1 //===-- X86TargetTransformInfo.cpp - X86 specific TTI pass ----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// \file 9 /// This file implements a TargetTransformInfo analysis pass specific to the 10 /// X86 target machine. It uses the target's detailed information to provide 11 /// more precise answers to certain TTI queries, while letting the target 12 /// independent and default TTI implementations handle the rest. 13 /// 14 //===----------------------------------------------------------------------===// 15 /// About Cost Model numbers used below it's necessary to say the following: 16 /// the numbers correspond to some "generic" X86 CPU instead of usage of 17 /// concrete CPU model. Usually the numbers correspond to CPU where the feature 18 /// apeared at the first time. For example, if we do Subtarget.hasSSE42() in 19 /// the lookups below the cost is based on Nehalem as that was the first CPU 20 /// to support that feature level and thus has most likely the worst case cost. 21 /// Some examples of other technologies/CPUs: 22 /// SSE 3 - Pentium4 / Athlon64 23 /// SSE 4.1 - Penryn 24 /// SSE 4.2 - Nehalem 25 /// AVX - Sandy Bridge 26 /// AVX2 - Haswell 27 /// AVX-512 - Xeon Phi / Skylake 28 /// And some examples of instruction target dependent costs (latency) 29 /// divss sqrtss rsqrtss 30 /// AMD K7 11-16 19 3 31 /// Piledriver 9-24 13-15 5 32 /// Jaguar 14 16 2 33 /// Pentium II,III 18 30 2 34 /// Nehalem 7-14 7-18 3 35 /// Haswell 10-13 11 5 36 /// TODO: Develop and implement the target dependent cost model and 37 /// specialize cost numbers for different Cost Model Targets such as throughput, 38 /// code size, latency and uop count. 39 //===----------------------------------------------------------------------===// 40 41 #include "X86TargetTransformInfo.h" 42 #include "llvm/Analysis/TargetTransformInfo.h" 43 #include "llvm/CodeGen/BasicTTIImpl.h" 44 #include "llvm/CodeGen/CostTable.h" 45 #include "llvm/CodeGen/TargetLowering.h" 46 #include "llvm/IR/IntrinsicInst.h" 47 #include "llvm/Support/Debug.h" 48 49 using namespace llvm; 50 51 #define DEBUG_TYPE "x86tti" 52 53 //===----------------------------------------------------------------------===// 54 // 55 // X86 cost model. 56 // 57 //===----------------------------------------------------------------------===// 58 59 TargetTransformInfo::PopcntSupportKind 60 X86TTIImpl::getPopcntSupport(unsigned TyWidth) { 61 assert(isPowerOf2_32(TyWidth) && "Ty width must be power of 2"); 62 // TODO: Currently the __builtin_popcount() implementation using SSE3 63 // instructions is inefficient. Once the problem is fixed, we should 64 // call ST->hasSSE3() instead of ST->hasPOPCNT(). 65 return ST->hasPOPCNT() ? TTI::PSK_FastHardware : TTI::PSK_Software; 66 } 67 68 llvm::Optional<unsigned> X86TTIImpl::getCacheSize( 69 TargetTransformInfo::CacheLevel Level) const { 70 switch (Level) { 71 case TargetTransformInfo::CacheLevel::L1D: 72 // - Penryn 73 // - Nehalem 74 // - Westmere 75 // - Sandy Bridge 76 // - Ivy Bridge 77 // - Haswell 78 // - Broadwell 79 // - Skylake 80 // - Kabylake 81 return 32 * 1024; // 32 KByte 82 case TargetTransformInfo::CacheLevel::L2D: 83 // - Penryn 84 // - Nehalem 85 // - Westmere 86 // - Sandy Bridge 87 // - Ivy Bridge 88 // - Haswell 89 // - Broadwell 90 // - Skylake 91 // - Kabylake 92 return 256 * 1024; // 256 KByte 93 } 94 95 llvm_unreachable("Unknown TargetTransformInfo::CacheLevel"); 96 } 97 98 llvm::Optional<unsigned> X86TTIImpl::getCacheAssociativity( 99 TargetTransformInfo::CacheLevel Level) const { 100 // - Penryn 101 // - Nehalem 102 // - Westmere 103 // - Sandy Bridge 104 // - Ivy Bridge 105 // - Haswell 106 // - Broadwell 107 // - Skylake 108 // - Kabylake 109 switch (Level) { 110 case TargetTransformInfo::CacheLevel::L1D: 111 LLVM_FALLTHROUGH; 112 case TargetTransformInfo::CacheLevel::L2D: 113 return 8; 114 } 115 116 llvm_unreachable("Unknown TargetTransformInfo::CacheLevel"); 117 } 118 119 unsigned X86TTIImpl::getNumberOfRegisters(unsigned ClassID) const { 120 bool Vector = (ClassID == 1); 121 if (Vector && !ST->hasSSE1()) 122 return 0; 123 124 if (ST->is64Bit()) { 125 if (Vector && ST->hasAVX512()) 126 return 32; 127 return 16; 128 } 129 return 8; 130 } 131 132 TypeSize 133 X86TTIImpl::getRegisterBitWidth(TargetTransformInfo::RegisterKind K) const { 134 unsigned PreferVectorWidth = ST->getPreferVectorWidth(); 135 switch (K) { 136 case TargetTransformInfo::RGK_Scalar: 137 return TypeSize::getFixed(ST->is64Bit() ? 64 : 32); 138 case TargetTransformInfo::RGK_FixedWidthVector: 139 if (ST->hasAVX512() && PreferVectorWidth >= 512) 140 return TypeSize::getFixed(512); 141 if (ST->hasAVX() && PreferVectorWidth >= 256) 142 return TypeSize::getFixed(256); 143 if (ST->hasSSE1() && PreferVectorWidth >= 128) 144 return TypeSize::getFixed(128); 145 return TypeSize::getFixed(0); 146 case TargetTransformInfo::RGK_ScalableVector: 147 return TypeSize::getScalable(0); 148 } 149 150 llvm_unreachable("Unsupported register kind"); 151 } 152 153 unsigned X86TTIImpl::getLoadStoreVecRegBitWidth(unsigned) const { 154 return getRegisterBitWidth(TargetTransformInfo::RGK_FixedWidthVector) 155 .getFixedSize(); 156 } 157 158 unsigned X86TTIImpl::getMaxInterleaveFactor(unsigned VF) { 159 // If the loop will not be vectorized, don't interleave the loop. 160 // Let regular unroll to unroll the loop, which saves the overflow 161 // check and memory check cost. 162 if (VF == 1) 163 return 1; 164 165 if (ST->isAtom()) 166 return 1; 167 168 // Sandybridge and Haswell have multiple execution ports and pipelined 169 // vector units. 170 if (ST->hasAVX()) 171 return 4; 172 173 return 2; 174 } 175 176 InstructionCost X86TTIImpl::getArithmeticInstrCost( 177 unsigned Opcode, Type *Ty, TTI::TargetCostKind CostKind, 178 TTI::OperandValueKind Op1Info, TTI::OperandValueKind Op2Info, 179 TTI::OperandValueProperties Opd1PropInfo, 180 TTI::OperandValueProperties Opd2PropInfo, ArrayRef<const Value *> Args, 181 const Instruction *CxtI) { 182 // TODO: Handle more cost kinds. 183 if (CostKind != TTI::TCK_RecipThroughput) 184 return BaseT::getArithmeticInstrCost(Opcode, Ty, CostKind, Op1Info, 185 Op2Info, Opd1PropInfo, 186 Opd2PropInfo, Args, CxtI); 187 // Legalize the type. 188 std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Ty); 189 190 int ISD = TLI->InstructionOpcodeToISD(Opcode); 191 assert(ISD && "Invalid opcode"); 192 193 static const CostTblEntry GLMCostTable[] = { 194 { ISD::FDIV, MVT::f32, 18 }, // divss 195 { ISD::FDIV, MVT::v4f32, 35 }, // divps 196 { ISD::FDIV, MVT::f64, 33 }, // divsd 197 { ISD::FDIV, MVT::v2f64, 65 }, // divpd 198 }; 199 200 if (ST->useGLMDivSqrtCosts()) 201 if (const auto *Entry = CostTableLookup(GLMCostTable, ISD, 202 LT.second)) 203 return LT.first * Entry->Cost; 204 205 static const CostTblEntry SLMCostTable[] = { 206 { ISD::MUL, MVT::v4i32, 11 }, // pmulld 207 { ISD::MUL, MVT::v8i16, 2 }, // pmullw 208 { ISD::MUL, MVT::v16i8, 14 }, // extend/pmullw/trunc sequence. 209 { ISD::FMUL, MVT::f64, 2 }, // mulsd 210 { ISD::FMUL, MVT::v2f64, 4 }, // mulpd 211 { ISD::FMUL, MVT::v4f32, 2 }, // mulps 212 { ISD::FDIV, MVT::f32, 17 }, // divss 213 { ISD::FDIV, MVT::v4f32, 39 }, // divps 214 { ISD::FDIV, MVT::f64, 32 }, // divsd 215 { ISD::FDIV, MVT::v2f64, 69 }, // divpd 216 { ISD::FADD, MVT::v2f64, 2 }, // addpd 217 { ISD::FSUB, MVT::v2f64, 2 }, // subpd 218 // v2i64/v4i64 mul is custom lowered as a series of long: 219 // multiplies(3), shifts(3) and adds(2) 220 // slm muldq version throughput is 2 and addq throughput 4 221 // thus: 3X2 (muldq throughput) + 3X1 (shift throughput) + 222 // 3X4 (addq throughput) = 17 223 { ISD::MUL, MVT::v2i64, 17 }, 224 // slm addq\subq throughput is 4 225 { ISD::ADD, MVT::v2i64, 4 }, 226 { ISD::SUB, MVT::v2i64, 4 }, 227 }; 228 229 if (ST->isSLM()) { 230 if (Args.size() == 2 && ISD == ISD::MUL && LT.second == MVT::v4i32) { 231 // Check if the operands can be shrinked into a smaller datatype. 232 bool Op1Signed = false; 233 unsigned Op1MinSize = BaseT::minRequiredElementSize(Args[0], Op1Signed); 234 bool Op2Signed = false; 235 unsigned Op2MinSize = BaseT::minRequiredElementSize(Args[1], Op2Signed); 236 237 bool SignedMode = Op1Signed || Op2Signed; 238 unsigned OpMinSize = std::max(Op1MinSize, Op2MinSize); 239 240 if (OpMinSize <= 7) 241 return LT.first * 3; // pmullw/sext 242 if (!SignedMode && OpMinSize <= 8) 243 return LT.first * 3; // pmullw/zext 244 if (OpMinSize <= 15) 245 return LT.first * 5; // pmullw/pmulhw/pshuf 246 if (!SignedMode && OpMinSize <= 16) 247 return LT.first * 5; // pmullw/pmulhw/pshuf 248 } 249 250 if (const auto *Entry = CostTableLookup(SLMCostTable, ISD, 251 LT.second)) { 252 return LT.first * Entry->Cost; 253 } 254 } 255 256 if ((ISD == ISD::SDIV || ISD == ISD::SREM || ISD == ISD::UDIV || 257 ISD == ISD::UREM) && 258 (Op2Info == TargetTransformInfo::OK_UniformConstantValue || 259 Op2Info == TargetTransformInfo::OK_NonUniformConstantValue) && 260 Opd2PropInfo == TargetTransformInfo::OP_PowerOf2) { 261 if (ISD == ISD::SDIV || ISD == ISD::SREM) { 262 // On X86, vector signed division by constants power-of-two are 263 // normally expanded to the sequence SRA + SRL + ADD + SRA. 264 // The OperandValue properties may not be the same as that of the previous 265 // operation; conservatively assume OP_None. 266 InstructionCost Cost = 267 2 * getArithmeticInstrCost(Instruction::AShr, Ty, CostKind, Op1Info, 268 Op2Info, TargetTransformInfo::OP_None, 269 TargetTransformInfo::OP_None); 270 Cost += getArithmeticInstrCost(Instruction::LShr, Ty, CostKind, Op1Info, 271 Op2Info, 272 TargetTransformInfo::OP_None, 273 TargetTransformInfo::OP_None); 274 Cost += getArithmeticInstrCost(Instruction::Add, Ty, CostKind, Op1Info, 275 Op2Info, 276 TargetTransformInfo::OP_None, 277 TargetTransformInfo::OP_None); 278 279 if (ISD == ISD::SREM) { 280 // For SREM: (X % C) is the equivalent of (X - (X/C)*C) 281 Cost += getArithmeticInstrCost(Instruction::Mul, Ty, CostKind, Op1Info, 282 Op2Info); 283 Cost += getArithmeticInstrCost(Instruction::Sub, Ty, CostKind, Op1Info, 284 Op2Info); 285 } 286 287 return Cost; 288 } 289 290 // Vector unsigned division/remainder will be simplified to shifts/masks. 291 if (ISD == ISD::UDIV) 292 return getArithmeticInstrCost(Instruction::LShr, Ty, CostKind, 293 Op1Info, Op2Info, 294 TargetTransformInfo::OP_None, 295 TargetTransformInfo::OP_None); 296 297 else // UREM 298 return getArithmeticInstrCost(Instruction::And, Ty, CostKind, 299 Op1Info, Op2Info, 300 TargetTransformInfo::OP_None, 301 TargetTransformInfo::OP_None); 302 } 303 304 static const CostTblEntry AVX512BWUniformConstCostTable[] = { 305 { ISD::SHL, MVT::v64i8, 2 }, // psllw + pand. 306 { ISD::SRL, MVT::v64i8, 2 }, // psrlw + pand. 307 { ISD::SRA, MVT::v64i8, 4 }, // psrlw, pand, pxor, psubb. 308 }; 309 310 if (Op2Info == TargetTransformInfo::OK_UniformConstantValue && 311 ST->hasBWI()) { 312 if (const auto *Entry = CostTableLookup(AVX512BWUniformConstCostTable, ISD, 313 LT.second)) 314 return LT.first * Entry->Cost; 315 } 316 317 static const CostTblEntry AVX512UniformConstCostTable[] = { 318 { ISD::SRA, MVT::v2i64, 1 }, 319 { ISD::SRA, MVT::v4i64, 1 }, 320 { ISD::SRA, MVT::v8i64, 1 }, 321 322 { ISD::SHL, MVT::v64i8, 4 }, // psllw + pand. 323 { ISD::SRL, MVT::v64i8, 4 }, // psrlw + pand. 324 { ISD::SRA, MVT::v64i8, 8 }, // psrlw, pand, pxor, psubb. 325 326 { ISD::SDIV, MVT::v16i32, 6 }, // pmuludq sequence 327 { ISD::SREM, MVT::v16i32, 8 }, // pmuludq+mul+sub sequence 328 { ISD::UDIV, MVT::v16i32, 5 }, // pmuludq sequence 329 { ISD::UREM, MVT::v16i32, 7 }, // pmuludq+mul+sub sequence 330 }; 331 332 if (Op2Info == TargetTransformInfo::OK_UniformConstantValue && 333 ST->hasAVX512()) { 334 if (const auto *Entry = CostTableLookup(AVX512UniformConstCostTable, ISD, 335 LT.second)) 336 return LT.first * Entry->Cost; 337 } 338 339 static const CostTblEntry AVX2UniformConstCostTable[] = { 340 { ISD::SHL, MVT::v32i8, 2 }, // psllw + pand. 341 { ISD::SRL, MVT::v32i8, 2 }, // psrlw + pand. 342 { ISD::SRA, MVT::v32i8, 4 }, // psrlw, pand, pxor, psubb. 343 344 { ISD::SRA, MVT::v4i64, 4 }, // 2 x psrad + shuffle. 345 346 { ISD::SDIV, MVT::v8i32, 6 }, // pmuludq sequence 347 { ISD::SREM, MVT::v8i32, 8 }, // pmuludq+mul+sub sequence 348 { ISD::UDIV, MVT::v8i32, 5 }, // pmuludq sequence 349 { ISD::UREM, MVT::v8i32, 7 }, // pmuludq+mul+sub sequence 350 }; 351 352 if (Op2Info == TargetTransformInfo::OK_UniformConstantValue && 353 ST->hasAVX2()) { 354 if (const auto *Entry = CostTableLookup(AVX2UniformConstCostTable, ISD, 355 LT.second)) 356 return LT.first * Entry->Cost; 357 } 358 359 static const CostTblEntry SSE2UniformConstCostTable[] = { 360 { ISD::SHL, MVT::v16i8, 2 }, // psllw + pand. 361 { ISD::SRL, MVT::v16i8, 2 }, // psrlw + pand. 362 { ISD::SRA, MVT::v16i8, 4 }, // psrlw, pand, pxor, psubb. 363 364 { ISD::SHL, MVT::v32i8, 4+2 }, // 2*(psllw + pand) + split. 365 { ISD::SRL, MVT::v32i8, 4+2 }, // 2*(psrlw + pand) + split. 366 { ISD::SRA, MVT::v32i8, 8+2 }, // 2*(psrlw, pand, pxor, psubb) + split. 367 368 { ISD::SDIV, MVT::v8i32, 12+2 }, // 2*pmuludq sequence + split. 369 { ISD::SREM, MVT::v8i32, 16+2 }, // 2*pmuludq+mul+sub sequence + split. 370 { ISD::SDIV, MVT::v4i32, 6 }, // pmuludq sequence 371 { ISD::SREM, MVT::v4i32, 8 }, // pmuludq+mul+sub sequence 372 { ISD::UDIV, MVT::v8i32, 10+2 }, // 2*pmuludq sequence + split. 373 { ISD::UREM, MVT::v8i32, 14+2 }, // 2*pmuludq+mul+sub sequence + split. 374 { ISD::UDIV, MVT::v4i32, 5 }, // pmuludq sequence 375 { ISD::UREM, MVT::v4i32, 7 }, // pmuludq+mul+sub sequence 376 }; 377 378 // XOP has faster vXi8 shifts. 379 if (Op2Info == TargetTransformInfo::OK_UniformConstantValue && 380 ST->hasSSE2() && !ST->hasXOP()) { 381 if (const auto *Entry = 382 CostTableLookup(SSE2UniformConstCostTable, ISD, LT.second)) 383 return LT.first * Entry->Cost; 384 } 385 386 static const CostTblEntry AVX512BWConstCostTable[] = { 387 { ISD::SDIV, MVT::v64i8, 14 }, // 2*ext+2*pmulhw sequence 388 { ISD::SREM, MVT::v64i8, 16 }, // 2*ext+2*pmulhw+mul+sub sequence 389 { ISD::UDIV, MVT::v64i8, 14 }, // 2*ext+2*pmulhw sequence 390 { ISD::UREM, MVT::v64i8, 16 }, // 2*ext+2*pmulhw+mul+sub sequence 391 { ISD::SDIV, MVT::v32i16, 6 }, // vpmulhw sequence 392 { ISD::SREM, MVT::v32i16, 8 }, // vpmulhw+mul+sub sequence 393 { ISD::UDIV, MVT::v32i16, 6 }, // vpmulhuw sequence 394 { ISD::UREM, MVT::v32i16, 8 }, // vpmulhuw+mul+sub sequence 395 }; 396 397 if ((Op2Info == TargetTransformInfo::OK_UniformConstantValue || 398 Op2Info == TargetTransformInfo::OK_NonUniformConstantValue) && 399 ST->hasBWI()) { 400 if (const auto *Entry = 401 CostTableLookup(AVX512BWConstCostTable, ISD, LT.second)) 402 return LT.first * Entry->Cost; 403 } 404 405 static const CostTblEntry AVX512ConstCostTable[] = { 406 { ISD::SDIV, MVT::v16i32, 15 }, // vpmuldq sequence 407 { ISD::SREM, MVT::v16i32, 17 }, // vpmuldq+mul+sub sequence 408 { ISD::UDIV, MVT::v16i32, 15 }, // vpmuludq sequence 409 { ISD::UREM, MVT::v16i32, 17 }, // vpmuludq+mul+sub sequence 410 { ISD::SDIV, MVT::v64i8, 28 }, // 4*ext+4*pmulhw sequence 411 { ISD::SREM, MVT::v64i8, 32 }, // 4*ext+4*pmulhw+mul+sub sequence 412 { ISD::UDIV, MVT::v64i8, 28 }, // 4*ext+4*pmulhw sequence 413 { ISD::UREM, MVT::v64i8, 32 }, // 4*ext+4*pmulhw+mul+sub sequence 414 { ISD::SDIV, MVT::v32i16, 12 }, // 2*vpmulhw sequence 415 { ISD::SREM, MVT::v32i16, 16 }, // 2*vpmulhw+mul+sub sequence 416 { ISD::UDIV, MVT::v32i16, 12 }, // 2*vpmulhuw sequence 417 { ISD::UREM, MVT::v32i16, 16 }, // 2*vpmulhuw+mul+sub sequence 418 }; 419 420 if ((Op2Info == TargetTransformInfo::OK_UniformConstantValue || 421 Op2Info == TargetTransformInfo::OK_NonUniformConstantValue) && 422 ST->hasAVX512()) { 423 if (const auto *Entry = 424 CostTableLookup(AVX512ConstCostTable, ISD, LT.second)) 425 return LT.first * Entry->Cost; 426 } 427 428 static const CostTblEntry AVX2ConstCostTable[] = { 429 { ISD::SDIV, MVT::v32i8, 14 }, // 2*ext+2*pmulhw sequence 430 { ISD::SREM, MVT::v32i8, 16 }, // 2*ext+2*pmulhw+mul+sub sequence 431 { ISD::UDIV, MVT::v32i8, 14 }, // 2*ext+2*pmulhw sequence 432 { ISD::UREM, MVT::v32i8, 16 }, // 2*ext+2*pmulhw+mul+sub sequence 433 { ISD::SDIV, MVT::v16i16, 6 }, // vpmulhw sequence 434 { ISD::SREM, MVT::v16i16, 8 }, // vpmulhw+mul+sub sequence 435 { ISD::UDIV, MVT::v16i16, 6 }, // vpmulhuw sequence 436 { ISD::UREM, MVT::v16i16, 8 }, // vpmulhuw+mul+sub sequence 437 { ISD::SDIV, MVT::v8i32, 15 }, // vpmuldq sequence 438 { ISD::SREM, MVT::v8i32, 19 }, // vpmuldq+mul+sub sequence 439 { ISD::UDIV, MVT::v8i32, 15 }, // vpmuludq sequence 440 { ISD::UREM, MVT::v8i32, 19 }, // vpmuludq+mul+sub sequence 441 }; 442 443 if ((Op2Info == TargetTransformInfo::OK_UniformConstantValue || 444 Op2Info == TargetTransformInfo::OK_NonUniformConstantValue) && 445 ST->hasAVX2()) { 446 if (const auto *Entry = CostTableLookup(AVX2ConstCostTable, ISD, LT.second)) 447 return LT.first * Entry->Cost; 448 } 449 450 static const CostTblEntry SSE2ConstCostTable[] = { 451 { ISD::SDIV, MVT::v32i8, 28+2 }, // 4*ext+4*pmulhw sequence + split. 452 { ISD::SREM, MVT::v32i8, 32+2 }, // 4*ext+4*pmulhw+mul+sub sequence + split. 453 { ISD::SDIV, MVT::v16i8, 14 }, // 2*ext+2*pmulhw sequence 454 { ISD::SREM, MVT::v16i8, 16 }, // 2*ext+2*pmulhw+mul+sub sequence 455 { ISD::UDIV, MVT::v32i8, 28+2 }, // 4*ext+4*pmulhw sequence + split. 456 { ISD::UREM, MVT::v32i8, 32+2 }, // 4*ext+4*pmulhw+mul+sub sequence + split. 457 { ISD::UDIV, MVT::v16i8, 14 }, // 2*ext+2*pmulhw sequence 458 { ISD::UREM, MVT::v16i8, 16 }, // 2*ext+2*pmulhw+mul+sub sequence 459 { ISD::SDIV, MVT::v16i16, 12+2 }, // 2*pmulhw sequence + split. 460 { ISD::SREM, MVT::v16i16, 16+2 }, // 2*pmulhw+mul+sub sequence + split. 461 { ISD::SDIV, MVT::v8i16, 6 }, // pmulhw sequence 462 { ISD::SREM, MVT::v8i16, 8 }, // pmulhw+mul+sub sequence 463 { ISD::UDIV, MVT::v16i16, 12+2 }, // 2*pmulhuw sequence + split. 464 { ISD::UREM, MVT::v16i16, 16+2 }, // 2*pmulhuw+mul+sub sequence + split. 465 { ISD::UDIV, MVT::v8i16, 6 }, // pmulhuw sequence 466 { ISD::UREM, MVT::v8i16, 8 }, // pmulhuw+mul+sub sequence 467 { ISD::SDIV, MVT::v8i32, 38+2 }, // 2*pmuludq sequence + split. 468 { ISD::SREM, MVT::v8i32, 48+2 }, // 2*pmuludq+mul+sub sequence + split. 469 { ISD::SDIV, MVT::v4i32, 19 }, // pmuludq sequence 470 { ISD::SREM, MVT::v4i32, 24 }, // pmuludq+mul+sub sequence 471 { ISD::UDIV, MVT::v8i32, 30+2 }, // 2*pmuludq sequence + split. 472 { ISD::UREM, MVT::v8i32, 40+2 }, // 2*pmuludq+mul+sub sequence + split. 473 { ISD::UDIV, MVT::v4i32, 15 }, // pmuludq sequence 474 { ISD::UREM, MVT::v4i32, 20 }, // pmuludq+mul+sub sequence 475 }; 476 477 if ((Op2Info == TargetTransformInfo::OK_UniformConstantValue || 478 Op2Info == TargetTransformInfo::OK_NonUniformConstantValue) && 479 ST->hasSSE2()) { 480 // pmuldq sequence. 481 if (ISD == ISD::SDIV && LT.second == MVT::v8i32 && ST->hasAVX()) 482 return LT.first * 32; 483 if (ISD == ISD::SREM && LT.second == MVT::v8i32 && ST->hasAVX()) 484 return LT.first * 38; 485 if (ISD == ISD::SDIV && LT.second == MVT::v4i32 && ST->hasSSE41()) 486 return LT.first * 15; 487 if (ISD == ISD::SREM && LT.second == MVT::v4i32 && ST->hasSSE41()) 488 return LT.first * 20; 489 490 if (const auto *Entry = CostTableLookup(SSE2ConstCostTable, ISD, LT.second)) 491 return LT.first * Entry->Cost; 492 } 493 494 static const CostTblEntry AVX512BWShiftCostTable[] = { 495 { ISD::SHL, MVT::v8i16, 1 }, // vpsllvw 496 { ISD::SRL, MVT::v8i16, 1 }, // vpsrlvw 497 { ISD::SRA, MVT::v8i16, 1 }, // vpsravw 498 499 { ISD::SHL, MVT::v16i16, 1 }, // vpsllvw 500 { ISD::SRL, MVT::v16i16, 1 }, // vpsrlvw 501 { ISD::SRA, MVT::v16i16, 1 }, // vpsravw 502 503 { ISD::SHL, MVT::v32i16, 1 }, // vpsllvw 504 { ISD::SRL, MVT::v32i16, 1 }, // vpsrlvw 505 { ISD::SRA, MVT::v32i16, 1 }, // vpsravw 506 }; 507 508 if (ST->hasBWI()) 509 if (const auto *Entry = CostTableLookup(AVX512BWShiftCostTable, ISD, LT.second)) 510 return LT.first * Entry->Cost; 511 512 static const CostTblEntry AVX2UniformCostTable[] = { 513 // Uniform splats are cheaper for the following instructions. 514 { ISD::SHL, MVT::v16i16, 1 }, // psllw. 515 { ISD::SRL, MVT::v16i16, 1 }, // psrlw. 516 { ISD::SRA, MVT::v16i16, 1 }, // psraw. 517 { ISD::SHL, MVT::v32i16, 2 }, // 2*psllw. 518 { ISD::SRL, MVT::v32i16, 2 }, // 2*psrlw. 519 { ISD::SRA, MVT::v32i16, 2 }, // 2*psraw. 520 }; 521 522 if (ST->hasAVX2() && 523 ((Op2Info == TargetTransformInfo::OK_UniformConstantValue) || 524 (Op2Info == TargetTransformInfo::OK_UniformValue))) { 525 if (const auto *Entry = 526 CostTableLookup(AVX2UniformCostTable, ISD, LT.second)) 527 return LT.first * Entry->Cost; 528 } 529 530 static const CostTblEntry SSE2UniformCostTable[] = { 531 // Uniform splats are cheaper for the following instructions. 532 { ISD::SHL, MVT::v8i16, 1 }, // psllw. 533 { ISD::SHL, MVT::v4i32, 1 }, // pslld 534 { ISD::SHL, MVT::v2i64, 1 }, // psllq. 535 536 { ISD::SRL, MVT::v8i16, 1 }, // psrlw. 537 { ISD::SRL, MVT::v4i32, 1 }, // psrld. 538 { ISD::SRL, MVT::v2i64, 1 }, // psrlq. 539 540 { ISD::SRA, MVT::v8i16, 1 }, // psraw. 541 { ISD::SRA, MVT::v4i32, 1 }, // psrad. 542 }; 543 544 if (ST->hasSSE2() && 545 ((Op2Info == TargetTransformInfo::OK_UniformConstantValue) || 546 (Op2Info == TargetTransformInfo::OK_UniformValue))) { 547 if (const auto *Entry = 548 CostTableLookup(SSE2UniformCostTable, ISD, LT.second)) 549 return LT.first * Entry->Cost; 550 } 551 552 static const CostTblEntry AVX512DQCostTable[] = { 553 { ISD::MUL, MVT::v2i64, 1 }, 554 { ISD::MUL, MVT::v4i64, 1 }, 555 { ISD::MUL, MVT::v8i64, 1 } 556 }; 557 558 // Look for AVX512DQ lowering tricks for custom cases. 559 if (ST->hasDQI()) 560 if (const auto *Entry = CostTableLookup(AVX512DQCostTable, ISD, LT.second)) 561 return LT.first * Entry->Cost; 562 563 static const CostTblEntry AVX512BWCostTable[] = { 564 { ISD::SHL, MVT::v64i8, 11 }, // vpblendvb sequence. 565 { ISD::SRL, MVT::v64i8, 11 }, // vpblendvb sequence. 566 { ISD::SRA, MVT::v64i8, 24 }, // vpblendvb sequence. 567 568 { ISD::MUL, MVT::v64i8, 11 }, // extend/pmullw/trunc sequence. 569 { ISD::MUL, MVT::v32i8, 4 }, // extend/pmullw/trunc sequence. 570 { ISD::MUL, MVT::v16i8, 4 }, // extend/pmullw/trunc sequence. 571 }; 572 573 // Look for AVX512BW lowering tricks for custom cases. 574 if (ST->hasBWI()) 575 if (const auto *Entry = CostTableLookup(AVX512BWCostTable, ISD, LT.second)) 576 return LT.first * Entry->Cost; 577 578 static const CostTblEntry AVX512CostTable[] = { 579 { ISD::SHL, MVT::v16i32, 1 }, 580 { ISD::SRL, MVT::v16i32, 1 }, 581 { ISD::SRA, MVT::v16i32, 1 }, 582 583 { ISD::SHL, MVT::v8i64, 1 }, 584 { ISD::SRL, MVT::v8i64, 1 }, 585 586 { ISD::SRA, MVT::v2i64, 1 }, 587 { ISD::SRA, MVT::v4i64, 1 }, 588 { ISD::SRA, MVT::v8i64, 1 }, 589 590 { ISD::MUL, MVT::v64i8, 26 }, // extend/pmullw/trunc sequence. 591 { ISD::MUL, MVT::v32i8, 13 }, // extend/pmullw/trunc sequence. 592 { ISD::MUL, MVT::v16i8, 5 }, // extend/pmullw/trunc sequence. 593 { ISD::MUL, MVT::v16i32, 1 }, // pmulld (Skylake from agner.org) 594 { ISD::MUL, MVT::v8i32, 1 }, // pmulld (Skylake from agner.org) 595 { ISD::MUL, MVT::v4i32, 1 }, // pmulld (Skylake from agner.org) 596 { ISD::MUL, MVT::v8i64, 8 }, // 3*pmuludq/3*shift/2*add 597 598 { ISD::FADD, MVT::v8f64, 1 }, // Skylake from http://www.agner.org/ 599 { ISD::FSUB, MVT::v8f64, 1 }, // Skylake from http://www.agner.org/ 600 { ISD::FMUL, MVT::v8f64, 1 }, // Skylake from http://www.agner.org/ 601 602 { ISD::FADD, MVT::v16f32, 1 }, // Skylake from http://www.agner.org/ 603 { ISD::FSUB, MVT::v16f32, 1 }, // Skylake from http://www.agner.org/ 604 { ISD::FMUL, MVT::v16f32, 1 }, // Skylake from http://www.agner.org/ 605 }; 606 607 if (ST->hasAVX512()) 608 if (const auto *Entry = CostTableLookup(AVX512CostTable, ISD, LT.second)) 609 return LT.first * Entry->Cost; 610 611 static const CostTblEntry AVX2ShiftCostTable[] = { 612 // Shifts on v4i64/v8i32 on AVX2 is legal even though we declare to 613 // customize them to detect the cases where shift amount is a scalar one. 614 { ISD::SHL, MVT::v4i32, 1 }, 615 { ISD::SRL, MVT::v4i32, 1 }, 616 { ISD::SRA, MVT::v4i32, 1 }, 617 { ISD::SHL, MVT::v8i32, 1 }, 618 { ISD::SRL, MVT::v8i32, 1 }, 619 { ISD::SRA, MVT::v8i32, 1 }, 620 { ISD::SHL, MVT::v2i64, 1 }, 621 { ISD::SRL, MVT::v2i64, 1 }, 622 { ISD::SHL, MVT::v4i64, 1 }, 623 { ISD::SRL, MVT::v4i64, 1 }, 624 }; 625 626 if (ST->hasAVX512()) { 627 if (ISD == ISD::SHL && LT.second == MVT::v32i16 && 628 (Op2Info == TargetTransformInfo::OK_UniformConstantValue || 629 Op2Info == TargetTransformInfo::OK_NonUniformConstantValue)) 630 // On AVX512, a packed v32i16 shift left by a constant build_vector 631 // is lowered into a vector multiply (vpmullw). 632 return getArithmeticInstrCost(Instruction::Mul, Ty, CostKind, 633 Op1Info, Op2Info, 634 TargetTransformInfo::OP_None, 635 TargetTransformInfo::OP_None); 636 } 637 638 // Look for AVX2 lowering tricks. 639 if (ST->hasAVX2()) { 640 if (ISD == ISD::SHL && LT.second == MVT::v16i16 && 641 (Op2Info == TargetTransformInfo::OK_UniformConstantValue || 642 Op2Info == TargetTransformInfo::OK_NonUniformConstantValue)) 643 // On AVX2, a packed v16i16 shift left by a constant build_vector 644 // is lowered into a vector multiply (vpmullw). 645 return getArithmeticInstrCost(Instruction::Mul, Ty, CostKind, 646 Op1Info, Op2Info, 647 TargetTransformInfo::OP_None, 648 TargetTransformInfo::OP_None); 649 650 if (const auto *Entry = CostTableLookup(AVX2ShiftCostTable, ISD, LT.second)) 651 return LT.first * Entry->Cost; 652 } 653 654 static const CostTblEntry XOPShiftCostTable[] = { 655 // 128bit shifts take 1cy, but right shifts require negation beforehand. 656 { ISD::SHL, MVT::v16i8, 1 }, 657 { ISD::SRL, MVT::v16i8, 2 }, 658 { ISD::SRA, MVT::v16i8, 2 }, 659 { ISD::SHL, MVT::v8i16, 1 }, 660 { ISD::SRL, MVT::v8i16, 2 }, 661 { ISD::SRA, MVT::v8i16, 2 }, 662 { ISD::SHL, MVT::v4i32, 1 }, 663 { ISD::SRL, MVT::v4i32, 2 }, 664 { ISD::SRA, MVT::v4i32, 2 }, 665 { ISD::SHL, MVT::v2i64, 1 }, 666 { ISD::SRL, MVT::v2i64, 2 }, 667 { ISD::SRA, MVT::v2i64, 2 }, 668 // 256bit shifts require splitting if AVX2 didn't catch them above. 669 { ISD::SHL, MVT::v32i8, 2+2 }, 670 { ISD::SRL, MVT::v32i8, 4+2 }, 671 { ISD::SRA, MVT::v32i8, 4+2 }, 672 { ISD::SHL, MVT::v16i16, 2+2 }, 673 { ISD::SRL, MVT::v16i16, 4+2 }, 674 { ISD::SRA, MVT::v16i16, 4+2 }, 675 { ISD::SHL, MVT::v8i32, 2+2 }, 676 { ISD::SRL, MVT::v8i32, 4+2 }, 677 { ISD::SRA, MVT::v8i32, 4+2 }, 678 { ISD::SHL, MVT::v4i64, 2+2 }, 679 { ISD::SRL, MVT::v4i64, 4+2 }, 680 { ISD::SRA, MVT::v4i64, 4+2 }, 681 }; 682 683 // Look for XOP lowering tricks. 684 if (ST->hasXOP()) { 685 // If the right shift is constant then we'll fold the negation so 686 // it's as cheap as a left shift. 687 int ShiftISD = ISD; 688 if ((ShiftISD == ISD::SRL || ShiftISD == ISD::SRA) && 689 (Op2Info == TargetTransformInfo::OK_UniformConstantValue || 690 Op2Info == TargetTransformInfo::OK_NonUniformConstantValue)) 691 ShiftISD = ISD::SHL; 692 if (const auto *Entry = 693 CostTableLookup(XOPShiftCostTable, ShiftISD, LT.second)) 694 return LT.first * Entry->Cost; 695 } 696 697 static const CostTblEntry SSE2UniformShiftCostTable[] = { 698 // Uniform splats are cheaper for the following instructions. 699 { ISD::SHL, MVT::v16i16, 2+2 }, // 2*psllw + split. 700 { ISD::SHL, MVT::v8i32, 2+2 }, // 2*pslld + split. 701 { ISD::SHL, MVT::v4i64, 2+2 }, // 2*psllq + split. 702 703 { ISD::SRL, MVT::v16i16, 2+2 }, // 2*psrlw + split. 704 { ISD::SRL, MVT::v8i32, 2+2 }, // 2*psrld + split. 705 { ISD::SRL, MVT::v4i64, 2+2 }, // 2*psrlq + split. 706 707 { ISD::SRA, MVT::v16i16, 2+2 }, // 2*psraw + split. 708 { ISD::SRA, MVT::v8i32, 2+2 }, // 2*psrad + split. 709 { ISD::SRA, MVT::v2i64, 4 }, // 2*psrad + shuffle. 710 { ISD::SRA, MVT::v4i64, 8+2 }, // 2*(2*psrad + shuffle) + split. 711 }; 712 713 if (ST->hasSSE2() && 714 ((Op2Info == TargetTransformInfo::OK_UniformConstantValue) || 715 (Op2Info == TargetTransformInfo::OK_UniformValue))) { 716 717 // Handle AVX2 uniform v4i64 ISD::SRA, it's not worth a table. 718 if (ISD == ISD::SRA && LT.second == MVT::v4i64 && ST->hasAVX2()) 719 return LT.first * 4; // 2*psrad + shuffle. 720 721 if (const auto *Entry = 722 CostTableLookup(SSE2UniformShiftCostTable, ISD, LT.second)) 723 return LT.first * Entry->Cost; 724 } 725 726 if (ISD == ISD::SHL && 727 Op2Info == TargetTransformInfo::OK_NonUniformConstantValue) { 728 MVT VT = LT.second; 729 // Vector shift left by non uniform constant can be lowered 730 // into vector multiply. 731 if (((VT == MVT::v8i16 || VT == MVT::v4i32) && ST->hasSSE2()) || 732 ((VT == MVT::v16i16 || VT == MVT::v8i32) && ST->hasAVX())) 733 ISD = ISD::MUL; 734 } 735 736 static const CostTblEntry AVX2CostTable[] = { 737 { ISD::SHL, MVT::v32i8, 11 }, // vpblendvb sequence. 738 { ISD::SHL, MVT::v64i8, 22 }, // 2*vpblendvb sequence. 739 { ISD::SHL, MVT::v16i16, 10 }, // extend/vpsrlvd/pack sequence. 740 { ISD::SHL, MVT::v32i16, 20 }, // 2*extend/vpsrlvd/pack sequence. 741 742 { ISD::SRL, MVT::v32i8, 11 }, // vpblendvb sequence. 743 { ISD::SRL, MVT::v64i8, 22 }, // 2*vpblendvb sequence. 744 { ISD::SRL, MVT::v16i16, 10 }, // extend/vpsrlvd/pack sequence. 745 { ISD::SRL, MVT::v32i16, 20 }, // 2*extend/vpsrlvd/pack sequence. 746 747 { ISD::SRA, MVT::v32i8, 24 }, // vpblendvb sequence. 748 { ISD::SRA, MVT::v64i8, 48 }, // 2*vpblendvb sequence. 749 { ISD::SRA, MVT::v16i16, 10 }, // extend/vpsravd/pack sequence. 750 { ISD::SRA, MVT::v32i16, 20 }, // 2*extend/vpsravd/pack sequence. 751 { ISD::SRA, MVT::v2i64, 4 }, // srl/xor/sub sequence. 752 { ISD::SRA, MVT::v4i64, 4 }, // srl/xor/sub sequence. 753 754 { ISD::SUB, MVT::v32i8, 1 }, // psubb 755 { ISD::ADD, MVT::v32i8, 1 }, // paddb 756 { ISD::SUB, MVT::v16i16, 1 }, // psubw 757 { ISD::ADD, MVT::v16i16, 1 }, // paddw 758 { ISD::SUB, MVT::v8i32, 1 }, // psubd 759 { ISD::ADD, MVT::v8i32, 1 }, // paddd 760 { ISD::SUB, MVT::v4i64, 1 }, // psubq 761 { ISD::ADD, MVT::v4i64, 1 }, // paddq 762 763 { ISD::MUL, MVT::v32i8, 17 }, // extend/pmullw/trunc sequence. 764 { ISD::MUL, MVT::v16i8, 7 }, // extend/pmullw/trunc sequence. 765 { ISD::MUL, MVT::v16i16, 1 }, // pmullw 766 { ISD::MUL, MVT::v8i32, 2 }, // pmulld (Haswell from agner.org) 767 { ISD::MUL, MVT::v4i64, 8 }, // 3*pmuludq/3*shift/2*add 768 769 { ISD::FADD, MVT::v4f64, 1 }, // Haswell from http://www.agner.org/ 770 { ISD::FADD, MVT::v8f32, 1 }, // Haswell from http://www.agner.org/ 771 { ISD::FSUB, MVT::v4f64, 1 }, // Haswell from http://www.agner.org/ 772 { ISD::FSUB, MVT::v8f32, 1 }, // Haswell from http://www.agner.org/ 773 { ISD::FMUL, MVT::v4f64, 1 }, // Haswell from http://www.agner.org/ 774 { ISD::FMUL, MVT::v8f32, 1 }, // Haswell from http://www.agner.org/ 775 776 { ISD::FDIV, MVT::f32, 7 }, // Haswell from http://www.agner.org/ 777 { ISD::FDIV, MVT::v4f32, 7 }, // Haswell from http://www.agner.org/ 778 { ISD::FDIV, MVT::v8f32, 14 }, // Haswell from http://www.agner.org/ 779 { ISD::FDIV, MVT::f64, 14 }, // Haswell from http://www.agner.org/ 780 { ISD::FDIV, MVT::v2f64, 14 }, // Haswell from http://www.agner.org/ 781 { ISD::FDIV, MVT::v4f64, 28 }, // Haswell from http://www.agner.org/ 782 }; 783 784 // Look for AVX2 lowering tricks for custom cases. 785 if (ST->hasAVX2()) 786 if (const auto *Entry = CostTableLookup(AVX2CostTable, ISD, LT.second)) 787 return LT.first * Entry->Cost; 788 789 static const CostTblEntry AVX1CostTable[] = { 790 // We don't have to scalarize unsupported ops. We can issue two half-sized 791 // operations and we only need to extract the upper YMM half. 792 // Two ops + 1 extract + 1 insert = 4. 793 { ISD::MUL, MVT::v16i16, 4 }, 794 { ISD::MUL, MVT::v8i32, 4 }, 795 { ISD::SUB, MVT::v32i8, 4 }, 796 { ISD::ADD, MVT::v32i8, 4 }, 797 { ISD::SUB, MVT::v16i16, 4 }, 798 { ISD::ADD, MVT::v16i16, 4 }, 799 { ISD::SUB, MVT::v8i32, 4 }, 800 { ISD::ADD, MVT::v8i32, 4 }, 801 { ISD::SUB, MVT::v4i64, 4 }, 802 { ISD::ADD, MVT::v4i64, 4 }, 803 804 // A v4i64 multiply is custom lowered as two split v2i64 vectors that then 805 // are lowered as a series of long multiplies(3), shifts(3) and adds(2) 806 // Because we believe v4i64 to be a legal type, we must also include the 807 // extract+insert in the cost table. Therefore, the cost here is 18 808 // instead of 8. 809 { ISD::MUL, MVT::v4i64, 18 }, 810 811 { ISD::MUL, MVT::v32i8, 26 }, // extend/pmullw/trunc sequence. 812 813 { ISD::FDIV, MVT::f32, 14 }, // SNB from http://www.agner.org/ 814 { ISD::FDIV, MVT::v4f32, 14 }, // SNB from http://www.agner.org/ 815 { ISD::FDIV, MVT::v8f32, 28 }, // SNB from http://www.agner.org/ 816 { ISD::FDIV, MVT::f64, 22 }, // SNB from http://www.agner.org/ 817 { ISD::FDIV, MVT::v2f64, 22 }, // SNB from http://www.agner.org/ 818 { ISD::FDIV, MVT::v4f64, 44 }, // SNB from http://www.agner.org/ 819 }; 820 821 if (ST->hasAVX()) 822 if (const auto *Entry = CostTableLookup(AVX1CostTable, ISD, LT.second)) 823 return LT.first * Entry->Cost; 824 825 static const CostTblEntry SSE42CostTable[] = { 826 { ISD::FADD, MVT::f64, 1 }, // Nehalem from http://www.agner.org/ 827 { ISD::FADD, MVT::f32, 1 }, // Nehalem from http://www.agner.org/ 828 { ISD::FADD, MVT::v2f64, 1 }, // Nehalem from http://www.agner.org/ 829 { ISD::FADD, MVT::v4f32, 1 }, // Nehalem from http://www.agner.org/ 830 831 { ISD::FSUB, MVT::f64, 1 }, // Nehalem from http://www.agner.org/ 832 { ISD::FSUB, MVT::f32 , 1 }, // Nehalem from http://www.agner.org/ 833 { ISD::FSUB, MVT::v2f64, 1 }, // Nehalem from http://www.agner.org/ 834 { ISD::FSUB, MVT::v4f32, 1 }, // Nehalem from http://www.agner.org/ 835 836 { ISD::FMUL, MVT::f64, 1 }, // Nehalem from http://www.agner.org/ 837 { ISD::FMUL, MVT::f32, 1 }, // Nehalem from http://www.agner.org/ 838 { ISD::FMUL, MVT::v2f64, 1 }, // Nehalem from http://www.agner.org/ 839 { ISD::FMUL, MVT::v4f32, 1 }, // Nehalem from http://www.agner.org/ 840 841 { ISD::FDIV, MVT::f32, 14 }, // Nehalem from http://www.agner.org/ 842 { ISD::FDIV, MVT::v4f32, 14 }, // Nehalem from http://www.agner.org/ 843 { ISD::FDIV, MVT::f64, 22 }, // Nehalem from http://www.agner.org/ 844 { ISD::FDIV, MVT::v2f64, 22 }, // Nehalem from http://www.agner.org/ 845 }; 846 847 if (ST->hasSSE42()) 848 if (const auto *Entry = CostTableLookup(SSE42CostTable, ISD, LT.second)) 849 return LT.first * Entry->Cost; 850 851 static const CostTblEntry SSE41CostTable[] = { 852 { ISD::SHL, MVT::v16i8, 11 }, // pblendvb sequence. 853 { ISD::SHL, MVT::v32i8, 2*11+2 }, // pblendvb sequence + split. 854 { ISD::SHL, MVT::v8i16, 14 }, // pblendvb sequence. 855 { ISD::SHL, MVT::v16i16, 2*14+2 }, // pblendvb sequence + split. 856 { ISD::SHL, MVT::v4i32, 4 }, // pslld/paddd/cvttps2dq/pmulld 857 { ISD::SHL, MVT::v8i32, 2*4+2 }, // pslld/paddd/cvttps2dq/pmulld + split 858 859 { ISD::SRL, MVT::v16i8, 12 }, // pblendvb sequence. 860 { ISD::SRL, MVT::v32i8, 2*12+2 }, // pblendvb sequence + split. 861 { ISD::SRL, MVT::v8i16, 14 }, // pblendvb sequence. 862 { ISD::SRL, MVT::v16i16, 2*14+2 }, // pblendvb sequence + split. 863 { ISD::SRL, MVT::v4i32, 11 }, // Shift each lane + blend. 864 { ISD::SRL, MVT::v8i32, 2*11+2 }, // Shift each lane + blend + split. 865 866 { ISD::SRA, MVT::v16i8, 24 }, // pblendvb sequence. 867 { ISD::SRA, MVT::v32i8, 2*24+2 }, // pblendvb sequence + split. 868 { ISD::SRA, MVT::v8i16, 14 }, // pblendvb sequence. 869 { ISD::SRA, MVT::v16i16, 2*14+2 }, // pblendvb sequence + split. 870 { ISD::SRA, MVT::v4i32, 12 }, // Shift each lane + blend. 871 { ISD::SRA, MVT::v8i32, 2*12+2 }, // Shift each lane + blend + split. 872 873 { ISD::MUL, MVT::v4i32, 2 } // pmulld (Nehalem from agner.org) 874 }; 875 876 if (ST->hasSSE41()) 877 if (const auto *Entry = CostTableLookup(SSE41CostTable, ISD, LT.second)) 878 return LT.first * Entry->Cost; 879 880 static const CostTblEntry SSE2CostTable[] = { 881 // We don't correctly identify costs of casts because they are marked as 882 // custom. 883 { ISD::SHL, MVT::v16i8, 26 }, // cmpgtb sequence. 884 { ISD::SHL, MVT::v8i16, 32 }, // cmpgtb sequence. 885 { ISD::SHL, MVT::v4i32, 2*5 }, // We optimized this using mul. 886 { ISD::SHL, MVT::v2i64, 4 }, // splat+shuffle sequence. 887 { ISD::SHL, MVT::v4i64, 2*4+2 }, // splat+shuffle sequence + split. 888 889 { ISD::SRL, MVT::v16i8, 26 }, // cmpgtb sequence. 890 { ISD::SRL, MVT::v8i16, 32 }, // cmpgtb sequence. 891 { ISD::SRL, MVT::v4i32, 16 }, // Shift each lane + blend. 892 { ISD::SRL, MVT::v2i64, 4 }, // splat+shuffle sequence. 893 { ISD::SRL, MVT::v4i64, 2*4+2 }, // splat+shuffle sequence + split. 894 895 { ISD::SRA, MVT::v16i8, 54 }, // unpacked cmpgtb sequence. 896 { ISD::SRA, MVT::v8i16, 32 }, // cmpgtb sequence. 897 { ISD::SRA, MVT::v4i32, 16 }, // Shift each lane + blend. 898 { ISD::SRA, MVT::v2i64, 12 }, // srl/xor/sub sequence. 899 { ISD::SRA, MVT::v4i64, 2*12+2 }, // srl/xor/sub sequence+split. 900 901 { ISD::MUL, MVT::v16i8, 12 }, // extend/pmullw/trunc sequence. 902 { ISD::MUL, MVT::v8i16, 1 }, // pmullw 903 { ISD::MUL, MVT::v4i32, 6 }, // 3*pmuludq/4*shuffle 904 { ISD::MUL, MVT::v2i64, 8 }, // 3*pmuludq/3*shift/2*add 905 906 { ISD::FDIV, MVT::f32, 23 }, // Pentium IV from http://www.agner.org/ 907 { ISD::FDIV, MVT::v4f32, 39 }, // Pentium IV from http://www.agner.org/ 908 { ISD::FDIV, MVT::f64, 38 }, // Pentium IV from http://www.agner.org/ 909 { ISD::FDIV, MVT::v2f64, 69 }, // Pentium IV from http://www.agner.org/ 910 911 { ISD::FADD, MVT::f32, 2 }, // Pentium IV from http://www.agner.org/ 912 { ISD::FADD, MVT::f64, 2 }, // Pentium IV from http://www.agner.org/ 913 914 { ISD::FSUB, MVT::f32, 2 }, // Pentium IV from http://www.agner.org/ 915 { ISD::FSUB, MVT::f64, 2 }, // Pentium IV from http://www.agner.org/ 916 }; 917 918 if (ST->hasSSE2()) 919 if (const auto *Entry = CostTableLookup(SSE2CostTable, ISD, LT.second)) 920 return LT.first * Entry->Cost; 921 922 static const CostTblEntry SSE1CostTable[] = { 923 { ISD::FDIV, MVT::f32, 17 }, // Pentium III from http://www.agner.org/ 924 { ISD::FDIV, MVT::v4f32, 34 }, // Pentium III from http://www.agner.org/ 925 926 { ISD::FADD, MVT::f32, 1 }, // Pentium III from http://www.agner.org/ 927 { ISD::FADD, MVT::v4f32, 2 }, // Pentium III from http://www.agner.org/ 928 929 { ISD::FSUB, MVT::f32, 1 }, // Pentium III from http://www.agner.org/ 930 { ISD::FSUB, MVT::v4f32, 2 }, // Pentium III from http://www.agner.org/ 931 932 { ISD::ADD, MVT::i8, 1 }, // Pentium III from http://www.agner.org/ 933 { ISD::ADD, MVT::i16, 1 }, // Pentium III from http://www.agner.org/ 934 { ISD::ADD, MVT::i32, 1 }, // Pentium III from http://www.agner.org/ 935 936 { ISD::SUB, MVT::i8, 1 }, // Pentium III from http://www.agner.org/ 937 { ISD::SUB, MVT::i16, 1 }, // Pentium III from http://www.agner.org/ 938 { ISD::SUB, MVT::i32, 1 }, // Pentium III from http://www.agner.org/ 939 }; 940 941 if (ST->hasSSE1()) 942 if (const auto *Entry = CostTableLookup(SSE1CostTable, ISD, LT.second)) 943 return LT.first * Entry->Cost; 944 945 // It is not a good idea to vectorize division. We have to scalarize it and 946 // in the process we will often end up having to spilling regular 947 // registers. The overhead of division is going to dominate most kernels 948 // anyways so try hard to prevent vectorization of division - it is 949 // generally a bad idea. Assume somewhat arbitrarily that we have to be able 950 // to hide "20 cycles" for each lane. 951 if (LT.second.isVector() && (ISD == ISD::SDIV || ISD == ISD::SREM || 952 ISD == ISD::UDIV || ISD == ISD::UREM)) { 953 InstructionCost ScalarCost = getArithmeticInstrCost( 954 Opcode, Ty->getScalarType(), CostKind, Op1Info, Op2Info, 955 TargetTransformInfo::OP_None, TargetTransformInfo::OP_None); 956 return 20 * LT.first * LT.second.getVectorNumElements() * ScalarCost; 957 } 958 959 // Fallback to the default implementation. 960 return BaseT::getArithmeticInstrCost(Opcode, Ty, CostKind, Op1Info, Op2Info); 961 } 962 963 InstructionCost X86TTIImpl::getShuffleCost(TTI::ShuffleKind Kind, 964 VectorType *BaseTp, 965 ArrayRef<int> Mask, int Index, 966 VectorType *SubTp) { 967 // 64-bit packed float vectors (v2f32) are widened to type v4f32. 968 // 64-bit packed integer vectors (v2i32) are widened to type v4i32. 969 std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, BaseTp); 970 971 // Treat Transpose as 2-op shuffles - there's no difference in lowering. 972 if (Kind == TTI::SK_Transpose) 973 Kind = TTI::SK_PermuteTwoSrc; 974 975 // For Broadcasts we are splatting the first element from the first input 976 // register, so only need to reference that input and all the output 977 // registers are the same. 978 if (Kind == TTI::SK_Broadcast) 979 LT.first = 1; 980 981 // Subvector extractions are free if they start at the beginning of a 982 // vector and cheap if the subvectors are aligned. 983 if (Kind == TTI::SK_ExtractSubvector && LT.second.isVector()) { 984 int NumElts = LT.second.getVectorNumElements(); 985 if ((Index % NumElts) == 0) 986 return 0; 987 std::pair<int, MVT> SubLT = TLI->getTypeLegalizationCost(DL, SubTp); 988 if (SubLT.second.isVector()) { 989 int NumSubElts = SubLT.second.getVectorNumElements(); 990 if ((Index % NumSubElts) == 0 && (NumElts % NumSubElts) == 0) 991 return SubLT.first; 992 // Handle some cases for widening legalization. For now we only handle 993 // cases where the original subvector was naturally aligned and evenly 994 // fit in its legalized subvector type. 995 // FIXME: Remove some of the alignment restrictions. 996 // FIXME: We can use permq for 64-bit or larger extracts from 256-bit 997 // vectors. 998 int OrigSubElts = cast<FixedVectorType>(SubTp)->getNumElements(); 999 if (NumSubElts > OrigSubElts && (Index % OrigSubElts) == 0 && 1000 (NumSubElts % OrigSubElts) == 0 && 1001 LT.second.getVectorElementType() == 1002 SubLT.second.getVectorElementType() && 1003 LT.second.getVectorElementType().getSizeInBits() == 1004 BaseTp->getElementType()->getPrimitiveSizeInBits()) { 1005 assert(NumElts >= NumSubElts && NumElts > OrigSubElts && 1006 "Unexpected number of elements!"); 1007 auto *VecTy = FixedVectorType::get(BaseTp->getElementType(), 1008 LT.second.getVectorNumElements()); 1009 auto *SubTy = FixedVectorType::get(BaseTp->getElementType(), 1010 SubLT.second.getVectorNumElements()); 1011 int ExtractIndex = alignDown((Index % NumElts), NumSubElts); 1012 InstructionCost ExtractCost = getShuffleCost( 1013 TTI::SK_ExtractSubvector, VecTy, None, ExtractIndex, SubTy); 1014 1015 // If the original size is 32-bits or more, we can use pshufd. Otherwise 1016 // if we have SSSE3 we can use pshufb. 1017 if (SubTp->getPrimitiveSizeInBits() >= 32 || ST->hasSSSE3()) 1018 return ExtractCost + 1; // pshufd or pshufb 1019 1020 assert(SubTp->getPrimitiveSizeInBits() == 16 && 1021 "Unexpected vector size"); 1022 1023 return ExtractCost + 2; // worst case pshufhw + pshufd 1024 } 1025 } 1026 } 1027 1028 // Subvector insertions are cheap if the subvectors are aligned. 1029 // Note that in general, the insertion starting at the beginning of a vector 1030 // isn't free, because we need to preserve the rest of the wide vector. 1031 if (Kind == TTI::SK_InsertSubvector && LT.second.isVector()) { 1032 int NumElts = LT.second.getVectorNumElements(); 1033 std::pair<int, MVT> SubLT = TLI->getTypeLegalizationCost(DL, SubTp); 1034 if (SubLT.second.isVector()) { 1035 int NumSubElts = SubLT.second.getVectorNumElements(); 1036 if ((Index % NumSubElts) == 0 && (NumElts % NumSubElts) == 0) 1037 return SubLT.first; 1038 } 1039 } 1040 1041 // Handle some common (illegal) sub-vector types as they are often very cheap 1042 // to shuffle even on targets without PSHUFB. 1043 EVT VT = TLI->getValueType(DL, BaseTp); 1044 if (VT.isSimple() && VT.isVector() && VT.getSizeInBits() < 128 && 1045 !ST->hasSSSE3()) { 1046 static const CostTblEntry SSE2SubVectorShuffleTbl[] = { 1047 {TTI::SK_Broadcast, MVT::v4i16, 1}, // pshuflw 1048 {TTI::SK_Broadcast, MVT::v2i16, 1}, // pshuflw 1049 {TTI::SK_Broadcast, MVT::v8i8, 2}, // punpck/pshuflw 1050 {TTI::SK_Broadcast, MVT::v4i8, 2}, // punpck/pshuflw 1051 {TTI::SK_Broadcast, MVT::v2i8, 1}, // punpck 1052 1053 {TTI::SK_Reverse, MVT::v4i16, 1}, // pshuflw 1054 {TTI::SK_Reverse, MVT::v2i16, 1}, // pshuflw 1055 {TTI::SK_Reverse, MVT::v4i8, 3}, // punpck/pshuflw/packus 1056 {TTI::SK_Reverse, MVT::v2i8, 1}, // punpck 1057 1058 {TTI::SK_PermuteTwoSrc, MVT::v4i16, 2}, // punpck/pshuflw 1059 {TTI::SK_PermuteTwoSrc, MVT::v2i16, 2}, // punpck/pshuflw 1060 {TTI::SK_PermuteTwoSrc, MVT::v8i8, 7}, // punpck/pshuflw 1061 {TTI::SK_PermuteTwoSrc, MVT::v4i8, 4}, // punpck/pshuflw 1062 {TTI::SK_PermuteTwoSrc, MVT::v2i8, 2}, // punpck 1063 1064 {TTI::SK_PermuteSingleSrc, MVT::v4i16, 1}, // pshuflw 1065 {TTI::SK_PermuteSingleSrc, MVT::v2i16, 1}, // pshuflw 1066 {TTI::SK_PermuteSingleSrc, MVT::v8i8, 5}, // punpck/pshuflw 1067 {TTI::SK_PermuteSingleSrc, MVT::v4i8, 3}, // punpck/pshuflw 1068 {TTI::SK_PermuteSingleSrc, MVT::v2i8, 1}, // punpck 1069 }; 1070 1071 if (ST->hasSSE2()) 1072 if (const auto *Entry = 1073 CostTableLookup(SSE2SubVectorShuffleTbl, Kind, VT.getSimpleVT())) 1074 return Entry->Cost; 1075 } 1076 1077 // We are going to permute multiple sources and the result will be in multiple 1078 // destinations. Providing an accurate cost only for splits where the element 1079 // type remains the same. 1080 if (Kind == TTI::SK_PermuteSingleSrc && LT.first != 1) { 1081 MVT LegalVT = LT.second; 1082 if (LegalVT.isVector() && 1083 LegalVT.getVectorElementType().getSizeInBits() == 1084 BaseTp->getElementType()->getPrimitiveSizeInBits() && 1085 LegalVT.getVectorNumElements() < 1086 cast<FixedVectorType>(BaseTp)->getNumElements()) { 1087 1088 unsigned VecTySize = DL.getTypeStoreSize(BaseTp); 1089 unsigned LegalVTSize = LegalVT.getStoreSize(); 1090 // Number of source vectors after legalization: 1091 unsigned NumOfSrcs = (VecTySize + LegalVTSize - 1) / LegalVTSize; 1092 // Number of destination vectors after legalization: 1093 unsigned NumOfDests = LT.first; 1094 1095 auto *SingleOpTy = FixedVectorType::get(BaseTp->getElementType(), 1096 LegalVT.getVectorNumElements()); 1097 1098 unsigned NumOfShuffles = (NumOfSrcs - 1) * NumOfDests; 1099 return NumOfShuffles * getShuffleCost(TTI::SK_PermuteTwoSrc, SingleOpTy, 1100 None, 0, nullptr); 1101 } 1102 1103 return BaseT::getShuffleCost(Kind, BaseTp, Mask, Index, SubTp); 1104 } 1105 1106 // For 2-input shuffles, we must account for splitting the 2 inputs into many. 1107 if (Kind == TTI::SK_PermuteTwoSrc && LT.first != 1) { 1108 // We assume that source and destination have the same vector type. 1109 int NumOfDests = LT.first; 1110 int NumOfShufflesPerDest = LT.first * 2 - 1; 1111 LT.first = NumOfDests * NumOfShufflesPerDest; 1112 } 1113 1114 static const CostTblEntry AVX512VBMIShuffleTbl[] = { 1115 {TTI::SK_Reverse, MVT::v64i8, 1}, // vpermb 1116 {TTI::SK_Reverse, MVT::v32i8, 1}, // vpermb 1117 1118 {TTI::SK_PermuteSingleSrc, MVT::v64i8, 1}, // vpermb 1119 {TTI::SK_PermuteSingleSrc, MVT::v32i8, 1}, // vpermb 1120 1121 {TTI::SK_PermuteTwoSrc, MVT::v64i8, 2}, // vpermt2b 1122 {TTI::SK_PermuteTwoSrc, MVT::v32i8, 2}, // vpermt2b 1123 {TTI::SK_PermuteTwoSrc, MVT::v16i8, 2} // vpermt2b 1124 }; 1125 1126 if (ST->hasVBMI()) 1127 if (const auto *Entry = 1128 CostTableLookup(AVX512VBMIShuffleTbl, Kind, LT.second)) 1129 return LT.first * Entry->Cost; 1130 1131 static const CostTblEntry AVX512BWShuffleTbl[] = { 1132 {TTI::SK_Broadcast, MVT::v32i16, 1}, // vpbroadcastw 1133 {TTI::SK_Broadcast, MVT::v64i8, 1}, // vpbroadcastb 1134 1135 {TTI::SK_Reverse, MVT::v32i16, 2}, // vpermw 1136 {TTI::SK_Reverse, MVT::v16i16, 2}, // vpermw 1137 {TTI::SK_Reverse, MVT::v64i8, 2}, // pshufb + vshufi64x2 1138 1139 {TTI::SK_PermuteSingleSrc, MVT::v32i16, 2}, // vpermw 1140 {TTI::SK_PermuteSingleSrc, MVT::v16i16, 2}, // vpermw 1141 {TTI::SK_PermuteSingleSrc, MVT::v64i8, 8}, // extend to v32i16 1142 1143 {TTI::SK_PermuteTwoSrc, MVT::v32i16, 2}, // vpermt2w 1144 {TTI::SK_PermuteTwoSrc, MVT::v16i16, 2}, // vpermt2w 1145 {TTI::SK_PermuteTwoSrc, MVT::v8i16, 2}, // vpermt2w 1146 {TTI::SK_PermuteTwoSrc, MVT::v64i8, 19}, // 6 * v32i8 + 1 1147 1148 {TTI::SK_Select, MVT::v32i16, 1}, // vblendmw 1149 {TTI::SK_Select, MVT::v64i8, 1}, // vblendmb 1150 }; 1151 1152 if (ST->hasBWI()) 1153 if (const auto *Entry = 1154 CostTableLookup(AVX512BWShuffleTbl, Kind, LT.second)) 1155 return LT.first * Entry->Cost; 1156 1157 static const CostTblEntry AVX512ShuffleTbl[] = { 1158 {TTI::SK_Broadcast, MVT::v8f64, 1}, // vbroadcastpd 1159 {TTI::SK_Broadcast, MVT::v16f32, 1}, // vbroadcastps 1160 {TTI::SK_Broadcast, MVT::v8i64, 1}, // vpbroadcastq 1161 {TTI::SK_Broadcast, MVT::v16i32, 1}, // vpbroadcastd 1162 {TTI::SK_Broadcast, MVT::v32i16, 1}, // vpbroadcastw 1163 {TTI::SK_Broadcast, MVT::v64i8, 1}, // vpbroadcastb 1164 1165 {TTI::SK_Reverse, MVT::v8f64, 1}, // vpermpd 1166 {TTI::SK_Reverse, MVT::v16f32, 1}, // vpermps 1167 {TTI::SK_Reverse, MVT::v8i64, 1}, // vpermq 1168 {TTI::SK_Reverse, MVT::v16i32, 1}, // vpermd 1169 1170 {TTI::SK_PermuteSingleSrc, MVT::v8f64, 1}, // vpermpd 1171 {TTI::SK_PermuteSingleSrc, MVT::v4f64, 1}, // vpermpd 1172 {TTI::SK_PermuteSingleSrc, MVT::v2f64, 1}, // vpermpd 1173 {TTI::SK_PermuteSingleSrc, MVT::v16f32, 1}, // vpermps 1174 {TTI::SK_PermuteSingleSrc, MVT::v8f32, 1}, // vpermps 1175 {TTI::SK_PermuteSingleSrc, MVT::v4f32, 1}, // vpermps 1176 {TTI::SK_PermuteSingleSrc, MVT::v8i64, 1}, // vpermq 1177 {TTI::SK_PermuteSingleSrc, MVT::v4i64, 1}, // vpermq 1178 {TTI::SK_PermuteSingleSrc, MVT::v2i64, 1}, // vpermq 1179 {TTI::SK_PermuteSingleSrc, MVT::v16i32, 1}, // vpermd 1180 {TTI::SK_PermuteSingleSrc, MVT::v8i32, 1}, // vpermd 1181 {TTI::SK_PermuteSingleSrc, MVT::v4i32, 1}, // vpermd 1182 {TTI::SK_PermuteSingleSrc, MVT::v16i8, 1}, // pshufb 1183 1184 {TTI::SK_PermuteTwoSrc, MVT::v8f64, 1}, // vpermt2pd 1185 {TTI::SK_PermuteTwoSrc, MVT::v16f32, 1}, // vpermt2ps 1186 {TTI::SK_PermuteTwoSrc, MVT::v8i64, 1}, // vpermt2q 1187 {TTI::SK_PermuteTwoSrc, MVT::v16i32, 1}, // vpermt2d 1188 {TTI::SK_PermuteTwoSrc, MVT::v4f64, 1}, // vpermt2pd 1189 {TTI::SK_PermuteTwoSrc, MVT::v8f32, 1}, // vpermt2ps 1190 {TTI::SK_PermuteTwoSrc, MVT::v4i64, 1}, // vpermt2q 1191 {TTI::SK_PermuteTwoSrc, MVT::v8i32, 1}, // vpermt2d 1192 {TTI::SK_PermuteTwoSrc, MVT::v2f64, 1}, // vpermt2pd 1193 {TTI::SK_PermuteTwoSrc, MVT::v4f32, 1}, // vpermt2ps 1194 {TTI::SK_PermuteTwoSrc, MVT::v2i64, 1}, // vpermt2q 1195 {TTI::SK_PermuteTwoSrc, MVT::v4i32, 1}, // vpermt2d 1196 1197 // FIXME: This just applies the type legalization cost rules above 1198 // assuming these completely split. 1199 {TTI::SK_PermuteSingleSrc, MVT::v32i16, 14}, 1200 {TTI::SK_PermuteSingleSrc, MVT::v64i8, 14}, 1201 {TTI::SK_PermuteTwoSrc, MVT::v32i16, 42}, 1202 {TTI::SK_PermuteTwoSrc, MVT::v64i8, 42}, 1203 1204 {TTI::SK_Select, MVT::v32i16, 1}, // vpternlogq 1205 {TTI::SK_Select, MVT::v64i8, 1}, // vpternlogq 1206 {TTI::SK_Select, MVT::v8f64, 1}, // vblendmpd 1207 {TTI::SK_Select, MVT::v16f32, 1}, // vblendmps 1208 {TTI::SK_Select, MVT::v8i64, 1}, // vblendmq 1209 {TTI::SK_Select, MVT::v16i32, 1}, // vblendmd 1210 }; 1211 1212 if (ST->hasAVX512()) 1213 if (const auto *Entry = CostTableLookup(AVX512ShuffleTbl, Kind, LT.second)) 1214 return LT.first * Entry->Cost; 1215 1216 static const CostTblEntry AVX2ShuffleTbl[] = { 1217 {TTI::SK_Broadcast, MVT::v4f64, 1}, // vbroadcastpd 1218 {TTI::SK_Broadcast, MVT::v8f32, 1}, // vbroadcastps 1219 {TTI::SK_Broadcast, MVT::v4i64, 1}, // vpbroadcastq 1220 {TTI::SK_Broadcast, MVT::v8i32, 1}, // vpbroadcastd 1221 {TTI::SK_Broadcast, MVT::v16i16, 1}, // vpbroadcastw 1222 {TTI::SK_Broadcast, MVT::v32i8, 1}, // vpbroadcastb 1223 1224 {TTI::SK_Reverse, MVT::v4f64, 1}, // vpermpd 1225 {TTI::SK_Reverse, MVT::v8f32, 1}, // vpermps 1226 {TTI::SK_Reverse, MVT::v4i64, 1}, // vpermq 1227 {TTI::SK_Reverse, MVT::v8i32, 1}, // vpermd 1228 {TTI::SK_Reverse, MVT::v16i16, 2}, // vperm2i128 + pshufb 1229 {TTI::SK_Reverse, MVT::v32i8, 2}, // vperm2i128 + pshufb 1230 1231 {TTI::SK_Select, MVT::v16i16, 1}, // vpblendvb 1232 {TTI::SK_Select, MVT::v32i8, 1}, // vpblendvb 1233 1234 {TTI::SK_PermuteSingleSrc, MVT::v4f64, 1}, // vpermpd 1235 {TTI::SK_PermuteSingleSrc, MVT::v8f32, 1}, // vpermps 1236 {TTI::SK_PermuteSingleSrc, MVT::v4i64, 1}, // vpermq 1237 {TTI::SK_PermuteSingleSrc, MVT::v8i32, 1}, // vpermd 1238 {TTI::SK_PermuteSingleSrc, MVT::v16i16, 4}, // vperm2i128 + 2*vpshufb 1239 // + vpblendvb 1240 {TTI::SK_PermuteSingleSrc, MVT::v32i8, 4}, // vperm2i128 + 2*vpshufb 1241 // + vpblendvb 1242 1243 {TTI::SK_PermuteTwoSrc, MVT::v4f64, 3}, // 2*vpermpd + vblendpd 1244 {TTI::SK_PermuteTwoSrc, MVT::v8f32, 3}, // 2*vpermps + vblendps 1245 {TTI::SK_PermuteTwoSrc, MVT::v4i64, 3}, // 2*vpermq + vpblendd 1246 {TTI::SK_PermuteTwoSrc, MVT::v8i32, 3}, // 2*vpermd + vpblendd 1247 {TTI::SK_PermuteTwoSrc, MVT::v16i16, 7}, // 2*vperm2i128 + 4*vpshufb 1248 // + vpblendvb 1249 {TTI::SK_PermuteTwoSrc, MVT::v32i8, 7}, // 2*vperm2i128 + 4*vpshufb 1250 // + vpblendvb 1251 }; 1252 1253 if (ST->hasAVX2()) 1254 if (const auto *Entry = CostTableLookup(AVX2ShuffleTbl, Kind, LT.second)) 1255 return LT.first * Entry->Cost; 1256 1257 static const CostTblEntry XOPShuffleTbl[] = { 1258 {TTI::SK_PermuteSingleSrc, MVT::v4f64, 2}, // vperm2f128 + vpermil2pd 1259 {TTI::SK_PermuteSingleSrc, MVT::v8f32, 2}, // vperm2f128 + vpermil2ps 1260 {TTI::SK_PermuteSingleSrc, MVT::v4i64, 2}, // vperm2f128 + vpermil2pd 1261 {TTI::SK_PermuteSingleSrc, MVT::v8i32, 2}, // vperm2f128 + vpermil2ps 1262 {TTI::SK_PermuteSingleSrc, MVT::v16i16, 4}, // vextractf128 + 2*vpperm 1263 // + vinsertf128 1264 {TTI::SK_PermuteSingleSrc, MVT::v32i8, 4}, // vextractf128 + 2*vpperm 1265 // + vinsertf128 1266 1267 {TTI::SK_PermuteTwoSrc, MVT::v16i16, 9}, // 2*vextractf128 + 6*vpperm 1268 // + vinsertf128 1269 {TTI::SK_PermuteTwoSrc, MVT::v8i16, 1}, // vpperm 1270 {TTI::SK_PermuteTwoSrc, MVT::v32i8, 9}, // 2*vextractf128 + 6*vpperm 1271 // + vinsertf128 1272 {TTI::SK_PermuteTwoSrc, MVT::v16i8, 1}, // vpperm 1273 }; 1274 1275 if (ST->hasXOP()) 1276 if (const auto *Entry = CostTableLookup(XOPShuffleTbl, Kind, LT.second)) 1277 return LT.first * Entry->Cost; 1278 1279 static const CostTblEntry AVX1ShuffleTbl[] = { 1280 {TTI::SK_Broadcast, MVT::v4f64, 2}, // vperm2f128 + vpermilpd 1281 {TTI::SK_Broadcast, MVT::v8f32, 2}, // vperm2f128 + vpermilps 1282 {TTI::SK_Broadcast, MVT::v4i64, 2}, // vperm2f128 + vpermilpd 1283 {TTI::SK_Broadcast, MVT::v8i32, 2}, // vperm2f128 + vpermilps 1284 {TTI::SK_Broadcast, MVT::v16i16, 3}, // vpshuflw + vpshufd + vinsertf128 1285 {TTI::SK_Broadcast, MVT::v32i8, 2}, // vpshufb + vinsertf128 1286 1287 {TTI::SK_Reverse, MVT::v4f64, 2}, // vperm2f128 + vpermilpd 1288 {TTI::SK_Reverse, MVT::v8f32, 2}, // vperm2f128 + vpermilps 1289 {TTI::SK_Reverse, MVT::v4i64, 2}, // vperm2f128 + vpermilpd 1290 {TTI::SK_Reverse, MVT::v8i32, 2}, // vperm2f128 + vpermilps 1291 {TTI::SK_Reverse, MVT::v16i16, 4}, // vextractf128 + 2*pshufb 1292 // + vinsertf128 1293 {TTI::SK_Reverse, MVT::v32i8, 4}, // vextractf128 + 2*pshufb 1294 // + vinsertf128 1295 1296 {TTI::SK_Select, MVT::v4i64, 1}, // vblendpd 1297 {TTI::SK_Select, MVT::v4f64, 1}, // vblendpd 1298 {TTI::SK_Select, MVT::v8i32, 1}, // vblendps 1299 {TTI::SK_Select, MVT::v8f32, 1}, // vblendps 1300 {TTI::SK_Select, MVT::v16i16, 3}, // vpand + vpandn + vpor 1301 {TTI::SK_Select, MVT::v32i8, 3}, // vpand + vpandn + vpor 1302 1303 {TTI::SK_PermuteSingleSrc, MVT::v4f64, 2}, // vperm2f128 + vshufpd 1304 {TTI::SK_PermuteSingleSrc, MVT::v4i64, 2}, // vperm2f128 + vshufpd 1305 {TTI::SK_PermuteSingleSrc, MVT::v8f32, 4}, // 2*vperm2f128 + 2*vshufps 1306 {TTI::SK_PermuteSingleSrc, MVT::v8i32, 4}, // 2*vperm2f128 + 2*vshufps 1307 {TTI::SK_PermuteSingleSrc, MVT::v16i16, 8}, // vextractf128 + 4*pshufb 1308 // + 2*por + vinsertf128 1309 {TTI::SK_PermuteSingleSrc, MVT::v32i8, 8}, // vextractf128 + 4*pshufb 1310 // + 2*por + vinsertf128 1311 1312 {TTI::SK_PermuteTwoSrc, MVT::v4f64, 3}, // 2*vperm2f128 + vshufpd 1313 {TTI::SK_PermuteTwoSrc, MVT::v4i64, 3}, // 2*vperm2f128 + vshufpd 1314 {TTI::SK_PermuteTwoSrc, MVT::v8f32, 4}, // 2*vperm2f128 + 2*vshufps 1315 {TTI::SK_PermuteTwoSrc, MVT::v8i32, 4}, // 2*vperm2f128 + 2*vshufps 1316 {TTI::SK_PermuteTwoSrc, MVT::v16i16, 15}, // 2*vextractf128 + 8*pshufb 1317 // + 4*por + vinsertf128 1318 {TTI::SK_PermuteTwoSrc, MVT::v32i8, 15}, // 2*vextractf128 + 8*pshufb 1319 // + 4*por + vinsertf128 1320 }; 1321 1322 if (ST->hasAVX()) 1323 if (const auto *Entry = CostTableLookup(AVX1ShuffleTbl, Kind, LT.second)) 1324 return LT.first * Entry->Cost; 1325 1326 static const CostTblEntry SSE41ShuffleTbl[] = { 1327 {TTI::SK_Select, MVT::v2i64, 1}, // pblendw 1328 {TTI::SK_Select, MVT::v2f64, 1}, // movsd 1329 {TTI::SK_Select, MVT::v4i32, 1}, // pblendw 1330 {TTI::SK_Select, MVT::v4f32, 1}, // blendps 1331 {TTI::SK_Select, MVT::v8i16, 1}, // pblendw 1332 {TTI::SK_Select, MVT::v16i8, 1} // pblendvb 1333 }; 1334 1335 if (ST->hasSSE41()) 1336 if (const auto *Entry = CostTableLookup(SSE41ShuffleTbl, Kind, LT.second)) 1337 return LT.first * Entry->Cost; 1338 1339 static const CostTblEntry SSSE3ShuffleTbl[] = { 1340 {TTI::SK_Broadcast, MVT::v8i16, 1}, // pshufb 1341 {TTI::SK_Broadcast, MVT::v16i8, 1}, // pshufb 1342 1343 {TTI::SK_Reverse, MVT::v8i16, 1}, // pshufb 1344 {TTI::SK_Reverse, MVT::v16i8, 1}, // pshufb 1345 1346 {TTI::SK_Select, MVT::v8i16, 3}, // 2*pshufb + por 1347 {TTI::SK_Select, MVT::v16i8, 3}, // 2*pshufb + por 1348 1349 {TTI::SK_PermuteSingleSrc, MVT::v8i16, 1}, // pshufb 1350 {TTI::SK_PermuteSingleSrc, MVT::v16i8, 1}, // pshufb 1351 1352 {TTI::SK_PermuteTwoSrc, MVT::v8i16, 3}, // 2*pshufb + por 1353 {TTI::SK_PermuteTwoSrc, MVT::v16i8, 3}, // 2*pshufb + por 1354 }; 1355 1356 if (ST->hasSSSE3()) 1357 if (const auto *Entry = CostTableLookup(SSSE3ShuffleTbl, Kind, LT.second)) 1358 return LT.first * Entry->Cost; 1359 1360 static const CostTblEntry SSE2ShuffleTbl[] = { 1361 {TTI::SK_Broadcast, MVT::v2f64, 1}, // shufpd 1362 {TTI::SK_Broadcast, MVT::v2i64, 1}, // pshufd 1363 {TTI::SK_Broadcast, MVT::v4i32, 1}, // pshufd 1364 {TTI::SK_Broadcast, MVT::v8i16, 2}, // pshuflw + pshufd 1365 {TTI::SK_Broadcast, MVT::v16i8, 3}, // unpck + pshuflw + pshufd 1366 1367 {TTI::SK_Reverse, MVT::v2f64, 1}, // shufpd 1368 {TTI::SK_Reverse, MVT::v2i64, 1}, // pshufd 1369 {TTI::SK_Reverse, MVT::v4i32, 1}, // pshufd 1370 {TTI::SK_Reverse, MVT::v8i16, 3}, // pshuflw + pshufhw + pshufd 1371 {TTI::SK_Reverse, MVT::v16i8, 9}, // 2*pshuflw + 2*pshufhw 1372 // + 2*pshufd + 2*unpck + packus 1373 1374 {TTI::SK_Select, MVT::v2i64, 1}, // movsd 1375 {TTI::SK_Select, MVT::v2f64, 1}, // movsd 1376 {TTI::SK_Select, MVT::v4i32, 2}, // 2*shufps 1377 {TTI::SK_Select, MVT::v8i16, 3}, // pand + pandn + por 1378 {TTI::SK_Select, MVT::v16i8, 3}, // pand + pandn + por 1379 1380 {TTI::SK_PermuteSingleSrc, MVT::v2f64, 1}, // shufpd 1381 {TTI::SK_PermuteSingleSrc, MVT::v2i64, 1}, // pshufd 1382 {TTI::SK_PermuteSingleSrc, MVT::v4i32, 1}, // pshufd 1383 {TTI::SK_PermuteSingleSrc, MVT::v8i16, 5}, // 2*pshuflw + 2*pshufhw 1384 // + pshufd/unpck 1385 { TTI::SK_PermuteSingleSrc, MVT::v16i8, 10 }, // 2*pshuflw + 2*pshufhw 1386 // + 2*pshufd + 2*unpck + 2*packus 1387 1388 { TTI::SK_PermuteTwoSrc, MVT::v2f64, 1 }, // shufpd 1389 { TTI::SK_PermuteTwoSrc, MVT::v2i64, 1 }, // shufpd 1390 { TTI::SK_PermuteTwoSrc, MVT::v4i32, 2 }, // 2*{unpck,movsd,pshufd} 1391 { TTI::SK_PermuteTwoSrc, MVT::v8i16, 8 }, // blend+permute 1392 { TTI::SK_PermuteTwoSrc, MVT::v16i8, 13 }, // blend+permute 1393 }; 1394 1395 if (ST->hasSSE2()) 1396 if (const auto *Entry = CostTableLookup(SSE2ShuffleTbl, Kind, LT.second)) 1397 return LT.first * Entry->Cost; 1398 1399 static const CostTblEntry SSE1ShuffleTbl[] = { 1400 { TTI::SK_Broadcast, MVT::v4f32, 1 }, // shufps 1401 { TTI::SK_Reverse, MVT::v4f32, 1 }, // shufps 1402 { TTI::SK_Select, MVT::v4f32, 2 }, // 2*shufps 1403 { TTI::SK_PermuteSingleSrc, MVT::v4f32, 1 }, // shufps 1404 { TTI::SK_PermuteTwoSrc, MVT::v4f32, 2 }, // 2*shufps 1405 }; 1406 1407 if (ST->hasSSE1()) 1408 if (const auto *Entry = CostTableLookup(SSE1ShuffleTbl, Kind, LT.second)) 1409 return LT.first * Entry->Cost; 1410 1411 return BaseT::getShuffleCost(Kind, BaseTp, Mask, Index, SubTp); 1412 } 1413 1414 InstructionCost X86TTIImpl::getCastInstrCost(unsigned Opcode, Type *Dst, 1415 Type *Src, 1416 TTI::CastContextHint CCH, 1417 TTI::TargetCostKind CostKind, 1418 const Instruction *I) { 1419 int ISD = TLI->InstructionOpcodeToISD(Opcode); 1420 assert(ISD && "Invalid opcode"); 1421 1422 // TODO: Allow non-throughput costs that aren't binary. 1423 auto AdjustCost = [&CostKind](InstructionCost Cost) -> InstructionCost { 1424 if (CostKind != TTI::TCK_RecipThroughput) 1425 return Cost == 0 ? 0 : 1; 1426 return Cost; 1427 }; 1428 1429 // FIXME: Need a better design of the cost table to handle non-simple types of 1430 // potential massive combinations (elem_num x src_type x dst_type). 1431 1432 static const TypeConversionCostTblEntry AVX512BWConversionTbl[] { 1433 { ISD::SIGN_EXTEND, MVT::v32i16, MVT::v32i8, 1 }, 1434 { ISD::ZERO_EXTEND, MVT::v32i16, MVT::v32i8, 1 }, 1435 1436 // Mask sign extend has an instruction. 1437 { ISD::SIGN_EXTEND, MVT::v2i8, MVT::v2i1, 1 }, 1438 { ISD::SIGN_EXTEND, MVT::v2i16, MVT::v2i1, 1 }, 1439 { ISD::SIGN_EXTEND, MVT::v4i8, MVT::v4i1, 1 }, 1440 { ISD::SIGN_EXTEND, MVT::v4i16, MVT::v4i1, 1 }, 1441 { ISD::SIGN_EXTEND, MVT::v8i8, MVT::v8i1, 1 }, 1442 { ISD::SIGN_EXTEND, MVT::v8i16, MVT::v8i1, 1 }, 1443 { ISD::SIGN_EXTEND, MVT::v16i8, MVT::v16i1, 1 }, 1444 { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i1, 1 }, 1445 { ISD::SIGN_EXTEND, MVT::v32i8, MVT::v32i1, 1 }, 1446 { ISD::SIGN_EXTEND, MVT::v32i16, MVT::v32i1, 1 }, 1447 { ISD::SIGN_EXTEND, MVT::v64i8, MVT::v64i1, 1 }, 1448 1449 // Mask zero extend is a sext + shift. 1450 { ISD::ZERO_EXTEND, MVT::v2i8, MVT::v2i1, 2 }, 1451 { ISD::ZERO_EXTEND, MVT::v2i16, MVT::v2i1, 2 }, 1452 { ISD::ZERO_EXTEND, MVT::v4i8, MVT::v4i1, 2 }, 1453 { ISD::ZERO_EXTEND, MVT::v4i16, MVT::v4i1, 2 }, 1454 { ISD::ZERO_EXTEND, MVT::v8i8, MVT::v8i1, 2 }, 1455 { ISD::ZERO_EXTEND, MVT::v8i16, MVT::v8i1, 2 }, 1456 { ISD::ZERO_EXTEND, MVT::v16i8, MVT::v16i1, 2 }, 1457 { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i1, 2 }, 1458 { ISD::ZERO_EXTEND, MVT::v32i8, MVT::v32i1, 2 }, 1459 { ISD::ZERO_EXTEND, MVT::v32i16, MVT::v32i1, 2 }, 1460 { ISD::ZERO_EXTEND, MVT::v64i8, MVT::v64i1, 2 }, 1461 1462 { ISD::TRUNCATE, MVT::v32i8, MVT::v32i16, 2 }, 1463 { ISD::TRUNCATE, MVT::v16i8, MVT::v16i16, 2 }, // widen to zmm 1464 { ISD::TRUNCATE, MVT::v2i1, MVT::v2i8, 2 }, // widen to zmm 1465 { ISD::TRUNCATE, MVT::v2i1, MVT::v2i16, 2 }, // widen to zmm 1466 { ISD::TRUNCATE, MVT::v4i1, MVT::v4i8, 2 }, // widen to zmm 1467 { ISD::TRUNCATE, MVT::v4i1, MVT::v4i16, 2 }, // widen to zmm 1468 { ISD::TRUNCATE, MVT::v8i1, MVT::v8i8, 2 }, // widen to zmm 1469 { ISD::TRUNCATE, MVT::v8i1, MVT::v8i16, 2 }, // widen to zmm 1470 { ISD::TRUNCATE, MVT::v16i1, MVT::v16i8, 2 }, // widen to zmm 1471 { ISD::TRUNCATE, MVT::v16i1, MVT::v16i16, 2 }, // widen to zmm 1472 { ISD::TRUNCATE, MVT::v32i1, MVT::v32i8, 2 }, // widen to zmm 1473 { ISD::TRUNCATE, MVT::v32i1, MVT::v32i16, 2 }, 1474 { ISD::TRUNCATE, MVT::v64i1, MVT::v64i8, 2 }, 1475 }; 1476 1477 static const TypeConversionCostTblEntry AVX512DQConversionTbl[] = { 1478 { ISD::SINT_TO_FP, MVT::v8f32, MVT::v8i64, 1 }, 1479 { ISD::SINT_TO_FP, MVT::v8f64, MVT::v8i64, 1 }, 1480 1481 { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i64, 1 }, 1482 { ISD::UINT_TO_FP, MVT::v8f64, MVT::v8i64, 1 }, 1483 1484 { ISD::FP_TO_SINT, MVT::v8i64, MVT::v8f32, 1 }, 1485 { ISD::FP_TO_SINT, MVT::v8i64, MVT::v8f64, 1 }, 1486 1487 { ISD::FP_TO_UINT, MVT::v8i64, MVT::v8f32, 1 }, 1488 { ISD::FP_TO_UINT, MVT::v8i64, MVT::v8f64, 1 }, 1489 }; 1490 1491 // TODO: For AVX512DQ + AVX512VL, we also have cheap casts for 128-bit and 1492 // 256-bit wide vectors. 1493 1494 static const TypeConversionCostTblEntry AVX512FConversionTbl[] = { 1495 { ISD::FP_EXTEND, MVT::v8f64, MVT::v8f32, 1 }, 1496 { ISD::FP_EXTEND, MVT::v8f64, MVT::v16f32, 3 }, 1497 { ISD::FP_ROUND, MVT::v8f32, MVT::v8f64, 1 }, 1498 1499 { ISD::TRUNCATE, MVT::v2i1, MVT::v2i8, 3 }, // sext+vpslld+vptestmd 1500 { ISD::TRUNCATE, MVT::v4i1, MVT::v4i8, 3 }, // sext+vpslld+vptestmd 1501 { ISD::TRUNCATE, MVT::v8i1, MVT::v8i8, 3 }, // sext+vpslld+vptestmd 1502 { ISD::TRUNCATE, MVT::v16i1, MVT::v16i8, 3 }, // sext+vpslld+vptestmd 1503 { ISD::TRUNCATE, MVT::v2i1, MVT::v2i16, 3 }, // sext+vpsllq+vptestmq 1504 { ISD::TRUNCATE, MVT::v4i1, MVT::v4i16, 3 }, // sext+vpsllq+vptestmq 1505 { ISD::TRUNCATE, MVT::v8i1, MVT::v8i16, 3 }, // sext+vpsllq+vptestmq 1506 { ISD::TRUNCATE, MVT::v16i1, MVT::v16i16, 3 }, // sext+vpslld+vptestmd 1507 { ISD::TRUNCATE, MVT::v2i1, MVT::v2i32, 2 }, // zmm vpslld+vptestmd 1508 { ISD::TRUNCATE, MVT::v4i1, MVT::v4i32, 2 }, // zmm vpslld+vptestmd 1509 { ISD::TRUNCATE, MVT::v8i1, MVT::v8i32, 2 }, // zmm vpslld+vptestmd 1510 { ISD::TRUNCATE, MVT::v16i1, MVT::v16i32, 2 }, // vpslld+vptestmd 1511 { ISD::TRUNCATE, MVT::v2i1, MVT::v2i64, 2 }, // zmm vpsllq+vptestmq 1512 { ISD::TRUNCATE, MVT::v4i1, MVT::v4i64, 2 }, // zmm vpsllq+vptestmq 1513 { ISD::TRUNCATE, MVT::v8i1, MVT::v8i64, 2 }, // vpsllq+vptestmq 1514 { ISD::TRUNCATE, MVT::v16i8, MVT::v16i32, 2 }, 1515 { ISD::TRUNCATE, MVT::v16i16, MVT::v16i32, 2 }, 1516 { ISD::TRUNCATE, MVT::v8i8, MVT::v8i64, 2 }, 1517 { ISD::TRUNCATE, MVT::v8i16, MVT::v8i64, 2 }, 1518 { ISD::TRUNCATE, MVT::v8i32, MVT::v8i64, 1 }, 1519 { ISD::TRUNCATE, MVT::v4i32, MVT::v4i64, 1 }, // zmm vpmovqd 1520 { ISD::TRUNCATE, MVT::v16i8, MVT::v16i64, 5 },// 2*vpmovqd+concat+vpmovdb 1521 1522 { ISD::TRUNCATE, MVT::v16i8, MVT::v16i16, 3 }, // extend to v16i32 1523 { ISD::TRUNCATE, MVT::v32i8, MVT::v32i16, 8 }, 1524 1525 // Sign extend is zmm vpternlogd+vptruncdb. 1526 // Zero extend is zmm broadcast load+vptruncdw. 1527 { ISD::SIGN_EXTEND, MVT::v2i8, MVT::v2i1, 3 }, 1528 { ISD::ZERO_EXTEND, MVT::v2i8, MVT::v2i1, 4 }, 1529 { ISD::SIGN_EXTEND, MVT::v4i8, MVT::v4i1, 3 }, 1530 { ISD::ZERO_EXTEND, MVT::v4i8, MVT::v4i1, 4 }, 1531 { ISD::SIGN_EXTEND, MVT::v8i8, MVT::v8i1, 3 }, 1532 { ISD::ZERO_EXTEND, MVT::v8i8, MVT::v8i1, 4 }, 1533 { ISD::SIGN_EXTEND, MVT::v16i8, MVT::v16i1, 3 }, 1534 { ISD::ZERO_EXTEND, MVT::v16i8, MVT::v16i1, 4 }, 1535 1536 // Sign extend is zmm vpternlogd+vptruncdw. 1537 // Zero extend is zmm vpternlogd+vptruncdw+vpsrlw. 1538 { ISD::SIGN_EXTEND, MVT::v2i16, MVT::v2i1, 3 }, 1539 { ISD::ZERO_EXTEND, MVT::v2i16, MVT::v2i1, 4 }, 1540 { ISD::SIGN_EXTEND, MVT::v4i16, MVT::v4i1, 3 }, 1541 { ISD::ZERO_EXTEND, MVT::v4i16, MVT::v4i1, 4 }, 1542 { ISD::SIGN_EXTEND, MVT::v8i16, MVT::v8i1, 3 }, 1543 { ISD::ZERO_EXTEND, MVT::v8i16, MVT::v8i1, 4 }, 1544 { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i1, 3 }, 1545 { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i1, 4 }, 1546 1547 { ISD::SIGN_EXTEND, MVT::v2i32, MVT::v2i1, 1 }, // zmm vpternlogd 1548 { ISD::ZERO_EXTEND, MVT::v2i32, MVT::v2i1, 2 }, // zmm vpternlogd+psrld 1549 { ISD::SIGN_EXTEND, MVT::v4i32, MVT::v4i1, 1 }, // zmm vpternlogd 1550 { ISD::ZERO_EXTEND, MVT::v4i32, MVT::v4i1, 2 }, // zmm vpternlogd+psrld 1551 { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i1, 1 }, // zmm vpternlogd 1552 { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i1, 2 }, // zmm vpternlogd+psrld 1553 { ISD::SIGN_EXTEND, MVT::v2i64, MVT::v2i1, 1 }, // zmm vpternlogq 1554 { ISD::ZERO_EXTEND, MVT::v2i64, MVT::v2i1, 2 }, // zmm vpternlogq+psrlq 1555 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i1, 1 }, // zmm vpternlogq 1556 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i1, 2 }, // zmm vpternlogq+psrlq 1557 1558 { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i1, 1 }, // vpternlogd 1559 { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i1, 2 }, // vpternlogd+psrld 1560 { ISD::SIGN_EXTEND, MVT::v8i64, MVT::v8i1, 1 }, // vpternlogq 1561 { ISD::ZERO_EXTEND, MVT::v8i64, MVT::v8i1, 2 }, // vpternlogq+psrlq 1562 1563 { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i8, 1 }, 1564 { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i8, 1 }, 1565 { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i16, 1 }, 1566 { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i16, 1 }, 1567 { ISD::SIGN_EXTEND, MVT::v8i64, MVT::v8i8, 1 }, 1568 { ISD::ZERO_EXTEND, MVT::v8i64, MVT::v8i8, 1 }, 1569 { ISD::SIGN_EXTEND, MVT::v8i64, MVT::v8i16, 1 }, 1570 { ISD::ZERO_EXTEND, MVT::v8i64, MVT::v8i16, 1 }, 1571 { ISD::SIGN_EXTEND, MVT::v8i64, MVT::v8i32, 1 }, 1572 { ISD::ZERO_EXTEND, MVT::v8i64, MVT::v8i32, 1 }, 1573 1574 { ISD::SIGN_EXTEND, MVT::v32i16, MVT::v32i8, 3 }, // FIXME: May not be right 1575 { ISD::ZERO_EXTEND, MVT::v32i16, MVT::v32i8, 3 }, // FIXME: May not be right 1576 1577 { ISD::SINT_TO_FP, MVT::v8f64, MVT::v8i1, 4 }, 1578 { ISD::SINT_TO_FP, MVT::v16f32, MVT::v16i1, 3 }, 1579 { ISD::SINT_TO_FP, MVT::v8f64, MVT::v8i8, 2 }, 1580 { ISD::SINT_TO_FP, MVT::v16f32, MVT::v16i8, 2 }, 1581 { ISD::SINT_TO_FP, MVT::v8f64, MVT::v8i16, 2 }, 1582 { ISD::SINT_TO_FP, MVT::v16f32, MVT::v16i16, 2 }, 1583 { ISD::SINT_TO_FP, MVT::v16f32, MVT::v16i32, 1 }, 1584 { ISD::SINT_TO_FP, MVT::v8f64, MVT::v8i32, 1 }, 1585 1586 { ISD::UINT_TO_FP, MVT::v8f64, MVT::v8i1, 4 }, 1587 { ISD::UINT_TO_FP, MVT::v16f32, MVT::v16i1, 3 }, 1588 { ISD::UINT_TO_FP, MVT::v8f64, MVT::v8i8, 2 }, 1589 { ISD::UINT_TO_FP, MVT::v16f32, MVT::v16i8, 2 }, 1590 { ISD::UINT_TO_FP, MVT::v8f64, MVT::v8i16, 2 }, 1591 { ISD::UINT_TO_FP, MVT::v16f32, MVT::v16i16, 2 }, 1592 { ISD::UINT_TO_FP, MVT::v8f64, MVT::v8i32, 1 }, 1593 { ISD::UINT_TO_FP, MVT::v16f32, MVT::v16i32, 1 }, 1594 { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i64, 26 }, 1595 { ISD::UINT_TO_FP, MVT::v8f64, MVT::v8i64, 5 }, 1596 1597 { ISD::FP_TO_SINT, MVT::v8i8, MVT::v8f64, 3 }, 1598 { ISD::FP_TO_SINT, MVT::v8i16, MVT::v8f64, 3 }, 1599 { ISD::FP_TO_SINT, MVT::v16i8, MVT::v16f32, 3 }, 1600 { ISD::FP_TO_SINT, MVT::v16i16, MVT::v16f32, 3 }, 1601 1602 { ISD::FP_TO_UINT, MVT::v8i32, MVT::v8f64, 1 }, 1603 { ISD::FP_TO_UINT, MVT::v8i16, MVT::v8f64, 3 }, 1604 { ISD::FP_TO_UINT, MVT::v8i8, MVT::v8f64, 3 }, 1605 { ISD::FP_TO_UINT, MVT::v16i32, MVT::v16f32, 1 }, 1606 { ISD::FP_TO_UINT, MVT::v16i16, MVT::v16f32, 3 }, 1607 { ISD::FP_TO_UINT, MVT::v16i8, MVT::v16f32, 3 }, 1608 }; 1609 1610 static const TypeConversionCostTblEntry AVX512BWVLConversionTbl[] { 1611 // Mask sign extend has an instruction. 1612 { ISD::SIGN_EXTEND, MVT::v2i8, MVT::v2i1, 1 }, 1613 { ISD::SIGN_EXTEND, MVT::v2i16, MVT::v2i1, 1 }, 1614 { ISD::SIGN_EXTEND, MVT::v4i8, MVT::v4i1, 1 }, 1615 { ISD::SIGN_EXTEND, MVT::v4i16, MVT::v4i1, 1 }, 1616 { ISD::SIGN_EXTEND, MVT::v8i8, MVT::v8i1, 1 }, 1617 { ISD::SIGN_EXTEND, MVT::v8i16, MVT::v8i1, 1 }, 1618 { ISD::SIGN_EXTEND, MVT::v16i8, MVT::v16i1, 1 }, 1619 { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i1, 1 }, 1620 { ISD::SIGN_EXTEND, MVT::v32i8, MVT::v32i1, 1 }, 1621 1622 // Mask zero extend is a sext + shift. 1623 { ISD::ZERO_EXTEND, MVT::v2i8, MVT::v2i1, 2 }, 1624 { ISD::ZERO_EXTEND, MVT::v2i16, MVT::v2i1, 2 }, 1625 { ISD::ZERO_EXTEND, MVT::v4i8, MVT::v4i1, 2 }, 1626 { ISD::ZERO_EXTEND, MVT::v4i16, MVT::v4i1, 2 }, 1627 { ISD::ZERO_EXTEND, MVT::v8i8, MVT::v8i1, 2 }, 1628 { ISD::ZERO_EXTEND, MVT::v8i16, MVT::v8i1, 2 }, 1629 { ISD::ZERO_EXTEND, MVT::v16i8, MVT::v16i1, 2 }, 1630 { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i1, 2 }, 1631 { ISD::ZERO_EXTEND, MVT::v32i8, MVT::v32i1, 2 }, 1632 1633 { ISD::TRUNCATE, MVT::v16i8, MVT::v16i16, 2 }, 1634 { ISD::TRUNCATE, MVT::v2i1, MVT::v2i8, 2 }, // vpsllw+vptestmb 1635 { ISD::TRUNCATE, MVT::v2i1, MVT::v2i16, 2 }, // vpsllw+vptestmw 1636 { ISD::TRUNCATE, MVT::v4i1, MVT::v4i8, 2 }, // vpsllw+vptestmb 1637 { ISD::TRUNCATE, MVT::v4i1, MVT::v4i16, 2 }, // vpsllw+vptestmw 1638 { ISD::TRUNCATE, MVT::v8i1, MVT::v8i8, 2 }, // vpsllw+vptestmb 1639 { ISD::TRUNCATE, MVT::v8i1, MVT::v8i16, 2 }, // vpsllw+vptestmw 1640 { ISD::TRUNCATE, MVT::v16i1, MVT::v16i8, 2 }, // vpsllw+vptestmb 1641 { ISD::TRUNCATE, MVT::v16i1, MVT::v16i16, 2 }, // vpsllw+vptestmw 1642 { ISD::TRUNCATE, MVT::v32i1, MVT::v32i8, 2 }, // vpsllw+vptestmb 1643 }; 1644 1645 static const TypeConversionCostTblEntry AVX512DQVLConversionTbl[] = { 1646 { ISD::SINT_TO_FP, MVT::v2f32, MVT::v2i64, 1 }, 1647 { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i64, 1 }, 1648 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i64, 1 }, 1649 { ISD::SINT_TO_FP, MVT::v4f64, MVT::v4i64, 1 }, 1650 1651 { ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i64, 1 }, 1652 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i64, 1 }, 1653 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i64, 1 }, 1654 { ISD::UINT_TO_FP, MVT::v4f64, MVT::v4i64, 1 }, 1655 1656 { ISD::FP_TO_SINT, MVT::v2i64, MVT::v2f32, 1 }, 1657 { ISD::FP_TO_SINT, MVT::v4i64, MVT::v4f32, 1 }, 1658 { ISD::FP_TO_SINT, MVT::v2i64, MVT::v2f64, 1 }, 1659 { ISD::FP_TO_SINT, MVT::v4i64, MVT::v4f64, 1 }, 1660 1661 { ISD::FP_TO_UINT, MVT::v2i64, MVT::v2f32, 1 }, 1662 { ISD::FP_TO_UINT, MVT::v4i64, MVT::v4f32, 1 }, 1663 { ISD::FP_TO_UINT, MVT::v2i64, MVT::v2f64, 1 }, 1664 { ISD::FP_TO_UINT, MVT::v4i64, MVT::v4f64, 1 }, 1665 }; 1666 1667 static const TypeConversionCostTblEntry AVX512VLConversionTbl[] = { 1668 { ISD::TRUNCATE, MVT::v2i1, MVT::v2i8, 3 }, // sext+vpslld+vptestmd 1669 { ISD::TRUNCATE, MVT::v4i1, MVT::v4i8, 3 }, // sext+vpslld+vptestmd 1670 { ISD::TRUNCATE, MVT::v8i1, MVT::v8i8, 3 }, // sext+vpslld+vptestmd 1671 { ISD::TRUNCATE, MVT::v16i1, MVT::v16i8, 8 }, // split+2*v8i8 1672 { ISD::TRUNCATE, MVT::v2i1, MVT::v2i16, 3 }, // sext+vpsllq+vptestmq 1673 { ISD::TRUNCATE, MVT::v4i1, MVT::v4i16, 3 }, // sext+vpsllq+vptestmq 1674 { ISD::TRUNCATE, MVT::v8i1, MVT::v8i16, 3 }, // sext+vpsllq+vptestmq 1675 { ISD::TRUNCATE, MVT::v16i1, MVT::v16i16, 8 }, // split+2*v8i16 1676 { ISD::TRUNCATE, MVT::v2i1, MVT::v2i32, 2 }, // vpslld+vptestmd 1677 { ISD::TRUNCATE, MVT::v4i1, MVT::v4i32, 2 }, // vpslld+vptestmd 1678 { ISD::TRUNCATE, MVT::v8i1, MVT::v8i32, 2 }, // vpslld+vptestmd 1679 { ISD::TRUNCATE, MVT::v2i1, MVT::v2i64, 2 }, // vpsllq+vptestmq 1680 { ISD::TRUNCATE, MVT::v4i1, MVT::v4i64, 2 }, // vpsllq+vptestmq 1681 { ISD::TRUNCATE, MVT::v4i32, MVT::v4i64, 1 }, // vpmovqd 1682 1683 // sign extend is vpcmpeq+maskedmove+vpmovdw+vpacksswb 1684 // zero extend is vpcmpeq+maskedmove+vpmovdw+vpsrlw+vpackuswb 1685 { ISD::SIGN_EXTEND, MVT::v2i8, MVT::v2i1, 5 }, 1686 { ISD::ZERO_EXTEND, MVT::v2i8, MVT::v2i1, 6 }, 1687 { ISD::SIGN_EXTEND, MVT::v4i8, MVT::v4i1, 5 }, 1688 { ISD::ZERO_EXTEND, MVT::v4i8, MVT::v4i1, 6 }, 1689 { ISD::SIGN_EXTEND, MVT::v8i8, MVT::v8i1, 5 }, 1690 { ISD::ZERO_EXTEND, MVT::v8i8, MVT::v8i1, 6 }, 1691 { ISD::SIGN_EXTEND, MVT::v16i8, MVT::v16i1, 10 }, 1692 { ISD::ZERO_EXTEND, MVT::v16i8, MVT::v16i1, 12 }, 1693 1694 // sign extend is vpcmpeq+maskedmove+vpmovdw 1695 // zero extend is vpcmpeq+maskedmove+vpmovdw+vpsrlw 1696 { ISD::SIGN_EXTEND, MVT::v2i16, MVT::v2i1, 4 }, 1697 { ISD::ZERO_EXTEND, MVT::v2i16, MVT::v2i1, 5 }, 1698 { ISD::SIGN_EXTEND, MVT::v4i16, MVT::v4i1, 4 }, 1699 { ISD::ZERO_EXTEND, MVT::v4i16, MVT::v4i1, 5 }, 1700 { ISD::SIGN_EXTEND, MVT::v8i16, MVT::v8i1, 4 }, 1701 { ISD::ZERO_EXTEND, MVT::v8i16, MVT::v8i1, 5 }, 1702 { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i1, 10 }, 1703 { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i1, 12 }, 1704 1705 { ISD::SIGN_EXTEND, MVT::v2i32, MVT::v2i1, 1 }, // vpternlogd 1706 { ISD::ZERO_EXTEND, MVT::v2i32, MVT::v2i1, 2 }, // vpternlogd+psrld 1707 { ISD::SIGN_EXTEND, MVT::v4i32, MVT::v4i1, 1 }, // vpternlogd 1708 { ISD::ZERO_EXTEND, MVT::v4i32, MVT::v4i1, 2 }, // vpternlogd+psrld 1709 { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i1, 1 }, // vpternlogd 1710 { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i1, 2 }, // vpternlogd+psrld 1711 { ISD::SIGN_EXTEND, MVT::v2i64, MVT::v2i1, 1 }, // vpternlogq 1712 { ISD::ZERO_EXTEND, MVT::v2i64, MVT::v2i1, 2 }, // vpternlogq+psrlq 1713 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i1, 1 }, // vpternlogq 1714 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i1, 2 }, // vpternlogq+psrlq 1715 1716 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i8, 2 }, 1717 { ISD::UINT_TO_FP, MVT::v4f64, MVT::v4i8, 2 }, 1718 { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i8, 2 }, 1719 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i16, 5 }, 1720 { ISD::UINT_TO_FP, MVT::v4f64, MVT::v4i16, 2 }, 1721 { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i16, 2 }, 1722 { ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i32, 2 }, 1723 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i32, 1 }, 1724 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i32, 1 }, 1725 { ISD::UINT_TO_FP, MVT::v4f64, MVT::v4i32, 1 }, 1726 { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i32, 1 }, 1727 { ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i64, 5 }, 1728 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i64, 5 }, 1729 { ISD::UINT_TO_FP, MVT::v4f64, MVT::v4i64, 5 }, 1730 1731 { ISD::UINT_TO_FP, MVT::f32, MVT::i64, 1 }, 1732 { ISD::UINT_TO_FP, MVT::f64, MVT::i64, 1 }, 1733 1734 { ISD::FP_TO_SINT, MVT::v8i8, MVT::v8f32, 3 }, 1735 { ISD::FP_TO_UINT, MVT::v8i8, MVT::v8f32, 3 }, 1736 1737 { ISD::FP_TO_UINT, MVT::i64, MVT::f32, 1 }, 1738 { ISD::FP_TO_UINT, MVT::i64, MVT::f64, 1 }, 1739 1740 { ISD::FP_TO_UINT, MVT::v2i32, MVT::v2f32, 1 }, 1741 { ISD::FP_TO_UINT, MVT::v4i32, MVT::v4f32, 1 }, 1742 { ISD::FP_TO_UINT, MVT::v2i32, MVT::v2f64, 1 }, 1743 { ISD::FP_TO_UINT, MVT::v4i32, MVT::v4f64, 1 }, 1744 { ISD::FP_TO_UINT, MVT::v8i32, MVT::v8f32, 1 }, 1745 }; 1746 1747 static const TypeConversionCostTblEntry AVX2ConversionTbl[] = { 1748 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i1, 3 }, 1749 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i1, 3 }, 1750 { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i1, 3 }, 1751 { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i1, 3 }, 1752 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i8, 1 }, 1753 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i8, 1 }, 1754 { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i8, 1 }, 1755 { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i8, 1 }, 1756 { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i1, 1 }, 1757 { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i1, 1 }, 1758 { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i8, 1 }, 1759 { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i8, 1 }, 1760 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i16, 1 }, 1761 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i16, 1 }, 1762 { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i16, 1 }, 1763 { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i16, 1 }, 1764 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i32, 1 }, 1765 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i32, 1 }, 1766 { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i16, 3 }, 1767 { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i16, 3 }, 1768 1769 { ISD::TRUNCATE, MVT::v4i32, MVT::v4i64, 2 }, 1770 { ISD::TRUNCATE, MVT::v8i1, MVT::v8i32, 2 }, 1771 1772 { ISD::TRUNCATE, MVT::v4i8, MVT::v4i64, 2 }, 1773 { ISD::TRUNCATE, MVT::v4i16, MVT::v4i64, 2 }, 1774 { ISD::TRUNCATE, MVT::v8i8, MVT::v8i32, 2 }, 1775 { ISD::TRUNCATE, MVT::v8i16, MVT::v8i32, 2 }, 1776 1777 { ISD::FP_EXTEND, MVT::v8f64, MVT::v8f32, 3 }, 1778 { ISD::FP_ROUND, MVT::v8f32, MVT::v8f64, 3 }, 1779 1780 { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i32, 8 }, 1781 }; 1782 1783 static const TypeConversionCostTblEntry AVXConversionTbl[] = { 1784 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i1, 6 }, 1785 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i1, 4 }, 1786 { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i1, 7 }, 1787 { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i1, 4 }, 1788 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i8, 4 }, 1789 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i8, 4 }, 1790 { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i8, 4 }, 1791 { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i8, 4 }, 1792 { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i1, 4 }, 1793 { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i1, 4 }, 1794 { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i8, 4 }, 1795 { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i8, 4 }, 1796 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i16, 4 }, 1797 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i16, 3 }, 1798 { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i16, 4 }, 1799 { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i16, 4 }, 1800 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i32, 4 }, 1801 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i32, 4 }, 1802 1803 { ISD::TRUNCATE, MVT::v4i1, MVT::v4i64, 4 }, 1804 { ISD::TRUNCATE, MVT::v8i1, MVT::v8i32, 5 }, 1805 { ISD::TRUNCATE, MVT::v16i1, MVT::v16i16, 4 }, 1806 { ISD::TRUNCATE, MVT::v8i1, MVT::v8i64, 9 }, 1807 { ISD::TRUNCATE, MVT::v16i1, MVT::v16i64, 11 }, 1808 1809 { ISD::TRUNCATE, MVT::v16i8, MVT::v16i16, 4 }, 1810 { ISD::TRUNCATE, MVT::v8i8, MVT::v8i32, 4 }, 1811 { ISD::TRUNCATE, MVT::v8i16, MVT::v8i32, 5 }, 1812 { ISD::TRUNCATE, MVT::v4i8, MVT::v4i64, 4 }, 1813 { ISD::TRUNCATE, MVT::v4i16, MVT::v4i64, 4 }, 1814 { ISD::TRUNCATE, MVT::v4i32, MVT::v4i64, 2 }, 1815 { ISD::TRUNCATE, MVT::v8i8, MVT::v8i64, 11 }, 1816 { ISD::TRUNCATE, MVT::v8i16, MVT::v8i64, 9 }, 1817 { ISD::TRUNCATE, MVT::v8i32, MVT::v8i64, 3 }, 1818 { ISD::TRUNCATE, MVT::v16i8, MVT::v16i64, 11 }, 1819 1820 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i1, 3 }, 1821 { ISD::SINT_TO_FP, MVT::v4f64, MVT::v4i1, 3 }, 1822 { ISD::SINT_TO_FP, MVT::v8f32, MVT::v8i1, 8 }, 1823 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i8, 3 }, 1824 { ISD::SINT_TO_FP, MVT::v4f64, MVT::v4i8, 3 }, 1825 { ISD::SINT_TO_FP, MVT::v8f32, MVT::v8i8, 8 }, 1826 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i16, 3 }, 1827 { ISD::SINT_TO_FP, MVT::v4f64, MVT::v4i16, 3 }, 1828 { ISD::SINT_TO_FP, MVT::v8f32, MVT::v8i16, 5 }, 1829 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i32, 1 }, 1830 { ISD::SINT_TO_FP, MVT::v4f64, MVT::v4i32, 1 }, 1831 { ISD::SINT_TO_FP, MVT::v8f32, MVT::v8i32, 1 }, 1832 1833 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i1, 7 }, 1834 { ISD::UINT_TO_FP, MVT::v4f64, MVT::v4i1, 7 }, 1835 { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i1, 6 }, 1836 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i8, 2 }, 1837 { ISD::UINT_TO_FP, MVT::v4f64, MVT::v4i8, 2 }, 1838 { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i8, 5 }, 1839 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i16, 2 }, 1840 { ISD::UINT_TO_FP, MVT::v4f64, MVT::v4i16, 2 }, 1841 { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i16, 5 }, 1842 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i32, 6 }, 1843 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i32, 6 }, 1844 { ISD::UINT_TO_FP, MVT::v4f64, MVT::v4i32, 6 }, 1845 { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i32, 9 }, 1846 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i64, 5 }, 1847 { ISD::UINT_TO_FP, MVT::v4f64, MVT::v4i64, 6 }, 1848 // The generic code to compute the scalar overhead is currently broken. 1849 // Workaround this limitation by estimating the scalarization overhead 1850 // here. We have roughly 10 instructions per scalar element. 1851 // Multiply that by the vector width. 1852 // FIXME: remove that when PR19268 is fixed. 1853 { ISD::SINT_TO_FP, MVT::v4f64, MVT::v4i64, 13 }, 1854 { ISD::SINT_TO_FP, MVT::v4f64, MVT::v4i64, 13 }, 1855 1856 { ISD::FP_TO_SINT, MVT::v8i8, MVT::v8f32, 4 }, 1857 { ISD::FP_TO_SINT, MVT::v4i8, MVT::v4f64, 3 }, 1858 { ISD::FP_TO_SINT, MVT::v4i16, MVT::v4f64, 2 }, 1859 { ISD::FP_TO_SINT, MVT::v8i16, MVT::v8f32, 3 }, 1860 1861 { ISD::FP_TO_UINT, MVT::v4i8, MVT::v4f64, 3 }, 1862 { ISD::FP_TO_UINT, MVT::v4i16, MVT::v4f64, 2 }, 1863 { ISD::FP_TO_UINT, MVT::v8i8, MVT::v8f32, 4 }, 1864 { ISD::FP_TO_UINT, MVT::v8i16, MVT::v8f32, 3 }, 1865 // This node is expanded into scalarized operations but BasicTTI is overly 1866 // optimistic estimating its cost. It computes 3 per element (one 1867 // vector-extract, one scalar conversion and one vector-insert). The 1868 // problem is that the inserts form a read-modify-write chain so latency 1869 // should be factored in too. Inflating the cost per element by 1. 1870 { ISD::FP_TO_UINT, MVT::v8i32, MVT::v8f32, 8*4 }, 1871 { ISD::FP_TO_UINT, MVT::v4i32, MVT::v4f64, 4*4 }, 1872 1873 { ISD::FP_EXTEND, MVT::v4f64, MVT::v4f32, 1 }, 1874 { ISD::FP_ROUND, MVT::v4f32, MVT::v4f64, 1 }, 1875 }; 1876 1877 static const TypeConversionCostTblEntry SSE41ConversionTbl[] = { 1878 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i8, 2 }, 1879 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i8, 2 }, 1880 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i16, 2 }, 1881 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i16, 2 }, 1882 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i32, 2 }, 1883 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i32, 2 }, 1884 1885 { ISD::ZERO_EXTEND, MVT::v4i16, MVT::v4i8, 1 }, 1886 { ISD::SIGN_EXTEND, MVT::v4i16, MVT::v4i8, 2 }, 1887 { ISD::ZERO_EXTEND, MVT::v4i32, MVT::v4i8, 1 }, 1888 { ISD::SIGN_EXTEND, MVT::v4i32, MVT::v4i8, 1 }, 1889 { ISD::ZERO_EXTEND, MVT::v8i16, MVT::v8i8, 1 }, 1890 { ISD::SIGN_EXTEND, MVT::v8i16, MVT::v8i8, 1 }, 1891 { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i8, 2 }, 1892 { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i8, 2 }, 1893 { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i8, 2 }, 1894 { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i8, 2 }, 1895 { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i8, 4 }, 1896 { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i8, 4 }, 1897 { ISD::ZERO_EXTEND, MVT::v4i32, MVT::v4i16, 1 }, 1898 { ISD::SIGN_EXTEND, MVT::v4i32, MVT::v4i16, 1 }, 1899 { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i16, 2 }, 1900 { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i16, 2 }, 1901 { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i16, 4 }, 1902 { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i16, 4 }, 1903 1904 // These truncates end up widening elements. 1905 { ISD::TRUNCATE, MVT::v2i1, MVT::v2i8, 1 }, // PMOVXZBQ 1906 { ISD::TRUNCATE, MVT::v2i1, MVT::v2i16, 1 }, // PMOVXZWQ 1907 { ISD::TRUNCATE, MVT::v4i1, MVT::v4i8, 1 }, // PMOVXZBD 1908 1909 { ISD::TRUNCATE, MVT::v2i8, MVT::v2i16, 1 }, 1910 { ISD::TRUNCATE, MVT::v4i8, MVT::v4i16, 1 }, 1911 { ISD::TRUNCATE, MVT::v8i8, MVT::v8i16, 1 }, 1912 { ISD::TRUNCATE, MVT::v4i8, MVT::v4i32, 1 }, 1913 { ISD::TRUNCATE, MVT::v4i16, MVT::v4i32, 1 }, 1914 { ISD::TRUNCATE, MVT::v8i8, MVT::v8i32, 3 }, 1915 { ISD::TRUNCATE, MVT::v8i16, MVT::v8i32, 3 }, 1916 { ISD::TRUNCATE, MVT::v16i16, MVT::v16i32, 6 }, 1917 { ISD::TRUNCATE, MVT::v2i8, MVT::v2i64, 1 }, // PSHUFB 1918 1919 { ISD::UINT_TO_FP, MVT::f32, MVT::i64, 4 }, 1920 { ISD::UINT_TO_FP, MVT::f64, MVT::i64, 4 }, 1921 1922 { ISD::FP_TO_SINT, MVT::v2i8, MVT::v2f32, 3 }, 1923 { ISD::FP_TO_SINT, MVT::v2i8, MVT::v2f64, 3 }, 1924 1925 { ISD::FP_TO_UINT, MVT::v2i8, MVT::v2f32, 3 }, 1926 { ISD::FP_TO_UINT, MVT::v2i8, MVT::v2f64, 3 }, 1927 { ISD::FP_TO_UINT, MVT::v4i16, MVT::v4f32, 2 }, 1928 }; 1929 1930 static const TypeConversionCostTblEntry SSE2ConversionTbl[] = { 1931 // These are somewhat magic numbers justified by looking at the output of 1932 // Intel's IACA, running some kernels and making sure when we take 1933 // legalization into account the throughput will be overestimated. 1934 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v16i8, 8 }, 1935 { ISD::SINT_TO_FP, MVT::v2f64, MVT::v16i8, 16*10 }, 1936 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v8i16, 15 }, 1937 { ISD::SINT_TO_FP, MVT::v2f64, MVT::v8i16, 8*10 }, 1938 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i32, 5 }, 1939 { ISD::SINT_TO_FP, MVT::v2f64, MVT::v4i32, 2*10 }, 1940 { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i32, 2*10 }, 1941 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v2i64, 15 }, 1942 { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i64, 2*10 }, 1943 1944 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v16i8, 16*10 }, 1945 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v16i8, 8 }, 1946 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v8i16, 15 }, 1947 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v8i16, 8*10 }, 1948 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v4i32, 4*10 }, 1949 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i32, 8 }, 1950 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i64, 6 }, 1951 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v2i64, 15 }, 1952 1953 { ISD::FP_TO_SINT, MVT::v2i8, MVT::v2f32, 4 }, 1954 { ISD::FP_TO_SINT, MVT::v2i16, MVT::v2f32, 2 }, 1955 { ISD::FP_TO_SINT, MVT::v4i8, MVT::v4f32, 3 }, 1956 { ISD::FP_TO_SINT, MVT::v4i16, MVT::v4f32, 2 }, 1957 { ISD::FP_TO_SINT, MVT::v2i16, MVT::v2f64, 2 }, 1958 { ISD::FP_TO_SINT, MVT::v2i8, MVT::v2f64, 4 }, 1959 1960 { ISD::FP_TO_SINT, MVT::v2i32, MVT::v2f64, 1 }, 1961 1962 { ISD::UINT_TO_FP, MVT::f32, MVT::i64, 6 }, 1963 { ISD::UINT_TO_FP, MVT::f64, MVT::i64, 6 }, 1964 1965 { ISD::FP_TO_UINT, MVT::i64, MVT::f32, 4 }, 1966 { ISD::FP_TO_UINT, MVT::i64, MVT::f64, 4 }, 1967 { ISD::FP_TO_UINT, MVT::v2i8, MVT::v2f32, 4 }, 1968 { ISD::FP_TO_UINT, MVT::v2i8, MVT::v2f64, 4 }, 1969 { ISD::FP_TO_UINT, MVT::v4i8, MVT::v4f32, 3 }, 1970 { ISD::FP_TO_UINT, MVT::v2i16, MVT::v2f32, 2 }, 1971 { ISD::FP_TO_UINT, MVT::v2i16, MVT::v2f64, 2 }, 1972 { ISD::FP_TO_UINT, MVT::v4i16, MVT::v4f32, 4 }, 1973 1974 { ISD::ZERO_EXTEND, MVT::v4i16, MVT::v4i8, 1 }, 1975 { ISD::SIGN_EXTEND, MVT::v4i16, MVT::v4i8, 6 }, 1976 { ISD::ZERO_EXTEND, MVT::v4i32, MVT::v4i8, 2 }, 1977 { ISD::SIGN_EXTEND, MVT::v4i32, MVT::v4i8, 3 }, 1978 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i8, 4 }, 1979 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i8, 8 }, 1980 { ISD::ZERO_EXTEND, MVT::v8i16, MVT::v8i8, 1 }, 1981 { ISD::SIGN_EXTEND, MVT::v8i16, MVT::v8i8, 2 }, 1982 { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i8, 6 }, 1983 { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i8, 6 }, 1984 { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i8, 3 }, 1985 { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i8, 4 }, 1986 { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i8, 9 }, 1987 { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i8, 12 }, 1988 { ISD::ZERO_EXTEND, MVT::v4i32, MVT::v4i16, 1 }, 1989 { ISD::SIGN_EXTEND, MVT::v4i32, MVT::v4i16, 2 }, 1990 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i16, 3 }, 1991 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i16, 10 }, 1992 { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i16, 3 }, 1993 { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i16, 4 }, 1994 { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i16, 6 }, 1995 { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i16, 8 }, 1996 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i32, 3 }, 1997 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i32, 5 }, 1998 1999 // These truncates are really widening elements. 2000 { ISD::TRUNCATE, MVT::v2i1, MVT::v2i32, 1 }, // PSHUFD 2001 { ISD::TRUNCATE, MVT::v2i1, MVT::v2i16, 2 }, // PUNPCKLWD+DQ 2002 { ISD::TRUNCATE, MVT::v2i1, MVT::v2i8, 3 }, // PUNPCKLBW+WD+PSHUFD 2003 { ISD::TRUNCATE, MVT::v4i1, MVT::v4i16, 1 }, // PUNPCKLWD 2004 { ISD::TRUNCATE, MVT::v4i1, MVT::v4i8, 2 }, // PUNPCKLBW+WD 2005 { ISD::TRUNCATE, MVT::v8i1, MVT::v8i8, 1 }, // PUNPCKLBW 2006 2007 { ISD::TRUNCATE, MVT::v2i8, MVT::v2i16, 2 }, // PAND+PACKUSWB 2008 { ISD::TRUNCATE, MVT::v4i8, MVT::v4i16, 2 }, // PAND+PACKUSWB 2009 { ISD::TRUNCATE, MVT::v8i8, MVT::v8i16, 2 }, // PAND+PACKUSWB 2010 { ISD::TRUNCATE, MVT::v16i8, MVT::v16i16, 3 }, 2011 { ISD::TRUNCATE, MVT::v2i8, MVT::v2i32, 3 }, // PAND+2*PACKUSWB 2012 { ISD::TRUNCATE, MVT::v2i16, MVT::v2i32, 1 }, 2013 { ISD::TRUNCATE, MVT::v4i8, MVT::v4i32, 3 }, 2014 { ISD::TRUNCATE, MVT::v4i16, MVT::v4i32, 3 }, 2015 { ISD::TRUNCATE, MVT::v8i8, MVT::v8i32, 4 }, 2016 { ISD::TRUNCATE, MVT::v16i8, MVT::v16i32, 7 }, 2017 { ISD::TRUNCATE, MVT::v8i16, MVT::v8i32, 5 }, 2018 { ISD::TRUNCATE, MVT::v16i16, MVT::v16i32, 10 }, 2019 { ISD::TRUNCATE, MVT::v2i8, MVT::v2i64, 4 }, // PAND+3*PACKUSWB 2020 { ISD::TRUNCATE, MVT::v2i16, MVT::v2i64, 2 }, // PSHUFD+PSHUFLW 2021 { ISD::TRUNCATE, MVT::v2i32, MVT::v2i64, 1 }, // PSHUFD 2022 }; 2023 2024 std::pair<int, MVT> LTSrc = TLI->getTypeLegalizationCost(DL, Src); 2025 std::pair<int, MVT> LTDest = TLI->getTypeLegalizationCost(DL, Dst); 2026 2027 if (ST->hasSSE2() && !ST->hasAVX()) { 2028 if (const auto *Entry = ConvertCostTableLookup(SSE2ConversionTbl, ISD, 2029 LTDest.second, LTSrc.second)) 2030 return AdjustCost(LTSrc.first * Entry->Cost); 2031 } 2032 2033 EVT SrcTy = TLI->getValueType(DL, Src); 2034 EVT DstTy = TLI->getValueType(DL, Dst); 2035 2036 // The function getSimpleVT only handles simple value types. 2037 if (!SrcTy.isSimple() || !DstTy.isSimple()) 2038 return AdjustCost(BaseT::getCastInstrCost(Opcode, Dst, Src, CCH, CostKind)); 2039 2040 MVT SimpleSrcTy = SrcTy.getSimpleVT(); 2041 MVT SimpleDstTy = DstTy.getSimpleVT(); 2042 2043 if (ST->useAVX512Regs()) { 2044 if (ST->hasBWI()) 2045 if (const auto *Entry = ConvertCostTableLookup(AVX512BWConversionTbl, ISD, 2046 SimpleDstTy, SimpleSrcTy)) 2047 return AdjustCost(Entry->Cost); 2048 2049 if (ST->hasDQI()) 2050 if (const auto *Entry = ConvertCostTableLookup(AVX512DQConversionTbl, ISD, 2051 SimpleDstTy, SimpleSrcTy)) 2052 return AdjustCost(Entry->Cost); 2053 2054 if (ST->hasAVX512()) 2055 if (const auto *Entry = ConvertCostTableLookup(AVX512FConversionTbl, ISD, 2056 SimpleDstTy, SimpleSrcTy)) 2057 return AdjustCost(Entry->Cost); 2058 } 2059 2060 if (ST->hasBWI()) 2061 if (const auto *Entry = ConvertCostTableLookup(AVX512BWVLConversionTbl, ISD, 2062 SimpleDstTy, SimpleSrcTy)) 2063 return AdjustCost(Entry->Cost); 2064 2065 if (ST->hasDQI()) 2066 if (const auto *Entry = ConvertCostTableLookup(AVX512DQVLConversionTbl, ISD, 2067 SimpleDstTy, SimpleSrcTy)) 2068 return AdjustCost(Entry->Cost); 2069 2070 if (ST->hasAVX512()) 2071 if (const auto *Entry = ConvertCostTableLookup(AVX512VLConversionTbl, ISD, 2072 SimpleDstTy, SimpleSrcTy)) 2073 return AdjustCost(Entry->Cost); 2074 2075 if (ST->hasAVX2()) { 2076 if (const auto *Entry = ConvertCostTableLookup(AVX2ConversionTbl, ISD, 2077 SimpleDstTy, SimpleSrcTy)) 2078 return AdjustCost(Entry->Cost); 2079 } 2080 2081 if (ST->hasAVX()) { 2082 if (const auto *Entry = ConvertCostTableLookup(AVXConversionTbl, ISD, 2083 SimpleDstTy, SimpleSrcTy)) 2084 return AdjustCost(Entry->Cost); 2085 } 2086 2087 if (ST->hasSSE41()) { 2088 if (const auto *Entry = ConvertCostTableLookup(SSE41ConversionTbl, ISD, 2089 SimpleDstTy, SimpleSrcTy)) 2090 return AdjustCost(Entry->Cost); 2091 } 2092 2093 if (ST->hasSSE2()) { 2094 if (const auto *Entry = ConvertCostTableLookup(SSE2ConversionTbl, ISD, 2095 SimpleDstTy, SimpleSrcTy)) 2096 return AdjustCost(Entry->Cost); 2097 } 2098 2099 return AdjustCost( 2100 BaseT::getCastInstrCost(Opcode, Dst, Src, CCH, CostKind, I)); 2101 } 2102 2103 InstructionCost X86TTIImpl::getCmpSelInstrCost(unsigned Opcode, Type *ValTy, 2104 Type *CondTy, 2105 CmpInst::Predicate VecPred, 2106 TTI::TargetCostKind CostKind, 2107 const Instruction *I) { 2108 // TODO: Handle other cost kinds. 2109 if (CostKind != TTI::TCK_RecipThroughput) 2110 return BaseT::getCmpSelInstrCost(Opcode, ValTy, CondTy, VecPred, CostKind, 2111 I); 2112 2113 // Legalize the type. 2114 std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, ValTy); 2115 2116 MVT MTy = LT.second; 2117 2118 int ISD = TLI->InstructionOpcodeToISD(Opcode); 2119 assert(ISD && "Invalid opcode"); 2120 2121 unsigned ExtraCost = 0; 2122 if (I && (Opcode == Instruction::ICmp || Opcode == Instruction::FCmp)) { 2123 // Some vector comparison predicates cost extra instructions. 2124 if (MTy.isVector() && 2125 !((ST->hasXOP() && (!ST->hasAVX2() || MTy.is128BitVector())) || 2126 (ST->hasAVX512() && 32 <= MTy.getScalarSizeInBits()) || 2127 ST->hasBWI())) { 2128 switch (cast<CmpInst>(I)->getPredicate()) { 2129 case CmpInst::Predicate::ICMP_NE: 2130 // xor(cmpeq(x,y),-1) 2131 ExtraCost = 1; 2132 break; 2133 case CmpInst::Predicate::ICMP_SGE: 2134 case CmpInst::Predicate::ICMP_SLE: 2135 // xor(cmpgt(x,y),-1) 2136 ExtraCost = 1; 2137 break; 2138 case CmpInst::Predicate::ICMP_ULT: 2139 case CmpInst::Predicate::ICMP_UGT: 2140 // cmpgt(xor(x,signbit),xor(y,signbit)) 2141 // xor(cmpeq(pmaxu(x,y),x),-1) 2142 ExtraCost = 2; 2143 break; 2144 case CmpInst::Predicate::ICMP_ULE: 2145 case CmpInst::Predicate::ICMP_UGE: 2146 if ((ST->hasSSE41() && MTy.getScalarSizeInBits() == 32) || 2147 (ST->hasSSE2() && MTy.getScalarSizeInBits() < 32)) { 2148 // cmpeq(psubus(x,y),0) 2149 // cmpeq(pminu(x,y),x) 2150 ExtraCost = 1; 2151 } else { 2152 // xor(cmpgt(xor(x,signbit),xor(y,signbit)),-1) 2153 ExtraCost = 3; 2154 } 2155 break; 2156 default: 2157 break; 2158 } 2159 } 2160 } 2161 2162 static const CostTblEntry SLMCostTbl[] = { 2163 // slm pcmpeq/pcmpgt throughput is 2 2164 { ISD::SETCC, MVT::v2i64, 2 }, 2165 }; 2166 2167 static const CostTblEntry AVX512BWCostTbl[] = { 2168 { ISD::SETCC, MVT::v32i16, 1 }, 2169 { ISD::SETCC, MVT::v64i8, 1 }, 2170 2171 { ISD::SELECT, MVT::v32i16, 1 }, 2172 { ISD::SELECT, MVT::v64i8, 1 }, 2173 }; 2174 2175 static const CostTblEntry AVX512CostTbl[] = { 2176 { ISD::SETCC, MVT::v8i64, 1 }, 2177 { ISD::SETCC, MVT::v16i32, 1 }, 2178 { ISD::SETCC, MVT::v8f64, 1 }, 2179 { ISD::SETCC, MVT::v16f32, 1 }, 2180 2181 { ISD::SELECT, MVT::v8i64, 1 }, 2182 { ISD::SELECT, MVT::v16i32, 1 }, 2183 { ISD::SELECT, MVT::v8f64, 1 }, 2184 { ISD::SELECT, MVT::v16f32, 1 }, 2185 2186 { ISD::SETCC, MVT::v32i16, 2 }, // FIXME: should probably be 4 2187 { ISD::SETCC, MVT::v64i8, 2 }, // FIXME: should probably be 4 2188 2189 { ISD::SELECT, MVT::v32i16, 2 }, // FIXME: should be 3 2190 { ISD::SELECT, MVT::v64i8, 2 }, // FIXME: should be 3 2191 }; 2192 2193 static const CostTblEntry AVX2CostTbl[] = { 2194 { ISD::SETCC, MVT::v4i64, 1 }, 2195 { ISD::SETCC, MVT::v8i32, 1 }, 2196 { ISD::SETCC, MVT::v16i16, 1 }, 2197 { ISD::SETCC, MVT::v32i8, 1 }, 2198 2199 { ISD::SELECT, MVT::v4i64, 1 }, // pblendvb 2200 { ISD::SELECT, MVT::v8i32, 1 }, // pblendvb 2201 { ISD::SELECT, MVT::v16i16, 1 }, // pblendvb 2202 { ISD::SELECT, MVT::v32i8, 1 }, // pblendvb 2203 }; 2204 2205 static const CostTblEntry AVX1CostTbl[] = { 2206 { ISD::SETCC, MVT::v4f64, 1 }, 2207 { ISD::SETCC, MVT::v8f32, 1 }, 2208 // AVX1 does not support 8-wide integer compare. 2209 { ISD::SETCC, MVT::v4i64, 4 }, 2210 { ISD::SETCC, MVT::v8i32, 4 }, 2211 { ISD::SETCC, MVT::v16i16, 4 }, 2212 { ISD::SETCC, MVT::v32i8, 4 }, 2213 2214 { ISD::SELECT, MVT::v4f64, 1 }, // vblendvpd 2215 { ISD::SELECT, MVT::v8f32, 1 }, // vblendvps 2216 { ISD::SELECT, MVT::v4i64, 1 }, // vblendvpd 2217 { ISD::SELECT, MVT::v8i32, 1 }, // vblendvps 2218 { ISD::SELECT, MVT::v16i16, 3 }, // vandps + vandnps + vorps 2219 { ISD::SELECT, MVT::v32i8, 3 }, // vandps + vandnps + vorps 2220 }; 2221 2222 static const CostTblEntry SSE42CostTbl[] = { 2223 { ISD::SETCC, MVT::v2f64, 1 }, 2224 { ISD::SETCC, MVT::v4f32, 1 }, 2225 { ISD::SETCC, MVT::v2i64, 1 }, 2226 }; 2227 2228 static const CostTblEntry SSE41CostTbl[] = { 2229 { ISD::SELECT, MVT::v2f64, 1 }, // blendvpd 2230 { ISD::SELECT, MVT::v4f32, 1 }, // blendvps 2231 { ISD::SELECT, MVT::v2i64, 1 }, // pblendvb 2232 { ISD::SELECT, MVT::v4i32, 1 }, // pblendvb 2233 { ISD::SELECT, MVT::v8i16, 1 }, // pblendvb 2234 { ISD::SELECT, MVT::v16i8, 1 }, // pblendvb 2235 }; 2236 2237 static const CostTblEntry SSE2CostTbl[] = { 2238 { ISD::SETCC, MVT::v2f64, 2 }, 2239 { ISD::SETCC, MVT::f64, 1 }, 2240 { ISD::SETCC, MVT::v2i64, 8 }, 2241 { ISD::SETCC, MVT::v4i32, 1 }, 2242 { ISD::SETCC, MVT::v8i16, 1 }, 2243 { ISD::SETCC, MVT::v16i8, 1 }, 2244 2245 { ISD::SELECT, MVT::v2f64, 3 }, // andpd + andnpd + orpd 2246 { ISD::SELECT, MVT::v2i64, 3 }, // pand + pandn + por 2247 { ISD::SELECT, MVT::v4i32, 3 }, // pand + pandn + por 2248 { ISD::SELECT, MVT::v8i16, 3 }, // pand + pandn + por 2249 { ISD::SELECT, MVT::v16i8, 3 }, // pand + pandn + por 2250 }; 2251 2252 static const CostTblEntry SSE1CostTbl[] = { 2253 { ISD::SETCC, MVT::v4f32, 2 }, 2254 { ISD::SETCC, MVT::f32, 1 }, 2255 2256 { ISD::SELECT, MVT::v4f32, 3 }, // andps + andnps + orps 2257 }; 2258 2259 if (ST->isSLM()) 2260 if (const auto *Entry = CostTableLookup(SLMCostTbl, ISD, MTy)) 2261 return LT.first * (ExtraCost + Entry->Cost); 2262 2263 if (ST->hasBWI()) 2264 if (const auto *Entry = CostTableLookup(AVX512BWCostTbl, ISD, MTy)) 2265 return LT.first * (ExtraCost + Entry->Cost); 2266 2267 if (ST->hasAVX512()) 2268 if (const auto *Entry = CostTableLookup(AVX512CostTbl, ISD, MTy)) 2269 return LT.first * (ExtraCost + Entry->Cost); 2270 2271 if (ST->hasAVX2()) 2272 if (const auto *Entry = CostTableLookup(AVX2CostTbl, ISD, MTy)) 2273 return LT.first * (ExtraCost + Entry->Cost); 2274 2275 if (ST->hasAVX()) 2276 if (const auto *Entry = CostTableLookup(AVX1CostTbl, ISD, MTy)) 2277 return LT.first * (ExtraCost + Entry->Cost); 2278 2279 if (ST->hasSSE42()) 2280 if (const auto *Entry = CostTableLookup(SSE42CostTbl, ISD, MTy)) 2281 return LT.first * (ExtraCost + Entry->Cost); 2282 2283 if (ST->hasSSE41()) 2284 if (const auto *Entry = CostTableLookup(SSE41CostTbl, ISD, MTy)) 2285 return LT.first * (ExtraCost + Entry->Cost); 2286 2287 if (ST->hasSSE2()) 2288 if (const auto *Entry = CostTableLookup(SSE2CostTbl, ISD, MTy)) 2289 return LT.first * (ExtraCost + Entry->Cost); 2290 2291 if (ST->hasSSE1()) 2292 if (const auto *Entry = CostTableLookup(SSE1CostTbl, ISD, MTy)) 2293 return LT.first * (ExtraCost + Entry->Cost); 2294 2295 return BaseT::getCmpSelInstrCost(Opcode, ValTy, CondTy, VecPred, CostKind, I); 2296 } 2297 2298 unsigned X86TTIImpl::getAtomicMemIntrinsicMaxElementSize() const { return 16; } 2299 2300 InstructionCost 2301 X86TTIImpl::getTypeBasedIntrinsicInstrCost(const IntrinsicCostAttributes &ICA, 2302 TTI::TargetCostKind CostKind) { 2303 2304 // Costs should match the codegen from: 2305 // BITREVERSE: llvm\test\CodeGen\X86\vector-bitreverse.ll 2306 // BSWAP: llvm\test\CodeGen\X86\bswap-vector.ll 2307 // CTLZ: llvm\test\CodeGen\X86\vector-lzcnt-*.ll 2308 // CTPOP: llvm\test\CodeGen\X86\vector-popcnt-*.ll 2309 // CTTZ: llvm\test\CodeGen\X86\vector-tzcnt-*.ll 2310 2311 // TODO: Overflow intrinsics (*ADDO, *SUBO, *MULO) with vector types are not 2312 // specialized in these tables yet. 2313 static const CostTblEntry AVX512CDCostTbl[] = { 2314 { ISD::CTLZ, MVT::v8i64, 1 }, 2315 { ISD::CTLZ, MVT::v16i32, 1 }, 2316 { ISD::CTLZ, MVT::v32i16, 8 }, 2317 { ISD::CTLZ, MVT::v64i8, 20 }, 2318 { ISD::CTLZ, MVT::v4i64, 1 }, 2319 { ISD::CTLZ, MVT::v8i32, 1 }, 2320 { ISD::CTLZ, MVT::v16i16, 4 }, 2321 { ISD::CTLZ, MVT::v32i8, 10 }, 2322 { ISD::CTLZ, MVT::v2i64, 1 }, 2323 { ISD::CTLZ, MVT::v4i32, 1 }, 2324 { ISD::CTLZ, MVT::v8i16, 4 }, 2325 { ISD::CTLZ, MVT::v16i8, 4 }, 2326 }; 2327 static const CostTblEntry AVX512BWCostTbl[] = { 2328 { ISD::ABS, MVT::v32i16, 1 }, 2329 { ISD::ABS, MVT::v64i8, 1 }, 2330 { ISD::BITREVERSE, MVT::v8i64, 5 }, 2331 { ISD::BITREVERSE, MVT::v16i32, 5 }, 2332 { ISD::BITREVERSE, MVT::v32i16, 5 }, 2333 { ISD::BITREVERSE, MVT::v64i8, 5 }, 2334 { ISD::CTLZ, MVT::v8i64, 23 }, 2335 { ISD::CTLZ, MVT::v16i32, 22 }, 2336 { ISD::CTLZ, MVT::v32i16, 18 }, 2337 { ISD::CTLZ, MVT::v64i8, 17 }, 2338 { ISD::CTPOP, MVT::v8i64, 7 }, 2339 { ISD::CTPOP, MVT::v16i32, 11 }, 2340 { ISD::CTPOP, MVT::v32i16, 9 }, 2341 { ISD::CTPOP, MVT::v64i8, 6 }, 2342 { ISD::CTTZ, MVT::v8i64, 10 }, 2343 { ISD::CTTZ, MVT::v16i32, 14 }, 2344 { ISD::CTTZ, MVT::v32i16, 12 }, 2345 { ISD::CTTZ, MVT::v64i8, 9 }, 2346 { ISD::SADDSAT, MVT::v32i16, 1 }, 2347 { ISD::SADDSAT, MVT::v64i8, 1 }, 2348 { ISD::SMAX, MVT::v32i16, 1 }, 2349 { ISD::SMAX, MVT::v64i8, 1 }, 2350 { ISD::SMIN, MVT::v32i16, 1 }, 2351 { ISD::SMIN, MVT::v64i8, 1 }, 2352 { ISD::SSUBSAT, MVT::v32i16, 1 }, 2353 { ISD::SSUBSAT, MVT::v64i8, 1 }, 2354 { ISD::UADDSAT, MVT::v32i16, 1 }, 2355 { ISD::UADDSAT, MVT::v64i8, 1 }, 2356 { ISD::UMAX, MVT::v32i16, 1 }, 2357 { ISD::UMAX, MVT::v64i8, 1 }, 2358 { ISD::UMIN, MVT::v32i16, 1 }, 2359 { ISD::UMIN, MVT::v64i8, 1 }, 2360 { ISD::USUBSAT, MVT::v32i16, 1 }, 2361 { ISD::USUBSAT, MVT::v64i8, 1 }, 2362 }; 2363 static const CostTblEntry AVX512CostTbl[] = { 2364 { ISD::ABS, MVT::v8i64, 1 }, 2365 { ISD::ABS, MVT::v16i32, 1 }, 2366 { ISD::ABS, MVT::v32i16, 2 }, // FIXME: include split 2367 { ISD::ABS, MVT::v64i8, 2 }, // FIXME: include split 2368 { ISD::ABS, MVT::v4i64, 1 }, 2369 { ISD::ABS, MVT::v2i64, 1 }, 2370 { ISD::BITREVERSE, MVT::v8i64, 36 }, 2371 { ISD::BITREVERSE, MVT::v16i32, 24 }, 2372 { ISD::BITREVERSE, MVT::v32i16, 10 }, 2373 { ISD::BITREVERSE, MVT::v64i8, 10 }, 2374 { ISD::CTLZ, MVT::v8i64, 29 }, 2375 { ISD::CTLZ, MVT::v16i32, 35 }, 2376 { ISD::CTLZ, MVT::v32i16, 28 }, 2377 { ISD::CTLZ, MVT::v64i8, 18 }, 2378 { ISD::CTPOP, MVT::v8i64, 16 }, 2379 { ISD::CTPOP, MVT::v16i32, 24 }, 2380 { ISD::CTPOP, MVT::v32i16, 18 }, 2381 { ISD::CTPOP, MVT::v64i8, 12 }, 2382 { ISD::CTTZ, MVT::v8i64, 20 }, 2383 { ISD::CTTZ, MVT::v16i32, 28 }, 2384 { ISD::CTTZ, MVT::v32i16, 24 }, 2385 { ISD::CTTZ, MVT::v64i8, 18 }, 2386 { ISD::SMAX, MVT::v8i64, 1 }, 2387 { ISD::SMAX, MVT::v16i32, 1 }, 2388 { ISD::SMAX, MVT::v32i16, 2 }, // FIXME: include split 2389 { ISD::SMAX, MVT::v64i8, 2 }, // FIXME: include split 2390 { ISD::SMAX, MVT::v4i64, 1 }, 2391 { ISD::SMAX, MVT::v2i64, 1 }, 2392 { ISD::SMIN, MVT::v8i64, 1 }, 2393 { ISD::SMIN, MVT::v16i32, 1 }, 2394 { ISD::SMIN, MVT::v32i16, 2 }, // FIXME: include split 2395 { ISD::SMIN, MVT::v64i8, 2 }, // FIXME: include split 2396 { ISD::SMIN, MVT::v4i64, 1 }, 2397 { ISD::SMIN, MVT::v2i64, 1 }, 2398 { ISD::UMAX, MVT::v8i64, 1 }, 2399 { ISD::UMAX, MVT::v16i32, 1 }, 2400 { ISD::UMAX, MVT::v32i16, 2 }, // FIXME: include split 2401 { ISD::UMAX, MVT::v64i8, 2 }, // FIXME: include split 2402 { ISD::UMAX, MVT::v4i64, 1 }, 2403 { ISD::UMAX, MVT::v2i64, 1 }, 2404 { ISD::UMIN, MVT::v8i64, 1 }, 2405 { ISD::UMIN, MVT::v16i32, 1 }, 2406 { ISD::UMIN, MVT::v32i16, 2 }, // FIXME: include split 2407 { ISD::UMIN, MVT::v64i8, 2 }, // FIXME: include split 2408 { ISD::UMIN, MVT::v4i64, 1 }, 2409 { ISD::UMIN, MVT::v2i64, 1 }, 2410 { ISD::USUBSAT, MVT::v16i32, 2 }, // pmaxud + psubd 2411 { ISD::USUBSAT, MVT::v2i64, 2 }, // pmaxuq + psubq 2412 { ISD::USUBSAT, MVT::v4i64, 2 }, // pmaxuq + psubq 2413 { ISD::USUBSAT, MVT::v8i64, 2 }, // pmaxuq + psubq 2414 { ISD::UADDSAT, MVT::v16i32, 3 }, // not + pminud + paddd 2415 { ISD::UADDSAT, MVT::v2i64, 3 }, // not + pminuq + paddq 2416 { ISD::UADDSAT, MVT::v4i64, 3 }, // not + pminuq + paddq 2417 { ISD::UADDSAT, MVT::v8i64, 3 }, // not + pminuq + paddq 2418 { ISD::SADDSAT, MVT::v32i16, 2 }, // FIXME: include split 2419 { ISD::SADDSAT, MVT::v64i8, 2 }, // FIXME: include split 2420 { ISD::SSUBSAT, MVT::v32i16, 2 }, // FIXME: include split 2421 { ISD::SSUBSAT, MVT::v64i8, 2 }, // FIXME: include split 2422 { ISD::UADDSAT, MVT::v32i16, 2 }, // FIXME: include split 2423 { ISD::UADDSAT, MVT::v64i8, 2 }, // FIXME: include split 2424 { ISD::USUBSAT, MVT::v32i16, 2 }, // FIXME: include split 2425 { ISD::USUBSAT, MVT::v64i8, 2 }, // FIXME: include split 2426 { ISD::FMAXNUM, MVT::f32, 2 }, 2427 { ISD::FMAXNUM, MVT::v4f32, 2 }, 2428 { ISD::FMAXNUM, MVT::v8f32, 2 }, 2429 { ISD::FMAXNUM, MVT::v16f32, 2 }, 2430 { ISD::FMAXNUM, MVT::f64, 2 }, 2431 { ISD::FMAXNUM, MVT::v2f64, 2 }, 2432 { ISD::FMAXNUM, MVT::v4f64, 2 }, 2433 { ISD::FMAXNUM, MVT::v8f64, 2 }, 2434 }; 2435 static const CostTblEntry XOPCostTbl[] = { 2436 { ISD::BITREVERSE, MVT::v4i64, 4 }, 2437 { ISD::BITREVERSE, MVT::v8i32, 4 }, 2438 { ISD::BITREVERSE, MVT::v16i16, 4 }, 2439 { ISD::BITREVERSE, MVT::v32i8, 4 }, 2440 { ISD::BITREVERSE, MVT::v2i64, 1 }, 2441 { ISD::BITREVERSE, MVT::v4i32, 1 }, 2442 { ISD::BITREVERSE, MVT::v8i16, 1 }, 2443 { ISD::BITREVERSE, MVT::v16i8, 1 }, 2444 { ISD::BITREVERSE, MVT::i64, 3 }, 2445 { ISD::BITREVERSE, MVT::i32, 3 }, 2446 { ISD::BITREVERSE, MVT::i16, 3 }, 2447 { ISD::BITREVERSE, MVT::i8, 3 } 2448 }; 2449 static const CostTblEntry AVX2CostTbl[] = { 2450 { ISD::ABS, MVT::v4i64, 2 }, // VBLENDVPD(X,VPSUBQ(0,X),X) 2451 { ISD::ABS, MVT::v8i32, 1 }, 2452 { ISD::ABS, MVT::v16i16, 1 }, 2453 { ISD::ABS, MVT::v32i8, 1 }, 2454 { ISD::BITREVERSE, MVT::v4i64, 5 }, 2455 { ISD::BITREVERSE, MVT::v8i32, 5 }, 2456 { ISD::BITREVERSE, MVT::v16i16, 5 }, 2457 { ISD::BITREVERSE, MVT::v32i8, 5 }, 2458 { ISD::BSWAP, MVT::v4i64, 1 }, 2459 { ISD::BSWAP, MVT::v8i32, 1 }, 2460 { ISD::BSWAP, MVT::v16i16, 1 }, 2461 { ISD::CTLZ, MVT::v4i64, 23 }, 2462 { ISD::CTLZ, MVT::v8i32, 18 }, 2463 { ISD::CTLZ, MVT::v16i16, 14 }, 2464 { ISD::CTLZ, MVT::v32i8, 9 }, 2465 { ISD::CTPOP, MVT::v4i64, 7 }, 2466 { ISD::CTPOP, MVT::v8i32, 11 }, 2467 { ISD::CTPOP, MVT::v16i16, 9 }, 2468 { ISD::CTPOP, MVT::v32i8, 6 }, 2469 { ISD::CTTZ, MVT::v4i64, 10 }, 2470 { ISD::CTTZ, MVT::v8i32, 14 }, 2471 { ISD::CTTZ, MVT::v16i16, 12 }, 2472 { ISD::CTTZ, MVT::v32i8, 9 }, 2473 { ISD::SADDSAT, MVT::v16i16, 1 }, 2474 { ISD::SADDSAT, MVT::v32i8, 1 }, 2475 { ISD::SMAX, MVT::v8i32, 1 }, 2476 { ISD::SMAX, MVT::v16i16, 1 }, 2477 { ISD::SMAX, MVT::v32i8, 1 }, 2478 { ISD::SMIN, MVT::v8i32, 1 }, 2479 { ISD::SMIN, MVT::v16i16, 1 }, 2480 { ISD::SMIN, MVT::v32i8, 1 }, 2481 { ISD::SSUBSAT, MVT::v16i16, 1 }, 2482 { ISD::SSUBSAT, MVT::v32i8, 1 }, 2483 { ISD::UADDSAT, MVT::v16i16, 1 }, 2484 { ISD::UADDSAT, MVT::v32i8, 1 }, 2485 { ISD::UADDSAT, MVT::v8i32, 3 }, // not + pminud + paddd 2486 { ISD::UMAX, MVT::v8i32, 1 }, 2487 { ISD::UMAX, MVT::v16i16, 1 }, 2488 { ISD::UMAX, MVT::v32i8, 1 }, 2489 { ISD::UMIN, MVT::v8i32, 1 }, 2490 { ISD::UMIN, MVT::v16i16, 1 }, 2491 { ISD::UMIN, MVT::v32i8, 1 }, 2492 { ISD::USUBSAT, MVT::v16i16, 1 }, 2493 { ISD::USUBSAT, MVT::v32i8, 1 }, 2494 { ISD::USUBSAT, MVT::v8i32, 2 }, // pmaxud + psubd 2495 { ISD::FMAXNUM, MVT::v8f32, 3 }, // MAXPS + CMPUNORDPS + BLENDVPS 2496 { ISD::FMAXNUM, MVT::v4f64, 3 }, // MAXPD + CMPUNORDPD + BLENDVPD 2497 { ISD::FSQRT, MVT::f32, 7 }, // Haswell from http://www.agner.org/ 2498 { ISD::FSQRT, MVT::v4f32, 7 }, // Haswell from http://www.agner.org/ 2499 { ISD::FSQRT, MVT::v8f32, 14 }, // Haswell from http://www.agner.org/ 2500 { ISD::FSQRT, MVT::f64, 14 }, // Haswell from http://www.agner.org/ 2501 { ISD::FSQRT, MVT::v2f64, 14 }, // Haswell from http://www.agner.org/ 2502 { ISD::FSQRT, MVT::v4f64, 28 }, // Haswell from http://www.agner.org/ 2503 }; 2504 static const CostTblEntry AVX1CostTbl[] = { 2505 { ISD::ABS, MVT::v4i64, 5 }, // VBLENDVPD(X,VPSUBQ(0,X),X) 2506 { ISD::ABS, MVT::v8i32, 3 }, 2507 { ISD::ABS, MVT::v16i16, 3 }, 2508 { ISD::ABS, MVT::v32i8, 3 }, 2509 { ISD::BITREVERSE, MVT::v4i64, 12 }, // 2 x 128-bit Op + extract/insert 2510 { ISD::BITREVERSE, MVT::v8i32, 12 }, // 2 x 128-bit Op + extract/insert 2511 { ISD::BITREVERSE, MVT::v16i16, 12 }, // 2 x 128-bit Op + extract/insert 2512 { ISD::BITREVERSE, MVT::v32i8, 12 }, // 2 x 128-bit Op + extract/insert 2513 { ISD::BSWAP, MVT::v4i64, 4 }, 2514 { ISD::BSWAP, MVT::v8i32, 4 }, 2515 { ISD::BSWAP, MVT::v16i16, 4 }, 2516 { ISD::CTLZ, MVT::v4i64, 48 }, // 2 x 128-bit Op + extract/insert 2517 { ISD::CTLZ, MVT::v8i32, 38 }, // 2 x 128-bit Op + extract/insert 2518 { ISD::CTLZ, MVT::v16i16, 30 }, // 2 x 128-bit Op + extract/insert 2519 { ISD::CTLZ, MVT::v32i8, 20 }, // 2 x 128-bit Op + extract/insert 2520 { ISD::CTPOP, MVT::v4i64, 16 }, // 2 x 128-bit Op + extract/insert 2521 { ISD::CTPOP, MVT::v8i32, 24 }, // 2 x 128-bit Op + extract/insert 2522 { ISD::CTPOP, MVT::v16i16, 20 }, // 2 x 128-bit Op + extract/insert 2523 { ISD::CTPOP, MVT::v32i8, 14 }, // 2 x 128-bit Op + extract/insert 2524 { ISD::CTTZ, MVT::v4i64, 22 }, // 2 x 128-bit Op + extract/insert 2525 { ISD::CTTZ, MVT::v8i32, 30 }, // 2 x 128-bit Op + extract/insert 2526 { ISD::CTTZ, MVT::v16i16, 26 }, // 2 x 128-bit Op + extract/insert 2527 { ISD::CTTZ, MVT::v32i8, 20 }, // 2 x 128-bit Op + extract/insert 2528 { ISD::SADDSAT, MVT::v16i16, 4 }, // 2 x 128-bit Op + extract/insert 2529 { ISD::SADDSAT, MVT::v32i8, 4 }, // 2 x 128-bit Op + extract/insert 2530 { ISD::SMAX, MVT::v8i32, 4 }, // 2 x 128-bit Op + extract/insert 2531 { ISD::SMAX, MVT::v16i16, 4 }, // 2 x 128-bit Op + extract/insert 2532 { ISD::SMAX, MVT::v32i8, 4 }, // 2 x 128-bit Op + extract/insert 2533 { ISD::SMIN, MVT::v8i32, 4 }, // 2 x 128-bit Op + extract/insert 2534 { ISD::SMIN, MVT::v16i16, 4 }, // 2 x 128-bit Op + extract/insert 2535 { ISD::SMIN, MVT::v32i8, 4 }, // 2 x 128-bit Op + extract/insert 2536 { ISD::SSUBSAT, MVT::v16i16, 4 }, // 2 x 128-bit Op + extract/insert 2537 { ISD::SSUBSAT, MVT::v32i8, 4 }, // 2 x 128-bit Op + extract/insert 2538 { ISD::UADDSAT, MVT::v16i16, 4 }, // 2 x 128-bit Op + extract/insert 2539 { ISD::UADDSAT, MVT::v32i8, 4 }, // 2 x 128-bit Op + extract/insert 2540 { ISD::UADDSAT, MVT::v8i32, 8 }, // 2 x 128-bit Op + extract/insert 2541 { ISD::UMAX, MVT::v8i32, 4 }, // 2 x 128-bit Op + extract/insert 2542 { ISD::UMAX, MVT::v16i16, 4 }, // 2 x 128-bit Op + extract/insert 2543 { ISD::UMAX, MVT::v32i8, 4 }, // 2 x 128-bit Op + extract/insert 2544 { ISD::UMIN, MVT::v8i32, 4 }, // 2 x 128-bit Op + extract/insert 2545 { ISD::UMIN, MVT::v16i16, 4 }, // 2 x 128-bit Op + extract/insert 2546 { ISD::UMIN, MVT::v32i8, 4 }, // 2 x 128-bit Op + extract/insert 2547 { ISD::USUBSAT, MVT::v16i16, 4 }, // 2 x 128-bit Op + extract/insert 2548 { ISD::USUBSAT, MVT::v32i8, 4 }, // 2 x 128-bit Op + extract/insert 2549 { ISD::USUBSAT, MVT::v8i32, 6 }, // 2 x 128-bit Op + extract/insert 2550 { ISD::FMAXNUM, MVT::f32, 3 }, // MAXSS + CMPUNORDSS + BLENDVPS 2551 { ISD::FMAXNUM, MVT::v4f32, 3 }, // MAXPS + CMPUNORDPS + BLENDVPS 2552 { ISD::FMAXNUM, MVT::v8f32, 5 }, // MAXPS + CMPUNORDPS + BLENDVPS + ? 2553 { ISD::FMAXNUM, MVT::f64, 3 }, // MAXSD + CMPUNORDSD + BLENDVPD 2554 { ISD::FMAXNUM, MVT::v2f64, 3 }, // MAXPD + CMPUNORDPD + BLENDVPD 2555 { ISD::FMAXNUM, MVT::v4f64, 5 }, // MAXPD + CMPUNORDPD + BLENDVPD + ? 2556 { ISD::FSQRT, MVT::f32, 14 }, // SNB from http://www.agner.org/ 2557 { ISD::FSQRT, MVT::v4f32, 14 }, // SNB from http://www.agner.org/ 2558 { ISD::FSQRT, MVT::v8f32, 28 }, // SNB from http://www.agner.org/ 2559 { ISD::FSQRT, MVT::f64, 21 }, // SNB from http://www.agner.org/ 2560 { ISD::FSQRT, MVT::v2f64, 21 }, // SNB from http://www.agner.org/ 2561 { ISD::FSQRT, MVT::v4f64, 43 }, // SNB from http://www.agner.org/ 2562 }; 2563 static const CostTblEntry GLMCostTbl[] = { 2564 { ISD::FSQRT, MVT::f32, 19 }, // sqrtss 2565 { ISD::FSQRT, MVT::v4f32, 37 }, // sqrtps 2566 { ISD::FSQRT, MVT::f64, 34 }, // sqrtsd 2567 { ISD::FSQRT, MVT::v2f64, 67 }, // sqrtpd 2568 }; 2569 static const CostTblEntry SLMCostTbl[] = { 2570 { ISD::FSQRT, MVT::f32, 20 }, // sqrtss 2571 { ISD::FSQRT, MVT::v4f32, 40 }, // sqrtps 2572 { ISD::FSQRT, MVT::f64, 35 }, // sqrtsd 2573 { ISD::FSQRT, MVT::v2f64, 70 }, // sqrtpd 2574 }; 2575 static const CostTblEntry SSE42CostTbl[] = { 2576 { ISD::USUBSAT, MVT::v4i32, 2 }, // pmaxud + psubd 2577 { ISD::UADDSAT, MVT::v4i32, 3 }, // not + pminud + paddd 2578 { ISD::FSQRT, MVT::f32, 18 }, // Nehalem from http://www.agner.org/ 2579 { ISD::FSQRT, MVT::v4f32, 18 }, // Nehalem from http://www.agner.org/ 2580 }; 2581 static const CostTblEntry SSE41CostTbl[] = { 2582 { ISD::ABS, MVT::v2i64, 2 }, // BLENDVPD(X,PSUBQ(0,X),X) 2583 { ISD::SMAX, MVT::v4i32, 1 }, 2584 { ISD::SMAX, MVT::v16i8, 1 }, 2585 { ISD::SMIN, MVT::v4i32, 1 }, 2586 { ISD::SMIN, MVT::v16i8, 1 }, 2587 { ISD::UMAX, MVT::v4i32, 1 }, 2588 { ISD::UMAX, MVT::v8i16, 1 }, 2589 { ISD::UMIN, MVT::v4i32, 1 }, 2590 { ISD::UMIN, MVT::v8i16, 1 }, 2591 }; 2592 static const CostTblEntry SSSE3CostTbl[] = { 2593 { ISD::ABS, MVT::v4i32, 1 }, 2594 { ISD::ABS, MVT::v8i16, 1 }, 2595 { ISD::ABS, MVT::v16i8, 1 }, 2596 { ISD::BITREVERSE, MVT::v2i64, 5 }, 2597 { ISD::BITREVERSE, MVT::v4i32, 5 }, 2598 { ISD::BITREVERSE, MVT::v8i16, 5 }, 2599 { ISD::BITREVERSE, MVT::v16i8, 5 }, 2600 { ISD::BSWAP, MVT::v2i64, 1 }, 2601 { ISD::BSWAP, MVT::v4i32, 1 }, 2602 { ISD::BSWAP, MVT::v8i16, 1 }, 2603 { ISD::CTLZ, MVT::v2i64, 23 }, 2604 { ISD::CTLZ, MVT::v4i32, 18 }, 2605 { ISD::CTLZ, MVT::v8i16, 14 }, 2606 { ISD::CTLZ, MVT::v16i8, 9 }, 2607 { ISD::CTPOP, MVT::v2i64, 7 }, 2608 { ISD::CTPOP, MVT::v4i32, 11 }, 2609 { ISD::CTPOP, MVT::v8i16, 9 }, 2610 { ISD::CTPOP, MVT::v16i8, 6 }, 2611 { ISD::CTTZ, MVT::v2i64, 10 }, 2612 { ISD::CTTZ, MVT::v4i32, 14 }, 2613 { ISD::CTTZ, MVT::v8i16, 12 }, 2614 { ISD::CTTZ, MVT::v16i8, 9 } 2615 }; 2616 static const CostTblEntry SSE2CostTbl[] = { 2617 { ISD::ABS, MVT::v2i64, 4 }, 2618 { ISD::ABS, MVT::v4i32, 3 }, 2619 { ISD::ABS, MVT::v8i16, 2 }, 2620 { ISD::ABS, MVT::v16i8, 2 }, 2621 { ISD::BITREVERSE, MVT::v2i64, 29 }, 2622 { ISD::BITREVERSE, MVT::v4i32, 27 }, 2623 { ISD::BITREVERSE, MVT::v8i16, 27 }, 2624 { ISD::BITREVERSE, MVT::v16i8, 20 }, 2625 { ISD::BSWAP, MVT::v2i64, 7 }, 2626 { ISD::BSWAP, MVT::v4i32, 7 }, 2627 { ISD::BSWAP, MVT::v8i16, 7 }, 2628 { ISD::CTLZ, MVT::v2i64, 25 }, 2629 { ISD::CTLZ, MVT::v4i32, 26 }, 2630 { ISD::CTLZ, MVT::v8i16, 20 }, 2631 { ISD::CTLZ, MVT::v16i8, 17 }, 2632 { ISD::CTPOP, MVT::v2i64, 12 }, 2633 { ISD::CTPOP, MVT::v4i32, 15 }, 2634 { ISD::CTPOP, MVT::v8i16, 13 }, 2635 { ISD::CTPOP, MVT::v16i8, 10 }, 2636 { ISD::CTTZ, MVT::v2i64, 14 }, 2637 { ISD::CTTZ, MVT::v4i32, 18 }, 2638 { ISD::CTTZ, MVT::v8i16, 16 }, 2639 { ISD::CTTZ, MVT::v16i8, 13 }, 2640 { ISD::SADDSAT, MVT::v8i16, 1 }, 2641 { ISD::SADDSAT, MVT::v16i8, 1 }, 2642 { ISD::SMAX, MVT::v8i16, 1 }, 2643 { ISD::SMIN, MVT::v8i16, 1 }, 2644 { ISD::SSUBSAT, MVT::v8i16, 1 }, 2645 { ISD::SSUBSAT, MVT::v16i8, 1 }, 2646 { ISD::UADDSAT, MVT::v8i16, 1 }, 2647 { ISD::UADDSAT, MVT::v16i8, 1 }, 2648 { ISD::UMAX, MVT::v8i16, 2 }, 2649 { ISD::UMAX, MVT::v16i8, 1 }, 2650 { ISD::UMIN, MVT::v8i16, 2 }, 2651 { ISD::UMIN, MVT::v16i8, 1 }, 2652 { ISD::USUBSAT, MVT::v8i16, 1 }, 2653 { ISD::USUBSAT, MVT::v16i8, 1 }, 2654 { ISD::FMAXNUM, MVT::f64, 4 }, 2655 { ISD::FMAXNUM, MVT::v2f64, 4 }, 2656 { ISD::FSQRT, MVT::f64, 32 }, // Nehalem from http://www.agner.org/ 2657 { ISD::FSQRT, MVT::v2f64, 32 }, // Nehalem from http://www.agner.org/ 2658 }; 2659 static const CostTblEntry SSE1CostTbl[] = { 2660 { ISD::FMAXNUM, MVT::f32, 4 }, 2661 { ISD::FMAXNUM, MVT::v4f32, 4 }, 2662 { ISD::FSQRT, MVT::f32, 28 }, // Pentium III from http://www.agner.org/ 2663 { ISD::FSQRT, MVT::v4f32, 56 }, // Pentium III from http://www.agner.org/ 2664 }; 2665 static const CostTblEntry BMI64CostTbl[] = { // 64-bit targets 2666 { ISD::CTTZ, MVT::i64, 1 }, 2667 }; 2668 static const CostTblEntry BMI32CostTbl[] = { // 32 or 64-bit targets 2669 { ISD::CTTZ, MVT::i32, 1 }, 2670 { ISD::CTTZ, MVT::i16, 1 }, 2671 { ISD::CTTZ, MVT::i8, 1 }, 2672 }; 2673 static const CostTblEntry LZCNT64CostTbl[] = { // 64-bit targets 2674 { ISD::CTLZ, MVT::i64, 1 }, 2675 }; 2676 static const CostTblEntry LZCNT32CostTbl[] = { // 32 or 64-bit targets 2677 { ISD::CTLZ, MVT::i32, 1 }, 2678 { ISD::CTLZ, MVT::i16, 1 }, 2679 { ISD::CTLZ, MVT::i8, 1 }, 2680 }; 2681 static const CostTblEntry POPCNT64CostTbl[] = { // 64-bit targets 2682 { ISD::CTPOP, MVT::i64, 1 }, 2683 }; 2684 static const CostTblEntry POPCNT32CostTbl[] = { // 32 or 64-bit targets 2685 { ISD::CTPOP, MVT::i32, 1 }, 2686 { ISD::CTPOP, MVT::i16, 1 }, 2687 { ISD::CTPOP, MVT::i8, 1 }, 2688 }; 2689 static const CostTblEntry X64CostTbl[] = { // 64-bit targets 2690 { ISD::ABS, MVT::i64, 2 }, // SUB+CMOV 2691 { ISD::BITREVERSE, MVT::i64, 14 }, 2692 { ISD::CTLZ, MVT::i64, 4 }, // BSR+XOR or BSR+XOR+CMOV 2693 { ISD::CTTZ, MVT::i64, 3 }, // TEST+BSF+CMOV/BRANCH 2694 { ISD::CTPOP, MVT::i64, 10 }, 2695 { ISD::SADDO, MVT::i64, 1 }, 2696 { ISD::UADDO, MVT::i64, 1 }, 2697 { ISD::UMULO, MVT::i64, 2 }, // mulq + seto 2698 }; 2699 static const CostTblEntry X86CostTbl[] = { // 32 or 64-bit targets 2700 { ISD::ABS, MVT::i32, 2 }, // SUB+CMOV 2701 { ISD::ABS, MVT::i16, 2 }, // SUB+CMOV 2702 { ISD::BITREVERSE, MVT::i32, 14 }, 2703 { ISD::BITREVERSE, MVT::i16, 14 }, 2704 { ISD::BITREVERSE, MVT::i8, 11 }, 2705 { ISD::CTLZ, MVT::i32, 4 }, // BSR+XOR or BSR+XOR+CMOV 2706 { ISD::CTLZ, MVT::i16, 4 }, // BSR+XOR or BSR+XOR+CMOV 2707 { ISD::CTLZ, MVT::i8, 4 }, // BSR+XOR or BSR+XOR+CMOV 2708 { ISD::CTTZ, MVT::i32, 3 }, // TEST+BSF+CMOV/BRANCH 2709 { ISD::CTTZ, MVT::i16, 3 }, // TEST+BSF+CMOV/BRANCH 2710 { ISD::CTTZ, MVT::i8, 3 }, // TEST+BSF+CMOV/BRANCH 2711 { ISD::CTPOP, MVT::i32, 8 }, 2712 { ISD::CTPOP, MVT::i16, 9 }, 2713 { ISD::CTPOP, MVT::i8, 7 }, 2714 { ISD::SADDO, MVT::i32, 1 }, 2715 { ISD::SADDO, MVT::i16, 1 }, 2716 { ISD::SADDO, MVT::i8, 1 }, 2717 { ISD::UADDO, MVT::i32, 1 }, 2718 { ISD::UADDO, MVT::i16, 1 }, 2719 { ISD::UADDO, MVT::i8, 1 }, 2720 { ISD::UMULO, MVT::i32, 2 }, // mul + seto 2721 { ISD::UMULO, MVT::i16, 2 }, 2722 { ISD::UMULO, MVT::i8, 2 }, 2723 }; 2724 2725 Type *RetTy = ICA.getReturnType(); 2726 Type *OpTy = RetTy; 2727 Intrinsic::ID IID = ICA.getID(); 2728 unsigned ISD = ISD::DELETED_NODE; 2729 switch (IID) { 2730 default: 2731 break; 2732 case Intrinsic::abs: 2733 ISD = ISD::ABS; 2734 break; 2735 case Intrinsic::bitreverse: 2736 ISD = ISD::BITREVERSE; 2737 break; 2738 case Intrinsic::bswap: 2739 ISD = ISD::BSWAP; 2740 break; 2741 case Intrinsic::ctlz: 2742 ISD = ISD::CTLZ; 2743 break; 2744 case Intrinsic::ctpop: 2745 ISD = ISD::CTPOP; 2746 break; 2747 case Intrinsic::cttz: 2748 ISD = ISD::CTTZ; 2749 break; 2750 case Intrinsic::maxnum: 2751 case Intrinsic::minnum: 2752 // FMINNUM has same costs so don't duplicate. 2753 ISD = ISD::FMAXNUM; 2754 break; 2755 case Intrinsic::sadd_sat: 2756 ISD = ISD::SADDSAT; 2757 break; 2758 case Intrinsic::smax: 2759 ISD = ISD::SMAX; 2760 break; 2761 case Intrinsic::smin: 2762 ISD = ISD::SMIN; 2763 break; 2764 case Intrinsic::ssub_sat: 2765 ISD = ISD::SSUBSAT; 2766 break; 2767 case Intrinsic::uadd_sat: 2768 ISD = ISD::UADDSAT; 2769 break; 2770 case Intrinsic::umax: 2771 ISD = ISD::UMAX; 2772 break; 2773 case Intrinsic::umin: 2774 ISD = ISD::UMIN; 2775 break; 2776 case Intrinsic::usub_sat: 2777 ISD = ISD::USUBSAT; 2778 break; 2779 case Intrinsic::sqrt: 2780 ISD = ISD::FSQRT; 2781 break; 2782 case Intrinsic::sadd_with_overflow: 2783 case Intrinsic::ssub_with_overflow: 2784 // SSUBO has same costs so don't duplicate. 2785 ISD = ISD::SADDO; 2786 OpTy = RetTy->getContainedType(0); 2787 break; 2788 case Intrinsic::uadd_with_overflow: 2789 case Intrinsic::usub_with_overflow: 2790 // USUBO has same costs so don't duplicate. 2791 ISD = ISD::UADDO; 2792 OpTy = RetTy->getContainedType(0); 2793 break; 2794 case Intrinsic::umul_with_overflow: 2795 case Intrinsic::smul_with_overflow: 2796 // SMULO has same costs so don't duplicate. 2797 ISD = ISD::UMULO; 2798 OpTy = RetTy->getContainedType(0); 2799 break; 2800 } 2801 2802 if (ISD != ISD::DELETED_NODE) { 2803 // Legalize the type. 2804 std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, OpTy); 2805 MVT MTy = LT.second; 2806 2807 // Attempt to lookup cost. 2808 if (ISD == ISD::BITREVERSE && ST->hasGFNI() && ST->hasSSSE3() && 2809 MTy.isVector()) { 2810 // With PSHUFB the code is very similar for all types. If we have integer 2811 // byte operations, we just need a GF2P8AFFINEQB for vXi8. For other types 2812 // we also need a PSHUFB. 2813 unsigned Cost = MTy.getVectorElementType() == MVT::i8 ? 1 : 2; 2814 2815 // Without byte operations, we need twice as many GF2P8AFFINEQB and PSHUFB 2816 // instructions. We also need an extract and an insert. 2817 if (!(MTy.is128BitVector() || (ST->hasAVX2() && MTy.is256BitVector()) || 2818 (ST->hasBWI() && MTy.is512BitVector()))) 2819 Cost = Cost * 2 + 2; 2820 2821 return LT.first * Cost; 2822 } 2823 2824 auto adjustTableCost = [](const CostTblEntry &Entry, int LegalizationCost, 2825 FastMathFlags FMF) { 2826 // If there are no NANs to deal with, then these are reduced to a 2827 // single MIN** or MAX** instruction instead of the MIN/CMP/SELECT that we 2828 // assume is used in the non-fast case. 2829 if (Entry.ISD == ISD::FMAXNUM || Entry.ISD == ISD::FMINNUM) { 2830 if (FMF.noNaNs()) 2831 return LegalizationCost * 1; 2832 } 2833 return LegalizationCost * (int)Entry.Cost; 2834 }; 2835 2836 if (ST->useGLMDivSqrtCosts()) 2837 if (const auto *Entry = CostTableLookup(GLMCostTbl, ISD, MTy)) 2838 return adjustTableCost(*Entry, LT.first, ICA.getFlags()); 2839 2840 if (ST->isSLM()) 2841 if (const auto *Entry = CostTableLookup(SLMCostTbl, ISD, MTy)) 2842 return adjustTableCost(*Entry, LT.first, ICA.getFlags()); 2843 2844 if (ST->hasCDI()) 2845 if (const auto *Entry = CostTableLookup(AVX512CDCostTbl, ISD, MTy)) 2846 return adjustTableCost(*Entry, LT.first, ICA.getFlags()); 2847 2848 if (ST->hasBWI()) 2849 if (const auto *Entry = CostTableLookup(AVX512BWCostTbl, ISD, MTy)) 2850 return adjustTableCost(*Entry, LT.first, ICA.getFlags()); 2851 2852 if (ST->hasAVX512()) 2853 if (const auto *Entry = CostTableLookup(AVX512CostTbl, ISD, MTy)) 2854 return adjustTableCost(*Entry, LT.first, ICA.getFlags()); 2855 2856 if (ST->hasXOP()) 2857 if (const auto *Entry = CostTableLookup(XOPCostTbl, ISD, MTy)) 2858 return adjustTableCost(*Entry, LT.first, ICA.getFlags()); 2859 2860 if (ST->hasAVX2()) 2861 if (const auto *Entry = CostTableLookup(AVX2CostTbl, ISD, MTy)) 2862 return adjustTableCost(*Entry, LT.first, ICA.getFlags()); 2863 2864 if (ST->hasAVX()) 2865 if (const auto *Entry = CostTableLookup(AVX1CostTbl, ISD, MTy)) 2866 return adjustTableCost(*Entry, LT.first, ICA.getFlags()); 2867 2868 if (ST->hasSSE42()) 2869 if (const auto *Entry = CostTableLookup(SSE42CostTbl, ISD, MTy)) 2870 return adjustTableCost(*Entry, LT.first, ICA.getFlags()); 2871 2872 if (ST->hasSSE41()) 2873 if (const auto *Entry = CostTableLookup(SSE41CostTbl, ISD, MTy)) 2874 return adjustTableCost(*Entry, LT.first, ICA.getFlags()); 2875 2876 if (ST->hasSSSE3()) 2877 if (const auto *Entry = CostTableLookup(SSSE3CostTbl, ISD, MTy)) 2878 return adjustTableCost(*Entry, LT.first, ICA.getFlags()); 2879 2880 if (ST->hasSSE2()) 2881 if (const auto *Entry = CostTableLookup(SSE2CostTbl, ISD, MTy)) 2882 return adjustTableCost(*Entry, LT.first, ICA.getFlags()); 2883 2884 if (ST->hasSSE1()) 2885 if (const auto *Entry = CostTableLookup(SSE1CostTbl, ISD, MTy)) 2886 return adjustTableCost(*Entry, LT.first, ICA.getFlags()); 2887 2888 if (ST->hasBMI()) { 2889 if (ST->is64Bit()) 2890 if (const auto *Entry = CostTableLookup(BMI64CostTbl, ISD, MTy)) 2891 return adjustTableCost(*Entry, LT.first, ICA.getFlags()); 2892 2893 if (const auto *Entry = CostTableLookup(BMI32CostTbl, ISD, MTy)) 2894 return adjustTableCost(*Entry, LT.first, ICA.getFlags()); 2895 } 2896 2897 if (ST->hasLZCNT()) { 2898 if (ST->is64Bit()) 2899 if (const auto *Entry = CostTableLookup(LZCNT64CostTbl, ISD, MTy)) 2900 return adjustTableCost(*Entry, LT.first, ICA.getFlags()); 2901 2902 if (const auto *Entry = CostTableLookup(LZCNT32CostTbl, ISD, MTy)) 2903 return adjustTableCost(*Entry, LT.first, ICA.getFlags()); 2904 } 2905 2906 if (ST->hasPOPCNT()) { 2907 if (ST->is64Bit()) 2908 if (const auto *Entry = CostTableLookup(POPCNT64CostTbl, ISD, MTy)) 2909 return adjustTableCost(*Entry, LT.first, ICA.getFlags()); 2910 2911 if (const auto *Entry = CostTableLookup(POPCNT32CostTbl, ISD, MTy)) 2912 return adjustTableCost(*Entry, LT.first, ICA.getFlags()); 2913 } 2914 2915 // TODO - add BMI (TZCNT) scalar handling 2916 2917 if (ST->is64Bit()) 2918 if (const auto *Entry = CostTableLookup(X64CostTbl, ISD, MTy)) 2919 return adjustTableCost(*Entry, LT.first, ICA.getFlags()); 2920 2921 if (const auto *Entry = CostTableLookup(X86CostTbl, ISD, MTy)) 2922 return adjustTableCost(*Entry, LT.first, ICA.getFlags()); 2923 } 2924 2925 return BaseT::getIntrinsicInstrCost(ICA, CostKind); 2926 } 2927 2928 InstructionCost 2929 X86TTIImpl::getIntrinsicInstrCost(const IntrinsicCostAttributes &ICA, 2930 TTI::TargetCostKind CostKind) { 2931 if (ICA.isTypeBasedOnly()) 2932 return getTypeBasedIntrinsicInstrCost(ICA, CostKind); 2933 2934 static const CostTblEntry AVX512CostTbl[] = { 2935 { ISD::ROTL, MVT::v8i64, 1 }, 2936 { ISD::ROTL, MVT::v4i64, 1 }, 2937 { ISD::ROTL, MVT::v2i64, 1 }, 2938 { ISD::ROTL, MVT::v16i32, 1 }, 2939 { ISD::ROTL, MVT::v8i32, 1 }, 2940 { ISD::ROTL, MVT::v4i32, 1 }, 2941 { ISD::ROTR, MVT::v8i64, 1 }, 2942 { ISD::ROTR, MVT::v4i64, 1 }, 2943 { ISD::ROTR, MVT::v2i64, 1 }, 2944 { ISD::ROTR, MVT::v16i32, 1 }, 2945 { ISD::ROTR, MVT::v8i32, 1 }, 2946 { ISD::ROTR, MVT::v4i32, 1 } 2947 }; 2948 // XOP: ROTL = VPROT(X,Y), ROTR = VPROT(X,SUB(0,Y)) 2949 static const CostTblEntry XOPCostTbl[] = { 2950 { ISD::ROTL, MVT::v4i64, 4 }, 2951 { ISD::ROTL, MVT::v8i32, 4 }, 2952 { ISD::ROTL, MVT::v16i16, 4 }, 2953 { ISD::ROTL, MVT::v32i8, 4 }, 2954 { ISD::ROTL, MVT::v2i64, 1 }, 2955 { ISD::ROTL, MVT::v4i32, 1 }, 2956 { ISD::ROTL, MVT::v8i16, 1 }, 2957 { ISD::ROTL, MVT::v16i8, 1 }, 2958 { ISD::ROTR, MVT::v4i64, 6 }, 2959 { ISD::ROTR, MVT::v8i32, 6 }, 2960 { ISD::ROTR, MVT::v16i16, 6 }, 2961 { ISD::ROTR, MVT::v32i8, 6 }, 2962 { ISD::ROTR, MVT::v2i64, 2 }, 2963 { ISD::ROTR, MVT::v4i32, 2 }, 2964 { ISD::ROTR, MVT::v8i16, 2 }, 2965 { ISD::ROTR, MVT::v16i8, 2 } 2966 }; 2967 static const CostTblEntry X64CostTbl[] = { // 64-bit targets 2968 { ISD::ROTL, MVT::i64, 1 }, 2969 { ISD::ROTR, MVT::i64, 1 }, 2970 { ISD::FSHL, MVT::i64, 4 } 2971 }; 2972 static const CostTblEntry X86CostTbl[] = { // 32 or 64-bit targets 2973 { ISD::ROTL, MVT::i32, 1 }, 2974 { ISD::ROTL, MVT::i16, 1 }, 2975 { ISD::ROTL, MVT::i8, 1 }, 2976 { ISD::ROTR, MVT::i32, 1 }, 2977 { ISD::ROTR, MVT::i16, 1 }, 2978 { ISD::ROTR, MVT::i8, 1 }, 2979 { ISD::FSHL, MVT::i32, 4 }, 2980 { ISD::FSHL, MVT::i16, 4 }, 2981 { ISD::FSHL, MVT::i8, 4 } 2982 }; 2983 2984 Intrinsic::ID IID = ICA.getID(); 2985 Type *RetTy = ICA.getReturnType(); 2986 const SmallVectorImpl<const Value *> &Args = ICA.getArgs(); 2987 unsigned ISD = ISD::DELETED_NODE; 2988 switch (IID) { 2989 default: 2990 break; 2991 case Intrinsic::fshl: 2992 ISD = ISD::FSHL; 2993 if (Args[0] == Args[1]) 2994 ISD = ISD::ROTL; 2995 break; 2996 case Intrinsic::fshr: 2997 // FSHR has same costs so don't duplicate. 2998 ISD = ISD::FSHL; 2999 if (Args[0] == Args[1]) 3000 ISD = ISD::ROTR; 3001 break; 3002 } 3003 3004 if (ISD != ISD::DELETED_NODE) { 3005 // Legalize the type. 3006 std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, RetTy); 3007 MVT MTy = LT.second; 3008 3009 // Attempt to lookup cost. 3010 if (ST->hasAVX512()) 3011 if (const auto *Entry = CostTableLookup(AVX512CostTbl, ISD, MTy)) 3012 return LT.first * Entry->Cost; 3013 3014 if (ST->hasXOP()) 3015 if (const auto *Entry = CostTableLookup(XOPCostTbl, ISD, MTy)) 3016 return LT.first * Entry->Cost; 3017 3018 if (ST->is64Bit()) 3019 if (const auto *Entry = CostTableLookup(X64CostTbl, ISD, MTy)) 3020 return LT.first * Entry->Cost; 3021 3022 if (const auto *Entry = CostTableLookup(X86CostTbl, ISD, MTy)) 3023 return LT.first * Entry->Cost; 3024 } 3025 3026 return BaseT::getIntrinsicInstrCost(ICA, CostKind); 3027 } 3028 3029 InstructionCost X86TTIImpl::getVectorInstrCost(unsigned Opcode, Type *Val, 3030 unsigned Index) { 3031 static const CostTblEntry SLMCostTbl[] = { 3032 { ISD::EXTRACT_VECTOR_ELT, MVT::i8, 4 }, 3033 { ISD::EXTRACT_VECTOR_ELT, MVT::i16, 4 }, 3034 { ISD::EXTRACT_VECTOR_ELT, MVT::i32, 4 }, 3035 { ISD::EXTRACT_VECTOR_ELT, MVT::i64, 7 } 3036 }; 3037 3038 assert(Val->isVectorTy() && "This must be a vector type"); 3039 Type *ScalarType = Val->getScalarType(); 3040 int RegisterFileMoveCost = 0; 3041 3042 if (Index != -1U && (Opcode == Instruction::ExtractElement || 3043 Opcode == Instruction::InsertElement)) { 3044 // Legalize the type. 3045 std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Val); 3046 3047 // This type is legalized to a scalar type. 3048 if (!LT.second.isVector()) 3049 return 0; 3050 3051 // The type may be split. Normalize the index to the new type. 3052 unsigned NumElts = LT.second.getVectorNumElements(); 3053 unsigned SubNumElts = NumElts; 3054 Index = Index % NumElts; 3055 3056 // For >128-bit vectors, we need to extract higher 128-bit subvectors. 3057 // For inserts, we also need to insert the subvector back. 3058 if (LT.second.getSizeInBits() > 128) { 3059 assert((LT.second.getSizeInBits() % 128) == 0 && "Illegal vector"); 3060 unsigned NumSubVecs = LT.second.getSizeInBits() / 128; 3061 SubNumElts = NumElts / NumSubVecs; 3062 if (SubNumElts <= Index) { 3063 RegisterFileMoveCost += (Opcode == Instruction::InsertElement ? 2 : 1); 3064 Index %= SubNumElts; 3065 } 3066 } 3067 3068 if (Index == 0) { 3069 // Floating point scalars are already located in index #0. 3070 // Many insertions to #0 can fold away for scalar fp-ops, so let's assume 3071 // true for all. 3072 if (ScalarType->isFloatingPointTy()) 3073 return RegisterFileMoveCost; 3074 3075 // Assume movd/movq XMM -> GPR is relatively cheap on all targets. 3076 if (ScalarType->isIntegerTy() && Opcode == Instruction::ExtractElement) 3077 return 1 + RegisterFileMoveCost; 3078 } 3079 3080 int ISD = TLI->InstructionOpcodeToISD(Opcode); 3081 assert(ISD && "Unexpected vector opcode"); 3082 MVT MScalarTy = LT.second.getScalarType(); 3083 if (ST->isSLM()) 3084 if (auto *Entry = CostTableLookup(SLMCostTbl, ISD, MScalarTy)) 3085 return Entry->Cost + RegisterFileMoveCost; 3086 3087 // Assume pinsr/pextr XMM <-> GPR is relatively cheap on all targets. 3088 if ((MScalarTy == MVT::i16 && ST->hasSSE2()) || 3089 (MScalarTy.isInteger() && ST->hasSSE41())) 3090 return 1 + RegisterFileMoveCost; 3091 3092 // Assume insertps is relatively cheap on all targets. 3093 if (MScalarTy == MVT::f32 && ST->hasSSE41() && 3094 Opcode == Instruction::InsertElement) 3095 return 1 + RegisterFileMoveCost; 3096 3097 // For extractions we just need to shuffle the element to index 0, which 3098 // should be very cheap (assume cost = 1). For insertions we need to shuffle 3099 // the elements to its destination. In both cases we must handle the 3100 // subvector move(s). 3101 // If the vector type is already less than 128-bits then don't reduce it. 3102 // TODO: Under what circumstances should we shuffle using the full width? 3103 InstructionCost ShuffleCost = 1; 3104 if (Opcode == Instruction::InsertElement) { 3105 auto *SubTy = cast<VectorType>(Val); 3106 EVT VT = TLI->getValueType(DL, Val); 3107 if (VT.getScalarType() != MScalarTy || VT.getSizeInBits() >= 128) 3108 SubTy = FixedVectorType::get(ScalarType, SubNumElts); 3109 ShuffleCost = 3110 getShuffleCost(TTI::SK_PermuteTwoSrc, SubTy, None, 0, SubTy); 3111 } 3112 int IntOrFpCost = ScalarType->isFloatingPointTy() ? 0 : 1; 3113 return ShuffleCost + IntOrFpCost + RegisterFileMoveCost; 3114 } 3115 3116 // Add to the base cost if we know that the extracted element of a vector is 3117 // destined to be moved to and used in the integer register file. 3118 if (Opcode == Instruction::ExtractElement && ScalarType->isPointerTy()) 3119 RegisterFileMoveCost += 1; 3120 3121 return BaseT::getVectorInstrCost(Opcode, Val, Index) + RegisterFileMoveCost; 3122 } 3123 3124 unsigned X86TTIImpl::getScalarizationOverhead(VectorType *Ty, 3125 const APInt &DemandedElts, 3126 bool Insert, bool Extract) { 3127 unsigned Cost = 0; 3128 3129 // For insertions, a ISD::BUILD_VECTOR style vector initialization can be much 3130 // cheaper than an accumulation of ISD::INSERT_VECTOR_ELT. 3131 if (Insert) { 3132 std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Ty); 3133 MVT MScalarTy = LT.second.getScalarType(); 3134 3135 if ((MScalarTy == MVT::i16 && ST->hasSSE2()) || 3136 (MScalarTy.isInteger() && ST->hasSSE41()) || 3137 (MScalarTy == MVT::f32 && ST->hasSSE41())) { 3138 // For types we can insert directly, insertion into 128-bit sub vectors is 3139 // cheap, followed by a cheap chain of concatenations. 3140 if (LT.second.getSizeInBits() <= 128) { 3141 Cost += 3142 BaseT::getScalarizationOverhead(Ty, DemandedElts, Insert, false); 3143 } else { 3144 // In each 128-lane, if at least one index is demanded but not all 3145 // indices are demanded and this 128-lane is not the first 128-lane of 3146 // the legalized-vector, then this 128-lane needs a extracti128; If in 3147 // each 128-lane, there is at least one demanded index, this 128-lane 3148 // needs a inserti128. 3149 3150 // The following cases will help you build a better understanding: 3151 // Assume we insert several elements into a v8i32 vector in avx2, 3152 // Case#1: inserting into 1th index needs vpinsrd + inserti128. 3153 // Case#2: inserting into 5th index needs extracti128 + vpinsrd + 3154 // inserti128. 3155 // Case#3: inserting into 4,5,6,7 index needs 4*vpinsrd + inserti128. 3156 unsigned Num128Lanes = LT.second.getSizeInBits() / 128 * LT.first; 3157 unsigned NumElts = LT.second.getVectorNumElements() * LT.first; 3158 APInt WidenedDemandedElts = DemandedElts.zextOrSelf(NumElts); 3159 unsigned Scale = NumElts / Num128Lanes; 3160 // We iterate each 128-lane, and check if we need a 3161 // extracti128/inserti128 for this 128-lane. 3162 for (unsigned I = 0; I < NumElts; I += Scale) { 3163 APInt Mask = WidenedDemandedElts.getBitsSet(NumElts, I, I + Scale); 3164 APInt MaskedDE = Mask & WidenedDemandedElts; 3165 unsigned Population = MaskedDE.countPopulation(); 3166 Cost += (Population > 0 && Population != Scale && 3167 I % LT.second.getVectorNumElements() != 0); 3168 Cost += Population > 0; 3169 } 3170 Cost += DemandedElts.countPopulation(); 3171 3172 // For vXf32 cases, insertion into the 0'th index in each v4f32 3173 // 128-bit vector is free. 3174 // NOTE: This assumes legalization widens vXf32 vectors. 3175 if (MScalarTy == MVT::f32) 3176 for (unsigned i = 0, e = cast<FixedVectorType>(Ty)->getNumElements(); 3177 i < e; i += 4) 3178 if (DemandedElts[i]) 3179 Cost--; 3180 } 3181 } else if (LT.second.isVector()) { 3182 // Without fast insertion, we need to use MOVD/MOVQ to pass each demanded 3183 // integer element as a SCALAR_TO_VECTOR, then we build the vector as a 3184 // series of UNPCK followed by CONCAT_VECTORS - all of these can be 3185 // considered cheap. 3186 if (Ty->isIntOrIntVectorTy()) 3187 Cost += DemandedElts.countPopulation(); 3188 3189 // Get the smaller of the legalized or original pow2-extended number of 3190 // vector elements, which represents the number of unpacks we'll end up 3191 // performing. 3192 unsigned NumElts = LT.second.getVectorNumElements(); 3193 unsigned Pow2Elts = 3194 PowerOf2Ceil(cast<FixedVectorType>(Ty)->getNumElements()); 3195 Cost += (std::min<unsigned>(NumElts, Pow2Elts) - 1) * LT.first; 3196 } 3197 } 3198 3199 // TODO: Use default extraction for now, but we should investigate extending this 3200 // to handle repeated subvector extraction. 3201 if (Extract) 3202 Cost += BaseT::getScalarizationOverhead(Ty, DemandedElts, false, Extract); 3203 3204 return Cost; 3205 } 3206 3207 InstructionCost X86TTIImpl::getMemoryOpCost(unsigned Opcode, Type *Src, 3208 MaybeAlign Alignment, 3209 unsigned AddressSpace, 3210 TTI::TargetCostKind CostKind, 3211 const Instruction *I) { 3212 // TODO: Handle other cost kinds. 3213 if (CostKind != TTI::TCK_RecipThroughput) { 3214 if (auto *SI = dyn_cast_or_null<StoreInst>(I)) { 3215 // Store instruction with index and scale costs 2 Uops. 3216 // Check the preceding GEP to identify non-const indices. 3217 if (auto *GEP = dyn_cast<GetElementPtrInst>(SI->getPointerOperand())) { 3218 if (!all_of(GEP->indices(), [](Value *V) { return isa<Constant>(V); })) 3219 return TTI::TCC_Basic * 2; 3220 } 3221 } 3222 return TTI::TCC_Basic; 3223 } 3224 3225 assert((Opcode == Instruction::Load || Opcode == Instruction::Store) && 3226 "Invalid Opcode"); 3227 // Type legalization can't handle structs 3228 if (TLI->getValueType(DL, Src, true) == MVT::Other) 3229 return BaseT::getMemoryOpCost(Opcode, Src, Alignment, AddressSpace, 3230 CostKind); 3231 3232 // Handle non-power-of-two vectors such as <3 x float> and <48 x i16> 3233 if (auto *VTy = dyn_cast<FixedVectorType>(Src)) { 3234 const unsigned NumElem = VTy->getNumElements(); 3235 if (!isPowerOf2_32(NumElem)) { 3236 // Factorize NumElem into sum of power-of-two. 3237 InstructionCost Cost = 0; 3238 unsigned NumElemDone = 0; 3239 for (unsigned NumElemLeft = NumElem, Factor; 3240 Factor = PowerOf2Floor(NumElemLeft), NumElemLeft > 0; 3241 NumElemLeft -= Factor) { 3242 Type *SubTy = FixedVectorType::get(VTy->getScalarType(), Factor); 3243 unsigned SubTyBytes = SubTy->getPrimitiveSizeInBits() / 8; 3244 3245 Cost += 3246 getMemoryOpCost(Opcode, SubTy, Alignment, AddressSpace, CostKind); 3247 3248 std::pair<int, MVT> LST = TLI->getTypeLegalizationCost(DL, SubTy); 3249 if (!LST.second.isVector()) { 3250 APInt DemandedElts = 3251 APInt::getBitsSet(NumElem, NumElemDone, NumElemDone + Factor); 3252 Cost += getScalarizationOverhead(VTy, DemandedElts, 3253 Opcode == Instruction::Load, 3254 Opcode == Instruction::Store); 3255 } 3256 3257 NumElemDone += Factor; 3258 Alignment = commonAlignment(Alignment.valueOrOne(), SubTyBytes); 3259 } 3260 assert(NumElemDone == NumElem && "Processed wrong element count?"); 3261 return Cost; 3262 } 3263 } 3264 3265 // Legalize the type. 3266 std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Src); 3267 3268 // Each load/store unit costs 1. 3269 int Cost = LT.first * 1; 3270 3271 // This isn't exactly right. We're using slow unaligned 32-byte accesses as a 3272 // proxy for a double-pumped AVX memory interface such as on Sandybridge. 3273 if (LT.second.getStoreSize() == 32 && ST->isUnalignedMem32Slow()) 3274 Cost *= 2; 3275 3276 return Cost; 3277 } 3278 3279 InstructionCost 3280 X86TTIImpl::getMaskedMemoryOpCost(unsigned Opcode, Type *SrcTy, Align Alignment, 3281 unsigned AddressSpace, 3282 TTI::TargetCostKind CostKind) { 3283 bool IsLoad = (Instruction::Load == Opcode); 3284 bool IsStore = (Instruction::Store == Opcode); 3285 3286 auto *SrcVTy = dyn_cast<FixedVectorType>(SrcTy); 3287 if (!SrcVTy) 3288 // To calculate scalar take the regular cost, without mask 3289 return getMemoryOpCost(Opcode, SrcTy, Alignment, AddressSpace, CostKind); 3290 3291 unsigned NumElem = SrcVTy->getNumElements(); 3292 auto *MaskTy = 3293 FixedVectorType::get(Type::getInt8Ty(SrcVTy->getContext()), NumElem); 3294 if ((IsLoad && !isLegalMaskedLoad(SrcVTy, Alignment)) || 3295 (IsStore && !isLegalMaskedStore(SrcVTy, Alignment)) || 3296 !isPowerOf2_32(NumElem)) { 3297 // Scalarization 3298 APInt DemandedElts = APInt::getAllOnesValue(NumElem); 3299 InstructionCost MaskSplitCost = 3300 getScalarizationOverhead(MaskTy, DemandedElts, false, true); 3301 InstructionCost ScalarCompareCost = getCmpSelInstrCost( 3302 Instruction::ICmp, Type::getInt8Ty(SrcVTy->getContext()), nullptr, 3303 CmpInst::BAD_ICMP_PREDICATE, CostKind); 3304 InstructionCost BranchCost = getCFInstrCost(Instruction::Br, CostKind); 3305 InstructionCost MaskCmpCost = NumElem * (BranchCost + ScalarCompareCost); 3306 InstructionCost ValueSplitCost = 3307 getScalarizationOverhead(SrcVTy, DemandedElts, IsLoad, IsStore); 3308 InstructionCost MemopCost = 3309 NumElem * BaseT::getMemoryOpCost(Opcode, SrcVTy->getScalarType(), 3310 Alignment, AddressSpace, CostKind); 3311 return MemopCost + ValueSplitCost + MaskSplitCost + MaskCmpCost; 3312 } 3313 3314 // Legalize the type. 3315 std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, SrcVTy); 3316 auto VT = TLI->getValueType(DL, SrcVTy); 3317 InstructionCost Cost = 0; 3318 if (VT.isSimple() && LT.second != VT.getSimpleVT() && 3319 LT.second.getVectorNumElements() == NumElem) 3320 // Promotion requires expand/truncate for data and a shuffle for mask. 3321 Cost += getShuffleCost(TTI::SK_PermuteTwoSrc, SrcVTy, None, 0, nullptr) + 3322 getShuffleCost(TTI::SK_PermuteTwoSrc, MaskTy, None, 0, nullptr); 3323 3324 else if (LT.second.getVectorNumElements() > NumElem) { 3325 auto *NewMaskTy = FixedVectorType::get(MaskTy->getElementType(), 3326 LT.second.getVectorNumElements()); 3327 // Expanding requires fill mask with zeroes 3328 Cost += getShuffleCost(TTI::SK_InsertSubvector, NewMaskTy, None, 0, MaskTy); 3329 } 3330 3331 // Pre-AVX512 - each maskmov load costs 2 + store costs ~8. 3332 if (!ST->hasAVX512()) 3333 return Cost + LT.first * (IsLoad ? 2 : 8); 3334 3335 // AVX-512 masked load/store is cheapper 3336 return Cost + LT.first; 3337 } 3338 3339 int X86TTIImpl::getAddressComputationCost(Type *Ty, ScalarEvolution *SE, 3340 const SCEV *Ptr) { 3341 // Address computations in vectorized code with non-consecutive addresses will 3342 // likely result in more instructions compared to scalar code where the 3343 // computation can more often be merged into the index mode. The resulting 3344 // extra micro-ops can significantly decrease throughput. 3345 const unsigned NumVectorInstToHideOverhead = 10; 3346 3347 // Cost modeling of Strided Access Computation is hidden by the indexing 3348 // modes of X86 regardless of the stride value. We dont believe that there 3349 // is a difference between constant strided access in gerenal and constant 3350 // strided value which is less than or equal to 64. 3351 // Even in the case of (loop invariant) stride whose value is not known at 3352 // compile time, the address computation will not incur more than one extra 3353 // ADD instruction. 3354 if (Ty->isVectorTy() && SE) { 3355 if (!BaseT::isStridedAccess(Ptr)) 3356 return NumVectorInstToHideOverhead; 3357 if (!BaseT::getConstantStrideStep(SE, Ptr)) 3358 return 1; 3359 } 3360 3361 return BaseT::getAddressComputationCost(Ty, SE, Ptr); 3362 } 3363 3364 InstructionCost 3365 X86TTIImpl::getArithmeticReductionCost(unsigned Opcode, VectorType *ValTy, 3366 bool IsPairwise, 3367 TTI::TargetCostKind CostKind) { 3368 // Just use the default implementation for pair reductions. 3369 if (IsPairwise) 3370 return BaseT::getArithmeticReductionCost(Opcode, ValTy, IsPairwise, CostKind); 3371 3372 // We use the Intel Architecture Code Analyzer(IACA) to measure the throughput 3373 // and make it as the cost. 3374 3375 static const CostTblEntry SLMCostTblNoPairWise[] = { 3376 { ISD::FADD, MVT::v2f64, 3 }, 3377 { ISD::ADD, MVT::v2i64, 5 }, 3378 }; 3379 3380 static const CostTblEntry SSE2CostTblNoPairWise[] = { 3381 { ISD::FADD, MVT::v2f64, 2 }, 3382 { ISD::FADD, MVT::v4f32, 4 }, 3383 { ISD::ADD, MVT::v2i64, 2 }, // The data reported by the IACA tool is "1.6". 3384 { ISD::ADD, MVT::v2i32, 2 }, // FIXME: chosen to be less than v4i32 3385 { ISD::ADD, MVT::v4i32, 3 }, // The data reported by the IACA tool is "3.3". 3386 { ISD::ADD, MVT::v2i16, 2 }, // The data reported by the IACA tool is "4.3". 3387 { ISD::ADD, MVT::v4i16, 3 }, // The data reported by the IACA tool is "4.3". 3388 { ISD::ADD, MVT::v8i16, 4 }, // The data reported by the IACA tool is "4.3". 3389 { ISD::ADD, MVT::v2i8, 2 }, 3390 { ISD::ADD, MVT::v4i8, 2 }, 3391 { ISD::ADD, MVT::v8i8, 2 }, 3392 { ISD::ADD, MVT::v16i8, 3 }, 3393 }; 3394 3395 static const CostTblEntry AVX1CostTblNoPairWise[] = { 3396 { ISD::FADD, MVT::v4f64, 3 }, 3397 { ISD::FADD, MVT::v4f32, 3 }, 3398 { ISD::FADD, MVT::v8f32, 4 }, 3399 { ISD::ADD, MVT::v2i64, 1 }, // The data reported by the IACA tool is "1.5". 3400 { ISD::ADD, MVT::v4i64, 3 }, 3401 { ISD::ADD, MVT::v8i32, 5 }, 3402 { ISD::ADD, MVT::v16i16, 5 }, 3403 { ISD::ADD, MVT::v32i8, 4 }, 3404 }; 3405 3406 int ISD = TLI->InstructionOpcodeToISD(Opcode); 3407 assert(ISD && "Invalid opcode"); 3408 3409 // Before legalizing the type, give a chance to look up illegal narrow types 3410 // in the table. 3411 // FIXME: Is there a better way to do this? 3412 EVT VT = TLI->getValueType(DL, ValTy); 3413 if (VT.isSimple()) { 3414 MVT MTy = VT.getSimpleVT(); 3415 if (ST->isSLM()) 3416 if (const auto *Entry = CostTableLookup(SLMCostTblNoPairWise, ISD, MTy)) 3417 return Entry->Cost; 3418 3419 if (ST->hasAVX()) 3420 if (const auto *Entry = CostTableLookup(AVX1CostTblNoPairWise, ISD, MTy)) 3421 return Entry->Cost; 3422 3423 if (ST->hasSSE2()) 3424 if (const auto *Entry = CostTableLookup(SSE2CostTblNoPairWise, ISD, MTy)) 3425 return Entry->Cost; 3426 } 3427 3428 std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, ValTy); 3429 3430 MVT MTy = LT.second; 3431 3432 auto *ValVTy = cast<FixedVectorType>(ValTy); 3433 3434 // Special case: vXi8 mul reductions are performed as vXi16. 3435 if (ISD == ISD::MUL && MTy.getScalarType() == MVT::i8) { 3436 auto *WideSclTy = IntegerType::get(ValVTy->getContext(), 16); 3437 auto *WideVecTy = FixedVectorType::get(WideSclTy, ValVTy->getNumElements()); 3438 return getCastInstrCost(Instruction::ZExt, WideVecTy, ValTy, 3439 TargetTransformInfo::CastContextHint::None, 3440 CostKind) + 3441 getArithmeticReductionCost(Opcode, WideVecTy, IsPairwise, CostKind); 3442 } 3443 3444 InstructionCost ArithmeticCost = 0; 3445 if (LT.first != 1 && MTy.isVector() && 3446 MTy.getVectorNumElements() < ValVTy->getNumElements()) { 3447 // Type needs to be split. We need LT.first - 1 arithmetic ops. 3448 auto *SingleOpTy = FixedVectorType::get(ValVTy->getElementType(), 3449 MTy.getVectorNumElements()); 3450 ArithmeticCost = getArithmeticInstrCost(Opcode, SingleOpTy, CostKind); 3451 ArithmeticCost *= LT.first - 1; 3452 } 3453 3454 if (ST->isSLM()) 3455 if (const auto *Entry = CostTableLookup(SLMCostTblNoPairWise, ISD, MTy)) 3456 return ArithmeticCost + Entry->Cost; 3457 3458 if (ST->hasAVX()) 3459 if (const auto *Entry = CostTableLookup(AVX1CostTblNoPairWise, ISD, MTy)) 3460 return ArithmeticCost + Entry->Cost; 3461 3462 if (ST->hasSSE2()) 3463 if (const auto *Entry = CostTableLookup(SSE2CostTblNoPairWise, ISD, MTy)) 3464 return ArithmeticCost + Entry->Cost; 3465 3466 // FIXME: These assume a naive kshift+binop lowering, which is probably 3467 // conservative in most cases. 3468 static const CostTblEntry AVX512BoolReduction[] = { 3469 { ISD::AND, MVT::v2i1, 3 }, 3470 { ISD::AND, MVT::v4i1, 5 }, 3471 { ISD::AND, MVT::v8i1, 7 }, 3472 { ISD::AND, MVT::v16i1, 9 }, 3473 { ISD::AND, MVT::v32i1, 11 }, 3474 { ISD::AND, MVT::v64i1, 13 }, 3475 { ISD::OR, MVT::v2i1, 3 }, 3476 { ISD::OR, MVT::v4i1, 5 }, 3477 { ISD::OR, MVT::v8i1, 7 }, 3478 { ISD::OR, MVT::v16i1, 9 }, 3479 { ISD::OR, MVT::v32i1, 11 }, 3480 { ISD::OR, MVT::v64i1, 13 }, 3481 }; 3482 3483 static const CostTblEntry AVX2BoolReduction[] = { 3484 { ISD::AND, MVT::v16i16, 2 }, // vpmovmskb + cmp 3485 { ISD::AND, MVT::v32i8, 2 }, // vpmovmskb + cmp 3486 { ISD::OR, MVT::v16i16, 2 }, // vpmovmskb + cmp 3487 { ISD::OR, MVT::v32i8, 2 }, // vpmovmskb + cmp 3488 }; 3489 3490 static const CostTblEntry AVX1BoolReduction[] = { 3491 { ISD::AND, MVT::v4i64, 2 }, // vmovmskpd + cmp 3492 { ISD::AND, MVT::v8i32, 2 }, // vmovmskps + cmp 3493 { ISD::AND, MVT::v16i16, 4 }, // vextractf128 + vpand + vpmovmskb + cmp 3494 { ISD::AND, MVT::v32i8, 4 }, // vextractf128 + vpand + vpmovmskb + cmp 3495 { ISD::OR, MVT::v4i64, 2 }, // vmovmskpd + cmp 3496 { ISD::OR, MVT::v8i32, 2 }, // vmovmskps + cmp 3497 { ISD::OR, MVT::v16i16, 4 }, // vextractf128 + vpor + vpmovmskb + cmp 3498 { ISD::OR, MVT::v32i8, 4 }, // vextractf128 + vpor + vpmovmskb + cmp 3499 }; 3500 3501 static const CostTblEntry SSE2BoolReduction[] = { 3502 { ISD::AND, MVT::v2i64, 2 }, // movmskpd + cmp 3503 { ISD::AND, MVT::v4i32, 2 }, // movmskps + cmp 3504 { ISD::AND, MVT::v8i16, 2 }, // pmovmskb + cmp 3505 { ISD::AND, MVT::v16i8, 2 }, // pmovmskb + cmp 3506 { ISD::OR, MVT::v2i64, 2 }, // movmskpd + cmp 3507 { ISD::OR, MVT::v4i32, 2 }, // movmskps + cmp 3508 { ISD::OR, MVT::v8i16, 2 }, // pmovmskb + cmp 3509 { ISD::OR, MVT::v16i8, 2 }, // pmovmskb + cmp 3510 }; 3511 3512 // Handle bool allof/anyof patterns. 3513 if (ValVTy->getElementType()->isIntegerTy(1)) { 3514 InstructionCost ArithmeticCost = 0; 3515 if (LT.first != 1 && MTy.isVector() && 3516 MTy.getVectorNumElements() < ValVTy->getNumElements()) { 3517 // Type needs to be split. We need LT.first - 1 arithmetic ops. 3518 auto *SingleOpTy = FixedVectorType::get(ValVTy->getElementType(), 3519 MTy.getVectorNumElements()); 3520 ArithmeticCost = getArithmeticInstrCost(Opcode, SingleOpTy, CostKind); 3521 ArithmeticCost *= LT.first - 1; 3522 } 3523 3524 if (ST->hasAVX512()) 3525 if (const auto *Entry = CostTableLookup(AVX512BoolReduction, ISD, MTy)) 3526 return ArithmeticCost + Entry->Cost; 3527 if (ST->hasAVX2()) 3528 if (const auto *Entry = CostTableLookup(AVX2BoolReduction, ISD, MTy)) 3529 return ArithmeticCost + Entry->Cost; 3530 if (ST->hasAVX()) 3531 if (const auto *Entry = CostTableLookup(AVX1BoolReduction, ISD, MTy)) 3532 return ArithmeticCost + Entry->Cost; 3533 if (ST->hasSSE2()) 3534 if (const auto *Entry = CostTableLookup(SSE2BoolReduction, ISD, MTy)) 3535 return ArithmeticCost + Entry->Cost; 3536 3537 return BaseT::getArithmeticReductionCost(Opcode, ValVTy, IsPairwise, 3538 CostKind); 3539 } 3540 3541 unsigned NumVecElts = ValVTy->getNumElements(); 3542 unsigned ScalarSize = ValVTy->getScalarSizeInBits(); 3543 3544 // Special case power of 2 reductions where the scalar type isn't changed 3545 // by type legalization. 3546 if (!isPowerOf2_32(NumVecElts) || ScalarSize != MTy.getScalarSizeInBits()) 3547 return BaseT::getArithmeticReductionCost(Opcode, ValVTy, IsPairwise, 3548 CostKind); 3549 3550 InstructionCost ReductionCost = 0; 3551 3552 auto *Ty = ValVTy; 3553 if (LT.first != 1 && MTy.isVector() && 3554 MTy.getVectorNumElements() < ValVTy->getNumElements()) { 3555 // Type needs to be split. We need LT.first - 1 arithmetic ops. 3556 Ty = FixedVectorType::get(ValVTy->getElementType(), 3557 MTy.getVectorNumElements()); 3558 ReductionCost = getArithmeticInstrCost(Opcode, Ty, CostKind); 3559 ReductionCost *= LT.first - 1; 3560 NumVecElts = MTy.getVectorNumElements(); 3561 } 3562 3563 // Now handle reduction with the legal type, taking into account size changes 3564 // at each level. 3565 while (NumVecElts > 1) { 3566 // Determine the size of the remaining vector we need to reduce. 3567 unsigned Size = NumVecElts * ScalarSize; 3568 NumVecElts /= 2; 3569 // If we're reducing from 256/512 bits, use an extract_subvector. 3570 if (Size > 128) { 3571 auto *SubTy = FixedVectorType::get(ValVTy->getElementType(), NumVecElts); 3572 ReductionCost += 3573 getShuffleCost(TTI::SK_ExtractSubvector, Ty, None, NumVecElts, SubTy); 3574 Ty = SubTy; 3575 } else if (Size == 128) { 3576 // Reducing from 128 bits is a permute of v2f64/v2i64. 3577 FixedVectorType *ShufTy; 3578 if (ValVTy->isFloatingPointTy()) 3579 ShufTy = 3580 FixedVectorType::get(Type::getDoubleTy(ValVTy->getContext()), 2); 3581 else 3582 ShufTy = 3583 FixedVectorType::get(Type::getInt64Ty(ValVTy->getContext()), 2); 3584 ReductionCost += 3585 getShuffleCost(TTI::SK_PermuteSingleSrc, ShufTy, None, 0, nullptr); 3586 } else if (Size == 64) { 3587 // Reducing from 64 bits is a shuffle of v4f32/v4i32. 3588 FixedVectorType *ShufTy; 3589 if (ValVTy->isFloatingPointTy()) 3590 ShufTy = 3591 FixedVectorType::get(Type::getFloatTy(ValVTy->getContext()), 4); 3592 else 3593 ShufTy = 3594 FixedVectorType::get(Type::getInt32Ty(ValVTy->getContext()), 4); 3595 ReductionCost += 3596 getShuffleCost(TTI::SK_PermuteSingleSrc, ShufTy, None, 0, nullptr); 3597 } else { 3598 // Reducing from smaller size is a shift by immediate. 3599 auto *ShiftTy = FixedVectorType::get( 3600 Type::getIntNTy(ValVTy->getContext(), Size), 128 / Size); 3601 ReductionCost += getArithmeticInstrCost( 3602 Instruction::LShr, ShiftTy, CostKind, 3603 TargetTransformInfo::OK_AnyValue, 3604 TargetTransformInfo::OK_UniformConstantValue, 3605 TargetTransformInfo::OP_None, TargetTransformInfo::OP_None); 3606 } 3607 3608 // Add the arithmetic op for this level. 3609 ReductionCost += getArithmeticInstrCost(Opcode, Ty, CostKind); 3610 } 3611 3612 // Add the final extract element to the cost. 3613 return ReductionCost + getVectorInstrCost(Instruction::ExtractElement, Ty, 0); 3614 } 3615 3616 InstructionCost X86TTIImpl::getMinMaxCost(Type *Ty, Type *CondTy, 3617 bool IsUnsigned) { 3618 std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Ty); 3619 3620 MVT MTy = LT.second; 3621 3622 int ISD; 3623 if (Ty->isIntOrIntVectorTy()) { 3624 ISD = IsUnsigned ? ISD::UMIN : ISD::SMIN; 3625 } else { 3626 assert(Ty->isFPOrFPVectorTy() && 3627 "Expected float point or integer vector type."); 3628 ISD = ISD::FMINNUM; 3629 } 3630 3631 static const CostTblEntry SSE1CostTbl[] = { 3632 {ISD::FMINNUM, MVT::v4f32, 1}, 3633 }; 3634 3635 static const CostTblEntry SSE2CostTbl[] = { 3636 {ISD::FMINNUM, MVT::v2f64, 1}, 3637 {ISD::SMIN, MVT::v8i16, 1}, 3638 {ISD::UMIN, MVT::v16i8, 1}, 3639 }; 3640 3641 static const CostTblEntry SSE41CostTbl[] = { 3642 {ISD::SMIN, MVT::v4i32, 1}, 3643 {ISD::UMIN, MVT::v4i32, 1}, 3644 {ISD::UMIN, MVT::v8i16, 1}, 3645 {ISD::SMIN, MVT::v16i8, 1}, 3646 }; 3647 3648 static const CostTblEntry SSE42CostTbl[] = { 3649 {ISD::UMIN, MVT::v2i64, 3}, // xor+pcmpgtq+blendvpd 3650 }; 3651 3652 static const CostTblEntry AVX1CostTbl[] = { 3653 {ISD::FMINNUM, MVT::v8f32, 1}, 3654 {ISD::FMINNUM, MVT::v4f64, 1}, 3655 {ISD::SMIN, MVT::v8i32, 3}, 3656 {ISD::UMIN, MVT::v8i32, 3}, 3657 {ISD::SMIN, MVT::v16i16, 3}, 3658 {ISD::UMIN, MVT::v16i16, 3}, 3659 {ISD::SMIN, MVT::v32i8, 3}, 3660 {ISD::UMIN, MVT::v32i8, 3}, 3661 }; 3662 3663 static const CostTblEntry AVX2CostTbl[] = { 3664 {ISD::SMIN, MVT::v8i32, 1}, 3665 {ISD::UMIN, MVT::v8i32, 1}, 3666 {ISD::SMIN, MVT::v16i16, 1}, 3667 {ISD::UMIN, MVT::v16i16, 1}, 3668 {ISD::SMIN, MVT::v32i8, 1}, 3669 {ISD::UMIN, MVT::v32i8, 1}, 3670 }; 3671 3672 static const CostTblEntry AVX512CostTbl[] = { 3673 {ISD::FMINNUM, MVT::v16f32, 1}, 3674 {ISD::FMINNUM, MVT::v8f64, 1}, 3675 {ISD::SMIN, MVT::v2i64, 1}, 3676 {ISD::UMIN, MVT::v2i64, 1}, 3677 {ISD::SMIN, MVT::v4i64, 1}, 3678 {ISD::UMIN, MVT::v4i64, 1}, 3679 {ISD::SMIN, MVT::v8i64, 1}, 3680 {ISD::UMIN, MVT::v8i64, 1}, 3681 {ISD::SMIN, MVT::v16i32, 1}, 3682 {ISD::UMIN, MVT::v16i32, 1}, 3683 }; 3684 3685 static const CostTblEntry AVX512BWCostTbl[] = { 3686 {ISD::SMIN, MVT::v32i16, 1}, 3687 {ISD::UMIN, MVT::v32i16, 1}, 3688 {ISD::SMIN, MVT::v64i8, 1}, 3689 {ISD::UMIN, MVT::v64i8, 1}, 3690 }; 3691 3692 // If we have a native MIN/MAX instruction for this type, use it. 3693 if (ST->hasBWI()) 3694 if (const auto *Entry = CostTableLookup(AVX512BWCostTbl, ISD, MTy)) 3695 return LT.first * Entry->Cost; 3696 3697 if (ST->hasAVX512()) 3698 if (const auto *Entry = CostTableLookup(AVX512CostTbl, ISD, MTy)) 3699 return LT.first * Entry->Cost; 3700 3701 if (ST->hasAVX2()) 3702 if (const auto *Entry = CostTableLookup(AVX2CostTbl, ISD, MTy)) 3703 return LT.first * Entry->Cost; 3704 3705 if (ST->hasAVX()) 3706 if (const auto *Entry = CostTableLookup(AVX1CostTbl, ISD, MTy)) 3707 return LT.first * Entry->Cost; 3708 3709 if (ST->hasSSE42()) 3710 if (const auto *Entry = CostTableLookup(SSE42CostTbl, ISD, MTy)) 3711 return LT.first * Entry->Cost; 3712 3713 if (ST->hasSSE41()) 3714 if (const auto *Entry = CostTableLookup(SSE41CostTbl, ISD, MTy)) 3715 return LT.first * Entry->Cost; 3716 3717 if (ST->hasSSE2()) 3718 if (const auto *Entry = CostTableLookup(SSE2CostTbl, ISD, MTy)) 3719 return LT.first * Entry->Cost; 3720 3721 if (ST->hasSSE1()) 3722 if (const auto *Entry = CostTableLookup(SSE1CostTbl, ISD, MTy)) 3723 return LT.first * Entry->Cost; 3724 3725 unsigned CmpOpcode; 3726 if (Ty->isFPOrFPVectorTy()) { 3727 CmpOpcode = Instruction::FCmp; 3728 } else { 3729 assert(Ty->isIntOrIntVectorTy() && 3730 "expecting floating point or integer type for min/max reduction"); 3731 CmpOpcode = Instruction::ICmp; 3732 } 3733 3734 TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 3735 // Otherwise fall back to cmp+select. 3736 InstructionCost Result = 3737 getCmpSelInstrCost(CmpOpcode, Ty, CondTy, CmpInst::BAD_ICMP_PREDICATE, 3738 CostKind) + 3739 getCmpSelInstrCost(Instruction::Select, Ty, CondTy, 3740 CmpInst::BAD_ICMP_PREDICATE, CostKind); 3741 return Result; 3742 } 3743 3744 InstructionCost 3745 X86TTIImpl::getMinMaxReductionCost(VectorType *ValTy, VectorType *CondTy, 3746 bool IsPairwise, bool IsUnsigned, 3747 TTI::TargetCostKind CostKind) { 3748 // Just use the default implementation for pair reductions. 3749 if (IsPairwise) 3750 return BaseT::getMinMaxReductionCost(ValTy, CondTy, IsPairwise, IsUnsigned, 3751 CostKind); 3752 3753 std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, ValTy); 3754 3755 MVT MTy = LT.second; 3756 3757 int ISD; 3758 if (ValTy->isIntOrIntVectorTy()) { 3759 ISD = IsUnsigned ? ISD::UMIN : ISD::SMIN; 3760 } else { 3761 assert(ValTy->isFPOrFPVectorTy() && 3762 "Expected float point or integer vector type."); 3763 ISD = ISD::FMINNUM; 3764 } 3765 3766 // We use the Intel Architecture Code Analyzer(IACA) to measure the throughput 3767 // and make it as the cost. 3768 3769 static const CostTblEntry SSE2CostTblNoPairWise[] = { 3770 {ISD::UMIN, MVT::v2i16, 5}, // need pxors to use pminsw/pmaxsw 3771 {ISD::UMIN, MVT::v4i16, 7}, // need pxors to use pminsw/pmaxsw 3772 {ISD::UMIN, MVT::v8i16, 9}, // need pxors to use pminsw/pmaxsw 3773 }; 3774 3775 static const CostTblEntry SSE41CostTblNoPairWise[] = { 3776 {ISD::SMIN, MVT::v2i16, 3}, // same as sse2 3777 {ISD::SMIN, MVT::v4i16, 5}, // same as sse2 3778 {ISD::UMIN, MVT::v2i16, 5}, // same as sse2 3779 {ISD::UMIN, MVT::v4i16, 7}, // same as sse2 3780 {ISD::SMIN, MVT::v8i16, 4}, // phminposuw+xor 3781 {ISD::UMIN, MVT::v8i16, 4}, // FIXME: umin is cheaper than umax 3782 {ISD::SMIN, MVT::v2i8, 3}, // pminsb 3783 {ISD::SMIN, MVT::v4i8, 5}, // pminsb 3784 {ISD::SMIN, MVT::v8i8, 7}, // pminsb 3785 {ISD::SMIN, MVT::v16i8, 6}, 3786 {ISD::UMIN, MVT::v2i8, 3}, // same as sse2 3787 {ISD::UMIN, MVT::v4i8, 5}, // same as sse2 3788 {ISD::UMIN, MVT::v8i8, 7}, // same as sse2 3789 {ISD::UMIN, MVT::v16i8, 6}, // FIXME: umin is cheaper than umax 3790 }; 3791 3792 static const CostTblEntry AVX1CostTblNoPairWise[] = { 3793 {ISD::SMIN, MVT::v16i16, 6}, 3794 {ISD::UMIN, MVT::v16i16, 6}, // FIXME: umin is cheaper than umax 3795 {ISD::SMIN, MVT::v32i8, 8}, 3796 {ISD::UMIN, MVT::v32i8, 8}, 3797 }; 3798 3799 static const CostTblEntry AVX512BWCostTblNoPairWise[] = { 3800 {ISD::SMIN, MVT::v32i16, 8}, 3801 {ISD::UMIN, MVT::v32i16, 8}, // FIXME: umin is cheaper than umax 3802 {ISD::SMIN, MVT::v64i8, 10}, 3803 {ISD::UMIN, MVT::v64i8, 10}, 3804 }; 3805 3806 // Before legalizing the type, give a chance to look up illegal narrow types 3807 // in the table. 3808 // FIXME: Is there a better way to do this? 3809 EVT VT = TLI->getValueType(DL, ValTy); 3810 if (VT.isSimple()) { 3811 MVT MTy = VT.getSimpleVT(); 3812 if (ST->hasBWI()) 3813 if (const auto *Entry = CostTableLookup(AVX512BWCostTblNoPairWise, ISD, MTy)) 3814 return Entry->Cost; 3815 3816 if (ST->hasAVX()) 3817 if (const auto *Entry = CostTableLookup(AVX1CostTblNoPairWise, ISD, MTy)) 3818 return Entry->Cost; 3819 3820 if (ST->hasSSE41()) 3821 if (const auto *Entry = CostTableLookup(SSE41CostTblNoPairWise, ISD, MTy)) 3822 return Entry->Cost; 3823 3824 if (ST->hasSSE2()) 3825 if (const auto *Entry = CostTableLookup(SSE2CostTblNoPairWise, ISD, MTy)) 3826 return Entry->Cost; 3827 } 3828 3829 auto *ValVTy = cast<FixedVectorType>(ValTy); 3830 unsigned NumVecElts = ValVTy->getNumElements(); 3831 3832 auto *Ty = ValVTy; 3833 InstructionCost MinMaxCost = 0; 3834 if (LT.first != 1 && MTy.isVector() && 3835 MTy.getVectorNumElements() < ValVTy->getNumElements()) { 3836 // Type needs to be split. We need LT.first - 1 operations ops. 3837 Ty = FixedVectorType::get(ValVTy->getElementType(), 3838 MTy.getVectorNumElements()); 3839 auto *SubCondTy = FixedVectorType::get(CondTy->getElementType(), 3840 MTy.getVectorNumElements()); 3841 MinMaxCost = getMinMaxCost(Ty, SubCondTy, IsUnsigned); 3842 MinMaxCost *= LT.first - 1; 3843 NumVecElts = MTy.getVectorNumElements(); 3844 } 3845 3846 if (ST->hasBWI()) 3847 if (const auto *Entry = CostTableLookup(AVX512BWCostTblNoPairWise, ISD, MTy)) 3848 return MinMaxCost + Entry->Cost; 3849 3850 if (ST->hasAVX()) 3851 if (const auto *Entry = CostTableLookup(AVX1CostTblNoPairWise, ISD, MTy)) 3852 return MinMaxCost + Entry->Cost; 3853 3854 if (ST->hasSSE41()) 3855 if (const auto *Entry = CostTableLookup(SSE41CostTblNoPairWise, ISD, MTy)) 3856 return MinMaxCost + Entry->Cost; 3857 3858 if (ST->hasSSE2()) 3859 if (const auto *Entry = CostTableLookup(SSE2CostTblNoPairWise, ISD, MTy)) 3860 return MinMaxCost + Entry->Cost; 3861 3862 unsigned ScalarSize = ValTy->getScalarSizeInBits(); 3863 3864 // Special case power of 2 reductions where the scalar type isn't changed 3865 // by type legalization. 3866 if (!isPowerOf2_32(ValVTy->getNumElements()) || 3867 ScalarSize != MTy.getScalarSizeInBits()) 3868 return BaseT::getMinMaxReductionCost(ValTy, CondTy, IsPairwise, IsUnsigned, 3869 CostKind); 3870 3871 // Now handle reduction with the legal type, taking into account size changes 3872 // at each level. 3873 while (NumVecElts > 1) { 3874 // Determine the size of the remaining vector we need to reduce. 3875 unsigned Size = NumVecElts * ScalarSize; 3876 NumVecElts /= 2; 3877 // If we're reducing from 256/512 bits, use an extract_subvector. 3878 if (Size > 128) { 3879 auto *SubTy = FixedVectorType::get(ValVTy->getElementType(), NumVecElts); 3880 MinMaxCost += 3881 getShuffleCost(TTI::SK_ExtractSubvector, Ty, None, NumVecElts, SubTy); 3882 Ty = SubTy; 3883 } else if (Size == 128) { 3884 // Reducing from 128 bits is a permute of v2f64/v2i64. 3885 VectorType *ShufTy; 3886 if (ValTy->isFloatingPointTy()) 3887 ShufTy = 3888 FixedVectorType::get(Type::getDoubleTy(ValTy->getContext()), 2); 3889 else 3890 ShufTy = FixedVectorType::get(Type::getInt64Ty(ValTy->getContext()), 2); 3891 MinMaxCost += 3892 getShuffleCost(TTI::SK_PermuteSingleSrc, ShufTy, None, 0, nullptr); 3893 } else if (Size == 64) { 3894 // Reducing from 64 bits is a shuffle of v4f32/v4i32. 3895 FixedVectorType *ShufTy; 3896 if (ValTy->isFloatingPointTy()) 3897 ShufTy = FixedVectorType::get(Type::getFloatTy(ValTy->getContext()), 4); 3898 else 3899 ShufTy = FixedVectorType::get(Type::getInt32Ty(ValTy->getContext()), 4); 3900 MinMaxCost += 3901 getShuffleCost(TTI::SK_PermuteSingleSrc, ShufTy, None, 0, nullptr); 3902 } else { 3903 // Reducing from smaller size is a shift by immediate. 3904 auto *ShiftTy = FixedVectorType::get( 3905 Type::getIntNTy(ValTy->getContext(), Size), 128 / Size); 3906 MinMaxCost += getArithmeticInstrCost( 3907 Instruction::LShr, ShiftTy, TTI::TCK_RecipThroughput, 3908 TargetTransformInfo::OK_AnyValue, 3909 TargetTransformInfo::OK_UniformConstantValue, 3910 TargetTransformInfo::OP_None, TargetTransformInfo::OP_None); 3911 } 3912 3913 // Add the arithmetic op for this level. 3914 auto *SubCondTy = 3915 FixedVectorType::get(CondTy->getElementType(), Ty->getNumElements()); 3916 MinMaxCost += getMinMaxCost(Ty, SubCondTy, IsUnsigned); 3917 } 3918 3919 // Add the final extract element to the cost. 3920 return MinMaxCost + getVectorInstrCost(Instruction::ExtractElement, Ty, 0); 3921 } 3922 3923 /// Calculate the cost of materializing a 64-bit value. This helper 3924 /// method might only calculate a fraction of a larger immediate. Therefore it 3925 /// is valid to return a cost of ZERO. 3926 int X86TTIImpl::getIntImmCost(int64_t Val) { 3927 if (Val == 0) 3928 return TTI::TCC_Free; 3929 3930 if (isInt<32>(Val)) 3931 return TTI::TCC_Basic; 3932 3933 return 2 * TTI::TCC_Basic; 3934 } 3935 3936 int X86TTIImpl::getIntImmCost(const APInt &Imm, Type *Ty, 3937 TTI::TargetCostKind CostKind) { 3938 assert(Ty->isIntegerTy()); 3939 3940 unsigned BitSize = Ty->getPrimitiveSizeInBits(); 3941 if (BitSize == 0) 3942 return ~0U; 3943 3944 // Never hoist constants larger than 128bit, because this might lead to 3945 // incorrect code generation or assertions in codegen. 3946 // Fixme: Create a cost model for types larger than i128 once the codegen 3947 // issues have been fixed. 3948 if (BitSize > 128) 3949 return TTI::TCC_Free; 3950 3951 if (Imm == 0) 3952 return TTI::TCC_Free; 3953 3954 // Sign-extend all constants to a multiple of 64-bit. 3955 APInt ImmVal = Imm; 3956 if (BitSize % 64 != 0) 3957 ImmVal = Imm.sext(alignTo(BitSize, 64)); 3958 3959 // Split the constant into 64-bit chunks and calculate the cost for each 3960 // chunk. 3961 int Cost = 0; 3962 for (unsigned ShiftVal = 0; ShiftVal < BitSize; ShiftVal += 64) { 3963 APInt Tmp = ImmVal.ashr(ShiftVal).sextOrTrunc(64); 3964 int64_t Val = Tmp.getSExtValue(); 3965 Cost += getIntImmCost(Val); 3966 } 3967 // We need at least one instruction to materialize the constant. 3968 return std::max(1, Cost); 3969 } 3970 3971 int X86TTIImpl::getIntImmCostInst(unsigned Opcode, unsigned Idx, 3972 const APInt &Imm, Type *Ty, 3973 TTI::TargetCostKind CostKind, 3974 Instruction *Inst) { 3975 assert(Ty->isIntegerTy()); 3976 3977 unsigned BitSize = Ty->getPrimitiveSizeInBits(); 3978 // There is no cost model for constants with a bit size of 0. Return TCC_Free 3979 // here, so that constant hoisting will ignore this constant. 3980 if (BitSize == 0) 3981 return TTI::TCC_Free; 3982 3983 unsigned ImmIdx = ~0U; 3984 switch (Opcode) { 3985 default: 3986 return TTI::TCC_Free; 3987 case Instruction::GetElementPtr: 3988 // Always hoist the base address of a GetElementPtr. This prevents the 3989 // creation of new constants for every base constant that gets constant 3990 // folded with the offset. 3991 if (Idx == 0) 3992 return 2 * TTI::TCC_Basic; 3993 return TTI::TCC_Free; 3994 case Instruction::Store: 3995 ImmIdx = 0; 3996 break; 3997 case Instruction::ICmp: 3998 // This is an imperfect hack to prevent constant hoisting of 3999 // compares that might be trying to check if a 64-bit value fits in 4000 // 32-bits. The backend can optimize these cases using a right shift by 32. 4001 // Ideally we would check the compare predicate here. There also other 4002 // similar immediates the backend can use shifts for. 4003 if (Idx == 1 && Imm.getBitWidth() == 64) { 4004 uint64_t ImmVal = Imm.getZExtValue(); 4005 if (ImmVal == 0x100000000ULL || ImmVal == 0xffffffff) 4006 return TTI::TCC_Free; 4007 } 4008 ImmIdx = 1; 4009 break; 4010 case Instruction::And: 4011 // We support 64-bit ANDs with immediates with 32-bits of leading zeroes 4012 // by using a 32-bit operation with implicit zero extension. Detect such 4013 // immediates here as the normal path expects bit 31 to be sign extended. 4014 if (Idx == 1 && Imm.getBitWidth() == 64 && isUInt<32>(Imm.getZExtValue())) 4015 return TTI::TCC_Free; 4016 ImmIdx = 1; 4017 break; 4018 case Instruction::Add: 4019 case Instruction::Sub: 4020 // For add/sub, we can use the opposite instruction for INT32_MIN. 4021 if (Idx == 1 && Imm.getBitWidth() == 64 && Imm.getZExtValue() == 0x80000000) 4022 return TTI::TCC_Free; 4023 ImmIdx = 1; 4024 break; 4025 case Instruction::UDiv: 4026 case Instruction::SDiv: 4027 case Instruction::URem: 4028 case Instruction::SRem: 4029 // Division by constant is typically expanded later into a different 4030 // instruction sequence. This completely changes the constants. 4031 // Report them as "free" to stop ConstantHoist from marking them as opaque. 4032 return TTI::TCC_Free; 4033 case Instruction::Mul: 4034 case Instruction::Or: 4035 case Instruction::Xor: 4036 ImmIdx = 1; 4037 break; 4038 // Always return TCC_Free for the shift value of a shift instruction. 4039 case Instruction::Shl: 4040 case Instruction::LShr: 4041 case Instruction::AShr: 4042 if (Idx == 1) 4043 return TTI::TCC_Free; 4044 break; 4045 case Instruction::Trunc: 4046 case Instruction::ZExt: 4047 case Instruction::SExt: 4048 case Instruction::IntToPtr: 4049 case Instruction::PtrToInt: 4050 case Instruction::BitCast: 4051 case Instruction::PHI: 4052 case Instruction::Call: 4053 case Instruction::Select: 4054 case Instruction::Ret: 4055 case Instruction::Load: 4056 break; 4057 } 4058 4059 if (Idx == ImmIdx) { 4060 int NumConstants = divideCeil(BitSize, 64); 4061 int Cost = X86TTIImpl::getIntImmCost(Imm, Ty, CostKind); 4062 return (Cost <= NumConstants * TTI::TCC_Basic) 4063 ? static_cast<int>(TTI::TCC_Free) 4064 : Cost; 4065 } 4066 4067 return X86TTIImpl::getIntImmCost(Imm, Ty, CostKind); 4068 } 4069 4070 int X86TTIImpl::getIntImmCostIntrin(Intrinsic::ID IID, unsigned Idx, 4071 const APInt &Imm, Type *Ty, 4072 TTI::TargetCostKind CostKind) { 4073 assert(Ty->isIntegerTy()); 4074 4075 unsigned BitSize = Ty->getPrimitiveSizeInBits(); 4076 // There is no cost model for constants with a bit size of 0. Return TCC_Free 4077 // here, so that constant hoisting will ignore this constant. 4078 if (BitSize == 0) 4079 return TTI::TCC_Free; 4080 4081 switch (IID) { 4082 default: 4083 return TTI::TCC_Free; 4084 case Intrinsic::sadd_with_overflow: 4085 case Intrinsic::uadd_with_overflow: 4086 case Intrinsic::ssub_with_overflow: 4087 case Intrinsic::usub_with_overflow: 4088 case Intrinsic::smul_with_overflow: 4089 case Intrinsic::umul_with_overflow: 4090 if ((Idx == 1) && Imm.getBitWidth() <= 64 && isInt<32>(Imm.getSExtValue())) 4091 return TTI::TCC_Free; 4092 break; 4093 case Intrinsic::experimental_stackmap: 4094 if ((Idx < 2) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue()))) 4095 return TTI::TCC_Free; 4096 break; 4097 case Intrinsic::experimental_patchpoint_void: 4098 case Intrinsic::experimental_patchpoint_i64: 4099 if ((Idx < 4) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue()))) 4100 return TTI::TCC_Free; 4101 break; 4102 } 4103 return X86TTIImpl::getIntImmCost(Imm, Ty, CostKind); 4104 } 4105 4106 InstructionCost X86TTIImpl::getCFInstrCost(unsigned Opcode, 4107 TTI::TargetCostKind CostKind, 4108 const Instruction *I) { 4109 if (CostKind != TTI::TCK_RecipThroughput) 4110 return Opcode == Instruction::PHI ? 0 : 1; 4111 // Branches are assumed to be predicted. 4112 return 0; 4113 } 4114 4115 int X86TTIImpl::getGatherOverhead() const { 4116 // Some CPUs have more overhead for gather. The specified overhead is relative 4117 // to the Load operation. "2" is the number provided by Intel architects. This 4118 // parameter is used for cost estimation of Gather Op and comparison with 4119 // other alternatives. 4120 // TODO: Remove the explicit hasAVX512()?, That would mean we would only 4121 // enable gather with a -march. 4122 if (ST->hasAVX512() || (ST->hasAVX2() && ST->hasFastGather())) 4123 return 2; 4124 4125 return 1024; 4126 } 4127 4128 int X86TTIImpl::getScatterOverhead() const { 4129 if (ST->hasAVX512()) 4130 return 2; 4131 4132 return 1024; 4133 } 4134 4135 // Return an average cost of Gather / Scatter instruction, maybe improved later. 4136 // FIXME: Add TargetCostKind support. 4137 InstructionCost X86TTIImpl::getGSVectorCost(unsigned Opcode, Type *SrcVTy, 4138 const Value *Ptr, Align Alignment, 4139 unsigned AddressSpace) { 4140 4141 assert(isa<VectorType>(SrcVTy) && "Unexpected type in getGSVectorCost"); 4142 unsigned VF = cast<FixedVectorType>(SrcVTy)->getNumElements(); 4143 4144 // Try to reduce index size from 64 bit (default for GEP) 4145 // to 32. It is essential for VF 16. If the index can't be reduced to 32, the 4146 // operation will use 16 x 64 indices which do not fit in a zmm and needs 4147 // to split. Also check that the base pointer is the same for all lanes, 4148 // and that there's at most one variable index. 4149 auto getIndexSizeInBits = [](const Value *Ptr, const DataLayout &DL) { 4150 unsigned IndexSize = DL.getPointerSizeInBits(); 4151 const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr); 4152 if (IndexSize < 64 || !GEP) 4153 return IndexSize; 4154 4155 unsigned NumOfVarIndices = 0; 4156 const Value *Ptrs = GEP->getPointerOperand(); 4157 if (Ptrs->getType()->isVectorTy() && !getSplatValue(Ptrs)) 4158 return IndexSize; 4159 for (unsigned i = 1; i < GEP->getNumOperands(); ++i) { 4160 if (isa<Constant>(GEP->getOperand(i))) 4161 continue; 4162 Type *IndxTy = GEP->getOperand(i)->getType(); 4163 if (auto *IndexVTy = dyn_cast<VectorType>(IndxTy)) 4164 IndxTy = IndexVTy->getElementType(); 4165 if ((IndxTy->getPrimitiveSizeInBits() == 64 && 4166 !isa<SExtInst>(GEP->getOperand(i))) || 4167 ++NumOfVarIndices > 1) 4168 return IndexSize; // 64 4169 } 4170 return (unsigned)32; 4171 }; 4172 4173 // Trying to reduce IndexSize to 32 bits for vector 16. 4174 // By default the IndexSize is equal to pointer size. 4175 unsigned IndexSize = (ST->hasAVX512() && VF >= 16) 4176 ? getIndexSizeInBits(Ptr, DL) 4177 : DL.getPointerSizeInBits(); 4178 4179 auto *IndexVTy = FixedVectorType::get( 4180 IntegerType::get(SrcVTy->getContext(), IndexSize), VF); 4181 std::pair<int, MVT> IdxsLT = TLI->getTypeLegalizationCost(DL, IndexVTy); 4182 std::pair<int, MVT> SrcLT = TLI->getTypeLegalizationCost(DL, SrcVTy); 4183 int SplitFactor = std::max(IdxsLT.first, SrcLT.first); 4184 if (SplitFactor > 1) { 4185 // Handle splitting of vector of pointers 4186 auto *SplitSrcTy = 4187 FixedVectorType::get(SrcVTy->getScalarType(), VF / SplitFactor); 4188 return SplitFactor * getGSVectorCost(Opcode, SplitSrcTy, Ptr, Alignment, 4189 AddressSpace); 4190 } 4191 4192 // The gather / scatter cost is given by Intel architects. It is a rough 4193 // number since we are looking at one instruction in a time. 4194 const int GSOverhead = (Opcode == Instruction::Load) 4195 ? getGatherOverhead() 4196 : getScatterOverhead(); 4197 return GSOverhead + VF * getMemoryOpCost(Opcode, SrcVTy->getScalarType(), 4198 MaybeAlign(Alignment), AddressSpace, 4199 TTI::TCK_RecipThroughput); 4200 } 4201 4202 /// Return the cost of full scalarization of gather / scatter operation. 4203 /// 4204 /// Opcode - Load or Store instruction. 4205 /// SrcVTy - The type of the data vector that should be gathered or scattered. 4206 /// VariableMask - The mask is non-constant at compile time. 4207 /// Alignment - Alignment for one element. 4208 /// AddressSpace - pointer[s] address space. 4209 /// 4210 /// FIXME: Add TargetCostKind support. 4211 InstructionCost X86TTIImpl::getGSScalarCost(unsigned Opcode, Type *SrcVTy, 4212 bool VariableMask, Align Alignment, 4213 unsigned AddressSpace) { 4214 unsigned VF = cast<FixedVectorType>(SrcVTy)->getNumElements(); 4215 APInt DemandedElts = APInt::getAllOnesValue(VF); 4216 TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 4217 4218 InstructionCost MaskUnpackCost = 0; 4219 if (VariableMask) { 4220 auto *MaskTy = 4221 FixedVectorType::get(Type::getInt1Ty(SrcVTy->getContext()), VF); 4222 MaskUnpackCost = 4223 getScalarizationOverhead(MaskTy, DemandedElts, false, true); 4224 InstructionCost ScalarCompareCost = getCmpSelInstrCost( 4225 Instruction::ICmp, Type::getInt1Ty(SrcVTy->getContext()), nullptr, 4226 CmpInst::BAD_ICMP_PREDICATE, CostKind); 4227 InstructionCost BranchCost = getCFInstrCost(Instruction::Br, CostKind); 4228 MaskUnpackCost += VF * (BranchCost + ScalarCompareCost); 4229 } 4230 4231 // The cost of the scalar loads/stores. 4232 InstructionCost MemoryOpCost = 4233 VF * getMemoryOpCost(Opcode, SrcVTy->getScalarType(), 4234 MaybeAlign(Alignment), AddressSpace, CostKind); 4235 4236 InstructionCost InsertExtractCost = 0; 4237 if (Opcode == Instruction::Load) 4238 for (unsigned i = 0; i < VF; ++i) 4239 // Add the cost of inserting each scalar load into the vector 4240 InsertExtractCost += 4241 getVectorInstrCost(Instruction::InsertElement, SrcVTy, i); 4242 else 4243 for (unsigned i = 0; i < VF; ++i) 4244 // Add the cost of extracting each element out of the data vector 4245 InsertExtractCost += 4246 getVectorInstrCost(Instruction::ExtractElement, SrcVTy, i); 4247 4248 return MemoryOpCost + MaskUnpackCost + InsertExtractCost; 4249 } 4250 4251 /// Calculate the cost of Gather / Scatter operation 4252 InstructionCost X86TTIImpl::getGatherScatterOpCost( 4253 unsigned Opcode, Type *SrcVTy, const Value *Ptr, bool VariableMask, 4254 Align Alignment, TTI::TargetCostKind CostKind, 4255 const Instruction *I = nullptr) { 4256 if (CostKind != TTI::TCK_RecipThroughput) { 4257 if ((Opcode == Instruction::Load && 4258 isLegalMaskedGather(SrcVTy, Align(Alignment))) || 4259 (Opcode == Instruction::Store && 4260 isLegalMaskedScatter(SrcVTy, Align(Alignment)))) 4261 return 1; 4262 return BaseT::getGatherScatterOpCost(Opcode, SrcVTy, Ptr, VariableMask, 4263 Alignment, CostKind, I); 4264 } 4265 4266 assert(SrcVTy->isVectorTy() && "Unexpected data type for Gather/Scatter"); 4267 unsigned VF = cast<FixedVectorType>(SrcVTy)->getNumElements(); 4268 PointerType *PtrTy = dyn_cast<PointerType>(Ptr->getType()); 4269 if (!PtrTy && Ptr->getType()->isVectorTy()) 4270 PtrTy = dyn_cast<PointerType>( 4271 cast<VectorType>(Ptr->getType())->getElementType()); 4272 assert(PtrTy && "Unexpected type for Ptr argument"); 4273 unsigned AddressSpace = PtrTy->getAddressSpace(); 4274 4275 bool Scalarize = false; 4276 if ((Opcode == Instruction::Load && 4277 !isLegalMaskedGather(SrcVTy, Align(Alignment))) || 4278 (Opcode == Instruction::Store && 4279 !isLegalMaskedScatter(SrcVTy, Align(Alignment)))) 4280 Scalarize = true; 4281 // Gather / Scatter for vector 2 is not profitable on KNL / SKX 4282 // Vector-4 of gather/scatter instruction does not exist on KNL. 4283 // We can extend it to 8 elements, but zeroing upper bits of 4284 // the mask vector will add more instructions. Right now we give the scalar 4285 // cost of vector-4 for KNL. TODO: Check, maybe the gather/scatter instruction 4286 // is better in the VariableMask case. 4287 if (ST->hasAVX512() && (VF == 2 || (VF == 4 && !ST->hasVLX()))) 4288 Scalarize = true; 4289 4290 if (Scalarize) 4291 return getGSScalarCost(Opcode, SrcVTy, VariableMask, Alignment, 4292 AddressSpace); 4293 4294 return getGSVectorCost(Opcode, SrcVTy, Ptr, Alignment, AddressSpace); 4295 } 4296 4297 bool X86TTIImpl::isLSRCostLess(TargetTransformInfo::LSRCost &C1, 4298 TargetTransformInfo::LSRCost &C2) { 4299 // X86 specific here are "instruction number 1st priority". 4300 return std::tie(C1.Insns, C1.NumRegs, C1.AddRecCost, 4301 C1.NumIVMuls, C1.NumBaseAdds, 4302 C1.ScaleCost, C1.ImmCost, C1.SetupCost) < 4303 std::tie(C2.Insns, C2.NumRegs, C2.AddRecCost, 4304 C2.NumIVMuls, C2.NumBaseAdds, 4305 C2.ScaleCost, C2.ImmCost, C2.SetupCost); 4306 } 4307 4308 bool X86TTIImpl::canMacroFuseCmp() { 4309 return ST->hasMacroFusion() || ST->hasBranchFusion(); 4310 } 4311 4312 bool X86TTIImpl::isLegalMaskedLoad(Type *DataTy, Align Alignment) { 4313 if (!ST->hasAVX()) 4314 return false; 4315 4316 // The backend can't handle a single element vector. 4317 if (isa<VectorType>(DataTy) && 4318 cast<FixedVectorType>(DataTy)->getNumElements() == 1) 4319 return false; 4320 Type *ScalarTy = DataTy->getScalarType(); 4321 4322 if (ScalarTy->isPointerTy()) 4323 return true; 4324 4325 if (ScalarTy->isFloatTy() || ScalarTy->isDoubleTy()) 4326 return true; 4327 4328 if (!ScalarTy->isIntegerTy()) 4329 return false; 4330 4331 unsigned IntWidth = ScalarTy->getIntegerBitWidth(); 4332 return IntWidth == 32 || IntWidth == 64 || 4333 ((IntWidth == 8 || IntWidth == 16) && ST->hasBWI()); 4334 } 4335 4336 bool X86TTIImpl::isLegalMaskedStore(Type *DataType, Align Alignment) { 4337 return isLegalMaskedLoad(DataType, Alignment); 4338 } 4339 4340 bool X86TTIImpl::isLegalNTLoad(Type *DataType, Align Alignment) { 4341 unsigned DataSize = DL.getTypeStoreSize(DataType); 4342 // The only supported nontemporal loads are for aligned vectors of 16 or 32 4343 // bytes. Note that 32-byte nontemporal vector loads are supported by AVX2 4344 // (the equivalent stores only require AVX). 4345 if (Alignment >= DataSize && (DataSize == 16 || DataSize == 32)) 4346 return DataSize == 16 ? ST->hasSSE1() : ST->hasAVX2(); 4347 4348 return false; 4349 } 4350 4351 bool X86TTIImpl::isLegalNTStore(Type *DataType, Align Alignment) { 4352 unsigned DataSize = DL.getTypeStoreSize(DataType); 4353 4354 // SSE4A supports nontemporal stores of float and double at arbitrary 4355 // alignment. 4356 if (ST->hasSSE4A() && (DataType->isFloatTy() || DataType->isDoubleTy())) 4357 return true; 4358 4359 // Besides the SSE4A subtarget exception above, only aligned stores are 4360 // available nontemporaly on any other subtarget. And only stores with a size 4361 // of 4..32 bytes (powers of 2, only) are permitted. 4362 if (Alignment < DataSize || DataSize < 4 || DataSize > 32 || 4363 !isPowerOf2_32(DataSize)) 4364 return false; 4365 4366 // 32-byte vector nontemporal stores are supported by AVX (the equivalent 4367 // loads require AVX2). 4368 if (DataSize == 32) 4369 return ST->hasAVX(); 4370 else if (DataSize == 16) 4371 return ST->hasSSE1(); 4372 return true; 4373 } 4374 4375 bool X86TTIImpl::isLegalMaskedExpandLoad(Type *DataTy) { 4376 if (!isa<VectorType>(DataTy)) 4377 return false; 4378 4379 if (!ST->hasAVX512()) 4380 return false; 4381 4382 // The backend can't handle a single element vector. 4383 if (cast<FixedVectorType>(DataTy)->getNumElements() == 1) 4384 return false; 4385 4386 Type *ScalarTy = cast<VectorType>(DataTy)->getElementType(); 4387 4388 if (ScalarTy->isFloatTy() || ScalarTy->isDoubleTy()) 4389 return true; 4390 4391 if (!ScalarTy->isIntegerTy()) 4392 return false; 4393 4394 unsigned IntWidth = ScalarTy->getIntegerBitWidth(); 4395 return IntWidth == 32 || IntWidth == 64 || 4396 ((IntWidth == 8 || IntWidth == 16) && ST->hasVBMI2()); 4397 } 4398 4399 bool X86TTIImpl::isLegalMaskedCompressStore(Type *DataTy) { 4400 return isLegalMaskedExpandLoad(DataTy); 4401 } 4402 4403 bool X86TTIImpl::isLegalMaskedGather(Type *DataTy, Align Alignment) { 4404 // Some CPUs have better gather performance than others. 4405 // TODO: Remove the explicit ST->hasAVX512()?, That would mean we would only 4406 // enable gather with a -march. 4407 if (!(ST->hasAVX512() || (ST->hasFastGather() && ST->hasAVX2()))) 4408 return false; 4409 4410 // This function is called now in two cases: from the Loop Vectorizer 4411 // and from the Scalarizer. 4412 // When the Loop Vectorizer asks about legality of the feature, 4413 // the vectorization factor is not calculated yet. The Loop Vectorizer 4414 // sends a scalar type and the decision is based on the width of the 4415 // scalar element. 4416 // Later on, the cost model will estimate usage this intrinsic based on 4417 // the vector type. 4418 // The Scalarizer asks again about legality. It sends a vector type. 4419 // In this case we can reject non-power-of-2 vectors. 4420 // We also reject single element vectors as the type legalizer can't 4421 // scalarize it. 4422 if (auto *DataVTy = dyn_cast<FixedVectorType>(DataTy)) { 4423 unsigned NumElts = DataVTy->getNumElements(); 4424 if (NumElts == 1) 4425 return false; 4426 } 4427 Type *ScalarTy = DataTy->getScalarType(); 4428 if (ScalarTy->isPointerTy()) 4429 return true; 4430 4431 if (ScalarTy->isFloatTy() || ScalarTy->isDoubleTy()) 4432 return true; 4433 4434 if (!ScalarTy->isIntegerTy()) 4435 return false; 4436 4437 unsigned IntWidth = ScalarTy->getIntegerBitWidth(); 4438 return IntWidth == 32 || IntWidth == 64; 4439 } 4440 4441 bool X86TTIImpl::isLegalMaskedScatter(Type *DataType, Align Alignment) { 4442 // AVX2 doesn't support scatter 4443 if (!ST->hasAVX512()) 4444 return false; 4445 return isLegalMaskedGather(DataType, Alignment); 4446 } 4447 4448 bool X86TTIImpl::hasDivRemOp(Type *DataType, bool IsSigned) { 4449 EVT VT = TLI->getValueType(DL, DataType); 4450 return TLI->isOperationLegal(IsSigned ? ISD::SDIVREM : ISD::UDIVREM, VT); 4451 } 4452 4453 bool X86TTIImpl::isFCmpOrdCheaperThanFCmpZero(Type *Ty) { 4454 return false; 4455 } 4456 4457 bool X86TTIImpl::areInlineCompatible(const Function *Caller, 4458 const Function *Callee) const { 4459 const TargetMachine &TM = getTLI()->getTargetMachine(); 4460 4461 // Work this as a subsetting of subtarget features. 4462 const FeatureBitset &CallerBits = 4463 TM.getSubtargetImpl(*Caller)->getFeatureBits(); 4464 const FeatureBitset &CalleeBits = 4465 TM.getSubtargetImpl(*Callee)->getFeatureBits(); 4466 4467 FeatureBitset RealCallerBits = CallerBits & ~InlineFeatureIgnoreList; 4468 FeatureBitset RealCalleeBits = CalleeBits & ~InlineFeatureIgnoreList; 4469 return (RealCallerBits & RealCalleeBits) == RealCalleeBits; 4470 } 4471 4472 bool X86TTIImpl::areFunctionArgsABICompatible( 4473 const Function *Caller, const Function *Callee, 4474 SmallPtrSetImpl<Argument *> &Args) const { 4475 if (!BaseT::areFunctionArgsABICompatible(Caller, Callee, Args)) 4476 return false; 4477 4478 // If we get here, we know the target features match. If one function 4479 // considers 512-bit vectors legal and the other does not, consider them 4480 // incompatible. 4481 const TargetMachine &TM = getTLI()->getTargetMachine(); 4482 4483 if (TM.getSubtarget<X86Subtarget>(*Caller).useAVX512Regs() == 4484 TM.getSubtarget<X86Subtarget>(*Callee).useAVX512Regs()) 4485 return true; 4486 4487 // Consider the arguments compatible if they aren't vectors or aggregates. 4488 // FIXME: Look at the size of vectors. 4489 // FIXME: Look at the element types of aggregates to see if there are vectors. 4490 // FIXME: The API of this function seems intended to allow arguments 4491 // to be removed from the set, but the caller doesn't check if the set 4492 // becomes empty so that may not work in practice. 4493 return llvm::none_of(Args, [](Argument *A) { 4494 auto *EltTy = cast<PointerType>(A->getType())->getElementType(); 4495 return EltTy->isVectorTy() || EltTy->isAggregateType(); 4496 }); 4497 } 4498 4499 X86TTIImpl::TTI::MemCmpExpansionOptions 4500 X86TTIImpl::enableMemCmpExpansion(bool OptSize, bool IsZeroCmp) const { 4501 TTI::MemCmpExpansionOptions Options; 4502 Options.MaxNumLoads = TLI->getMaxExpandSizeMemcmp(OptSize); 4503 Options.NumLoadsPerBlock = 2; 4504 // All GPR and vector loads can be unaligned. 4505 Options.AllowOverlappingLoads = true; 4506 if (IsZeroCmp) { 4507 // Only enable vector loads for equality comparison. Right now the vector 4508 // version is not as fast for three way compare (see #33329). 4509 const unsigned PreferredWidth = ST->getPreferVectorWidth(); 4510 if (PreferredWidth >= 512 && ST->hasAVX512()) Options.LoadSizes.push_back(64); 4511 if (PreferredWidth >= 256 && ST->hasAVX()) Options.LoadSizes.push_back(32); 4512 if (PreferredWidth >= 128 && ST->hasSSE2()) Options.LoadSizes.push_back(16); 4513 } 4514 if (ST->is64Bit()) { 4515 Options.LoadSizes.push_back(8); 4516 } 4517 Options.LoadSizes.push_back(4); 4518 Options.LoadSizes.push_back(2); 4519 Options.LoadSizes.push_back(1); 4520 return Options; 4521 } 4522 4523 bool X86TTIImpl::enableInterleavedAccessVectorization() { 4524 // TODO: We expect this to be beneficial regardless of arch, 4525 // but there are currently some unexplained performance artifacts on Atom. 4526 // As a temporary solution, disable on Atom. 4527 return !(ST->isAtom()); 4528 } 4529 4530 // Get estimation for interleaved load/store operations for AVX2. 4531 // \p Factor is the interleaved-access factor (stride) - number of 4532 // (interleaved) elements in the group. 4533 // \p Indices contains the indices for a strided load: when the 4534 // interleaved load has gaps they indicate which elements are used. 4535 // If Indices is empty (or if the number of indices is equal to the size 4536 // of the interleaved-access as given in \p Factor) the access has no gaps. 4537 // 4538 // As opposed to AVX-512, AVX2 does not have generic shuffles that allow 4539 // computing the cost using a generic formula as a function of generic 4540 // shuffles. We therefore use a lookup table instead, filled according to 4541 // the instruction sequences that codegen currently generates. 4542 InstructionCost X86TTIImpl::getInterleavedMemoryOpCostAVX2( 4543 unsigned Opcode, FixedVectorType *VecTy, unsigned Factor, 4544 ArrayRef<unsigned> Indices, Align Alignment, unsigned AddressSpace, 4545 TTI::TargetCostKind CostKind, bool UseMaskForCond, bool UseMaskForGaps) { 4546 4547 if (UseMaskForCond || UseMaskForGaps) 4548 return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices, 4549 Alignment, AddressSpace, CostKind, 4550 UseMaskForCond, UseMaskForGaps); 4551 4552 // We currently Support only fully-interleaved groups, with no gaps. 4553 // TODO: Support also strided loads (interleaved-groups with gaps). 4554 if (Indices.size() && Indices.size() != Factor) 4555 return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices, 4556 Alignment, AddressSpace, 4557 CostKind); 4558 4559 // VecTy for interleave memop is <VF*Factor x Elt>. 4560 // So, for VF=4, Interleave Factor = 3, Element type = i32 we have 4561 // VecTy = <12 x i32>. 4562 MVT LegalVT = getTLI()->getTypeLegalizationCost(DL, VecTy).second; 4563 4564 // This function can be called with VecTy=<6xi128>, Factor=3, in which case 4565 // the VF=2, while v2i128 is an unsupported MVT vector type 4566 // (see MachineValueType.h::getVectorVT()). 4567 if (!LegalVT.isVector()) 4568 return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices, 4569 Alignment, AddressSpace, 4570 CostKind); 4571 4572 unsigned VF = VecTy->getNumElements() / Factor; 4573 Type *ScalarTy = VecTy->getElementType(); 4574 4575 // Calculate the number of memory operations (NumOfMemOps), required 4576 // for load/store the VecTy. 4577 unsigned VecTySize = DL.getTypeStoreSize(VecTy); 4578 unsigned LegalVTSize = LegalVT.getStoreSize(); 4579 unsigned NumOfMemOps = (VecTySize + LegalVTSize - 1) / LegalVTSize; 4580 4581 // Get the cost of one memory operation. 4582 auto *SingleMemOpTy = FixedVectorType::get(VecTy->getElementType(), 4583 LegalVT.getVectorNumElements()); 4584 InstructionCost MemOpCost = getMemoryOpCost( 4585 Opcode, SingleMemOpTy, MaybeAlign(Alignment), AddressSpace, CostKind); 4586 4587 auto *VT = FixedVectorType::get(ScalarTy, VF); 4588 EVT ETy = TLI->getValueType(DL, VT); 4589 if (!ETy.isSimple()) 4590 return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices, 4591 Alignment, AddressSpace, 4592 CostKind); 4593 4594 // TODO: Complete for other data-types and strides. 4595 // Each combination of Stride, ElementTy and VF results in a different 4596 // sequence; The cost tables are therefore accessed with: 4597 // Factor (stride) and VectorType=VFxElemType. 4598 // The Cost accounts only for the shuffle sequence; 4599 // The cost of the loads/stores is accounted for separately. 4600 // 4601 static const CostTblEntry AVX2InterleavedLoadTbl[] = { 4602 { 2, MVT::v4i64, 6 }, //(load 8i64 and) deinterleave into 2 x 4i64 4603 { 2, MVT::v4f64, 6 }, //(load 8f64 and) deinterleave into 2 x 4f64 4604 4605 { 3, MVT::v2i8, 10 }, //(load 6i8 and) deinterleave into 3 x 2i8 4606 { 3, MVT::v4i8, 4 }, //(load 12i8 and) deinterleave into 3 x 4i8 4607 { 3, MVT::v8i8, 9 }, //(load 24i8 and) deinterleave into 3 x 8i8 4608 { 3, MVT::v16i8, 11}, //(load 48i8 and) deinterleave into 3 x 16i8 4609 { 3, MVT::v32i8, 13}, //(load 96i8 and) deinterleave into 3 x 32i8 4610 { 3, MVT::v8f32, 17 }, //(load 24f32 and)deinterleave into 3 x 8f32 4611 4612 { 4, MVT::v2i8, 12 }, //(load 8i8 and) deinterleave into 4 x 2i8 4613 { 4, MVT::v4i8, 4 }, //(load 16i8 and) deinterleave into 4 x 4i8 4614 { 4, MVT::v8i8, 20 }, //(load 32i8 and) deinterleave into 4 x 8i8 4615 { 4, MVT::v16i8, 39 }, //(load 64i8 and) deinterleave into 4 x 16i8 4616 { 4, MVT::v32i8, 80 }, //(load 128i8 and) deinterleave into 4 x 32i8 4617 4618 { 8, MVT::v8f32, 40 } //(load 64f32 and)deinterleave into 8 x 8f32 4619 }; 4620 4621 static const CostTblEntry AVX2InterleavedStoreTbl[] = { 4622 { 2, MVT::v4i64, 6 }, //interleave into 2 x 4i64 into 8i64 (and store) 4623 { 2, MVT::v4f64, 6 }, //interleave into 2 x 4f64 into 8f64 (and store) 4624 4625 { 3, MVT::v2i8, 7 }, //interleave 3 x 2i8 into 6i8 (and store) 4626 { 3, MVT::v4i8, 8 }, //interleave 3 x 4i8 into 12i8 (and store) 4627 { 3, MVT::v8i8, 11 }, //interleave 3 x 8i8 into 24i8 (and store) 4628 { 3, MVT::v16i8, 11 }, //interleave 3 x 16i8 into 48i8 (and store) 4629 { 3, MVT::v32i8, 13 }, //interleave 3 x 32i8 into 96i8 (and store) 4630 4631 { 4, MVT::v2i8, 12 }, //interleave 4 x 2i8 into 8i8 (and store) 4632 { 4, MVT::v4i8, 9 }, //interleave 4 x 4i8 into 16i8 (and store) 4633 { 4, MVT::v8i8, 10 }, //interleave 4 x 8i8 into 32i8 (and store) 4634 { 4, MVT::v16i8, 10 }, //interleave 4 x 16i8 into 64i8 (and store) 4635 { 4, MVT::v32i8, 12 } //interleave 4 x 32i8 into 128i8 (and store) 4636 }; 4637 4638 if (Opcode == Instruction::Load) { 4639 if (const auto *Entry = 4640 CostTableLookup(AVX2InterleavedLoadTbl, Factor, ETy.getSimpleVT())) 4641 return NumOfMemOps * MemOpCost + Entry->Cost; 4642 } else { 4643 assert(Opcode == Instruction::Store && 4644 "Expected Store Instruction at this point"); 4645 if (const auto *Entry = 4646 CostTableLookup(AVX2InterleavedStoreTbl, Factor, ETy.getSimpleVT())) 4647 return NumOfMemOps * MemOpCost + Entry->Cost; 4648 } 4649 4650 return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices, 4651 Alignment, AddressSpace, CostKind); 4652 } 4653 4654 // Get estimation for interleaved load/store operations and strided load. 4655 // \p Indices contains indices for strided load. 4656 // \p Factor - the factor of interleaving. 4657 // AVX-512 provides 3-src shuffles that significantly reduces the cost. 4658 InstructionCost X86TTIImpl::getInterleavedMemoryOpCostAVX512( 4659 unsigned Opcode, FixedVectorType *VecTy, unsigned Factor, 4660 ArrayRef<unsigned> Indices, Align Alignment, unsigned AddressSpace, 4661 TTI::TargetCostKind CostKind, bool UseMaskForCond, bool UseMaskForGaps) { 4662 4663 if (UseMaskForCond || UseMaskForGaps) 4664 return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices, 4665 Alignment, AddressSpace, CostKind, 4666 UseMaskForCond, UseMaskForGaps); 4667 4668 // VecTy for interleave memop is <VF*Factor x Elt>. 4669 // So, for VF=4, Interleave Factor = 3, Element type = i32 we have 4670 // VecTy = <12 x i32>. 4671 4672 // Calculate the number of memory operations (NumOfMemOps), required 4673 // for load/store the VecTy. 4674 MVT LegalVT = getTLI()->getTypeLegalizationCost(DL, VecTy).second; 4675 unsigned VecTySize = DL.getTypeStoreSize(VecTy); 4676 unsigned LegalVTSize = LegalVT.getStoreSize(); 4677 unsigned NumOfMemOps = (VecTySize + LegalVTSize - 1) / LegalVTSize; 4678 4679 // Get the cost of one memory operation. 4680 auto *SingleMemOpTy = FixedVectorType::get(VecTy->getElementType(), 4681 LegalVT.getVectorNumElements()); 4682 InstructionCost MemOpCost = getMemoryOpCost( 4683 Opcode, SingleMemOpTy, MaybeAlign(Alignment), AddressSpace, CostKind); 4684 4685 unsigned VF = VecTy->getNumElements() / Factor; 4686 MVT VT = MVT::getVectorVT(MVT::getVT(VecTy->getScalarType()), VF); 4687 4688 if (Opcode == Instruction::Load) { 4689 // The tables (AVX512InterleavedLoadTbl and AVX512InterleavedStoreTbl) 4690 // contain the cost of the optimized shuffle sequence that the 4691 // X86InterleavedAccess pass will generate. 4692 // The cost of loads and stores are computed separately from the table. 4693 4694 // X86InterleavedAccess support only the following interleaved-access group. 4695 static const CostTblEntry AVX512InterleavedLoadTbl[] = { 4696 {3, MVT::v16i8, 12}, //(load 48i8 and) deinterleave into 3 x 16i8 4697 {3, MVT::v32i8, 14}, //(load 96i8 and) deinterleave into 3 x 32i8 4698 {3, MVT::v64i8, 22}, //(load 96i8 and) deinterleave into 3 x 32i8 4699 }; 4700 4701 if (const auto *Entry = 4702 CostTableLookup(AVX512InterleavedLoadTbl, Factor, VT)) 4703 return NumOfMemOps * MemOpCost + Entry->Cost; 4704 //If an entry does not exist, fallback to the default implementation. 4705 4706 // Kind of shuffle depends on number of loaded values. 4707 // If we load the entire data in one register, we can use a 1-src shuffle. 4708 // Otherwise, we'll merge 2 sources in each operation. 4709 TTI::ShuffleKind ShuffleKind = 4710 (NumOfMemOps > 1) ? TTI::SK_PermuteTwoSrc : TTI::SK_PermuteSingleSrc; 4711 4712 InstructionCost ShuffleCost = 4713 getShuffleCost(ShuffleKind, SingleMemOpTy, None, 0, nullptr); 4714 4715 unsigned NumOfLoadsInInterleaveGrp = 4716 Indices.size() ? Indices.size() : Factor; 4717 auto *ResultTy = FixedVectorType::get(VecTy->getElementType(), 4718 VecTy->getNumElements() / Factor); 4719 unsigned NumOfResults = 4720 getTLI()->getTypeLegalizationCost(DL, ResultTy).first * 4721 NumOfLoadsInInterleaveGrp; 4722 4723 // About a half of the loads may be folded in shuffles when we have only 4724 // one result. If we have more than one result, we do not fold loads at all. 4725 unsigned NumOfUnfoldedLoads = 4726 NumOfResults > 1 ? NumOfMemOps : NumOfMemOps / 2; 4727 4728 // Get a number of shuffle operations per result. 4729 unsigned NumOfShufflesPerResult = 4730 std::max((unsigned)1, (unsigned)(NumOfMemOps - 1)); 4731 4732 // The SK_MergeTwoSrc shuffle clobbers one of src operands. 4733 // When we have more than one destination, we need additional instructions 4734 // to keep sources. 4735 unsigned NumOfMoves = 0; 4736 if (NumOfResults > 1 && ShuffleKind == TTI::SK_PermuteTwoSrc) 4737 NumOfMoves = NumOfResults * NumOfShufflesPerResult / 2; 4738 4739 InstructionCost Cost = NumOfResults * NumOfShufflesPerResult * ShuffleCost + 4740 NumOfUnfoldedLoads * MemOpCost + NumOfMoves; 4741 4742 return Cost; 4743 } 4744 4745 // Store. 4746 assert(Opcode == Instruction::Store && 4747 "Expected Store Instruction at this point"); 4748 // X86InterleavedAccess support only the following interleaved-access group. 4749 static const CostTblEntry AVX512InterleavedStoreTbl[] = { 4750 {3, MVT::v16i8, 12}, // interleave 3 x 16i8 into 48i8 (and store) 4751 {3, MVT::v32i8, 14}, // interleave 3 x 32i8 into 96i8 (and store) 4752 {3, MVT::v64i8, 26}, // interleave 3 x 64i8 into 96i8 (and store) 4753 4754 {4, MVT::v8i8, 10}, // interleave 4 x 8i8 into 32i8 (and store) 4755 {4, MVT::v16i8, 11}, // interleave 4 x 16i8 into 64i8 (and store) 4756 {4, MVT::v32i8, 14}, // interleave 4 x 32i8 into 128i8 (and store) 4757 {4, MVT::v64i8, 24} // interleave 4 x 32i8 into 256i8 (and store) 4758 }; 4759 4760 if (const auto *Entry = 4761 CostTableLookup(AVX512InterleavedStoreTbl, Factor, VT)) 4762 return NumOfMemOps * MemOpCost + Entry->Cost; 4763 //If an entry does not exist, fallback to the default implementation. 4764 4765 // There is no strided stores meanwhile. And store can't be folded in 4766 // shuffle. 4767 unsigned NumOfSources = Factor; // The number of values to be merged. 4768 InstructionCost ShuffleCost = 4769 getShuffleCost(TTI::SK_PermuteTwoSrc, SingleMemOpTy, None, 0, nullptr); 4770 unsigned NumOfShufflesPerStore = NumOfSources - 1; 4771 4772 // The SK_MergeTwoSrc shuffle clobbers one of src operands. 4773 // We need additional instructions to keep sources. 4774 unsigned NumOfMoves = NumOfMemOps * NumOfShufflesPerStore / 2; 4775 InstructionCost Cost = 4776 NumOfMemOps * (MemOpCost + NumOfShufflesPerStore * ShuffleCost) + 4777 NumOfMoves; 4778 return Cost; 4779 } 4780 4781 InstructionCost X86TTIImpl::getInterleavedMemoryOpCost( 4782 unsigned Opcode, Type *VecTy, unsigned Factor, ArrayRef<unsigned> Indices, 4783 Align Alignment, unsigned AddressSpace, TTI::TargetCostKind CostKind, 4784 bool UseMaskForCond, bool UseMaskForGaps) { 4785 auto isSupportedOnAVX512 = [](Type *VecTy, bool HasBW) { 4786 Type *EltTy = cast<VectorType>(VecTy)->getElementType(); 4787 if (EltTy->isFloatTy() || EltTy->isDoubleTy() || EltTy->isIntegerTy(64) || 4788 EltTy->isIntegerTy(32) || EltTy->isPointerTy()) 4789 return true; 4790 if (EltTy->isIntegerTy(16) || EltTy->isIntegerTy(8)) 4791 return HasBW; 4792 return false; 4793 }; 4794 if (ST->hasAVX512() && isSupportedOnAVX512(VecTy, ST->hasBWI())) 4795 return getInterleavedMemoryOpCostAVX512( 4796 Opcode, cast<FixedVectorType>(VecTy), Factor, Indices, Alignment, 4797 AddressSpace, CostKind, UseMaskForCond, UseMaskForGaps); 4798 if (ST->hasAVX2()) 4799 return getInterleavedMemoryOpCostAVX2( 4800 Opcode, cast<FixedVectorType>(VecTy), Factor, Indices, Alignment, 4801 AddressSpace, CostKind, UseMaskForCond, UseMaskForGaps); 4802 4803 return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices, 4804 Alignment, AddressSpace, CostKind, 4805 UseMaskForCond, UseMaskForGaps); 4806 } 4807