if (!SignedMode && OpMinSize <= 16)
348         return LT.first * 5; // pmullw/pmulhw/pshuf
349     }
350 
351     if (const auto *Entry = CostTableLookup(SLMCostTable, ISD,
352                                             LT.second)) {
353       return LT.first * Entry->Cost;
354     }
355   }
356 
357   static const CostTblEntry AVX512BWUniformConstCostTable[] = {
358     { ISD::SHL,  MVT::v64i8,   2 }, // psllw + pand.
359     { ISD::SRL,  MVT::v64i8,   2 }, // psrlw + pand.
360     { ISD::SRA,  MVT::v64i8,   4 }, // psrlw, pand, pxor, psubb.
361   };
362 
363   if (Op2Info == TargetTransformInfo::OK_UniformConstantValue &&
364       ST->hasBWI()) {
365     if (const auto *Entry = CostTableLookup(AVX512BWUniformConstCostTable, ISD,
366                                             LT.second))
367       return LT.first * Entry->Cost;
368   }
369 
370   static const CostTblEntry AVX512UniformConstCostTable[] = {
371     { ISD::SRA,  MVT::v2i64,   1 },
372     { ISD::SRA,  MVT::v4i64,   1 },
373     { ISD::SRA,  MVT::v8i64,   1 },
374 
375     { ISD::SHL,  MVT::v64i8,   4 }, // psllw + pand.
376     { ISD::SRL,  MVT::v64i8,   4 }, // psrlw + pand.
377     { ISD::SRA,  MVT::v64i8,   8 }, // psrlw, pand, pxor, psubb.
378 
379     { ISD::SDIV, MVT::v16i32,  6 }, // pmuludq sequence
380     { ISD::SREM, MVT::v16i32,  8 }, // pmuludq+mul+sub sequence
381     { ISD::UDIV, MVT::v16i32,  5 }, // pmuludq sequence
382     { ISD::UREM, MVT::v16i32,  7 }, // pmuludq+mul+sub sequence
383   };
384 
385   if (Op2Info == TargetTransformInfo::OK_UniformConstantValue &&
386       ST->hasAVX512()) {
387     if (const auto *Entry = CostTableLookup(AVX512UniformConstCostTable, ISD,
388                                             LT.second))
389       return LT.first * Entry->Cost;
390   }
391 
392   static const CostTblEntry AVX2UniformConstCostTable[] = {
393     { ISD::SHL,  MVT::v32i8,   2 }, // psllw + pand.
394     { ISD::SRL,  MVT::v32i8,   2 }, // psrlw + pand.
395     { ISD::SRA,  MVT::v32i8,   4 }, // psrlw, pand, pxor, psubb.
396 
397     { ISD::SRA,  MVT::v4i64,   4 }, // 2 x psrad + shuffle.
398 
399     { ISD::SDIV, MVT::v8i32,   6 }, // pmuludq sequence
400     { ISD::SREM, MVT::v8i32,   8 }, // pmuludq+mul+sub sequence
401     { ISD::UDIV, MVT::v8i32,   5 }, // pmuludq sequence
402     { ISD::UREM, MVT::v8i32,   7 }, // pmuludq+mul+sub sequence
403   };
404 
405   if (Op2Info == TargetTransformInfo::OK_UniformConstantValue &&
406       ST->hasAVX2()) {
407     if (const auto *Entry = CostTableLookup(AVX2UniformConstCostTable, ISD,
408                                             LT.second))
409       return LT.first * Entry->Cost;
410   }
411 
412   static const CostTblEntry SSE2UniformConstCostTable[] = {
413     { ISD::SHL,  MVT::v16i8,     2 }, // psllw + pand.
414     { ISD::SRL,  MVT::v16i8,     2 }, // psrlw + pand.
415     { ISD::SRA,  MVT::v16i8,     4 }, // psrlw, pand, pxor, psubb.
416 
417     { ISD::SHL,  MVT::v32i8,   4+2 }, // 2*(psllw + pand) + split.
418     { ISD::SRL,  MVT::v32i8,   4+2 }, // 2*(psrlw + pand) + split.
419     { ISD::SRA,  MVT::v32i8,   8+2 }, // 2*(psrlw, pand, pxor, psubb) + split.
420 
421     { ISD::SDIV, MVT::v8i32,  12+2 }, // 2*pmuludq sequence + split.
422     { ISD::SREM, MVT::v8i32,  16+2 }, // 2*pmuludq+mul+sub sequence + split.
423     { ISD::SDIV, MVT::v4i32,     6 }, // pmuludq sequence
424     { ISD::SREM, MVT::v4i32,     8 }, // pmuludq+mul+sub sequence
425     { ISD::UDIV, MVT::v8i32,  10+2 }, // 2*pmuludq sequence + split.
426     { ISD::UREM, MVT::v8i32,  14+2 }, // 2*pmuludq+mul+sub sequence + split.
427     { ISD::UDIV, MVT::v4i32,     5 }, // pmuludq sequence
428     { ISD::UREM, MVT::v4i32,     7 }, // pmuludq+mul+sub sequence
429   };
430 
431   // XOP has faster vXi8 shifts.
432   if (Op2Info == TargetTransformInfo::OK_UniformConstantValue &&
433       ST->hasSSE2() && !ST->hasXOP()) {
434     if (const auto *Entry =
435             CostTableLookup(SSE2UniformConstCostTable, ISD, LT.second))
436       return LT.first * Entry->Cost;
437   }
438 
439   static const CostTblEntry AVX512BWConstCostTable[] = {
440     { ISD::SDIV, MVT::v64i8,  14 }, // 2*ext+2*pmulhw sequence
441     { ISD::SREM, MVT::v64i8,  16 }, // 2*ext+2*pmulhw+mul+sub sequence
442     { ISD::UDIV, MVT::v64i8,  14 }, // 2*ext+2*pmulhw sequence
443     { ISD::UREM, MVT::v64i8,  16 }, // 2*ext+2*pmulhw+mul+sub sequence
444     { ISD::SDIV, MVT::v32i16,  6 }, // vpmulhw sequence
445     { ISD::SREM, MVT::v32i16,  8 }, // vpmulhw+mul+sub sequence
446     { ISD::UDIV, MVT::v32i16,  6 }, // vpmulhuw sequence
447     { ISD::UREM, MVT::v32i16,  8 }, // vpmulhuw+mul+sub sequence
448   };
449 
450   if ((Op2Info == TargetTransformInfo::OK_UniformConstantValue ||
451        Op2Info == TargetTransformInfo::OK_NonUniformConstantValue) &&
452       ST->hasBWI()) {
453     if (const auto *Entry =
454             CostTableLookup(AVX512BWConstCostTable, ISD, LT.second))
455       return LT.first * Entry->Cost;
456   }
457 
458   static const CostTblEntry AVX512ConstCostTable[] = {
459     { ISD::SDIV, MVT::v16i32, 15 }, // vpmuldq sequence
460     { ISD::SREM, MVT::v16i32, 17 }, // vpmuldq+mul+sub sequence
461     { ISD::UDIV, MVT::v16i32, 15 }, // vpmuludq sequence
462     { ISD::UREM, MVT::v16i32, 17 }, // vpmuludq+mul+sub sequence
463     { ISD::SDIV, MVT::v64i8,  28 }, // 4*ext+4*pmulhw sequence
464     { ISD::SREM, MVT::v64i8,  32 }, // 4*ext+4*pmulhw+mul+sub sequence
465     { ISD::UDIV, MVT::v64i8,  28 }, // 4*ext+4*pmulhw sequence
466     { ISD::UREM, MVT::v64i8,  32 }, // 4*ext+4*pmulhw+mul+sub sequence
467     { ISD::SDIV, MVT::v32i16, 12 }, // 2*vpmulhw sequence
468     { ISD::SREM, MVT::v32i16, 16 }, // 2*vpmulhw+mul+sub sequence
469     { ISD::UDIV, MVT::v32i16, 12 }, // 2*vpmulhuw sequence
470     { ISD::UREM, MVT::v32i16, 16 }, // 2*vpmulhuw+mul+sub sequence
471   };
472 
473   if ((Op2Info == TargetTransformInfo::OK_UniformConstantValue ||
474        Op2Info == TargetTransformInfo::OK_NonUniformConstantValue) &&
475       ST->hasAVX512()) {
476     if (const auto *Entry =
477             CostTableLookup(AVX512ConstCostTable, ISD, LT.second))
478       return LT.first * Entry->Cost;
479   }
480 
481   static const CostTblEntry AVX2ConstCostTable[] = {
482     { ISD::SDIV, MVT::v32i8,  14 }, // 2*ext+2*pmulhw sequence
483     { ISD::SREM, MVT::v32i8,  16 }, // 2*ext+2*pmulhw+mul+sub sequence
484     { ISD::UDIV, MVT::v32i8,  14 }, // 2*ext+2*pmulhw sequence
485     { ISD::UREM, MVT::v32i8,  16 }, // 2*ext+2*pmulhw+mul+sub sequence
486     { ISD::SDIV, MVT::v16i16,  6 }, // vpmulhw sequence
487     { ISD::SREM, MVT::v16i16,  8 }, // vpmulhw+mul+sub sequence
488     { ISD::UDIV, MVT::v16i16,  6 }, // vpmulhuw sequence
489     { ISD::UREM, MVT::v16i16,  8 }, // vpmulhuw+mul+sub sequence
490     { ISD::SDIV, MVT::v8i32,  15 }, // vpmuldq sequence
491     { ISD::SREM, MVT::v8i32,  19 }, // vpmuldq+mul+sub sequence
492     { ISD::UDIV, MVT::v8i32,  15 }, // vpmuludq sequence
493     { ISD::UREM, MVT::v8i32,  19 }, // vpmuludq+mul+sub sequence
494   };
495 
496   if ((Op2Info == TargetTransformInfo::OK_UniformConstantValue ||
497        Op2Info == TargetTransformInfo::OK_NonUniformConstantValue) &&
498       ST->hasAVX2()) {
499     if (const auto *Entry = CostTableLookup(AVX2ConstCostTable, ISD, LT.second))
500       return LT.first * Entry->Cost;
501   }
502 
503   static const CostTblEntry SSE2ConstCostTable[] = {
504     { ISD::SDIV, MVT::v32i8,  28+2 }, // 4*ext+4*pmulhw sequence + split.
505     { ISD::SREM, MVT::v32i8,  32+2 }, // 4*ext+4*pmulhw+mul+sub sequence + split.
506     { ISD::SDIV, MVT::v16i8,    14 }, // 2*ext+2*pmulhw sequence
507     { ISD::SREM, MVT::v16i8,    16 }, // 2*ext+2*pmulhw+mul+sub sequence
508     { ISD::UDIV, MVT::v32i8,  28+2 }, // 4*ext+4*pmulhw sequence + split.
509     { ISD::UREM, MVT::v32i8,  32+2 }, // 4*ext+4*pmulhw+mul+sub sequence + split.
510     { ISD::UDIV, MVT::v16i8,    14 }, // 2*ext+2*pmulhw sequence
511     { ISD::UREM, MVT::v16i8,    16 }, // 2*ext+2*pmulhw+mul+sub sequence
512     { ISD::SDIV, MVT::v16i16, 12+2 }, // 2*pmulhw sequence + split.
513     { ISD::SREM, MVT::v16i16, 16+2 }, // 2*pmulhw+mul+sub sequence + split.
514     { ISD::SDIV, MVT::v8i16,     6 }, // pmulhw sequence
515     { ISD::SREM, MVT::v8i16,     8 }, // pmulhw+mul+sub sequence
516     { ISD::UDIV, MVT::v16i16, 12+2 }, // 2*pmulhuw sequence + split.
517     { ISD::UREM, MVT::v16i16, 16+2 }, // 2*pmulhuw+mul+sub sequence + split.
518     { ISD::UDIV, MVT::v8i16,     6 }, // pmulhuw sequence
519     { ISD::UREM, MVT::v8i16,     8 }, // pmulhuw+mul+sub sequence
520     { ISD::SDIV, MVT::v8i32,  38+2 }, // 2*pmuludq sequence + split.
521     { ISD::SREM, MVT::v8i32,  48+2 }, // 2*pmuludq+mul+sub sequence + split.
522     { ISD::SDIV, MVT::v4i32,    19 }, // pmuludq sequence
523     { ISD::SREM, MVT::v4i32,    24 }, // pmuludq+mul+sub sequence
524     { ISD::UDIV, MVT::v8i32,  30+2 }, // 2*pmuludq sequence + split.
525     { ISD::UREM, MVT::v8i32,  40+2 }, // 2*pmuludq+mul+sub sequence + split.
526     { ISD::UDIV, MVT::v4i32,    15 }, // pmuludq sequence
527     { ISD::UREM, MVT::v4i32,    20 }, // pmuludq+mul+sub sequence
528   };
529 
530   if ((Op2Info == TargetTransformInfo::OK_UniformConstantValue ||
531        Op2Info == TargetTransformInfo::OK_NonUniformConstantValue) &&
532       ST->hasSSE2()) {
533     // pmuldq sequence.
534     if (ISD == ISD::SDIV && LT.second == MVT::v8i32 && ST->hasAVX())
535       return LT.first * 32;
536     if (ISD == ISD::SREM && LT.second == MVT::v8i32 && ST->hasAVX())
537       return LT.first * 38;
538     if (ISD == ISD::SDIV && LT.second == MVT::v4i32 && ST->hasSSE41())
539       return LT.first * 15;
540     if (ISD == ISD::SREM && LT.second == MVT::v4i32 && ST->hasSSE41())
541       return LT.first * 20;
542 
543     if (const auto *Entry = CostTableLookup(SSE2ConstCostTable, ISD, LT.second))
544       return LT.first * Entry->Cost;
545   }
546 
547   static const CostTblEntry AVX512BWShiftCostTable[] = {
548     { ISD::SHL,   MVT::v16i8,      4 }, // extend/vpsllvw/pack sequence.
549     { ISD::SRL,   MVT::v16i8,      4 }, // extend/vpsrlvw/pack sequence.
550     { ISD::SRA,   MVT::v16i8,      4 }, // extend/vpsravw/pack sequence.
551     { ISD::SHL,   MVT::v32i8,      4 }, // extend/vpsllvw/pack sequence.
552     { ISD::SRL,   MVT::v32i8,      4 }, // extend/vpsrlvw/pack sequence.
553     { ISD::SRA,   MVT::v32i8,      6 }, // extend/vpsravw/pack sequence.
554     { ISD::SHL,   MVT::v64i8,      6 }, // extend/vpsllvw/pack sequence.
555     { ISD::SRL,   MVT::v64i8,      7 }, // extend/vpsrlvw/pack sequence.
556     { ISD::SRA,   MVT::v64i8,     15 }, // extend/vpsravw/pack sequence.
557 
558     { ISD::SHL,   MVT::v8i16,      1 }, // vpsllvw
559     { ISD::SRL,   MVT::v8i16,      1 }, // vpsrlvw
560     { ISD::SRA,   MVT::v8i16,      1 }, // vpsravw
561     { ISD::SHL,   MVT::v16i16,     1 }, // vpsllvw
562     { ISD::SRL,   MVT::v16i16,     1 }, // vpsrlvw
563     { ISD::SRA,   MVT::v16i16,     1 }, // vpsravw
564     { ISD::SHL,   MVT::v32i16,     1 }, // vpsllvw
565     { ISD::SRL,   MVT::v32i16,     1 }, // vpsrlvw
566     { ISD::SRA,   MVT::v32i16,     1 }, // vpsravw
567   };
568 
569   if (ST->hasBWI())
570     if (const auto *Entry = CostTableLookup(AVX512BWShiftCostTable, ISD, LT.second))
571       return LT.first * Entry->Cost;
572 
573   static const CostTblEntry AVX2UniformCostTable[] = {
574     // Uniform splats are cheaper for the following instructions.
575     { ISD::SHL,  MVT::v16i16, 1 }, // psllw.
576     { ISD::SRL,  MVT::v16i16, 1 }, // psrlw.
577     { ISD::SRA,  MVT::v16i16, 1 }, // psraw.
578     { ISD::SHL,  MVT::v32i16, 2 }, // 2*psllw.
579     { ISD::SRL,  MVT::v32i16, 2 }, // 2*psrlw.
580     { ISD::SRA,  MVT::v32i16, 2 }, // 2*psraw.
581 
582     { ISD::SHL,  MVT::v8i32,  1 }, // pslld
583     { ISD::SRL,  MVT::v8i32,  1 }, // psrld
584     { ISD::SRA,  MVT::v8i32,  1 }, // psrad
585     { ISD::SHL,  MVT::v4i64,  1 }, // psllq
586     { ISD::SRL,  MVT::v4i64,  1 }, // psrlq
587   };
588 
589   if (ST->hasAVX2() &&
590       ((Op2Info == TargetTransformInfo::OK_UniformConstantValue) ||
591        (Op2Info == TargetTransformInfo::OK_UniformValue))) {
592     if (const auto *Entry =
593             CostTableLookup(AVX2UniformCostTable, ISD, LT.second))
594       return LT.first * Entry->Cost;
595   }
596 
597   static const CostTblEntry SSE2UniformCostTable[] = {
598     // Uniform splats are cheaper for the following instructions.
599     { ISD::SHL,  MVT::v8i16,  1 }, // psllw.
600     { ISD::SHL,  MVT::v4i32,  1 }, // pslld
601     { ISD::SHL,  MVT::v2i64,  1 }, // psllq.
602 
603     { ISD::SRL,  MVT::v8i16,  1 }, // psrlw.
604     { ISD::SRL,  MVT::v4i32,  1 }, // psrld.
605     { ISD::SRL,  MVT::v2i64,  1 }, // psrlq.
606 
607     { ISD::SRA,  MVT::v8i16,  1 }, // psraw.
608     { ISD::SRA,  MVT::v4i32,  1 }, // psrad.
609   };
610 
611   if (ST->hasSSE2() &&
612       ((Op2Info == TargetTransformInfo::OK_UniformConstantValue) ||
613        (Op2Info == TargetTransformInfo::OK_UniformValue))) {
614     if (const auto *Entry =
615             CostTableLookup(SSE2UniformCostTable, ISD, LT.second))
616       return LT.first * Entry->Cost;
617   }
618 
619   static const CostTblEntry AVX512DQCostTable[] = {
620     { ISD::MUL,  MVT::v2i64, 2 }, // pmullq
621     { ISD::MUL,  MVT::v4i64, 2 }, // pmullq
622     { ISD::MUL,  MVT::v8i64, 2 }  // pmullq
623   };
624 
625   // Look for AVX512DQ lowering tricks for custom cases.
626   if (ST->hasDQI())
627     if (const auto *Entry = CostTableLookup(AVX512DQCostTable, ISD, LT.second))
628       return LT.first * Entry->Cost;
629 
630   static const CostTblEntry AVX512BWCostTable[] = {
631     { ISD::SHL,   MVT::v64i8,     11 }, // vpblendvb sequence.
632     { ISD::SRL,   MVT::v64i8,     11 }, // vpblendvb sequence.
633     { ISD::SRA,   MVT::v64i8,     24 }, // vpblendvb sequence.
634   };
635 
636   // Look for AVX512BW lowering tricks for custom cases.
637   if (ST->hasBWI())
638     if (const auto *Entry = CostTableLookup(AVX512BWCostTable, ISD, LT.second))
639       return LT.first * Entry->Cost;
640 
641   static const CostTblEntry AVX512CostTable[] = {
642     { ISD::SHL,     MVT::v4i32,      1 },
643     { ISD::SRL,     MVT::v4i32,      1 },
644     { ISD::SRA,     MVT::v4i32,      1 },
645     { ISD::SHL,     MVT::v8i32,      1 },
646     { ISD::SRL,     MVT::v8i32,      1 },
647     { ISD::SRA,     MVT::v8i32,      1 },
648     { ISD::SHL,     MVT::v16i32,     1 },
649     { ISD::SRL,     MVT::v16i32,     1 },
650     { ISD::SRA,     MVT::v16i32,     1 },
651 
652     { ISD::SHL,     MVT::v2i64,      1 },
653     { ISD::SRL,     MVT::v2i64,      1 },
654     { ISD::SHL,     MVT::v4i64,      1 },
655     { ISD::SRL,     MVT::v4i64,      1 },
656     { ISD::SHL,     MVT::v8i64,      1 },
657     { ISD::SRL,     MVT::v8i64,      1 },
658 
659     { ISD::SRA,     MVT::v2i64,      1 },
660     { ISD::SRA,     MVT::v4i64,      1 },
661     { ISD::SRA,     MVT::v8i64,      1 },
662 
663     { ISD::MUL,     MVT::v16i32,     1 }, // pmulld (Skylake from agner.org)
664     { ISD::MUL,     MVT::v8i32,      1 }, // pmulld (Skylake from agner.org)
665     { ISD::MUL,     MVT::v4i32,      1 }, // pmulld (Skylake from agner.org)
666     { ISD::MUL,     MVT::v8i64,      6 }, // 3*pmuludq/3*shift/2*add
667     { ISD::MUL,     MVT::i64,        1 }, // Skylake from http://www.agner.org/
668 
669     { ISD::FNEG,    MVT::v8f64,      1 }, // Skylake from http://www.agner.org/
670     { ISD::FADD,    MVT::v8f64,      1 }, // Skylake from http://www.agner.org/
671     { ISD::FSUB,    MVT::v8f64,      1 }, // Skylake from http://www.agner.org/
672     { ISD::FMUL,    MVT::v8f64,      1 }, // Skylake from http://www.agner.org/
673     { ISD::FDIV,    MVT::f64,        4 }, // Skylake from http://www.agner.org/
674     { ISD::FDIV,    MVT::v2f64,      4 }, // Skylake from http://www.agner.org/
675     { ISD::FDIV,    MVT::v4f64,      8 }, // Skylake from http://www.agner.org/
676     { ISD::FDIV,    MVT::v8f64,     16 }, // Skylake from http://www.agner.org/
677 
678     { ISD::FNEG,    MVT::v16f32,     1 }, // Skylake from http://www.agner.org/
679     { ISD::FADD,    MVT::v16f32,     1 }, // Skylake from http://www.agner.org/
680     { ISD::FSUB,    MVT::v16f32,     1 }, // Skylake from http://www.agner.org/
681     { ISD::FMUL,    MVT::v16f32,     1 }, // Skylake from http://www.agner.org/
682     { ISD::FDIV,    MVT::f32,        3 }, // Skylake from http://www.agner.org/
683     { ISD::FDIV,    MVT::v4f32,      3 }, // Skylake from http://www.agner.org/
684     { ISD::FDIV,    MVT::v8f32,      5 }, // Skylake from http://www.agner.org/
685     { ISD::FDIV,    MVT::v16f32,    10 }, // Skylake from http://www.agner.org/
686   };
687 
688   if (ST->hasAVX512())
689     if (const auto *Entry = CostTableLookup(AVX512CostTable, ISD, LT.second))
690       return LT.first * Entry->Cost;
691 
692   static const CostTblEntry AVX2ShiftCostTable[] = {
693     // Shifts on vXi64/vXi32 on AVX2 is legal even though we declare to
694     // customize them to detect the cases where shift amount is a scalar one.
695     { ISD::SHL,     MVT::v4i32,    2 }, // vpsllvd (Haswell from agner.org)
696     { ISD::SRL,     MVT::v4i32,    2 }, // vpsrlvd (Haswell from agner.org)
697     { ISD::SRA,     MVT::v4i32,    2 }, // vpsravd (Haswell from agner.org)
698     { ISD::SHL,     MVT::v8i32,    2 }, // vpsllvd (Haswell from agner.org)
699     { ISD::SRL,     MVT::v8i32,    2 }, // vpsrlvd (Haswell from agner.org)
700     { ISD::SRA,     MVT::v8i32,    2 }, // vpsravd (Haswell from agner.org)
701     { ISD::SHL,     MVT::v2i64,    1 }, // vpsllvq (Haswell from agner.org)
702     { ISD::SRL,     MVT::v2i64,    1 }, // vpsrlvq (Haswell from agner.org)
703     { ISD::SHL,     MVT::v4i64,    1 }, // vpsllvq (Haswell from agner.org)
704     { ISD::SRL,     MVT::v4i64,    1 }, // vpsrlvq (Haswell from agner.org)
705   };
706 
707   if (ST->hasAVX512()) {
708     if (ISD == ISD::SHL && LT.second == MVT::v32i16 &&
709         (Op2Info == TargetTransformInfo::OK_UniformConstantValue ||
710          Op2Info == TargetTransformInfo::OK_NonUniformConstantValue))
711       // On AVX512, a packed v32i16 shift left by a constant build_vector
712       // is lowered into a vector multiply (vpmullw).
713       return getArithmeticInstrCost(Instruction::Mul, Ty, CostKind,
714                                     Op1Info, Op2Info,
715                                     TargetTransformInfo::OP_None,
716                                     TargetTransformInfo::OP_None);
717   }
718 
719   // Look for AVX2 lowering tricks (XOP is always better at v4i32 shifts).
720   if (ST->hasAVX2() && !(ST->hasXOP() && LT.second == MVT::v4i32)) {
721     if (ISD == ISD::SHL && LT.second == MVT::v16i16 &&
722         (Op2Info == TargetTransformInfo::OK_UniformConstantValue ||
723          Op2Info == TargetTransformInfo::OK_NonUniformConstantValue))
724       // On AVX2, a packed v16i16 shift left by a constant build_vector
725       // is lowered into a vector multiply (vpmullw).
726       return getArithmeticInstrCost(Instruction::Mul, Ty, CostKind,
727                                     Op1Info, Op2Info,
728                                     TargetTransformInfo::OP_None,
729                                     TargetTransformInfo::OP_None);
730 
731     if (const auto *Entry = CostTableLookup(AVX2ShiftCostTable, ISD, LT.second))
732       return LT.first * Entry->Cost;
733   }
734 
735   static const CostTblEntry XOPShiftCostTable[] = {
736     // 128bit shifts take 1cy, but right shifts require negation beforehand.
737     { ISD::SHL,     MVT::v16i8,    1 },
738     { ISD::SRL,     MVT::v16i8,    2 },
739     { ISD::SRA,     MVT::v16i8,    2 },
740     { ISD::SHL,     MVT::v8i16,    1 },
741     { ISD::SRL,     MVT::v8i16,    2 },
742     { ISD::SRA,     MVT::v8i16,    2 },
743     { ISD::SHL,     MVT::v4i32,    1 },
744     { ISD::SRL,     MVT::v4i32,    2 },
745     { ISD::SRA,     MVT::v4i32,    2 },
746     { ISD::SHL,     MVT::v2i64,    1 },
747     { ISD::SRL,     MVT::v2i64,    2 },
748     { ISD::SRA,     MVT::v2i64,    2 },
749     // 256bit shifts require splitting if AVX2 didn't catch them above.
750     { ISD::SHL,     MVT::v32i8,  2+2 },
751     { ISD::SRL,     MVT::v32i8,  4+2 },
752     { ISD::SRA,     MVT::v32i8,  4+2 },
753     { ISD::SHL,     MVT::v16i16, 2+2 },
754     { ISD::SRL,     MVT::v16i16, 4+2 },
755     { ISD::SRA,     MVT::v16i16, 4+2 },
756     { ISD::SHL,     MVT::v8i32,  2+2 },
757     { ISD::SRL,     MVT::v8i32,  4+2 },
758     { ISD::SRA,     MVT::v8i32,  4+2 },
759     { ISD::SHL,     MVT::v4i64,  2+2 },
760     { ISD::SRL,     MVT::v4i64,  4+2 },
761     { ISD::SRA,     MVT::v4i64,  4+2 },
762   };
763 
764   // Look for XOP lowering tricks.
765   if (ST->hasXOP()) {
766     // If the right shift is constant then we'll fold the negation so
767     // it's as cheap as a left shift.
768     int ShiftISD = ISD;
769     if ((ShiftISD == ISD::SRL || ShiftISD == ISD::SRA) &&
770         (Op2Info == TargetTransformInfo::OK_UniformConstantValue ||
771          Op2Info == TargetTransformInfo::OK_NonUniformConstantValue))
772       ShiftISD = ISD::SHL;
773     if (const auto *Entry =
774             CostTableLookup(XOPShiftCostTable, ShiftISD, LT.second))
775       return LT.first * Entry->Cost;
776   }
777 
778   static const CostTblEntry SSE2UniformShiftCostTable[] = {
779     // Uniform splats are cheaper for the following instructions.
780     { ISD::SHL,  MVT::v16i16, 2+2 }, // 2*psllw + split.
781     { ISD::SHL,  MVT::v8i32,  2+2 }, // 2*pslld + split.
782     { ISD::SHL,  MVT::v4i64,  2+2 }, // 2*psllq + split.
783 
784     { ISD::SRL,  MVT::v16i16, 2+2 }, // 2*psrlw + split.
785     { ISD::SRL,  MVT::v8i32,  2+2 }, // 2*psrld + split.
786     { ISD::SRL,  MVT::v4i64,  2+2 }, // 2*psrlq + split.
787 
788     { ISD::SRA,  MVT::v16i16, 2+2 }, // 2*psraw + split.
789     { ISD::SRA,  MVT::v8i32,  2+2 }, // 2*psrad + split.
790     { ISD::SRA,  MVT::v2i64,    4 }, // 2*psrad + shuffle.
791     { ISD::SRA,  MVT::v4i64,  8+2 }, // 2*(2*psrad + shuffle) + split.
792   };
793 
794   if (ST->hasSSE2() &&
795       ((Op2Info == TargetTransformInfo::OK_UniformConstantValue) ||
796        (Op2Info == TargetTransformInfo::OK_UniformValue))) {
797 
798     // Handle AVX2 uniform v4i64 ISD::SRA, it's not worth a table.
799     if (ISD == ISD::SRA && LT.second == MVT::v4i64 && ST->hasAVX2())
800       return LT.first * 4; // 2*psrad + shuffle.
801 
802     if (const auto *Entry =
803             CostTableLookup(SSE2UniformShiftCostTable, ISD, LT.second))
804       return LT.first * Entry->Cost;
805   }
806 
807   if (ISD == ISD::SHL &&
808       Op2Info == TargetTransformInfo::OK_NonUniformConstantValue) {
809     MVT VT = LT.second;
810     // Vector shift left by non uniform constant can be lowered
811     // into vector multiply.
812     if (((VT == MVT::v8i16 || VT == MVT::v4i32) && ST->hasSSE2()) ||
813         ((VT == MVT::v16i16 || VT == MVT::v8i32) && ST->hasAVX()))
814       ISD = ISD::MUL;
815   }
816 
817   static const CostTblEntry AVX2CostTable[] = {
818     { ISD::SHL,  MVT::v16i8,      6 }, // vpblendvb sequence.
819     { ISD::SHL,  MVT::v32i8,      6 }, // vpblendvb sequence.
820     { ISD::SHL,  MVT::v64i8,     12 }, // 2*vpblendvb sequence.
821     { ISD::SHL,  MVT::v8i16,      5 }, // extend/vpsrlvd/pack sequence.
822     { ISD::SHL,  MVT::v16i16,     7 }, // extend/vpsrlvd/pack sequence.
823     { ISD::SHL,  MVT::v32i16,    14 }, // 2*extend/vpsrlvd/pack sequence.
824 
825     { ISD::SRL,  MVT::v16i8,      6 }, // vpblendvb sequence.
826     { ISD::SRL,  MVT::v32i8,      6 }, // vpblendvb sequence.
827     { ISD::SRL,  MVT::v64i8,     12 }, // 2*vpblendvb sequence.
828     { ISD::SRL,  MVT::v8i16,      5 }, // extend/vpsrlvd/pack sequence.
829     { ISD::SRL,  MVT::v16i16,     7 }, // extend/vpsrlvd/pack sequence.
830     { ISD::SRL,  MVT::v32i16,    14 }, // 2*extend/vpsrlvd/pack sequence.
831 
832     { ISD::SRA,  MVT::v16i8,     17 }, // vpblendvb sequence.
833     { ISD::SRA,  MVT::v32i8,     17 }, // vpblendvb sequence.
834     { ISD::SRA,  MVT::v64i8,     34 }, // 2*vpblendvb sequence.
835     { ISD::SRA,  MVT::v8i16,      5 }, // extend/vpsravd/pack sequence.
836     { ISD::SRA,  MVT::v16i16,     7 }, // extend/vpsravd/pack sequence.
837     { ISD::SRA,  MVT::v32i16,    14 }, // 2*extend/vpsravd/pack sequence.
838     { ISD::SRA,  MVT::v2i64,      2 }, // srl/xor/sub sequence.
839     { ISD::SRA,  MVT::v4i64,      2 }, // srl/xor/sub sequence.
840 
841     { ISD::SUB,  MVT::v32i8,      1 }, // psubb
842     { ISD::ADD,  MVT::v32i8,      1 }, // paddb
843     { ISD::SUB,  MVT::v16i16,     1 }, // psubw
844     { ISD::ADD,  MVT::v16i16,     1 }, // paddw
845     { ISD::SUB,  MVT::v8i32,      1 }, // psubd
846     { ISD::ADD,  MVT::v8i32,      1 }, // paddd
847     { ISD::SUB,  MVT::v4i64,      1 }, // psubq
848     { ISD::ADD,  MVT::v4i64,      1 }, // paddq
849 
850     { ISD::MUL,  MVT::v16i16,     1 }, // pmullw
851     { ISD::MUL,  MVT::v8i32,      2 }, // pmulld (Haswell from agner.org)
852     { ISD::MUL,  MVT::v4i64,      6 }, // 3*pmuludq/3*shift/2*add
853 
854     { ISD::FNEG, MVT::v4f64,      1 }, // Haswell from http://www.agner.org/
855     { ISD::FNEG, MVT::v8f32,      1 }, // Haswell from http://www.agner.org/
856     { ISD::FADD, MVT::v4f64,      1 }, // Haswell from http://www.agner.org/
857     { ISD::FADD, MVT::v8f32,      1 }, // Haswell from http://www.agner.org/
858     { ISD::FSUB, MVT::v4f64,      1 }, // Haswell from http://www.agner.org/
859     { ISD::FSUB, MVT::v8f32,      1 }, // Haswell from http://www.agner.org/
860     { ISD::FMUL, MVT::f64,        1 }, // Haswell from http://www.agner.org/
861     { ISD::FMUL, MVT::v2f64,      1 }, // Haswell from http://www.agner.org/
862     { ISD::FMUL, MVT::v4f64,      1 }, // Haswell from http://www.agner.org/
863     { ISD::FMUL, MVT::v8f32,      1 }, // Haswell from http://www.agner.org/
864 
865     { ISD::FDIV, MVT::f32,        7 }, // Haswell from http://www.agner.org/
866     { ISD::FDIV, MVT::v4f32,      7 }, // Haswell from http://www.agner.org/
867     { ISD::FDIV, MVT::v8f32,     14 }, // Haswell from http://www.agner.org/
868     { ISD::FDIV, MVT::f64,       14 }, // Haswell from http://www.agner.org/
869     { ISD::FDIV, MVT::v2f64,     14 }, // Haswell from http://www.agner.org/
870     { ISD::FDIV, MVT::v4f64,     28 }, // Haswell from http://www.agner.org/
871   };
872 
873   // Look for AVX2 lowering tricks for custom cases.
874   if (ST->hasAVX2())
875     if (const auto *Entry = CostTableLookup(AVX2CostTable, ISD, LT.second))
876       return LT.first * Entry->Cost;
877 
878   static const CostTblEntry AVX1CostTable[] = {
879     // We don't have to scalarize unsupported ops. We can issue two half-sized
880     // operations and we only need to extract the upper YMM half.
881     // Two ops + 1 extract + 1 insert = 4.
882     { ISD::MUL,     MVT::v16i16,     4 },
883     { ISD::MUL,     MVT::v8i32,      5 }, // BTVER2 from http://www.agner.org/
884     { ISD::MUL,     MVT::v4i64,     12 },
885 
886     { ISD::SUB,     MVT::v32i8,      4 },
887     { ISD::ADD,     MVT::v32i8,      4 },
888     { ISD::SUB,     MVT::v16i16,     4 },
889     { ISD::ADD,     MVT::v16i16,     4 },
890     { ISD::SUB,     MVT::v8i32,      4 },
891     { ISD::ADD,     MVT::v8i32,      4 },
892     { ISD::SUB,     MVT::v4i64,      4 },
893     { ISD::ADD,     MVT::v4i64,      4 },
894 
895     { ISD::SHL,     MVT::v32i8,     22 }, // pblendvb sequence + split.
896     { ISD::SHL,     MVT::v8i16,      6 }, // pblendvb sequence.
897     { ISD::SHL,     MVT::v16i16,    13 }, // pblendvb sequence + split.
898     { ISD::SHL,     MVT::v4i32,      3 }, // pslld/paddd/cvttps2dq/pmulld
899     { ISD::SHL,     MVT::v8i32,      9 }, // pslld/paddd/cvttps2dq/pmulld + split
900     { ISD::SHL,     MVT::v2i64,      2 }, // Shift each lane + blend.
901     { ISD::SHL,     MVT::v4i64,      6 }, // Shift each lane + blend + split.
902 
903     { ISD::SRL,     MVT::v32i8,     23 }, // pblendvb sequence + split.
904     { ISD::SRL,     MVT::v16i16,    28 }, // pblendvb sequence + split.
905     { ISD::SRL,     MVT::v4i32,      6 }, // Shift each lane + blend.
906     { ISD::SRL,     MVT::v8i32,     14 }, // Shift each lane + blend + split.
907     { ISD::SRL,     MVT::v2i64,      2 }, // Shift each lane + blend.
908     { ISD::SRL,     MVT::v4i64,      6 }, // Shift each lane + blend + split.
909 
910     { ISD::SRA,     MVT::v32i8,     44 }, // pblendvb sequence + split.
911     { ISD::SRA,     MVT::v16i16,    28 }, // pblendvb sequence + split.
912     { ISD::SRA,     MVT::v4i32,      6 }, // Shift each lane + blend.
913     { ISD::SRA,     MVT::v8i32,     14 }, // Shift each lane + blend + split.
914     { ISD::SRA,     MVT::v2i64,      5 }, // Shift each lane + blend.
915     { ISD::SRA,     MVT::v4i64,     12 }, // Shift each lane + blend + split.
916 
917     { ISD::FNEG,    MVT::v4f64,      2 }, // BTVER2 from http://www.agner.org/
918     { ISD::FNEG,    MVT::v8f32,      2 }, // BTVER2 from http://www.agner.org/
919 
920     { ISD::FMUL,    MVT::f64,        2 }, // BTVER2 from http://www.agner.org/
921     { ISD::FMUL,    MVT::v2f64,      2 }, // BTVER2 from http://www.agner.org/
922     { ISD::FMUL,    MVT::v4f64,      4 }, // BTVER2 from http://www.agner.org/
923 
924     { ISD::FDIV,    MVT::f32,       14 }, // SNB from http://www.agner.org/
925     { ISD::FDIV,    MVT::v4f32,     14 }, // SNB from http://www.agner.org/
926     { ISD::FDIV,    MVT::v8f32,     28 }, // SNB from http://www.agner.org/
927     { ISD::FDIV,    MVT::f64,       22 }, // SNB from http://www.agner.org/
928     { ISD::FDIV,    MVT::v2f64,     22 }, // SNB from http://www.agner.org/
929     { ISD::FDIV,    MVT::v4f64,     44 }, // SNB from http://www.agner.org/
930   };
931 
932   if (ST->hasAVX())
933     if (const auto *Entry = CostTableLookup(AVX1CostTable, ISD, LT.second))
934       return LT.first * Entry->Cost;
935 
936   static const CostTblEntry SSE42CostTable[] = {
937     { ISD::FADD, MVT::f64,     1 }, // Nehalem from http://www.agner.org/
938     { ISD::FADD, MVT::f32,     1 }, // Nehalem from http://www.agner.org/
939     { ISD::FADD, MVT::v2f64,   1 }, // Nehalem from http://www.agner.org/
940     { ISD::FADD, MVT::v4f32,   1 }, // Nehalem from http://www.agner.org/
941 
942     { ISD::FSUB, MVT::f64,     1 }, // Nehalem from http://www.agner.org/
943     { ISD::FSUB, MVT::f32 ,    1 }, // Nehalem from http://www.agner.org/
944     { ISD::FSUB, MVT::v2f64,   1 }, // Nehalem from http://www.agner.org/
945     { ISD::FSUB, MVT::v4f32,   1 }, // Nehalem from http://www.agner.org/
946 
947     { ISD::FMUL, MVT::f64,     1 }, // Nehalem from http://www.agner.org/
948     { ISD::FMUL, MVT::f32,     1 }, // Nehalem from http://www.agner.org/
949     { ISD::FMUL, MVT::v2f64,   1 }, // Nehalem from http://www.agner.org/
950     { ISD::FMUL, MVT::v4f32,   1 }, // Nehalem from http://www.agner.org/
951 
952     { ISD::FDIV,  MVT::f32,   14 }, // Nehalem from http://www.agner.org/
953     { ISD::FDIV,  MVT::v4f32, 14 }, // Nehalem from http://www.agner.org/
954     { ISD::FDIV,  MVT::f64,   22 }, // Nehalem from http://www.agner.org/
955     { ISD::FDIV,  MVT::v2f64, 22 }, // Nehalem from http://www.agner.org/
956 
957     { ISD::MUL,   MVT::v2i64,  6 }  // 3*pmuludq/3*shift/2*add
958   };
959 
960   if (ST->hasSSE42())
961     if (const auto *Entry = CostTableLookup(SSE42CostTable, ISD, LT.second))
962       return LT.first * Entry->Cost;
963 
964   static const CostTblEntry SSE41CostTable[] = {
965     { ISD::SHL,  MVT::v16i8,      10 }, // pblendvb sequence.
966     { ISD::SHL,  MVT::v8i16,      11 }, // pblendvb sequence.
967     { ISD::SHL,  MVT::v4i32,       4 }, // pslld/paddd/cvttps2dq/pmulld
968 
969     { ISD::SRL,  MVT::v16i8,      11 }, // pblendvb sequence.
970     { ISD::SRL,  MVT::v8i16,      13 }, // pblendvb sequence.
971     { ISD::SRL,  MVT::v4i32,      16 }, // Shift each lane + blend.
972 
973     { ISD::SRA,  MVT::v16i8,      21 }, // pblendvb sequence.
974     { ISD::SRA,  MVT::v8i16,      13 }, // pblendvb sequence.
975 
976     { ISD::MUL,  MVT::v4i32,       2 }  // pmulld (Nehalem from agner.org)
977   };
978 
979   if (ST->hasSSE41())
980     if (const auto *Entry = CostTableLookup(SSE41CostTable, ISD, LT.second))
981       return LT.first * Entry->Cost;
982 
983   static const CostTblEntry SSE2CostTable[] = {
984     // We don't correctly identify costs of casts because they are marked as
985     // custom.
986     { ISD::SHL,  MVT::v16i8,      13 }, // cmpgtb sequence.
987     { ISD::SHL,  MVT::v8i16,      25 }, // cmpgtw sequence.
988     { ISD::SHL,  MVT::v4i32,      16 }, // pslld/paddd/cvttps2dq/pmuludq.
989     { ISD::SHL,  MVT::v2i64,       4 }, // splat+shuffle sequence.
990 
991     { ISD::SRL,  MVT::v16i8,      14 }, // cmpgtb sequence.
992     { ISD::SRL,  MVT::v8i16,      16 }, // cmpgtw sequence.
993     { ISD::SRL,  MVT::v4i32,      12 }, // Shift each lane + blend.
994     { ISD::SRL,  MVT::v2i64,       4 }, // splat+shuffle sequence.
995 
996     { ISD::SRA,  MVT::v16i8,      27 }, // unpacked cmpgtb sequence.
997     { ISD::SRA,  MVT::v8i16,      16 }, // cmpgtw sequence.
998     { ISD::SRA,  MVT::v4i32,      12 }, // Shift each lane + blend.
999     { ISD::SRA,  MVT::v2i64,       8 }, // srl/xor/sub splat+shuffle sequence.
1000 
1001     { ISD::MUL,  MVT::v8i16,       1 }, // pmullw
1002     { ISD::MUL,  MVT::v4i32,       6 }, // 3*pmuludq/4*shuffle
1003     { ISD::MUL,  MVT::v2i64,       8 }, // 3*pmuludq/3*shift/2*add
1004 
1005     { ISD::FDIV, MVT::f32,        23 }, // Pentium IV from http://www.agner.org/
1006     { ISD::FDIV, MVT::v4f32,      39 }, // Pentium IV from http://www.agner.org/
1007     { ISD::FDIV, MVT::f64,        38 }, // Pentium IV from http://www.agner.org/
1008     { ISD::FDIV, MVT::v2f64,      69 }, // Pentium IV from http://www.agner.org/
1009 
1010     { ISD::FNEG, MVT::f32,         1 }, // Pentium IV from http://www.agner.org/
1011     { ISD::FNEG, MVT::f64,         1 }, // Pentium IV from http://www.agner.org/
1012     { ISD::FNEG, MVT::v4f32,       1 }, // Pentium IV from http://www.agner.org/
1013     { ISD::FNEG, MVT::v2f64,       1 }, // Pentium IV from http://www.agner.org/
1014 
1015     { ISD::FADD, MVT::f32,         2 }, // Pentium IV from http://www.agner.org/
1016     { ISD::FADD, MVT::f64,         2 }, // Pentium IV from http://www.agner.org/
1017 
1018     { ISD::FSUB, MVT::f32,         2 }, // Pentium IV from http://www.agner.org/
1019     { ISD::FSUB, MVT::f64,         2 }, // Pentium IV from http://www.agner.org/
1020   };
1021 
1022   if (ST->hasSSE2())
1023     if (const auto *Entry = CostTableLookup(SSE2CostTable, ISD, LT.second))
1024       return LT.first * Entry->Cost;
1025 
1026   static const CostTblEntry SSE1CostTable[] = {
1027     { ISD::FDIV, MVT::f32,   17 }, // Pentium III from http://www.agner.org/
1028     { ISD::FDIV, MVT::v4f32, 34 }, // Pentium III from http://www.agner.org/
1029 
1030     { ISD::FNEG, MVT::f32,    2 }, // Pentium III from http://www.agner.org/
1031     { ISD::FNEG, MVT::v4f32,  2 }, // Pentium III from http://www.agner.org/
1032 
1033     { ISD::FADD, MVT::f32,    1 }, // Pentium III from http://www.agner.org/
1034     { ISD::FADD, MVT::v4f32,  2 }, // Pentium III from http://www.agner.org/
1035 
1036     { ISD::FSUB, MVT::f32,    1 }, // Pentium III from http://www.agner.org/
1037     { ISD::FSUB, MVT::v4f32,  2 }, // Pentium III from http://www.agner.org/
1038   };
1039 
1040   if (ST->hasSSE1())
1041     if (const auto *Entry = CostTableLookup(SSE1CostTable, ISD, LT.second))
1042       return LT.first * Entry->Cost;
1043 
1044   static const CostTblEntry X64CostTbl[] = { // 64-bit targets
1045     { ISD::ADD,  MVT::i64,    1 }, // Core (Merom) from http://www.agner.org/
1046     { ISD::SUB,  MVT::i64,    1 }, // Core (Merom) from http://www.agner.org/
1047     { ISD::MUL,  MVT::i64,    2 }, // Nehalem from http://www.agner.org/
1048   };
1049 
1050   if (ST->is64Bit())
1051     if (const auto *Entry = CostTableLookup(X64CostTbl, ISD, LT.second))
1052       return LT.first * Entry->Cost;
1053 
1054   static const CostTblEntry X86CostTbl[] = { // 32 or 64-bit targets
1055     { ISD::ADD,  MVT::i8,    1 }, // Pentium III from http://www.agner.org/
1056     { ISD::ADD,  MVT::i16,   1 }, // Pentium III from http://www.agner.org/
1057     { ISD::ADD,  MVT::i32,   1 }, // Pentium III from http://www.agner.org/
1058 
1059     { ISD::SUB,  MVT::i8,    1 }, // Pentium III from http://www.agner.org/
1060     { ISD::SUB,  MVT::i16,   1 }, // Pentium III from http://www.agner.org/
1061     { ISD::SUB,  MVT::i32,   1 }, // Pentium III from http://www.agner.org/
1062   };
1063 
1064   if (const auto *Entry = CostTableLookup(X86CostTbl, ISD, LT.second))
1065     return LT.first * Entry->Cost;
1066 
1067   // It is not a good idea to vectorize division. We have to scalarize it and
1068   // in the process we will often end up having to spilling regular
1069   // registers. The overhead of division is going to dominate most kernels
1070   // anyways so try hard to prevent vectorization of division - it is
1071   // generally a bad idea. Assume somewhat arbitrarily that we have to be able
1072   // to hide "20 cycles" for each lane.
1073   if (LT.second.isVector() && (ISD == ISD::SDIV || ISD == ISD::SREM ||
1074                                ISD == ISD::UDIV || ISD == ISD::UREM)) {
1075     InstructionCost ScalarCost = getArithmeticInstrCost(
1076         Opcode, Ty->getScalarType(), CostKind, Op1Info, Op2Info,
1077         TargetTransformInfo::OP_None, TargetTransformInfo::OP_None);
1078     return 20 * LT.first * LT.second.getVectorNumElements() * ScalarCost;
1079   }
1080 
1081   // Fallback to the default implementation.
1082   return BaseT::getArithmeticInstrCost(Opcode, Ty, CostKind, Op1Info, Op2Info);
1083 }
1084 
1085 InstructionCost X86TTIImpl::getShuffleCost(TTI::ShuffleKind Kind,
1086                                            VectorType *BaseTp,
1087                                            ArrayRef<int> Mask, int Index,
1088                                            VectorType *SubTp,
1089                                            ArrayRef<const Value *> Args) {
1090   // 64-bit packed float vectors (v2f32) are widened to type v4f32.
1091   // 64-bit packed integer vectors (v2i32) are widened to type v4i32.
1092   std::pair<InstructionCost, MVT> LT = TLI->getTypeLegalizationCost(DL, BaseTp);
1093 
1094   Kind = improveShuffleKindFromMask(Kind, Mask);
1095   // Treat Transpose as 2-op shuffles - there's no difference in lowering.
1096   if (Kind == TTI::SK_Transpose)
1097     Kind = TTI::SK_PermuteTwoSrc;
1098 
1099   // For Broadcasts we are splatting the first element from the first input
1100   // register, so only need to reference that input and all the output
1101   // registers are the same.
1102   if (Kind == TTI::SK_Broadcast)
1103     LT.first = 1;
1104 
1105   // Subvector extractions are free if they start at the beginning of a
1106   // vector and cheap if the subvectors are aligned.
1107   if (Kind == TTI::SK_ExtractSubvector && LT.second.isVector()) {
1108     int NumElts = LT.second.getVectorNumElements();
1109     if ((Index % NumElts) == 0)
1110       return 0;
1111     std::pair<InstructionCost, MVT> SubLT =
1112         TLI->getTypeLegalizationCost(DL, SubTp);
1113     if (SubLT.second.isVector()) {
1114       int NumSubElts = SubLT.second.getVectorNumElements();
1115       if ((Index % NumSubElts) == 0 && (NumElts % NumSubElts) == 0)
1116         return SubLT.first;
1117       // Handle some cases for widening legalization. For now we only handle
1118       // cases where the original subvector was naturally aligned and evenly
1119       // fit in its legalized subvector type.
1120       // FIXME: Remove some of the alignment restrictions.
1121       // FIXME: We can use permq for 64-bit or larger extracts from 256-bit
1122       // vectors.
1123       int OrigSubElts = cast<FixedVectorType>(SubTp)->getNumElements();
1124       if (NumSubElts > OrigSubElts && (Index % OrigSubElts) == 0 &&
1125           (NumSubElts % OrigSubElts) == 0 &&
1126           LT.second.getVectorElementType() ==
1127               SubLT.second.getVectorElementType() &&
1128           LT.second.getVectorElementType().getSizeInBits() ==
1129               BaseTp->getElementType()->getPrimitiveSizeInBits()) {
1130         assert(NumElts >= NumSubElts && NumElts > OrigSubElts &&
1131                "Unexpected number of elements!");
1132         auto *VecTy = FixedVectorType::get(BaseTp->getElementType(),
1133                                            LT.second.getVectorNumElements());
1134         auto *SubTy = FixedVectorType::get(BaseTp->getElementType(),
1135                                            SubLT.second.getVectorNumElements());
1136         int ExtractIndex = alignDown((Index % NumElts), NumSubElts);
1137         InstructionCost ExtractCost = getShuffleCost(
1138             TTI::SK_ExtractSubvector, VecTy, None, ExtractIndex, SubTy);
1139 
1140         // If the original size is 32-bits or more, we can use pshufd. Otherwise
1141         // if we have SSSE3 we can use pshufb.
1142         if (SubTp->getPrimitiveSizeInBits() >= 32 || ST->hasSSSE3())
1143           return ExtractCost + 1; // pshufd or pshufb
1144 
1145         assert(SubTp->getPrimitiveSizeInBits() == 16 &&
1146                "Unexpected vector size");
1147 
1148         return ExtractCost + 2; // worst case pshufhw + pshufd
1149       }
1150     }
1151   }
1152 
1153   // Subvector insertions are cheap if the subvectors are aligned.
1154   // Note that in general, the insertion starting at the beginning of a vector
1155   // isn't free, because we need to preserve the rest of the wide vector.
1156   if (Kind == TTI::SK_InsertSubvector && LT.second.isVector()) {
1157     int NumElts = LT.second.getVectorNumElements();
1158     std::pair<InstructionCost, MVT> SubLT =
1159         TLI->getTypeLegalizationCost(DL, SubTp);
1160     if (SubLT.second.isVector()) {
1161       int NumSubElts = SubLT.second.getVectorNumElements();
1162       if ((Index % NumSubElts) == 0 && (NumElts % NumSubElts) == 0)
1163         return SubLT.first;
1164     }
1165 
1166     // If the insertion isn't aligned, treat it like a 2-op shuffle.
1167     Kind = TTI::SK_PermuteTwoSrc;
1168   }
1169 
1170   // Handle some common (illegal) sub-vector types as they are often very cheap
1171   // to shuffle even on targets without PSHUFB.
1172   EVT VT = TLI->getValueType(DL, BaseTp);
1173   if (VT.isSimple() && VT.isVector() && VT.getSizeInBits() < 128 &&
1174       !ST->hasSSSE3()) {
1175      static const CostTblEntry SSE2SubVectorShuffleTbl[] = {
1176       {TTI::SK_Broadcast,        MVT::v4i16, 1}, // pshuflw
1177       {TTI::SK_Broadcast,        MVT::v2i16, 1}, // pshuflw
1178       {TTI::SK_Broadcast,        MVT::v8i8,  2}, // punpck/pshuflw
1179       {TTI::SK_Broadcast,        MVT::v4i8,  2}, // punpck/pshuflw
1180       {TTI::SK_Broadcast,        MVT::v2i8,  1}, // punpck
1181 
1182       {TTI::SK_Reverse,          MVT::v4i16, 1}, // pshuflw
1183       {TTI::SK_Reverse,          MVT::v2i16, 1}, // pshuflw
1184       {TTI::SK_Reverse,          MVT::v4i8,  3}, // punpck/pshuflw/packus
1185       {TTI::SK_Reverse,          MVT::v2i8,  1}, // punpck
1186 
1187       {TTI::SK_PermuteTwoSrc,    MVT::v4i16, 2}, // punpck/pshuflw
1188       {TTI::SK_PermuteTwoSrc,    MVT::v2i16, 2}, // punpck/pshuflw
1189       {TTI::SK_PermuteTwoSrc,    MVT::v8i8,  7}, // punpck/pshuflw
1190       {TTI::SK_PermuteTwoSrc,    MVT::v4i8,  4}, // punpck/pshuflw
1191       {TTI::SK_PermuteTwoSrc,    MVT::v2i8,  2}, // punpck
1192 
1193       {TTI::SK_PermuteSingleSrc, MVT::v4i16, 1}, // pshuflw
1194       {TTI::SK_PermuteSingleSrc, MVT::v2i16, 1}, // pshuflw
1195       {TTI::SK_PermuteSingleSrc, MVT::v8i8,  5}, // punpck/pshuflw
1196       {TTI::SK_PermuteSingleSrc, MVT::v4i8,  3}, // punpck/pshuflw
1197       {TTI::SK_PermuteSingleSrc, MVT::v2i8,  1}, // punpck
1198     };
1199 
1200     if (ST->hasSSE2())
1201       if (const auto *Entry =
1202               CostTableLookup(SSE2SubVectorShuffleTbl, Kind, VT.getSimpleVT()))
1203         return Entry->Cost;
1204   }
1205 
1206   // We are going to permute multiple sources and the result will be in multiple
1207   // destinations. Providing an accurate cost only for splits where the element
1208   // type remains the same.
1209   if (Kind == TTI::SK_PermuteSingleSrc && LT.first != 1) {
1210     MVT LegalVT = LT.second;
1211     if (LegalVT.isVector() &&
1212         LegalVT.getVectorElementType().getSizeInBits() ==
1213             BaseTp->getElementType()->getPrimitiveSizeInBits() &&
1214         LegalVT.getVectorNumElements() <
1215             cast<FixedVectorType>(BaseTp)->getNumElements()) {
1216 
1217       unsigned VecTySize = DL.getTypeStoreSize(BaseTp);
1218       unsigned LegalVTSize = LegalVT.getStoreSize();
1219       // Number of source vectors after legalization:
1220       unsigned NumOfSrcs = (VecTySize + LegalVTSize - 1) / LegalVTSize;
1221       // Number of destination vectors after legalization:
1222       InstructionCost NumOfDests = LT.first;
1223 
1224       auto *SingleOpTy = FixedVectorType::get(BaseTp->getElementType(),
1225                                               LegalVT.getVectorNumElements());
1226 
1227       InstructionCost NumOfShuffles = (NumOfSrcs - 1) * NumOfDests;
1228       return NumOfShuffles * getShuffleCost(TTI::SK_PermuteTwoSrc, SingleOpTy,
1229                                             None, 0, nullptr);
1230     }
1231 
1232     return BaseT::getShuffleCost(Kind, BaseTp, Mask, Index, SubTp);
1233   }
1234 
1235   // For 2-input shuffles, we must account for splitting the 2 inputs into many.
1236   if (Kind == TTI::SK_PermuteTwoSrc && LT.first != 1) {
1237     // We assume that source and destination have the same vector type.
1238     InstructionCost NumOfDests = LT.first;
1239     InstructionCost NumOfShufflesPerDest = LT.first * 2 - 1;
1240     LT.first = NumOfDests * NumOfShufflesPerDest;
1241   }
1242 
1243   static const CostTblEntry AVX512FP16ShuffleTbl[] = {
1244       {TTI::SK_Broadcast, MVT::v32f16, 1}, // vpbroadcastw
1245       {TTI::SK_Broadcast, MVT::v16f16, 1}, // vpbroadcastw
1246       {TTI::SK_Broadcast, MVT::v8f16, 1},  // vpbroadcastw
1247 
1248       {TTI::SK_Reverse, MVT::v32f16, 2}, // vpermw
1249       {TTI::SK_Reverse, MVT::v16f16, 2}, // vpermw
1250       {TTI::SK_Reverse, MVT::v8f16, 1},  // vpshufb
1251 
1252       {TTI::SK_PermuteSingleSrc, MVT::v32f16, 2}, // vpermw
1253       {TTI::SK_PermuteSingleSrc, MVT::v16f16, 2}, // vpermw
1254       {TTI::SK_PermuteSingleSrc, MVT::v8f16, 1},  // vpshufb
1255 
1256       {TTI::SK_PermuteTwoSrc, MVT::v32f16, 2}, // vpermt2w
1257       {TTI::SK_PermuteTwoSrc, MVT::v16f16, 2}, // vpermt2w
1258       {TTI::SK_PermuteTwoSrc, MVT::v8f16, 2}   // vpermt2w
1259   };
1260 
1261   if (!ST->useSoftFloat() && ST->hasFP16())
1262     if (const auto *Entry =
1263             CostTableLookup(AVX512FP16ShuffleTbl, Kind, LT.second))
1264       return LT.first * Entry->Cost;
1265 
1266   static const CostTblEntry AVX512VBMIShuffleTbl[] = {
1267       {TTI::SK_Reverse, MVT::v64i8, 1}, // vpermb
1268       {TTI::SK_Reverse, MVT::v32i8, 1}, // vpermb
1269 
1270       {TTI::SK_PermuteSingleSrc, MVT::v64i8, 1}, // vpermb
1271       {TTI::SK_PermuteSingleSrc, MVT::v32i8, 1}, // vpermb
1272 
1273       {TTI::SK_PermuteTwoSrc, MVT::v64i8, 2}, // vpermt2b
1274       {TTI::SK_PermuteTwoSrc, MVT::v32i8, 2}, // vpermt2b
1275       {TTI::SK_PermuteTwoSrc, MVT::v16i8, 2}  // vpermt2b
1276   };
1277 
1278   if (ST->hasVBMI())
1279     if (const auto *Entry =
1280             CostTableLookup(AVX512VBMIShuffleTbl, Kind, LT.second))
1281       return LT.first * Entry->Cost;
1282 
1283   static const CostTblEntry AVX512BWShuffleTbl[] = {
1284       {TTI::SK_Broadcast, MVT::v32i16, 1}, // vpbroadcastw
1285       {TTI::SK_Broadcast, MVT::v64i8, 1},  // vpbroadcastb
1286 
1287       {TTI::SK_Reverse, MVT::v32i16, 2}, // vpermw
1288       {TTI::SK_Reverse, MVT::v16i16, 2}, // vpermw
1289       {TTI::SK_Reverse, MVT::v64i8, 2},  // pshufb + vshufi64x2
1290 
1291       {TTI::SK_PermuteSingleSrc, MVT::v32i16, 2}, // vpermw
1292       {TTI::SK_PermuteSingleSrc, MVT::v16i16, 2}, // vpermw
1293       {TTI::SK_PermuteSingleSrc, MVT::v64i8, 8},  // extend to v32i16
1294 
1295       {TTI::SK_PermuteTwoSrc, MVT::v32i16, 2}, // vpermt2w
1296       {TTI::SK_PermuteTwoSrc, MVT::v16i16, 2}, // vpermt2w
1297       {TTI::SK_PermuteTwoSrc, MVT::v8i16, 2},  // vpermt2w
1298       {TTI::SK_PermuteTwoSrc, MVT::v64i8, 19}, // 6 * v32i8 + 1
1299 
1300       {TTI::SK_Select, MVT::v32i16, 1}, // vblendmw
1301       {TTI::SK_Select, MVT::v64i8,  1}, // vblendmb
1302   };
1303 
1304   if (ST->hasBWI())
1305     if (const auto *Entry =
1306             CostTableLookup(AVX512BWShuffleTbl, Kind, LT.second))
1307       return LT.first * Entry->Cost;
1308 
1309   static const CostTblEntry AVX512ShuffleTbl[] = {
1310       {TTI::SK_Broadcast, MVT::v8f64, 1},  // vbroadcastpd
1311       {TTI::SK_Broadcast, MVT::v16f32, 1}, // vbroadcastps
1312       {TTI::SK_Broadcast, MVT::v8i64, 1},  // vpbroadcastq
1313       {TTI::SK_Broadcast, MVT::v16i32, 1}, // vpbroadcastd
1314       {TTI::SK_Broadcast, MVT::v32i16, 1}, // vpbroadcastw
1315       {TTI::SK_Broadcast, MVT::v64i8, 1},  // vpbroadcastb
1316 
1317       {TTI::SK_Reverse, MVT::v8f64, 1},  // vpermpd
1318       {TTI::SK_Reverse, MVT::v16f32, 1}, // vpermps
1319       {TTI::SK_Reverse, MVT::v8i64, 1},  // vpermq
1320       {TTI::SK_Reverse, MVT::v16i32, 1}, // vpermd
1321       {TTI::SK_Reverse, MVT::v32i16, 7}, // per mca
1322       {TTI::SK_Reverse, MVT::v64i8,  7}, // per mca
1323 
1324       {TTI::SK_PermuteSingleSrc, MVT::v8f64, 1},  // vpermpd
1325       {TTI::SK_PermuteSingleSrc, MVT::v4f64, 1},  // vpermpd
1326       {TTI::SK_PermuteSingleSrc, MVT::v2f64, 1},  // vpermpd
1327       {TTI::SK_PermuteSingleSrc, MVT::v16f32, 1}, // vpermps
1328       {TTI::SK_PermuteSingleSrc, MVT::v8f32, 1},  // vpermps
1329       {TTI::SK_PermuteSingleSrc, MVT::v4f32, 1},  // vpermps
1330       {TTI::SK_PermuteSingleSrc, MVT::v8i64, 1},  // vpermq
1331       {TTI::SK_PermuteSingleSrc, MVT::v4i64, 1},  // vpermq
1332       {TTI::SK_PermuteSingleSrc, MVT::v2i64, 1},  // vpermq
1333       {TTI::SK_PermuteSingleSrc, MVT::v16i32, 1}, // vpermd
1334       {TTI::SK_PermuteSingleSrc, MVT::v8i32, 1},  // vpermd
1335       {TTI::SK_PermuteSingleSrc, MVT::v4i32, 1},  // vpermd
1336       {TTI::SK_PermuteSingleSrc, MVT::v16i8, 1},  // pshufb
1337 
1338       {TTI::SK_PermuteTwoSrc, MVT::v8f64, 1},  // vpermt2pd
1339       {TTI::SK_PermuteTwoSrc, MVT::v16f32, 1}, // vpermt2ps
1340       {TTI::SK_PermuteTwoSrc, MVT::v8i64, 1},  // vpermt2q
1341       {TTI::SK_PermuteTwoSrc, MVT::v16i32, 1}, // vpermt2d
1342       {TTI::SK_PermuteTwoSrc, MVT::v4f64, 1},  // vpermt2pd
1343       {TTI::SK_PermuteTwoSrc, MVT::v8f32, 1},  // vpermt2ps
1344       {TTI::SK_PermuteTwoSrc, MVT::v4i64, 1},  // vpermt2q
1345       {TTI::SK_PermuteTwoSrc, MVT::v8i32, 1},  // vpermt2d
1346       {TTI::SK_PermuteTwoSrc, MVT::v2f64, 1},  // vpermt2pd
1347       {TTI::SK_PermuteTwoSrc, MVT::v4f32, 1},  // vpermt2ps
1348       {TTI::SK_PermuteTwoSrc, MVT::v2i64, 1},  // vpermt2q
1349       {TTI::SK_PermuteTwoSrc, MVT::v4i32, 1},  // vpermt2d
1350 
1351       // FIXME: This just applies the type legalization cost rules above
1352       // assuming these completely split.
1353       {TTI::SK_PermuteSingleSrc, MVT::v32i16, 14},
1354       {TTI::SK_PermuteSingleSrc, MVT::v64i8,  14},
1355       {TTI::SK_PermuteTwoSrc,    MVT::v32i16, 42},
1356       {TTI::SK_PermuteTwoSrc,    MVT::v64i8,  42},
1357 
1358       {TTI::SK_Select, MVT::v32i16, 1}, // vpternlogq
1359       {TTI::SK_Select, MVT::v64i8,  1}, // vpternlogq
1360       {TTI::SK_Select, MVT::v8f64,  1}, // vblendmpd
1361       {TTI::SK_Select, MVT::v16f32, 1}, // vblendmps
1362       {TTI::SK_Select, MVT::v8i64,  1}, // vblendmq
1363       {TTI::SK_Select, MVT::v16i32, 1}, // vblendmd
1364   };
1365 
1366   if (ST->hasAVX512())
1367     if (const auto *Entry = CostTableLookup(AVX512ShuffleTbl, Kind, LT.second))
1368       return LT.first * Entry->Cost;
1369 
1370   static const CostTblEntry AVX2ShuffleTbl[] = {
1371       {TTI::SK_Broadcast, MVT::v4f64, 1},  // vbroadcastpd
1372       {TTI::SK_Broadcast, MVT::v8f32, 1},  // vbroadcastps
1373       {TTI::SK_Broadcast, MVT::v4i64, 1},  // vpbroadcastq
1374       {TTI::SK_Broadcast, MVT::v8i32, 1},  // vpbroadcastd
1375       {TTI::SK_Broadcast, MVT::v16i16, 1}, // vpbroadcastw
1376       {TTI::SK_Broadcast, MVT::v32i8, 1},  // vpbroadcastb
1377 
1378       {TTI::SK_Reverse, MVT::v4f64, 1},  // vpermpd
1379       {TTI::SK_Reverse, MVT::v8f32, 1},  // vpermps
1380       {TTI::SK_Reverse, MVT::v4i64, 1},  // vpermq
1381       {TTI::SK_Reverse, MVT::v8i32, 1},  // vpermd
1382       {TTI::SK_Reverse, MVT::v16i16, 2}, // vperm2i128 + pshufb
1383       {TTI::SK_Reverse, MVT::v32i8, 2},  // vperm2i128 + pshufb
1384 
1385       {TTI::SK_Select, MVT::v16i16, 1}, // vpblendvb
1386       {TTI::SK_Select, MVT::v32i8, 1},  // vpblendvb
1387 
1388       {TTI::SK_PermuteSingleSrc, MVT::v4f64, 1},  // vpermpd
1389       {TTI::SK_PermuteSingleSrc, MVT::v8f32, 1},  // vpermps
1390       {TTI::SK_PermuteSingleSrc, MVT::v4i64, 1},  // vpermq
1391       {TTI::SK_PermuteSingleSrc, MVT::v8i32, 1},  // vpermd
1392       {TTI::SK_PermuteSingleSrc, MVT::v16i16, 4}, // vperm2i128 + 2*vpshufb
1393                                                   // + vpblendvb
1394       {TTI::SK_PermuteSingleSrc, MVT::v32i8, 4},  // vperm2i128 + 2*vpshufb
1395                                                   // + vpblendvb
1396 
1397       {TTI::SK_PermuteTwoSrc, MVT::v4f64, 3},  // 2*vpermpd + vblendpd
1398       {TTI::SK_PermuteTwoSrc, MVT::v8f32, 3},  // 2*vpermps + vblendps
1399       {TTI::SK_PermuteTwoSrc, MVT::v4i64, 3},  // 2*vpermq + vpblendd
1400       {TTI::SK_PermuteTwoSrc, MVT::v8i32, 3},  // 2*vpermd + vpblendd
1401       {TTI::SK_PermuteTwoSrc, MVT::v16i16, 7}, // 2*vperm2i128 + 4*vpshufb
1402                                                // + vpblendvb
1403       {TTI::SK_PermuteTwoSrc, MVT::v32i8, 7},  // 2*vperm2i128 + 4*vpshufb
1404                                                // + vpblendvb
1405   };
1406 
1407   if (ST->hasAVX2())
1408     if (const auto *Entry = CostTableLookup(AVX2ShuffleTbl, Kind, LT.second))
1409       return LT.first * Entry->Cost;
1410 
1411   static const CostTblEntry XOPShuffleTbl[] = {
1412       {TTI::SK_PermuteSingleSrc, MVT::v4f64, 2},  // vperm2f128 + vpermil2pd
1413       {TTI::SK_PermuteSingleSrc, MVT::v8f32, 2},  // vperm2f128 + vpermil2ps
1414       {TTI::SK_PermuteSingleSrc, MVT::v4i64, 2},  // vperm2f128 + vpermil2pd
1415       {TTI::SK_PermuteSingleSrc, MVT::v8i32, 2},  // vperm2f128 + vpermil2ps
1416       {TTI::SK_PermuteSingleSrc, MVT::v16i16, 4}, // vextractf128 + 2*vpperm
1417                                                   // + vinsertf128
1418       {TTI::SK_PermuteSingleSrc, MVT::v32i8, 4},  // vextractf128 + 2*vpperm
1419                                                   // + vinsertf128
1420 
1421       {TTI::SK_PermuteTwoSrc, MVT::v16i16, 9}, // 2*vextractf128 + 6*vpperm
1422                                                // + vinsertf128
1423       {TTI::SK_PermuteTwoSrc, MVT::v8i16, 1},  // vpperm
1424       {TTI::SK_PermuteTwoSrc, MVT::v32i8, 9},  // 2*vextractf128 + 6*vpperm
1425                                                // + vinsertf128
1426       {TTI::SK_PermuteTwoSrc, MVT::v16i8, 1},  // vpperm
1427   };
1428 
1429   if (ST->hasXOP())
1430     if (const auto *Entry = CostTableLookup(XOPShuffleTbl, Kind, LT.second))
1431       return LT.first * Entry->Cost;
1432 
1433   static const CostTblEntry AVX1ShuffleTbl[] = {
1434       {TTI::SK_Broadcast, MVT::v4f64, 2},  // vperm2f128 + vpermilpd
1435       {TTI::SK_Broadcast, MVT::v8f32, 2},  // vperm2f128 + vpermilps
1436       {TTI::SK_Broadcast, MVT::v4i64, 2},  // vperm2f128 + vpermilpd
1437       {TTI::SK_Broadcast, MVT::v8i32, 2},  // vperm2f128 + vpermilps
1438       {TTI::SK_Broadcast, MVT::v16i16, 3}, // vpshuflw + vpshufd + vinsertf128
1439       {TTI::SK_Broadcast, MVT::v32i8, 2},  // vpshufb + vinsertf128
1440 
1441       {TTI::SK_Reverse, MVT::v4f64, 2},  // vperm2f128 + vpermilpd
1442       {TTI::SK_Reverse, MVT::v8f32, 2},  // vperm2f128 + vpermilps
1443       {TTI::SK_Reverse, MVT::v4i64, 2},  // vperm2f128 + vpermilpd
1444       {TTI::SK_Reverse, MVT::v8i32, 2},  // vperm2f128 + vpermilps
1445       {TTI::SK_Reverse, MVT::v16i16, 4}, // vextractf128 + 2*pshufb
1446                                          // + vinsertf128
1447       {TTI::SK_Reverse, MVT::v32i8, 4},  // vextractf128 + 2*pshufb
1448                                          // + vinsertf128
1449 
1450       {TTI::SK_Select, MVT::v4i64, 1},  // vblendpd
1451       {TTI::SK_Select, MVT::v4f64, 1},  // vblendpd
1452       {TTI::SK_Select, MVT::v8i32, 1},  // vblendps
1453       {TTI::SK_Select, MVT::v8f32, 1},  // vblendps
1454       {TTI::SK_Select, MVT::v16i16, 3}, // vpand + vpandn + vpor
1455       {TTI::SK_Select, MVT::v32i8, 3},  // vpand + vpandn + vpor
1456 
1457       {TTI::SK_PermuteSingleSrc, MVT::v4f64, 2},  // vperm2f128 + vshufpd
1458       {TTI::SK_PermuteSingleSrc, MVT::v4i64, 2},  // vperm2f128 + vshufpd
1459       {TTI::SK_PermuteSingleSrc, MVT::v8f32, 4},  // 2*vperm2f128 + 2*vshufps
1460       {TTI::SK_PermuteSingleSrc, MVT::v8i32, 4},  // 2*vperm2f128 + 2*vshufps
1461       {TTI::SK_PermuteSingleSrc, MVT::v16i16, 8}, // vextractf128 + 4*pshufb
1462                                                   // + 2*por + vinsertf128
1463       {TTI::SK_PermuteSingleSrc, MVT::v32i8, 8},  // vextractf128 + 4*pshufb
1464                                                   // + 2*por + vinsertf128
1465 
1466       {TTI::SK_PermuteTwoSrc, MVT::v4f64, 3},   // 2*vperm2f128 + vshufpd
1467       {TTI::SK_PermuteTwoSrc, MVT::v4i64, 3},   // 2*vperm2f128 + vshufpd
1468       {TTI::SK_PermuteTwoSrc, MVT::v8f32, 4},   // 2*vperm2f128 + 2*vshufps
1469       {TTI::SK_PermuteTwoSrc, MVT::v8i32, 4},   // 2*vperm2f128 + 2*vshufps
1470       {TTI::SK_PermuteTwoSrc, MVT::v16i16, 15}, // 2*vextractf128 + 8*pshufb
1471                                                 // + 4*por + vinsertf128
1472       {TTI::SK_PermuteTwoSrc, MVT::v32i8, 15},  // 2*vextractf128 + 8*pshufb
1473                                                 // + 4*por + vinsertf128
1474   };
1475 
1476   if (ST->hasAVX())
1477     if (const auto *Entry = CostTableLookup(AVX1ShuffleTbl, Kind, LT.second))
1478       return LT.first * Entry->Cost;
1479 
1480   static const CostTblEntry SSE41ShuffleTbl[] = {
1481       {TTI::SK_Select, MVT::v2i64, 1}, // pblendw
1482       {TTI::SK_Select, MVT::v2f64, 1}, // movsd
1483       {TTI::SK_Select, MVT::v4i32, 1}, // pblendw
1484       {TTI::SK_Select, MVT::v4f32, 1}, // blendps
1485       {TTI::SK_Select, MVT::v8i16, 1}, // pblendw
1486       {TTI::SK_Select, MVT::v16i8, 1}  // pblendvb
1487   };
1488 
1489   if (ST->hasSSE41())
1490     if (const auto *Entry = CostTableLookup(SSE41ShuffleTbl, Kind, LT.second))
1491       return LT.first * Entry->Cost;
1492 
1493   static const CostTblEntry SSSE3ShuffleTbl[] = {
1494       {TTI::SK_Broadcast, MVT::v8i16, 1}, // pshufb
1495       {TTI::SK_Broadcast, MVT::v16i8, 1}, // pshufb
1496 
1497       {TTI::SK_Reverse, MVT::v8i16, 1}, // pshufb
1498       {TTI::SK_Reverse, MVT::v16i8, 1}, // pshufb
1499 
1500       {TTI::SK_Select, MVT::v8i16, 3}, // 2*pshufb + por
1501       {TTI::SK_Select, MVT::v16i8, 3}, // 2*pshufb + por
1502 
1503       {TTI::SK_PermuteSingleSrc, MVT::v8i16, 1}, // pshufb
1504       {TTI::SK_PermuteSingleSrc, MVT::v16i8, 1}, // pshufb
1505 
1506       {TTI::SK_PermuteTwoSrc, MVT::v8i16, 3}, // 2*pshufb + por
1507       {TTI::SK_PermuteTwoSrc, MVT::v16i8, 3}, // 2*pshufb + por
1508   };
1509 
1510   if (ST->hasSSSE3())
1511     if (const auto *Entry = CostTableLookup(SSSE3ShuffleTbl, Kind, LT.second))
1512       return LT.first * Entry->Cost;
1513 
1514   static const CostTblEntry SSE2ShuffleTbl[] = {
1515       {TTI::SK_Broadcast, MVT::v2f64, 1}, // shufpd
1516       {TTI::SK_Broadcast, MVT::v2i64, 1}, // pshufd
1517       {TTI::SK_Broadcast, MVT::v4i32, 1}, // pshufd
1518       {TTI::SK_Broadcast, MVT::v8i16, 2}, // pshuflw + pshufd
1519       {TTI::SK_Broadcast, MVT::v16i8, 3}, // unpck + pshuflw + pshufd
1520 
1521       {TTI::SK_Reverse, MVT::v2f64, 1}, // shufpd
1522       {TTI::SK_Reverse, MVT::v2i64, 1}, // pshufd
1523       {TTI::SK_Reverse, MVT::v4i32, 1}, // pshufd
1524       {TTI::SK_Reverse, MVT::v8i16, 3}, // pshuflw + pshufhw + pshufd
1525       {TTI::SK_Reverse, MVT::v16i8, 9}, // 2*pshuflw + 2*pshufhw
1526                                         // + 2*pshufd + 2*unpck + packus
1527 
1528       {TTI::SK_Select, MVT::v2i64, 1}, // movsd
1529       {TTI::SK_Select, MVT::v2f64, 1}, // movsd
1530       {TTI::SK_Select, MVT::v4i32, 2}, // 2*shufps
1531       {TTI::SK_Select, MVT::v8i16, 3}, // pand + pandn + por
1532       {TTI::SK_Select, MVT::v16i8, 3}, // pand + pandn + por
1533 
1534       {TTI::SK_PermuteSingleSrc, MVT::v2f64, 1}, // shufpd
1535       {TTI::SK_PermuteSingleSrc, MVT::v2i64, 1}, // pshufd
1536       {TTI::SK_PermuteSingleSrc, MVT::v4i32, 1}, // pshufd
1537       {TTI::SK_PermuteSingleSrc, MVT::v8i16, 5}, // 2*pshuflw + 2*pshufhw
1538                                                   // + pshufd/unpck
1539     { TTI::SK_PermuteSingleSrc, MVT::v16i8, 10 }, // 2*pshuflw + 2*pshufhw
1540                                                   // + 2*pshufd + 2*unpck + 2*packus
1541 
1542     { TTI::SK_PermuteTwoSrc,    MVT::v2f64,  1 }, // shufpd
1543     { TTI::SK_PermuteTwoSrc,    MVT::v2i64,  1 }, // shufpd
1544     { TTI::SK_PermuteTwoSrc,    MVT::v4i32,  2 }, // 2*{unpck,movsd,pshufd}
1545     { TTI::SK_PermuteTwoSrc,    MVT::v8i16,  8 }, // blend+permute
1546     { TTI::SK_PermuteTwoSrc,    MVT::v16i8, 13 }, // blend+permute
1547   };
1548 
1549   static const CostTblEntry SSE3BroadcastLoadTbl[] = {
1550       {TTI::SK_Broadcast, MVT::v2f64, 0}, // broadcast handled by movddup
1551   };
1552 
1553   if (ST->hasSSE2()) {
1554     bool IsLoad =
1555         llvm::any_of(Args, [](const auto &V) { return isa<LoadInst>(V); });
1556     if (ST->hasSSE3() && IsLoad)
1557       if (const auto *Entry =
1558               CostTableLookup(SSE3BroadcastLoadTbl, Kind, LT.second)) {
1559         assert(isLegalBroadcastLoad(BaseTp->getElementType(),
1560                                     LT.second.getVectorElementCount()) &&
1561                "Table entry missing from isLegalBroadcastLoad()");
1562         return LT.first * Entry->Cost;
1563       }
1564 
1565     if (const auto *Entry = CostTableLookup(SSE2ShuffleTbl, Kind, LT.second))
1566       return LT.first * Entry->Cost;
1567   }
1568 
1569   static const CostTblEntry SSE1ShuffleTbl[] = {
1570     { TTI::SK_Broadcast,        MVT::v4f32, 1 }, // shufps
1571     { TTI::SK_Reverse,          MVT::v4f32, 1 }, // shufps
1572     { TTI::SK_Select,           MVT::v4f32, 2 }, // 2*shufps
1573     { TTI::SK_PermuteSingleSrc, MVT::v4f32, 1 }, // shufps
1574     { TTI::SK_PermuteTwoSrc,    MVT::v4f32, 2 }, // 2*shufps
1575   };
1576 
1577   if (ST->hasSSE1())
1578     if (const auto *Entry = CostTableLookup(SSE1ShuffleTbl, Kind, LT.second))
1579       return LT.first * Entry->Cost;
1580 
1581   return BaseT::getShuffleCost(Kind, BaseTp, Mask, Index, SubTp);
1582 }
1583 
1584 InstructionCost X86TTIImpl::getCastInstrCost(unsigned Opcode, Type *Dst,
1585                                              Type *Src,
1586                                              TTI::CastContextHint CCH,
1587                                              TTI::TargetCostKind CostKind,
1588                                              const Instruction *I) {
1589   int ISD = TLI->InstructionOpcodeToISD(Opcode);
1590   assert(ISD && "Invalid opcode");
1591 
1592   // TODO: Allow non-throughput costs that aren't binary.
1593   auto AdjustCost = [&CostKind](InstructionCost Cost) -> InstructionCost {
1594     if (CostKind != TTI::TCK_RecipThroughput)
1595       return Cost == 0 ? 0 : 1;
1596     return Cost;
1597   };
1598 
1599   // The cost tables include both specific, custom (non-legal) src/dst type
1600   // conversions and generic, legalized types. We test for customs first, before
1601   // falling back to legalization.
1602   // FIXME: Need a better design of the cost table to handle non-simple types of
1603   // potential massive combinations (elem_num x src_type x dst_type).
1604   static const TypeConversionCostTblEntry AVX512BWConversionTbl[] {
1605     { ISD::SIGN_EXTEND, MVT::v32i16, MVT::v32i8, 1 },
1606     { ISD::ZERO_EXTEND, MVT::v32i16, MVT::v32i8, 1 },
1607 
1608     // Mask sign extend has an instruction.
1609     { ISD::SIGN_EXTEND, MVT::v2i8,   MVT::v2i1,   1 },
1610     { ISD::SIGN_EXTEND, MVT::v16i8,  MVT::v2i1,   1 },
1611     { ISD::SIGN_EXTEND, MVT::v2i16,  MVT::v2i1,   1 },
1612     { ISD::SIGN_EXTEND, MVT::v8i16,  MVT::v2i1,   1 },
1613     { ISD::SIGN_EXTEND, MVT::v4i8,   MVT::v4i1,   1 },
1614     { ISD::SIGN_EXTEND, MVT::v16i8,  MVT::v4i1,   1 },
1615     { ISD::SIGN_EXTEND, MVT::v4i16,  MVT::v4i1,   1 },
1616     { ISD::SIGN_EXTEND, MVT::v8i16,  MVT::v4i1,   1 },
1617     { ISD::SIGN_EXTEND, MVT::v8i8,   MVT::v8i1,   1 },
1618     { ISD::SIGN_EXTEND, MVT::v16i8,  MVT::v8i1,   1 },
1619     { ISD::SIGN_EXTEND, MVT::v8i16,  MVT::v8i1,   1 },
1620     { ISD::SIGN_EXTEND, MVT::v16i8,  MVT::v16i1,  1 },
1621     { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i1,  1 },
1622     { ISD::SIGN_EXTEND, MVT::v32i8,  MVT::v32i1,  1 },
1623     { ISD::SIGN_EXTEND, MVT::v32i16, MVT::v32i1,  1 },
1624     { ISD::SIGN_EXTEND, MVT::v64i8,  MVT::v64i1,  1 },
1625     { ISD::SIGN_EXTEND, MVT::v32i16, MVT::v64i1,  1 },
1626 
1627     // Mask zero extend is a sext + shift.
1628     { ISD::ZERO_EXTEND, MVT::v2i8,   MVT::v2i1,   2 },
1629     { ISD::ZERO_EXTEND, MVT::v16i8,  MVT::v2i1,   2 },
1630     { ISD::ZERO_EXTEND, MVT::v2i16,  MVT::v2i1,   2 },
1631     { ISD::ZERO_EXTEND, MVT::v8i16,  MVT::v2i1,   2 },
1632     { ISD::ZERO_EXTEND, MVT::v4i8,   MVT::v4i1,   2 },
1633     { ISD::ZERO_EXTEND, MVT::v16i8,  MVT::v4i1,   2 },
1634     { ISD::ZERO_EXTEND, MVT::v4i16,  MVT::v4i1,   2 },
1635     { ISD::ZERO_EXTEND, MVT::v8i16,  MVT::v4i1,   2 },
1636     { ISD::ZERO_EXTEND, MVT::v8i8,   MVT::v8i1,   2 },
1637     { ISD::ZERO_EXTEND, MVT::v16i8,  MVT::v8i1,   2 },
1638     { ISD::ZERO_EXTEND, MVT::v8i16,  MVT::v8i1,   2 },
1639     { ISD::ZERO_EXTEND, MVT::v16i8,  MVT::v16i1,  2 },
1640     { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i1,  2 },
1641     { ISD::ZERO_EXTEND, MVT::v32i8,  MVT::v32i1,  2 },
1642     { ISD::ZERO_EXTEND, MVT::v32i16, MVT::v32i1,  2 },
1643     { ISD::ZERO_EXTEND, MVT::v64i8,  MVT::v64i1,  2 },
1644     { ISD::ZERO_EXTEND, MVT::v32i16, MVT::v64i1,  2 },
1645 
1646     { ISD::TRUNCATE,    MVT::v2i1,   MVT::v2i8,   2 },
1647     { ISD::TRUNCATE,    MVT::v2i1,   MVT::v16i8,  2 },
1648     { ISD::TRUNCATE,    MVT::v2i1,   MVT::v2i16,  2 },
1649     { ISD::TRUNCATE,    MVT::v2i1,   MVT::v8i16,  2 },
1650     { ISD::TRUNCATE,    MVT::v4i1,   MVT::v4i8,   2 },
1651     { ISD::TRUNCATE,    MVT::v4i1,   MVT::v16i8,  2 },
1652     { ISD::TRUNCATE,    MVT::v4i1,   MVT::v4i16,  2 },
1653     { ISD::TRUNCATE,    MVT::v4i1,   MVT::v8i16,  2 },
1654     { ISD::TRUNCATE,    MVT::v8i1,   MVT::v8i8,   2 },
1655     { ISD::TRUNCATE,    MVT::v8i1,   MVT::v16i8,  2 },
1656     { ISD::TRUNCATE,    MVT::v8i1,   MVT::v8i16,  2 },
1657     { ISD::TRUNCATE,    MVT::v16i1,  MVT::v16i8,  2 },
1658     { ISD::TRUNCATE,    MVT::v16i1,  MVT::v16i16, 2 },
1659     { ISD::TRUNCATE,    MVT::v32i1,  MVT::v32i8,  2 },
1660     { ISD::TRUNCATE,    MVT::v32i1,  MVT::v32i16, 2 },
1661     { ISD::TRUNCATE,    MVT::v64i1,  MVT::v64i8,  2 },
1662     { ISD::TRUNCATE,    MVT::v64i1,  MVT::v32i16, 2 },
1663 
1664     { ISD::TRUNCATE,    MVT::v32i8,  MVT::v32i16, 2 },
1665     { ISD::TRUNCATE,    MVT::v16i8,  MVT::v16i16, 2 }, // widen to zmm
1666     { ISD::TRUNCATE,    MVT::v2i8,   MVT::v2i16,  2 }, // vpmovwb
1667     { ISD::TRUNCATE,    MVT::v4i8,   MVT::v4i16,  2 }, // vpmovwb
1668     { ISD::TRUNCATE,    MVT::v8i8,   MVT::v8i16,  2 }, // vpmovwb
1669   };
1670 
1671   static const TypeConversionCostTblEntry AVX512DQConversionTbl[] = {
1672     // Mask sign extend has an instruction.
1673     { ISD::SIGN_EXTEND, MVT::v2i64,  MVT::v2i1,   1 },
1674     { ISD::SIGN_EXTEND, MVT::v4i32,  MVT::v2i1,   1 },
1675     { ISD::SIGN_EXTEND, MVT::v4i32,  MVT::v4i1,   1 },
1676     { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v4i1,   1 },
1677     { ISD::SIGN_EXTEND, MVT::v8i32,  MVT::v8i1,   1 },
1678     { ISD::SIGN_EXTEND, MVT::v8i64,  MVT::v16i1,  1 },
1679     { ISD::SIGN_EXTEND, MVT::v8i64,  MVT::v8i1,   1 },
1680     { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i1,  1 },
1681 
1682     // Mask zero extend is a sext + shift.
1683     { ISD::ZERO_EXTEND, MVT::v2i64,  MVT::v2i1,   2 },
1684     { ISD::ZERO_EXTEND, MVT::v4i32,  MVT::v2i1,   2 },
1685     { ISD::ZERO_EXTEND, MVT::v4i32,  MVT::v4i1,   2 },
1686     { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v4i1,   2 },
1687     { ISD::ZERO_EXTEND, MVT::v8i32,  MVT::v8i1,   2 },
1688     { ISD::ZERO_EXTEND, MVT::v8i64,  MVT::v16i1,  2 },
1689     { ISD::ZERO_EXTEND, MVT::v8i64,  MVT::v8i1,   2 },
1690     { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i1,  2 },
1691 
1692     { ISD::TRUNCATE,    MVT::v2i1,   MVT::v2i64,  2 },
1693     { ISD::TRUNCATE,    MVT::v2i1,   MVT::v4i32,  2 },
1694     { ISD::TRUNCATE,    MVT::v4i1,   MVT::v4i32,  2 },
1695     { ISD::TRUNCATE,    MVT::v4i1,   MVT::v4i64,  2 },
1696     { ISD::TRUNCATE,    MVT::v8i1,   MVT::v8i32,  2 },
1697     { ISD::TRUNCATE,    MVT::v8i1,   MVT::v8i64,  2 },
1698     { ISD::TRUNCATE,    MVT::v16i1,  MVT::v16i32, 2 },
1699     { ISD::TRUNCATE,    MVT::v16i1,  MVT::v8i64,  2 },
1700 
1701     { ISD::SINT_TO_FP,  MVT::v8f32,  MVT::v8i64,  1 },
1702     { ISD::SINT_TO_FP,  MVT::v8f64,  MVT::v8i64,  1 },
1703 
1704     { ISD::UINT_TO_FP,  MVT::v8f32,  MVT::v8i64,  1 },
1705     { ISD::UINT_TO_FP,  MVT::v8f64,  MVT::v8i64,  1 },
1706 
1707     { ISD::FP_TO_SINT,  MVT::v8i64,  MVT::v8f32,  1 },
1708     { ISD::FP_TO_SINT,  MVT::v8i64,  MVT::v8f64,  1 },
1709 
1710     { ISD::FP_TO_UINT,  MVT::v8i64,  MVT::v8f32,  1 },
1711     { ISD::FP_TO_UINT,  MVT::v8i64,  MVT::v8f64,  1 },
1712   };
1713 
1714   // TODO: For AVX512DQ + AVX512VL, we also have cheap casts for 128-bit and
1715   // 256-bit wide vectors.
1716 
1717   static const TypeConversionCostTblEntry AVX512FConversionTbl[] = {
1718     { ISD::FP_EXTEND, MVT::v8f64,   MVT::v8f32,  1 },
1719     { ISD::FP_EXTEND, MVT::v8f64,   MVT::v16f32, 3 },
1720     { ISD::FP_ROUND,  MVT::v8f32,   MVT::v8f64,  1 },
1721 
1722     { ISD::TRUNCATE,  MVT::v2i1,    MVT::v2i8,   3 }, // sext+vpslld+vptestmd
1723     { ISD::TRUNCATE,  MVT::v4i1,    MVT::v4i8,   3 }, // sext+vpslld+vptestmd
1724     { ISD::TRUNCATE,  MVT::v8i1,    MVT::v8i8,   3 }, // sext+vpslld+vptestmd
1725     { ISD::TRUNCATE,  MVT::v16i1,   MVT::v16i8,  3 }, // sext+vpslld+vptestmd
1726     { ISD::TRUNCATE,  MVT::v2i1,    MVT::v2i16,  3 }, // sext+vpsllq+vptestmq
1727     { ISD::TRUNCATE,  MVT::v4i1,    MVT::v4i16,  3 }, // sext+vpsllq+vptestmq
1728     { ISD::TRUNCATE,  MVT::v8i1,    MVT::v8i16,  3 }, // sext+vpsllq+vptestmq
1729     { ISD::TRUNCATE,  MVT::v16i1,   MVT::v16i16, 3 }, // sext+vpslld+vptestmd
1730     { ISD::TRUNCATE,  MVT::v2i1,    MVT::v2i32,  2 }, // zmm vpslld+vptestmd
1731     { ISD::TRUNCATE,  MVT::v4i1,    MVT::v4i32,  2 }, // zmm vpslld+vptestmd
1732     { ISD::TRUNCATE,  MVT::v8i1,    MVT::v8i32,  2 }, // zmm vpslld+vptestmd
1733     { ISD::TRUNCATE,  MVT::v16i1,   MVT::v16i32, 2 }, // vpslld+vptestmd
1734     { ISD::TRUNCATE,  MVT::v2i1,    MVT::v2i64,  2 }, // zmm vpsllq+vptestmq
1735     { ISD::TRUNCATE,  MVT::v4i1,    MVT::v4i64,  2 }, // zmm vpsllq+vptestmq
1736     { ISD::TRUNCATE,  MVT::v8i1,    MVT::v8i64,  2 }, // vpsllq+vptestmq
1737     { ISD::TRUNCATE,  MVT::v2i8,    MVT::v2i32,  2 }, // vpmovdb
1738     { ISD::TRUNCATE,  MVT::v4i8,    MVT::v4i32,  2 }, // vpmovdb
1739     { ISD::TRUNCATE,  MVT::v16i8,   MVT::v16i32, 2 }, // vpmovdb
1740     { ISD::TRUNCATE,  MVT::v32i8,   MVT::v16i32, 2 }, // vpmovdb
1741     { ISD::TRUNCATE,  MVT::v64i8,   MVT::v16i32, 2 }, // vpmovdb
1742     { ISD::TRUNCATE,  MVT::v16i16,  MVT::v16i32, 2 }, // vpmovdw
1743     { ISD::TRUNCATE,  MVT::v32i16,  MVT::v16i32, 2 }, // vpmovdw
1744     { ISD::TRUNCATE,  MVT::v2i8,    MVT::v2i64,  2 }, // vpmovqb
1745     { ISD::TRUNCATE,  MVT::v2i16,   MVT::v2i64,  1 }, // vpshufb
1746     { ISD::TRUNCATE,  MVT::v8i8,    MVT::v8i64,  2 }, // vpmovqb
1747     { ISD::TRUNCATE,  MVT::v16i8,   MVT::v8i64,  2 }, // vpmovqb
1748     { ISD::TRUNCATE,  MVT::v32i8,   MVT::v8i64,  2 }, // vpmovqb
1749     { ISD::TRUNCATE,  MVT::v64i8,   MVT::v8i64,  2 }, // vpmovqb
1750     { ISD::TRUNCATE,  MVT::v8i16,   MVT::v8i64,  2 }, // vpmovqw
1751     { ISD::TRUNCATE,  MVT::v16i16,  MVT::v8i64,  2 }, // vpmovqw
1752     { ISD::TRUNCATE,  MVT::v32i16,  MVT::v8i64,  2 }, // vpmovqw
1753     { ISD::TRUNCATE,  MVT::v8i32,   MVT::v8i64,  1 }, // vpmovqd
1754     { ISD::TRUNCATE,  MVT::v4i32,   MVT::v4i64,  1 }, // zmm vpmovqd
1755     { ISD::TRUNCATE,  MVT::v16i8,   MVT::v16i64, 5 },// 2*vpmovqd+concat+vpmovdb
1756 
1757     { ISD::TRUNCATE,  MVT::v16i8,  MVT::v16i16,  3 }, // extend to v16i32
1758     { ISD::TRUNCATE,  MVT::v32i8,  MVT::v32i16,  8 },
1759     { ISD::TRUNCATE,  MVT::v64i8,  MVT::v32i16,  8 },
1760 
1761     // Sign extend is zmm vpternlogd+vptruncdb.
1762     // Zero extend is zmm broadcast load+vptruncdw.
1763     { ISD::SIGN_EXTEND, MVT::v2i8,   MVT::v2i1,   3 },
1764     { ISD::ZERO_EXTEND, MVT::v2i8,   MVT::v2i1,   4 },
1765     { ISD::SIGN_EXTEND, MVT::v4i8,   MVT::v4i1,   3 },
1766     { ISD::ZERO_EXTEND, MVT::v4i8,   MVT::v4i1,   4 },
1767     { ISD::SIGN_EXTEND, MVT::v8i8,   MVT::v8i1,   3 },
1768     { ISD::ZERO_EXTEND, MVT::v8i8,   MVT::v8i1,   4 },
1769     { ISD::SIGN_EXTEND, MVT::v16i8,  MVT::v16i1,  3 },
1770     { ISD::ZERO_EXTEND, MVT::v16i8,  MVT::v16i1,  4 },
1771 
1772     // Sign extend is zmm vpternlogd+vptruncdw.
1773     // Zero extend is zmm vpternlogd+vptruncdw+vpsrlw.
1774     { ISD::SIGN_EXTEND, MVT::v2i16,  MVT::v2i1,   3 },
1775     { ISD::ZERO_EXTEND, MVT::v2i16,  MVT::v2i1,   4 },
1776     { ISD::SIGN_EXTEND, MVT::v4i16,  MVT::v4i1,   3 },
1777     { ISD::ZERO_EXTEND, MVT::v4i16,  MVT::v4i1,   4 },
1778     { ISD::SIGN_EXTEND, MVT::v8i16,  MVT::v8i1,   3 },
1779     { ISD::ZERO_EXTEND, MVT::v8i16,  MVT::v8i1,   4 },
1780     { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i1,  3 },
1781     { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i1,  4 },
1782 
1783     { ISD::SIGN_EXTEND, MVT::v2i32,  MVT::v2i1,   1 }, // zmm vpternlogd
1784     { ISD::ZERO_EXTEND, MVT::v2i32,  MVT::v2i1,   2 }, // zmm vpternlogd+psrld
1785     { ISD::SIGN_EXTEND, MVT::v4i32,  MVT::v4i1,   1 }, // zmm vpternlogd
1786     { ISD::ZERO_EXTEND, MVT::v4i32,  MVT::v4i1,   2 }, // zmm vpternlogd+psrld
1787     { ISD::SIGN_EXTEND, MVT::v8i32,  MVT::v8i1,   1 }, // zmm vpternlogd
1788     { ISD::ZERO_EXTEND, MVT::v8i32,  MVT::v8i1,   2 }, // zmm vpternlogd+psrld
1789     { ISD::SIGN_EXTEND, MVT::v2i64,  MVT::v2i1,   1 }, // zmm vpternlogq
1790     { ISD::ZERO_EXTEND, MVT::v2i64,  MVT::v2i1,   2 }, // zmm vpternlogq+psrlq
1791     { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v4i1,   1 }, // zmm vpternlogq
1792     { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v4i1,   2 }, // zmm vpternlogq+psrlq
1793 
1794     { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i1,  1 }, // vpternlogd
1795     { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i1,  2 }, // vpternlogd+psrld
1796     { ISD::SIGN_EXTEND, MVT::v8i64,  MVT::v8i1,   1 }, // vpternlogq
1797     { ISD::ZERO_EXTEND, MVT::v8i64,  MVT::v8i1,   2 }, // vpternlogq+psrlq
1798 
1799     { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i8,  1 },
1800     { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i8,  1 },
1801     { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i16, 1 },
1802     { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i16, 1 },
1803     { ISD::SIGN_EXTEND, MVT::v8i64,  MVT::v8i8,   1 },
1804     { ISD::ZERO_EXTEND, MVT::v8i64,  MVT::v8i8,   1 },
1805     { ISD::SIGN_EXTEND, MVT::v8i64,  MVT::v8i16,  1 },
1806     { ISD::ZERO_EXTEND, MVT::v8i64,  MVT::v8i16,  1 },
1807     { ISD::SIGN_EXTEND, MVT::v8i64,  MVT::v8i32,  1 },
1808     { ISD::ZERO_EXTEND, MVT::v8i64,  MVT::v8i32,  1 },
1809 
1810     { ISD::SIGN_EXTEND, MVT::v32i16, MVT::v32i8,  3 }, // FIXME: May not be right
1811     { ISD::ZERO_EXTEND, MVT::v32i16, MVT::v32i8,  3 }, // FIXME: May not be right
1812 
1813     { ISD::SINT_TO_FP,  MVT::v8f64,  MVT::v8i1,   4 },
1814     { ISD::SINT_TO_FP,  MVT::v16f32, MVT::v16i1,  3 },
1815     { ISD::SINT_TO_FP,  MVT::v8f64,  MVT::v16i8,  2 },
1816     { ISD::SINT_TO_FP,  MVT::v16f32, MVT::v16i8,  1 },
1817     { ISD::SINT_TO_FP,  MVT::v8f64,  MVT::v8i16,  2 },
1818     { ISD::SINT_TO_FP,  MVT::v16f32, MVT::v16i16, 1 },
1819     { ISD::SINT_TO_FP,  MVT::v8f64,  MVT::v8i32,  1 },
1820     { ISD::SINT_TO_FP,  MVT::v16f32, MVT::v16i32, 1 },
1821 
1822     { ISD::UINT_TO_FP,  MVT::v8f64,  MVT::v8i1,   4 },
1823     { ISD::UINT_TO_FP,  MVT::v16f32, MVT::v16i1,  3 },
1824     { ISD::UINT_TO_FP,  MVT::v8f64,  MVT::v16i8,  2 },
1825     { ISD::UINT_TO_FP,  MVT::v16f32, MVT::v16i8,  1 },
1826     { ISD::UINT_TO_FP,  MVT::v8f64,  MVT::v8i16,  2 },
1827     { ISD::UINT_TO_FP,  MVT::v16f32, MVT::v16i16, 1 },
1828     { ISD::UINT_TO_FP,  MVT::v8f64,  MVT::v8i32,  1 },
1829     { ISD::UINT_TO_FP,  MVT::v16f32, MVT::v16i32, 1 },
1830     { ISD::UINT_TO_FP,  MVT::v8f32,  MVT::v8i64, 26 },
1831     { ISD::UINT_TO_FP,  MVT::v8f64,  MVT::v8i64,  5 },
1832 
1833     { ISD::FP_TO_SINT,  MVT::v16i8,  MVT::v16f32, 2 },
1834     { ISD::FP_TO_SINT,  MVT::v16i8,  MVT::v16f64, 7 },
1835     { ISD::FP_TO_SINT,  MVT::v32i8,  MVT::v32f64,15 },
1836     { ISD::FP_TO_SINT,  MVT::v64i8,  MVT::v64f32,11 },
1837     { ISD::FP_TO_SINT,  MVT::v64i8,  MVT::v64f64,31 },
1838     { ISD::FP_TO_SINT,  MVT::v8i16,  MVT::v8f64,  3 },
1839     { ISD::FP_TO_SINT,  MVT::v16i16, MVT::v16f64, 7 },
1840     { ISD::FP_TO_SINT,  MVT::v32i16, MVT::v32f32, 5 },
1841     { ISD::FP_TO_SINT,  MVT::v32i16, MVT::v32f64,15 },
1842     { ISD::FP_TO_SINT,  MVT::v8i32,  MVT::v8f64,  1 },
1843     { ISD::FP_TO_SINT,  MVT::v16i32, MVT::v16f64, 3 },
1844 
1845     { ISD::FP_TO_UINT,  MVT::v8i32,  MVT::v8f64,  1 },
1846     { ISD::FP_TO_UINT,  MVT::v8i16,  MVT::v8f64,  3 },
1847     { ISD::FP_TO_UINT,  MVT::v8i8,   MVT::v8f64,  3 },
1848     { ISD::FP_TO_UINT,  MVT::v16i32, MVT::v16f32, 1 },
1849     { ISD::FP_TO_UINT,  MVT::v16i16, MVT::v16f32, 3 },
1850     { ISD::FP_TO_UINT,  MVT::v16i8,  MVT::v16f32, 3 },
1851   };
1852 
1853   static const TypeConversionCostTblEntry AVX512BWVLConversionTbl[] {
1854     // Mask sign extend has an instruction.
1855     { ISD::SIGN_EXTEND, MVT::v2i8,   MVT::v2i1,   1 },
1856     { ISD::SIGN_EXTEND, MVT::v16i8,  MVT::v2i1,   1 },
1857     { ISD::SIGN_EXTEND, MVT::v2i16,  MVT::v2i1,   1 },
1858     { ISD::SIGN_EXTEND, MVT::v8i16,  MVT::v2i1,   1 },
1859     { ISD::SIGN_EXTEND, MVT::v4i16,  MVT::v4i1,   1 },
1860     { ISD::SIGN_EXTEND, MVT::v16i8,  MVT::v4i1,   1 },
1861     { ISD::SIGN_EXTEND, MVT::v4i8,   MVT::v4i1,   1 },
1862     { ISD::SIGN_EXTEND, MVT::v8i16,  MVT::v4i1,   1 },
1863     { ISD::SIGN_EXTEND, MVT::v8i8,   MVT::v8i1,   1 },
1864     { ISD::SIGN_EXTEND, MVT::v16i8,  MVT::v8i1,   1 },
1865     { ISD::SIGN_EXTEND, MVT::v8i16,  MVT::v8i1,   1 },
1866     { ISD::SIGN_EXTEND, MVT::v16i8,  MVT::v16i1,  1 },
1867     { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i1,  1 },
1868     { ISD::SIGN_EXTEND, MVT::v32i8,  MVT::v32i1,  1 },
1869     { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v32i1,  1 },
1870     { ISD::SIGN_EXTEND, MVT::v32i8,  MVT::v64i1,  1 },
1871     { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v64i1,  1 },
1872 
1873     // Mask zero extend is a sext + shift.
1874     { ISD::ZERO_EXTEND, MVT::v2i8,   MVT::v2i1,   2 },
1875     { ISD::ZERO_EXTEND, MVT::v16i8,  MVT::v2i1,   2 },
1876     { ISD::ZERO_EXTEND, MVT::v2i16,  MVT::v2i1,   2 },
1877     { ISD::ZERO_EXTEND, MVT::v8i16,  MVT::v2i1,   2 },
1878     { ISD::ZERO_EXTEND, MVT::v4i8,   MVT::v4i1,   2 },
1879     { ISD::ZERO_EXTEND, MVT::v16i8,  MVT::v4i1,   2 },
1880     { ISD::ZERO_EXTEND, MVT::v4i16,  MVT::v4i1,   2 },
1881     { ISD::ZERO_EXTEND, MVT::v8i16,  MVT::v4i1,   2 },
1882     { ISD::ZERO_EXTEND, MVT::v8i8,   MVT::v8i1,   2 },
1883     { ISD::ZERO_EXTEND, MVT::v16i8,  MVT::v8i1,   2 },
1884     { ISD::ZERO_EXTEND, MVT::v8i16,  MVT::v8i1,   2 },
1885     { ISD::ZERO_EXTEND, MVT::v16i8,  MVT::v16i1,  2 },
1886     { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i1,  2 },
1887     { ISD::ZERO_EXTEND, MVT::v32i8,  MVT::v32i1,  2 },
1888     { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v32i1,  2 },
1889     { ISD::ZERO_EXTEND, MVT::v32i8,  MVT::v64i1,  2 },
1890     { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v64i1,  2 },
1891 
1892     { ISD::TRUNCATE,    MVT::v2i1,   MVT::v2i8,   2 },
1893     { ISD::TRUNCATE,    MVT::v2i1,   MVT::v16i8,  2 },
1894     { ISD::TRUNCATE,    MVT::v2i1,   MVT::v2i16,  2 },
1895     { ISD::TRUNCATE,    MVT::v2i1,   MVT::v8i16,  2 },
1896     { ISD::TRUNCATE,    MVT::v4i1,   MVT::v4i8,   2 },
1897     { ISD::TRUNCATE,    MVT::v4i1,   MVT::v16i8,  2 },
1898     { ISD::TRUNCATE,    MVT::v4i1,   MVT::v4i16,  2 },
1899     { ISD::TRUNCATE,    MVT::v4i1,   MVT::v8i16,  2 },
1900     { ISD::TRUNCATE,    MVT::v8i1,   MVT::v8i8,   2 },
1901     { ISD::TRUNCATE,    MVT::v8i1,   MVT::v16i8,  2 },
1902     { ISD::TRUNCATE,    MVT::v8i1,   MVT::v8i16,  2 },
1903     { ISD::TRUNCATE,    MVT::v16i1,  MVT::v16i8,  2 },
1904     { ISD::TRUNCATE,    MVT::v16i1,  MVT::v16i16, 2 },
1905     { ISD::TRUNCATE,    MVT::v32i1,  MVT::v32i8,  2 },
1906     { ISD::TRUNCATE,    MVT::v32i1,  MVT::v16i16, 2 },
1907     { ISD::TRUNCATE,    MVT::v64i1,  MVT::v32i8,  2 },
1908     { ISD::TRUNCATE,    MVT::v64i1,  MVT::v16i16, 2 },
1909 
1910     { ISD::TRUNCATE,    MVT::v16i8,  MVT::v16i16, 2 },
1911   };
1912 
1913   static const TypeConversionCostTblEntry AVX512DQVLConversionTbl[] = {
1914     // Mask sign extend has an instruction.
1915     { ISD::SIGN_EXTEND, MVT::v2i64,  MVT::v2i1,   1 },
1916     { ISD::SIGN_EXTEND, MVT::v4i32,  MVT::v2i1,   1 },
1917     { ISD::SIGN_EXTEND, MVT::v4i32,  MVT::v4i1,   1 },
1918     { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v16i1,  1 },
1919     { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v4i1,   1 },
1920     { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v8i1,   1 },
1921     { ISD::SIGN_EXTEND, MVT::v8i32,  MVT::v16i1,  1 },
1922     { ISD::SIGN_EXTEND, MVT::v8i32,  MVT::v8i1,   1 },
1923 
1924     // Mask zero extend is a sext + shift.
1925     { ISD::ZERO_EXTEND, MVT::v2i64,  MVT::v2i1,   2 },
1926     { ISD::ZERO_EXTEND, MVT::v4i32,  MVT::v2i1,   2 },
1927     { ISD::ZERO_EXTEND, MVT::v4i32,  MVT::v4i1,   2 },
1928     { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v16i1,  2 },
1929     { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v4i1,   2 },
1930     { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v8i1,   2 },
1931     { ISD::ZERO_EXTEND, MVT::v8i32,  MVT::v16i1,  2 },
1932     { ISD::ZERO_EXTEND, MVT::v8i32,  MVT::v8i1,   2 },
1933 
1934     { ISD::TRUNCATE,    MVT::v16i1,  MVT::v4i64,  2 },
1935     { ISD::TRUNCATE,    MVT::v16i1,  MVT::v8i32,  2 },
1936     { ISD::TRUNCATE,    MVT::v2i1,   MVT::v2i64,  2 },
1937     { ISD::TRUNCATE,    MVT::v2i1,   MVT::v4i32,  2 },
1938     { ISD::TRUNCATE,    MVT::v4i1,   MVT::v4i32,  2 },
1939     { ISD::TRUNCATE,    MVT::v4i1,   MVT::v4i64,  2 },
1940     { ISD::TRUNCATE,    MVT::v8i1,   MVT::v4i64,  2 },
1941     { ISD::TRUNCATE,    MVT::v8i1,   MVT::v8i32,  2 },
1942 
1943     { ISD::SINT_TO_FP,  MVT::v2f32,  MVT::v2i64,  1 },
1944     { ISD::SINT_TO_FP,  MVT::v2f64,  MVT::v2i64,  1 },
1945     { ISD::SINT_TO_FP,  MVT::v4f32,  MVT::v4i64,  1 },
1946     { ISD::SINT_TO_FP,  MVT::v4f64,  MVT::v4i64,  1 },
1947 
1948     { ISD::UINT_TO_FP,  MVT::v2f32,  MVT::v2i64,  1 },
1949     { ISD::UINT_TO_FP,  MVT::v2f64,  MVT::v2i64,  1 },
1950     { ISD::UINT_TO_FP,  MVT::v4f32,  MVT::v4i64,  1 },
1951     { ISD::UINT_TO_FP,  MVT::v4f64,  MVT::v4i64,  1 },
1952 
1953     { ISD::FP_TO_SINT,  MVT::v2i64,  MVT::v4f32,  1 },
1954     { ISD::FP_TO_SINT,  MVT::v4i64,  MVT::v4f32,  1 },
1955     { ISD::FP_TO_SINT,  MVT::v2i64,  MVT::v2f64,  1 },
1956     { ISD::FP_TO_SINT,  MVT::v4i64,  MVT::v4f64,  1 },
1957 
1958     { ISD::FP_TO_UINT,  MVT::v2i64,  MVT::v4f32,  1 },
1959     { ISD::FP_TO_UINT,  MVT::v4i64,  MVT::v4f32,  1 },
1960     { ISD::FP_TO_UINT,  MVT::v2i64,  MVT::v2f64,  1 },
1961     { ISD::FP_TO_UINT,  MVT::v4i64,  MVT::v4f64,  1 },
1962   };
1963 
1964   static const TypeConversionCostTblEntry AVX512VLConversionTbl[] = {
1965     { ISD::TRUNCATE,  MVT::v2i1,    MVT::v2i8,   3 }, // sext+vpslld+vptestmd
1966     { ISD::TRUNCATE,  MVT::v4i1,    MVT::v4i8,   3 }, // sext+vpslld+vptestmd
1967     { ISD::TRUNCATE,  MVT::v8i1,    MVT::v8i8,   3 }, // sext+vpslld+vptestmd
1968     { ISD::TRUNCATE,  MVT::v16i1,   MVT::v16i8,  8 }, // split+2*v8i8
1969     { ISD::TRUNCATE,  MVT::v2i1,    MVT::v2i16,  3 }, // sext+vpsllq+vptestmq
1970     { ISD::TRUNCATE,  MVT::v4i1,    MVT::v4i16,  3 }, // sext+vpsllq+vptestmq
1971     { ISD::TRUNCATE,  MVT::v8i1,    MVT::v8i16,  3 }, // sext+vpsllq+vptestmq
1972     { ISD::TRUNCATE,  MVT::v16i1,   MVT::v16i16, 8 }, // split+2*v8i16
1973     { ISD::TRUNCATE,  MVT::v2i1,    MVT::v2i32,  2 }, // vpslld+vptestmd
1974     { ISD::TRUNCATE,  MVT::v4i1,    MVT::v4i32,  2 }, // vpslld+vptestmd
1975     { ISD::TRUNCATE,  MVT::v8i1,    MVT::v8i32,  2 }, // vpslld+vptestmd
1976     { ISD::TRUNCATE,  MVT::v2i1,    MVT::v2i64,  2 }, // vpsllq+vptestmq
1977     { ISD::TRUNCATE,  MVT::v4i1,    MVT::v4i64,  2 }, // vpsllq+vptestmq
1978     { ISD::TRUNCATE,  MVT::v4i32,   MVT::v4i64,  1 }, // vpmovqd
1979     { ISD::TRUNCATE,  MVT::v4i8,    MVT::v4i64,  2 }, // vpmovqb
1980     { ISD::TRUNCATE,  MVT::v4i16,   MVT::v4i64,  2 }, // vpmovqw
1981     { ISD::TRUNCATE,  MVT::v8i8,    MVT::v8i32,  2 }, // vpmovwb
1982 
1983     // sign extend is vpcmpeq+maskedmove+vpmovdw+vpacksswb
1984     // zero extend is vpcmpeq+maskedmove+vpmovdw+vpsrlw+vpackuswb
1985     { ISD::SIGN_EXTEND, MVT::v2i8,   MVT::v2i1,   5 },
1986     { ISD::ZERO_EXTEND, MVT::v2i8,   MVT::v2i1,   6 },
1987     { ISD::SIGN_EXTEND, MVT::v4i8,   MVT::v4i1,   5 },
1988     { ISD::ZERO_EXTEND, MVT::v4i8,   MVT::v4i1,   6 },
1989     { ISD::SIGN_EXTEND, MVT::v8i8,   MVT::v8i1,   5 },
1990     { ISD::ZERO_EXTEND, MVT::v8i8,   MVT::v8i1,   6 },
1991     { ISD::SIGN_EXTEND, MVT::v16i8,  MVT::v16i1, 10 },
1992     { ISD::ZERO_EXTEND, MVT::v16i8,  MVT::v16i1, 12 },
1993 
1994     // sign extend is vpcmpeq+maskedmove+vpmovdw
1995     // zero extend is vpcmpeq+maskedmove+vpmovdw+vpsrlw
1996     { ISD::SIGN_EXTEND, MVT::v2i16,  MVT::v2i1,   4 },
1997     { ISD::ZERO_EXTEND, MVT::v2i16,  MVT::v2i1,   5 },
1998     { ISD::SIGN_EXTEND, MVT::v4i16,  MVT::v4i1,   4 },
1999     { ISD::ZERO_EXTEND, MVT::v4i16,  MVT::v4i1,   5 },
2000     { ISD::SIGN_EXTEND, MVT::v8i16,  MVT::v8i1,   4 },
2001     { ISD::ZERO_EXTEND, MVT::v8i16,  MVT::v8i1,   5 },
2002     { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i1, 10 },
2003     { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i1, 12 },
2004 
2005     { ISD::SIGN_EXTEND, MVT::v2i32,  MVT::v2i1,   1 }, // vpternlogd
2006     { ISD::ZERO_EXTEND, MVT::v2i32,  MVT::v2i1,   2 }, // vpternlogd+psrld
2007     { ISD::SIGN_EXTEND, MVT::v4i32,  MVT::v4i1,   1 }, // vpternlogd
2008     { ISD::ZERO_EXTEND, MVT::v4i32,  MVT::v4i1,   2 }, // vpternlogd+psrld
2009     { ISD::SIGN_EXTEND, MVT::v8i32,  MVT::v8i1,   1 }, // vpternlogd
2010     { ISD::ZERO_EXTEND, MVT::v8i32,  MVT::v8i1,   2 }, // vpternlogd+psrld
2011     { ISD::SIGN_EXTEND, MVT::v2i64,  MVT::v2i1,   1 }, // vpternlogq
2012     { ISD::ZERO_EXTEND, MVT::v2i64,  MVT::v2i1,   2 }, // vpternlogq+psrlq
2013     { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v4i1,   1 }, // vpternlogq
2014     { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v4i1,   2 }, // vpternlogq+psrlq
2015 
2016     { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v16i8,  1 },
2017     { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v16i8,  1 },
2018     { ISD::SIGN_EXTEND, MVT::v8i32,  MVT::v16i8,  1 },
2019     { ISD::ZERO_EXTEND, MVT::v8i32,  MVT::v16i8,  1 },
2020     { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i8,  1 },
2021     { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i8,  1 },
2022     { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v8i16,  1 },
2023     { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v8i16,  1 },
2024     { ISD::SIGN_EXTEND, MVT::v8i32,  MVT::v8i16,  1 },
2025     { ISD::ZERO_EXTEND, MVT::v8i32,  MVT::v8i16,  1 },
2026     { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v4i32,  1 },
2027     { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v4i32,  1 },
2028 
2029     { ISD::SINT_TO_FP,  MVT::v2f64,  MVT::v16i8,  1 },
2030     { ISD::SINT_TO_FP,  MVT::v8f32,  MVT::v16i8,  1 },
2031     { ISD::SINT_TO_FP,  MVT::v2f64,  MVT::v8i16,  1 },
2032     { ISD::SINT_TO_FP,  MVT::v8f32,  MVT::v8i16,  1 },
2033 
2034     { ISD::UINT_TO_FP,  MVT::f32,    MVT::i64,    1 },
2035     { ISD::UINT_TO_FP,  MVT::f64,    MVT::i64,    1 },
2036     { ISD::UINT_TO_FP,  MVT::v2f64,  MVT::v16i8,  1 },
2037     { ISD::UINT_TO_FP,  MVT::v8f32,  MVT::v16i8,  1 },
2038     { ISD::UINT_TO_FP,  MVT::v2f64,  MVT::v8i16,  1 },
2039     { ISD::UINT_TO_FP,  MVT::v8f32,  MVT::v8i16,  1 },
2040     { ISD::UINT_TO_FP,  MVT::v2f32,  MVT::v2i32,  1 },
2041     { ISD::UINT_TO_FP,  MVT::v4f32,  MVT::v4i32,  1 },
2042     { ISD::UINT_TO_FP,  MVT::v4f64,  MVT::v4i32,  1 },
2043     { ISD::UINT_TO_FP,  MVT::v8f32,  MVT::v8i32,  1 },
2044     { ISD::UINT_TO_FP,  MVT::v2f32,  MVT::v2i64,  5 },
2045     { ISD::UINT_TO_FP,  MVT::v2f64,  MVT::v2i64,  5 },
2046     { ISD::UINT_TO_FP,  MVT::v4f64,  MVT::v4i64,  5 },
2047 
2048     { ISD::FP_TO_SINT,  MVT::v16i8,  MVT::v8f32,  2 },
2049     { ISD::FP_TO_SINT,  MVT::v16i8,  MVT::v16f32, 2 },
2050     { ISD::FP_TO_SINT,  MVT::v32i8,  MVT::v32f32, 5 },
2051 
2052     { ISD::FP_TO_UINT,  MVT::i64,    MVT::f32,    1 },
2053     { ISD::FP_TO_UINT,  MVT::i64,    MVT::f64,    1 },
2054     { ISD::FP_TO_UINT,  MVT::v4i32,  MVT::v4f32,  1 },
2055     { ISD::FP_TO_UINT,  MVT::v4i32,  MVT::v2f64,  1 },
2056     { ISD::FP_TO_UINT,  MVT::v4i32,  MVT::v4f64,  1 },
2057     { ISD::FP_TO_UINT,  MVT::v8i32,  MVT::v8f32,  1 },
2058     { ISD::FP_TO_UINT,  MVT::v8i32,  MVT::v8f64,  1 },
2059   };
2060 
2061   static const TypeConversionCostTblEntry AVX2ConversionTbl[] = {
2062     { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v4i1,   3 },
2063     { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v4i1,   3 },
2064     { ISD::SIGN_EXTEND, MVT::v8i32,  MVT::v8i1,   3 },
2065     { ISD::ZERO_EXTEND, MVT::v8i32,  MVT::v8i1,   3 },
2066     { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i1,  1 },
2067     { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i1,  1 },
2068 
2069     { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v16i8,  2 },
2070     { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v16i8,  2 },
2071     { ISD::SIGN_EXTEND, MVT::v8i32,  MVT::v16i8,  2 },
2072     { ISD::ZERO_EXTEND, MVT::v8i32,  MVT::v16i8,  2 },
2073     { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i8,  2 },
2074     { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i8,  2 },
2075     { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v8i16,  2 },
2076     { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v8i16,  2 },
2077     { ISD::SIGN_EXTEND, MVT::v8i32,  MVT::v8i16,  2 },
2078     { ISD::ZERO_EXTEND, MVT::v8i32,  MVT::v8i16,  2 },
2079     { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i16, 3 },
2080     { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i16, 3 },
2081     { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v4i32,  2 },
2082     { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v4i32,  2 },
2083 
2084     { ISD::TRUNCATE,    MVT::v8i1,   MVT::v8i32,  2 },
2085 
2086     { ISD::TRUNCATE,    MVT::v16i16, MVT::v16i32, 4 },
2087     { ISD::TRUNCATE,    MVT::v16i8,  MVT::v16i32, 4 },
2088     { ISD::TRUNCATE,    MVT::v16i8,  MVT::v8i16,  1 },
2089     { ISD::TRUNCATE,    MVT::v16i8,  MVT::v4i32,  1 },
2090     { ISD::TRUNCATE,    MVT::v16i8,  MVT::v2i64,  1 },
2091     { ISD::TRUNCATE,    MVT::v16i8,  MVT::v8i32,  4 },
2092     { ISD::TRUNCATE,    MVT::v16i8,  MVT::v4i64,  4 },
2093     { ISD::TRUNCATE,    MVT::v8i16,  MVT::v4i32,  1 },
2094     { ISD::TRUNCATE,    MVT::v8i16,  MVT::v2i64,  1 },
2095     { ISD::TRUNCATE,    MVT::v8i16,  MVT::v4i64,  5 },
2096     { ISD::TRUNCATE,    MVT::v4i32,  MVT::v4i64,  1 },
2097     { ISD::TRUNCATE,    MVT::v8i16,  MVT::v8i32,  2 },
2098 
2099     { ISD::FP_EXTEND,   MVT::v8f64,  MVT::v8f32,  3 },
2100     { ISD::FP_ROUND,    MVT::v8f32,  MVT::v8f64,  3 },
2101 
2102     { ISD::FP_TO_SINT,  MVT::v16i16, MVT::v8f32,  1 },
2103     { ISD::FP_TO_SINT,  MVT::v4i32,  MVT::v4f64,  1 },
2104     { ISD::FP_TO_SINT,  MVT::v8i32,  MVT::v8f32,  1 },
2105     { ISD::FP_TO_SINT,  MVT::v8i32,  MVT::v8f64,  3 },
2106 
2107     { ISD::FP_TO_UINT,  MVT::i64,    MVT::f32,    3 },
2108     { ISD::FP_TO_UINT,  MVT::i64,    MVT::f64,    3 },
2109     { ISD::FP_TO_UINT,  MVT::v16i16, MVT::v8f32,  1 },
2110     { ISD::FP_TO_UINT,  MVT::v4i32,  MVT::v4f32,  3 },
2111     { ISD::FP_TO_UINT,  MVT::v4i32,  MVT::v2f64,  4 },
2112     { ISD::FP_TO_UINT,  MVT::v4i32,  MVT::v4f64,  4 },
2113     { ISD::FP_TO_UINT,  MVT::v8i32,  MVT::v8f32,  3 },
2114     { ISD::FP_TO_UINT,  MVT::v8i32,  MVT::v4f64,  4 },
2115 
2116     { ISD::SINT_TO_FP,  MVT::v2f64,  MVT::v16i8,  2 },
2117     { ISD::SINT_TO_FP,  MVT::v8f32,  MVT::v16i8,  2 },
2118     { ISD::SINT_TO_FP,  MVT::v2f64,  MVT::v8i16,  2 },
2119     { ISD::SINT_TO_FP,  MVT::v8f32,  MVT::v8i16,  2 },
2120     { ISD::SINT_TO_FP,  MVT::v4f64,  MVT::v4i32,  1 },
2121     { ISD::SINT_TO_FP,  MVT::v8f32,  MVT::v8i32,  1 },
2122     { ISD::SINT_TO_FP,  MVT::v8f64,  MVT::v8i32,  3 },
2123 
2124     { ISD::UINT_TO_FP,  MVT::v2f64,  MVT::v16i8,  2 },
2125     { ISD::UINT_TO_FP,  MVT::v8f32,  MVT::v16i8,  2 },
2126     { ISD::UINT_TO_FP,  MVT::v2f64,  MVT::v8i16,  2 },
2127     { ISD::UINT_TO_FP,  MVT::v8f32,  MVT::v8i16,  2 },
2128     { ISD::UINT_TO_FP,  MVT::v2f32,  MVT::v2i32,  2 },
2129     { ISD::UINT_TO_FP,  MVT::v2f64,  MVT::v2i32,  1 },
2130     { ISD::UINT_TO_FP,  MVT::v4f32,  MVT::v4i32,  2 },
2131     { ISD::UINT_TO_FP,  MVT::v4f64,  MVT::v4i32,  2 },
2132     { ISD::UINT_TO_FP,  MVT::v8f32,  MVT::v8i32,  2 },
2133     { ISD::UINT_TO_FP,  MVT::v8f64,  MVT::v8i32,  4 },
2134   };
2135 
2136   static const TypeConversionCostTblEntry AVXConversionTbl[] = {
2137     { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v4i1,   6 },
2138     { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v4i1,   4 },
2139     { ISD::SIGN_EXTEND, MVT::v8i32,  MVT::v8i1,   7 },
2140     { ISD::ZERO_EXTEND, MVT::v8i32,  MVT::v8i1,   4 },
2141     { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i1,  4 },
2142     { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i1,  4 },
2143 
2144     { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v16i8,  3 },
2145     { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v16i8,  3 },
2146     { ISD::SIGN_EXTEND, MVT::v8i32,  MVT::v16i8,  3 },
2147     { ISD::ZERO_EXTEND, MVT::v8i32,  MVT::v16i8,  3 },
2148     { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i8,  3 },
2149     { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i8,  3 },
2150     { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v8i16,  3 },
2151     { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v8i16,  3 },
2152     { ISD::SIGN_EXTEND, MVT::v8i32,  MVT::v8i16,  3 },
2153     { ISD::ZERO_EXTEND, MVT::v8i32,  MVT::v8i16,  3 },
2154     { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v4i32,  3 },
2155     { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v4i32,  3 },
2156 
2157     { ISD::TRUNCATE,    MVT::v4i1,   MVT::v4i64,  4 },
2158     { ISD::TRUNCATE,    MVT::v8i1,   MVT::v8i32,  5 },
2159     { ISD::TRUNCATE,    MVT::v16i1,  MVT::v16i16, 4 },
2160     { ISD::TRUNCATE,    MVT::v8i1,   MVT::v8i64,  9 },
2161     { ISD::TRUNCATE,    MVT::v16i1,  MVT::v16i64, 11 },
2162 
2163     { ISD::TRUNCATE,    MVT::v16i16, MVT::v16i32, 6 },
2164     { ISD::TRUNCATE,    MVT::v16i8,  MVT::v16i32, 6 },
2165     { ISD::TRUNCATE,    MVT::v16i8,  MVT::v16i16, 2 }, // and+extract+packuswb
2166     { ISD::TRUNCATE,    MVT::v16i8,  MVT::v8i32,  5 },
2167     { ISD::TRUNCATE,    MVT::v8i16,  MVT::v8i32,  5 },
2168     { ISD::TRUNCATE,    MVT::v16i8,  MVT::v4i64,  5 },
2169     { ISD::TRUNCATE,    MVT::v8i16,  MVT::v4i64,  3 }, // and+extract+2*packusdw
2170     { ISD::TRUNCATE,    MVT::v4i32,  MVT::v4i64,  2 },
2171 
2172     { ISD::SINT_TO_FP,  MVT::v4f32,  MVT::v4i1,   3 },
2173     { ISD::SINT_TO_FP,  MVT::v4f64,  MVT::v4i1,   3 },
2174     { ISD::SINT_TO_FP,  MVT::v8f32,  MVT::v8i1,   8 },
2175     { ISD::SINT_TO_FP,  MVT::v8f32,  MVT::v16i8,  4 },
2176     { ISD::SINT_TO_FP,  MVT::v4f64,  MVT::v16i8,  2 },
2177     { ISD::SINT_TO_FP,  MVT::v8f32,  MVT::v8i16,  4 },
2178     { ISD::SINT_TO_FP,  MVT::v4f64,  MVT::v8i16,  2 },
2179     { ISD::SINT_TO_FP,  MVT::v4f64,  MVT::v4i32,  2 },
2180     { ISD::SINT_TO_FP,  MVT::v8f32,  MVT::v8i32,  2 },
2181     { ISD::SINT_TO_FP,  MVT::v8f64,  MVT::v8i32,  4 },
2182     { ISD::SINT_TO_FP,  MVT::v4f32,  MVT::v2i64,  5 },
2183     { ISD::SINT_TO_FP,  MVT::v4f32,  MVT::v4i64,  8 },
2184 
2185     { ISD::UINT_TO_FP,  MVT::v4f32,  MVT::v4i1,   7 },
2186     { ISD::UINT_TO_FP,  MVT::v4f64,  MVT::v4i1,   7 },
2187     { ISD::UINT_TO_FP,  MVT::v8f32,  MVT::v8i1,   6 },
2188     { ISD::UINT_TO_FP,  MVT::v8f32,  MVT::v16i8,  4 },
2189     { ISD::UINT_TO_FP,  MVT::v4f64,  MVT::v16i8,  2 },
2190     { ISD::UINT_TO_FP,  MVT::v8f32,  MVT::v8i16,  4 },
2191     { ISD::UINT_TO_FP,  MVT::v4f64,  MVT::v8i16,  2 },
2192     { ISD::UINT_TO_FP,  MVT::v2f32,  MVT::v2i32,  4 },
2193     { ISD::UINT_TO_FP,  MVT::v2f64,  MVT::v2i32,  4 },
2194     { ISD::UINT_TO_FP,  MVT::v4f32,  MVT::v4i32,  5 },
2195     { ISD::UINT_TO_FP,  MVT::v4f64,  MVT::v4i32,  6 },
2196     { ISD::UINT_TO_FP,  MVT::v8f32,  MVT::v8i32,  8 },
2197     { ISD::UINT_TO_FP,  MVT::v8f64,  MVT::v8i32, 10 },
2198     { ISD::UINT_TO_FP,  MVT::v2f32,  MVT::v2i64, 10 },
2199     { ISD::UINT_TO_FP,  MVT::v4f32,  MVT::v4i64, 18 },
2200     { ISD::UINT_TO_FP,  MVT::v2f64,  MVT::v2i64,  5 },
2201     { ISD::UINT_TO_FP,  MVT::v4f64,  MVT::v4i64, 10 },
2202 
2203     { ISD::FP_TO_SINT,  MVT::v16i8,  MVT::v8f32,  2 },
2204     { ISD::FP_TO_SINT,  MVT::v16i8,  MVT::v4f64,  2 },
2205     { ISD::FP_TO_SINT,  MVT::v32i8,  MVT::v8f32,  2 },
2206     { ISD::FP_TO_SINT,  MVT::v32i8,  MVT::v4f64,  2 },
2207     { ISD::FP_TO_SINT,  MVT::v8i16,  MVT::v8f32,  2 },
2208     { ISD::FP_TO_SINT,  MVT::v8i16,  MVT::v4f64,  2 },
2209     { ISD::FP_TO_SINT,  MVT::v16i16, MVT::v8f32,  2 },
2210     { ISD::FP_TO_SINT,  MVT::v16i16, MVT::v4f64,  2 },
2211     { ISD::FP_TO_SINT,  MVT::v4i32,  MVT::v4f64,  2 },
2212     { ISD::FP_TO_SINT,  MVT::v8i32,  MVT::v8f32,  2 },
2213     { ISD::FP_TO_SINT,  MVT::v8i32,  MVT::v8f64,  5 },
2214 
2215     { ISD::FP_TO_UINT,  MVT::v16i8,  MVT::v8f32,  2 },
2216     { ISD::FP_TO_UINT,  MVT::v16i8,  MVT::v4f64,  2 },
2217     { ISD::FP_TO_UINT,  MVT::v32i8,  MVT::v8f32,  2 },
2218     { ISD::FP_TO_UINT,  MVT::v32i8,  MVT::v4f64,  2 },
2219     { ISD::FP_TO_UINT,  MVT::v8i16,  MVT::v8f32,  2 },
2220     { ISD::FP_TO_UINT,  MVT::v8i16,  MVT::v4f64,  2 },
2221     { ISD::FP_TO_UINT,  MVT::v16i16, MVT::v8f32,  2 },
2222     { ISD::FP_TO_UINT,  MVT::v16i16, MVT::v4f64,  2 },
2223     { ISD::FP_TO_UINT,  MVT::v4i32,  MVT::v4f32,  3 },
2224     { ISD::FP_TO_UINT,  MVT::v4i32,  MVT::v2f64,  4 },
2225     { ISD::FP_TO_UINT,  MVT::v4i32,  MVT::v4f64,  6 },
2226     { ISD::FP_TO_UINT,  MVT::v8i32,  MVT::v8f32,  7 },
2227     { ISD::FP_TO_UINT,  MVT::v8i32,  MVT::v4f64,  7 },
2228 
2229     { ISD::FP_EXTEND,   MVT::v4f64,  MVT::v4f32,  1 },
2230     { ISD::FP_ROUND,    MVT::v4f32,  MVT::v4f64,  1 },
2231   };
2232 
2233   static const TypeConversionCostTblEntry SSE41ConversionTbl[] = {
2234     { ISD::ZERO_EXTEND, MVT::v2i64, MVT::v16i8,   1 },
2235     { ISD::SIGN_EXTEND, MVT::v2i64, MVT::v16i8,   1 },
2236     { ISD::ZERO_EXTEND, MVT::v4i32, MVT::v16i8,   1 },
2237     { ISD::SIGN_EXTEND, MVT::v4i32, MVT::v16i8,   1 },
2238     { ISD::ZERO_EXTEND, MVT::v8i16, MVT::v16i8,   1 },
2239     { ISD::SIGN_EXTEND, MVT::v8i16, MVT::v16i8,   1 },
2240     { ISD::ZERO_EXTEND, MVT::v2i64, MVT::v8i16,   1 },
2241     { ISD::SIGN_EXTEND, MVT::v2i64, MVT::v8i16,   1 },
2242     { ISD::ZERO_EXTEND, MVT::v4i32, MVT::v8i16,   1 },
2243     { ISD::SIGN_EXTEND, MVT::v4i32, MVT::v8i16,   1 },
2244     { ISD::ZERO_EXTEND, MVT::v2i64, MVT::v4i32,   1 },
2245     { ISD::SIGN_EXTEND, MVT::v2i64, MVT::v4i32,   1 },
2246 
2247     // These truncates end up widening elements.
2248     { ISD::TRUNCATE,    MVT::v2i1,   MVT::v2i8,   1 }, // PMOVXZBQ
2249     { ISD::TRUNCATE,    MVT::v2i1,   MVT::v2i16,  1 }, // PMOVXZWQ
2250     { ISD::TRUNCATE,    MVT::v4i1,   MVT::v4i8,   1 }, // PMOVXZBD
2251 
2252     { ISD::TRUNCATE,    MVT::v16i8,  MVT::v4i32,  2 },
2253     { ISD::TRUNCATE,    MVT::v8i16,  MVT::v4i32,  2 },
2254     { ISD::TRUNCATE,    MVT::v16i8,  MVT::v2i64,  2 },
2255 
2256     { ISD::SINT_TO_FP,  MVT::f32,    MVT::i32,    1 },
2257     { ISD::SINT_TO_FP,  MVT::f64,    MVT::i32,    1 },
2258     { ISD::SINT_TO_FP,  MVT::f32,    MVT::i64,    1 },
2259     { ISD::SINT_TO_FP,  MVT::f64,    MVT::i64,    1 },
2260     { ISD::SINT_TO_FP,  MVT::v4f32,  MVT::v16i8,  1 },
2261     { ISD::SINT_TO_FP,  MVT::v2f64,  MVT::v16i8,  1 },
2262     { ISD::SINT_TO_FP,  MVT::v4f32,  MVT::v8i16,  1 },
2263     { ISD::SINT_TO_FP,  MVT::v2f64,  MVT::v8i16,  1 },
2264     { ISD::SINT_TO_FP,  MVT::v4f32,  MVT::v4i32,  1 },
2265     { ISD::SINT_TO_FP,  MVT::v2f64,  MVT::v4i32,  1 },
2266     { ISD::SINT_TO_FP,  MVT::v4f64,  MVT::v4i32,  2 },
2267 
2268     { ISD::UINT_TO_FP,  MVT::f32,    MVT::i32,    1 },
2269     { ISD::UINT_TO_FP,  MVT::f64,    MVT::i32,    1 },
2270     { ISD::UINT_TO_FP,  MVT::f32,    MVT::i64,    4 },
2271     { ISD::UINT_TO_FP,  MVT::f64,    MVT::i64,    4 },
2272     { ISD::UINT_TO_FP,  MVT::v4f32,  MVT::v16i8,  1 },
2273     { ISD::UINT_TO_FP,  MVT::v2f64,  MVT::v16i8,  1 },
2274     { ISD::UINT_TO_FP,  MVT::v4f32,  MVT::v8i16,  1 },
2275     { ISD::UINT_TO_FP,  MVT::v2f64,  MVT::v8i16,  1 },
2276     { ISD::UINT_TO_FP,  MVT::v2f32,  MVT::v2i32,  3 },
2277     { ISD::UINT_TO_FP,  MVT::v4f32,  MVT::v4i32,  3 },
2278     { ISD::UINT_TO_FP,  MVT::v2f64,  MVT::v4i32,  2 },
2279     { ISD::UINT_TO_FP,  MVT::v4f32,  MVT::v2i64, 12 },
2280     { ISD::UINT_TO_FP,  MVT::v4f32,  MVT::v4i64, 22 },
2281     { ISD::UINT_TO_FP,  MVT::v2f64,  MVT::v2i64,  4 },
2282 
2283     { ISD::FP_TO_SINT,  MVT::i32,    MVT::f32,    1 },
2284     { ISD::FP_TO_SINT,  MVT::i64,    MVT::f32,    1 },
2285     { ISD::FP_TO_SINT,  MVT::i32,    MVT::f64,    1 },
2286     { ISD::FP_TO_SINT,  MVT::i64,    MVT::f64,    1 },
2287     { ISD::FP_TO_SINT,  MVT::v16i8,  MVT::v4f32,  2 },
2288     { ISD::FP_TO_SINT,  MVT::v16i8,  MVT::v2f64,  2 },
2289     { ISD::FP_TO_SINT,  MVT::v8i16,  MVT::v4f32,  1 },
2290     { ISD::FP_TO_SINT,  MVT::v8i16,  MVT::v2f64,  1 },
2291     { ISD::FP_TO_SINT,  MVT::v4i32,  MVT::v4f32,  1 },
2292     { ISD::FP_TO_SINT,  MVT::v4i32,  MVT::v2f64,  1 },
2293 
2294     { ISD::FP_TO_UINT,  MVT::i32,    MVT::f32,    1 },
2295     { ISD::FP_TO_UINT,  MVT::i64,    MVT::f32,    4 },
2296     { ISD::FP_TO_UINT,  MVT::i32,    MVT::f64,    1 },
2297     { ISD::FP_TO_UINT,  MVT::i64,    MVT::f64,    4 },
2298     { ISD::FP_TO_UINT,  MVT::v16i8,  MVT::v4f32,  2 },
2299     { ISD::FP_TO_UINT,  MVT::v16i8,  MVT::v2f64,  2 },
2300     { ISD::FP_TO_UINT,  MVT::v8i16,  MVT::v4f32,  1 },
2301     { ISD::FP_TO_UINT,  MVT::v8i16,  MVT::v2f64,  1 },
2302     { ISD::FP_TO_UINT,  MVT::v4i32,  MVT::v4f32,  4 },
2303     { ISD::FP_TO_UINT,  MVT::v4i32,  MVT::v2f64,  4 },
2304   };
2305 
2306   static const TypeConversionCostTblEntry SSE2ConversionTbl[] = {
2307     // These are somewhat magic numbers justified by comparing the
2308     // output of llvm-mca for our various supported scheduler models
2309     // and basing it off the worst case scenario.
2310     { ISD::SINT_TO_FP,  MVT::f32,    MVT::i32,    3 },
2311     { ISD::SINT_TO_FP,  MVT::f64,    MVT::i32,    3 },
2312     { ISD::SINT_TO_FP,  MVT::f32,    MVT::i64,    3 },
2313     { ISD::SINT_TO_FP,  MVT::f64,    MVT::i64,    3 },
2314     { ISD::SINT_TO_FP,  MVT::v4f32,  MVT::v16i8,  3 },
2315     { ISD::SINT_TO_FP,  MVT::v2f64,  MVT::v16i8,  4 },
2316     { ISD::SINT_TO_FP,  MVT::v4f32,  MVT::v8i16,  3 },
2317     { ISD::SINT_TO_FP,  MVT::v2f64,  MVT::v8i16,  4 },
2318     { ISD::SINT_TO_FP,  MVT::v4f32,  MVT::v4i32,  3 },
2319     { ISD::SINT_TO_FP,  MVT::v2f64,  MVT::v4i32,  4 },
2320     { ISD::SINT_TO_FP,  MVT::v4f32,  MVT::v2i64,  8 },
2321     { ISD::SINT_TO_FP,  MVT::v2f64,  MVT::v2i64,  8 },
2322 
2323     { ISD::UINT_TO_FP,  MVT::f32,    MVT::i32,    3 },
2324     { ISD::UINT_TO_FP,  MVT::f64,    MVT::i32,    3 },
2325     { ISD::UINT_TO_FP,  MVT::f32,    MVT::i64,    8 },
2326     { ISD::UINT_TO_FP,  MVT::f64,    MVT::i64,    9 },
2327     { ISD::UINT_TO_FP,  MVT::v2f64,  MVT::v16i8,  4 },
2328     { ISD::UINT_TO_FP,  MVT::v4f32,  MVT::v16i8,  4 },
2329     { ISD::UINT_TO_FP,  MVT::v4f32,  MVT::v8i16,  4 },
2330     { ISD::UINT_TO_FP,  MVT::v2f64,  MVT::v8i16,  4 },
2331     { ISD::UINT_TO_FP,  MVT::v2f32,  MVT::v2i32,  7 },
2332     { ISD::UINT_TO_FP,  MVT::v2f64,  MVT::v4i32,  7 },
2333     { ISD::UINT_TO_FP,  MVT::v4f32,  MVT::v4i32,  5 },
2334     { ISD::UINT_TO_FP,  MVT::v2f64,  MVT::v2i64, 15 },
2335     { ISD::UINT_TO_FP,  MVT::v4f32,  MVT::v2i64, 18 },
2336 
2337     { ISD::FP_TO_SINT,  MVT::i32,    MVT::f32,    4 },
2338     { ISD::FP_TO_SINT,  MVT::i64,    MVT::f32,    4 },
2339     { ISD::FP_TO_SINT,  MVT::i32,    MVT::f64,    4 },
2340     { ISD::FP_TO_SINT,  MVT::i64,    MVT::f64,    4 },
2341     { ISD::FP_TO_SINT,  MVT::v16i8,  MVT::v4f32,  6 },
2342     { ISD::FP_TO_SINT,  MVT::v16i8,  MVT::v2f64,  6 },
2343     { ISD::FP_TO_SINT,  MVT::v8i16,  MVT::v4f32,  5 },
2344     { ISD::FP_TO_SINT,  MVT::v8i16,  MVT::v2f64,  5 },
2345     { ISD::FP_TO_SINT,  MVT::v4i32,  MVT::v4f32,  4 },
2346     { ISD::FP_TO_SINT,  MVT::v4i32,  MVT::v2f64,  4 },
2347 
2348     { ISD::FP_TO_UINT,  MVT::i32,    MVT::f32,    4 },
2349     { ISD::FP_TO_UINT,  MVT::i64,    MVT::f32,    4 },
2350     { ISD::FP_TO_UINT,  MVT::i32,    MVT::f64,    4 },
2351     { ISD::FP_TO_UINT,  MVT::i64,    MVT::f64,   15 },
2352     { ISD::FP_TO_UINT,  MVT::v16i8,  MVT::v4f32,  6 },
2353     { ISD::FP_TO_UINT,  MVT::v16i8,  MVT::v2f64,  6 },
2354     { ISD::FP_TO_UINT,  MVT::v8i16,  MVT::v4f32,  5 },
2355     { ISD::FP_TO_UINT,  MVT::v8i16,  MVT::v2f64,  5 },
2356     { ISD::FP_TO_UINT,  MVT::v4i32,  MVT::v4f32,  8 },
2357     { ISD::FP_TO_UINT,  MVT::v4i32,  MVT::v2f64,  8 },
2358 
2359     { ISD::ZERO_EXTEND, MVT::v2i64,  MVT::v16i8,  4 },
2360     { ISD::SIGN_EXTEND, MVT::v2i64,  MVT::v16i8,  4 },
2361     { ISD::ZERO_EXTEND, MVT::v4i32,  MVT::v16i8,  2 },
2362     { ISD::SIGN_EXTEND, MVT::v4i32,  MVT::v16i8,  3 },
2363     { ISD::ZERO_EXTEND, MVT::v8i16,  MVT::v16i8,  1 },
2364     { ISD::SIGN_EXTEND, MVT::v8i16,  MVT::v16i8,  2 },
2365     { ISD::ZERO_EXTEND, MVT::v2i64,  MVT::v8i16,  2 },
2366     { ISD::SIGN_EXTEND, MVT::v2i64,  MVT::v8i16,  3 },
2367     { ISD::ZERO_EXTEND, MVT::v4i32,  MVT::v8i16,  1 },
2368     { ISD::SIGN_EXTEND, MVT::v4i32,  MVT::v8i16,  2 },
2369     { ISD::ZERO_EXTEND, MVT::v2i64,  MVT::v4i32,  1 },
2370     { ISD::SIGN_EXTEND, MVT::v2i64,  MVT::v4i32,  2 },
2371 
2372     // These truncates are really widening elements.
2373     { ISD::TRUNCATE,    MVT::v2i1,   MVT::v2i32,  1 }, // PSHUFD
2374     { ISD::TRUNCATE,    MVT::v2i1,   MVT::v2i16,  2 }, // PUNPCKLWD+DQ
2375     { ISD::TRUNCATE,    MVT::v2i1,   MVT::v2i8,   3 }, // PUNPCKLBW+WD+PSHUFD
2376     { ISD::TRUNCATE,    MVT::v4i1,   MVT::v4i16,  1 }, // PUNPCKLWD
2377     { ISD::TRUNCATE,    MVT::v4i1,   MVT::v4i8,   2 }, // PUNPCKLBW+WD
2378     { ISD::TRUNCATE,    MVT::v8i1,   MVT::v8i8,   1 }, // PUNPCKLBW
2379 
2380     { ISD::TRUNCATE,    MVT::v16i8,  MVT::v8i16,  2 }, // PAND+PACKUSWB
2381     { ISD::TRUNCATE,    MVT::v16i8,  MVT::v16i16, 3 },
2382     { ISD::TRUNCATE,    MVT::v16i8,  MVT::v4i32,  3 }, // PAND+2*PACKUSWB
2383     { ISD::TRUNCATE,    MVT::v16i8,  MVT::v16i32, 7 },
2384     { ISD::TRUNCATE,    MVT::v2i16,  MVT::v2i32,  1 },
2385     { ISD::TRUNCATE,    MVT::v8i16,  MVT::v4i32,  3 },
2386     { ISD::TRUNCATE,    MVT::v8i16,  MVT::v8i32,  5 },
2387     { ISD::TRUNCATE,    MVT::v16i16, MVT::v16i32,10 },
2388     { ISD::TRUNCATE,    MVT::v16i8,  MVT::v2i64,  4 }, // PAND+3*PACKUSWB
2389     { ISD::TRUNCATE,    MVT::v8i16,  MVT::v2i64,  2 }, // PSHUFD+PSHUFLW
2390     { ISD::TRUNCATE,    MVT::v4i32,  MVT::v2i64,  1 }, // PSHUFD
2391   };
2392 
2393   // Attempt to map directly to (simple) MVT types to let us match custom entries.
2394   EVT SrcTy = TLI->getValueType(DL, Src);
2395   EVT DstTy = TLI->getValueType(DL, Dst);
2396 
2397   // The function getSimpleVT only handles simple value types.
2398   if (SrcTy.isSimple() && DstTy.isSimple()) {
2399     MVT SimpleSrcTy = SrcTy.getSimpleVT();
2400     MVT SimpleDstTy = DstTy.getSimpleVT();
2401 
2402     if (ST->useAVX512Regs()) {
2403       if (ST->hasBWI())
2404         if (const auto *Entry = ConvertCostTableLookup(
2405                 AVX512BWConversionTbl, ISD, SimpleDstTy, SimpleSrcTy))
2406           return AdjustCost(Entry->Cost);
2407 
2408       if (ST->hasDQI())
2409         if (const auto *Entry = ConvertCostTableLookup(
2410                 AVX512DQConversionTbl, ISD, SimpleDstTy, SimpleSrcTy))
2411           return AdjustCost(Entry->Cost);
2412 
2413       if (ST->hasAVX512())
2414         if (const auto *Entry = ConvertCostTableLookup(
2415                 AVX512FConversionTbl, ISD, SimpleDstTy, SimpleSrcTy))
2416           return AdjustCost(Entry->Cost);
2417     }
2418 
2419     if (ST->hasBWI())
2420       if (const auto *Entry = ConvertCostTableLookup(
2421               AVX512BWVLConversionTbl, ISD, SimpleDstTy, SimpleSrcTy))
2422         return AdjustCost(Entry->Cost);
2423 
2424     if (ST->hasDQI())
2425       if (const auto *Entry = ConvertCostTableLookup(
2426               AVX512DQVLConversionTbl, ISD, SimpleDstTy, SimpleSrcTy))
2427         return AdjustCost(Entry->Cost);
2428 
2429     if (ST->hasAVX512())
2430       if (const auto *Entry = ConvertCostTableLookup(AVX512VLConversionTbl, ISD,
2431                                                      SimpleDstTy, SimpleSrcTy))
2432         return AdjustCost(Entry->Cost);
2433 
2434     if (ST->hasAVX2()) {
2435       if (const auto *Entry = ConvertCostTableLookup(AVX2ConversionTbl, ISD,
2436                                                      SimpleDstTy, SimpleSrcTy))
2437         return AdjustCost(Entry->Cost);
2438     }
2439 
2440     if (ST->hasAVX()) {
2441       if (const auto *Entry = ConvertCostTableLookup(AVXConversionTbl, ISD,
2442                                                      SimpleDstTy, SimpleSrcTy))
2443         return AdjustCost(Entry->Cost);
2444     }
2445 
2446     if (ST->hasSSE41()) {
2447       if (const auto *Entry = ConvertCostTableLookup(SSE41ConversionTbl, ISD,
2448                                                      SimpleDstTy, SimpleSrcTy))
2449         return AdjustCost(Entry->Cost);
2450     }
2451 
2452     if (ST->hasSSE2()) {
2453       if (const auto *Entry = ConvertCostTableLookup(SSE2ConversionTbl, ISD,
2454                                                      SimpleDstTy, SimpleSrcTy))
2455         return AdjustCost(Entry->Cost);
2456     }
2457   }
2458 
2459   // Fall back to legalized types.
2460   std::pair<InstructionCost, MVT> LTSrc = TLI->getTypeLegalizationCost(DL, Src);
2461   std::pair<InstructionCost, MVT> LTDest =
2462       TLI->getTypeLegalizationCost(DL, Dst);
2463 
2464   if (ST->useAVX512Regs()) {
2465     if (ST->hasBWI())
2466       if (const auto *Entry = ConvertCostTableLookup(
2467               AVX512BWConversionTbl, ISD, LTDest.second, LTSrc.second))
2468         return AdjustCost(std::max(LTSrc.first, LTDest.first) * Entry->Cost);
2469 
2470     if (ST->hasDQI())
2471       if (const auto *Entry = ConvertCostTableLookup(
2472               AVX512DQConversionTbl, ISD, LTDest.second, LTSrc.second))
2473         return AdjustCost(std::max(LTSrc.first, LTDest.first) * Entry->Cost);
2474 
2475     if (ST->hasAVX512())
2476       if (const auto *Entry = ConvertCostTableLookup(
2477               AVX512FConversionTbl, ISD, LTDest.second, LTSrc.second))
2478         return AdjustCost(std::max(LTSrc.first, LTDest.first) * Entry->Cost);
2479   }
2480 
2481   if (ST->hasBWI())
2482     if (const auto *Entry = ConvertCostTableLookup(AVX512BWVLConversionTbl, ISD,
2483                                                    LTDest.second, LTSrc.second))
2484       return AdjustCost(std::max(LTSrc.first, LTDest.first) * Entry->Cost);
2485 
2486   if (ST->hasDQI())
2487     if (const auto *Entry = ConvertCostTableLookup(AVX512DQVLConversionTbl, ISD,
2488                                                    LTDest.second, LTSrc.second))
2489       return AdjustCost(std::max(LTSrc.first, LTDest.first) * Entry->Cost);
2490 
2491   if (ST->hasAVX512())
2492     if (const auto *Entry = ConvertCostTableLookup(AVX512VLConversionTbl, ISD,
2493                                                    LTDest.second, LTSrc.second))
2494       return AdjustCost(std::max(LTSrc.first, LTDest.first) * Entry->Cost);
2495 
2496   if (ST->hasAVX2())
2497     if (const auto *Entry = ConvertCostTableLookup(AVX2ConversionTbl, ISD,
2498                                                    LTDest.second, LTSrc.second))
2499       return AdjustCost(std::max(LTSrc.first, LTDest.first) * Entry->Cost);
2500 
2501   if (ST->hasAVX())
2502     if (const auto *Entry = ConvertCostTableLookup(AVXConversionTbl, ISD,
2503                                                    LTDest.second, LTSrc.second))
2504       return AdjustCost(std::max(LTSrc.first, LTDest.first) * Entry->Cost);
2505 
2506   if (ST->hasSSE41())
2507     if (const auto *Entry = ConvertCostTableLookup(SSE41ConversionTbl, ISD,
2508                                                    LTDest.second, LTSrc.second))
2509       return AdjustCost(std::max(LTSrc.first, LTDest.first) * Entry->Cost);
2510 
2511   if (ST->hasSSE2())
2512     if (const auto *Entry = ConvertCostTableLookup(SSE2ConversionTbl, ISD,
2513                                                    LTDest.second, LTSrc.second))
2514       return AdjustCost(std::max(LTSrc.first, LTDest.first) * Entry->Cost);
2515 
2516   // Fallback, for i8/i16 sitofp/uitofp cases we need to extend to i32 for
2517   // sitofp.
2518   if ((ISD == ISD::SINT_TO_FP || ISD == ISD::UINT_TO_FP) &&
2519       1 < Src->getScalarSizeInBits() && Src->getScalarSizeInBits() < 32) {
2520     Type *ExtSrc = Src->getWithNewBitWidth(32);
2521     unsigned ExtOpc =
2522         (ISD == ISD::SINT_TO_FP) ? Instruction::SExt : Instruction::ZExt;
2523 
2524     // For scalar loads the extend would be free.
2525     InstructionCost ExtCost = 0;
2526     if (!(Src->isIntegerTy() && I && isa<LoadInst>(I->getOperand(0))))
2527       ExtCost = getCastInstrCost(ExtOpc, ExtSrc, Src, CCH, CostKind);
2528 
2529     return ExtCost + getCastInstrCost(Instruction::SIToFP, Dst, ExtSrc,
2530                                       TTI::CastContextHint::None, CostKind);
2531   }
2532 
2533   // Fallback for fptosi/fptoui i8/i16 cases we need to truncate from fptosi
2534   // i32.
2535   if ((ISD == ISD::FP_TO_SINT || ISD == ISD::FP_TO_UINT) &&
2536       1 < Dst->getScalarSizeInBits() && Dst->getScalarSizeInBits() < 32) {
2537     Type *TruncDst = Dst->getWithNewBitWidth(32);
2538     return getCastInstrCost(Instruction::FPToSI, TruncDst, Src, CCH, CostKind) +
2539            getCastInstrCost(Instruction::Trunc, Dst, TruncDst,
2540                             TTI::CastContextHint::None, CostKind);
2541   }
2542 
2543   return AdjustCost(
2544       BaseT::getCastInstrCost(Opcode, Dst, Src, CCH, CostKind, I));
2545 }
2546 
2547 InstructionCost X86TTIImpl::getCmpSelInstrCost(unsigned Opcode, Type *ValTy,
2548                                                Type *CondTy,
2549                                                CmpInst::Predicate VecPred,
2550                                                TTI::TargetCostKind CostKind,
2551                                                const Instruction *I) {
2552   // TODO: Handle other cost kinds.
2553   if (CostKind != TTI::TCK_RecipThroughput)
2554     return BaseT::getCmpSelInstrCost(Opcode, ValTy, CondTy, VecPred, CostKind,
2555                                      I);
2556 
2557   // Legalize the type.
2558   std::pair<InstructionCost, MVT> LT = TLI->getTypeLegalizationCost(DL, ValTy);
2559 
2560   MVT MTy = LT.second;
2561 
2562   int ISD = TLI->InstructionOpcodeToISD(Opcode);
2563   assert(ISD && "Invalid opcode");
2564 
2565   unsigned ExtraCost = 0;
2566   if (Opcode == Instruction::ICmp || Opcode == Instruction::FCmp) {
2567     // Some vector comparison predicates cost extra instructions.
2568     // TODO: Should we invert this and assume worst case cmp costs
2569     // and reduce for particular predicates?
2570     if (MTy.isVector() &&
2571         !((ST->hasXOP() && (!ST->hasAVX2() || MTy.is128BitVector())) ||
2572           (ST->hasAVX512() && 32 <= MTy.getScalarSizeInBits()) ||
2573           ST->hasBWI())) {
2574       // Fallback to I if a specific predicate wasn't specified.
2575       CmpInst::Predicate Pred = VecPred;
2576       if (I && (Pred == CmpInst::BAD_ICMP_PREDICATE ||
2577                 Pred == CmpInst::BAD_FCMP_PREDICATE))
2578         Pred = cast<CmpInst>(I)->getPredicate();
2579 
2580       switch (Pred) {
2581       case CmpInst::Predicate::ICMP_NE:
2582         // xor(cmpeq(x,y),-1)
2583         ExtraCost = 1;
2584         break;
2585       case CmpInst::Predicate::ICMP_SGE:
2586       case CmpInst::Predicate::ICMP_SLE:
2587         // xor(cmpgt(x,y),-1)
2588         ExtraCost = 1;
2589         break;
2590       case CmpInst::Predicate::ICMP_ULT:
2591       case CmpInst::Predicate::ICMP_UGT:
2592         // cmpgt(xor(x,signbit),xor(y,signbit))
2593         // xor(cmpeq(pmaxu(x,y),x),-1)
2594         ExtraCost = 2;
2595         break;
2596       case CmpInst::Predicate::ICMP_ULE:
2597       case CmpInst::Predicate::ICMP_UGE:
2598         if ((ST->hasSSE41() && MTy.getScalarSizeInBits() == 32) ||
2599             (ST->hasSSE2() && MTy.getScalarSizeInBits() < 32)) {
2600           // cmpeq(psubus(x,y),0)
2601           // cmpeq(pminu(x,y),x)
2602           ExtraCost = 1;
2603         } else {
2604           // xor(cmpgt(xor(x,signbit),xor(y,signbit)),-1)
2605           ExtraCost = 3;
2606         }
2607         break;
2608       case CmpInst::Predicate::BAD_ICMP_PREDICATE:
2609       case CmpInst::Predicate::BAD_FCMP_PREDICATE:
2610         // Assume worst case scenario and add the maximum extra cost.
2611         ExtraCost = 3;
2612         break;
2613       default:
2614         break;
2615       }
2616     }
2617   }
2618 
2619   static const CostTblEntry SLMCostTbl[] = {
2620     // slm pcmpeq/pcmpgt throughput is 2
2621     { ISD::SETCC,   MVT::v2i64,   2 },
2622   };
2623 
2624   static const CostTblEntry AVX512BWCostTbl[] = {
2625     { ISD::SETCC,   MVT::v32i16,  1 },
2626     { ISD::SETCC,   MVT::v64i8,   1 },
2627 
2628     { ISD::SELECT,  MVT::v32i16,  1 },
2629     { ISD::SELECT,  MVT::v64i8,   1 },
2630   };
2631 
2632   static const CostTblEntry AVX512CostTbl[] = {
2633     { ISD::SETCC,   MVT::v8i64,   1 },
2634     { ISD::SETCC,   MVT::v16i32,  1 },
2635     { ISD::SETCC,   MVT::v8f64,   1 },
2636     { ISD::SETCC,   MVT::v16f32,  1 },
2637 
2638     { ISD::SELECT,  MVT::v8i64,   1 },
2639     { ISD::SELECT,  MVT::v16i32,  1 },
2640     { ISD::SELECT,  MVT::v8f64,   1 },
2641     { ISD::SELECT,  MVT::v16f32,  1 },
2642 
2643     { ISD::SETCC,   MVT::v32i16,  2 }, // FIXME: should probably be 4
2644     { ISD::SETCC,   MVT::v64i8,   2 }, // FIXME: should probably be 4
2645 
2646     { ISD::SELECT,  MVT::v32i16,  2 }, // FIXME: should be 3
2647     { ISD::SELECT,  MVT::v64i8,   2 }, // FIXME: should be 3
2648   };
2649 
2650   static const CostTblEntry AVX2CostTbl[] = {
2651     { ISD::SETCC,   MVT::v4i64,   1 },
2652     { ISD::SETCC,   MVT::v8i32,   1 },
2653     { ISD::SETCC,   MVT::v16i16,  1 },
2654     { ISD::SETCC,   MVT::v32i8,   1 },
2655 
2656     { ISD::SELECT,  MVT::v4i64,   1 }, // pblendvb
2657     { ISD::SELECT,  MVT::v8i32,   1 }, // pblendvb
2658     { ISD::SELECT,  MVT::v16i16,  1 }, // pblendvb
2659     { ISD::SELECT,  MVT::v32i8,   1 }, // pblendvb
2660   };
2661 
2662   static const CostTblEntry AVX1CostTbl[] = {
2663     { ISD::SETCC,   MVT::v4f64,   1 },
2664     { ISD::SETCC,   MVT::v8f32,   1 },
2665     // AVX1 does not support 8-wide integer compare.
2666     { ISD::SETCC,   MVT::v4i64,   4 },
2667     { ISD::SETCC,   MVT::v8i32,   4 },
2668     { ISD::SETCC,   MVT::v16i16,  4 },
2669     { ISD::SETCC,   MVT::v32i8,   4 },
2670 
2671     { ISD::SELECT,  MVT::v4f64,   1 }, // vblendvpd
2672     { ISD::SELECT,  MVT::v8f32,   1 }, // vblendvps
2673     { ISD::SELECT,  MVT::v4i64,   1 }, // vblendvpd
2674     { ISD::SELECT,  MVT::v8i32,   1 }, // vblendvps
2675     { ISD::SELECT,  MVT::v16i16,  3 }, // vandps + vandnps + vorps
2676     { ISD::SELECT,  MVT::v32i8,   3 }, // vandps + vandnps + vorps
2677   };
2678 
2679   static const CostTblEntry SSE42CostTbl[] = {
2680     { ISD::SETCC,   MVT::v2f64,   1 },
2681     { ISD::SETCC,   MVT::v4f32,   1 },
2682     { ISD::SETCC,   MVT::v2i64,   1 },
2683   };
2684 
2685   static const CostTblEntry SSE41CostTbl[] = {
2686     { ISD::SELECT,  MVT::v2f64,   1 }, // blendvpd
2687     { ISD::SELECT,  MVT::v4f32,   1 }, // blendvps
2688     { ISD::SELECT,  MVT::v2i64,   1 }, // pblendvb
2689     { ISD::SELECT,  MVT::v4i32,   1 }, // pblendvb
2690     { ISD::SELECT,  MVT::v8i16,   1 }, // pblendvb
2691     { ISD::SELECT,  MVT::v16i8,   1 }, // pblendvb
2692   };
2693 
2694   static const CostTblEntry SSE2CostTbl[] = {
2695     { ISD::SETCC,   MVT::v2f64,   2 },
2696     { ISD::SETCC,   MVT::f64,     1 },
2697     { ISD::SETCC,   MVT::v2i64,   5 }, // pcmpeqd/pcmpgtd expansion
2698     { ISD::SETCC,   MVT::v4i32,   1 },
2699     { ISD::SETCC,   MVT::v8i16,   1 },
2700     { ISD::SETCC,   MVT::v16i8,   1 },
2701 
2702     { ISD::SELECT,  MVT::v2f64,   3 }, // andpd + andnpd + orpd
2703     { ISD::SELECT,  MVT::v2i64,   3 }, // pand + pandn + por
2704     { ISD::SELECT,  MVT::v4i32,   3 }, // pand + pandn + por
2705     { ISD::SELECT,  MVT::v8i16,   3 }, // pand + pandn + por
2706     { ISD::SELECT,  MVT::v16i8,   3 }, // pand + pandn + por
2707   };
2708 
2709   static const CostTblEntry SSE1CostTbl[] = {
2710     { ISD::SETCC,   MVT::v4f32,   2 },
2711     { ISD::SETCC,   MVT::f32,     1 },
2712 
2713     { ISD::SELECT,  MVT::v4f32,   3 }, // andps + andnps + orps
2714   };
2715 
2716   if (ST->useSLMArithCosts())
2717     if (const auto *Entry = CostTableLookup(SLMCostTbl, ISD, MTy))
2718       return LT.first * (ExtraCost + Entry->Cost);
2719 
2720   if (ST->hasBWI())
2721     if (const auto *Entry = CostTableLookup(AVX512BWCostTbl, ISD, MTy))
2722       return LT.first * (ExtraCost + Entry->Cost);
2723 
2724   if (ST->hasAVX512())
2725     if (const auto *Entry = CostTableLookup(AVX512CostTbl, ISD, MTy))
2726       return LT.first * (ExtraCost + Entry->Cost);
2727 
2728   if (ST->hasAVX2())
2729     if (const auto *Entry = CostTableLookup(AVX2CostTbl, ISD, MTy))
2730       return LT.first * (ExtraCost + Entry->Cost);
2731 
2732   if (ST->hasAVX())
2733     if (const auto *Entry = CostTableLookup(AVX1CostTbl, ISD, MTy))
2734       return LT.first * (ExtraCost + Entry->Cost);
2735 
2736   if (ST->hasSSE42())
2737     if (const auto *Entry = CostTableLookup(SSE42CostTbl, ISD, MTy))
2738       return LT.first * (ExtraCost + Entry->Cost);
2739 
2740   if (ST->hasSSE41())
2741     if (const auto *Entry = CostTableLookup(SSE41CostTbl, ISD, MTy))
2742       return LT.first * (ExtraCost + Entry->Cost);
2743 
2744   if (ST->hasSSE2())
2745     if (const auto *Entry = CostTableLookup(SSE2CostTbl, ISD, MTy))
2746       return LT.first * (ExtraCost + Entry->Cost);
2747 
2748   if (ST->hasSSE1())
2749     if (const auto *Entry = CostTableLookup(SSE1CostTbl, ISD, MTy))
2750       return LT.first * (ExtraCost + Entry->Cost);
2751 
2752   return BaseT::getCmpSelInstrCost(Opcode, ValTy, CondTy, VecPred, CostKind, I);
2753 }
2754 
2755 unsigned X86TTIImpl::getAtomicMemIntrinsicMaxElementSize() const { return 16; }
2756 
2757 InstructionCost
2758 X86TTIImpl::getTypeBasedIntrinsicInstrCost(const IntrinsicCostAttributes &ICA,
2759                                            TTI::TargetCostKind CostKind) {
2760 
2761   // Costs should match the codegen from:
2762   // BITREVERSE: llvm\test\CodeGen\X86\vector-bitreverse.ll
2763   // BSWAP: llvm\test\CodeGen\X86\bswap-vector.ll
2764   // CTLZ: llvm\test\CodeGen\X86\vector-lzcnt-*.ll
2765   // CTPOP: llvm\test\CodeGen\X86\vector-popcnt-*.ll
2766   // CTTZ: llvm\test\CodeGen\X86\vector-tzcnt-*.ll
2767 
2768   // TODO: Overflow intrinsics (*ADDO, *SUBO, *MULO) with vector types are not
2769   //       specialized in these tables yet.
2770   static const CostTblEntry AVX512BITALGCostTbl[] = {
2771     { ISD::CTPOP,      MVT::v32i16,  1 },
2772     { ISD::CTPOP,      MVT::v64i8,   1 },
2773     { ISD::CTPOP,      MVT::v16i16,  1 },
2774     { ISD::CTPOP,      MVT::v32i8,   1 },
2775     { ISD::CTPOP,      MVT::v8i16,   1 },
2776     { ISD::CTPOP,      MVT::v16i8,   1 },
2777   };
2778   static const CostTblEntry AVX512VPOPCNTDQCostTbl[] = {
2779     { ISD::CTPOP,      MVT::v8i64,   1 },
2780     { ISD::CTPOP,      MVT::v16i32,  1 },
2781     { ISD::CTPOP,      MVT::v4i64,   1 },
2782     { ISD::CTPOP,      MVT::v8i32,   1 },
2783     { ISD::CTPOP,      MVT::v2i64,   1 },
2784     { ISD::CTPOP,      MVT::v4i32,   1 },
2785   };
2786   static const CostTblEntry AVX512CDCostTbl[] = {
2787     { ISD::CTLZ,       MVT::v8i64,   1 },
2788     { ISD::CTLZ,       MVT::v16i32,  1 },
2789     { ISD::CTLZ,       MVT::v32i16,  8 },
2790     { ISD::CTLZ,       MVT::v64i8,  20 },
2791     { ISD::CTLZ,       MVT::v4i64,   1 },
2792     { ISD::CTLZ,       MVT::v8i32,   1 },
2793     { ISD::CTLZ,       MVT::v16i16,  4 },
2794     { ISD::CTLZ,       MVT::v32i8,  10 },
2795     { ISD::CTLZ,       MVT::v2i64,   1 },
2796     { ISD::CTLZ,       MVT::v4i32,   1 },
2797     { ISD::CTLZ,       MVT::v8i16,   4 },
2798     { ISD::CTLZ,       MVT::v16i8,   4 },
2799   };
2800   static const CostTblEntry AVX512BWCostTbl[] = {
2801     { ISD::ABS,        MVT::v32i16,  1 },
2802     { ISD::ABS,        MVT::v64i8,   1 },
2803     { ISD::BITREVERSE, MVT::v8i64,   3 },
2804     { ISD::BITREVERSE, MVT::v16i32,  3 },
2805     { ISD::BITREVERSE, MVT::v32i16,  3 },
2806     { ISD::BITREVERSE, MVT::v64i8,   2 },
2807     { ISD::BSWAP,      MVT::v8i64,   1 },
2808     { ISD::BSWAP,      MVT::v16i32,  1 },
2809     { ISD::BSWAP,      MVT::v32i16,  1 },
2810     { ISD::CTLZ,       MVT::v8i64,  23 },
2811     { ISD::CTLZ,       MVT::v16i32, 22 },
2812     { ISD::CTLZ,       MVT::v32i16, 18 },
2813     { ISD::CTLZ,       MVT::v64i8,  17 },
2814     { ISD::CTPOP,      MVT::v8i64,   7 },
2815     { ISD::CTPOP,      MVT::v16i32, 11 },
2816     { ISD::CTPOP,      MVT::v32i16,  9 },
2817     { ISD::CTPOP,      MVT::v64i8,   6 },
2818     { ISD::CTTZ,       MVT::v8i64,  10 },
2819     { ISD::CTTZ,       MVT::v16i32, 14 },
2820     { ISD::CTTZ,       MVT::v32i16, 12 },
2821     { ISD::CTTZ,       MVT::v64i8,   9 },
2822     { ISD::SADDSAT,    MVT::v32i16,  1 },
2823     { ISD::SADDSAT,    MVT::v64i8,   1 },
2824     { ISD::SMAX,       MVT::v32i16,  1 },
2825     { ISD::SMAX,       MVT::v64i8,   1 },
2826     { ISD::SMIN,       MVT::v32i16,  1 },
2827     { ISD::SMIN,       MVT::v64i8,   1 },
2828     { ISD::SSUBSAT,    MVT::v32i16,  1 },
2829     { ISD::SSUBSAT,    MVT::v64i8,   1 },
2830     { ISD::UADDSAT,    MVT::v32i16,  1 },
2831     { ISD::UADDSAT,    MVT::v64i8,   1 },
2832     { ISD::UMAX,       MVT::v32i16,  1 },
2833     { ISD::UMAX,       MVT::v64i8,   1 },
2834     { ISD::UMIN,       MVT::v32i16,  1 },
2835     { ISD::UMIN,       MVT::v64i8,   1 },
2836     { ISD::USUBSAT,    MVT::v32i16,  1 },
2837     { ISD::USUBSAT,    MVT::v64i8,   1 },
2838   };
2839   static const CostTblEntry AVX512CostTbl[] = {
2840     { ISD::ABS,        MVT::v8i64,   1 },
2841     { ISD::ABS,        MVT::v16i32,  1 },
2842     { ISD::ABS,        MVT::v32i16,  2 },
2843     { ISD::ABS,        MVT::v64i8,   2 },
2844     { ISD::ABS,        MVT::v4i64,   1 },
2845     { ISD::ABS,        MVT::v2i64,   1 },
2846     { ISD::BITREVERSE, MVT::v8i64,  36 },
2847     { ISD::BITREVERSE, MVT::v16i32, 24 },
2848     { ISD::BITREVERSE, MVT::v32i16, 10 },
2849     { ISD::BITREVERSE, MVT::v64i8,  10 },
2850     { ISD::BSWAP,      MVT::v8i64,   4 },
2851     { ISD::BSWAP,      MVT::v16i32,  4 },
2852     { ISD::BSWAP,      MVT::v32i16,  4 },
2853     { ISD::CTLZ,       MVT::v8i64,  29 },
2854     { ISD::CTLZ,       MVT::v16i32, 35 },
2855     { ISD::CTLZ,       MVT::v32i16, 28 },
2856     { ISD::CTLZ,       MVT::v64i8,  18 },
2857     { ISD::CTPOP,      MVT::v8i64,  16 },
2858     { ISD::CTPOP,      MVT::v16i32, 24 },
2859     { ISD::CTPOP,      MVT::v32i16, 18 },
2860     { ISD::CTPOP,      MVT::v64i8,  12 },
2861     { ISD::CTTZ,       MVT::v8i64,  20 },
2862     { ISD::CTTZ,       MVT::v16i32, 28 },
2863     { ISD::CTTZ,       MVT::v32i16, 24 },
2864     { ISD::CTTZ,       MVT::v64i8,  18 },
2865     { ISD::SMAX,       MVT::v8i64,   1 },
2866     { ISD::SMAX,       MVT::v16i32,  1 },
2867     { ISD::SMAX,       MVT::v32i16,  2 },
2868     { ISD::SMAX,       MVT::v64i8,   2 },
2869     { ISD::SMAX,       MVT::v4i64,   1 },
2870     { ISD::SMAX,       MVT::v2i64,   1 },
2871     { ISD::SMIN,       MVT::v8i64,   1 },
2872     { ISD::SMIN,       MVT::v16i32,  1 },
2873     { ISD::SMIN,       MVT::v32i16,  2 },
2874     { ISD::SMIN,       MVT::v64i8,   2 },
2875     { ISD::SMIN,       MVT::v4i64,   1 },
2876     { ISD::SMIN,       MVT::v2i64,   1 },
2877     { ISD::UMAX,       MVT::v8i64,   1 },
2878     { ISD::UMAX,       MVT::v16i32,  1 },
2879     { ISD::UMAX,       MVT::v32i16,  2 },
2880     { ISD::UMAX,       MVT::v64i8,   2 },
2881     { ISD::UMAX,       MVT::v4i64,   1 },
2882     { ISD::UMAX,       MVT::v2i64,   1 },
2883     { ISD::UMIN,       MVT::v8i64,   1 },
2884     { ISD::UMIN,       MVT::v16i32,  1 },
2885     { ISD::UMIN,       MVT::v32i16,  2 },
2886     { ISD::UMIN,       MVT::v64i8,   2 },
2887     { ISD::UMIN,       MVT::v4i64,   1 },
2888     { ISD::UMIN,       MVT::v2i64,   1 },
2889     { ISD::USUBSAT,    MVT::v16i32,  2 }, // pmaxud + psubd
2890     { ISD::USUBSAT,    MVT::v2i64,   2 }, // pmaxuq + psubq
2891     { ISD::USUBSAT,    MVT::v4i64,   2 }, // pmaxuq + psubq
2892     { ISD::USUBSAT,    MVT::v8i64,   2 }, // pmaxuq + psubq
2893     { ISD::UADDSAT,    MVT::v16i32,  3 }, // not + pminud + paddd
2894     { ISD::UADDSAT,    MVT::v2i64,   3 }, // not + pminuq + paddq
2895     { ISD::UADDSAT,    MVT::v4i64,   3 }, // not + pminuq + paddq
2896     { ISD::UADDSAT,    MVT::v8i64,   3 }, // not + pminuq + paddq
2897     { ISD::SADDSAT,    MVT::v32i16,  2 },
2898     { ISD::SADDSAT,    MVT::v64i8,   2 },
2899     { ISD::SSUBSAT,    MVT::v32i16,  2 },
2900     { ISD::SSUBSAT,    MVT::v64i8,   2 },
2901     { ISD::UADDSAT,    MVT::v32i16,  2 },
2902     { ISD::UADDSAT,    MVT::v64i8,   2 },
2903     { ISD::USUBSAT,    MVT::v32i16,  2 },
2904     { ISD::USUBSAT,    MVT::v64i8,   2 },
2905     { ISD::FMAXNUM,    MVT::f32,     2 },
2906     { ISD::FMAXNUM,    MVT::v4f32,   2 },
2907     { ISD::FMAXNUM,    MVT::v8f32,   2 },
2908     { ISD::FMAXNUM,    MVT::v16f32,  2 },
2909     { ISD::FMAXNUM,    MVT::f64,     2 },
2910     { ISD::FMAXNUM,    MVT::v2f64,   2 },
2911     { ISD::FMAXNUM,    MVT::v4f64,   2 },
2912     { ISD::FMAXNUM,    MVT::v8f64,   2 },
2913   };
2914   static const CostTblEntry XOPCostTbl[] = {
2915     { ISD::BITREVERSE, MVT::v4i64,   4 },
2916     { ISD::BITREVERSE, MVT::v8i32,   4 },
2917     { ISD::BITREVERSE, MVT::v16i16,  4 },
2918     { ISD::BITREVERSE, MVT::v32i8,   4 },
2919     { ISD::BITREVERSE, MVT::v2i64,   1 },
2920     { ISD::BITREVERSE, MVT::v4i32,   1 },
2921     { ISD::BITREVERSE, MVT::v8i16,   1 },
2922     { ISD::BITREVERSE, MVT::v16i8,   1 },
2923     { ISD::BITREVERSE, MVT::i64,     3 },
2924     { ISD::BITREVERSE, MVT::i32,     3 },
2925     { ISD::BITREVERSE, MVT::i16,     3 },
2926     { ISD::BITREVERSE, MVT::i8,      3 }
2927   };
2928   static const CostTblEntry AVX2CostTbl[] = {
2929     { ISD::ABS,        MVT::v4i64,   2 }, // VBLENDVPD(X,VPSUBQ(0,X),X)
2930     { ISD::ABS,        MVT::v8i32,   1 },
2931     { ISD::ABS,        MVT::v16i16,  1 },
2932     { ISD::ABS,        MVT::v32i8,   1 },
2933     { ISD::BITREVERSE, MVT::v2i64,   3 },
2934     { ISD::BITREVERSE, MVT::v4i64,   3 },
2935     { ISD::BITREVERSE, MVT::v4i32,   3 },
2936     { ISD::BITREVERSE, MVT::v8i32,   3 },
2937     { ISD::BITREVERSE, MVT::v8i16,   3 },
2938     { ISD::BITREVERSE, MVT::v16i16,  3 },
2939     { ISD::BITREVERSE, MVT::v16i8,   3 },
2940     { ISD::BITREVERSE, MVT::v32i8,   3 },
2941     { ISD::BSWAP,      MVT::v4i64,   1 },
2942     { ISD::BSWAP,      MVT::v8i32,   1 },
2943     { ISD::BSWAP,      MVT::v16i16,  1 },
2944     { ISD::CTLZ,       MVT::v2i64,   7 },
2945     { ISD::CTLZ,       MVT::v4i64,   7 },
2946     { ISD::CTLZ,       MVT::v4i32,   5 },
2947     { ISD::CTLZ,       MVT::v8i32,   5 },
2948     { ISD::CTLZ,       MVT::v8i16,   4 },
2949     { ISD::CTLZ,       MVT::v16i16,  4 },
2950     { ISD::CTLZ,       MVT::v16i8,   3 },
2951     { ISD::CTLZ,       MVT::v32i8,   3 },
2952     { ISD::CTPOP,      MVT::v2i64,   3 },
2953     { ISD::CTPOP,      MVT::v4i64,   3 },
2954     { ISD::CTPOP,      MVT::v4i32,   7 },
2955     { ISD::CTPOP,      MVT::v8i32,   7 },
2956     { ISD::CTPOP,      MVT::v8i16,   3 },
2957     { ISD::CTPOP,      MVT::v16i16,  3 },
2958     { ISD::CTPOP,      MVT::v16i8,   2 },
2959     { ISD::CTPOP,      MVT::v32i8,   2 },
2960     { ISD::CTTZ,       MVT::v2i64,   4 },
2961     { ISD::CTTZ,       MVT::v4i64,   4 },
2962     { ISD::CTTZ,       MVT::v4i32,   7 },
2963     { ISD::CTTZ,       MVT::v8i32,   7 },
2964     { ISD::CTTZ,       MVT::v8i16,   4 },
2965     { ISD::CTTZ,       MVT::v16i16,  4 },
2966     { ISD::CTTZ,       MVT::v16i8,   3 },
2967     { ISD::CTTZ,       MVT::v32i8,   3 },
2968     { ISD::SADDSAT,    MVT::v16i16,  1 },
2969     { ISD::SADDSAT,    MVT::v32i8,   1 },
2970     { ISD::SMAX,       MVT::v8i32,   1 },
2971     { ISD::SMAX,       MVT::v16i16,  1 },
2972     { ISD::SMAX,       MVT::v32i8,   1 },
2973     { ISD::SMIN,       MVT::v8i32,   1 },
2974     { ISD::SMIN,       MVT::v16i16,  1 },
2975     { ISD::SMIN,       MVT::v32i8,   1 },
2976     { ISD::SSUBSAT,    MVT::v16i16,  1 },
2977     { ISD::SSUBSAT,    MVT::v32i8,   1 },
2978     { ISD::UADDSAT,    MVT::v16i16,  1 },
2979     { ISD::UADDSAT,    MVT::v32i8,   1 },
2980     { ISD::UADDSAT,    MVT::v8i32,   3 }, // not + pminud + paddd
2981     { ISD::UMAX,       MVT::v8i32,   1 },
2982     { ISD::UMAX,       MVT::v16i16,  1 },
2983     { ISD::UMAX,       MVT::v32i8,   1 },
2984     { ISD::UMIN,       MVT::v8i32,   1 },
2985     { ISD::UMIN,       MVT::v16i16,  1 },
2986     { ISD::UMIN,       MVT::v32i8,   1 },
2987     { ISD::USUBSAT,    MVT::v16i16,  1 },
2988     { ISD::USUBSAT,    MVT::v32i8,   1 },
2989     { ISD::USUBSAT,    MVT::v8i32,   2 }, // pmaxud + psubd
2990     { ISD::FMAXNUM,    MVT::v8f32,   3 }, // MAXPS + CMPUNORDPS + BLENDVPS
2991     { ISD::FMAXNUM,    MVT::v4f64,   3 }, // MAXPD + CMPUNORDPD + BLENDVPD
2992     { ISD::FSQRT,      MVT::f32,     7 }, // Haswell from http://www.agner.org/
2993     { ISD::FSQRT,      MVT::v4f32,   7 }, // Haswell from http://www.agner.org/
2994     { ISD::FSQRT,      MVT::v8f32,  14 }, // Haswell from http://www.agner.org/
2995     { ISD::FSQRT,      MVT::f64,    14 }, // Haswell from http://www.agner.org/
2996     { ISD::FSQRT,      MVT::v2f64,  14 }, // Haswell from http://www.agner.org/
2997     { ISD::FSQRT,      MVT::v4f64,  28 }, // Haswell from http://www.agner.org/
2998   };
2999   static const CostTblEntry AVX1CostTbl[] = {
3000     { ISD::ABS,        MVT::v4i64,   5 }, // VBLENDVPD(X,VPSUBQ(0,X),X)
3001     { ISD::ABS,        MVT::v8i32,   3 },
3002     { ISD::ABS,        MVT::v16i16,  3 },
3003     { ISD::ABS,        MVT::v32i8,   3 },
3004     { ISD::BITREVERSE, MVT::v4i64,  12 }, // 2 x 128-bit Op + extract/insert
3005     { ISD::BITREVERSE, MVT::v8i32,  12 }, // 2 x 128-bit Op + extract/insert
3006     { ISD::BITREVERSE, MVT::v16i16, 12 }, // 2 x 128-bit Op + extract/insert
3007     { ISD::BITREVERSE, MVT::v32i8,  12 }, // 2 x 128-bit Op + extract/insert
3008     { ISD::BSWAP,      MVT::v4i64,   4 },
3009     { ISD::BSWAP,      MVT::v8i32,   4 },
3010     { ISD::BSWAP,      MVT::v16i16,  4 },
3011     { ISD::CTLZ,       MVT::v4i64,  48 }, // 2 x 128-bit Op + extract/insert
3012     { ISD::CTLZ,       MVT::v8i32,  38 }, // 2 x 128-bit Op + extract/insert
3013     { ISD::CTLZ,       MVT::v16i16, 30 }, // 2 x 128-bit Op + extract/insert
3014     { ISD::CTLZ,       MVT::v32i8,  20 }, // 2 x 128-bit Op + extract/insert
3015     { ISD::CTPOP,      MVT::v4i64,  16 }, // 2 x 128-bit Op + extract/insert
3016     { ISD::CTPOP,      MVT::v8i32,  24 }, // 2 x 128-bit Op + extract/insert
3017     { ISD::CTPOP,      MVT::v16i16, 20 }, // 2 x 128-bit Op + extract/insert
3018     { ISD::CTPOP,      MVT::v32i8,  14 }, // 2 x 128-bit Op + extract/insert
3019     { ISD::CTTZ,       MVT::v4i64,  22 }, // 2 x 128-bit Op + extract/insert
3020     { ISD::CTTZ,       MVT::v8i32,  30 }, // 2 x 128-bit Op + extract/insert
3021     { ISD::CTTZ,       MVT::v16i16, 26 }, // 2 x 128-bit Op + extract/insert
3022     { ISD::CTTZ,       MVT::v32i8,  20 }, // 2 x 128-bit Op + extract/insert
3023     { ISD::SADDSAT,    MVT::v16i16,  4 }, // 2 x 128-bit Op + extract/insert
3024     { ISD::SADDSAT,    MVT::v32i8,   4 }, // 2 x 128-bit Op + extract/insert
3025     { ISD::SMAX,       MVT::v8i32,   4 }, // 2 x 128-bit Op + extract/insert
3026     { ISD::SMAX,       MVT::v16i16,  4 }, // 2 x 128-bit Op + extract/insert
3027     { ISD::SMAX,       MVT::v32i8,   4 }, // 2 x 128-bit Op + extract/insert
3028     { ISD::SMIN,       MVT::v8i32,   4 }, // 2 x 128-bit Op + extract/insert
3029     { ISD::SMIN,       MVT::v16i16,  4 }, // 2 x 128-bit Op + extract/insert
3030     { ISD::SMIN,       MVT::v32i8,   4 }, // 2 x 128-bit Op + extract/insert
3031     { ISD::SSUBSAT,    MVT::v16i16,  4 }, // 2 x 128-bit Op + extract/insert
3032     { ISD::SSUBSAT,    MVT::v32i8,   4 }, // 2 x 128-bit Op + extract/insert
3033     { ISD::UADDSAT,    MVT::v16i16,  4 }, // 2 x 128-bit Op + extract/insert
3034     { ISD::UADDSAT,    MVT::v32i8,   4 }, // 2 x 128-bit Op + extract/insert
3035     { ISD::UADDSAT,    MVT::v8i32,   8 }, // 2 x 128-bit Op + extract/insert
3036     { ISD::UMAX,       MVT::v8i32,   4 }, // 2 x 128-bit Op + extract/insert
3037     { ISD::UMAX,       MVT::v16i16,  4 }, // 2 x 128-bit Op + extract/insert
3038     { ISD::UMAX,       MVT::v32i8,   4 }, // 2 x 128-bit Op + extract/insert
3039     { ISD::UMIN,       MVT::v8i32,   4 }, // 2 x 128-bit Op + extract/insert
3040     { ISD::UMIN,       MVT::v16i16,  4 }, // 2 x 128-bit Op + extract/insert
3041     { ISD::UMIN,       MVT::v32i8,   4 }, // 2 x 128-bit Op + extract/insert
3042     { ISD::USUBSAT,    MVT::v16i16,  4 }, // 2 x 128-bit Op + extract/insert
3043     { ISD::USUBSAT,    MVT::v32i8,   4 }, // 2 x 128-bit Op + extract/insert
3044     { ISD::USUBSAT,    MVT::v8i32,   6 }, // 2 x 128-bit Op + extract/insert
3045     { ISD::FMAXNUM,    MVT::f32,     3 }, // MAXSS + CMPUNORDSS + BLENDVPS
3046     { ISD::FMAXNUM,    MVT::v4f32,   3 }, // MAXPS + CMPUNORDPS + BLENDVPS
3047     { ISD::FMAXNUM,    MVT::v8f32,   5 }, // MAXPS + CMPUNORDPS + BLENDVPS + ?
3048     { ISD::FMAXNUM,    MVT::f64,     3 }, // MAXSD + CMPUNORDSD + BLENDVPD
3049     { ISD::FMAXNUM,    MVT::v2f64,   3 }, // MAXPD + CMPUNORDPD + BLENDVPD
3050     { ISD::FMAXNUM,    MVT::v4f64,   5 }, // MAXPD + CMPUNORDPD + BLENDVPD + ?
3051     { ISD::FSQRT,      MVT::f32,    14 }, // SNB from http://www.agner.org/
3052     { ISD::FSQRT,      MVT::v4f32,  14 }, // SNB from http://www.agner.org/
3053     { ISD::FSQRT,      MVT::v8f32,  28 }, // SNB from http://www.agner.org/
3054     { ISD::FSQRT,      MVT::f64,    21 }, // SNB from http://www.agner.org/
3055     { ISD::FSQRT,      MVT::v2f64,  21 }, // SNB from http://www.agner.org/
3056     { ISD::FSQRT,      MVT::v4f64,  43 }, // SNB from http://www.agner.org/
3057   };
3058   static const CostTblEntry GLMCostTbl[] = {
3059     { ISD::FSQRT, MVT::f32,   19 }, // sqrtss
3060     { ISD::FSQRT, MVT::v4f32, 37 }, // sqrtps
3061     { ISD::FSQRT, MVT::f64,   34 }, // sqrtsd
3062     { ISD::FSQRT, MVT::v2f64, 67 }, // sqrtpd
3063   };
3064   static const CostTblEntry SLMCostTbl[] = {
3065     { ISD::FSQRT, MVT::f32,   20 }, // sqrtss
3066     { ISD::FSQRT, MVT::v4f32, 40 }, // sqrtps
3067     { ISD::FSQRT, MVT::f64,   35 }, // sqrtsd
3068     { ISD::FSQRT, MVT::v2f64, 70 }, // sqrtpd
3069   };
3070   static const CostTblEntry SSE42CostTbl[] = {
3071     { ISD::USUBSAT,    MVT::v4i32,   2 }, // pmaxud + psubd
3072     { ISD::UADDSAT,    MVT::v4i32,   3 }, // not + pminud + paddd
3073     { ISD::FSQRT,      MVT::f32,    18 }, // Nehalem from http://www.agner.org/
3074     { ISD::FSQRT,      MVT::v4f32,  18 }, // Nehalem from http://www.agner.org/
3075   };
3076   static const CostTblEntry SSE41CostTbl[] = {
3077     { ISD::ABS,        MVT::v2i64,   2 }, // BLENDVPD(X,PSUBQ(0,X),X)
3078     { ISD::SMAX,       MVT::v4i32,   1 },
3079     { ISD::SMAX,       MVT::v16i8,   1 },
3080     { ISD::SMIN,       MVT::v4i32,   1 },
3081     { ISD::SMIN,       MVT::v16i8,   1 },
3082     { ISD::UMAX,       MVT::v4i32,   1 },
3083     { ISD::UMAX,       MVT::v8i16,   1 },
3084     { ISD::UMIN,       MVT::v4i32,   1 },
3085     { ISD::UMIN,       MVT::v8i16,   1 },
3086   };
3087   static const CostTblEntry SSSE3CostTbl[] = {
3088     { ISD::ABS,        MVT::v4i32,   1 },
3089     { ISD::ABS,        MVT::v8i16,   1 },
3090     { ISD::ABS,        MVT::v16i8,   1 },
3091     { ISD::BITREVERSE, MVT::v2i64,   5 },
3092     { ISD::BITREVERSE, MVT::v4i32,   5 },
3093     { ISD::BITREVERSE, MVT::v8i16,   5 },
3094     { ISD::BITREVERSE, MVT::v16i8,   5 },
3095     { ISD::BSWAP,      MVT::v2i64,   1 },
3096     { ISD::BSWAP,      MVT::v4i32,   1 },
3097     { ISD::BSWAP,      MVT::v8i16,   1 },
3098     { ISD::CTLZ,       MVT::v2i64,  23 },
3099     { ISD::CTLZ,       MVT::v4i32,  18 },
3100     { ISD::CTLZ,       MVT::v8i16,  14 },
3101     { ISD::CTLZ,       MVT::v16i8,   9 },
3102     { ISD::CTPOP,      MVT::v2i64,   7 },
3103     { ISD::CTPOP,      MVT::v4i32,  11 },
3104     { ISD::CTPOP,      MVT::v8i16,   9 },
3105     { ISD::CTPOP,      MVT::v16i8,   6 },
3106     { ISD::CTTZ,       MVT::v2i64,  10 },
3107     { ISD::CTTZ,       MVT::v4i32,  14 },
3108     { ISD::CTTZ,       MVT::v8i16,  12 },
3109     { ISD::CTTZ,       MVT::v16i8,   9 }
3110   };
3111   static const CostTblEntry SSE2CostTbl[] = {
3112     { ISD::ABS,        MVT::v2i64,   4 },
3113     { ISD::ABS,        MVT::v4i32,   3 },
3114     { ISD::ABS,        MVT::v8i16,   2 },
3115     { ISD::ABS,        MVT::v16i8,   2 },
3116     { ISD::BITREVERSE, MVT::v2i64,  29 },
3117     { ISD::BITREVERSE, MVT::v4i32,  27 },
3118     { ISD::BITREVERSE, MVT::v8i16,  27 },
3119     { ISD::BITREVERSE, MVT::v16i8,  20 },
3120     { ISD::BSWAP,      MVT::v2i64,   7 },
3121     { ISD::BSWAP,      MVT::v4i32,   7 },
3122     { ISD::BSWAP,      MVT::v8i16,   7 },
3123     { ISD::CTLZ,       MVT::v2i64,  25 },
3124     { ISD::CTLZ,       MVT::v4i32,  26 },
3125     { ISD::CTLZ,       MVT::v8i16,  20 },
3126     { ISD::CTLZ,       MVT::v16i8,  17 },
3127     { ISD::CTPOP,      MVT::v2i64,  12 },
3128     { ISD::CTPOP,      MVT::v4i32,  15 },
3129     { ISD::CTPOP,      MVT::v8i16,  13 },
3130     { ISD::CTPOP,      MVT::v16i8,  10 },
3131     { ISD::CTTZ,       MVT::v2i64,  14 },
3132     { ISD::CTTZ,       MVT::v4i32,  18 },
3133     { ISD::CTTZ,       MVT::v8i16,  16 },
3134     { ISD::CTTZ,       MVT::v16i8,  13 },
3135     { ISD::SADDSAT,    MVT::v8i16,   1 },
3136     { ISD::SADDSAT,    MVT::v16i8,   1 },
3137     { ISD::SMAX,       MVT::v8i16,   1 },
3138     { ISD::SMIN,       MVT::v8i16,   1 },
3139     { ISD::SSUBSAT,    MVT::v8i16,   1 },
3140     { ISD::SSUBSAT,    MVT::v16i8,   1 },
3141     { ISD::UADDSAT,    MVT::v8i16,   1 },
3142     { ISD::UADDSAT,    MVT::v16i8,   1 },
3143     { ISD::UMAX,       MVT::v8i16,   2 },
3144     { ISD::UMAX,       MVT::v16i8,   1 },
3145     { ISD::UMIN,       MVT::v8i16,   2 },
3146     { ISD::UMIN,       MVT::v16i8,   1 },
3147     { ISD::USUBSAT,    MVT::v8i16,   1 },
3148     { ISD::USUBSAT,    MVT::v16i8,   1 },
3149     { ISD::FMAXNUM,    MVT::f64,     4 },
3150     { ISD::FMAXNUM,    MVT::v2f64,   4 },
3151     { ISD::FSQRT,      MVT::f64,    32 }, // Nehalem from http://www.agner.org/
3152     { ISD::FSQRT,      MVT::v2f64,  32 }, // Nehalem from http://www.agner.org/
3153   };
3154   static const CostTblEntry SSE1CostTbl[] = {
3155     { ISD::FMAXNUM,    MVT::f32,     4 },
3156     { ISD::FMAXNUM,    MVT::v4f32,   4 },
3157     { ISD::FSQRT,      MVT::f32,    28 }, // Pentium III from http://www.agner.org/
3158     { ISD::FSQRT,      MVT::v4f32,  56 }, // Pentium III from http://www.agner.org/
3159   };
3160   static const CostTblEntry BMI64CostTbl[] = { // 64-bit targets
3161     { ISD::CTTZ,       MVT::i64,     1 },
3162   };
3163   static const CostTblEntry BMI32CostTbl[] = { // 32 or 64-bit targets
3164     { ISD::CTTZ,       MVT::i32,     1 },
3165     { ISD::CTTZ,       MVT::i16,     1 },
3166     { ISD::CTTZ,       MVT::i8,      1 },
3167   };
3168   static const CostTblEntry LZCNT64CostTbl[] = { // 64-bit targets
3169     { ISD::CTLZ,       MVT::i64,     1 },
3170   };
3171   static const CostTblEntry LZCNT32CostTbl[] = { // 32 or 64-bit targets
3172     { ISD::CTLZ,       MVT::i32,     1 },
3173     { ISD::CTLZ,       MVT::i16,     1 },
3174     { ISD::CTLZ,       MVT::i8,      1 },
3175   };
3176   static const CostTblEntry POPCNT64CostTbl[] = { // 64-bit targets
3177     { ISD::CTPOP,      MVT::i64,     1 },
3178   };
3179   static const CostTblEntry POPCNT32CostTbl[] = { // 32 or 64-bit targets
3180     { ISD::CTPOP,      MVT::i32,     1 },
3181     { ISD::CTPOP,      MVT::i16,     1 },
3182     { ISD::CTPOP,      MVT::i8,      1 },
3183   };
3184   static const CostTblEntry X64CostTbl[] = { // 64-bit targets
3185     { ISD::ABS,        MVT::i64,     2 }, // SUB+CMOV
3186     { ISD::BITREVERSE, MVT::i64,    14 },
3187     { ISD::BSWAP,      MVT::i64,     1 },
3188     { ISD::CTLZ,       MVT::i64,     4 }, // BSR+XOR or BSR+XOR+CMOV
3189     { ISD::CTTZ,       MVT::i64,     3 }, // TEST+BSF+CMOV/BRANCH
3190     { ISD::CTPOP,      MVT::i64,    10 },
3191     { ISD::SADDO,      MVT::i64,     1 },
3192     { ISD::UADDO,      MVT::i64,     1 },
3193     { ISD::UMULO,      MVT::i64,     2 }, // mulq + seto
3194   };
3195   static const CostTblEntry X86CostTbl[] = { // 32 or 64-bit targets
3196     { ISD::ABS,        MVT::i32,     2 }, // SUB+CMOV
3197     { ISD::ABS,        MVT::i16,     2 }, // SUB+CMOV
3198     { ISD::BITREVERSE, MVT::i32,    14 },
3199     { ISD::BITREVERSE, MVT::i16,    14 },
3200     { ISD::BITREVERSE, MVT::i8,     11 },
3201     { ISD::BSWAP,      MVT::i32,     1 },
3202     { ISD::BSWAP,      MVT::i16,     1 }, // ROL
3203     { ISD::CTLZ,       MVT::i32,     4 }, // BSR+XOR or BSR+XOR+CMOV
3204     { ISD::CTLZ,       MVT::i16,     4 }, // BSR+XOR or BSR+XOR+CMOV
3205     { ISD::CTLZ,       MVT::i8,      4 }, // BSR+XOR or BSR+XOR+CMOV
3206     { ISD::CTTZ,       MVT::i32,     3 }, // TEST+BSF+CMOV/BRANCH
3207     { ISD::CTTZ,       MVT::i16,     3 }, // TEST+BSF+CMOV/BRANCH
3208     { ISD::CTTZ,       MVT::i8,      3 }, // TEST+BSF+CMOV/BRANCH
3209     { ISD::CTPOP,      MVT::i32,     8 },
3210     { ISD::CTPOP,      MVT::i16,     9 },
3211     { ISD::CTPOP,      MVT::i8,      7 },
3212     { ISD::SADDO,      MVT::i32,     1 },
3213     { ISD::SADDO,      MVT::i16,     1 },
3214     { ISD::SADDO,      MVT::i8,      1 },
3215     { ISD::UADDO,      MVT::i32,     1 },
3216     { ISD::UADDO,      MVT::i16,     1 },
3217     { ISD::UADDO,      MVT::i8,      1 },
3218     { ISD::UMULO,      MVT::i32,     2 }, // mul + seto
3219     { ISD::UMULO,      MVT::i16,     2 },
3220     { ISD::UMULO,      MVT::i8,      2 },
3221   };
3222 
3223   Type *RetTy = ICA.getReturnType();
3224   Type *OpTy = RetTy;
3225   Intrinsic::ID IID = ICA.getID();
3226   unsigned ISD = ISD::DELETED_NODE;
3227   switch (IID) {
3228   default:
3229     break;
3230   case Intrinsic::abs:
3231     ISD = ISD::ABS;
3232     break;
3233   case Intrinsic::bitreverse:
3234     ISD = ISD::BITREVERSE;
3235     break;
3236   case Intrinsic::bswap:
3237     ISD = ISD::BSWAP;
3238     break;
3239   case Intrinsic::ctlz:
3240     ISD = ISD::CTLZ;
3241     break;
3242   case Intrinsic::ctpop:
3243     ISD = ISD::CTPOP;
3244     break;
3245   case Intrinsic::cttz:
3246     ISD = ISD::CTTZ;
3247     break;
3248   case Intrinsic::maxnum:
3249   case Intrinsic::minnum:
3250     // FMINNUM has same costs so don't duplicate.
3251     ISD = ISD::FMAXNUM;
3252     break;
3253   case Intrinsic::sadd_sat:
3254     ISD = ISD::SADDSAT;
3255     break;
3256   case Intrinsic::smax:
3257     ISD = ISD::SMAX;
3258     break;
3259   case Intrinsic::smin:
3260     ISD = ISD::SMIN;
3261     break;
3262   case Intrinsic::ssub_sat:
3263     ISD = ISD::SSUBSAT;
3264     break;
3265   case Intrinsic::uadd_sat:
3266     ISD = ISD::UADDSAT;
3267     break;
3268   case Intrinsic::umax:
3269     ISD = ISD::UMAX;
3270     break;
3271   case Intrinsic::umin:
3272     ISD = ISD::UMIN;
3273     break;
3274   case Intrinsic::usub_sat:
3275     ISD = ISD::USUBSAT;
3276     break;
3277   case Intrinsic::sqrt:
3278     ISD = ISD::FSQRT;
3279     break;
3280   case Intrinsic::sadd_with_overflow:
3281   case Intrinsic::ssub_with_overflow:
3282     // SSUBO has same costs so don't duplicate.
3283     ISD = ISD::SADDO;
3284     OpTy = RetTy->getContainedType(0);
3285     break;
3286   case Intrinsic::uadd_with_overflow:
3287   case Intrinsic::usub_with_overflow:
3288     // USUBO has same costs so don't duplicate.
3289     ISD = ISD::UADDO;
3290     OpTy = RetTy->getContainedType(0);
3291     break;
3292   case Intrinsic::umul_with_overflow:
3293   case Intrinsic::smul_with_overflow:
3294     // SMULO has same costs so don't duplicate.
3295     ISD = ISD::UMULO;
3296     OpTy = RetTy->getContainedType(0);
3297     break;
3298   }
3299 
3300   if (ISD != ISD::DELETED_NODE) {
3301     // Legalize the type.
3302     std::pair<InstructionCost, MVT> LT = TLI->getTypeLegalizationCost(DL, OpTy);
3303     MVT MTy = LT.second;
3304 
3305     // Attempt to lookup cost.
3306     if (ISD == ISD::BITREVERSE && ST->hasGFNI() && ST->hasSSSE3() &&
3307         MTy.isVector()) {
3308       // With PSHUFB the code is very similar for all types. If we have integer
3309       // byte operations, we just need a GF2P8AFFINEQB for vXi8. For other types
3310       // we also need a PSHUFB.
3311       unsigned Cost = MTy.getVectorElementType() == MVT::i8 ? 1 : 2;
3312 
3313       // Without byte operations, we need twice as many GF2P8AFFINEQB and PSHUFB
3314       // instructions. We also need an extract and an insert.
3315       if (!(MTy.is128BitVector() || (ST->hasAVX2() && MTy.is256BitVector()) ||
3316             (ST->hasBWI() && MTy.is512BitVector())))
3317         Cost = Cost * 2 + 2;
3318 
3319       return LT.first * Cost;
3320     }
3321 
3322     auto adjustTableCost = [](const CostTblEntry &Entry,
3323                               InstructionCost LegalizationCost,
3324                               FastMathFlags FMF) {
3325       // If there are no NANs to deal with, then these are reduced to a
3326       // single MIN** or MAX** instruction instead of the MIN/CMP/SELECT that we
3327       // assume is used in the non-fast case.
3328       if (Entry.ISD == ISD::FMAXNUM || Entry.ISD == ISD::FMINNUM) {
3329         if (FMF.noNaNs())
3330           return LegalizationCost * 1;
3331       }
3332       return LegalizationCost * (int)Entry.Cost;
3333     };
3334 
3335     if (ST->useGLMDivSqrtCosts())
3336       if (const auto *Entry = CostTableLookup(GLMCostTbl, ISD, MTy))
3337         return adjustTableCost(*Entry, LT.first, ICA.getFlags());
3338 
3339     if (ST->useSLMArithCosts())
3340       if (const auto *Entry = CostTableLookup(SLMCostTbl, ISD, MTy))
3341         return adjustTableCost(*Entry, LT.first, ICA.getFlags());
3342 
3343     if (ST->hasBITALG())
3344       if (const auto *Entry = CostTableLookup(AVX512BITALGCostTbl, ISD, MTy))
3345         return adjustTableCost(*Entry, LT.first, ICA.getFlags());
3346 
3347     if (ST->hasVPOPCNTDQ())
3348       if (const auto *Entry = CostTableLookup(AVX512VPOPCNTDQCostTbl, ISD, MTy))
3349         return adjustTableCost(*Entry, LT.first, ICA.getFlags());
3350 
3351     if (ST->hasCDI())
3352       if (const auto *Entry = CostTableLookup(AVX512CDCostTbl, ISD, MTy))
3353         return adjustTableCost(*Entry, LT.first, ICA.getFlags());
3354 
3355     if (ST->hasBWI())
3356       if (const auto *Entry = CostTableLookup(AVX512BWCostTbl, ISD, MTy))
3357         return adjustTableCost(*Entry, LT.first, ICA.getFlags());
3358 
3359     if (ST->hasAVX512())
3360       if (const auto *Entry = CostTableLookup(AVX512CostTbl, ISD, MTy))
3361         return adjustTableCost(*Entry, LT.first, ICA.getFlags());
3362 
3363     if (ST->hasXOP())
3364       if (const auto *Entry = CostTableLookup(XOPCostTbl, ISD, MTy))
3365         return adjustTableCost(*Entry, LT.first, ICA.getFlags());
3366 
3367     if (ST->hasAVX2())
3368       if (const auto *Entry = CostTableLookup(AVX2CostTbl, ISD, MTy))
3369         return adjustTableCost(*Entry, LT.first, ICA.getFlags());
3370 
3371     if (ST->hasAVX())
3372       if (const auto *Entry = CostTableLookup(AVX1CostTbl, ISD, MTy))
3373         return adjustTableCost(*Entry, LT.first, ICA.getFlags());
3374 
3375     if (ST->hasSSE42())
3376       if (const auto *Entry = CostTableLookup(SSE42CostTbl, ISD, MTy))
3377         return adjustTableCost(*Entry, LT.first, ICA.getFlags());
3378 
3379     if (ST->hasSSE41())
3380       if (const auto *Entry = CostTableLookup(SSE41CostTbl, ISD, MTy))
3381         return adjustTableCost(*Entry, LT.first, ICA.getFlags());
3382 
3383     if (ST->hasSSSE3())
3384       if (const auto *Entry = CostTableLookup(SSSE3CostTbl, ISD, MTy))
3385         return adjustTableCost(*Entry, LT.first, ICA.getFlags());
3386 
3387     if (ST->hasSSE2())
3388       if (const auto *Entry = CostTableLookup(SSE2CostTbl, ISD, MTy))
3389         return adjustTableCost(*Entry, LT.first, ICA.getFlags());
3390 
3391     if (ST->hasSSE1())
3392       if (const auto *Entry = CostTableLookup(SSE1CostTbl, ISD, MTy))
3393         return adjustTableCost(*Entry, LT.first, ICA.getFlags());
3394 
3395     if (ST->hasBMI()) {
3396       if (ST->is64Bit())
3397         if (const auto *Entry = CostTableLookup(BMI64CostTbl, ISD, MTy))
3398           return adjustTableCost(*Entry, LT.first, ICA.getFlags());
3399 
3400       if (const auto *Entry = CostTableLookup(BMI32CostTbl, ISD, MTy))
3401         return adjustTableCost(*Entry, LT.first, ICA.getFlags());
3402     }
3403 
3404     if (ST->hasLZCNT()) {
3405       if (ST->is64Bit())
3406         if (const auto *Entry = CostTableLookup(LZCNT64CostTbl, ISD, MTy))
3407           return adjustTableCost(*Entry, LT.first, ICA.getFlags());
3408 
3409       if (const auto *Entry = CostTableLookup(LZCNT32CostTbl, ISD, MTy))
3410         return adjustTableCost(*Entry, LT.first, ICA.getFlags());
3411     }
3412 
3413     if (ST->hasPOPCNT()) {
3414       if (ST->is64Bit())
3415         if (const auto *Entry = CostTableLookup(POPCNT64CostTbl, ISD, MTy))
3416           return adjustTableCost(*Entry, LT.first, ICA.getFlags());
3417 
3418       if (const auto *Entry = CostTableLookup(POPCNT32CostTbl, ISD, MTy))
3419         return adjustTableCost(*Entry, LT.first, ICA.getFlags());
3420     }
3421 
3422     if (ISD == ISD::BSWAP && ST->hasMOVBE() && ST->hasFastMOVBE()) {
3423       if (const Instruction *II = ICA.getInst()) {
3424         if (II->hasOneUse() && isa<StoreInst>(II->user_back()))
3425           return TTI::TCC_Free;
3426         if (auto *LI = dyn_cast<LoadInst>(II->getOperand(0))) {
3427           if (LI->hasOneUse())
3428             return TTI::TCC_Free;
3429         }
3430       }
3431     }
3432 
3433     if (ST->is64Bit())
3434       if (const auto *Entry = CostTableLookup(X64CostTbl, ISD, MTy))
3435         return adjustTableCost(*Entry, LT.first, ICA.getFlags());
3436 
3437     if (const auto *Entry = CostTableLookup(X86CostTbl, ISD, MTy))
3438       return adjustTableCost(*Entry, LT.first, ICA.getFlags());
3439   }
3440 
3441   return BaseT::getIntrinsicInstrCost(ICA, CostKind);
3442 }
3443 
3444 InstructionCost
3445 X86TTIImpl::getIntrinsicInstrCost(const IntrinsicCostAttributes &ICA,
3446                                   TTI::TargetCostKind CostKind) {
3447   if (ICA.isTypeBasedOnly())
3448     return getTypeBasedIntrinsicInstrCost(ICA, CostKind);
3449 
3450   static const CostTblEntry AVX512BWCostTbl[] = {
3451     { ISD::ROTL,       MVT::v32i16,  2 },
3452     { ISD::ROTL,       MVT::v16i16,  2 },
3453     { ISD::ROTL,       MVT::v8i16,   2 },
3454     { ISD::ROTL,       MVT::v64i8,   5 },
3455     { ISD::ROTL,       MVT::v32i8,   5 },
3456     { ISD::ROTL,       MVT::v16i8,   5 },
3457     { ISD::ROTR,       MVT::v32i16,  2 },
3458     { ISD::ROTR,       MVT::v16i16,  2 },
3459     { ISD::ROTR,       MVT::v8i16,   2 },
3460     { ISD::ROTR,       MVT::v64i8,   5 },
3461     { ISD::ROTR,       MVT::v32i8,   5 },
3462     { ISD::ROTR,       MVT::v16i8,   5 }
3463   };
3464   static const CostTblEntry AVX512CostTbl[] = {
3465     { ISD::ROTL,       MVT::v8i64,   1 },
3466     { ISD::ROTL,       MVT::v4i64,   1 },
3467     { ISD::ROTL,       MVT::v2i64,   1 },
3468     { ISD::ROTL,       MVT::v16i32,  1 },
3469     { ISD::ROTL,       MVT::v8i32,   1 },
3470     { ISD::ROTL,       MVT::v4i32,   1 },
3471     { ISD::ROTR,       MVT::v8i64,   1 },
3472     { ISD::ROTR,       MVT::v4i64,   1 },
3473     { ISD::ROTR,       MVT::v2i64,   1 },
3474     { ISD::ROTR,       MVT::v16i32,  1 },
3475     { ISD::ROTR,       MVT::v8i32,   1 },
3476     { ISD::ROTR,       MVT::v4i32,   1 }
3477   };
3478   // XOP: ROTL = VPROT(X,Y), ROTR = VPROT(X,SUB(0,Y))
3479   static const CostTblEntry XOPCostTbl[] = {
3480     { ISD::ROTL,       MVT::v4i64,   4 },
3481     { ISD::ROTL,       MVT::v8i32,   4 },
3482     { ISD::ROTL,       MVT::v16i16,  4 },
3483     { ISD::ROTL,       MVT::v32i8,   4 },
3484     { ISD::ROTL,       MVT::v2i64,   1 },
3485     { ISD::ROTL,       MVT::v4i32,   1 },
3486     { ISD::ROTL,       MVT::v8i16,   1 },
3487     { ISD::ROTL,       MVT::v16i8,   1 },
3488     { ISD::ROTR,       MVT::v4i64,   6 },
3489     { ISD::ROTR,       MVT::v8i32,   6 },
3490     { ISD::ROTR,       MVT::v16i16,  6 },
3491     { ISD::ROTR,       MVT::v32i8,   6 },
3492     { ISD::ROTR,       MVT::v2i64,   2 },
3493     { ISD::ROTR,       MVT::v4i32,   2 },
3494     { ISD::ROTR,       MVT::v8i16,   2 },
3495     { ISD::ROTR,       MVT::v16i8,   2 }
3496   };
3497   static const CostTblEntry X64CostTbl[] = { // 64-bit targets
3498     { ISD::ROTL,       MVT::i64,     1 },
3499     { ISD::ROTR,       MVT::i64,     1 },
3500     { ISD::FSHL,       MVT::i64,     4 }
3501   };
3502   static const CostTblEntry X86CostTbl[] = { // 32 or 64-bit targets
3503     { ISD::ROTL,       MVT::i32,     1 },
3504     { ISD::ROTL,       MVT::i16,     1 },
3505     { ISD::ROTL,       MVT::i8,      1 },
3506     { ISD::ROTR,       MVT::i32,     1 },
3507     { ISD::ROTR,       MVT::i16,     1 },
3508     { ISD::ROTR,       MVT::i8,      1 },
3509     { ISD::FSHL,       MVT::i32,     4 },
3510     { ISD::FSHL,       MVT::i16,     4 },
3511     { ISD::FSHL,       MVT::i8,      4 }
3512   };
3513 
3514   Intrinsic::ID IID = ICA.getID();
3515   Type *RetTy = ICA.getReturnType();
3516   const SmallVectorImpl<const Value *> &Args = ICA.getArgs();
3517   unsigned ISD = ISD::DELETED_NODE;
3518   switch (IID) {
3519   default:
3520     break;
3521   case Intrinsic::fshl:
3522     ISD = ISD::FSHL;
3523     if (Args[0] == Args[1])
3524       ISD = ISD::ROTL;
3525     break;
3526   case Intrinsic::fshr:
3527     // FSHR has same costs so don't duplicate.
3528     ISD = ISD::FSHL;
3529     if (Args[0] == Args[1])
3530       ISD = ISD::ROTR;
3531     break;
3532   }
3533 
3534   if (ISD != ISD::DELETED_NODE) {
3535     // Legalize the type.
3536     std::pair<InstructionCost, MVT> LT =
3537         TLI->getTypeLegalizationCost(DL, RetTy);
3538     MVT MTy = LT.second;
3539 
3540     // Attempt to lookup cost.
3541     if (ST->hasBWI())
3542       if (const auto *Entry = CostTableLookup(AVX512BWCostTbl, ISD, MTy))
3543         return LT.first * Entry->Cost;
3544 
3545     if (ST->hasAVX512())
3546       if (const auto *Entry = CostTableLookup(AVX512CostTbl, ISD, MTy))
3547         return LT.first * Entry->Cost;
3548 
3549     if (ST->hasXOP())
3550       if (const auto *Entry = CostTableLookup(XOPCostTbl, ISD, MTy))
3551         return LT.first * Entry->Cost;
3552 
3553     if (ST->is64Bit())
3554       if (const auto *Entry = CostTableLookup(X64CostTbl, ISD, MTy))
3555         return LT.first * Entry->Cost;
3556 
3557     if (const auto *Entry = CostTableLookup(X86CostTbl, ISD, MTy))
3558       return LT.first * Entry->Cost;
3559   }
3560 
3561   return BaseT::getIntrinsicInstrCost(ICA, CostKind);
3562 }
3563 
3564 InstructionCost X86TTIImpl::getVectorInstrCost(unsigned Opcode, Type *Val,
3565                                                unsigned Index) {
3566   static const CostTblEntry SLMCostTbl[] = {
3567      { ISD::EXTRACT_VECTOR_ELT,       MVT::i8,      4 },
3568      { ISD::EXTRACT_VECTOR_ELT,       MVT::i16,     4 },
3569      { ISD::EXTRACT_VECTOR_ELT,       MVT::i32,     4 },
3570      { ISD::EXTRACT_VECTOR_ELT,       MVT::i64,     7 }
3571    };
3572 
3573   assert(Val->isVectorTy() && "This must be a vector type");
3574   Type *ScalarType = Val->getScalarType();
3575   int RegisterFileMoveCost = 0;
3576 
3577   // Non-immediate extraction/insertion can be handled as a sequence of
3578   // aliased loads+stores via the stack.
3579   if (Index == -1U && (Opcode == Instruction::ExtractElement ||
3580                        Opcode == Instruction::InsertElement)) {
3581     // TODO: On some SSE41+ targets, we expand to cmp+splat+select patterns:
3582     // inselt N0, N1, N2 --> select (SplatN2 == {0,1,2...}) ? SplatN1 : N0.
3583 
3584     // TODO: Move this to BasicTTIImpl.h? We'd need better gep + index handling.
3585     assert(isa<FixedVectorType>(Val) && "Fixed vector type expected");
3586     Align VecAlign = DL.getPrefTypeAlign(Val);
3587     Align SclAlign = DL.getPrefTypeAlign(ScalarType);
3588 
3589     // Extract - store vector to stack, load scalar.
3590     if (Opcode == Instruction::ExtractElement) {
3591       return getMemoryOpCost(Instruction::Store, Val, VecAlign, 0,
3592                              TTI::TargetCostKind::TCK_RecipThroughput) +
3593              getMemoryOpCost(Instruction::Load, ScalarType, SclAlign, 0,
3594                              TTI::TargetCostKind::TCK_RecipThroughput);
3595     }
3596     // Insert - store vector to stack, store scalar, load vector.
3597     if (Opcode == Instruction::InsertElement) {
3598       return getMemoryOpCost(Instruction::Store, Val, VecAlign, 0,
3599                              TTI::TargetCostKind::TCK_RecipThroughput) +
3600              getMemoryOpCost(Instruction::Store, ScalarType, SclAlign, 0,
3601                              TTI::TargetCostKind::TCK_RecipThroughput) +
3602              getMemoryOpCost(Instruction::Load, Val, VecAlign, 0,
3603                              TTI::TargetCostKind::TCK_RecipThroughput);
3604     }
3605   }
3606 
3607   if (Index != -1U && (Opcode == Instruction::ExtractElement ||
3608                        Opcode == Instruction::InsertElement)) {
3609     // Extraction of vXi1 elements are now efficiently handled by MOVMSK.
3610     if (Opcode == Instruction::ExtractElement &&
3611         ScalarType->getScalarSizeInBits() == 1 &&
3612         cast<FixedVectorType>(Val)->getNumElements() > 1)
3613       return 1;
3614 
3615     // Legalize the type.
3616     std::pair<InstructionCost, MVT> LT = TLI->getTypeLegalizationCost(DL, Val);
3617 
3618     // This type is legalized to a scalar type.
3619     if (!LT.second.isVector())
3620       return 0;
3621 
3622     // The type may be split. Normalize the index to the new type.
3623     unsigned SizeInBits = LT.second.getSizeInBits();
3624     unsigned NumElts = LT.second.getVectorNumElements();
3625     unsigned SubNumElts = NumElts;
3626     Index = Index % NumElts;
3627 
3628     // For >128-bit vectors, we need to extract higher 128-bit subvectors.
3629     // For inserts, we also need to insert the subvector back.
3630     if (SizeInBits > 128) {
3631       assert((SizeInBits % 128) == 0 && "Illegal vector");
3632       unsigned NumSubVecs = SizeInBits / 128;
3633       SubNumElts = NumElts / NumSubVecs;
3634       if (SubNumElts <= Index) {
3635         RegisterFileMoveCost += (Opcode == Instruction::InsertElement ? 2 : 1);
3636         Index %= SubNumElts;
3637       }
3638     }
3639 
3640     if (Index == 0) {
3641       // Floating point scalars are already located in index #0.
3642       // Many insertions to #0 can fold away for scalar fp-ops, so let's assume
3643       // true for all.
3644       if (ScalarType->isFloatingPointTy())
3645         return RegisterFileMoveCost;
3646 
3647       // Assume movd/movq XMM -> GPR is relatively cheap on all targets.
3648       if (ScalarType->isIntegerTy() && Opcode == Instruction::ExtractElement)
3649         return 1 + RegisterFileMoveCost;
3650     }
3651 
3652     int ISD = TLI->InstructionOpcodeToISD(Opcode);
3653     assert(ISD && "Unexpected vector opcode");
3654     MVT MScalarTy = LT.second.getScalarType();
3655     if (ST->useSLMArithCosts())
3656       if (auto *Entry = CostTableLookup(SLMCostTbl, ISD, MScalarTy))
3657         return Entry->Cost + RegisterFileMoveCost;
3658 
3659     // Assume pinsr/pextr XMM <-> GPR is relatively cheap on all targets.
3660     if ((MScalarTy == MVT::i16 && ST->hasSSE2()) ||
3661         (MScalarTy.isInteger() && ST->hasSSE41()))
3662       return 1 + RegisterFileMoveCost;
3663 
3664     // Assume insertps is relatively cheap on all targets.
3665     if (MScalarTy == MVT::f32 && ST->hasSSE41() &&
3666         Opcode == Instruction::InsertElement)
3667       return 1 + RegisterFileMoveCost;
3668 
3669     // For extractions we just need to shuffle the element to index 0, which
3670     // should be very cheap (assume cost = 1). For insertions we need to shuffle
3671     // the elements to its destination. In both cases we must handle the
3672     // subvector move(s).
3673     // If the vector type is already less than 128-bits then don't reduce it.
3674     // TODO: Under what circumstances should we shuffle using the full width?
3675     InstructionCost ShuffleCost = 1;
3676     if (Opcode == Instruction::InsertElement) {
3677       auto *SubTy = cast<VectorType>(Val);
3678       EVT VT = TLI->getValueType(DL, Val);
3679       if (VT.getScalarType() != MScalarTy || VT.getSizeInBits() >= 128)
3680         SubTy = FixedVectorType::get(ScalarType, SubNumElts);
3681       ShuffleCost =
3682           getShuffleCost(TTI::SK_PermuteTwoSrc, SubTy, None, 0, SubTy);
3683     }
3684     int IntOrFpCost = ScalarType->isFloatingPointTy() ? 0 : 1;
3685     return ShuffleCost + IntOrFpCost + RegisterFileMoveCost;
3686   }
3687 
3688   // Add to the base cost if we know that the extracted element of a vector is
3689   // destined to be moved to and used in the integer register file.
3690   if (Opcode == Instruction::ExtractElement && ScalarType->isPointerTy())
3691     RegisterFileMoveCost += 1;
3692 
3693   return BaseT::getVectorInstrCost(Opcode, Val, Index) + RegisterFileMoveCost;
3694 }
3695 
3696 InstructionCost X86TTIImpl::getScalarizationOverhead(VectorType *Ty,
3697                                                      const APInt &DemandedElts,
3698                                                      bool Insert,
3699                                                      bool Extract) {
3700   InstructionCost Cost = 0;
3701 
3702   // For insertions, a ISD::BUILD_VECTOR style vector initialization can be much
3703   // cheaper than an accumulation of ISD::INSERT_VECTOR_ELT.
3704   if (Insert) {
3705     std::pair<InstructionCost, MVT> LT = TLI->getTypeLegalizationCost(DL, Ty);
3706     MVT MScalarTy = LT.second.getScalarType();
3707     unsigned SizeInBits = LT.second.getSizeInBits();
3708 
3709     if ((MScalarTy == MVT::i16 && ST->hasSSE2()) ||
3710         (MScalarTy.isInteger() && ST->hasSSE41()) ||
3711         (MScalarTy == MVT::f32 && ST->hasSSE41())) {
3712       // For types we can insert directly, insertion into 128-bit sub vectors is
3713       // cheap, followed by a cheap chain of concatenations.
3714       if (SizeInBits <= 128) {
3715         Cost +=
3716             BaseT::getScalarizationOverhead(Ty, DemandedElts, Insert, false);
3717       } else {
3718         // In each 128-lane, if at least one index is demanded but not all
3719         // indices are demanded and this 128-lane is not the first 128-lane of
3720         // the legalized-vector, then this 128-lane needs a extracti128; If in
3721         // each 128-lane, there is at least one demanded index, this 128-lane
3722         // needs a inserti128.
3723 
3724         // The following cases will help you build a better understanding:
3725         // Assume we insert several elements into a v8i32 vector in avx2,
3726         // Case#1: inserting into 1th index needs vpinsrd + inserti128.
3727         // Case#2: inserting into 5th index needs extracti128 + vpinsrd +
3728         // inserti128.
3729         // Case#3: inserting into 4,5,6,7 index needs 4*vpinsrd + inserti128.
3730         const int CostValue = *LT.first.getValue();
3731         assert(CostValue >= 0 && "Negative cost!");
3732         unsigned Num128Lanes = SizeInBits / 128 * CostValue;
3733         unsigned NumElts = LT.second.getVectorNumElements() * CostValue;
3734         APInt WidenedDemandedElts = DemandedElts.zextOrSelf(NumElts);
3735         unsigned Scale = NumElts / Num128Lanes;
3736         // We iterate each 128-lane, and check if we need a
3737         // extracti128/inserti128 for this 128-lane.
3738         for (unsigned I = 0; I < NumElts; I += Scale) {
3739           APInt Mask = WidenedDemandedElts.getBitsSet(NumElts, I, I + Scale);
3740           APInt MaskedDE = Mask & WidenedDemandedElts;
3741           unsigned Population = MaskedDE.countPopulation();
3742           Cost += (Population > 0 && Population != Scale &&
3743                    I % LT.second.getVectorNumElements() != 0);
3744           Cost += Population > 0;
3745         }
3746         Cost += DemandedElts.countPopulation();
3747 
3748         // For vXf32 cases, insertion into the 0'th index in each v4f32
3749         // 128-bit vector is free.
3750         // NOTE: This assumes legalization widens vXf32 vectors.
3751         if (MScalarTy == MVT::f32)
3752           for (unsigned i = 0, e = cast<FixedVectorType>(Ty)->getNumElements();
3753                i < e; i += 4)
3754             if (DemandedElts[i])
3755               Cost--;
3756       }
3757     } else if (LT.second.isVector()) {
3758       // Without fast insertion, we need to use MOVD/MOVQ to pass each demanded
3759       // integer element as a SCALAR_TO_VECTOR, then we build the vector as a
3760       // series of UNPCK followed by CONCAT_VECTORS - all of these can be
3761       // considered cheap.
3762       if (Ty->isIntOrIntVectorTy())
3763         Cost += DemandedElts.countPopulation();
3764 
3765       // Get the smaller of the legalized or original pow2-extended number of
3766       // vector elements, which represents the number of unpacks we'll end up
3767       // performing.
3768       unsigned NumElts = LT.second.getVectorNumElements();
3769       unsigned Pow2Elts =
3770           PowerOf2Ceil(cast<FixedVectorType>(Ty)->getNumElements());
3771       Cost += (std::min<unsigned>(NumElts, Pow2Elts) - 1) * LT.first;
3772     }
3773   }
3774 
3775   // TODO: Use default extraction for now, but we should investigate extending this
3776   // to handle repeated subvector extraction.
3777   if (Extract)
3778     Cost += BaseT::getScalarizationOverhead(Ty, DemandedElts, false, Extract);
3779 
3780   return Cost;
3781 }
3782 
3783 InstructionCost
3784 X86TTIImpl::getReplicationShuffleCost(Type *EltTy, int ReplicationFactor,
3785                                       int VF, const APInt &DemandedDstElts,
3786                                       TTI::TargetCostKind CostKind) {
3787   const unsigned EltTyBits = DL.getTypeSizeInBits(EltTy);
3788   // We don't differentiate element types here, only element bit width.
3789   EltTy = IntegerType::getIntNTy(EltTy->getContext(), EltTyBits);
3790 
3791   auto bailout = [&]() {
3792     return BaseT::getReplicationShuffleCost(EltTy, ReplicationFactor, VF,
3793                                             DemandedDstElts, CostKind);
3794   };
3795 
3796   // For now, only deal with AVX512 cases.
3797   if (!ST->hasAVX512())
3798     return bailout();
3799 
3800   // Do we have a native shuffle for this element type, or should we promote?
3801   unsigned PromEltTyBits = EltTyBits;
3802   switch (EltTyBits) {
3803   case 32:
3804   case 64:
3805     break; // AVX512F.
3806   case 16:
3807     if (!ST->hasBWI())
3808       PromEltTyBits = 32; // promote to i32, AVX512F.
3809     break;                // AVX512BW
3810   case 8:
3811     if (!ST->hasVBMI())
3812       PromEltTyBits = 32; // promote to i32, AVX512F.
3813     break;                // AVX512VBMI
3814   case 1:
3815     // There is no support for shuffling i1 elements. We *must* promote.
3816     if (ST->hasBWI()) {
3817       if (ST->hasVBMI())
3818         PromEltTyBits = 8; // promote to i8, AVX512VBMI.
3819       else
3820         PromEltTyBits = 16; // promote to i16, AVX512BW.
3821       break;
3822     }
3823     if (ST->hasDQI()) {
3824       PromEltTyBits = 32; // promote to i32, AVX512F.
3825       break;
3826     }
3827     return bailout();
3828   default:
3829     return bailout();
3830   }
3831   auto *PromEltTy = IntegerType::getIntNTy(EltTy->getContext(), PromEltTyBits);
3832 
3833   auto *SrcVecTy = FixedVectorType::get(EltTy, VF);
3834   auto *PromSrcVecTy = FixedVectorType::get(PromEltTy, VF);
3835 
3836   int NumDstElements = VF * ReplicationFactor;
3837   auto *PromDstVecTy = FixedVectorType::get(PromEltTy, NumDstElements);
3838   auto *DstVecTy = FixedVectorType::get(EltTy, NumDstElements);
3839 
3840   // Legalize the types.
3841   MVT LegalSrcVecTy = TLI->getTypeLegalizationCost(DL, SrcVecTy).second;
3842   MVT LegalPromSrcVecTy = TLI->getTypeLegalizationCost(DL, PromSrcVecTy).second;
3843   MVT LegalPromDstVecTy = TLI->getTypeLegalizationCost(DL, PromDstVecTy).second;
3844   MVT LegalDstVecTy = TLI->getTypeLegalizationCost(DL, DstVecTy).second;
3845   // They should have legalized into vector types.
3846   if (!LegalSrcVecTy.isVector() || !LegalPromSrcVecTy.isVector() ||
3847       !LegalPromDstVecTy.isVector() || !LegalDstVecTy.isVector())
3848     return bailout();
3849 
3850   if (PromEltTyBits != EltTyBits) {
3851     // If we have to perform the shuffle with wider elt type than our data type,
3852     // then we will first need to anyext (we don't care about the new bits)
3853     // the source elements, and then truncate Dst elements.
3854     InstructionCost PromotionCost;
3855     PromotionCost += getCastInstrCost(
3856         Instruction::SExt, /*Dst=*/PromSrcVecTy, /*Src=*/SrcVecTy,
3857         TargetTransformInfo::CastContextHint::None, CostKind);
3858     PromotionCost +=
3859         getCastInstrCost(Instruction::Trunc, /*Dst=*/DstVecTy,
3860                          /*Src=*/PromDstVecTy,
3861                          TargetTransformInfo::CastContextHint::None, CostKind);
3862     return PromotionCost + getReplicationShuffleCost(PromEltTy,
3863                                                      ReplicationFactor, VF,
3864                                                      DemandedDstElts, CostKind);
3865   }
3866 
3867   assert(LegalSrcVecTy.getScalarSizeInBits() == EltTyBits &&
3868          LegalSrcVecTy.getScalarType() == LegalDstVecTy.getScalarType() &&
3869          "We expect that the legalization doesn't affect the element width, "
3870          "doesn't coalesce/split elements.");
3871 
3872   unsigned NumEltsPerDstVec = LegalDstVecTy.getVectorNumElements();
3873   unsigned NumDstVectors =
3874       divideCeil(DstVecTy->getNumElements(), NumEltsPerDstVec);
3875 
3876   auto *SingleDstVecTy = FixedVectorType::get(EltTy, NumEltsPerDstVec);
3877 
3878   // Not all the produced Dst elements may be demanded. In our case,
3879   // given that a single Dst vector is formed by a single shuffle,
3880   // if all elements that will form a single Dst vector aren't demanded,
3881   // then we won't need to do that shuffle, so adjust the cost accordingly.
3882   APInt DemandedDstVectors = APIntOps::ScaleBitMask(
3883       DemandedDstElts.zextOrSelf(NumDstVectors * NumEltsPerDstVec),
3884       NumDstVectors);
3885   unsigned NumDstVectorsDemanded = DemandedDstVectors.countPopulation();
3886 
3887   InstructionCost SingleShuffleCost =
3888       getShuffleCost(TTI::SK_PermuteSingleSrc, SingleDstVecTy,
3889                      /*Mask=*/None, /*Index=*/0, /*SubTp=*/nullptr);
3890   return NumDstVectorsDemanded * SingleShuffleCost;
3891 }
3892 
3893 InstructionCost X86TTIImpl::getMemoryOpCost(unsigned Opcode, Type *Src,
3894                                             MaybeAlign Alignment,
3895                                             unsigned AddressSpace,
3896                                             TTI::TargetCostKind CostKind,
3897                                             const Instruction *I) {
3898   // TODO: Handle other cost kinds.
3899   if (CostKind != TTI::TCK_RecipThroughput) {
3900     if (auto *SI = dyn_cast_or_null<StoreInst>(I)) {
3901       // Store instruction with index and scale costs 2 Uops.
3902       // Check the preceding GEP to identify non-const indices.
3903       if (auto *GEP = dyn_cast<GetElementPtrInst>(SI->getPointerOperand())) {
3904         if (!all_of(GEP->indices(), [](Value *V) { return isa<Constant>(V); }))
3905           return TTI::TCC_Basic * 2;
3906       }
3907     }
3908     return TTI::TCC_Basic;
3909   }
3910 
3911   assert((Opcode == Instruction::Load || Opcode == Instruction::Store) &&
3912          "Invalid Opcode");
3913   // Type legalization can't handle structs
3914   if (TLI->getValueType(DL, Src, true) == MVT::Other)
3915     return BaseT::getMemoryOpCost(Opcode, Src, Alignment, AddressSpace,
3916                                   CostKind);
3917 
3918   // Legalize the type.
3919   std::pair<InstructionCost, MVT> LT = TLI->getTypeLegalizationCost(DL, Src);
3920 
3921   auto *VTy = dyn_cast<FixedVectorType>(Src);
3922 
3923   // Handle the simple case of non-vectors.
3924   // NOTE: this assumes that legalization never creates vector from scalars!
3925   if (!VTy || !LT.second.isVector())
3926     // Each load/store unit costs 1.
3927     return LT.first * 1;
3928 
3929   bool IsLoad = Opcode == Instruction::Load;
3930 
3931   Type *EltTy = VTy->getElementType();
3932 
3933   const int EltTyBits = DL.getTypeSizeInBits(EltTy);
3934 
3935   InstructionCost Cost = 0;
3936 
3937   // Source of truth: how many elements were there in the original IR vector?
3938   const unsigned SrcNumElt = VTy->getNumElements();
3939 
3940   // How far have we gotten?
3941   int NumEltRemaining = SrcNumElt;
3942   // Note that we intentionally capture by-reference, NumEltRemaining changes.
3943   auto NumEltDone = [&]() { return SrcNumElt - NumEltRemaining; };
3944 
3945   const int MaxLegalOpSizeBytes = divideCeil(LT.second.getSizeInBits(), 8);
3946 
3947   // Note that even if we can store 64 bits of an XMM, we still operate on XMM.
3948   const unsigned XMMBits = 128;
3949   if (XMMBits % EltTyBits != 0)
3950     // Vector size must be a multiple of the element size. I.e. no padding.
3951     return BaseT::getMemoryOpCost(Opcode, Src, Alignment, AddressSpace,
3952                                   CostKind);
3953   const int NumEltPerXMM = XMMBits / EltTyBits;
3954 
3955   auto *XMMVecTy = FixedVectorType::get(EltTy, NumEltPerXMM);
3956 
3957   for (int CurrOpSizeBytes = MaxLegalOpSizeBytes, SubVecEltsLeft = 0;
3958        NumEltRemaining > 0; CurrOpSizeBytes /= 2) {
3959     // How many elements would a single op deal with at once?
3960     if ((8 * CurrOpSizeBytes) % EltTyBits != 0)
3961       // Vector size must be a multiple of the element size. I.e. no padding.
3962       return BaseT::getMemoryOpCost(Opcode, Src, Alignment, AddressSpace,
3963                                     CostKind);
3964     int CurrNumEltPerOp = (8 * CurrOpSizeBytes) / EltTyBits;
3965 
3966     assert(CurrOpSizeBytes > 0 && CurrNumEltPerOp > 0 && "How'd we get here?");
3967     assert((((NumEltRemaining * EltTyBits) < (2 * 8 * CurrOpSizeBytes)) ||
3968             (CurrOpSizeBytes == MaxLegalOpSizeBytes)) &&
3969            "Unless we haven't halved the op size yet, "
3970            "we have less than two op's sized units of work left.");
3971 
3972     auto *CurrVecTy = CurrNumEltPerOp > NumEltPerXMM
3973                           ? FixedVectorType::get(EltTy, CurrNumEltPerOp)
3974                           : XMMVecTy;
3975 
3976     assert(CurrVecTy->getNumElements() % CurrNumEltPerOp == 0 &&
3977            "After halving sizes, the vector elt count is no longer a multiple "
3978            "of number of elements per operation?");
3979     auto *CoalescedVecTy =
3980         CurrNumEltPerOp == 1
3981             ? CurrVecTy
3982             : FixedVectorType::get(
3983                   IntegerType::get(Src->getContext(),
3984                                    EltTyBits * CurrNumEltPerOp),
3985                   CurrVecTy->getNumElements() / CurrNumEltPerOp);
3986     assert(DL.getTypeSizeInBits(CoalescedVecTy) ==
3987                DL.getTypeSizeInBits(CurrVecTy) &&
3988            "coalesciing elements doesn't change vector width.");
3989 
3990     while (NumEltRemaining > 0) {
3991       assert(SubVecEltsLeft >= 0 && "Subreg element count overconsumtion?");
3992 
3993       // Can we use this vector size, as per the remaining element count?
3994       // Iff the vector is naturally aligned, we can do a wide load regardless.
3995       if (NumEltRemaining < CurrNumEltPerOp &&
3996           (!IsLoad || Alignment.valueOrOne() < CurrOpSizeBytes) &&
3997           CurrOpSizeBytes != 1)
3998         break; // Try smalled vector size.
3999 
4000       bool Is0thSubVec = (NumEltDone() % LT.second.getVectorNumElements()) == 0;
4001 
4002       // If we have fully processed the previous reg, we need to replenish it.
4003       if (SubVecEltsLeft == 0) {
4004         SubVecEltsLeft += CurrVecTy->getNumElements();
4005         // And that's free only for the 0'th subvector of a legalized vector.
4006         if (!Is0thSubVec)
4007           Cost += getShuffleCost(IsLoad ? TTI::ShuffleKind::SK_InsertSubvector
4008                                         : TTI::ShuffleKind::SK_ExtractSubvector,
4009                                  VTy, None, NumEltDone(), CurrVecTy);
4010       }
4011 
4012       // While we can directly load/store ZMM, YMM, and 64-bit halves of XMM,
4013       // for smaller widths (32/16/8) we have to insert/extract them separately.
4014       // Again, it's free for the 0'th subreg (if op is 32/64 bit wide,
4015       // but let's pretend that it is also true for 16/8 bit wide ops...)
4016       if (CurrOpSizeBytes <= 32 / 8 && !Is0thSubVec) {
4017         int NumEltDoneInCurrXMM = NumEltDone() % NumEltPerXMM;
4018         assert(NumEltDoneInCurrXMM % CurrNumEltPerOp == 0 && "");
4019         int CoalescedVecEltIdx = NumEltDoneInCurrXMM / CurrNumEltPerOp;
4020         APInt DemandedElts =
4021             APInt::getBitsSet(CoalescedVecTy->getNumElements(),
4022                               CoalescedVecEltIdx, CoalescedVecEltIdx + 1);
4023         assert(DemandedElts.countPopulation() == 1 && "Inserting single value");
4024         Cost += getScalarizationOverhead(CoalescedVecTy, DemandedElts, IsLoad,
4025                                          !IsLoad);
4026       }
4027 
4028       // This isn't exactly right. We're using slow unaligned 32-byte accesses
4029       // as a proxy for a double-pumped AVX memory interface such as on
4030       // Sandybridge.
4031       if (CurrOpSizeBytes == 32 && ST->isUnalignedMem32Slow())
4032         Cost += 2;
4033       else
4034         Cost += 1;
4035 
4036       SubVecEltsLeft -= CurrNumEltPerOp;
4037       NumEltRemaining -= CurrNumEltPerOp;
4038       Alignment = commonAlignment(Alignment.valueOrOne(), CurrOpSizeBytes);
4039     }
4040   }
4041 
4042   assert(NumEltRemaining <= 0 && "Should have processed all the elements.");
4043 
4044   return Cost;
4045 }
4046 
4047 InstructionCost
4048 X86TTIImpl::getMaskedMemoryOpCost(unsigned Opcode, Type *SrcTy, Align Alignment,
4049                                   unsigned AddressSpace,
4050                                   TTI::TargetCostKind CostKind) {
4051   bool IsLoad = (Instruction::Load == Opcode);
4052   bool IsStore = (Instruction::Store == Opcode);
4053 
4054   auto *SrcVTy = dyn_cast<FixedVectorType>(SrcTy);
4055   if (!SrcVTy)
4056     // To calculate scalar take the regular cost, without mask
4057     return getMemoryOpCost(Opcode, SrcTy, Alignment, AddressSpace, CostKind);
4058 
4059   unsigned NumElem = SrcVTy->getNumElements();
4060   auto *MaskTy =
4061       FixedVectorType::get(Type::getInt8Ty(SrcVTy->getContext()), NumElem);
4062   if ((IsLoad && !isLegalMaskedLoad(SrcVTy, Alignment)) ||
4063       (IsStore && !isLegalMaskedStore(SrcVTy, Alignment))) {
4064     // Scalarization
4065     APInt DemandedElts = APInt::getAllOnes(NumElem);
4066     InstructionCost MaskSplitCost =
4067         getScalarizationOverhead(MaskTy, DemandedElts, false, true);
4068     InstructionCost ScalarCompareCost = getCmpSelInstrCost(
4069         Instruction::ICmp, Type::getInt8Ty(SrcVTy->getContext()), nullptr,
4070         CmpInst::BAD_ICMP_PREDICATE, CostKind);
4071     InstructionCost BranchCost = getCFInstrCost(Instruction::Br, CostKind);
4072     InstructionCost MaskCmpCost = NumElem * (BranchCost + ScalarCompareCost);
4073     InstructionCost ValueSplitCost =
4074         getScalarizationOverhead(SrcVTy, DemandedElts, IsLoad, IsStore);
4075     InstructionCost MemopCost =
4076         NumElem * BaseT::getMemoryOpCost(Opcode, SrcVTy->getScalarType(),
4077                                          Alignment, AddressSpace, CostKind);
4078     return MemopCost + ValueSplitCost + MaskSplitCost + MaskCmpCost;
4079   }
4080 
4081   // Legalize the type.
4082   std::pair<InstructionCost, MVT> LT = TLI->getTypeLegalizationCost(DL, SrcVTy);
4083   auto VT = TLI->getValueType(DL, SrcVTy);
4084   InstructionCost Cost = 0;
4085   if (VT.isSimple() && LT.second != VT.getSimpleVT() &&
4086       LT.second.getVectorNumElements() == NumElem)
4087     // Promotion requires extend/truncate for data and a shuffle for mask.
4088     Cost += getShuffleCost(TTI::SK_PermuteTwoSrc, SrcVTy, None, 0, nullptr) +
4089             getShuffleCost(TTI::SK_PermuteTwoSrc, MaskTy, None, 0, nullptr);
4090 
4091   else if (LT.first * LT.second.getVectorNumElements() > NumElem) {
4092     auto *NewMaskTy = FixedVectorType::get(MaskTy->getElementType(),
4093                                            LT.second.getVectorNumElements());
4094     // Expanding requires fill mask with zeroes
4095     Cost += getShuffleCost(TTI::SK_InsertSubvector, NewMaskTy, None, 0, MaskTy);
4096   }
4097 
4098   // Pre-AVX512 - each maskmov load costs 2 + store costs ~8.
4099   if (!ST->hasAVX512())
4100     return Cost + LT.first * (IsLoad ? 2 : 8);
4101 
4102   // AVX-512 masked load/store is cheapper
4103   return Cost + LT.first;
4104 }
4105 
4106 InstructionCost X86TTIImpl::getAddressComputationCost(Type *Ty,
4107                                                       ScalarEvolution *SE,
4108                                                       const SCEV *Ptr) {
4109   // Address computations in vectorized code with non-consecutive addresses will
4110   // likely result in more instructions compared to scalar code where the
4111   // computation can more often be merged into the index mode. The resulting
4112   // extra micro-ops can significantly decrease throughput.
4113   const unsigned NumVectorInstToHideOverhead = 10;
4114 
4115   // Cost modeling of Strided Access Computation is hidden by the indexing
4116   // modes of X86 regardless of the stride value. We dont believe that there
4117   // is a difference between constant strided access in gerenal and constant
4118   // strided value which is less than or equal to 64.
4119   // Even in the case of (loop invariant) stride whose value is not known at
4120   // compile time, the address computation will not incur more than one extra
4121   // ADD instruction.
4122   if (Ty->isVectorTy() && SE && !ST->hasAVX2()) {
4123     // TODO: AVX2 is the current cut-off because we don't have correct
4124     //       interleaving costs for prior ISA's.
4125     if (!BaseT::isStridedAccess(Ptr))
4126       return NumVectorInstToHideOverhead;
4127     if (!BaseT::getConstantStrideStep(SE, Ptr))
4128       return 1;
4129   }
4130 
4131   return BaseT::getAddressComputationCost(Ty, SE, Ptr);
4132 }
4133 
4134 InstructionCost
4135 X86TTIImpl::getArithmeticReductionCost(unsigned Opcode, VectorType *ValTy,
4136                                        Optional<FastMathFlags> FMF,
4137                                        TTI::TargetCostKind CostKind) {
4138   if (TTI::requiresOrderedReduction(FMF))
4139     return BaseT::getArithmeticReductionCost(Opcode, ValTy, FMF, CostKind);
4140 
4141   // We use the Intel Architecture Code Analyzer(IACA) to measure the throughput
4142   // and make it as the cost.
4143 
4144   static const CostTblEntry SLMCostTblNoPairWise[] = {
4145     { ISD::FADD,  MVT::v2f64,   3 },
4146     { ISD::ADD,   MVT::v2i64,   5 },
4147   };
4148 
4149   static const CostTblEntry SSE2CostTblNoPairWise[] = {
4150     { ISD::FADD,  MVT::v2f64,   2 },
4151     { ISD::FADD,  MVT::v2f32,   2 },
4152     { ISD::FADD,  MVT::v4f32,   4 },
4153     { ISD::ADD,   MVT::v2i64,   2 },      // The data reported by the IACA tool is "1.6".
4154     { ISD::ADD,   MVT::v2i32,   2 }, // FIXME: chosen to be less than v4i32
4155     { ISD::ADD,   MVT::v4i32,   3 },      // The data reported by the IACA tool is "3.3".
4156     { ISD::ADD,   MVT::v2i16,   2 },      // The data reported by the IACA tool is "4.3".
4157     { ISD::ADD,   MVT::v4i16,   3 },      // The data reported by the IACA tool is "4.3".
4158     { ISD::ADD,   MVT::v8i16,   4 },      // The data reported by the IACA tool is "4.3".
4159     { ISD::ADD,   MVT::v2i8,    2 },
4160     { ISD::ADD,   MVT::v4i8,    2 },
4161     { ISD::ADD,   MVT::v8i8,    2 },
4162     { ISD::ADD,   MVT::v16i8,   3 },
4163   };
4164 
4165   static const CostTblEntry AVX1CostTblNoPairWise[] = {
4166     { ISD::FADD,  MVT::v4f64,   3 },
4167     { ISD::FADD,  MVT::v4f32,   3 },
4168     { ISD::FADD,  MVT::v8f32,   4 },
4169     { ISD::ADD,   MVT::v2i64,   1 },      // The data reported by the IACA tool is "1.5".
4170     { ISD::ADD,   MVT::v4i64,   3 },
4171     { ISD::ADD,   MVT::v8i32,   5 },
4172     { ISD::ADD,   MVT::v16i16,  5 },
4173     { ISD::ADD,   MVT::v32i8,   4 },
4174   };
4175 
4176   int ISD = TLI->InstructionOpcodeToISD(Opcode);
4177   assert(ISD && "Invalid opcode");
4178 
4179   // Before legalizing the type, give a chance to look up illegal narrow types
4180   // in the table.
4181   // FIXME: Is there a better way to do this?
4182   EVT VT = TLI->getValueType(DL, ValTy);
4183   if (VT.isSimple()) {
4184     MVT MTy = VT.getSimpleVT();
4185     if (ST->useSLMArithCosts())
4186       if (const auto *Entry = CostTableLookup(SLMCostTblNoPairWise, ISD, MTy))
4187         return Entry->Cost;
4188 
4189     if (ST->hasAVX())
4190       if (const auto *Entry = CostTableLookup(AVX1CostTblNoPairWise, ISD, MTy))
4191         return Entry->Cost;
4192 
4193     if (ST->hasSSE2())
4194       if (const auto *Entry = CostTableLookup(SSE2CostTblNoPairWise, ISD, MTy))
4195         return Entry->Cost;
4196   }
4197 
4198   std::pair<InstructionCost, MVT> LT = TLI->getTypeLegalizationCost(DL, ValTy);
4199 
4200   MVT MTy = LT.second;
4201 
4202   auto *ValVTy = cast<FixedVectorType>(ValTy);
4203 
4204   // Special case: vXi8 mul reductions are performed as vXi16.
4205   if (ISD == ISD::MUL && MTy.getScalarType() == MVT::i8) {
4206     auto *WideSclTy = IntegerType::get(ValVTy->getContext(), 16);
4207     auto *WideVecTy = FixedVectorType::get(WideSclTy, ValVTy->getNumElements());
4208     return getCastInstrCost(Instruction::ZExt, WideVecTy, ValTy,
4209                             TargetTransformInfo::CastContextHint::None,
4210                             CostKind) +
4211            getArithmeticReductionCost(Opcode, WideVecTy, FMF, CostKind);
4212   }
4213 
4214   InstructionCost ArithmeticCost = 0;
4215   if (LT.first != 1 && MTy.isVector() &&
4216       MTy.getVectorNumElements() < ValVTy->getNumElements()) {
4217     // Type needs to be split. We need LT.first - 1 arithmetic ops.
4218     auto *SingleOpTy = FixedVectorType::get(ValVTy->getElementType(),
4219                                             MTy.getVectorNumElements());
4220     ArithmeticCost = getArithmeticInstrCost(Opcode, SingleOpTy, CostKind);
4221     ArithmeticCost *= LT.first - 1;
4222   }
4223 
4224   if (ST->useSLMArithCosts())
4225     if (const auto *Entry = CostTableLookup(SLMCostTblNoPairWise, ISD, MTy))
4226       return ArithmeticCost + Entry->Cost;
4227 
4228   if (ST->hasAVX())
4229     if (const auto *Entry = CostTableLookup(AVX1CostTblNoPairWise, ISD, MTy))
4230       return ArithmeticCost + Entry->Cost;
4231 
4232   if (ST->hasSSE2())
4233     if (const auto *Entry = CostTableLookup(SSE2CostTblNoPairWise, ISD, MTy))
4234       return ArithmeticCost + Entry->Cost;
4235 
4236   // FIXME: These assume a naive kshift+binop lowering, which is probably
4237   // conservative in most cases.
4238   static const CostTblEntry AVX512BoolReduction[] = {
4239     { ISD::AND,  MVT::v2i1,   3 },
4240     { ISD::AND,  MVT::v4i1,   5 },
4241     { ISD::AND,  MVT::v8i1,   7 },
4242     { ISD::AND,  MVT::v16i1,  9 },
4243     { ISD::AND,  MVT::v32i1, 11 },
4244     { ISD::AND,  MVT::v64i1, 13 },
4245     { ISD::OR,   MVT::v2i1,   3 },
4246     { ISD::OR,   MVT::v4i1,   5 },
4247     { ISD::OR,   MVT::v8i1,   7 },
4248     { ISD::OR,   MVT::v16i1,  9 },
4249     { ISD::OR,   MVT::v32i1, 11 },
4250     { ISD::OR,   MVT::v64i1, 13 },
4251   };
4252 
4253   static const CostTblEntry AVX2BoolReduction[] = {
4254     { ISD::AND,  MVT::v16i16,  2 }, // vpmovmskb + cmp
4255     { ISD::AND,  MVT::v32i8,   2 }, // vpmovmskb + cmp
4256     { ISD::OR,   MVT::v16i16,  2 }, // vpmovmskb + cmp
4257     { ISD::OR,   MVT::v32i8,   2 }, // vpmovmskb + cmp
4258   };
4259 
4260   static const CostTblEntry AVX1BoolReduction[] = {
4261     { ISD::AND,  MVT::v4i64,   2 }, // vmovmskpd + cmp
4262     { ISD::AND,  MVT::v8i32,   2 }, // vmovmskps + cmp
4263     { ISD::AND,  MVT::v16i16,  4 }, // vextractf128 + vpand + vpmovmskb + cmp
4264     { ISD::AND,  MVT::v32i8,   4 }, // vextractf128 + vpand + vpmovmskb + cmp
4265     { ISD::OR,   MVT::v4i64,   2 }, // vmovmskpd + cmp
4266     { ISD::OR,   MVT::v8i32,   2 }, // vmovmskps + cmp
4267     { ISD::OR,   MVT::v16i16,  4 }, // vextractf128 + vpor + vpmovmskb + cmp
4268     { ISD::OR,   MVT::v32i8,   4 }, // vextractf128 + vpor + vpmovmskb + cmp
4269   };
4270 
4271   static const CostTblEntry SSE2BoolReduction[] = {
4272     { ISD::AND,  MVT::v2i64,   2 }, // movmskpd + cmp
4273     { ISD::AND,  MVT::v4i32,   2 }, // movmskps + cmp
4274     { ISD::AND,  MVT::v8i16,   2 }, // pmovmskb + cmp
4275     { ISD::AND,  MVT::v16i8,   2 }, // pmovmskb + cmp
4276     { ISD::OR,   MVT::v2i64,   2 }, // movmskpd + cmp
4277     { ISD::OR,   MVT::v4i32,   2 }, // movmskps + cmp
4278     { ISD::OR,   MVT::v8i16,   2 }, // pmovmskb + cmp
4279     { ISD::OR,   MVT::v16i8,   2 }, // pmovmskb + cmp
4280   };
4281 
4282   // Handle bool allof/anyof patterns.
4283   if (ValVTy->getElementType()->isIntegerTy(1)) {
4284     InstructionCost ArithmeticCost = 0;
4285     if (LT.first != 1 && MTy.isVector() &&
4286         MTy.getVectorNumElements() < ValVTy->getNumElements()) {
4287       // Type needs to be split. We need LT.first - 1 arithmetic ops.
4288       auto *SingleOpTy = FixedVectorType::get(ValVTy->getElementType(),
4289                                               MTy.getVectorNumElements());
4290       ArithmeticCost = getArithmeticInstrCost(Opcode, SingleOpTy, CostKind);
4291       ArithmeticCost *= LT.first - 1;
4292     }
4293 
4294     if (ST->hasAVX512())
4295       if (const auto *Entry = CostTableLookup(AVX512BoolReduction, ISD, MTy))
4296         return ArithmeticCost + Entry->Cost;
4297     if (ST->hasAVX2())
4298       if (const auto *Entry = CostTableLookup(AVX2BoolReduction, ISD, MTy))
4299         return ArithmeticCost + Entry->Cost;
4300     if (ST->hasAVX())
4301       if (const auto *Entry = CostTableLookup(AVX1BoolReduction, ISD, MTy))
4302         return ArithmeticCost + Entry->Cost;
4303     if (ST->hasSSE2())
4304       if (const auto *Entry = CostTableLookup(SSE2BoolReduction, ISD, MTy))
4305         return ArithmeticCost + Entry->Cost;
4306 
4307     return BaseT::getArithmeticReductionCost(Opcode, ValVTy, FMF, CostKind);
4308   }
4309 
4310   unsigned NumVecElts = ValVTy->getNumElements();
4311   unsigned ScalarSize = ValVTy->getScalarSizeInBits();
4312 
4313   // Special case power of 2 reductions where the scalar type isn't changed
4314   // by type legalization.
4315   if (!isPowerOf2_32(NumVecElts) || ScalarSize != MTy.getScalarSizeInBits())
4316     return BaseT::getArithmeticReductionCost(Opcode, ValVTy, FMF, CostKind);
4317 
4318   InstructionCost ReductionCost = 0;
4319 
4320   auto *Ty = ValVTy;
4321   if (LT.first != 1 && MTy.isVector() &&
4322       MTy.getVectorNumElements() < ValVTy->getNumElements()) {
4323     // Type needs to be split. We need LT.first - 1 arithmetic ops.
4324     Ty = FixedVectorType::get(ValVTy->getElementType(),
4325                               MTy.getVectorNumElements());
4326     ReductionCost = getArithmeticInstrCost(Opcode, Ty, CostKind);
4327     ReductionCost *= LT.first - 1;
4328     NumVecElts = MTy.getVectorNumElements();
4329   }
4330 
4331   // Now handle reduction with the legal type, taking into account size changes
4332   // at each level.
4333   while (NumVecElts > 1) {
4334     // Determine the size of the remaining vector we need to reduce.
4335     unsigned Size = NumVecElts * ScalarSize;
4336     NumVecElts /= 2;
4337     // If we're reducing from 256/512 bits, use an extract_subvector.
4338     if (Size > 128) {
4339       auto *SubTy = FixedVectorType::get(ValVTy->getElementType(), NumVecElts);
4340       ReductionCost +=
4341           getShuffleCost(TTI::SK_ExtractSubvector, Ty, None, NumVecElts, SubTy);
4342       Ty = SubTy;
4343     } else if (Size == 128) {
4344       // Reducing from 128 bits is a permute of v2f64/v2i64.
4345       FixedVectorType *ShufTy;
4346       if (ValVTy->isFloatingPointTy())
4347         ShufTy =
4348             FixedVectorType::get(Type::getDoubleTy(ValVTy->getContext()), 2);
4349       else
4350         ShufTy =
4351             FixedVectorType::get(Type::getInt64Ty(ValVTy->getContext()), 2);
4352       ReductionCost +=
4353           getShuffleCost(TTI::SK_PermuteSingleSrc, ShufTy, None, 0, nullptr);
4354     } else if (Size == 64) {
4355       // Reducing from 64 bits is a shuffle of v4f32/v4i32.
4356       FixedVectorType *ShufTy;
4357       if (ValVTy->isFloatingPointTy())
4358         ShufTy =
4359             FixedVectorType::get(Type::getFloatTy(ValVTy->getContext()), 4);
4360       else
4361         ShufTy =
4362             FixedVectorType::get(Type::getInt32Ty(ValVTy->getContext()), 4);
4363       ReductionCost +=
4364           getShuffleCost(TTI::SK_PermuteSingleSrc, ShufTy, None, 0, nullptr);
4365     } else {
4366       // Reducing from smaller size is a shift by immediate.
4367       auto *ShiftTy = FixedVectorType::get(
4368           Type::getIntNTy(ValVTy->getContext(), Size), 128 / Size);
4369       ReductionCost += getArithmeticInstrCost(
4370           Instruction::LShr, ShiftTy, CostKind,
4371           TargetTransformInfo::OK_AnyValue,
4372           TargetTransformInfo::OK_UniformConstantValue,
4373           TargetTransformInfo::OP_None, TargetTransformInfo::OP_None);
4374     }
4375 
4376     // Add the arithmetic op for this level.
4377     ReductionCost += getArithmeticInstrCost(Opcode, Ty, CostKind);
4378   }
4379 
4380   // Add the final extract element to the cost.
4381   return ReductionCost + getVectorInstrCost(Instruction::ExtractElement, Ty, 0);
4382 }
4383 
4384 InstructionCost X86TTIImpl::getMinMaxCost(Type *Ty, Type *CondTy,
4385                                           bool IsUnsigned) {
4386   std::pair<InstructionCost, MVT> LT = TLI->getTypeLegalizationCost(DL, Ty);
4387 
4388   MVT MTy = LT.second;
4389 
4390   int ISD;
4391   if (Ty->isIntOrIntVectorTy()) {
4392     ISD = IsUnsigned ? ISD::UMIN : ISD::SMIN;
4393   } else {
4394     assert(Ty->isFPOrFPVectorTy() &&
4395            "Expected float point or integer vector type.");
4396     ISD = ISD::FMINNUM;
4397   }
4398 
4399   static const CostTblEntry SSE1CostTbl[] = {
4400     {ISD::FMINNUM, MVT::v4f32, 1},
4401   };
4402 
4403   static const CostTblEntry SSE2CostTbl[] = {
4404     {ISD::FMINNUM, MVT::v2f64, 1},
4405     {ISD::SMIN,    MVT::v8i16, 1},
4406     {ISD::UMIN,    MVT::v16i8, 1},
4407   };
4408 
4409   static const CostTblEntry SSE41CostTbl[] = {
4410     {ISD::SMIN,    MVT::v4i32, 1},
4411     {ISD::UMIN,    MVT::v4i32, 1},
4412     {ISD::UMIN,    MVT::v8i16, 1},
4413     {ISD::SMIN,    MVT::v16i8, 1},
4414   };
4415 
4416   static const CostTblEntry SSE42CostTbl[] = {
4417     {ISD::UMIN,    MVT::v2i64, 3}, // xor+pcmpgtq+blendvpd
4418   };
4419 
4420   static const CostTblEntry AVX1CostTbl[] = {
4421     {ISD::FMINNUM, MVT::v8f32,  1},
4422     {ISD::FMINNUM, MVT::v4f64,  1},
4423     {ISD::SMIN,    MVT::v8i32,  3},
4424     {ISD::UMIN,    MVT::v8i32,  3},
4425     {ISD::SMIN,    MVT::v16i16, 3},
4426     {ISD::UMIN,    MVT::v16i16, 3},
4427     {ISD::SMIN,    MVT::v32i8,  3},
4428     {ISD::UMIN,    MVT::v32i8,  3},
4429   };
4430 
4431   static const CostTblEntry AVX2CostTbl[] = {
4432     {ISD::SMIN,    MVT::v8i32,  1},
4433     {ISD::UMIN,    MVT::v8i32,  1},
4434     {ISD::SMIN,    MVT::v16i16, 1},
4435     {ISD::UMIN,    MVT::v16i16, 1},
4436     {ISD::SMIN,    MVT::v32i8,  1},
4437     {ISD::UMIN,    MVT::v32i8,  1},
4438   };
4439 
4440   static const CostTblEntry AVX512CostTbl[] = {
4441     {ISD::FMINNUM, MVT::v16f32, 1},
4442     {ISD::FMINNUM, MVT::v8f64,  1},
4443     {ISD::SMIN,    MVT::v2i64,  1},
4444     {ISD::UMIN,    MVT::v2i64,  1},
4445     {ISD::SMIN,    MVT::v4i64,  1},
4446     {ISD::UMIN,    MVT::v4i64,  1},
4447     {ISD::SMIN,    MVT::v8i64,  1},
4448     {ISD::UMIN,    MVT::v8i64,  1},
4449     {ISD::SMIN,    MVT::v16i32, 1},
4450     {ISD::UMIN,    MVT::v16i32, 1},
4451   };
4452 
4453   static const CostTblEntry AVX512BWCostTbl[] = {
4454     {ISD::SMIN,    MVT::v32i16, 1},
4455     {ISD::UMIN,    MVT::v32i16, 1},
4456     {ISD::SMIN,    MVT::v64i8,  1},
4457     {ISD::UMIN,    MVT::v64i8,  1},
4458   };
4459 
4460   // If we have a native MIN/MAX instruction for this type, use it.
4461   if (ST->hasBWI())
4462     if (const auto *Entry = CostTableLookup(AVX512BWCostTbl, ISD, MTy))
4463       return LT.first * Entry->Cost;
4464 
4465   if (ST->hasAVX512())
4466     if (const auto *Entry = CostTableLookup(AVX512CostTbl, ISD, MTy))
4467       return LT.first * Entry->Cost;
4468 
4469   if (ST->hasAVX2())
4470     if (const auto *Entry = CostTableLookup(AVX2CostTbl, ISD, MTy))
4471       return LT.first * Entry->Cost;
4472 
4473   if (ST->hasAVX())
4474     if (const auto *Entry = CostTableLookup(AVX1CostTbl, ISD, MTy))
4475       return LT.first * Entry->Cost;
4476 
4477   if (ST->hasSSE42())
4478     if (const auto *Entry = CostTableLookup(SSE42CostTbl, ISD, MTy))
4479       return LT.first * Entry->Cost;
4480 
4481   if (ST->hasSSE41())
4482     if (const auto *Entry = CostTableLookup(SSE41CostTbl, ISD, MTy))
4483       return LT.first * Entry->Cost;
4484 
4485   if (ST->hasSSE2())
4486     if (const auto *Entry = CostTableLookup(SSE2CostTbl, ISD, MTy))
4487       return LT.first * Entry->Cost;
4488 
4489   if (ST->hasSSE1())
4490     if (const auto *Entry = CostTableLookup(SSE1CostTbl, ISD, MTy))
4491       return LT.first * Entry->Cost;
4492 
4493   unsigned CmpOpcode;
4494   if (Ty->isFPOrFPVectorTy()) {
4495     CmpOpcode = Instruction::FCmp;
4496   } else {
4497     assert(Ty->isIntOrIntVectorTy() &&
4498            "expecting floating point or integer type for min/max reduction");
4499     CmpOpcode = Instruction::ICmp;
4500   }
4501 
4502   TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
4503   // Otherwise fall back to cmp+select.
4504   InstructionCost Result =
4505       getCmpSelInstrCost(CmpOpcode, Ty, CondTy, CmpInst::BAD_ICMP_PREDICATE,
4506                          CostKind) +
4507       getCmpSelInstrCost(Instruction::Select, Ty, CondTy,
4508                          CmpInst::BAD_ICMP_PREDICATE, CostKind);
4509   return Result;
4510 }
4511 
4512 InstructionCost
4513 X86TTIImpl::getMinMaxReductionCost(VectorType *ValTy, VectorType *CondTy,
4514                                    bool IsUnsigned,
4515                                    TTI::TargetCostKind CostKind) {
4516   std::pair<InstructionCost, MVT> LT = TLI->getTypeLegalizationCost(DL, ValTy);
4517 
4518   MVT MTy = LT.second;
4519 
4520   int ISD;
4521   if (ValTy->isIntOrIntVectorTy()) {
4522     ISD = IsUnsigned ? ISD::UMIN : ISD::SMIN;
4523   } else {
4524     assert(ValTy->isFPOrFPVectorTy() &&
4525            "Expected float point or integer vector type.");
4526     ISD = ISD::FMINNUM;
4527   }
4528 
4529   // We use the Intel Architecture Code Analyzer(IACA) to measure the throughput
4530   // and make it as the cost.
4531 
4532   static const CostTblEntry SSE2CostTblNoPairWise[] = {
4533       {ISD::UMIN, MVT::v2i16, 5}, // need pxors to use pminsw/pmaxsw
4534       {ISD::UMIN, MVT::v4i16, 7}, // need pxors to use pminsw/pmaxsw
4535       {ISD::UMIN, MVT::v8i16, 9}, // need pxors to use pminsw/pmaxsw
4536   };
4537 
4538   static const CostTblEntry SSE41CostTblNoPairWise[] = {
4539       {ISD::SMIN, MVT::v2i16, 3}, // same as sse2
4540       {ISD::SMIN, MVT::v4i16, 5}, // same as sse2
4541       {ISD::UMIN, MVT::v2i16, 5}, // same as sse2
4542       {ISD::UMIN, MVT::v4i16, 7}, // same as sse2
4543       {ISD::SMIN, MVT::v8i16, 4}, // phminposuw+xor
4544       {ISD::UMIN, MVT::v8i16, 4}, // FIXME: umin is cheaper than umax
4545       {ISD::SMIN, MVT::v2i8,  3}, // pminsb
4546       {ISD::SMIN, MVT::v4i8,  5}, // pminsb
4547       {ISD::SMIN, MVT::v8i8,  7}, // pminsb
4548       {ISD::SMIN, MVT::v16i8, 6},
4549       {ISD::UMIN, MVT::v2i8,  3}, // same as sse2
4550       {ISD::UMIN, MVT::v4i8,  5}, // same as sse2
4551       {ISD::UMIN, MVT::v8i8,  7}, // same as sse2
4552       {ISD::UMIN, MVT::v16i8, 6}, // FIXME: umin is cheaper than umax
4553   };
4554 
4555   static const CostTblEntry AVX1CostTblNoPairWise[] = {
4556       {ISD::SMIN, MVT::v16i16, 6},
4557       {ISD::UMIN, MVT::v16i16, 6}, // FIXME: umin is cheaper than umax
4558       {ISD::SMIN, MVT::v32i8, 8},
4559       {ISD::UMIN, MVT::v32i8, 8},
4560   };
4561 
4562   static const CostTblEntry AVX512BWCostTblNoPairWise[] = {
4563       {ISD::SMIN, MVT::v32i16, 8},
4564       {ISD::UMIN, MVT::v32i16, 8}, // FIXME: umin is cheaper than umax
4565       {ISD::SMIN, MVT::v64i8, 10},
4566       {ISD::UMIN, MVT::v64i8, 10},
4567   };
4568 
4569   // Before legalizing the type, give a chance to look up illegal narrow types
4570   // in the table.
4571   // FIXME: Is there a better way to do this?
4572   EVT VT = TLI->getValueType(DL, ValTy);
4573   if (VT.isSimple()) {
4574     MVT MTy = VT.getSimpleVT();
4575     if (ST->hasBWI())
4576       if (const auto *Entry = CostTableLookup(AVX512BWCostTblNoPairWise, ISD, MTy))
4577         return Entry->Cost;
4578 
4579     if (ST->hasAVX())
4580       if (const auto *Entry = CostTableLookup(AVX1CostTblNoPairWise, ISD, MTy))
4581         return Entry->Cost;
4582 
4583     if (ST->hasSSE41())
4584       if (const auto *Entry = CostTableLookup(SSE41CostTblNoPairWise, ISD, MTy))
4585         return Entry->Cost;
4586 
4587     if (ST->hasSSE2())
4588       if (const auto *Entry = CostTableLookup(SSE2CostTblNoPairWise, ISD, MTy))
4589         return Entry->Cost;
4590   }
4591 
4592   auto *ValVTy = cast<FixedVectorType>(ValTy);
4593   unsigned NumVecElts = ValVTy->getNumElements();
4594 
4595   auto *Ty = ValVTy;
4596   InstructionCost MinMaxCost = 0;
4597   if (LT.first != 1 && MTy.isVector() &&
4598       MTy.getVectorNumElements() < ValVTy->getNumElements()) {
4599     // Type needs to be split. We need LT.first - 1 operations ops.
4600     Ty = FixedVectorType::get(ValVTy->getElementType(),
4601                               MTy.getVectorNumElements());
4602     auto *SubCondTy = FixedVectorType::get(CondTy->getElementType(),
4603                                            MTy.getVectorNumElements());
4604     MinMaxCost = getMinMaxCost(Ty, SubCondTy, IsUnsigned);
4605     MinMaxCost *= LT.first - 1;
4606     NumVecElts = MTy.getVectorNumElements();
4607   }
4608 
4609   if (ST->hasBWI())
4610     if (const auto *Entry = CostTableLookup(AVX512BWCostTblNoPairWise, ISD, MTy))
4611       return MinMaxCost + Entry->Cost;
4612 
4613   if (ST->hasAVX())
4614     if (const auto *Entry = CostTableLookup(AVX1CostTblNoPairWise, ISD, MTy))
4615       return MinMaxCost + Entry->Cost;
4616 
4617   if (ST->hasSSE41())
4618     if (const auto *Entry = CostTableLookup(SSE41CostTblNoPairWise, ISD, MTy))
4619       return MinMaxCost + Entry->Cost;
4620 
4621   if (ST->hasSSE2())
4622     if (const auto *Entry = CostTableLookup(SSE2CostTblNoPairWise, ISD, MTy))
4623       return MinMaxCost + Entry->Cost;
4624 
4625   unsigned ScalarSize = ValTy->getScalarSizeInBits();
4626 
4627   // Special case power of 2 reductions where the scalar type isn't changed
4628   // by type legalization.
4629   if (!isPowerOf2_32(ValVTy->getNumElements()) ||
4630       ScalarSize != MTy.getScalarSizeInBits())
4631     return BaseT::getMinMaxReductionCost(ValTy, CondTy, IsUnsigned, CostKind);
4632 
4633   // Now handle reduction with the legal type, taking into account size changes
4634   // at each level.
4635   while (NumVecElts > 1) {
4636     // Determine the size of the remaining vector we need to reduce.
4637     unsigned Size = NumVecElts * ScalarSize;
4638     NumVecElts /= 2;
4639     // If we're reducing from 256/512 bits, use an extract_subvector.
4640     if (Size > 128) {
4641       auto *SubTy = FixedVectorType::get(ValVTy->getElementType(), NumVecElts);
4642       MinMaxCost +=
4643           getShuffleCost(TTI::SK_ExtractSubvector, Ty, None, NumVecElts, SubTy);
4644       Ty = SubTy;
4645     } else if (Size == 128) {
4646       // Reducing from 128 bits is a permute of v2f64/v2i64.
4647       VectorType *ShufTy;
4648       if (ValTy->isFloatingPointTy())
4649         ShufTy =
4650             FixedVectorType::get(Type::getDoubleTy(ValTy->getContext()), 2);
4651       else
4652         ShufTy = FixedVectorType::get(Type::getInt64Ty(ValTy->getContext()), 2);
4653       MinMaxCost +=
4654           getShuffleCost(TTI::SK_PermuteSingleSrc, ShufTy, None, 0, nullptr);
4655     } else if (Size == 64) {
4656       // Reducing from 64 bits is a shuffle of v4f32/v4i32.
4657       FixedVectorType *ShufTy;
4658       if (ValTy->isFloatingPointTy())
4659         ShufTy = FixedVectorType::get(Type::getFloatTy(ValTy->getContext()), 4);
4660       else
4661         ShufTy = FixedVectorType::get(Type::getInt32Ty(ValTy->getContext()), 4);
4662       MinMaxCost +=
4663           getShuffleCost(TTI::SK_PermuteSingleSrc, ShufTy, None, 0, nullptr);
4664     } else {
4665       // Reducing from smaller size is a shift by immediate.
4666       auto *ShiftTy = FixedVectorType::get(
4667           Type::getIntNTy(ValTy->getContext(), Size), 128 / Size);
4668       MinMaxCost += getArithmeticInstrCost(
4669           Instruction::LShr, ShiftTy, TTI::TCK_RecipThroughput,
4670           TargetTransformInfo::OK_AnyValue,
4671           TargetTransformInfo::OK_UniformConstantValue,
4672           TargetTransformInfo::OP_None, TargetTransformInfo::OP_None);
4673     }
4674 
4675     // Add the arithmetic op for this level.
4676     auto *SubCondTy =
4677         FixedVectorType::get(CondTy->getElementType(), Ty->getNumElements());
4678     MinMaxCost += getMinMaxCost(Ty, SubCondTy, IsUnsigned);
4679   }
4680 
4681   // Add the final extract element to the cost.
4682   return MinMaxCost + getVectorInstrCost(Instruction::ExtractElement, Ty, 0);
4683 }
4684 
4685 /// Calculate the cost of materializing a 64-bit value. This helper
4686 /// method might only calculate a fraction of a larger immediate. Therefore it
4687 /// is valid to return a cost of ZERO.
4688 InstructionCost X86TTIImpl::getIntImmCost(int64_t Val) {
4689   if (Val == 0)
4690     return TTI::TCC_Free;
4691 
4692   if (isInt<32>(Val))
4693     return TTI::TCC_Basic;
4694 
4695   return 2 * TTI::TCC_Basic;
4696 }
4697 
4698 InstructionCost X86TTIImpl::getIntImmCost(const APInt &Imm, Type *Ty,
4699                                           TTI::TargetCostKind CostKind) {
4700   assert(Ty->isIntegerTy());
4701 
4702   unsigned BitSize = Ty->getPrimitiveSizeInBits();
4703   if (BitSize == 0)
4704     return ~0U;
4705 
4706   // Never hoist constants larger than 128bit, because this might lead to
4707   // incorrect code generation or assertions in codegen.
4708   // Fixme: Create a cost model for types larger than i128 once the codegen
4709   // issues have been fixed.
4710   if (BitSize > 128)
4711     return TTI::TCC_Free;
4712 
4713   if (Imm == 0)
4714     return TTI::TCC_Free;
4715 
4716   // Sign-extend all constants to a multiple of 64-bit.
4717   APInt ImmVal = Imm;
4718   if (BitSize % 64 != 0)
4719     ImmVal = Imm.sext(alignTo(BitSize, 64));
4720 
4721   // Split the constant into 64-bit chunks and calculate the cost for each
4722   // chunk.
4723   InstructionCost Cost = 0;
4724   for (unsigned ShiftVal = 0; ShiftVal < BitSize; ShiftVal += 64) {
4725     APInt Tmp = ImmVal.ashr(ShiftVal).sextOrTrunc(64);
4726     int64_t Val = Tmp.getSExtValue();
4727     Cost += getIntImmCost(Val);
4728   }
4729   // We need at least one instruction to materialize the constant.
4730   return std::max<InstructionCost>(1, Cost);
4731 }
4732 
4733 InstructionCost X86TTIImpl::getIntImmCostInst(unsigned Opcode, unsigned Idx,
4734                                               const APInt &Imm, Type *Ty,
4735                                               TTI::TargetCostKind CostKind,
4736                                               Instruction *Inst) {
4737   assert(Ty->isIntegerTy());
4738 
4739   unsigned BitSize = Ty->getPrimitiveSizeInBits();
4740   // There is no cost model for constants with a bit size of 0. Return TCC_Free
4741   // here, so that constant hoisting will ignore this constant.
4742   if (BitSize == 0)
4743     return TTI::TCC_Free;
4744 
4745   unsigned ImmIdx = ~0U;
4746   switch (Opcode) {
4747   default:
4748     return TTI::TCC_Free;
4749   case Instruction::GetElementPtr:
4750     // Always hoist the base address of a GetElementPtr. This prevents the
4751     // creation of new constants for every base constant that gets constant
4752     // folded with the offset.
4753     if (Idx == 0)
4754       return 2 * TTI::TCC_Basic;
4755     return TTI::TCC_Free;
4756   case Instruction::Store:
4757     ImmIdx = 0;
4758     break;
4759   case Instruction::ICmp:
4760     // This is an imperfect hack to prevent constant hoisting of
4761     // compares that might be trying to check if a 64-bit value fits in
4762     // 32-bits. The backend can optimize these cases using a right shift by 32.
4763     // Ideally we would check the compare predicate here. There also other
4764     // similar immediates the backend can use shifts for.
4765     if (Idx == 1 && Imm.getBitWidth() == 64) {
4766       uint64_t ImmVal = Imm.getZExtValue();
4767       if (ImmVal == 0x100000000ULL || ImmVal == 0xffffffff)
4768         return TTI::TCC_Free;
4769     }
4770     ImmIdx = 1;
4771     break;
4772   case Instruction::And:
4773     // We support 64-bit ANDs with immediates with 32-bits of leading zeroes
4774     // by using a 32-bit operation with implicit zero extension. Detect such
4775     // immediates here as the normal path expects bit 31 to be sign extended.
4776     if (Idx == 1 && Imm.getBitWidth() == 64 && isUInt<32>(Imm.getZExtValue()))
4777       return TTI::TCC_Free;
4778     ImmIdx = 1;
4779     break;
4780   case Instruction::Add:
4781   case Instruction::Sub:
4782     // For add/sub, we can use the opposite instruction for INT32_MIN.
4783     if (Idx == 1 && Imm.getBitWidth() == 64 && Imm.getZExtValue() == 0x80000000)
4784       return TTI::TCC_Free;
4785     ImmIdx = 1;
4786     break;
4787   case Instruction::UDiv:
4788   case Instruction::SDiv:
4789   case Instruction::URem:
4790   case Instruction::SRem:
4791     // Division by constant is typically expanded later into a different
4792     // instruction sequence. This completely changes the constants.
4793     // Report them as "free" to stop ConstantHoist from marking them as opaque.
4794     return TTI::TCC_Free;
4795   case Instruction::Mul:
4796   case Instruction::Or:
4797   case Instruction::Xor:
4798     ImmIdx = 1;
4799     break;
4800   // Always return TCC_Free for the shift value of a shift instruction.
4801   case Instruction::Shl:
4802   case Instruction::LShr:
4803   case Instruction::AShr:
4804     if (Idx == 1)
4805       return TTI::TCC_Free;
4806     break;
4807   case Instruction::Trunc:
4808   case Instruction::ZExt:
4809   case Instruction::SExt:
4810   case Instruction::IntToPtr:
4811   case Instruction::PtrToInt:
4812   case Instruction::BitCast:
4813   case Instruction::PHI:
4814   case Instruction::Call:
4815   case Instruction::Select:
4816   case Instruction::Ret:
4817   case Instruction::Load:
4818     break;
4819   }
4820 
4821   if (Idx == ImmIdx) {
4822     int NumConstants = divideCeil(BitSize, 64);
4823     InstructionCost Cost = X86TTIImpl::getIntImmCost(Imm, Ty, CostKind);
4824     return (Cost <= NumConstants * TTI::TCC_Basic)
4825                ? static_cast<int>(TTI::TCC_Free)
4826                : Cost;
4827   }
4828 
4829   return X86TTIImpl::getIntImmCost(Imm, Ty, CostKind);
4830 }
4831 
4832 InstructionCost X86TTIImpl::getIntImmCostIntrin(Intrinsic::ID IID, unsigned Idx,
4833                                                 const APInt &Imm, Type *Ty,
4834                                                 TTI::TargetCostKind CostKind) {
4835   assert(Ty->isIntegerTy());
4836 
4837   unsigned BitSize = Ty->getPrimitiveSizeInBits();
4838   // There is no cost model for constants with a bit size of 0. Return TCC_Free
4839   // here, so that constant hoisting will ignore this constant.
4840   if (BitSize == 0)
4841     return TTI::TCC_Free;
4842 
4843   switch (IID) {
4844   default:
4845     return TTI::TCC_Free;
4846   case Intrinsic::sadd_with_overflow:
4847   case Intrinsic::uadd_with_overflow:
4848   case Intrinsic::ssub_with_overflow:
4849   case Intrinsic::usub_with_overflow:
4850   case Intrinsic::smul_with_overflow:
4851   case Intrinsic::umul_with_overflow:
4852     if ((Idx == 1) && Imm.getBitWidth() <= 64 && isInt<32>(Imm.getSExtValue()))
4853       return TTI::TCC_Free;
4854     break;
4855   case Intrinsic::experimental_stackmap:
4856     if ((Idx < 2) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue())))
4857       return TTI::TCC_Free;
4858     break;
4859   case Intrinsic::experimental_patchpoint_void:
4860   case Intrinsic::experimental_patchpoint_i64:
4861     if ((Idx < 4) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue())))
4862       return TTI::TCC_Free;
4863     break;
4864   }
4865   return X86TTIImpl::getIntImmCost(Imm, Ty, CostKind);
4866 }
4867 
4868 InstructionCost X86TTIImpl::getCFInstrCost(unsigned Opcode,
4869                                            TTI::TargetCostKind CostKind,
4870                                            const Instruction *I) {
4871   if (CostKind != TTI::TCK_RecipThroughput)
4872     return Opcode == Instruction::PHI ? 0 : 1;
4873   // Branches are assumed to be predicted.
4874   return 0;
4875 }
4876 
4877 int X86TTIImpl::getGatherOverhead() const {
4878   // Some CPUs have more overhead for gather. The specified overhead is relative
4879   // to the Load operation. "2" is the number provided by Intel architects. This
4880   // parameter is used for cost estimation of Gather Op and comparison with
4881   // other alternatives.
4882   // TODO: Remove the explicit hasAVX512()?, That would mean we would only
4883   // enable gather with a -march.
4884   if (ST->hasAVX512() || (ST->hasAVX2() && ST->hasFastGather()))
4885     return 2;
4886 
4887   return 1024;
4888 }
4889 
4890 int X86TTIImpl::getScatterOverhead() const {
4891   if (ST->hasAVX512())
4892     return 2;
4893 
4894   return 1024;
4895 }
4896 
4897 // Return an average cost of Gather / Scatter instruction, maybe improved later.
4898 // FIXME: Add TargetCostKind support.
4899 InstructionCost X86TTIImpl::getGSVectorCost(unsigned Opcode, Type *SrcVTy,
4900                                             const Value *Ptr, Align Alignment,
4901                                             unsigned AddressSpace) {
4902 
4903   assert(isa<VectorType>(SrcVTy) && "Unexpected type in getGSVectorCost");
4904   unsigned VF = cast<FixedVectorType>(SrcVTy)->getNumElements();
4905 
4906   // Try to reduce index size from 64 bit (default for GEP)
4907   // to 32. It is essential for VF 16. If the index can't be reduced to 32, the
4908   // operation will use 16 x 64 indices which do not fit in a zmm and needs
4909   // to split. Also check that the base pointer is the same for all lanes,
4910   // and that there's at most one variable index.
4911   auto getIndexSizeInBits = [](const Value *Ptr, const DataLayout &DL) {
4912     unsigned IndexSize = DL.getPointerSizeInBits();
4913     const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr);
4914     if (IndexSize < 64 || !GEP)
4915       return IndexSize;
4916 
4917     unsigned NumOfVarIndices = 0;
4918     const Value *Ptrs = GEP->getPointerOperand();
4919     if (Ptrs->getType()->isVectorTy() && !getSplatValue(Ptrs))
4920       return IndexSize;
4921     for (unsigned i = 1; i < GEP->getNumOperands(); ++i) {
4922       if (isa<Constant>(GEP->getOperand(i)))
4923         continue;
4924       Type *IndxTy = GEP->getOperand(i)->getType();
4925       if (auto *IndexVTy = dyn_cast<VectorType>(IndxTy))
4926         IndxTy = IndexVTy->getElementType();
4927       if ((IndxTy->getPrimitiveSizeInBits() == 64 &&
4928           !isa<SExtInst>(GEP->getOperand(i))) ||
4929          ++NumOfVarIndices > 1)
4930         return IndexSize; // 64
4931     }
4932     return (unsigned)32;
4933   };
4934 
4935   // Trying to reduce IndexSize to 32 bits for vector 16.
4936   // By default the IndexSize is equal to pointer size.
4937   unsigned IndexSize = (ST->hasAVX512() && VF >= 16)
4938                            ? getIndexSizeInBits(Ptr, DL)
4939                            : DL.getPointerSizeInBits();
4940 
4941   auto *IndexVTy = FixedVectorType::get(
4942       IntegerType::get(SrcVTy->getContext(), IndexSize), VF);
4943   std::pair<InstructionCost, MVT> IdxsLT =
4944       TLI->getTypeLegalizationCost(DL, IndexVTy);
4945   std::pair<InstructionCost, MVT> SrcLT =
4946       TLI->getTypeLegalizationCost(DL, SrcVTy);
4947   InstructionCost::CostType SplitFactor =
4948       *std::max(IdxsLT.first, SrcLT.first).getValue();
4949   if (SplitFactor > 1) {
4950     // Handle splitting of vector of pointers
4951     auto *SplitSrcTy =
4952         FixedVectorType::get(SrcVTy->getScalarType(), VF / SplitFactor);
4953     return SplitFactor * getGSVectorCost(Opcode, SplitSrcTy, Ptr, Alignment,
4954                                          AddressSpace);
4955   }
4956 
4957   // The gather / scatter cost is given by Intel architects. It is a rough
4958   // number since we are looking at one instruction in a time.
4959   const int GSOverhead = (Opcode == Instruction::Load)
4960                              ? getGatherOverhead()
4961                              : getScatterOverhead();
4962   return GSOverhead + VF * getMemoryOpCost(Opcode, SrcVTy->getScalarType(),
4963                                            MaybeAlign(Alignment), AddressSpace,
4964                                            TTI::TCK_RecipThroughput);
4965 }
4966 
4967 /// Return the cost of full scalarization of gather / scatter operation.
4968 ///
4969 /// Opcode - Load or Store instruction.
4970 /// SrcVTy - The type of the data vector that should be gathered or scattered.
4971 /// VariableMask - The mask is non-constant at compile time.
4972 /// Alignment - Alignment for one element.
4973 /// AddressSpace - pointer[s] address space.
4974 ///
4975 /// FIXME: Add TargetCostKind support.
4976 InstructionCost X86TTIImpl::getGSScalarCost(unsigned Opcode, Type *SrcVTy,
4977                                             bool VariableMask, Align Alignment,
4978                                             unsigned AddressSpace) {
4979   Type *ScalarTy = SrcVTy->getScalarType();
4980   unsigned VF = cast<FixedVectorType>(SrcVTy)->getNumElements();
4981   APInt DemandedElts = APInt::getAllOnes(VF);
4982   TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
4983 
4984   InstructionCost MaskUnpackCost = 0;
4985   if (VariableMask) {
4986     auto *MaskTy =
4987         FixedVectorType::get(Type::getInt1Ty(SrcVTy->getContext()), VF);
4988     MaskUnpackCost = getScalarizationOverhead(
4989         MaskTy, DemandedElts, /*Insert=*/false, /*Extract=*/true);
4990     InstructionCost ScalarCompareCost = getCmpSelInstrCost(
4991         Instruction::ICmp, Type::getInt1Ty(SrcVTy->getContext()), nullptr,
4992         CmpInst::BAD_ICMP_PREDICATE, CostKind);
4993     InstructionCost BranchCost = getCFInstrCost(Instruction::Br, CostKind);
4994     MaskUnpackCost += VF * (BranchCost + ScalarCompareCost);
4995   }
4996 
4997   InstructionCost AddressUnpackCost = getScalarizationOverhead(
4998       FixedVectorType::get(ScalarTy->getPointerTo(), VF), DemandedElts,
4999       /*Insert=*/false, /*Extract=*/true);
5000 
5001   // The cost of the scalar loads/stores.
5002   InstructionCost MemoryOpCost =
5003       VF * getMemoryOpCost(Opcode, ScalarTy, MaybeAlign(Alignment),
5004                            AddressSpace, CostKind);
5005 
5006   // The cost of forming the vector from loaded scalars/
5007   // scalarizing the vector to perform scalar stores.
5008   InstructionCost InsertExtractCost =
5009       getScalarizationOverhead(cast<FixedVectorType>(SrcVTy), DemandedElts,
5010                                /*Insert=*/Opcode == Instruction::Load,
5011                                /*Extract=*/Opcode == Instruction::Store);
5012 
5013   return AddressUnpackCost + MemoryOpCost + MaskUnpackCost + InsertExtractCost;
5014 }
5015 
5016 /// Calculate the cost of Gather / Scatter operation
5017 InstructionCost X86TTIImpl::getGatherScatterOpCost(
5018     unsigned Opcode, Type *SrcVTy, const Value *Ptr, bool VariableMask,
5019     Align Alignment, TTI::TargetCostKind CostKind,
5020     const Instruction *I = nullptr) {
5021   if (CostKind != TTI::TCK_RecipThroughput) {
5022     if ((Opcode == Instruction::Load &&
5023          isLegalMaskedGather(SrcVTy, Align(Alignment)) &&
5024          !forceScalarizeMaskedGather(cast<VectorType>(SrcVTy),
5025                                      Align(Alignment))) ||
5026         (Opcode == Instruction::Store &&
5027          isLegalMaskedScatter(SrcVTy, Align(Alignment)) &&
5028          !forceScalarizeMaskedScatter(cast<VectorType>(SrcVTy),
5029                                       Align(Alignment))))
5030       return 1;
5031     return BaseT::getGatherScatterOpCost(Opcode, SrcVTy, Ptr, VariableMask,
5032                                          Alignment, CostKind, I);
5033   }
5034 
5035   assert(SrcVTy->isVectorTy() && "Unexpected data type for Gather/Scatter");
5036   PointerType *PtrTy = dyn_cast<PointerType>(Ptr->getType());
5037   if (!PtrTy && Ptr->getType()->isVectorTy())
5038     PtrTy = dyn_cast<PointerType>(
5039         cast<VectorType>(Ptr->getType())->getElementType());
5040   assert(PtrTy && "Unexpected type for Ptr argument");
5041   unsigned AddressSpace = PtrTy->getAddressSpace();
5042 
5043   if ((Opcode == Instruction::Load &&
5044        (!isLegalMaskedGather(SrcVTy, Align(Alignment)) ||
5045         forceScalarizeMaskedGather(cast<VectorType>(SrcVTy),
5046                                    Align(Alignment)))) ||
5047       (Opcode == Instruction::Store &&
5048        (!isLegalMaskedScatter(SrcVTy, Align(Alignment)) ||
5049         forceScalarizeMaskedScatter(cast<VectorType>(SrcVTy),
5050                                     Align(Alignment)))))
5051     return getGSScalarCost(Opcode, SrcVTy, VariableMask, Alignment,
5052                            AddressSpace);
5053 
5054   return getGSVectorCost(Opcode, SrcVTy, Ptr, Alignment, AddressSpace);
5055 }
5056 
5057 bool X86TTIImpl::isLSRCostLess(TargetTransformInfo::LSRCost &C1,
5058                                TargetTransformInfo::LSRCost &C2) {
5059     // X86 specific here are "instruction number 1st priority".
5060     return std::tie(C1.Insns, C1.NumRegs, C1.AddRecCost,
5061                     C1.NumIVMuls, C1.NumBaseAdds,
5062                     C1.ScaleCost, C1.ImmCost, C1.SetupCost) <
5063            std::tie(C2.Insns, C2.NumRegs, C2.AddRecCost,
5064                     C2.NumIVMuls, C2.NumBaseAdds,
5065                     C2.ScaleCost, C2.ImmCost, C2.SetupCost);
5066 }
5067 
5068 bool X86TTIImpl::canMacroFuseCmp() {
5069   return ST->hasMacroFusion() || ST->hasBranchFusion();
5070 }
5071 
5072 bool X86TTIImpl::isLegalMaskedLoad(Type *DataTy, Align Alignment) {
5073   if (!ST->hasAVX())
5074     return false;
5075 
5076   // The backend can't handle a single element vector.
5077   if (isa<VectorType>(DataTy) &&
5078       cast<FixedVectorType>(DataTy)->getNumElements() == 1)
5079     return false;
5080   Type *ScalarTy = DataTy->getScalarType();
5081 
5082   if (ScalarTy->isPointerTy())
5083     return true;
5084 
5085   if (ScalarTy->isFloatTy() || ScalarTy->isDoubleTy())
5086     return true;
5087 
5088   if (ScalarTy->isHalfTy() && ST->hasBWI() && ST->hasFP16())
5089     return true;
5090 
5091   if (!ScalarTy->isIntegerTy())
5092     return false;
5093 
5094   unsigned IntWidth = ScalarTy->getIntegerBitWidth();
5095   return IntWidth == 32 || IntWidth == 64 ||
5096          ((IntWidth == 8 || IntWidth == 16) && ST->hasBWI());
5097 }
5098 
5099 bool X86TTIImpl::isLegalMaskedStore(Type *DataType, Align Alignment) {
5100   return isLegalMaskedLoad(DataType, Alignment);
5101 }
5102 
5103 bool X86TTIImpl::isLegalNTLoad(Type *DataType, Align Alignment) {
5104   unsigned DataSize = DL.getTypeStoreSize(DataType);
5105   // The only supported nontemporal loads are for aligned vectors of 16 or 32
5106   // bytes.  Note that 32-byte nontemporal vector loads are supported by AVX2
5107   // (the equivalent stores only require AVX).
5108   if (Alignment >= DataSize && (DataSize == 16 || DataSize == 32))
5109     return DataSize == 16 ?  ST->hasSSE1() : ST->hasAVX2();
5110 
5111   return false;
5112 }
5113 
5114 bool X86TTIImpl::isLegalNTStore(Type *DataType, Align Alignment) {
5115   unsigned DataSize = DL.getTypeStoreSize(DataType);
5116 
5117   // SSE4A supports nontemporal stores of float and double at arbitrary
5118   // alignment.
5119   if (ST->hasSSE4A() && (DataType->isFloatTy() || DataType->isDoubleTy()))
5120     return true;
5121 
5122   // Besides the SSE4A subtarget exception above, only aligned stores are
5123   // available nontemporaly on any other subtarget.  And only stores with a size
5124   // of 4..32 bytes (powers of 2, only) are permitted.
5125   if (Alignment < DataSize || DataSize < 4 || DataSize > 32 ||
5126       !isPowerOf2_32(DataSize))
5127     return false;
5128 
5129   // 32-byte vector nontemporal stores are supported by AVX (the equivalent
5130   // loads require AVX2).
5131   if (DataSize == 32)
5132     return ST->hasAVX();
5133   if (DataSize == 16)
5134     return ST->hasSSE1();
5135   return true;
5136 }
5137 
5138 bool X86TTIImpl::isLegalBroadcastLoad(Type *ElementTy,
5139                                       ElementCount NumElements) const {
5140   // movddup
5141   return ST->hasSSE3() && !NumElements.isScalable() &&
5142          NumElements.getFixedValue() == 2 &&
5143          ElementTy == Type::getDoubleTy(ElementTy->getContext());
5144 }
5145 
5146 bool X86TTIImpl::isLegalMaskedExpandLoad(Type *DataTy) {
5147   if (!isa<VectorType>(DataTy))
5148     return false;
5149 
5150   if (!ST->hasAVX512())
5151     return false;
5152 
5153   // The backend can't handle a single element vector.
5154   if (cast<FixedVectorType>(DataTy)->getNumElements() == 1)
5155     return false;
5156 
5157   Type *ScalarTy = cast<VectorType>(DataTy)->getElementType();
5158 
5159   if (ScalarTy->isFloatTy() || ScalarTy->isDoubleTy())
5160     return true;
5161 
5162   if (!ScalarTy->isIntegerTy())
5163     return false;
5164 
5165   unsigned IntWidth = ScalarTy->getIntegerBitWidth();
5166   return IntWidth == 32 || IntWidth == 64 ||
5167          ((IntWidth == 8 || IntWidth == 16) && ST->hasVBMI2());
5168 }
5169 
5170 bool X86TTIImpl::isLegalMaskedCompressStore(Type *DataTy) {
5171   return isLegalMaskedExpandLoad(DataTy);
5172 }
5173 
5174 bool X86TTIImpl::supportsGather() const {
5175   // Some CPUs have better gather performance than others.
5176   // TODO: Remove the explicit ST->hasAVX512()?, That would mean we would only
5177   // enable gather with a -march.
5178   return ST->hasAVX512() || (ST->hasFastGather() && ST->hasAVX2());
5179 }
5180 
5181 bool X86TTIImpl::forceScalarizeMaskedGather(VectorType *VTy, Align Alignment) {
5182   // Gather / Scatter for vector 2 is not profitable on KNL / SKX
5183   // Vector-4 of gather/scatter instruction does not exist on KNL. We can extend
5184   // it to 8 elements, but zeroing upper bits of the mask vector will add more
5185   // instructions. Right now we give the scalar cost of vector-4 for KNL. TODO:
5186   // Check, maybe the gather/scatter instruction is better in the VariableMask
5187   // case.
5188   unsigned NumElts = cast<FixedVectorType>(VTy)->getNumElements();
5189   return NumElts == 1 ||
5190          (ST->hasAVX512() && (NumElts == 2 || (NumElts == 4 && !ST->hasVLX())));
5191 }
5192 
5193 bool X86TTIImpl::isLegalMaskedGather(Type *DataTy, Align Alignment) {
5194   if (!supportsGather())
5195     return false;
5196   Type *ScalarTy = DataTy->getScalarType();
5197   if (ScalarTy->isPointerTy())
5198     return true;
5199 
5200   if (ScalarTy->isFloatTy() || ScalarTy->isDoubleTy())
5201     return true;
5202 
5203   if (!ScalarTy->isIntegerTy())
5204     return false;
5205 
5206   unsigned IntWidth = ScalarTy->getIntegerBitWidth();
5207   return IntWidth == 32 || IntWidth == 64;
5208 }
5209 
5210 bool X86TTIImpl::isLegalMaskedScatter(Type *DataType, Align Alignment) {
5211   // AVX2 doesn't support scatter
5212   if (!ST->hasAVX512())
5213     return false;
5214   return isLegalMaskedGather(DataType, Alignment);
5215 }
5216 
5217 bool X86TTIImpl::hasDivRemOp(Type *DataType, bool IsSigned) {
5218   EVT VT = TLI->getValueType(DL, DataType);
5219   return TLI->isOperationLegal(IsSigned ? ISD::SDIVREM : ISD::UDIVREM, VT);
5220 }
5221 
5222 bool X86TTIImpl::isFCmpOrdCheaperThanFCmpZero(Type *Ty) {
5223   return false;
5224 }
5225 
5226 bool X86TTIImpl::areInlineCompatible(const Function *Caller,
5227                                      const Function *Callee) const {
5228   const TargetMachine &TM = getTLI()->getTargetMachine();
5229 
5230   // Work this as a subsetting of subtarget features.
5231   const FeatureBitset &CallerBits =
5232       TM.getSubtargetImpl(*Caller)->getFeatureBits();
5233   const FeatureBitset &CalleeBits =
5234       TM.getSubtargetImpl(*Callee)->getFeatureBits();
5235 
5236   // Check whether features are the same (apart from the ignore list).
5237   FeatureBitset RealCallerBits = CallerBits & ~InlineFeatureIgnoreList;
5238   FeatureBitset RealCalleeBits = CalleeBits & ~InlineFeatureIgnoreList;
5239   if (RealCallerBits == RealCalleeBits)
5240     return true;
5241 
5242   // If the features are a subset, we need to additionally check for calls
5243   // that may become ABI-incompatible as a result of inlining.
5244   if ((RealCallerBits & RealCalleeBits) != RealCalleeBits)
5245     return false;
5246 
5247   for (const Instruction &I : instructions(Callee)) {
5248     if (const auto *CB = dyn_cast<CallBase>(&I)) {
5249       SmallVector<Type *, 8> Types;
5250       for (Value *Arg : CB->args())
5251         Types.push_back(Arg->getType());
5252       if (!CB->getType()->isVoidTy())
5253         Types.push_back(CB->getType());
5254 
5255       // Simple types are always ABI compatible.
5256       auto IsSimpleTy = [](Type *Ty) {
5257         return !Ty->isVectorTy() && !Ty->isAggregateType();
5258       };
5259       if (all_of(Types, IsSimpleTy))
5260         continue;
5261 
5262       if (Function *NestedCallee = CB->getCalledFunction()) {
5263         // Assume that intrinsics are always ABI compatible.
5264         if (NestedCallee->isIntrinsic())
5265           continue;
5266 
5267         // Do a precise compatibility check.
5268         if (!areTypesABICompatible(Caller, NestedCallee, Types))
5269           return false;
5270       } else {
5271         // We don't know the target features of the callee,
5272         // assume it is incompatible.
5273         return false;
5274       }
5275     }
5276   }
5277   return true;
5278 }
5279 
5280 bool X86TTIImpl::areTypesABICompatible(const Function *Caller,
5281                                        const Function *Callee,
5282                                        const ArrayRef<Type *> &Types) const {
5283   if (!BaseT::areTypesABICompatible(Caller, Callee, Types))
5284     return false;
5285 
5286   // If we get here, we know the target features match. If one function
5287   // considers 512-bit vectors legal and the other does not, consider them
5288   // incompatible.
5289   const TargetMachine &TM = getTLI()->getTargetMachine();
5290 
5291   if (TM.getSubtarget<X86Subtarget>(*Caller).useAVX512Regs() ==
5292       TM.getSubtarget<X86Subtarget>(*Callee).useAVX512Regs())
5293     return true;
5294 
5295   // Consider the arguments compatible if they aren't vectors or aggregates.
5296   // FIXME: Look at the size of vectors.
5297   // FIXME: Look at the element types of aggregates to see if there are vectors.
5298   return llvm::none_of(Types,
5299       [](Type *T) { return T->isVectorTy() || T->isAggregateType(); });
5300 }
5301 
5302 X86TTIImpl::TTI::MemCmpExpansionOptions
5303 X86TTIImpl::enableMemCmpExpansion(bool OptSize, bool IsZeroCmp) const {
5304   TTI::MemCmpExpansionOptions Options;
5305   Options.MaxNumLoads = TLI->getMaxExpandSizeMemcmp(OptSize);
5306   Options.NumLoadsPerBlock = 2;
5307   // All GPR and vector loads can be unaligned.
5308   Options.AllowOverlappingLoads = true;
5309   if (IsZeroCmp) {
5310     // Only enable vector loads for equality comparison. Right now the vector
5311     // version is not as fast for three way compare (see #33329).
5312     const unsigned PreferredWidth = ST->getPreferVectorWidth();
5313     if (PreferredWidth >= 512 && ST->hasAVX512()) Options.LoadSizes.push_back(64);
5314     if (PreferredWidth >= 256 && ST->hasAVX()) Options.LoadSizes.push_back(32);
5315     if (PreferredWidth >= 128 && ST->hasSSE2()) Options.LoadSizes.push_back(16);
5316   }
5317   if (ST->is64Bit()) {
5318     Options.LoadSizes.push_back(8);
5319   }
5320   Options.LoadSizes.push_back(4);
5321   Options.LoadSizes.push_back(2);
5322   Options.LoadSizes.push_back(1);
5323   return Options;
5324 }
5325 
5326 bool X86TTIImpl::prefersVectorizedAddressing() const {
5327   return supportsGather();
5328 }
5329 
5330 bool X86TTIImpl::supportsEfficientVectorElementLoadStore() const {
5331   return false;
5332 }
5333 
5334 bool X86TTIImpl::enableInterleavedAccessVectorization() {
5335   // TODO: We expect this to be beneficial regardless of arch,
5336   // but there are currently some unexplained performance artifacts on Atom.
5337   // As a temporary solution, disable on Atom.
5338   return !(ST->isAtom());
5339 }
5340 
5341 // Get estimation for interleaved load/store operations and strided load.
5342 // \p Indices contains indices for strided load.
5343 // \p Factor - the factor of interleaving.
5344 // AVX-512 provides 3-src shuffles that significantly reduces the cost.
5345 InstructionCost X86TTIImpl::getInterleavedMemoryOpCostAVX512(
5346     unsigned Opcode, FixedVectorType *VecTy, unsigned Factor,
5347     ArrayRef<unsigned> Indices, Align Alignment, unsigned AddressSpace,
5348     TTI::TargetCostKind CostKind, bool UseMaskForCond, bool UseMaskForGaps) {
5349   // VecTy for interleave memop is <VF*Factor x Elt>.
5350   // So, for VF=4, Interleave Factor = 3, Element type = i32 we have
5351   // VecTy = <12 x i32>.
5352 
5353   // Calculate the number of memory operations (NumOfMemOps), required
5354   // for load/store the VecTy.
5355   MVT LegalVT = getTLI()->getTypeLegalizationCost(DL, VecTy).second;
5356   unsigned VecTySize = DL.getTypeStoreSize(VecTy);
5357   unsigned LegalVTSize = LegalVT.getStoreSize();
5358   unsigned NumOfMemOps = (VecTySize + LegalVTSize - 1) / LegalVTSize;
5359 
5360   // Get the cost of one memory operation.
5361   auto *SingleMemOpTy = FixedVectorType::get(VecTy->getElementType(),
5362                                              LegalVT.getVectorNumElements());
5363   InstructionCost MemOpCost;
5364   bool UseMaskedMemOp = UseMaskForCond || UseMaskForGaps;
5365   if (UseMaskedMemOp)
5366     MemOpCost = getMaskedMemoryOpCost(Opcode, SingleMemOpTy, Alignment,
5367                                       AddressSpace, CostKind);
5368   else
5369     MemOpCost = getMemoryOpCost(Opcode, SingleMemOpTy, MaybeAlign(Alignment),
5370                                 AddressSpace, CostKind);
5371 
5372   unsigned VF = VecTy->getNumElements() / Factor;
5373   MVT VT = MVT::getVectorVT(MVT::getVT(VecTy->getScalarType()), VF);
5374 
5375   InstructionCost MaskCost;
5376   if (UseMaskedMemOp) {
5377     APInt DemandedLoadStoreElts = APInt::getZero(VecTy->getNumElements());
5378     for (unsigned Index : Indices) {
5379       assert(Index < Factor && "Invalid index for interleaved memory op");
5380       for (unsigned Elm = 0; Elm < VF; Elm++)
5381         DemandedLoadStoreElts.setBit(Index + Elm * Factor);
5382     }
5383 
5384     Type *I1Type = Type::getInt1Ty(VecTy->getContext());
5385 
5386     MaskCost = getReplicationShuffleCost(
5387         I1Type, Factor, VF,
5388         UseMaskForGaps ? DemandedLoadStoreElts
5389                        : APInt::getAllOnes(VecTy->getNumElements()),
5390         CostKind);
5391 
5392     // The Gaps mask is invariant and created outside the loop, therefore the
5393     // cost of creating it is not accounted for here. However if we have both
5394     // a MaskForGaps and some other mask that guards the execution of the
5395     // memory access, we need to account for the cost of And-ing the two masks
5396     // inside the loop.
5397     if (UseMaskForGaps) {
5398       auto *MaskVT = FixedVectorType::get(I1Type, VecTy->getNumElements());
5399       MaskCost += getArithmeticInstrCost(BinaryOperator::And, MaskVT, CostKind);
5400     }
5401   }
5402 
5403   if (Opcode == Instruction::Load) {
5404     // The tables (AVX512InterleavedLoadTbl and AVX512InterleavedStoreTbl)
5405     // contain the cost of the optimized shuffle sequence that the
5406     // X86InterleavedAccess pass will generate.
5407     // The cost of loads and stores are computed separately from the table.
5408 
5409     // X86InterleavedAccess support only the following interleaved-access group.
5410     static const CostTblEntry AVX512InterleavedLoadTbl[] = {
5411         {3, MVT::v16i8, 12}, //(load 48i8 and) deinterleave into 3 x 16i8
5412         {3, MVT::v32i8, 14}, //(load 96i8 and) deinterleave into 3 x 32i8
5413         {3, MVT::v64i8, 22}, //(load 96i8 and) deinterleave into 3 x 32i8
5414     };
5415 
5416     if (const auto *Entry =
5417             CostTableLookup(AVX512InterleavedLoadTbl, Factor, VT))
5418       return MaskCost + NumOfMemOps * MemOpCost + Entry->Cost;
5419     //If an entry does not exist, fallback to the default implementation.
5420 
5421     // Kind of shuffle depends on number of loaded values.
5422     // If we load the entire data in one register, we can use a 1-src shuffle.
5423     // Otherwise, we'll merge 2 sources in each operation.
5424     TTI::ShuffleKind ShuffleKind =
5425         (NumOfMemOps > 1) ? TTI::SK_PermuteTwoSrc : TTI::SK_PermuteSingleSrc;
5426 
5427     InstructionCost ShuffleCost =
5428         getShuffleCost(ShuffleKind, SingleMemOpTy, None, 0, nullptr);
5429 
5430     unsigned NumOfLoadsInInterleaveGrp =
5431         Indices.size() ? Indices.size() : Factor;
5432     auto *ResultTy = FixedVectorType::get(VecTy->getElementType(),
5433                                           VecTy->getNumElements() / Factor);
5434     InstructionCost NumOfResults =
5435         getTLI()->getTypeLegalizationCost(DL, ResultTy).first *
5436         NumOfLoadsInInterleaveGrp;
5437 
5438     // About a half of the loads may be folded in shuffles when we have only
5439     // one result. If we have more than one result, or the loads are masked,
5440     // we do not fold loads at all.
5441     unsigned NumOfUnfoldedLoads =
5442         UseMaskedMemOp || NumOfResults > 1 ? NumOfMemOps : NumOfMemOps / 2;
5443 
5444     // Get a number of shuffle operations per result.
5445     unsigned NumOfShufflesPerResult =
5446         std::max((unsigned)1, (unsigned)(NumOfMemOps - 1));
5447 
5448     // The SK_MergeTwoSrc shuffle clobbers one of src operands.
5449     // When we have more than one destination, we need additional instructions
5450     // to keep sources.
5451     InstructionCost NumOfMoves = 0;
5452     if (NumOfResults > 1 && ShuffleKind == TTI::SK_PermuteTwoSrc)
5453       NumOfMoves = NumOfResults * NumOfShufflesPerResult / 2;
5454 
5455     InstructionCost Cost = NumOfResults * NumOfShufflesPerResult * ShuffleCost +
5456                            MaskCost + NumOfUnfoldedLoads * MemOpCost +
5457                            NumOfMoves;
5458 
5459     return Cost;
5460   }
5461 
5462   // Store.
5463   assert(Opcode == Instruction::Store &&
5464          "Expected Store Instruction at this  point");
5465   // X86InterleavedAccess support only the following interleaved-access group.
5466   static const CostTblEntry AVX512InterleavedStoreTbl[] = {
5467       {3, MVT::v16i8, 12}, // interleave 3 x 16i8 into 48i8 (and store)
5468       {3, MVT::v32i8, 14}, // interleave 3 x 32i8 into 96i8 (and store)
5469       {3, MVT::v64i8, 26}, // interleave 3 x 64i8 into 96i8 (and store)
5470 
5471       {4, MVT::v8i8, 10},  // interleave 4 x 8i8  into 32i8  (and store)
5472       {4, MVT::v16i8, 11}, // interleave 4 x 16i8 into 64i8  (and store)
5473       {4, MVT::v32i8, 14}, // interleave 4 x 32i8 into 128i8 (and store)
5474       {4, MVT::v64i8, 24}  // interleave 4 x 32i8 into 256i8 (and store)
5475   };
5476 
5477   if (const auto *Entry =
5478           CostTableLookup(AVX512InterleavedStoreTbl, Factor, VT))
5479     return MaskCost + NumOfMemOps * MemOpCost + Entry->Cost;
5480   //If an entry does not exist, fallback to the default implementation.
5481 
5482   // There is no strided stores meanwhile. And store can't be folded in
5483   // shuffle.
5484   unsigned NumOfSources = Factor; // The number of values to be merged.
5485   InstructionCost ShuffleCost =
5486       getShuffleCost(TTI::SK_PermuteTwoSrc, SingleMemOpTy, None, 0, nullptr);
5487   unsigned NumOfShufflesPerStore = NumOfSources - 1;
5488 
5489   // The SK_MergeTwoSrc shuffle clobbers one of src operands.
5490   // We need additional instructions to keep sources.
5491   unsigned NumOfMoves = NumOfMemOps * NumOfShufflesPerStore / 2;
5492   InstructionCost Cost =
5493       MaskCost +
5494       NumOfMemOps * (MemOpCost + NumOfShufflesPerStore * ShuffleCost) +
5495       NumOfMoves;
5496   return Cost;
5497 }
5498 
5499 InstructionCost X86TTIImpl::getInterleavedMemoryOpCost(
5500     unsigned Opcode, Type *BaseTy, unsigned Factor, ArrayRef<unsigned> Indices,
5501     Align Alignment, unsigned AddressSpace, TTI::TargetCostKind CostKind,
5502     bool UseMaskForCond, bool UseMaskForGaps) {
5503   auto *VecTy = cast<FixedVectorType>(BaseTy);
5504 
5505   auto isSupportedOnAVX512 = [&](Type *VecTy, bool HasBW) {
5506     Type *EltTy = cast<VectorType>(VecTy)->getElementType();
5507     if (EltTy->isFloatTy() || EltTy->isDoubleTy() || EltTy->isIntegerTy(64) ||
5508         EltTy->isIntegerTy(32) || EltTy->isPointerTy())
5509       return true;
5510     if (EltTy->isIntegerTy(16) || EltTy->isIntegerTy(8) ||
5511         (!ST->useSoftFloat() && ST->hasFP16() && EltTy->isHalfTy()))
5512       return HasBW;
5513     return false;
5514   };
5515   if (ST->hasAVX512() && isSupportedOnAVX512(VecTy, ST->hasBWI()))
5516     return getInterleavedMemoryOpCostAVX512(
5517         Opcode, VecTy, Factor, Indices, Alignment,
5518         AddressSpace, CostKind, UseMaskForCond, UseMaskForGaps);
5519 
5520   if (UseMaskForCond || UseMaskForGaps)
5521     return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices,
5522                                              Alignment, AddressSpace, CostKind,
5523                                              UseMaskForCond, UseMaskForGaps);
5524 
5525   // Get estimation for interleaved load/store operations for SSE-AVX2.
5526   // As opposed to AVX-512, SSE-AVX2 do not have generic shuffles that allow
5527   // computing the cost using a generic formula as a function of generic
5528   // shuffles. We therefore use a lookup table instead, filled according to
5529   // the instruction sequences that codegen currently generates.
5530 
5531   // VecTy for interleave memop is <VF*Factor x Elt>.
5532   // So, for VF=4, Interleave Factor = 3, Element type = i32 we have
5533   // VecTy = <12 x i32>.
5534   MVT LegalVT = getTLI()->getTypeLegalizationCost(DL, VecTy).second;
5535 
5536   // This function can be called with VecTy=<6xi128>, Factor=3, in which case
5537   // the VF=2, while v2i128 is an unsupported MVT vector type
5538   // (see MachineValueType.h::getVectorVT()).
5539   if (!LegalVT.isVector())
5540     return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices,
5541                                              Alignment, AddressSpace, CostKind);
5542 
5543   unsigned VF = VecTy->getNumElements() / Factor;
5544   Type *ScalarTy = VecTy->getElementType();
5545   // Deduplicate entries, model floats/pointers as appropriately-sized integers.
5546   if (!ScalarTy->isIntegerTy())
5547     ScalarTy =
5548         Type::getIntNTy(ScalarTy->getContext(), DL.getTypeSizeInBits(ScalarTy));
5549 
5550   // Get the cost of all the memory operations.
5551   // FIXME: discount dead loads.
5552   InstructionCost MemOpCosts = getMemoryOpCost(
5553       Opcode, VecTy, MaybeAlign(Alignment), AddressSpace, CostKind);
5554 
5555   auto *VT = FixedVectorType::get(ScalarTy, VF);
5556   EVT ETy = TLI->getValueType(DL, VT);
5557   if (!ETy.isSimple())
5558     return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices,
5559                                              Alignment, AddressSpace, CostKind);
5560 
5561   // TODO: Complete for other data-types and strides.
5562   // Each combination of Stride, element bit width and VF results in a different
5563   // sequence; The cost tables are therefore accessed with:
5564   // Factor (stride) and VectorType=VFxiN.
5565   // The Cost accounts only for the shuffle sequence;
5566   // The cost of the loads/stores is accounted for separately.
5567   //
5568   static const CostTblEntry AVX2InterleavedLoadTbl[] = {
5569       {2, MVT::v2i8, 2},  // (load 4i8 and) deinterleave into 2 x 2i8
5570       {2, MVT::v4i8, 2},  // (load 8i8 and) deinterleave into 2 x 4i8
5571       {2, MVT::v8i8, 2},  // (load 16i8 and) deinterleave into 2 x 8i8
5572       {2, MVT::v16i8, 4}, // (load 32i8 and) deinterleave into 2 x 16i8
5573       {2, MVT::v32i8, 6}, // (load 64i8 and) deinterleave into 2 x 32i8
5574 
5575       {2, MVT::v8i16, 6},   // (load 16i16 and) deinterleave into 2 x 8i16
5576       {2, MVT::v16i16, 9},  // (load 32i16 and) deinterleave into 2 x 16i16
5577       {2, MVT::v32i16, 18}, // (load 64i16 and) deinterleave into 2 x 32i16
5578 
5579       {2, MVT::v8i32, 4},   // (load 16i32 and) deinterleave into 2 x 8i32
5580       {2, MVT::v16i32, 8},  // (load 32i32 and) deinterleave into 2 x 16i32
5581       {2, MVT::v32i32, 16}, // (load 64i32 and) deinterleave into 2 x 32i32
5582 
5583       {2, MVT::v4i64, 4},   // (load 8i64 and) deinterleave into 2 x 4i64
5584       {2, MVT::v8i64, 8},   // (load 16i64 and) deinterleave into 2 x 8i64
5585       {2, MVT::v16i64, 16}, // (load 32i64 and) deinterleave into 2 x 16i64
5586       {2, MVT::v32i64, 32}, // (load 64i64 and) deinterleave into 2 x 32i64
5587 
5588       {3, MVT::v2i8, 3},   // (load 6i8 and) deinterleave into 3 x 2i8
5589       {3, MVT::v4i8, 3},   // (load 12i8 and) deinterleave into 3 x 4i8
5590       {3, MVT::v8i8, 6},   // (load 24i8 and) deinterleave into 3 x 8i8
5591       {3, MVT::v16i8, 11}, // (load 48i8 and) deinterleave into 3 x 16i8
5592       {3, MVT::v32i8, 14}, // (load 96i8 and) deinterleave into 3 x 32i8
5593 
5594       {3, MVT::v2i16, 5},   // (load 6i16 and) deinterleave into 3 x 2i16
5595       {3, MVT::v4i16, 7},   // (load 12i16 and) deinterleave into 3 x 4i16
5596       {3, MVT::v8i16, 9},   // (load 24i16 and) deinterleave into 3 x 8i16
5597       {3, MVT::v16i16, 28}, // (load 48i16 and) deinterleave into 3 x 16i16
5598       {3, MVT::v32i16, 56}, // (load 96i16 and) deinterleave into 3 x 32i16
5599 
5600       {3, MVT::v2i32, 3},   // (load 6i32 and) deinterleave into 3 x 2i32
5601       {3, MVT::v4i32, 3},   // (load 12i32 and) deinterleave into 3 x 4i32
5602       {3, MVT::v8i32, 7},   // (load 24i32 and) deinterleave into 3 x 8i32
5603       {3, MVT::v16i32, 14}, // (load 48i32 and) deinterleave into 3 x 16i32
5604       {3, MVT::v32i32, 32}, // (load 96i32 and) deinterleave into 3 x 32i32
5605 
5606       {3, MVT::v2i64, 1},   // (load 6i64 and) deinterleave into 3 x 2i64
5607       {3, MVT::v4i64, 5},   // (load 12i64 and) deinterleave into 3 x 4i64
5608       {3, MVT::v8i64, 10},  // (load 24i64 and) deinterleave into 3 x 8i64
5609       {3, MVT::v16i64, 20}, // (load 48i64 and) deinterleave into 3 x 16i64
5610 
5611       {4, MVT::v2i8, 4},   // (load 8i8 and) deinterleave into 4 x 2i8
5612       {4, MVT::v4i8, 4},   // (load 16i8 and) deinterleave into 4 x 4i8
5613       {4, MVT::v8i8, 12},  // (load 32i8 and) deinterleave into 4 x 8i8
5614       {4, MVT::v16i8, 24}, // (load 64i8 and) deinterleave into 4 x 16i8
5615       {4, MVT::v32i8, 56}, // (load 128i8 and) deinterleave into 4 x 32i8
5616 
5617       {4, MVT::v2i16, 6},    // (load 8i16 and) deinterleave into 4 x 2i16
5618       {4, MVT::v4i16, 17},   // (load 16i16 and) deinterleave into 4 x 4i16
5619       {4, MVT::v8i16, 33},   // (load 32i16 and) deinterleave into 4 x 8i16
5620       {4, MVT::v16i16, 75},  // (load 64i16 and) deinterleave into 4 x 16i16
5621       {4, MVT::v32i16, 150}, // (load 128i16 and) deinterleave into 4 x 32i16
5622 
5623       {4, MVT::v2i32, 4},   // (load 8i32 and) deinterleave into 4 x 2i32
5624       {4, MVT::v4i32, 8},   // (load 16i32 and) deinterleave into 4 x 4i32
5625       {4, MVT::v8i32, 16},  // (load 32i32 and) deinterleave into 4 x 8i32
5626       {4, MVT::v16i32, 32}, // (load 64i32 and) deinterleave into 4 x 16i32
5627       {4, MVT::v32i32, 68}, // (load 128i32 and) deinterleave into 4 x 32i32
5628 
5629       {4, MVT::v2i64, 6},  // (load 8i64 and) deinterleave into 4 x 2i64
5630       {4, MVT::v4i64, 8},  // (load 16i64 and) deinterleave into 4 x 4i64
5631       {4, MVT::v8i64, 20}, // (load 32i64 and) deinterleave into 4 x 8i64
5632       {4, MVT::v16i64, 40}, // (load 64i64 and) deinterleave into 4 x 16i64
5633 
5634       {6, MVT::v2i8, 6},   // (load 12i8 and) deinterleave into 6 x 2i8
5635       {6, MVT::v4i8, 14},  // (load 24i8 and) deinterleave into 6 x 4i8
5636       {6, MVT::v8i8, 18},  // (load 48i8 and) deinterleave into 6 x 8i8
5637       {6, MVT::v16i8, 43}, // (load 96i8 and) deinterleave into 6 x 16i8
5638       {6, MVT::v32i8, 82}, // (load 192i8 and) deinterleave into 6 x 32i8
5639 
5640       {6, MVT::v2i16, 13},   // (load 12i16 and) deinterleave into 6 x 2i16
5641       {6, MVT::v4i16, 9},    // (load 24i16 and) deinterleave into 6 x 4i16
5642       {6, MVT::v8i16, 39},   // (load 48i16 and) deinterleave into 6 x 8i16
5643       {6, MVT::v16i16, 106}, // (load 96i16 and) deinterleave into 6 x 16i16
5644       {6, MVT::v32i16, 212}, // (load 192i16 and) deinterleave into 6 x 32i16
5645 
5646       {6, MVT::v2i32, 6},   // (load 12i32 and) deinterleave into 6 x 2i32
5647       {6, MVT::v4i32, 15},  // (load 24i32 and) deinterleave into 6 x 4i32
5648       {6, MVT::v8i32, 31},  // (load 48i32 and) deinterleave into 6 x 8i32
5649       {6, MVT::v16i32, 64}, // (load 96i32 and) deinterleave into 6 x 16i32
5650 
5651       {6, MVT::v2i64, 6},  // (load 12i64 and) deinterleave into 6 x 2i64
5652       {6, MVT::v4i64, 18}, // (load 24i64 and) deinterleave into 6 x 4i64
5653       {6, MVT::v8i64, 36}, // (load 48i64 and) deinterleave into 6 x 8i64
5654 
5655       {8, MVT::v8i32, 40} // (load 64i32 and) deinterleave into 8 x 8i32
5656   };
5657 
5658   static const CostTblEntry SSSE3InterleavedLoadTbl[] = {
5659       {2, MVT::v4i16, 2},   // (load 8i16 and) deinterleave into 2 x 4i16
5660   };
5661 
5662   static const CostTblEntry SSE2InterleavedLoadTbl[] = {
5663       {2, MVT::v2i16, 2},   // (load 4i16 and) deinterleave into 2 x 2i16
5664       {2, MVT::v4i16, 7},   // (load 8i16 and) deinterleave into 2 x 4i16
5665 
5666       {2, MVT::v2i32, 2},   // (load 4i32 and) deinterleave into 2 x 2i32
5667       {2, MVT::v4i32, 2},   // (load 8i32 and) deinterleave into 2 x 4i32
5668 
5669       {2, MVT::v2i64, 2},   // (load 4i64 and) deinterleave into 2 x 2i64
5670   };
5671 
5672   static const CostTblEntry AVX2InterleavedStoreTbl[] = {
5673       {2, MVT::v16i8, 3}, // interleave 2 x 16i8 into 32i8 (and store)
5674       {2, MVT::v32i8, 4}, // interleave 2 x 32i8 into 64i8 (and store)
5675 
5676       {2, MVT::v8i16, 3},  // interleave 2 x 8i16 into 16i16 (and store)
5677       {2, MVT::v16i16, 4}, // interleave 2 x 16i16 into 32i16 (and store)
5678       {2, MVT::v32i16, 8}, // interleave 2 x 32i16 into 64i16 (and store)
5679 
5680       {2, MVT::v4i32, 2},   // interleave 2 x 4i32 into 8i32 (and store)
5681       {2, MVT::v8i32, 4},   // interleave 2 x 8i32 into 16i32 (and store)
5682       {2, MVT::v16i32, 8},  // interleave 2 x 16i32 into 32i32 (and store)
5683       {2, MVT::v32i32, 16}, // interleave 2 x 32i32 into 64i32 (and store)
5684 
5685       {2, MVT::v2i64, 2},   // interleave 2 x 2i64 into 4i64 (and store)
5686       {2, MVT::v4i64, 4},   // interleave 2 x 4i64 into 8i64 (and store)
5687       {2, MVT::v8i64, 8},   // interleave 2 x 8i64 into 16i64 (and store)
5688       {2, MVT::v16i64, 16}, // interleave 2 x 16i64 into 32i64 (and store)
5689       {2, MVT::v32i64, 32}, // interleave 2 x 32i64 into 64i64 (and store)
5690 
5691       {3, MVT::v2i8, 4},   // interleave 3 x 2i8 into 6i8 (and store)
5692       {3, MVT::v4i8, 4},   // interleave 3 x 4i8 into 12i8 (and store)
5693       {3, MVT::v8i8, 6},   // interleave 3 x 8i8 into 24i8 (and store)
5694       {3, MVT::v16i8, 11}, // interleave 3 x 16i8 into 48i8 (and store)
5695       {3, MVT::v32i8, 13}, // interleave 3 x 32i8 into 96i8 (and store)
5696 
5697       {3, MVT::v2i16, 4},   // interleave 3 x 2i16 into 6i16 (and store)
5698       {3, MVT::v4i16, 6},   // interleave 3 x 4i16 into 12i16 (and store)
5699       {3, MVT::v8i16, 12},  // interleave 3 x 8i16 into 24i16 (and store)
5700       {3, MVT::v16i16, 27}, // interleave 3 x 16i16 into 48i16 (and store)
5701       {3, MVT::v32i16, 54}, // interleave 3 x 32i16 into 96i16 (and store)
5702 
5703       {3, MVT::v2i32, 4},   // interleave 3 x 2i32 into 6i32 (and store)
5704       {3, MVT::v4i32, 5},   // interleave 3 x 4i32 into 12i32 (and store)
5705       {3, MVT::v8i32, 11},  // interleave 3 x 8i32 into 24i32 (and store)
5706       {3, MVT::v16i32, 22}, // interleave 3 x 16i32 into 48i32 (and store)
5707       {3, MVT::v32i32, 48}, // interleave 3 x 32i32 into 96i32 (and store)
5708 
5709       {3, MVT::v2i64, 4},   // interleave 3 x 2i64 into 6i64 (and store)
5710       {3, MVT::v4i64, 6},   // interleave 3 x 4i64 into 12i64 (and store)
5711       {3, MVT::v8i64, 12},  // interleave 3 x 8i64 into 24i64 (and store)
5712       {3, MVT::v16i64, 24}, // interleave 3 x 16i64 into 48i64 (and store)
5713 
5714       {4, MVT::v2i8, 4},   // interleave 4 x 2i8 into 8i8 (and store)
5715       {4, MVT::v4i8, 4},   // interleave 4 x 4i8 into 16i8 (and store)
5716       {4, MVT::v8i8, 4},   // interleave 4 x 8i8 into 32i8 (and store)
5717       {4, MVT::v16i8, 8},  // interleave 4 x 16i8 into 64i8 (and store)
5718       {4, MVT::v32i8, 12}, // interleave 4 x 32i8 into 128i8 (and store)
5719 
5720       {4, MVT::v2i16, 2},   // interleave 4 x 2i16 into 8i16 (and store)
5721       {4, MVT::v4i16, 6},   // interleave 4 x 4i16 into 16i16 (and store)
5722       {4, MVT::v8i16, 10},  // interleave 4 x 8i16 into 32i16 (and store)
5723       {4, MVT::v16i16, 32}, // interleave 4 x 16i16 into 64i16 (and store)
5724       {4, MVT::v32i16, 64}, // interleave 4 x 32i16 into 128i16 (and store)
5725 
5726       {4, MVT::v2i32, 5},   // interleave 4 x 2i32 into 8i32 (and store)
5727       {4, MVT::v4i32, 6},   // interleave 4 x 4i32 into 16i32 (and store)
5728       {4, MVT::v8i32, 16},  // interleave 4 x 8i32 into 32i32 (and store)
5729       {4, MVT::v16i32, 32}, // interleave 4 x 16i32 into 64i32 (and store)
5730       {4, MVT::v32i32, 64}, // interleave 4 x 32i32 into 128i32 (and store)
5731 
5732       {4, MVT::v2i64, 6},  // interleave 4 x 2i64 into 8i64 (and store)
5733       {4, MVT::v4i64, 8},  // interleave 4 x 4i64 into 16i64 (and store)
5734       {4, MVT::v8i64, 20}, // interleave 4 x 8i64 into 32i64 (and store)
5735       {4, MVT::v16i64, 40}, // interleave 4 x 16i64 into 64i64 (and store)
5736 
5737       {6, MVT::v2i8, 7},   // interleave 6 x 2i8 into 12i8 (and store)
5738       {6, MVT::v4i8, 9},   // interleave 6 x 4i8 into 24i8 (and store)
5739       {6, MVT::v8i8, 16},  // interleave 6 x 8i8 into 48i8 (and store)
5740       {6, MVT::v16i8, 27}, // interleave 6 x 16i8 into 96i8 (and store)
5741       {6, MVT::v32i8, 90}, // interleave 6 x 32i8 into 192i8 (and store)
5742 
5743       {6, MVT::v2i16, 10},  // interleave 6 x 2i16 into 12i16 (and store)
5744       {6, MVT::v4i16, 15},  // interleave 6 x 4i16 into 24i16 (and store)
5745       {6, MVT::v8i16, 21},  // interleave 6 x 8i16 into 48i16 (and store)
5746       {6, MVT::v16i16, 58}, // interleave 6 x 16i16 into 96i16 (and store)
5747       {6, MVT::v32i16, 90}, // interleave 6 x 32i16 into 192i16 (and store)
5748 
5749       {6, MVT::v2i32, 9},   // interleave 6 x 2i32 into 12i32 (and store)
5750       {6, MVT::v4i32, 12},  // interleave 6 x 4i32 into 24i32 (and store)
5751       {6, MVT::v8i32, 33},  // interleave 6 x 8i32 into 48i32 (and store)
5752       {6, MVT::v16i32, 66}, // interleave 6 x 16i32 into 96i32 (and store)
5753 
5754       {6, MVT::v2i64, 8},  // interleave 6 x 2i64 into 12i64 (and store)
5755       {6, MVT::v4i64, 15}, // interleave 6 x 4i64 into 24i64 (and store)
5756       {6, MVT::v8i64, 30}, // interleave 6 x 8i64 into 48i64 (and store)
5757   };
5758 
5759   static const CostTblEntry SSE2InterleavedStoreTbl[] = {
5760       {2, MVT::v2i8, 1},   // interleave 2 x 2i8 into 4i8 (and store)
5761       {2, MVT::v4i8, 1},   // interleave 2 x 4i8 into 8i8 (and store)
5762       {2, MVT::v8i8, 1},   // interleave 2 x 8i8 into 16i8 (and store)
5763 
5764       {2, MVT::v2i16, 1},  // interleave 2 x 2i16 into 4i16 (and store)
5765       {2, MVT::v4i16, 1},  // interleave 2 x 4i16 into 8i16 (and store)
5766 
5767       {2, MVT::v2i32, 1},  // interleave 2 x 2i32 into 4i32 (and store)
5768   };
5769 
5770   if (Opcode == Instruction::Load) {
5771     auto GetDiscountedCost = [Factor, NumMembers = Indices.size(),
5772                               MemOpCosts](const CostTblEntry *Entry) {
5773       // NOTE: this is just an approximation!
5774       //       It can over/under -estimate the cost!
5775       return MemOpCosts + divideCeil(NumMembers * Entry->Cost, Factor);
5776     };
5777 
5778     if (ST->hasAVX2())
5779       if (const auto *Entry = CostTableLookup(AVX2InterleavedLoadTbl, Factor,
5780                                               ETy.getSimpleVT()))
5781         return GetDiscountedCost(Entry);
5782 
5783     if (ST->hasSSSE3())
5784       if (const auto *Entry = CostTableLookup(SSSE3InterleavedLoadTbl, Factor,
5785                                               ETy.getSimpleVT()))
5786         return GetDiscountedCost(Entry);
5787 
5788     if (ST->hasSSE2())
5789       if (const auto *Entry = CostTableLookup(SSE2InterleavedLoadTbl, Factor,
5790                                               ETy.getSimpleVT()))
5791         return GetDiscountedCost(Entry);
5792   } else {
5793     assert(Opcode == Instruction::Store &&
5794            "Expected Store Instruction at this point");
5795     assert((!Indices.size() || Indices.size() == Factor) &&
5796            "Interleaved store only supports fully-interleaved groups.");
5797     if (ST->hasAVX2())
5798       if (const auto *Entry = CostTableLookup(AVX2InterleavedStoreTbl, Factor,
5799                                               ETy.getSimpleVT()))
5800         return MemOpCosts + Entry->Cost;
5801 
5802     if (ST->hasSSE2())
5803       if (const auto *Entry = CostTableLookup(SSE2InterleavedStoreTbl, Factor,
5804                                               ETy.getSimpleVT()))
5805         return MemOpCosts + Entry->Cost;
5806   }
5807 
5808   return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices,
5809                                            Alignment, AddressSpace, CostKind,
5810                                            UseMaskForCond, UseMaskForGaps);
5811 }
5812