1 //===-- X86TargetTransformInfo.cpp - X86 specific TTI pass ----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 /// \file
9 /// This file implements a TargetTransformInfo analysis pass specific to the
10 /// X86 target machine. It uses the target's detailed information to provide
11 /// more precise answers to certain TTI queries, while letting the target
12 /// independent and default TTI implementations handle the rest.
13 ///
14 //===----------------------------------------------------------------------===//
15 /// About Cost Model numbers used below it's necessary to say the following:
16 /// the numbers correspond to some "generic" X86 CPU instead of usage of
17 /// concrete CPU model. Usually the numbers correspond to CPU where the feature
18 /// apeared at the first time. For example, if we do Subtarget.hasSSE42() in
19 /// the lookups below the cost is based on Nehalem as that was the first CPU
20 /// to support that feature level and thus has most likely the worst case cost.
21 /// Some examples of other technologies/CPUs:
22 ///   SSE 3   - Pentium4 / Athlon64
23 ///   SSE 4.1 - Penryn
24 ///   SSE 4.2 - Nehalem
25 ///   AVX     - Sandy Bridge
26 ///   AVX2    - Haswell
27 ///   AVX-512 - Xeon Phi / Skylake
28 /// And some examples of instruction target dependent costs (latency)
29 ///                   divss     sqrtss          rsqrtss
30 ///   AMD K7            11-16     19              3
31 ///   Piledriver        9-24      13-15           5
32 ///   Jaguar            14        16              2
33 ///   Pentium II,III    18        30              2
34 ///   Nehalem           7-14      7-18            3
35 ///   Haswell           10-13     11              5
36 /// TODO: Develop and implement  the target dependent cost model and
37 /// specialize cost numbers for different Cost Model Targets such as throughput,
38 /// code size, latency and uop count.
39 //===----------------------------------------------------------------------===//
40 
41 #include "X86TargetTransformInfo.h"
42 #include "llvm/Analysis/TargetTransformInfo.h"
43 #include "llvm/CodeGen/BasicTTIImpl.h"
44 #include "llvm/CodeGen/CostTable.h"
45 #include "llvm/CodeGen/TargetLowering.h"
46 #include "llvm/IR/IntrinsicInst.h"
47 #include "llvm/Support/Debug.h"
48 
49 using namespace llvm;
50 
51 #define DEBUG_TYPE "x86tti"
52 
53 //===----------------------------------------------------------------------===//
54 //
55 // X86 cost model.
56 //
57 //===----------------------------------------------------------------------===//
58 
59 TargetTransformInfo::PopcntSupportKind
60 X86TTIImpl::getPopcntSupport(unsigned TyWidth) {
61   assert(isPowerOf2_32(TyWidth) && "Ty width must be power of 2");
62   // TODO: Currently the __builtin_popcount() implementation using SSE3
63   //   instructions is inefficient. Once the problem is fixed, we should
64   //   call ST->hasSSE3() instead of ST->hasPOPCNT().
65   return ST->hasPOPCNT() ? TTI::PSK_FastHardware : TTI::PSK_Software;
66 }
67 
68 llvm::Optional<unsigned> X86TTIImpl::getCacheSize(
69   TargetTransformInfo::CacheLevel Level) const {
70   switch (Level) {
71   case TargetTransformInfo::CacheLevel::L1D:
72     //   - Penryn
73     //   - Nehalem
74     //   - Westmere
75     //   - Sandy Bridge
76     //   - Ivy Bridge
77     //   - Haswell
78     //   - Broadwell
79     //   - Skylake
80     //   - Kabylake
81     return 32 * 1024;  //  32 KByte
82   case TargetTransformInfo::CacheLevel::L2D:
83     //   - Penryn
84     //   - Nehalem
85     //   - Westmere
86     //   - Sandy Bridge
87     //   - Ivy Bridge
88     //   - Haswell
89     //   - Broadwell
90     //   - Skylake
91     //   - Kabylake
92     return 256 * 1024; // 256 KByte
93   }
94 
95   llvm_unreachable("Unknown TargetTransformInfo::CacheLevel");
96 }
97 
98 llvm::Optional<unsigned> X86TTIImpl::getCacheAssociativity(
99   TargetTransformInfo::CacheLevel Level) const {
100   //   - Penryn
101   //   - Nehalem
102   //   - Westmere
103   //   - Sandy Bridge
104   //   - Ivy Bridge
105   //   - Haswell
106   //   - Broadwell
107   //   - Skylake
108   //   - Kabylake
109   switch (Level) {
110   case TargetTransformInfo::CacheLevel::L1D:
111     LLVM_FALLTHROUGH;
112   case TargetTransformInfo::CacheLevel::L2D:
113     return 8;
114   }
115 
116   llvm_unreachable("Unknown TargetTransformInfo::CacheLevel");
117 }
118 
119 unsigned X86TTIImpl::getNumberOfRegisters(unsigned ClassID) const {
120   bool Vector = (ClassID == 1);
121   if (Vector && !ST->hasSSE1())
122     return 0;
123 
124   if (ST->is64Bit()) {
125     if (Vector && ST->hasAVX512())
126       return 32;
127     return 16;
128   }
129   return 8;
130 }
131 
132 TypeSize
133 X86TTIImpl::getRegisterBitWidth(TargetTransformInfo::RegisterKind K) const {
134   unsigned PreferVectorWidth = ST->getPreferVectorWidth();
135   switch (K) {
136   case TargetTransformInfo::RGK_Scalar:
137     return TypeSize::getFixed(ST->is64Bit() ? 64 : 32);
138   case TargetTransformInfo::RGK_FixedWidthVector:
139     if (ST->hasAVX512() && PreferVectorWidth >= 512)
140       return TypeSize::getFixed(512);
141     if (ST->hasAVX() && PreferVectorWidth >= 256)
142       return TypeSize::getFixed(256);
143     if (ST->hasSSE1() && PreferVectorWidth >= 128)
144       return TypeSize::getFixed(128);
145     return TypeSize::getFixed(0);
146   case TargetTransformInfo::RGK_ScalableVector:
147     return TypeSize::getScalable(0);
148   }
149 
150   llvm_unreachable("Unsupported register kind");
151 }
152 
153 unsigned X86TTIImpl::getLoadStoreVecRegBitWidth(unsigned) const {
154   return getRegisterBitWidth(TargetTransformInfo::RGK_FixedWidthVector)
155       .getFixedSize();
156 }
157 
158 unsigned X86TTIImpl::getMaxInterleaveFactor(unsigned VF) {
159   // If the loop will not be vectorized, don't interleave the loop.
160   // Let regular unroll to unroll the loop, which saves the overflow
161   // check and memory check cost.
162   if (VF == 1)
163     return 1;
164 
165   if (ST->isAtom())
166     return 1;
167 
168   // Sandybridge and Haswell have multiple execution ports and pipelined
169   // vector units.
170   if (ST->hasAVX())
171     return 4;
172 
173   return 2;
174 }
175 
176 InstructionCost X86TTIImpl::getArithmeticInstrCost(
177     unsigned Opcode, Type *Ty, TTI::TargetCostKind CostKind,
178     TTI::OperandValueKind Op1Info, TTI::OperandValueKind Op2Info,
179     TTI::OperandValueProperties Opd1PropInfo,
180     TTI::OperandValueProperties Opd2PropInfo, ArrayRef<const Value *> Args,
181     const Instruction *CxtI) {
182   // TODO: Handle more cost kinds.
183   if (CostKind != TTI::TCK_RecipThroughput)
184     return BaseT::getArithmeticInstrCost(Opcode, Ty, CostKind, Op1Info,
185                                          Op2Info, Opd1PropInfo,
186                                          Opd2PropInfo, Args, CxtI);
187 
188   // vXi8 multiplications are always promoted to vXi16.
189   if (Opcode == Instruction::Mul && Ty->isVectorTy() &&
190       Ty->getScalarSizeInBits() == 8) {
191     Type *WideVecTy =
192         VectorType::getExtendedElementVectorType(cast<VectorType>(Ty));
193     return getCastInstrCost(Instruction::ZExt, WideVecTy, Ty,
194                             TargetTransformInfo::CastContextHint::None,
195                             CostKind) +
196            getCastInstrCost(Instruction::Trunc, Ty, WideVecTy,
197                             TargetTransformInfo::CastContextHint::None,
198                             CostKind) +
199            getArithmeticInstrCost(Opcode, WideVecTy, CostKind, Op1Info, Op2Info,
200                                   Opd1PropInfo, Opd2PropInfo);
201   }
202 
203   // Legalize the type.
204   std::pair<InstructionCost, MVT> LT = TLI->getTypeLegalizationCost(DL, Ty);
205 
206   int ISD = TLI->InstructionOpcodeToISD(Opcode);
207   assert(ISD && "Invalid opcode");
208 
209   static const CostTblEntry GLMCostTable[] = {
210     { ISD::FDIV,  MVT::f32,   18 }, // divss
211     { ISD::FDIV,  MVT::v4f32, 35 }, // divps
212     { ISD::FDIV,  MVT::f64,   33 }, // divsd
213     { ISD::FDIV,  MVT::v2f64, 65 }, // divpd
214   };
215 
216   if (ST->useGLMDivSqrtCosts())
217     if (const auto *Entry = CostTableLookup(GLMCostTable, ISD,
218                                             LT.second))
219       return LT.first * Entry->Cost;
220 
221   static const CostTblEntry SLMCostTable[] = {
222     { ISD::MUL,   MVT::v4i32, 11 }, // pmulld
223     { ISD::MUL,   MVT::v8i16, 2  }, // pmullw
224     { ISD::FMUL,  MVT::f64,   2  }, // mulsd
225     { ISD::FMUL,  MVT::v2f64, 4  }, // mulpd
226     { ISD::FMUL,  MVT::v4f32, 2  }, // mulps
227     { ISD::FDIV,  MVT::f32,   17 }, // divss
228     { ISD::FDIV,  MVT::v4f32, 39 }, // divps
229     { ISD::FDIV,  MVT::f64,   32 }, // divsd
230     { ISD::FDIV,  MVT::v2f64, 69 }, // divpd
231     { ISD::FADD,  MVT::v2f64, 2  }, // addpd
232     { ISD::FSUB,  MVT::v2f64, 2  }, // subpd
233     // v2i64/v4i64 mul is custom lowered as a series of long:
234     // multiplies(3), shifts(3) and adds(2)
235     // slm muldq version throughput is 2 and addq throughput 4
236     // thus: 3X2 (muldq throughput) + 3X1 (shift throughput) +
237     //       3X4 (addq throughput) = 17
238     { ISD::MUL,   MVT::v2i64, 17 },
239     // slm addq\subq throughput is 4
240     { ISD::ADD,   MVT::v2i64, 4  },
241     { ISD::SUB,   MVT::v2i64, 4  },
242   };
243 
244   if (ST->isSLM()) {
245     if (Args.size() == 2 && ISD == ISD::MUL && LT.second == MVT::v4i32) {
246       // Check if the operands can be shrinked into a smaller datatype.
247       bool Op1Signed = false;
248       unsigned Op1MinSize = BaseT::minRequiredElementSize(Args[0], Op1Signed);
249       bool Op2Signed = false;
250       unsigned Op2MinSize = BaseT::minRequiredElementSize(Args[1], Op2Signed);
251 
252       bool SignedMode = Op1Signed || Op2Signed;
253       unsigned OpMinSize = std::max(Op1MinSize, Op2MinSize);
254 
255       if (OpMinSize <= 7)
256         return LT.first * 3; // pmullw/sext
257       if (!SignedMode && OpMinSize <= 8)
258         return LT.first * 3; // pmullw/zext
259       if (OpMinSize <= 15)
260         return LT.first * 5; // pmullw/pmulhw/pshuf
261       if (!SignedMode && OpMinSize <= 16)
262         return LT.first * 5; // pmullw/pmulhw/pshuf
263     }
264 
265     if (const auto *Entry = CostTableLookup(SLMCostTable, ISD,
266                                             LT.second)) {
267       return LT.first * Entry->Cost;
268     }
269   }
270 
271   if ((ISD == ISD::SDIV || ISD == ISD::SREM || ISD == ISD::UDIV ||
272        ISD == ISD::UREM) &&
273       (Op2Info == TargetTransformInfo::OK_UniformConstantValue ||
274        Op2Info == TargetTransformInfo::OK_NonUniformConstantValue) &&
275       Opd2PropInfo == TargetTransformInfo::OP_PowerOf2) {
276     if (ISD == ISD::SDIV || ISD == ISD::SREM) {
277       // On X86, vector signed division by constants power-of-two are
278       // normally expanded to the sequence SRA + SRL + ADD + SRA.
279       // The OperandValue properties may not be the same as that of the previous
280       // operation; conservatively assume OP_None.
281       InstructionCost Cost =
282           2 * getArithmeticInstrCost(Instruction::AShr, Ty, CostKind, Op1Info,
283                                      Op2Info, TargetTransformInfo::OP_None,
284                                      TargetTransformInfo::OP_None);
285       Cost += getArithmeticInstrCost(Instruction::LShr, Ty, CostKind, Op1Info,
286                                      Op2Info,
287                                      TargetTransformInfo::OP_None,
288                                      TargetTransformInfo::OP_None);
289       Cost += getArithmeticInstrCost(Instruction::Add, Ty, CostKind, Op1Info,
290                                      Op2Info,
291                                      TargetTransformInfo::OP_None,
292                                      TargetTransformInfo::OP_None);
293 
294       if (ISD == ISD::SREM) {
295         // For SREM: (X % C) is the equivalent of (X - (X/C)*C)
296         Cost += getArithmeticInstrCost(Instruction::Mul, Ty, CostKind, Op1Info,
297                                        Op2Info);
298         Cost += getArithmeticInstrCost(Instruction::Sub, Ty, CostKind, Op1Info,
299                                        Op2Info);
300       }
301 
302       return Cost;
303     }
304 
305     // Vector unsigned division/remainder will be simplified to shifts/masks.
306     if (ISD == ISD::UDIV)
307       return getArithmeticInstrCost(Instruction::LShr, Ty, CostKind,
308                                     Op1Info, Op2Info,
309                                     TargetTransformInfo::OP_None,
310                                     TargetTransformInfo::OP_None);
311 
312     else // UREM
313       return getArithmeticInstrCost(Instruction::And, Ty, CostKind,
314                                     Op1Info, Op2Info,
315                                     TargetTransformInfo::OP_None,
316                                     TargetTransformInfo::OP_None);
317   }
318 
319   static const CostTblEntry AVX512BWUniformConstCostTable[] = {
320     { ISD::SHL,  MVT::v64i8,   2 }, // psllw + pand.
321     { ISD::SRL,  MVT::v64i8,   2 }, // psrlw + pand.
322     { ISD::SRA,  MVT::v64i8,   4 }, // psrlw, pand, pxor, psubb.
323   };
324 
325   if (Op2Info == TargetTransformInfo::OK_UniformConstantValue &&
326       ST->hasBWI()) {
327     if (const auto *Entry = CostTableLookup(AVX512BWUniformConstCostTable, ISD,
328                                             LT.second))
329       return LT.first * Entry->Cost;
330   }
331 
332   static const CostTblEntry AVX512UniformConstCostTable[] = {
333     { ISD::SRA,  MVT::v2i64,   1 },
334     { ISD::SRA,  MVT::v4i64,   1 },
335     { ISD::SRA,  MVT::v8i64,   1 },
336 
337     { ISD::SHL,  MVT::v64i8,   4 }, // psllw + pand.
338     { ISD::SRL,  MVT::v64i8,   4 }, // psrlw + pand.
339     { ISD::SRA,  MVT::v64i8,   8 }, // psrlw, pand, pxor, psubb.
340 
341     { ISD::SDIV, MVT::v16i32,  6 }, // pmuludq sequence
342     { ISD::SREM, MVT::v16i32,  8 }, // pmuludq+mul+sub sequence
343     { ISD::UDIV, MVT::v16i32,  5 }, // pmuludq sequence
344     { ISD::UREM, MVT::v16i32,  7 }, // pmuludq+mul+sub sequence
345   };
346 
347   if (Op2Info == TargetTransformInfo::OK_UniformConstantValue &&
348       ST->hasAVX512()) {
349     if (const auto *Entry = CostTableLookup(AVX512UniformConstCostTable, ISD,
350                                             LT.second))
351       return LT.first * Entry->Cost;
352   }
353 
354   static const CostTblEntry AVX2UniformConstCostTable[] = {
355     { ISD::SHL,  MVT::v32i8,   2 }, // psllw + pand.
356     { ISD::SRL,  MVT::v32i8,   2 }, // psrlw + pand.
357     { ISD::SRA,  MVT::v32i8,   4 }, // psrlw, pand, pxor, psubb.
358 
359     { ISD::SRA,  MVT::v4i64,   4 }, // 2 x psrad + shuffle.
360 
361     { ISD::SDIV, MVT::v8i32,   6 }, // pmuludq sequence
362     { ISD::SREM, MVT::v8i32,   8 }, // pmuludq+mul+sub sequence
363     { ISD::UDIV, MVT::v8i32,   5 }, // pmuludq sequence
364     { ISD::UREM, MVT::v8i32,   7 }, // pmuludq+mul+sub sequence
365   };
366 
367   if (Op2Info == TargetTransformInfo::OK_UniformConstantValue &&
368       ST->hasAVX2()) {
369     if (const auto *Entry = CostTableLookup(AVX2UniformConstCostTable, ISD,
370                                             LT.second))
371       return LT.first * Entry->Cost;
372   }
373 
374   static const CostTblEntry SSE2UniformConstCostTable[] = {
375     { ISD::SHL,  MVT::v16i8,     2 }, // psllw + pand.
376     { ISD::SRL,  MVT::v16i8,     2 }, // psrlw + pand.
377     { ISD::SRA,  MVT::v16i8,     4 }, // psrlw, pand, pxor, psubb.
378 
379     { ISD::SHL,  MVT::v32i8,   4+2 }, // 2*(psllw + pand) + split.
380     { ISD::SRL,  MVT::v32i8,   4+2 }, // 2*(psrlw + pand) + split.
381     { ISD::SRA,  MVT::v32i8,   8+2 }, // 2*(psrlw, pand, pxor, psubb) + split.
382 
383     { ISD::SDIV, MVT::v8i32,  12+2 }, // 2*pmuludq sequence + split.
384     { ISD::SREM, MVT::v8i32,  16+2 }, // 2*pmuludq+mul+sub sequence + split.
385     { ISD::SDIV, MVT::v4i32,     6 }, // pmuludq sequence
386     { ISD::SREM, MVT::v4i32,     8 }, // pmuludq+mul+sub sequence
387     { ISD::UDIV, MVT::v8i32,  10+2 }, // 2*pmuludq sequence + split.
388     { ISD::UREM, MVT::v8i32,  14+2 }, // 2*pmuludq+mul+sub sequence + split.
389     { ISD::UDIV, MVT::v4i32,     5 }, // pmuludq sequence
390     { ISD::UREM, MVT::v4i32,     7 }, // pmuludq+mul+sub sequence
391   };
392 
393   // XOP has faster vXi8 shifts.
394   if (Op2Info == TargetTransformInfo::OK_UniformConstantValue &&
395       ST->hasSSE2() && !ST->hasXOP()) {
396     if (const auto *Entry =
397             CostTableLookup(SSE2UniformConstCostTable, ISD, LT.second))
398       return LT.first * Entry->Cost;
399   }
400 
401   static const CostTblEntry AVX512BWConstCostTable[] = {
402     { ISD::SDIV, MVT::v64i8,  14 }, // 2*ext+2*pmulhw sequence
403     { ISD::SREM, MVT::v64i8,  16 }, // 2*ext+2*pmulhw+mul+sub sequence
404     { ISD::UDIV, MVT::v64i8,  14 }, // 2*ext+2*pmulhw sequence
405     { ISD::UREM, MVT::v64i8,  16 }, // 2*ext+2*pmulhw+mul+sub sequence
406     { ISD::SDIV, MVT::v32i16,  6 }, // vpmulhw sequence
407     { ISD::SREM, MVT::v32i16,  8 }, // vpmulhw+mul+sub sequence
408     { ISD::UDIV, MVT::v32i16,  6 }, // vpmulhuw sequence
409     { ISD::UREM, MVT::v32i16,  8 }, // vpmulhuw+mul+sub sequence
410   };
411 
412   if ((Op2Info == TargetTransformInfo::OK_UniformConstantValue ||
413        Op2Info == TargetTransformInfo::OK_NonUniformConstantValue) &&
414       ST->hasBWI()) {
415     if (const auto *Entry =
416             CostTableLookup(AVX512BWConstCostTable, ISD, LT.second))
417       return LT.first * Entry->Cost;
418   }
419 
420   static const CostTblEntry AVX512ConstCostTable[] = {
421     { ISD::SDIV, MVT::v16i32, 15 }, // vpmuldq sequence
422     { ISD::SREM, MVT::v16i32, 17 }, // vpmuldq+mul+sub sequence
423     { ISD::UDIV, MVT::v16i32, 15 }, // vpmuludq sequence
424     { ISD::UREM, MVT::v16i32, 17 }, // vpmuludq+mul+sub sequence
425     { ISD::SDIV, MVT::v64i8,  28 }, // 4*ext+4*pmulhw sequence
426     { ISD::SREM, MVT::v64i8,  32 }, // 4*ext+4*pmulhw+mul+sub sequence
427     { ISD::UDIV, MVT::v64i8,  28 }, // 4*ext+4*pmulhw sequence
428     { ISD::UREM, MVT::v64i8,  32 }, // 4*ext+4*pmulhw+mul+sub sequence
429     { ISD::SDIV, MVT::v32i16, 12 }, // 2*vpmulhw sequence
430     { ISD::SREM, MVT::v32i16, 16 }, // 2*vpmulhw+mul+sub sequence
431     { ISD::UDIV, MVT::v32i16, 12 }, // 2*vpmulhuw sequence
432     { ISD::UREM, MVT::v32i16, 16 }, // 2*vpmulhuw+mul+sub sequence
433   };
434 
435   if ((Op2Info == TargetTransformInfo::OK_UniformConstantValue ||
436        Op2Info == TargetTransformInfo::OK_NonUniformConstantValue) &&
437       ST->hasAVX512()) {
438     if (const auto *Entry =
439             CostTableLookup(AVX512ConstCostTable, ISD, LT.second))
440       return LT.first * Entry->Cost;
441   }
442 
443   static const CostTblEntry AVX2ConstCostTable[] = {
444     { ISD::SDIV, MVT::v32i8,  14 }, // 2*ext+2*pmulhw sequence
445     { ISD::SREM, MVT::v32i8,  16 }, // 2*ext+2*pmulhw+mul+sub sequence
446     { ISD::UDIV, MVT::v32i8,  14 }, // 2*ext+2*pmulhw sequence
447     { ISD::UREM, MVT::v32i8,  16 }, // 2*ext+2*pmulhw+mul+sub sequence
448     { ISD::SDIV, MVT::v16i16,  6 }, // vpmulhw sequence
449     { ISD::SREM, MVT::v16i16,  8 }, // vpmulhw+mul+sub sequence
450     { ISD::UDIV, MVT::v16i16,  6 }, // vpmulhuw sequence
451     { ISD::UREM, MVT::v16i16,  8 }, // vpmulhuw+mul+sub sequence
452     { ISD::SDIV, MVT::v8i32,  15 }, // vpmuldq sequence
453     { ISD::SREM, MVT::v8i32,  19 }, // vpmuldq+mul+sub sequence
454     { ISD::UDIV, MVT::v8i32,  15 }, // vpmuludq sequence
455     { ISD::UREM, MVT::v8i32,  19 }, // vpmuludq+mul+sub sequence
456   };
457 
458   if ((Op2Info == TargetTransformInfo::OK_UniformConstantValue ||
459        Op2Info == TargetTransformInfo::OK_NonUniformConstantValue) &&
460       ST->hasAVX2()) {
461     if (const auto *Entry = CostTableLookup(AVX2ConstCostTable, ISD, LT.second))
462       return LT.first * Entry->Cost;
463   }
464 
465   static const CostTblEntry SSE2ConstCostTable[] = {
466     { ISD::SDIV, MVT::v32i8,  28+2 }, // 4*ext+4*pmulhw sequence + split.
467     { ISD::SREM, MVT::v32i8,  32+2 }, // 4*ext+4*pmulhw+mul+sub sequence + split.
468     { ISD::SDIV, MVT::v16i8,    14 }, // 2*ext+2*pmulhw sequence
469     { ISD::SREM, MVT::v16i8,    16 }, // 2*ext+2*pmulhw+mul+sub sequence
470     { ISD::UDIV, MVT::v32i8,  28+2 }, // 4*ext+4*pmulhw sequence + split.
471     { ISD::UREM, MVT::v32i8,  32+2 }, // 4*ext+4*pmulhw+mul+sub sequence + split.
472     { ISD::UDIV, MVT::v16i8,    14 }, // 2*ext+2*pmulhw sequence
473     { ISD::UREM, MVT::v16i8,    16 }, // 2*ext+2*pmulhw+mul+sub sequence
474     { ISD::SDIV, MVT::v16i16, 12+2 }, // 2*pmulhw sequence + split.
475     { ISD::SREM, MVT::v16i16, 16+2 }, // 2*pmulhw+mul+sub sequence + split.
476     { ISD::SDIV, MVT::v8i16,     6 }, // pmulhw sequence
477     { ISD::SREM, MVT::v8i16,     8 }, // pmulhw+mul+sub sequence
478     { ISD::UDIV, MVT::v16i16, 12+2 }, // 2*pmulhuw sequence + split.
479     { ISD::UREM, MVT::v16i16, 16+2 }, // 2*pmulhuw+mul+sub sequence + split.
480     { ISD::UDIV, MVT::v8i16,     6 }, // pmulhuw sequence
481     { ISD::UREM, MVT::v8i16,     8 }, // pmulhuw+mul+sub sequence
482     { ISD::SDIV, MVT::v8i32,  38+2 }, // 2*pmuludq sequence + split.
483     { ISD::SREM, MVT::v8i32,  48+2 }, // 2*pmuludq+mul+sub sequence + split.
484     { ISD::SDIV, MVT::v4i32,    19 }, // pmuludq sequence
485     { ISD::SREM, MVT::v4i32,    24 }, // pmuludq+mul+sub sequence
486     { ISD::UDIV, MVT::v8i32,  30+2 }, // 2*pmuludq sequence + split.
487     { ISD::UREM, MVT::v8i32,  40+2 }, // 2*pmuludq+mul+sub sequence + split.
488     { ISD::UDIV, MVT::v4i32,    15 }, // pmuludq sequence
489     { ISD::UREM, MVT::v4i32,    20 }, // pmuludq+mul+sub sequence
490   };
491 
492   if ((Op2Info == TargetTransformInfo::OK_UniformConstantValue ||
493        Op2Info == TargetTransformInfo::OK_NonUniformConstantValue) &&
494       ST->hasSSE2()) {
495     // pmuldq sequence.
496     if (ISD == ISD::SDIV && LT.second == MVT::v8i32 && ST->hasAVX())
497       return LT.first * 32;
498     if (ISD == ISD::SREM && LT.second == MVT::v8i32 && ST->hasAVX())
499       return LT.first * 38;
500     if (ISD == ISD::SDIV && LT.second == MVT::v4i32 && ST->hasSSE41())
501       return LT.first * 15;
502     if (ISD == ISD::SREM && LT.second == MVT::v4i32 && ST->hasSSE41())
503       return LT.first * 20;
504 
505     if (const auto *Entry = CostTableLookup(SSE2ConstCostTable, ISD, LT.second))
506       return LT.first * Entry->Cost;
507   }
508 
509   static const CostTblEntry AVX512BWShiftCostTable[] = {
510     { ISD::SHL,   MVT::v16i8,      4 }, // extend/vpsllvw/pack sequence.
511     { ISD::SRL,   MVT::v16i8,      4 }, // extend/vpsrlvw/pack sequence.
512     { ISD::SRA,   MVT::v16i8,      4 }, // extend/vpsravw/pack sequence.
513     { ISD::SHL,   MVT::v32i8,      4 }, // extend/vpsllvw/pack sequence.
514     { ISD::SRL,   MVT::v32i8,      4 }, // extend/vpsrlvw/pack sequence.
515     { ISD::SRA,   MVT::v32i8,      6 }, // extend/vpsravw/pack sequence.
516     { ISD::SHL,   MVT::v64i8,      6 }, // extend/vpsllvw/pack sequence.
517     { ISD::SRL,   MVT::v64i8,      7 }, // extend/vpsrlvw/pack sequence.
518     { ISD::SRA,   MVT::v64i8,     15 }, // extend/vpsravw/pack sequence.
519 
520     { ISD::SHL,   MVT::v8i16,      1 }, // vpsllvw
521     { ISD::SRL,   MVT::v8i16,      1 }, // vpsrlvw
522     { ISD::SRA,   MVT::v8i16,      1 }, // vpsravw
523     { ISD::SHL,   MVT::v16i16,     1 }, // vpsllvw
524     { ISD::SRL,   MVT::v16i16,     1 }, // vpsrlvw
525     { ISD::SRA,   MVT::v16i16,     1 }, // vpsravw
526     { ISD::SHL,   MVT::v32i16,     1 }, // vpsllvw
527     { ISD::SRL,   MVT::v32i16,     1 }, // vpsrlvw
528     { ISD::SRA,   MVT::v32i16,     1 }, // vpsravw
529   };
530 
531   if (ST->hasBWI())
532     if (const auto *Entry = CostTableLookup(AVX512BWShiftCostTable, ISD, LT.second))
533       return LT.first * Entry->Cost;
534 
535   static const CostTblEntry AVX2UniformCostTable[] = {
536     // Uniform splats are cheaper for the following instructions.
537     { ISD::SHL,  MVT::v16i16, 1 }, // psllw.
538     { ISD::SRL,  MVT::v16i16, 1 }, // psrlw.
539     { ISD::SRA,  MVT::v16i16, 1 }, // psraw.
540     { ISD::SHL,  MVT::v32i16, 2 }, // 2*psllw.
541     { ISD::SRL,  MVT::v32i16, 2 }, // 2*psrlw.
542     { ISD::SRA,  MVT::v32i16, 2 }, // 2*psraw.
543 
544     { ISD::SHL,  MVT::v8i32,  1 }, // pslld
545     { ISD::SRL,  MVT::v8i32,  1 }, // psrld
546     { ISD::SRA,  MVT::v8i32,  1 }, // psrad
547     { ISD::SHL,  MVT::v4i64,  1 }, // psllq
548     { ISD::SRL,  MVT::v4i64,  1 }, // psrlq
549   };
550 
551   if (ST->hasAVX2() &&
552       ((Op2Info == TargetTransformInfo::OK_UniformConstantValue) ||
553        (Op2Info == TargetTransformInfo::OK_UniformValue))) {
554     if (const auto *Entry =
555             CostTableLookup(AVX2UniformCostTable, ISD, LT.second))
556       return LT.first * Entry->Cost;
557   }
558 
559   static const CostTblEntry SSE2UniformCostTable[] = {
560     // Uniform splats are cheaper for the following instructions.
561     { ISD::SHL,  MVT::v8i16,  1 }, // psllw.
562     { ISD::SHL,  MVT::v4i32,  1 }, // pslld
563     { ISD::SHL,  MVT::v2i64,  1 }, // psllq.
564 
565     { ISD::SRL,  MVT::v8i16,  1 }, // psrlw.
566     { ISD::SRL,  MVT::v4i32,  1 }, // psrld.
567     { ISD::SRL,  MVT::v2i64,  1 }, // psrlq.
568 
569     { ISD::SRA,  MVT::v8i16,  1 }, // psraw.
570     { ISD::SRA,  MVT::v4i32,  1 }, // psrad.
571   };
572 
573   if (ST->hasSSE2() &&
574       ((Op2Info == TargetTransformInfo::OK_UniformConstantValue) ||
575        (Op2Info == TargetTransformInfo::OK_UniformValue))) {
576     if (const auto *Entry =
577             CostTableLookup(SSE2UniformCostTable, ISD, LT.second))
578       return LT.first * Entry->Cost;
579   }
580 
581   static const CostTblEntry AVX512DQCostTable[] = {
582     { ISD::MUL,  MVT::v2i64, 2 }, // pmullq
583     { ISD::MUL,  MVT::v4i64, 2 }, // pmullq
584     { ISD::MUL,  MVT::v8i64, 2 }  // pmullq
585   };
586 
587   // Look for AVX512DQ lowering tricks for custom cases.
588   if (ST->hasDQI())
589     if (const auto *Entry = CostTableLookup(AVX512DQCostTable, ISD, LT.second))
590       return LT.first * Entry->Cost;
591 
592   static const CostTblEntry AVX512BWCostTable[] = {
593     { ISD::SHL,   MVT::v64i8,     11 }, // vpblendvb sequence.
594     { ISD::SRL,   MVT::v64i8,     11 }, // vpblendvb sequence.
595     { ISD::SRA,   MVT::v64i8,     24 }, // vpblendvb sequence.
596   };
597 
598   // Look for AVX512BW lowering tricks for custom cases.
599   if (ST->hasBWI())
600     if (const auto *Entry = CostTableLookup(AVX512BWCostTable, ISD, LT.second))
601       return LT.first * Entry->Cost;
602 
603   static const CostTblEntry AVX512CostTable[] = {
604     { ISD::SHL,     MVT::v4i32,      1 },
605     { ISD::SRL,     MVT::v4i32,      1 },
606     { ISD::SRA,     MVT::v4i32,      1 },
607     { ISD::SHL,     MVT::v8i32,      1 },
608     { ISD::SRL,     MVT::v8i32,      1 },
609     { ISD::SRA,     MVT::v8i32,      1 },
610     { ISD::SHL,     MVT::v16i32,     1 },
611     { ISD::SRL,     MVT::v16i32,     1 },
612     { ISD::SRA,     MVT::v16i32,     1 },
613 
614     { ISD::SHL,     MVT::v2i64,      1 },
615     { ISD::SRL,     MVT::v2i64,      1 },
616     { ISD::SHL,     MVT::v4i64,      1 },
617     { ISD::SRL,     MVT::v4i64,      1 },
618     { ISD::SHL,     MVT::v8i64,      1 },
619     { ISD::SRL,     MVT::v8i64,      1 },
620 
621     { ISD::SRA,     MVT::v2i64,      1 },
622     { ISD::SRA,     MVT::v4i64,      1 },
623     { ISD::SRA,     MVT::v8i64,      1 },
624 
625     { ISD::MUL,     MVT::v16i32,     1 }, // pmulld (Skylake from agner.org)
626     { ISD::MUL,     MVT::v8i32,      1 }, // pmulld (Skylake from agner.org)
627     { ISD::MUL,     MVT::v4i32,      1 }, // pmulld (Skylake from agner.org)
628     { ISD::MUL,     MVT::v8i64,      6 }, // 3*pmuludq/3*shift/2*add
629 
630     { ISD::FNEG,    MVT::v8f64,      1 }, // Skylake from http://www.agner.org/
631     { ISD::FADD,    MVT::v8f64,      1 }, // Skylake from http://www.agner.org/
632     { ISD::FSUB,    MVT::v8f64,      1 }, // Skylake from http://www.agner.org/
633     { ISD::FMUL,    MVT::v8f64,      1 }, // Skylake from http://www.agner.org/
634     { ISD::FDIV,    MVT::f64,        4 }, // Skylake from http://www.agner.org/
635     { ISD::FDIV,    MVT::v2f64,      4 }, // Skylake from http://www.agner.org/
636     { ISD::FDIV,    MVT::v4f64,      8 }, // Skylake from http://www.agner.org/
637     { ISD::FDIV,    MVT::v8f64,     16 }, // Skylake from http://www.agner.org/
638 
639     { ISD::FNEG,    MVT::v16f32,     1 }, // Skylake from http://www.agner.org/
640     { ISD::FADD,    MVT::v16f32,     1 }, // Skylake from http://www.agner.org/
641     { ISD::FSUB,    MVT::v16f32,     1 }, // Skylake from http://www.agner.org/
642     { ISD::FMUL,    MVT::v16f32,     1 }, // Skylake from http://www.agner.org/
643     { ISD::FDIV,    MVT::f32,        3 }, // Skylake from http://www.agner.org/
644     { ISD::FDIV,    MVT::v4f32,      3 }, // Skylake from http://www.agner.org/
645     { ISD::FDIV,    MVT::v8f32,      5 }, // Skylake from http://www.agner.org/
646     { ISD::FDIV,    MVT::v16f32,    10 }, // Skylake from http://www.agner.org/
647   };
648 
649   if (ST->hasAVX512())
650     if (const auto *Entry = CostTableLookup(AVX512CostTable, ISD, LT.second))
651       return LT.first * Entry->Cost;
652 
653   static const CostTblEntry AVX2ShiftCostTable[] = {
654     // Shifts on vXi64/vXi32 on AVX2 is legal even though we declare to
655     // customize them to detect the cases where shift amount is a scalar one.
656     { ISD::SHL,     MVT::v4i32,    2 }, // vpsllvd (Haswell from agner.org)
657     { ISD::SRL,     MVT::v4i32,    2 }, // vpsrlvd (Haswell from agner.org)
658     { ISD::SRA,     MVT::v4i32,    2 }, // vpsravd (Haswell from agner.org)
659     { ISD::SHL,     MVT::v8i32,    2 }, // vpsllvd (Haswell from agner.org)
660     { ISD::SRL,     MVT::v8i32,    2 }, // vpsrlvd (Haswell from agner.org)
661     { ISD::SRA,     MVT::v8i32,    2 }, // vpsravd (Haswell from agner.org)
662     { ISD::SHL,     MVT::v2i64,    1 }, // vpsllvq (Haswell from agner.org)
663     { ISD::SRL,     MVT::v2i64,    1 }, // vpsrlvq (Haswell from agner.org)
664     { ISD::SHL,     MVT::v4i64,    1 }, // vpsllvq (Haswell from agner.org)
665     { ISD::SRL,     MVT::v4i64,    1 }, // vpsrlvq (Haswell from agner.org)
666   };
667 
668   if (ST->hasAVX512()) {
669     if (ISD == ISD::SHL && LT.second == MVT::v32i16 &&
670         (Op2Info == TargetTransformInfo::OK_UniformConstantValue ||
671          Op2Info == TargetTransformInfo::OK_NonUniformConstantValue))
672       // On AVX512, a packed v32i16 shift left by a constant build_vector
673       // is lowered into a vector multiply (vpmullw).
674       return getArithmeticInstrCost(Instruction::Mul, Ty, CostKind,
675                                     Op1Info, Op2Info,
676                                     TargetTransformInfo::OP_None,
677                                     TargetTransformInfo::OP_None);
678   }
679 
680   // Look for AVX2 lowering tricks (XOP is always better at v4i32 shifts).
681   if (ST->hasAVX2() && !(ST->hasXOP() && LT.second == MVT::v4i32)) {
682     if (ISD == ISD::SHL && LT.second == MVT::v16i16 &&
683         (Op2Info == TargetTransformInfo::OK_UniformConstantValue ||
684          Op2Info == TargetTransformInfo::OK_NonUniformConstantValue))
685       // On AVX2, a packed v16i16 shift left by a constant build_vector
686       // is lowered into a vector multiply (vpmullw).
687       return getArithmeticInstrCost(Instruction::Mul, Ty, CostKind,
688                                     Op1Info, Op2Info,
689                                     TargetTransformInfo::OP_None,
690                                     TargetTransformInfo::OP_None);
691 
692     if (const auto *Entry = CostTableLookup(AVX2ShiftCostTable, ISD, LT.second))
693       return LT.first * Entry->Cost;
694   }
695 
696   static const CostTblEntry XOPShiftCostTable[] = {
697     // 128bit shifts take 1cy, but right shifts require negation beforehand.
698     { ISD::SHL,     MVT::v16i8,    1 },
699     { ISD::SRL,     MVT::v16i8,    2 },
700     { ISD::SRA,     MVT::v16i8,    2 },
701     { ISD::SHL,     MVT::v8i16,    1 },
702     { ISD::SRL,     MVT::v8i16,    2 },
703     { ISD::SRA,     MVT::v8i16,    2 },
704     { ISD::SHL,     MVT::v4i32,    1 },
705     { ISD::SRL,     MVT::v4i32,    2 },
706     { ISD::SRA,     MVT::v4i32,    2 },
707     { ISD::SHL,     MVT::v2i64,    1 },
708     { ISD::SRL,     MVT::v2i64,    2 },
709     { ISD::SRA,     MVT::v2i64,    2 },
710     // 256bit shifts require splitting if AVX2 didn't catch them above.
711     { ISD::SHL,     MVT::v32i8,  2+2 },
712     { ISD::SRL,     MVT::v32i8,  4+2 },
713     { ISD::SRA,     MVT::v32i8,  4+2 },
714     { ISD::SHL,     MVT::v16i16, 2+2 },
715     { ISD::SRL,     MVT::v16i16, 4+2 },
716     { ISD::SRA,     MVT::v16i16, 4+2 },
717     { ISD::SHL,     MVT::v8i32,  2+2 },
718     { ISD::SRL,     MVT::v8i32,  4+2 },
719     { ISD::SRA,     MVT::v8i32,  4+2 },
720     { ISD::SHL,     MVT::v4i64,  2+2 },
721     { ISD::SRL,     MVT::v4i64,  4+2 },
722     { ISD::SRA,     MVT::v4i64,  4+2 },
723   };
724 
725   // Look for XOP lowering tricks.
726   if (ST->hasXOP()) {
727     // If the right shift is constant then we'll fold the negation so
728     // it's as cheap as a left shift.
729     int ShiftISD = ISD;
730     if ((ShiftISD == ISD::SRL || ShiftISD == ISD::SRA) &&
731         (Op2Info == TargetTransformInfo::OK_UniformConstantValue ||
732          Op2Info == TargetTransformInfo::OK_NonUniformConstantValue))
733       ShiftISD = ISD::SHL;
734     if (const auto *Entry =
735             CostTableLookup(XOPShiftCostTable, ShiftISD, LT.second))
736       return LT.first * Entry->Cost;
737   }
738 
739   static const CostTblEntry SSE2UniformShiftCostTable[] = {
740     // Uniform splats are cheaper for the following instructions.
741     { ISD::SHL,  MVT::v16i16, 2+2 }, // 2*psllw + split.
742     { ISD::SHL,  MVT::v8i32,  2+2 }, // 2*pslld + split.
743     { ISD::SHL,  MVT::v4i64,  2+2 }, // 2*psllq + split.
744 
745     { ISD::SRL,  MVT::v16i16, 2+2 }, // 2*psrlw + split.
746     { ISD::SRL,  MVT::v8i32,  2+2 }, // 2*psrld + split.
747     { ISD::SRL,  MVT::v4i64,  2+2 }, // 2*psrlq + split.
748 
749     { ISD::SRA,  MVT::v16i16, 2+2 }, // 2*psraw + split.
750     { ISD::SRA,  MVT::v8i32,  2+2 }, // 2*psrad + split.
751     { ISD::SRA,  MVT::v2i64,    4 }, // 2*psrad + shuffle.
752     { ISD::SRA,  MVT::v4i64,  8+2 }, // 2*(2*psrad + shuffle) + split.
753   };
754 
755   if (ST->hasSSE2() &&
756       ((Op2Info == TargetTransformInfo::OK_UniformConstantValue) ||
757        (Op2Info == TargetTransformInfo::OK_UniformValue))) {
758 
759     // Handle AVX2 uniform v4i64 ISD::SRA, it's not worth a table.
760     if (ISD == ISD::SRA && LT.second == MVT::v4i64 && ST->hasAVX2())
761       return LT.first * 4; // 2*psrad + shuffle.
762 
763     if (const auto *Entry =
764             CostTableLookup(SSE2UniformShiftCostTable, ISD, LT.second))
765       return LT.first * Entry->Cost;
766   }
767 
768   if (ISD == ISD::SHL &&
769       Op2Info == TargetTransformInfo::OK_NonUniformConstantValue) {
770     MVT VT = LT.second;
771     // Vector shift left by non uniform constant can be lowered
772     // into vector multiply.
773     if (((VT == MVT::v8i16 || VT == MVT::v4i32) && ST->hasSSE2()) ||
774         ((VT == MVT::v16i16 || VT == MVT::v8i32) && ST->hasAVX()))
775       ISD = ISD::MUL;
776   }
777 
778   static const CostTblEntry AVX2CostTable[] = {
779     { ISD::SHL,  MVT::v16i8,      6 }, // vpblendvb sequence.
780     { ISD::SHL,  MVT::v32i8,      6 }, // vpblendvb sequence.
781     { ISD::SHL,  MVT::v64i8,     12 }, // 2*vpblendvb sequence.
782     { ISD::SHL,  MVT::v8i16,      5 }, // extend/vpsrlvd/pack sequence.
783     { ISD::SHL,  MVT::v16i16,     7 }, // extend/vpsrlvd/pack sequence.
784     { ISD::SHL,  MVT::v32i16,    14 }, // 2*extend/vpsrlvd/pack sequence.
785 
786     { ISD::SRL,  MVT::v16i8,      6 }, // vpblendvb sequence.
787     { ISD::SRL,  MVT::v32i8,      6 }, // vpblendvb sequence.
788     { ISD::SRL,  MVT::v64i8,     12 }, // 2*vpblendvb sequence.
789     { ISD::SRL,  MVT::v8i16,      5 }, // extend/vpsrlvd/pack sequence.
790     { ISD::SRL,  MVT::v16i16,     7 }, // extend/vpsrlvd/pack sequence.
791     { ISD::SRL,  MVT::v32i16,    14 }, // 2*extend/vpsrlvd/pack sequence.
792 
793     { ISD::SRA,  MVT::v16i8,     17 }, // vpblendvb sequence.
794     { ISD::SRA,  MVT::v32i8,     17 }, // vpblendvb sequence.
795     { ISD::SRA,  MVT::v64i8,     34 }, // 2*vpblendvb sequence.
796     { ISD::SRA,  MVT::v8i16,      5 }, // extend/vpsravd/pack sequence.
797     { ISD::SRA,  MVT::v16i16,     7 }, // extend/vpsravd/pack sequence.
798     { ISD::SRA,  MVT::v32i16,    14 }, // 2*extend/vpsravd/pack sequence.
799     { ISD::SRA,  MVT::v2i64,      2 }, // srl/xor/sub sequence.
800     { ISD::SRA,  MVT::v4i64,      2 }, // srl/xor/sub sequence.
801 
802     { ISD::SUB,  MVT::v32i8,      1 }, // psubb
803     { ISD::ADD,  MVT::v32i8,      1 }, // paddb
804     { ISD::SUB,  MVT::v16i16,     1 }, // psubw
805     { ISD::ADD,  MVT::v16i16,     1 }, // paddw
806     { ISD::SUB,  MVT::v8i32,      1 }, // psubd
807     { ISD::ADD,  MVT::v8i32,      1 }, // paddd
808     { ISD::SUB,  MVT::v4i64,      1 }, // psubq
809     { ISD::ADD,  MVT::v4i64,      1 }, // paddq
810 
811     { ISD::MUL,  MVT::v16i16,     1 }, // pmullw
812     { ISD::MUL,  MVT::v8i32,      2 }, // pmulld (Haswell from agner.org)
813     { ISD::MUL,  MVT::v4i64,      6 }, // 3*pmuludq/3*shift/2*add
814 
815     { ISD::FNEG, MVT::v4f64,      1 }, // Haswell from http://www.agner.org/
816     { ISD::FNEG, MVT::v8f32,      1 }, // Haswell from http://www.agner.org/
817     { ISD::FADD, MVT::v4f64,      1 }, // Haswell from http://www.agner.org/
818     { ISD::FADD, MVT::v8f32,      1 }, // Haswell from http://www.agner.org/
819     { ISD::FSUB, MVT::v4f64,      1 }, // Haswell from http://www.agner.org/
820     { ISD::FSUB, MVT::v8f32,      1 }, // Haswell from http://www.agner.org/
821     { ISD::FMUL, MVT::f64,        1 }, // Haswell from http://www.agner.org/
822     { ISD::FMUL, MVT::v2f64,      1 }, // Haswell from http://www.agner.org/
823     { ISD::FMUL, MVT::v4f64,      1 }, // Haswell from http://www.agner.org/
824     { ISD::FMUL, MVT::v8f32,      1 }, // Haswell from http://www.agner.org/
825 
826     { ISD::FDIV, MVT::f32,        7 }, // Haswell from http://www.agner.org/
827     { ISD::FDIV, MVT::v4f32,      7 }, // Haswell from http://www.agner.org/
828     { ISD::FDIV, MVT::v8f32,     14 }, // Haswell from http://www.agner.org/
829     { ISD::FDIV, MVT::f64,       14 }, // Haswell from http://www.agner.org/
830     { ISD::FDIV, MVT::v2f64,     14 }, // Haswell from http://www.agner.org/
831     { ISD::FDIV, MVT::v4f64,     28 }, // Haswell from http://www.agner.org/
832   };
833 
834   // Look for AVX2 lowering tricks for custom cases.
835   if (ST->hasAVX2())
836     if (const auto *Entry = CostTableLookup(AVX2CostTable, ISD, LT.second))
837       return LT.first * Entry->Cost;
838 
839   static const CostTblEntry AVX1CostTable[] = {
840     // We don't have to scalarize unsupported ops. We can issue two half-sized
841     // operations and we only need to extract the upper YMM half.
842     // Two ops + 1 extract + 1 insert = 4.
843     { ISD::MUL,     MVT::v16i16,     4 },
844     { ISD::MUL,     MVT::v8i32,      5 }, // BTVER2 from http://www.agner.org/
845     { ISD::MUL,     MVT::v4i64,     12 },
846 
847     { ISD::SUB,     MVT::v32i8,      4 },
848     { ISD::ADD,     MVT::v32i8,      4 },
849     { ISD::SUB,     MVT::v16i16,     4 },
850     { ISD::ADD,     MVT::v16i16,     4 },
851     { ISD::SUB,     MVT::v8i32,      4 },
852     { ISD::ADD,     MVT::v8i32,      4 },
853     { ISD::SUB,     MVT::v4i64,      4 },
854     { ISD::ADD,     MVT::v4i64,      4 },
855 
856     { ISD::SHL,     MVT::v16i8,     10 }, // pblendvb sequence .
857     { ISD::SHL,     MVT::v32i8,     22 }, // pblendvb sequence + split.
858     { ISD::SHL,     MVT::v8i16,      6 }, // pblendvb sequence.
859     { ISD::SHL,     MVT::v16i16,    13 }, // pblendvb sequence + split.
860     { ISD::SHL,     MVT::v4i32,      3 }, // pslld/paddd/cvttps2dq/pmulld
861     { ISD::SHL,     MVT::v8i32,      9 }, // pslld/paddd/cvttps2dq/pmulld + split
862     { ISD::SHL,     MVT::v2i64,      2 }, // Shift each lane + blend.
863     { ISD::SHL,     MVT::v4i64,      6 }, // Shift each lane + blend + split.
864 
865     { ISD::SRL,     MVT::v16i8,     11 }, // pblendvb sequence.
866     { ISD::SRL,     MVT::v32i8,     23 }, // pblendvb sequence + split.
867     { ISD::SRL,     MVT::v8i16,     13 }, // pblendvb sequence.
868     { ISD::SRL,     MVT::v16i16,    28 }, // pblendvb sequence + split.
869     { ISD::SRL,     MVT::v4i32,      6 }, // Shift each lane + blend.
870     { ISD::SRL,     MVT::v8i32,     14 }, // Shift each lane + blend + split.
871     { ISD::SRL,     MVT::v2i64,      2 }, // Shift each lane + blend.
872     { ISD::SRL,     MVT::v4i64,      6 }, // Shift each lane + blend + split.
873 
874     { ISD::SRA,     MVT::v16i8,     21 }, // pblendvb sequence.
875     { ISD::SRA,     MVT::v32i8,     44 }, // pblendvb sequence + split.
876     { ISD::SRA,     MVT::v8i16,     13 }, // pblendvb sequence.
877     { ISD::SRA,     MVT::v16i16,    28 }, // pblendvb sequence + split.
878     { ISD::SRA,     MVT::v4i32,      6 }, // Shift each lane + blend.
879     { ISD::SRA,     MVT::v8i32,     14 }, // Shift each lane + blend + split.
880     { ISD::SRA,     MVT::v2i64,      5 }, // Shift each lane + blend.
881     { ISD::SRA,     MVT::v4i64,     12 }, // Shift each lane + blend + split.
882 
883     { ISD::FNEG,    MVT::v4f64,      2 }, // BTVER2 from http://www.agner.org/
884     { ISD::FNEG,    MVT::v8f32,      2 }, // BTVER2 from http://www.agner.org/
885 
886     { ISD::FMUL,    MVT::f64,        2 }, // BTVER2 from http://www.agner.org/
887     { ISD::FMUL,    MVT::v2f64,      2 }, // BTVER2 from http://www.agner.org/
888     { ISD::FMUL,    MVT::v4f64,      4 }, // BTVER2 from http://www.agner.org/
889 
890     { ISD::FDIV,    MVT::f32,       14 }, // SNB from http://www.agner.org/
891     { ISD::FDIV,    MVT::v4f32,     14 }, // SNB from http://www.agner.org/
892     { ISD::FDIV,    MVT::v8f32,     28 }, // SNB from http://www.agner.org/
893     { ISD::FDIV,    MVT::f64,       22 }, // SNB from http://www.agner.org/
894     { ISD::FDIV,    MVT::v2f64,     22 }, // SNB from http://www.agner.org/
895     { ISD::FDIV,    MVT::v4f64,     44 }, // SNB from http://www.agner.org/
896   };
897 
898   if (ST->hasAVX())
899     if (const auto *Entry = CostTableLookup(AVX1CostTable, ISD, LT.second))
900       return LT.first * Entry->Cost;
901 
902   static const CostTblEntry SSE42CostTable[] = {
903     { ISD::FADD, MVT::f64,     1 }, // Nehalem from http://www.agner.org/
904     { ISD::FADD, MVT::f32,     1 }, // Nehalem from http://www.agner.org/
905     { ISD::FADD, MVT::v2f64,   1 }, // Nehalem from http://www.agner.org/
906     { ISD::FADD, MVT::v4f32,   1 }, // Nehalem from http://www.agner.org/
907 
908     { ISD::FSUB, MVT::f64,     1 }, // Nehalem from http://www.agner.org/
909     { ISD::FSUB, MVT::f32 ,    1 }, // Nehalem from http://www.agner.org/
910     { ISD::FSUB, MVT::v2f64,   1 }, // Nehalem from http://www.agner.org/
911     { ISD::FSUB, MVT::v4f32,   1 }, // Nehalem from http://www.agner.org/
912 
913     { ISD::FMUL, MVT::f64,     1 }, // Nehalem from http://www.agner.org/
914     { ISD::FMUL, MVT::f32,     1 }, // Nehalem from http://www.agner.org/
915     { ISD::FMUL, MVT::v2f64,   1 }, // Nehalem from http://www.agner.org/
916     { ISD::FMUL, MVT::v4f32,   1 }, // Nehalem from http://www.agner.org/
917 
918     { ISD::FDIV,  MVT::f32,   14 }, // Nehalem from http://www.agner.org/
919     { ISD::FDIV,  MVT::v4f32, 14 }, // Nehalem from http://www.agner.org/
920     { ISD::FDIV,  MVT::f64,   22 }, // Nehalem from http://www.agner.org/
921     { ISD::FDIV,  MVT::v2f64, 22 }, // Nehalem from http://www.agner.org/
922 
923     { ISD::MUL,   MVT::v2i64,  6 }  // 3*pmuludq/3*shift/2*add
924   };
925 
926   if (ST->hasSSE42())
927     if (const auto *Entry = CostTableLookup(SSE42CostTable, ISD, LT.second))
928       return LT.first * Entry->Cost;
929 
930   static const CostTblEntry SSE41CostTable[] = {
931     { ISD::SHL,  MVT::v16i8,      11 }, // pblendvb sequence.
932     { ISD::SHL,  MVT::v8i16,      14 }, // pblendvb sequence.
933     { ISD::SHL,  MVT::v4i32,       4 }, // pslld/paddd/cvttps2dq/pmulld
934 
935     { ISD::SRL,  MVT::v16i8,      12 }, // pblendvb sequence.
936     { ISD::SRL,  MVT::v8i16,      14 }, // pblendvb sequence.
937     { ISD::SRL,  MVT::v4i32,      11 }, // Shift each lane + blend.
938 
939     { ISD::SRA,  MVT::v16i8,      24 }, // pblendvb sequence.
940     { ISD::SRA,  MVT::v8i16,      14 }, // pblendvb sequence.
941     { ISD::SRA,  MVT::v4i32,      12 }, // Shift each lane + blend.
942 
943     { ISD::MUL,  MVT::v4i32,       2 }  // pmulld (Nehalem from agner.org)
944   };
945 
946   if (ST->hasSSE41())
947     if (const auto *Entry = CostTableLookup(SSE41CostTable, ISD, LT.second))
948       return LT.first * Entry->Cost;
949 
950   static const CostTblEntry SSE2CostTable[] = {
951     // We don't correctly identify costs of casts because they are marked as
952     // custom.
953     { ISD::SHL,  MVT::v16i8,      26 }, // cmpgtb sequence.
954     { ISD::SHL,  MVT::v8i16,      32 }, // cmpgtb sequence.
955     { ISD::SHL,  MVT::v4i32,     2*5 }, // We optimized this using mul.
956     { ISD::SHL,  MVT::v2i64,       4 }, // splat+shuffle sequence.
957 
958     { ISD::SRL,  MVT::v16i8,      26 }, // cmpgtb sequence.
959     { ISD::SRL,  MVT::v8i16,      32 }, // cmpgtb sequence.
960     { ISD::SRL,  MVT::v4i32,      16 }, // Shift each lane + blend.
961     { ISD::SRL,  MVT::v2i64,       4 }, // splat+shuffle sequence.
962 
963     { ISD::SRA,  MVT::v16i8,      54 }, // unpacked cmpgtb sequence.
964     { ISD::SRA,  MVT::v8i16,      32 }, // cmpgtb sequence.
965     { ISD::SRA,  MVT::v4i32,      16 }, // Shift each lane + blend.
966     { ISD::SRA,  MVT::v2i64,      12 }, // srl/xor/sub sequence.
967 
968     { ISD::MUL,  MVT::v8i16,       1 }, // pmullw
969     { ISD::MUL,  MVT::v4i32,       6 }, // 3*pmuludq/4*shuffle
970     { ISD::MUL,  MVT::v2i64,       8 }, // 3*pmuludq/3*shift/2*add
971 
972     { ISD::FDIV, MVT::f32,        23 }, // Pentium IV from http://www.agner.org/
973     { ISD::FDIV, MVT::v4f32,      39 }, // Pentium IV from http://www.agner.org/
974     { ISD::FDIV, MVT::f64,        38 }, // Pentium IV from http://www.agner.org/
975     { ISD::FDIV, MVT::v2f64,      69 }, // Pentium IV from http://www.agner.org/
976 
977     { ISD::FNEG, MVT::f32,         1 }, // Pentium IV from http://www.agner.org/
978     { ISD::FNEG, MVT::f64,         1 }, // Pentium IV from http://www.agner.org/
979     { ISD::FNEG, MVT::v4f32,       1 }, // Pentium IV from http://www.agner.org/
980     { ISD::FNEG, MVT::v2f64,       1 }, // Pentium IV from http://www.agner.org/
981 
982     { ISD::FADD, MVT::f32,         2 }, // Pentium IV from http://www.agner.org/
983     { ISD::FADD, MVT::f64,         2 }, // Pentium IV from http://www.agner.org/
984 
985     { ISD::FSUB, MVT::f32,         2 }, // Pentium IV from http://www.agner.org/
986     { ISD::FSUB, MVT::f64,         2 }, // Pentium IV from http://www.agner.org/
987   };
988 
989   if (ST->hasSSE2())
990     if (const auto *Entry = CostTableLookup(SSE2CostTable, ISD, LT.second))
991       return LT.first * Entry->Cost;
992 
993   static const CostTblEntry SSE1CostTable[] = {
994     { ISD::FDIV, MVT::f32,   17 }, // Pentium III from http://www.agner.org/
995     { ISD::FDIV, MVT::v4f32, 34 }, // Pentium III from http://www.agner.org/
996 
997     { ISD::FNEG, MVT::f32,    2 }, // Pentium III from http://www.agner.org/
998     { ISD::FNEG, MVT::v4f32,  2 }, // Pentium III from http://www.agner.org/
999 
1000     { ISD::FADD, MVT::f32,    1 }, // Pentium III from http://www.agner.org/
1001     { ISD::FADD, MVT::v4f32,  2 }, // Pentium III from http://www.agner.org/
1002 
1003     { ISD::FSUB, MVT::f32,    1 }, // Pentium III from http://www.agner.org/
1004     { ISD::FSUB, MVT::v4f32,  2 }, // Pentium III from http://www.agner.org/
1005   };
1006 
1007   if (ST->hasSSE1())
1008     if (const auto *Entry = CostTableLookup(SSE1CostTable, ISD, LT.second))
1009       return LT.first * Entry->Cost;
1010 
1011   static const CostTblEntry X64CostTbl[] = { // 64-bit targets
1012     { ISD::ADD,  MVT::i64,    1 }, // Core (Merom) from http://www.agner.org/
1013     { ISD::SUB,  MVT::i64,    1 }, // Core (Merom) from http://www.agner.org/
1014   };
1015 
1016   if (ST->is64Bit())
1017     if (const auto *Entry = CostTableLookup(X64CostTbl, ISD, LT.second))
1018       return LT.first * Entry->Cost;
1019 
1020   static const CostTblEntry X86CostTbl[] = { // 32 or 64-bit targets
1021     { ISD::ADD,  MVT::i8,    1 }, // Pentium III from http://www.agner.org/
1022     { ISD::ADD,  MVT::i16,   1 }, // Pentium III from http://www.agner.org/
1023     { ISD::ADD,  MVT::i32,   1 }, // Pentium III from http://www.agner.org/
1024 
1025     { ISD::SUB,  MVT::i8,    1 }, // Pentium III from http://www.agner.org/
1026     { ISD::SUB,  MVT::i16,   1 }, // Pentium III from http://www.agner.org/
1027     { ISD::SUB,  MVT::i32,   1 }, // Pentium III from http://www.agner.org/
1028   };
1029 
1030   if (const auto *Entry = CostTableLookup(X86CostTbl, ISD, LT.second))
1031     return LT.first * Entry->Cost;
1032 
1033   // It is not a good idea to vectorize division. We have to scalarize it and
1034   // in the process we will often end up having to spilling regular
1035   // registers. The overhead of division is going to dominate most kernels
1036   // anyways so try hard to prevent vectorization of division - it is
1037   // generally a bad idea. Assume somewhat arbitrarily that we have to be able
1038   // to hide "20 cycles" for each lane.
1039   if (LT.second.isVector() && (ISD == ISD::SDIV || ISD == ISD::SREM ||
1040                                ISD == ISD::UDIV || ISD == ISD::UREM)) {
1041     InstructionCost ScalarCost = getArithmeticInstrCost(
1042         Opcode, Ty->getScalarType(), CostKind, Op1Info, Op2Info,
1043         TargetTransformInfo::OP_None, TargetTransformInfo::OP_None);
1044     return 20 * LT.first * LT.second.getVectorNumElements() * ScalarCost;
1045   }
1046 
1047   // Fallback to the default implementation.
1048   return BaseT::getArithmeticInstrCost(Opcode, Ty, CostKind, Op1Info, Op2Info);
1049 }
1050 
1051 InstructionCost X86TTIImpl::getShuffleCost(TTI::ShuffleKind Kind,
1052                                            VectorType *BaseTp,
1053                                            ArrayRef<int> Mask, int Index,
1054                                            VectorType *SubTp) {
1055   // 64-bit packed float vectors (v2f32) are widened to type v4f32.
1056   // 64-bit packed integer vectors (v2i32) are widened to type v4i32.
1057   std::pair<InstructionCost, MVT> LT = TLI->getTypeLegalizationCost(DL, BaseTp);
1058 
1059   Kind = improveShuffleKindFromMask(Kind, Mask);
1060   // Treat Transpose as 2-op shuffles - there's no difference in lowering.
1061   if (Kind == TTI::SK_Transpose)
1062     Kind = TTI::SK_PermuteTwoSrc;
1063 
1064   // For Broadcasts we are splatting the first element from the first input
1065   // register, so only need to reference that input and all the output
1066   // registers are the same.
1067   if (Kind == TTI::SK_Broadcast)
1068     LT.first = 1;
1069 
1070   // Subvector extractions are free if they start at the beginning of a
1071   // vector and cheap if the subvectors are aligned.
1072   if (Kind == TTI::SK_ExtractSubvector && LT.second.isVector()) {
1073     int NumElts = LT.second.getVectorNumElements();
1074     if ((Index % NumElts) == 0)
1075       return 0;
1076     std::pair<InstructionCost, MVT> SubLT =
1077         TLI->getTypeLegalizationCost(DL, SubTp);
1078     if (SubLT.second.isVector()) {
1079       int NumSubElts = SubLT.second.getVectorNumElements();
1080       if ((Index % NumSubElts) == 0 && (NumElts % NumSubElts) == 0)
1081         return SubLT.first;
1082       // Handle some cases for widening legalization. For now we only handle
1083       // cases where the original subvector was naturally aligned and evenly
1084       // fit in its legalized subvector type.
1085       // FIXME: Remove some of the alignment restrictions.
1086       // FIXME: We can use permq for 64-bit or larger extracts from 256-bit
1087       // vectors.
1088       int OrigSubElts = cast<FixedVectorType>(SubTp)->getNumElements();
1089       if (NumSubElts > OrigSubElts && (Index % OrigSubElts) == 0 &&
1090           (NumSubElts % OrigSubElts) == 0 &&
1091           LT.second.getVectorElementType() ==
1092               SubLT.second.getVectorElementType() &&
1093           LT.second.getVectorElementType().getSizeInBits() ==
1094               BaseTp->getElementType()->getPrimitiveSizeInBits()) {
1095         assert(NumElts >= NumSubElts && NumElts > OrigSubElts &&
1096                "Unexpected number of elements!");
1097         auto *VecTy = FixedVectorType::get(BaseTp->getElementType(),
1098                                            LT.second.getVectorNumElements());
1099         auto *SubTy = FixedVectorType::get(BaseTp->getElementType(),
1100                                            SubLT.second.getVectorNumElements());
1101         int ExtractIndex = alignDown((Index % NumElts), NumSubElts);
1102         InstructionCost ExtractCost = getShuffleCost(
1103             TTI::SK_ExtractSubvector, VecTy, None, ExtractIndex, SubTy);
1104 
1105         // If the original size is 32-bits or more, we can use pshufd. Otherwise
1106         // if we have SSSE3 we can use pshufb.
1107         if (SubTp->getPrimitiveSizeInBits() >= 32 || ST->hasSSSE3())
1108           return ExtractCost + 1; // pshufd or pshufb
1109 
1110         assert(SubTp->getPrimitiveSizeInBits() == 16 &&
1111                "Unexpected vector size");
1112 
1113         return ExtractCost + 2; // worst case pshufhw + pshufd
1114       }
1115     }
1116   }
1117 
1118   // Subvector insertions are cheap if the subvectors are aligned.
1119   // Note that in general, the insertion starting at the beginning of a vector
1120   // isn't free, because we need to preserve the rest of the wide vector.
1121   if (Kind == TTI::SK_InsertSubvector && LT.second.isVector()) {
1122     int NumElts = LT.second.getVectorNumElements();
1123     std::pair<InstructionCost, MVT> SubLT =
1124         TLI->getTypeLegalizationCost(DL, SubTp);
1125     if (SubLT.second.isVector()) {
1126       int NumSubElts = SubLT.second.getVectorNumElements();
1127       if ((Index % NumSubElts) == 0 && (NumElts % NumSubElts) == 0)
1128         return SubLT.first;
1129     }
1130   }
1131 
1132   // Handle some common (illegal) sub-vector types as they are often very cheap
1133   // to shuffle even on targets without PSHUFB.
1134   EVT VT = TLI->getValueType(DL, BaseTp);
1135   if (VT.isSimple() && VT.isVector() && VT.getSizeInBits() < 128 &&
1136       !ST->hasSSSE3()) {
1137      static const CostTblEntry SSE2SubVectorShuffleTbl[] = {
1138       {TTI::SK_Broadcast,        MVT::v4i16, 1}, // pshuflw
1139       {TTI::SK_Broadcast,        MVT::v2i16, 1}, // pshuflw
1140       {TTI::SK_Broadcast,        MVT::v8i8,  2}, // punpck/pshuflw
1141       {TTI::SK_Broadcast,        MVT::v4i8,  2}, // punpck/pshuflw
1142       {TTI::SK_Broadcast,        MVT::v2i8,  1}, // punpck
1143 
1144       {TTI::SK_Reverse,          MVT::v4i16, 1}, // pshuflw
1145       {TTI::SK_Reverse,          MVT::v2i16, 1}, // pshuflw
1146       {TTI::SK_Reverse,          MVT::v4i8,  3}, // punpck/pshuflw/packus
1147       {TTI::SK_Reverse,          MVT::v2i8,  1}, // punpck
1148 
1149       {TTI::SK_PermuteTwoSrc,    MVT::v4i16, 2}, // punpck/pshuflw
1150       {TTI::SK_PermuteTwoSrc,    MVT::v2i16, 2}, // punpck/pshuflw
1151       {TTI::SK_PermuteTwoSrc,    MVT::v8i8,  7}, // punpck/pshuflw
1152       {TTI::SK_PermuteTwoSrc,    MVT::v4i8,  4}, // punpck/pshuflw
1153       {TTI::SK_PermuteTwoSrc,    MVT::v2i8,  2}, // punpck
1154 
1155       {TTI::SK_PermuteSingleSrc, MVT::v4i16, 1}, // pshuflw
1156       {TTI::SK_PermuteSingleSrc, MVT::v2i16, 1}, // pshuflw
1157       {TTI::SK_PermuteSingleSrc, MVT::v8i8,  5}, // punpck/pshuflw
1158       {TTI::SK_PermuteSingleSrc, MVT::v4i8,  3}, // punpck/pshuflw
1159       {TTI::SK_PermuteSingleSrc, MVT::v2i8,  1}, // punpck
1160     };
1161 
1162     if (ST->hasSSE2())
1163       if (const auto *Entry =
1164               CostTableLookup(SSE2SubVectorShuffleTbl, Kind, VT.getSimpleVT()))
1165         return Entry->Cost;
1166   }
1167 
1168   // We are going to permute multiple sources and the result will be in multiple
1169   // destinations. Providing an accurate cost only for splits where the element
1170   // type remains the same.
1171   if (Kind == TTI::SK_PermuteSingleSrc && LT.first != 1) {
1172     MVT LegalVT = LT.second;
1173     if (LegalVT.isVector() &&
1174         LegalVT.getVectorElementType().getSizeInBits() ==
1175             BaseTp->getElementType()->getPrimitiveSizeInBits() &&
1176         LegalVT.getVectorNumElements() <
1177             cast<FixedVectorType>(BaseTp)->getNumElements()) {
1178 
1179       unsigned VecTySize = DL.getTypeStoreSize(BaseTp);
1180       unsigned LegalVTSize = LegalVT.getStoreSize();
1181       // Number of source vectors after legalization:
1182       unsigned NumOfSrcs = (VecTySize + LegalVTSize - 1) / LegalVTSize;
1183       // Number of destination vectors after legalization:
1184       InstructionCost NumOfDests = LT.first;
1185 
1186       auto *SingleOpTy = FixedVectorType::get(BaseTp->getElementType(),
1187                                               LegalVT.getVectorNumElements());
1188 
1189       InstructionCost NumOfShuffles = (NumOfSrcs - 1) * NumOfDests;
1190       return NumOfShuffles * getShuffleCost(TTI::SK_PermuteTwoSrc, SingleOpTy,
1191                                             None, 0, nullptr);
1192     }
1193 
1194     return BaseT::getShuffleCost(Kind, BaseTp, Mask, Index, SubTp);
1195   }
1196 
1197   // For 2-input shuffles, we must account for splitting the 2 inputs into many.
1198   if (Kind == TTI::SK_PermuteTwoSrc && LT.first != 1) {
1199     // We assume that source and destination have the same vector type.
1200     InstructionCost NumOfDests = LT.first;
1201     InstructionCost NumOfShufflesPerDest = LT.first * 2 - 1;
1202     LT.first = NumOfDests * NumOfShufflesPerDest;
1203   }
1204 
1205   static const CostTblEntry AVX512VBMIShuffleTbl[] = {
1206       {TTI::SK_Reverse, MVT::v64i8, 1}, // vpermb
1207       {TTI::SK_Reverse, MVT::v32i8, 1}, // vpermb
1208 
1209       {TTI::SK_PermuteSingleSrc, MVT::v64i8, 1}, // vpermb
1210       {TTI::SK_PermuteSingleSrc, MVT::v32i8, 1}, // vpermb
1211 
1212       {TTI::SK_PermuteTwoSrc, MVT::v64i8, 2}, // vpermt2b
1213       {TTI::SK_PermuteTwoSrc, MVT::v32i8, 2}, // vpermt2b
1214       {TTI::SK_PermuteTwoSrc, MVT::v16i8, 2}  // vpermt2b
1215   };
1216 
1217   if (ST->hasVBMI())
1218     if (const auto *Entry =
1219             CostTableLookup(AVX512VBMIShuffleTbl, Kind, LT.second))
1220       return LT.first * Entry->Cost;
1221 
1222   static const CostTblEntry AVX512BWShuffleTbl[] = {
1223       {TTI::SK_Broadcast, MVT::v32i16, 1}, // vpbroadcastw
1224       {TTI::SK_Broadcast, MVT::v64i8, 1},  // vpbroadcastb
1225 
1226       {TTI::SK_Reverse, MVT::v32i16, 2}, // vpermw
1227       {TTI::SK_Reverse, MVT::v16i16, 2}, // vpermw
1228       {TTI::SK_Reverse, MVT::v64i8, 2},  // pshufb + vshufi64x2
1229 
1230       {TTI::SK_PermuteSingleSrc, MVT::v32i16, 2}, // vpermw
1231       {TTI::SK_PermuteSingleSrc, MVT::v16i16, 2}, // vpermw
1232       {TTI::SK_PermuteSingleSrc, MVT::v64i8, 8},  // extend to v32i16
1233 
1234       {TTI::SK_PermuteTwoSrc, MVT::v32i16, 2}, // vpermt2w
1235       {TTI::SK_PermuteTwoSrc, MVT::v16i16, 2}, // vpermt2w
1236       {TTI::SK_PermuteTwoSrc, MVT::v8i16, 2},  // vpermt2w
1237       {TTI::SK_PermuteTwoSrc, MVT::v64i8, 19}, // 6 * v32i8 + 1
1238 
1239       {TTI::SK_Select, MVT::v32i16, 1}, // vblendmw
1240       {TTI::SK_Select, MVT::v64i8,  1}, // vblendmb
1241   };
1242 
1243   if (ST->hasBWI())
1244     if (const auto *Entry =
1245             CostTableLookup(AVX512BWShuffleTbl, Kind, LT.second))
1246       return LT.first * Entry->Cost;
1247 
1248   static const CostTblEntry AVX512ShuffleTbl[] = {
1249       {TTI::SK_Broadcast, MVT::v8f64, 1},  // vbroadcastpd
1250       {TTI::SK_Broadcast, MVT::v16f32, 1}, // vbroadcastps
1251       {TTI::SK_Broadcast, MVT::v8i64, 1},  // vpbroadcastq
1252       {TTI::SK_Broadcast, MVT::v16i32, 1}, // vpbroadcastd
1253       {TTI::SK_Broadcast, MVT::v32i16, 1}, // vpbroadcastw
1254       {TTI::SK_Broadcast, MVT::v64i8, 1},  // vpbroadcastb
1255 
1256       {TTI::SK_Reverse, MVT::v8f64, 1},  // vpermpd
1257       {TTI::SK_Reverse, MVT::v16f32, 1}, // vpermps
1258       {TTI::SK_Reverse, MVT::v8i64, 1},  // vpermq
1259       {TTI::SK_Reverse, MVT::v16i32, 1}, // vpermd
1260       {TTI::SK_Reverse, MVT::v32i16, 7}, // per mca
1261       {TTI::SK_Reverse, MVT::v64i8,  7}, // per mca
1262 
1263       {TTI::SK_PermuteSingleSrc, MVT::v8f64, 1},  // vpermpd
1264       {TTI::SK_PermuteSingleSrc, MVT::v4f64, 1},  // vpermpd
1265       {TTI::SK_PermuteSingleSrc, MVT::v2f64, 1},  // vpermpd
1266       {TTI::SK_PermuteSingleSrc, MVT::v16f32, 1}, // vpermps
1267       {TTI::SK_PermuteSingleSrc, MVT::v8f32, 1},  // vpermps
1268       {TTI::SK_PermuteSingleSrc, MVT::v4f32, 1},  // vpermps
1269       {TTI::SK_PermuteSingleSrc, MVT::v8i64, 1},  // vpermq
1270       {TTI::SK_PermuteSingleSrc, MVT::v4i64, 1},  // vpermq
1271       {TTI::SK_PermuteSingleSrc, MVT::v2i64, 1},  // vpermq
1272       {TTI::SK_PermuteSingleSrc, MVT::v16i32, 1}, // vpermd
1273       {TTI::SK_PermuteSingleSrc, MVT::v8i32, 1},  // vpermd
1274       {TTI::SK_PermuteSingleSrc, MVT::v4i32, 1},  // vpermd
1275       {TTI::SK_PermuteSingleSrc, MVT::v16i8, 1},  // pshufb
1276 
1277       {TTI::SK_PermuteTwoSrc, MVT::v8f64, 1},  // vpermt2pd
1278       {TTI::SK_PermuteTwoSrc, MVT::v16f32, 1}, // vpermt2ps
1279       {TTI::SK_PermuteTwoSrc, MVT::v8i64, 1},  // vpermt2q
1280       {TTI::SK_PermuteTwoSrc, MVT::v16i32, 1}, // vpermt2d
1281       {TTI::SK_PermuteTwoSrc, MVT::v4f64, 1},  // vpermt2pd
1282       {TTI::SK_PermuteTwoSrc, MVT::v8f32, 1},  // vpermt2ps
1283       {TTI::SK_PermuteTwoSrc, MVT::v4i64, 1},  // vpermt2q
1284       {TTI::SK_PermuteTwoSrc, MVT::v8i32, 1},  // vpermt2d
1285       {TTI::SK_PermuteTwoSrc, MVT::v2f64, 1},  // vpermt2pd
1286       {TTI::SK_PermuteTwoSrc, MVT::v4f32, 1},  // vpermt2ps
1287       {TTI::SK_PermuteTwoSrc, MVT::v2i64, 1},  // vpermt2q
1288       {TTI::SK_PermuteTwoSrc, MVT::v4i32, 1},  // vpermt2d
1289 
1290       // FIXME: This just applies the type legalization cost rules above
1291       // assuming these completely split.
1292       {TTI::SK_PermuteSingleSrc, MVT::v32i16, 14},
1293       {TTI::SK_PermuteSingleSrc, MVT::v64i8,  14},
1294       {TTI::SK_PermuteTwoSrc,    MVT::v32i16, 42},
1295       {TTI::SK_PermuteTwoSrc,    MVT::v64i8,  42},
1296 
1297       {TTI::SK_Select, MVT::v32i16, 1}, // vpternlogq
1298       {TTI::SK_Select, MVT::v64i8,  1}, // vpternlogq
1299       {TTI::SK_Select, MVT::v8f64,  1}, // vblendmpd
1300       {TTI::SK_Select, MVT::v16f32, 1}, // vblendmps
1301       {TTI::SK_Select, MVT::v8i64,  1}, // vblendmq
1302       {TTI::SK_Select, MVT::v16i32, 1}, // vblendmd
1303   };
1304 
1305   if (ST->hasAVX512())
1306     if (const auto *Entry = CostTableLookup(AVX512ShuffleTbl, Kind, LT.second))
1307       return LT.first * Entry->Cost;
1308 
1309   static const CostTblEntry AVX2ShuffleTbl[] = {
1310       {TTI::SK_Broadcast, MVT::v4f64, 1},  // vbroadcastpd
1311       {TTI::SK_Broadcast, MVT::v8f32, 1},  // vbroadcastps
1312       {TTI::SK_Broadcast, MVT::v4i64, 1},  // vpbroadcastq
1313       {TTI::SK_Broadcast, MVT::v8i32, 1},  // vpbroadcastd
1314       {TTI::SK_Broadcast, MVT::v16i16, 1}, // vpbroadcastw
1315       {TTI::SK_Broadcast, MVT::v32i8, 1},  // vpbroadcastb
1316 
1317       {TTI::SK_Reverse, MVT::v4f64, 1},  // vpermpd
1318       {TTI::SK_Reverse, MVT::v8f32, 1},  // vpermps
1319       {TTI::SK_Reverse, MVT::v4i64, 1},  // vpermq
1320       {TTI::SK_Reverse, MVT::v8i32, 1},  // vpermd
1321       {TTI::SK_Reverse, MVT::v16i16, 2}, // vperm2i128 + pshufb
1322       {TTI::SK_Reverse, MVT::v32i8, 2},  // vperm2i128 + pshufb
1323 
1324       {TTI::SK_Select, MVT::v16i16, 1}, // vpblendvb
1325       {TTI::SK_Select, MVT::v32i8, 1},  // vpblendvb
1326 
1327       {TTI::SK_PermuteSingleSrc, MVT::v4f64, 1},  // vpermpd
1328       {TTI::SK_PermuteSingleSrc, MVT::v8f32, 1},  // vpermps
1329       {TTI::SK_PermuteSingleSrc, MVT::v4i64, 1},  // vpermq
1330       {TTI::SK_PermuteSingleSrc, MVT::v8i32, 1},  // vpermd
1331       {TTI::SK_PermuteSingleSrc, MVT::v16i16, 4}, // vperm2i128 + 2*vpshufb
1332                                                   // + vpblendvb
1333       {TTI::SK_PermuteSingleSrc, MVT::v32i8, 4},  // vperm2i128 + 2*vpshufb
1334                                                   // + vpblendvb
1335 
1336       {TTI::SK_PermuteTwoSrc, MVT::v4f64, 3},  // 2*vpermpd + vblendpd
1337       {TTI::SK_PermuteTwoSrc, MVT::v8f32, 3},  // 2*vpermps + vblendps
1338       {TTI::SK_PermuteTwoSrc, MVT::v4i64, 3},  // 2*vpermq + vpblendd
1339       {TTI::SK_PermuteTwoSrc, MVT::v8i32, 3},  // 2*vpermd + vpblendd
1340       {TTI::SK_PermuteTwoSrc, MVT::v16i16, 7}, // 2*vperm2i128 + 4*vpshufb
1341                                                // + vpblendvb
1342       {TTI::SK_PermuteTwoSrc, MVT::v32i8, 7},  // 2*vperm2i128 + 4*vpshufb
1343                                                // + vpblendvb
1344   };
1345 
1346   if (ST->hasAVX2())
1347     if (const auto *Entry = CostTableLookup(AVX2ShuffleTbl, Kind, LT.second))
1348       return LT.first * Entry->Cost;
1349 
1350   static const CostTblEntry XOPShuffleTbl[] = {
1351       {TTI::SK_PermuteSingleSrc, MVT::v4f64, 2},  // vperm2f128 + vpermil2pd
1352       {TTI::SK_PermuteSingleSrc, MVT::v8f32, 2},  // vperm2f128 + vpermil2ps
1353       {TTI::SK_PermuteSingleSrc, MVT::v4i64, 2},  // vperm2f128 + vpermil2pd
1354       {TTI::SK_PermuteSingleSrc, MVT::v8i32, 2},  // vperm2f128 + vpermil2ps
1355       {TTI::SK_PermuteSingleSrc, MVT::v16i16, 4}, // vextractf128 + 2*vpperm
1356                                                   // + vinsertf128
1357       {TTI::SK_PermuteSingleSrc, MVT::v32i8, 4},  // vextractf128 + 2*vpperm
1358                                                   // + vinsertf128
1359 
1360       {TTI::SK_PermuteTwoSrc, MVT::v16i16, 9}, // 2*vextractf128 + 6*vpperm
1361                                                // + vinsertf128
1362       {TTI::SK_PermuteTwoSrc, MVT::v8i16, 1},  // vpperm
1363       {TTI::SK_PermuteTwoSrc, MVT::v32i8, 9},  // 2*vextractf128 + 6*vpperm
1364                                                // + vinsertf128
1365       {TTI::SK_PermuteTwoSrc, MVT::v16i8, 1},  // vpperm
1366   };
1367 
1368   if (ST->hasXOP())
1369     if (const auto *Entry = CostTableLookup(XOPShuffleTbl, Kind, LT.second))
1370       return LT.first * Entry->Cost;
1371 
1372   static const CostTblEntry AVX1ShuffleTbl[] = {
1373       {TTI::SK_Broadcast, MVT::v4f64, 2},  // vperm2f128 + vpermilpd
1374       {TTI::SK_Broadcast, MVT::v8f32, 2},  // vperm2f128 + vpermilps
1375       {TTI::SK_Broadcast, MVT::v4i64, 2},  // vperm2f128 + vpermilpd
1376       {TTI::SK_Broadcast, MVT::v8i32, 2},  // vperm2f128 + vpermilps
1377       {TTI::SK_Broadcast, MVT::v16i16, 3}, // vpshuflw + vpshufd + vinsertf128
1378       {TTI::SK_Broadcast, MVT::v32i8, 2},  // vpshufb + vinsertf128
1379 
1380       {TTI::SK_Reverse, MVT::v4f64, 2},  // vperm2f128 + vpermilpd
1381       {TTI::SK_Reverse, MVT::v8f32, 2},  // vperm2f128 + vpermilps
1382       {TTI::SK_Reverse, MVT::v4i64, 2},  // vperm2f128 + vpermilpd
1383       {TTI::SK_Reverse, MVT::v8i32, 2},  // vperm2f128 + vpermilps
1384       {TTI::SK_Reverse, MVT::v16i16, 4}, // vextractf128 + 2*pshufb
1385                                          // + vinsertf128
1386       {TTI::SK_Reverse, MVT::v32i8, 4},  // vextractf128 + 2*pshufb
1387                                          // + vinsertf128
1388 
1389       {TTI::SK_Select, MVT::v4i64, 1},  // vblendpd
1390       {TTI::SK_Select, MVT::v4f64, 1},  // vblendpd
1391       {TTI::SK_Select, MVT::v8i32, 1},  // vblendps
1392       {TTI::SK_Select, MVT::v8f32, 1},  // vblendps
1393       {TTI::SK_Select, MVT::v16i16, 3}, // vpand + vpandn + vpor
1394       {TTI::SK_Select, MVT::v32i8, 3},  // vpand + vpandn + vpor
1395 
1396       {TTI::SK_PermuteSingleSrc, MVT::v4f64, 2},  // vperm2f128 + vshufpd
1397       {TTI::SK_PermuteSingleSrc, MVT::v4i64, 2},  // vperm2f128 + vshufpd
1398       {TTI::SK_PermuteSingleSrc, MVT::v8f32, 4},  // 2*vperm2f128 + 2*vshufps
1399       {TTI::SK_PermuteSingleSrc, MVT::v8i32, 4},  // 2*vperm2f128 + 2*vshufps
1400       {TTI::SK_PermuteSingleSrc, MVT::v16i16, 8}, // vextractf128 + 4*pshufb
1401                                                   // + 2*por + vinsertf128
1402       {TTI::SK_PermuteSingleSrc, MVT::v32i8, 8},  // vextractf128 + 4*pshufb
1403                                                   // + 2*por + vinsertf128
1404 
1405       {TTI::SK_PermuteTwoSrc, MVT::v4f64, 3},   // 2*vperm2f128 + vshufpd
1406       {TTI::SK_PermuteTwoSrc, MVT::v4i64, 3},   // 2*vperm2f128 + vshufpd
1407       {TTI::SK_PermuteTwoSrc, MVT::v8f32, 4},   // 2*vperm2f128 + 2*vshufps
1408       {TTI::SK_PermuteTwoSrc, MVT::v8i32, 4},   // 2*vperm2f128 + 2*vshufps
1409       {TTI::SK_PermuteTwoSrc, MVT::v16i16, 15}, // 2*vextractf128 + 8*pshufb
1410                                                 // + 4*por + vinsertf128
1411       {TTI::SK_PermuteTwoSrc, MVT::v32i8, 15},  // 2*vextractf128 + 8*pshufb
1412                                                 // + 4*por + vinsertf128
1413   };
1414 
1415   if (ST->hasAVX())
1416     if (const auto *Entry = CostTableLookup(AVX1ShuffleTbl, Kind, LT.second))
1417       return LT.first * Entry->Cost;
1418 
1419   static const CostTblEntry SSE41ShuffleTbl[] = {
1420       {TTI::SK_Select, MVT::v2i64, 1}, // pblendw
1421       {TTI::SK_Select, MVT::v2f64, 1}, // movsd
1422       {TTI::SK_Select, MVT::v4i32, 1}, // pblendw
1423       {TTI::SK_Select, MVT::v4f32, 1}, // blendps
1424       {TTI::SK_Select, MVT::v8i16, 1}, // pblendw
1425       {TTI::SK_Select, MVT::v16i8, 1}  // pblendvb
1426   };
1427 
1428   if (ST->hasSSE41())
1429     if (const auto *Entry = CostTableLookup(SSE41ShuffleTbl, Kind, LT.second))
1430       return LT.first * Entry->Cost;
1431 
1432   static const CostTblEntry SSSE3ShuffleTbl[] = {
1433       {TTI::SK_Broadcast, MVT::v8i16, 1}, // pshufb
1434       {TTI::SK_Broadcast, MVT::v16i8, 1}, // pshufb
1435 
1436       {TTI::SK_Reverse, MVT::v8i16, 1}, // pshufb
1437       {TTI::SK_Reverse, MVT::v16i8, 1}, // pshufb
1438 
1439       {TTI::SK_Select, MVT::v8i16, 3}, // 2*pshufb + por
1440       {TTI::SK_Select, MVT::v16i8, 3}, // 2*pshufb + por
1441 
1442       {TTI::SK_PermuteSingleSrc, MVT::v8i16, 1}, // pshufb
1443       {TTI::SK_PermuteSingleSrc, MVT::v16i8, 1}, // pshufb
1444 
1445       {TTI::SK_PermuteTwoSrc, MVT::v8i16, 3}, // 2*pshufb + por
1446       {TTI::SK_PermuteTwoSrc, MVT::v16i8, 3}, // 2*pshufb + por
1447   };
1448 
1449   if (ST->hasSSSE3())
1450     if (const auto *Entry = CostTableLookup(SSSE3ShuffleTbl, Kind, LT.second))
1451       return LT.first * Entry->Cost;
1452 
1453   static const CostTblEntry SSE2ShuffleTbl[] = {
1454       {TTI::SK_Broadcast, MVT::v2f64, 1}, // shufpd
1455       {TTI::SK_Broadcast, MVT::v2i64, 1}, // pshufd
1456       {TTI::SK_Broadcast, MVT::v4i32, 1}, // pshufd
1457       {TTI::SK_Broadcast, MVT::v8i16, 2}, // pshuflw + pshufd
1458       {TTI::SK_Broadcast, MVT::v16i8, 3}, // unpck + pshuflw + pshufd
1459 
1460       {TTI::SK_Reverse, MVT::v2f64, 1}, // shufpd
1461       {TTI::SK_Reverse, MVT::v2i64, 1}, // pshufd
1462       {TTI::SK_Reverse, MVT::v4i32, 1}, // pshufd
1463       {TTI::SK_Reverse, MVT::v8i16, 3}, // pshuflw + pshufhw + pshufd
1464       {TTI::SK_Reverse, MVT::v16i8, 9}, // 2*pshuflw + 2*pshufhw
1465                                         // + 2*pshufd + 2*unpck + packus
1466 
1467       {TTI::SK_Select, MVT::v2i64, 1}, // movsd
1468       {TTI::SK_Select, MVT::v2f64, 1}, // movsd
1469       {TTI::SK_Select, MVT::v4i32, 2}, // 2*shufps
1470       {TTI::SK_Select, MVT::v8i16, 3}, // pand + pandn + por
1471       {TTI::SK_Select, MVT::v16i8, 3}, // pand + pandn + por
1472 
1473       {TTI::SK_PermuteSingleSrc, MVT::v2f64, 1}, // shufpd
1474       {TTI::SK_PermuteSingleSrc, MVT::v2i64, 1}, // pshufd
1475       {TTI::SK_PermuteSingleSrc, MVT::v4i32, 1}, // pshufd
1476       {TTI::SK_PermuteSingleSrc, MVT::v8i16, 5}, // 2*pshuflw + 2*pshufhw
1477                                                   // + pshufd/unpck
1478     { TTI::SK_PermuteSingleSrc, MVT::v16i8, 10 }, // 2*pshuflw + 2*pshufhw
1479                                                   // + 2*pshufd + 2*unpck + 2*packus
1480 
1481     { TTI::SK_PermuteTwoSrc,    MVT::v2f64,  1 }, // shufpd
1482     { TTI::SK_PermuteTwoSrc,    MVT::v2i64,  1 }, // shufpd
1483     { TTI::SK_PermuteTwoSrc,    MVT::v4i32,  2 }, // 2*{unpck,movsd,pshufd}
1484     { TTI::SK_PermuteTwoSrc,    MVT::v8i16,  8 }, // blend+permute
1485     { TTI::SK_PermuteTwoSrc,    MVT::v16i8, 13 }, // blend+permute
1486   };
1487 
1488   if (ST->hasSSE2())
1489     if (const auto *Entry = CostTableLookup(SSE2ShuffleTbl, Kind, LT.second))
1490       return LT.first * Entry->Cost;
1491 
1492   static const CostTblEntry SSE1ShuffleTbl[] = {
1493     { TTI::SK_Broadcast,        MVT::v4f32, 1 }, // shufps
1494     { TTI::SK_Reverse,          MVT::v4f32, 1 }, // shufps
1495     { TTI::SK_Select,           MVT::v4f32, 2 }, // 2*shufps
1496     { TTI::SK_PermuteSingleSrc, MVT::v4f32, 1 }, // shufps
1497     { TTI::SK_PermuteTwoSrc,    MVT::v4f32, 2 }, // 2*shufps
1498   };
1499 
1500   if (ST->hasSSE1())
1501     if (const auto *Entry = CostTableLookup(SSE1ShuffleTbl, Kind, LT.second))
1502       return LT.first * Entry->Cost;
1503 
1504   return BaseT::getShuffleCost(Kind, BaseTp, Mask, Index, SubTp);
1505 }
1506 
1507 InstructionCost X86TTIImpl::getCastInstrCost(unsigned Opcode, Type *Dst,
1508                                              Type *Src,
1509                                              TTI::CastContextHint CCH,
1510                                              TTI::TargetCostKind CostKind,
1511                                              const Instruction *I) {
1512   int ISD = TLI->InstructionOpcodeToISD(Opcode);
1513   assert(ISD && "Invalid opcode");
1514 
1515   // TODO: Allow non-throughput costs that aren't binary.
1516   auto AdjustCost = [&CostKind](InstructionCost Cost) -> InstructionCost {
1517     if (CostKind != TTI::TCK_RecipThroughput)
1518       return Cost == 0 ? 0 : 1;
1519     return Cost;
1520   };
1521 
1522   // FIXME: Need a better design of the cost table to handle non-simple types of
1523   // potential massive combinations (elem_num x src_type x dst_type).
1524 
1525   static const TypeConversionCostTblEntry AVX512BWConversionTbl[] {
1526     { ISD::SIGN_EXTEND, MVT::v32i16, MVT::v32i8, 1 },
1527     { ISD::ZERO_EXTEND, MVT::v32i16, MVT::v32i8, 1 },
1528 
1529     // Mask sign extend has an instruction.
1530     { ISD::SIGN_EXTEND, MVT::v2i8,   MVT::v2i1,  1 },
1531     { ISD::SIGN_EXTEND, MVT::v2i16,  MVT::v2i1,  1 },
1532     { ISD::SIGN_EXTEND, MVT::v4i8,   MVT::v4i1,  1 },
1533     { ISD::SIGN_EXTEND, MVT::v4i16,  MVT::v4i1,  1 },
1534     { ISD::SIGN_EXTEND, MVT::v8i8,   MVT::v8i1,  1 },
1535     { ISD::SIGN_EXTEND, MVT::v8i16,  MVT::v8i1,  1 },
1536     { ISD::SIGN_EXTEND, MVT::v16i8,  MVT::v16i1, 1 },
1537     { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i1, 1 },
1538     { ISD::SIGN_EXTEND, MVT::v32i8,  MVT::v32i1, 1 },
1539     { ISD::SIGN_EXTEND, MVT::v32i16, MVT::v32i1, 1 },
1540     { ISD::SIGN_EXTEND, MVT::v64i8,  MVT::v64i1, 1 },
1541 
1542     // Mask zero extend is a sext + shift.
1543     { ISD::ZERO_EXTEND, MVT::v2i8,   MVT::v2i1,  2 },
1544     { ISD::ZERO_EXTEND, MVT::v2i16,  MVT::v2i1,  2 },
1545     { ISD::ZERO_EXTEND, MVT::v4i8,   MVT::v4i1,  2 },
1546     { ISD::ZERO_EXTEND, MVT::v4i16,  MVT::v4i1,  2 },
1547     { ISD::ZERO_EXTEND, MVT::v8i8,   MVT::v8i1,  2 },
1548     { ISD::ZERO_EXTEND, MVT::v8i16,  MVT::v8i1,  2 },
1549     { ISD::ZERO_EXTEND, MVT::v16i8,  MVT::v16i1, 2 },
1550     { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i1, 2 },
1551     { ISD::ZERO_EXTEND, MVT::v32i8,  MVT::v32i1, 2 },
1552     { ISD::ZERO_EXTEND, MVT::v32i16, MVT::v32i1, 2 },
1553     { ISD::ZERO_EXTEND, MVT::v64i8,  MVT::v64i1, 2 },
1554 
1555     { ISD::TRUNCATE,    MVT::v32i8,  MVT::v32i16, 2 },
1556     { ISD::TRUNCATE,    MVT::v16i8,  MVT::v16i16, 2 }, // widen to zmm
1557     { ISD::TRUNCATE,    MVT::v2i1,   MVT::v2i8,   2 }, // widen to zmm
1558     { ISD::TRUNCATE,    MVT::v2i1,   MVT::v2i16,  2 }, // widen to zmm
1559     { ISD::TRUNCATE,    MVT::v2i8,   MVT::v2i16,  2 }, // vpmovwb
1560     { ISD::TRUNCATE,    MVT::v4i1,   MVT::v4i8,   2 }, // widen to zmm
1561     { ISD::TRUNCATE,    MVT::v4i1,   MVT::v4i16,  2 }, // widen to zmm
1562     { ISD::TRUNCATE,    MVT::v4i8,   MVT::v4i16,  2 }, // vpmovwb
1563     { ISD::TRUNCATE,    MVT::v8i1,   MVT::v8i8,   2 }, // widen to zmm
1564     { ISD::TRUNCATE,    MVT::v8i1,   MVT::v8i16,  2 }, // widen to zmm
1565     { ISD::TRUNCATE,    MVT::v8i8,   MVT::v8i16,  2 }, // vpmovwb
1566     { ISD::TRUNCATE,    MVT::v16i1,  MVT::v16i8,  2 }, // widen to zmm
1567     { ISD::TRUNCATE,    MVT::v16i1,  MVT::v16i16, 2 }, // widen to zmm
1568     { ISD::TRUNCATE,    MVT::v32i1,  MVT::v32i8,  2 }, // widen to zmm
1569     { ISD::TRUNCATE,    MVT::v32i1,  MVT::v32i16, 2 },
1570     { ISD::TRUNCATE,    MVT::v64i1,  MVT::v64i8,  2 },
1571   };
1572 
1573   static const TypeConversionCostTblEntry AVX512DQConversionTbl[] = {
1574     { ISD::SINT_TO_FP,  MVT::v8f32,  MVT::v8i64,  1 },
1575     { ISD::SINT_TO_FP,  MVT::v8f64,  MVT::v8i64,  1 },
1576 
1577     { ISD::UINT_TO_FP,  MVT::v8f32,  MVT::v8i64,  1 },
1578     { ISD::UINT_TO_FP,  MVT::v8f64,  MVT::v8i64,  1 },
1579 
1580     { ISD::FP_TO_SINT,  MVT::v8i64,  MVT::v8f32,  1 },
1581     { ISD::FP_TO_SINT,  MVT::v8i64,  MVT::v8f64,  1 },
1582 
1583     { ISD::FP_TO_UINT,  MVT::v8i64,  MVT::v8f32,  1 },
1584     { ISD::FP_TO_UINT,  MVT::v8i64,  MVT::v8f64,  1 },
1585   };
1586 
1587   // TODO: For AVX512DQ + AVX512VL, we also have cheap casts for 128-bit and
1588   // 256-bit wide vectors.
1589 
1590   static const TypeConversionCostTblEntry AVX512FConversionTbl[] = {
1591     { ISD::FP_EXTEND, MVT::v8f64,   MVT::v8f32,  1 },
1592     { ISD::FP_EXTEND, MVT::v8f64,   MVT::v16f32, 3 },
1593     { ISD::FP_ROUND,  MVT::v8f32,   MVT::v8f64,  1 },
1594 
1595     { ISD::TRUNCATE,  MVT::v2i1,    MVT::v2i8,   3 }, // sext+vpslld+vptestmd
1596     { ISD::TRUNCATE,  MVT::v4i1,    MVT::v4i8,   3 }, // sext+vpslld+vptestmd
1597     { ISD::TRUNCATE,  MVT::v8i1,    MVT::v8i8,   3 }, // sext+vpslld+vptestmd
1598     { ISD::TRUNCATE,  MVT::v16i1,   MVT::v16i8,  3 }, // sext+vpslld+vptestmd
1599     { ISD::TRUNCATE,  MVT::v2i1,    MVT::v2i16,  3 }, // sext+vpsllq+vptestmq
1600     { ISD::TRUNCATE,  MVT::v4i1,    MVT::v4i16,  3 }, // sext+vpsllq+vptestmq
1601     { ISD::TRUNCATE,  MVT::v8i1,    MVT::v8i16,  3 }, // sext+vpsllq+vptestmq
1602     { ISD::TRUNCATE,  MVT::v16i1,   MVT::v16i16, 3 }, // sext+vpslld+vptestmd
1603     { ISD::TRUNCATE,  MVT::v2i1,    MVT::v2i32,  2 }, // zmm vpslld+vptestmd
1604     { ISD::TRUNCATE,  MVT::v4i1,    MVT::v4i32,  2 }, // zmm vpslld+vptestmd
1605     { ISD::TRUNCATE,  MVT::v8i1,    MVT::v8i32,  2 }, // zmm vpslld+vptestmd
1606     { ISD::TRUNCATE,  MVT::v16i1,   MVT::v16i32, 2 }, // vpslld+vptestmd
1607     { ISD::TRUNCATE,  MVT::v2i1,    MVT::v2i64,  2 }, // zmm vpsllq+vptestmq
1608     { ISD::TRUNCATE,  MVT::v4i1,    MVT::v4i64,  2 }, // zmm vpsllq+vptestmq
1609     { ISD::TRUNCATE,  MVT::v8i1,    MVT::v8i64,  2 }, // vpsllq+vptestmq
1610     { ISD::TRUNCATE,  MVT::v2i8,    MVT::v2i32,  2 }, // vpmovdb
1611     { ISD::TRUNCATE,  MVT::v4i8,    MVT::v4i32,  2 }, // vpmovdb
1612     { ISD::TRUNCATE,  MVT::v16i8,   MVT::v16i32, 2 }, // vpmovdb
1613     { ISD::TRUNCATE,  MVT::v16i16,  MVT::v16i32, 2 }, // vpmovdb
1614     { ISD::TRUNCATE,  MVT::v2i8,    MVT::v2i64,  2 }, // vpmovqb
1615     { ISD::TRUNCATE,  MVT::v2i16,   MVT::v2i64,  1 }, // vpshufb
1616     { ISD::TRUNCATE,  MVT::v8i8,    MVT::v8i64,  2 }, // vpmovqb
1617     { ISD::TRUNCATE,  MVT::v8i16,   MVT::v8i64,  2 }, // vpmovqw
1618     { ISD::TRUNCATE,  MVT::v8i32,   MVT::v8i64,  1 }, // vpmovqd
1619     { ISD::TRUNCATE,  MVT::v4i32,   MVT::v4i64,  1 }, // zmm vpmovqd
1620     { ISD::TRUNCATE,  MVT::v16i8,   MVT::v16i64, 5 },// 2*vpmovqd+concat+vpmovdb
1621 
1622     { ISD::TRUNCATE,  MVT::v16i8,  MVT::v16i16,  3 }, // extend to v16i32
1623     { ISD::TRUNCATE,  MVT::v32i8,  MVT::v32i16,  8 },
1624 
1625     // Sign extend is zmm vpternlogd+vptruncdb.
1626     // Zero extend is zmm broadcast load+vptruncdw.
1627     { ISD::SIGN_EXTEND, MVT::v2i8,   MVT::v2i1,   3 },
1628     { ISD::ZERO_EXTEND, MVT::v2i8,   MVT::v2i1,   4 },
1629     { ISD::SIGN_EXTEND, MVT::v4i8,   MVT::v4i1,   3 },
1630     { ISD::ZERO_EXTEND, MVT::v4i8,   MVT::v4i1,   4 },
1631     { ISD::SIGN_EXTEND, MVT::v8i8,   MVT::v8i1,   3 },
1632     { ISD::ZERO_EXTEND, MVT::v8i8,   MVT::v8i1,   4 },
1633     { ISD::SIGN_EXTEND, MVT::v16i8,  MVT::v16i1,  3 },
1634     { ISD::ZERO_EXTEND, MVT::v16i8,  MVT::v16i1,  4 },
1635 
1636     // Sign extend is zmm vpternlogd+vptruncdw.
1637     // Zero extend is zmm vpternlogd+vptruncdw+vpsrlw.
1638     { ISD::SIGN_EXTEND, MVT::v2i16,  MVT::v2i1,   3 },
1639     { ISD::ZERO_EXTEND, MVT::v2i16,  MVT::v2i1,   4 },
1640     { ISD::SIGN_EXTEND, MVT::v4i16,  MVT::v4i1,   3 },
1641     { ISD::ZERO_EXTEND, MVT::v4i16,  MVT::v4i1,   4 },
1642     { ISD::SIGN_EXTEND, MVT::v8i16,  MVT::v8i1,   3 },
1643     { ISD::ZERO_EXTEND, MVT::v8i16,  MVT::v8i1,   4 },
1644     { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i1,  3 },
1645     { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i1,  4 },
1646 
1647     { ISD::SIGN_EXTEND, MVT::v2i32,  MVT::v2i1,   1 }, // zmm vpternlogd
1648     { ISD::ZERO_EXTEND, MVT::v2i32,  MVT::v2i1,   2 }, // zmm vpternlogd+psrld
1649     { ISD::SIGN_EXTEND, MVT::v4i32,  MVT::v4i1,   1 }, // zmm vpternlogd
1650     { ISD::ZERO_EXTEND, MVT::v4i32,  MVT::v4i1,   2 }, // zmm vpternlogd+psrld
1651     { ISD::SIGN_EXTEND, MVT::v8i32,  MVT::v8i1,   1 }, // zmm vpternlogd
1652     { ISD::ZERO_EXTEND, MVT::v8i32,  MVT::v8i1,   2 }, // zmm vpternlogd+psrld
1653     { ISD::SIGN_EXTEND, MVT::v2i64,  MVT::v2i1,   1 }, // zmm vpternlogq
1654     { ISD::ZERO_EXTEND, MVT::v2i64,  MVT::v2i1,   2 }, // zmm vpternlogq+psrlq
1655     { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v4i1,   1 }, // zmm vpternlogq
1656     { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v4i1,   2 }, // zmm vpternlogq+psrlq
1657 
1658     { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i1,  1 }, // vpternlogd
1659     { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i1,  2 }, // vpternlogd+psrld
1660     { ISD::SIGN_EXTEND, MVT::v8i64,  MVT::v8i1,   1 }, // vpternlogq
1661     { ISD::ZERO_EXTEND, MVT::v8i64,  MVT::v8i1,   2 }, // vpternlogq+psrlq
1662 
1663     { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i8,  1 },
1664     { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i8,  1 },
1665     { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i16, 1 },
1666     { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i16, 1 },
1667     { ISD::SIGN_EXTEND, MVT::v8i64,  MVT::v8i8,   1 },
1668     { ISD::ZERO_EXTEND, MVT::v8i64,  MVT::v8i8,   1 },
1669     { ISD::SIGN_EXTEND, MVT::v8i64,  MVT::v8i16,  1 },
1670     { ISD::ZERO_EXTEND, MVT::v8i64,  MVT::v8i16,  1 },
1671     { ISD::SIGN_EXTEND, MVT::v8i64,  MVT::v8i32,  1 },
1672     { ISD::ZERO_EXTEND, MVT::v8i64,  MVT::v8i32,  1 },
1673 
1674     { ISD::SIGN_EXTEND, MVT::v32i16, MVT::v32i8, 3 }, // FIXME: May not be right
1675     { ISD::ZERO_EXTEND, MVT::v32i16, MVT::v32i8, 3 }, // FIXME: May not be right
1676 
1677     { ISD::SINT_TO_FP,  MVT::v8f64,  MVT::v8i1,   4 },
1678     { ISD::SINT_TO_FP,  MVT::v16f32, MVT::v16i1,  3 },
1679     { ISD::SINT_TO_FP,  MVT::v8f64,  MVT::v8i8,   2 },
1680     { ISD::SINT_TO_FP,  MVT::v16f32, MVT::v16i8,  2 },
1681     { ISD::SINT_TO_FP,  MVT::v8f64,  MVT::v8i16,  2 },
1682     { ISD::SINT_TO_FP,  MVT::v16f32, MVT::v16i16, 2 },
1683     { ISD::SINT_TO_FP,  MVT::v16f32, MVT::v16i32, 1 },
1684     { ISD::SINT_TO_FP,  MVT::v8f64,  MVT::v8i32,  1 },
1685 
1686     { ISD::UINT_TO_FP,  MVT::v8f64,  MVT::v8i1,   4 },
1687     { ISD::UINT_TO_FP,  MVT::v16f32, MVT::v16i1,  3 },
1688     { ISD::UINT_TO_FP,  MVT::v8f64,  MVT::v8i8,   2 },
1689     { ISD::UINT_TO_FP,  MVT::v16f32, MVT::v16i8,  2 },
1690     { ISD::UINT_TO_FP,  MVT::v8f64,  MVT::v8i16,  2 },
1691     { ISD::UINT_TO_FP,  MVT::v16f32, MVT::v16i16, 2 },
1692     { ISD::UINT_TO_FP,  MVT::v8f64,  MVT::v8i32,  1 },
1693     { ISD::UINT_TO_FP,  MVT::v16f32, MVT::v16i32, 1 },
1694     { ISD::UINT_TO_FP,  MVT::v8f32,  MVT::v8i64, 26 },
1695     { ISD::UINT_TO_FP,  MVT::v8f64,  MVT::v8i64,  5 },
1696 
1697     { ISD::FP_TO_SINT,  MVT::v8i8,   MVT::v8f64,  3 },
1698     { ISD::FP_TO_SINT,  MVT::v8i16,  MVT::v8f64,  3 },
1699     { ISD::FP_TO_SINT,  MVT::v16i8,  MVT::v16f32, 3 },
1700     { ISD::FP_TO_SINT,  MVT::v16i16, MVT::v16f32, 3 },
1701 
1702     { ISD::FP_TO_UINT,  MVT::v8i32,  MVT::v8f64,  1 },
1703     { ISD::FP_TO_UINT,  MVT::v8i16,  MVT::v8f64,  3 },
1704     { ISD::FP_TO_UINT,  MVT::v8i8,   MVT::v8f64,  3 },
1705     { ISD::FP_TO_UINT,  MVT::v16i32, MVT::v16f32, 1 },
1706     { ISD::FP_TO_UINT,  MVT::v16i16, MVT::v16f32, 3 },
1707     { ISD::FP_TO_UINT,  MVT::v16i8,  MVT::v16f32, 3 },
1708   };
1709 
1710   static const TypeConversionCostTblEntry AVX512BWVLConversionTbl[] {
1711     // Mask sign extend has an instruction.
1712     { ISD::SIGN_EXTEND, MVT::v2i8,   MVT::v2i1,  1 },
1713     { ISD::SIGN_EXTEND, MVT::v2i16,  MVT::v2i1,  1 },
1714     { ISD::SIGN_EXTEND, MVT::v4i8,   MVT::v4i1,  1 },
1715     { ISD::SIGN_EXTEND, MVT::v4i16,  MVT::v4i1,  1 },
1716     { ISD::SIGN_EXTEND, MVT::v8i8,   MVT::v8i1,  1 },
1717     { ISD::SIGN_EXTEND, MVT::v8i16,  MVT::v8i1,  1 },
1718     { ISD::SIGN_EXTEND, MVT::v16i8,  MVT::v16i1, 1 },
1719     { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i1, 1 },
1720     { ISD::SIGN_EXTEND, MVT::v32i8,  MVT::v32i1, 1 },
1721 
1722     // Mask zero extend is a sext + shift.
1723     { ISD::ZERO_EXTEND, MVT::v2i8,   MVT::v2i1,  2 },
1724     { ISD::ZERO_EXTEND, MVT::v2i16,  MVT::v2i1,  2 },
1725     { ISD::ZERO_EXTEND, MVT::v4i8,   MVT::v4i1,  2 },
1726     { ISD::ZERO_EXTEND, MVT::v4i16,  MVT::v4i1,  2 },
1727     { ISD::ZERO_EXTEND, MVT::v8i8,   MVT::v8i1,  2 },
1728     { ISD::ZERO_EXTEND, MVT::v8i16,  MVT::v8i1,  2 },
1729     { ISD::ZERO_EXTEND, MVT::v16i8,  MVT::v16i1, 2 },
1730     { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i1, 2 },
1731     { ISD::ZERO_EXTEND, MVT::v32i8,  MVT::v32i1, 2 },
1732 
1733     { ISD::TRUNCATE,    MVT::v16i8,  MVT::v16i16, 2 },
1734     { ISD::TRUNCATE,    MVT::v2i1,   MVT::v2i8,   2 }, // vpsllw+vptestmb
1735     { ISD::TRUNCATE,    MVT::v2i1,   MVT::v2i16,  2 }, // vpsllw+vptestmw
1736     { ISD::TRUNCATE,    MVT::v4i1,   MVT::v4i8,   2 }, // vpsllw+vptestmb
1737     { ISD::TRUNCATE,    MVT::v4i1,   MVT::v4i16,  2 }, // vpsllw+vptestmw
1738     { ISD::TRUNCATE,    MVT::v8i1,   MVT::v8i8,   2 }, // vpsllw+vptestmb
1739     { ISD::TRUNCATE,    MVT::v8i1,   MVT::v8i16,  2 }, // vpsllw+vptestmw
1740     { ISD::TRUNCATE,    MVT::v16i1,  MVT::v16i8,  2 }, // vpsllw+vptestmb
1741     { ISD::TRUNCATE,    MVT::v16i1,  MVT::v16i16, 2 }, // vpsllw+vptestmw
1742     { ISD::TRUNCATE,    MVT::v32i1,  MVT::v32i8,  2 }, // vpsllw+vptestmb
1743   };
1744 
1745   static const TypeConversionCostTblEntry AVX512DQVLConversionTbl[] = {
1746     { ISD::SINT_TO_FP,  MVT::v2f32,  MVT::v2i64,  1 },
1747     { ISD::SINT_TO_FP,  MVT::v2f64,  MVT::v2i64,  1 },
1748     { ISD::SINT_TO_FP,  MVT::v4f32,  MVT::v4i64,  1 },
1749     { ISD::SINT_TO_FP,  MVT::v4f64,  MVT::v4i64,  1 },
1750 
1751     { ISD::UINT_TO_FP,  MVT::v2f32,  MVT::v2i64,  1 },
1752     { ISD::UINT_TO_FP,  MVT::v2f64,  MVT::v2i64,  1 },
1753     { ISD::UINT_TO_FP,  MVT::v4f32,  MVT::v4i64,  1 },
1754     { ISD::UINT_TO_FP,  MVT::v4f64,  MVT::v4i64,  1 },
1755 
1756     { ISD::FP_TO_SINT,  MVT::v2i64,  MVT::v2f32,  1 },
1757     { ISD::FP_TO_SINT,  MVT::v4i64,  MVT::v4f32,  1 },
1758     { ISD::FP_TO_SINT,  MVT::v2i64,  MVT::v2f64,  1 },
1759     { ISD::FP_TO_SINT,  MVT::v4i64,  MVT::v4f64,  1 },
1760 
1761     { ISD::FP_TO_UINT,  MVT::v2i64,  MVT::v2f32,  1 },
1762     { ISD::FP_TO_UINT,  MVT::v4i64,  MVT::v4f32,  1 },
1763     { ISD::FP_TO_UINT,  MVT::v2i64,  MVT::v2f64,  1 },
1764     { ISD::FP_TO_UINT,  MVT::v4i64,  MVT::v4f64,  1 },
1765   };
1766 
1767   static const TypeConversionCostTblEntry AVX512VLConversionTbl[] = {
1768     { ISD::TRUNCATE,  MVT::v2i1,    MVT::v2i8,   3 }, // sext+vpslld+vptestmd
1769     { ISD::TRUNCATE,  MVT::v4i1,    MVT::v4i8,   3 }, // sext+vpslld+vptestmd
1770     { ISD::TRUNCATE,  MVT::v8i1,    MVT::v8i8,   3 }, // sext+vpslld+vptestmd
1771     { ISD::TRUNCATE,  MVT::v16i1,   MVT::v16i8,  8 }, // split+2*v8i8
1772     { ISD::TRUNCATE,  MVT::v2i1,    MVT::v2i16,  3 }, // sext+vpsllq+vptestmq
1773     { ISD::TRUNCATE,  MVT::v4i1,    MVT::v4i16,  3 }, // sext+vpsllq+vptestmq
1774     { ISD::TRUNCATE,  MVT::v8i1,    MVT::v8i16,  3 }, // sext+vpsllq+vptestmq
1775     { ISD::TRUNCATE,  MVT::v16i1,   MVT::v16i16, 8 }, // split+2*v8i16
1776     { ISD::TRUNCATE,  MVT::v2i1,    MVT::v2i32,  2 }, // vpslld+vptestmd
1777     { ISD::TRUNCATE,  MVT::v4i1,    MVT::v4i32,  2 }, // vpslld+vptestmd
1778     { ISD::TRUNCATE,  MVT::v8i1,    MVT::v8i32,  2 }, // vpslld+vptestmd
1779     { ISD::TRUNCATE,  MVT::v2i1,    MVT::v2i64,  2 }, // vpsllq+vptestmq
1780     { ISD::TRUNCATE,  MVT::v4i1,    MVT::v4i64,  2 }, // vpsllq+vptestmq
1781     { ISD::TRUNCATE,  MVT::v4i32,   MVT::v4i64,  1 }, // vpmovqd
1782     { ISD::TRUNCATE,  MVT::v4i8,    MVT::v4i64,  2 }, // vpmovqb
1783     { ISD::TRUNCATE,  MVT::v4i16,   MVT::v4i64,  2 }, // vpmovqw
1784     { ISD::TRUNCATE,  MVT::v8i8,    MVT::v8i32,  2 }, // vpmovwb
1785 
1786     // sign extend is vpcmpeq+maskedmove+vpmovdw+vpacksswb
1787     // zero extend is vpcmpeq+maskedmove+vpmovdw+vpsrlw+vpackuswb
1788     { ISD::SIGN_EXTEND, MVT::v2i8,   MVT::v2i1,   5 },
1789     { ISD::ZERO_EXTEND, MVT::v2i8,   MVT::v2i1,   6 },
1790     { ISD::SIGN_EXTEND, MVT::v4i8,   MVT::v4i1,   5 },
1791     { ISD::ZERO_EXTEND, MVT::v4i8,   MVT::v4i1,   6 },
1792     { ISD::SIGN_EXTEND, MVT::v8i8,   MVT::v8i1,   5 },
1793     { ISD::ZERO_EXTEND, MVT::v8i8,   MVT::v8i1,   6 },
1794     { ISD::SIGN_EXTEND, MVT::v16i8,  MVT::v16i1, 10 },
1795     { ISD::ZERO_EXTEND, MVT::v16i8,  MVT::v16i1, 12 },
1796 
1797     // sign extend is vpcmpeq+maskedmove+vpmovdw
1798     // zero extend is vpcmpeq+maskedmove+vpmovdw+vpsrlw
1799     { ISD::SIGN_EXTEND, MVT::v2i16,  MVT::v2i1,   4 },
1800     { ISD::ZERO_EXTEND, MVT::v2i16,  MVT::v2i1,   5 },
1801     { ISD::SIGN_EXTEND, MVT::v4i16,  MVT::v4i1,   4 },
1802     { ISD::ZERO_EXTEND, MVT::v4i16,  MVT::v4i1,   5 },
1803     { ISD::SIGN_EXTEND, MVT::v8i16,  MVT::v8i1,   4 },
1804     { ISD::ZERO_EXTEND, MVT::v8i16,  MVT::v8i1,   5 },
1805     { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i1, 10 },
1806     { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i1, 12 },
1807 
1808     { ISD::SIGN_EXTEND, MVT::v2i32,  MVT::v2i1,   1 }, // vpternlogd
1809     { ISD::ZERO_EXTEND, MVT::v2i32,  MVT::v2i1,   2 }, // vpternlogd+psrld
1810     { ISD::SIGN_EXTEND, MVT::v4i32,  MVT::v4i1,   1 }, // vpternlogd
1811     { ISD::ZERO_EXTEND, MVT::v4i32,  MVT::v4i1,   2 }, // vpternlogd+psrld
1812     { ISD::SIGN_EXTEND, MVT::v8i32,  MVT::v8i1,   1 }, // vpternlogd
1813     { ISD::ZERO_EXTEND, MVT::v8i32,  MVT::v8i1,   2 }, // vpternlogd+psrld
1814     { ISD::SIGN_EXTEND, MVT::v2i64,  MVT::v2i1,   1 }, // vpternlogq
1815     { ISD::ZERO_EXTEND, MVT::v2i64,  MVT::v2i1,   2 }, // vpternlogq+psrlq
1816     { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v4i1,   1 }, // vpternlogq
1817     { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v4i1,   2 }, // vpternlogq+psrlq
1818 
1819     { ISD::UINT_TO_FP,  MVT::v2f64,  MVT::v2i8,   2 },
1820     { ISD::UINT_TO_FP,  MVT::v4f64,  MVT::v4i8,   2 },
1821     { ISD::UINT_TO_FP,  MVT::v8f32,  MVT::v8i8,   2 },
1822     { ISD::UINT_TO_FP,  MVT::v2f64,  MVT::v2i16,  5 },
1823     { ISD::UINT_TO_FP,  MVT::v4f64,  MVT::v4i16,  2 },
1824     { ISD::UINT_TO_FP,  MVT::v8f32,  MVT::v8i16,  2 },
1825     { ISD::UINT_TO_FP,  MVT::v2f32,  MVT::v2i32,  2 },
1826     { ISD::UINT_TO_FP,  MVT::v2f64,  MVT::v2i32,  1 },
1827     { ISD::UINT_TO_FP,  MVT::v4f32,  MVT::v4i32,  1 },
1828     { ISD::UINT_TO_FP,  MVT::v4f64,  MVT::v4i32,  1 },
1829     { ISD::UINT_TO_FP,  MVT::v8f32,  MVT::v8i32,  1 },
1830     { ISD::UINT_TO_FP,  MVT::v2f32,  MVT::v2i64,  5 },
1831     { ISD::UINT_TO_FP,  MVT::v2f64,  MVT::v2i64,  5 },
1832     { ISD::UINT_TO_FP,  MVT::v4f64,  MVT::v4i64,  5 },
1833 
1834     { ISD::UINT_TO_FP,  MVT::f32,    MVT::i64,    1 },
1835     { ISD::UINT_TO_FP,  MVT::f64,    MVT::i64,    1 },
1836 
1837     { ISD::FP_TO_SINT,  MVT::v8i8,   MVT::v8f32,  3 },
1838     { ISD::FP_TO_UINT,  MVT::v8i8,   MVT::v8f32,  3 },
1839 
1840     { ISD::FP_TO_UINT,  MVT::i64,    MVT::f32,    1 },
1841     { ISD::FP_TO_UINT,  MVT::i64,    MVT::f64,    1 },
1842 
1843     { ISD::FP_TO_UINT,  MVT::v2i32,  MVT::v2f32,  1 },
1844     { ISD::FP_TO_UINT,  MVT::v4i32,  MVT::v4f32,  1 },
1845     { ISD::FP_TO_UINT,  MVT::v2i32,  MVT::v2f64,  1 },
1846     { ISD::FP_TO_UINT,  MVT::v4i32,  MVT::v4f64,  1 },
1847     { ISD::FP_TO_UINT,  MVT::v8i32,  MVT::v8f32,  1 },
1848   };
1849 
1850   static const TypeConversionCostTblEntry AVX2ConversionTbl[] = {
1851     { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v4i1,   3 },
1852     { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v4i1,   3 },
1853     { ISD::SIGN_EXTEND, MVT::v8i32,  MVT::v8i1,   3 },
1854     { ISD::ZERO_EXTEND, MVT::v8i32,  MVT::v8i1,   3 },
1855     { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v4i8,   1 },
1856     { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v4i8,   1 },
1857     { ISD::SIGN_EXTEND, MVT::v8i32,  MVT::v8i8,   1 },
1858     { ISD::ZERO_EXTEND, MVT::v8i32,  MVT::v8i8,   1 },
1859     { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i1,  1 },
1860     { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i1,  1 },
1861     { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i8,  1 },
1862     { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i8,  1 },
1863     { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v4i16,  1 },
1864     { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v4i16,  1 },
1865     { ISD::SIGN_EXTEND, MVT::v8i32,  MVT::v8i16,  1 },
1866     { ISD::ZERO_EXTEND, MVT::v8i32,  MVT::v8i16,  1 },
1867     { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v4i32,  1 },
1868     { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v4i32,  1 },
1869     { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i16, 3 },
1870     { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i16, 3 },
1871 
1872     { ISD::TRUNCATE,    MVT::v2i8,   MVT::v2i32,  1 },
1873     { ISD::TRUNCATE,    MVT::v2i16,  MVT::v2i64,  1 },
1874     { ISD::TRUNCATE,    MVT::v4i32,  MVT::v4i64,  1 },
1875     { ISD::TRUNCATE,    MVT::v8i1,   MVT::v8i32,  2 },
1876     { ISD::TRUNCATE,    MVT::v8i16,  MVT::v8i32,  2 },
1877 
1878     { ISD::FP_EXTEND,   MVT::v8f64,  MVT::v8f32,  3 },
1879     { ISD::FP_ROUND,    MVT::v8f32,  MVT::v8f64,  3 },
1880 
1881     { ISD::UINT_TO_FP,  MVT::v8f32,  MVT::v8i32,  5 },
1882   };
1883 
1884   static const TypeConversionCostTblEntry AVXConversionTbl[] = {
1885     { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v4i1,  6 },
1886     { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v4i1,  4 },
1887     { ISD::SIGN_EXTEND, MVT::v8i32,  MVT::v8i1,  7 },
1888     { ISD::ZERO_EXTEND, MVT::v8i32,  MVT::v8i1,  4 },
1889     { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v4i8,  3 },
1890     { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v4i8,  3 },
1891     { ISD::SIGN_EXTEND, MVT::v8i32,  MVT::v8i8,  3 },
1892     { ISD::ZERO_EXTEND, MVT::v8i32,  MVT::v8i8,  3 },
1893     { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i1, 4 },
1894     { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i1, 4 },
1895     { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i8, 3 },
1896     { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i8, 3 },
1897     { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v4i16, 3 },
1898     { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v4i16, 3 },
1899     { ISD::SIGN_EXTEND, MVT::v8i32,  MVT::v8i16, 3 },
1900     { ISD::ZERO_EXTEND, MVT::v8i32,  MVT::v8i16, 3 },
1901     { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v4i32, 3 },
1902     { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v4i32, 3 },
1903 
1904     { ISD::TRUNCATE,    MVT::v4i1,  MVT::v4i64,  4 },
1905     { ISD::TRUNCATE,    MVT::v8i1,  MVT::v8i32,  5 },
1906     { ISD::TRUNCATE,    MVT::v16i1, MVT::v16i16, 4 },
1907     { ISD::TRUNCATE,    MVT::v8i1,  MVT::v8i64,  9 },
1908     { ISD::TRUNCATE,    MVT::v16i1, MVT::v16i64, 11 },
1909 
1910     { ISD::TRUNCATE,    MVT::v16i8, MVT::v16i16, 2 }, // and+extract+packuswb
1911     { ISD::TRUNCATE,    MVT::v2i8,  MVT::v2i32,  2 }, // and+packusdw+packuswb
1912     { ISD::TRUNCATE,    MVT::v8i8,  MVT::v8i32,  4 },
1913     { ISD::TRUNCATE,    MVT::v8i16, MVT::v8i32,  5 },
1914     { ISD::TRUNCATE,    MVT::v4i8,  MVT::v4i64,  4 },
1915     { ISD::TRUNCATE,    MVT::v4i16, MVT::v4i64,  3 }, // and+extract+2*packusdw
1916     { ISD::TRUNCATE,    MVT::v4i32, MVT::v4i64,  2 },
1917     { ISD::TRUNCATE,    MVT::v8i8,  MVT::v8i64, 11 },
1918     { ISD::TRUNCATE,    MVT::v8i16, MVT::v8i64,  9 },
1919     { ISD::TRUNCATE,    MVT::v8i32, MVT::v8i64,  3 },
1920     { ISD::TRUNCATE,    MVT::v16i8, MVT::v16i64, 11 },
1921 
1922     { ISD::SINT_TO_FP,  MVT::v4f32, MVT::v4i1,  3 },
1923     { ISD::SINT_TO_FP,  MVT::v4f64, MVT::v4i1,  3 },
1924     { ISD::SINT_TO_FP,  MVT::v8f32, MVT::v8i1,  8 },
1925     { ISD::SINT_TO_FP,  MVT::v4f32, MVT::v4i8,  3 },
1926     { ISD::SINT_TO_FP,  MVT::v4f64, MVT::v4i8,  3 },
1927     { ISD::SINT_TO_FP,  MVT::v8f32, MVT::v8i8,  8 },
1928     { ISD::SINT_TO_FP,  MVT::v4f32, MVT::v4i16, 3 },
1929     { ISD::SINT_TO_FP,  MVT::v4f64, MVT::v4i16, 3 },
1930     { ISD::SINT_TO_FP,  MVT::v8f32, MVT::v8i16, 5 },
1931     { ISD::SINT_TO_FP,  MVT::v4f32, MVT::v4i32, 1 },
1932     { ISD::SINT_TO_FP,  MVT::v4f64, MVT::v4i32, 1 },
1933     { ISD::SINT_TO_FP,  MVT::v8f32, MVT::v8i32, 1 },
1934 
1935     { ISD::UINT_TO_FP,  MVT::v4f32, MVT::v4i1,  7 },
1936     { ISD::UINT_TO_FP,  MVT::v4f64, MVT::v4i1,  7 },
1937     { ISD::UINT_TO_FP,  MVT::v8f32, MVT::v8i1,  6 },
1938     { ISD::UINT_TO_FP,  MVT::v4f32, MVT::v4i8,  2 },
1939     { ISD::UINT_TO_FP,  MVT::v4f64, MVT::v4i8,  2 },
1940     { ISD::UINT_TO_FP,  MVT::v8f32, MVT::v8i8,  5 },
1941     { ISD::UINT_TO_FP,  MVT::v4f32, MVT::v4i16, 2 },
1942     { ISD::UINT_TO_FP,  MVT::v4f64, MVT::v4i16, 2 },
1943     { ISD::UINT_TO_FP,  MVT::v8f32, MVT::v8i16, 5 },
1944     { ISD::UINT_TO_FP,  MVT::v2f64, MVT::v2i32, 6 },
1945     { ISD::UINT_TO_FP,  MVT::v4f32, MVT::v4i32, 6 },
1946     { ISD::UINT_TO_FP,  MVT::v4f64, MVT::v4i32, 6 },
1947     { ISD::UINT_TO_FP,  MVT::v8f32, MVT::v8i32, 8 },
1948     { ISD::UINT_TO_FP,  MVT::v2f64, MVT::v2i64, 5 },
1949     { ISD::UINT_TO_FP,  MVT::v4f64, MVT::v4i64, 6 },
1950     // The generic code to compute the scalar overhead is currently broken.
1951     // Workaround this limitation by estimating the scalarization overhead
1952     // here. We have roughly 10 instructions per scalar element.
1953     // Multiply that by the vector width.
1954     // FIXME: remove that when PR19268 is fixed.
1955     { ISD::SINT_TO_FP,  MVT::v4f64, MVT::v4i64, 13 },
1956     { ISD::SINT_TO_FP,  MVT::v4f64, MVT::v4i64, 13 },
1957 
1958     { ISD::FP_TO_SINT,  MVT::v8i8,  MVT::v8f32, 4 },
1959     { ISD::FP_TO_SINT,  MVT::v4i8,  MVT::v4f64, 3 },
1960     { ISD::FP_TO_SINT,  MVT::v4i16, MVT::v4f64, 2 },
1961     { ISD::FP_TO_SINT,  MVT::v8i16, MVT::v8f32, 3 },
1962 
1963     { ISD::FP_TO_UINT,  MVT::v4i8,  MVT::v4f64, 3 },
1964     { ISD::FP_TO_UINT,  MVT::v4i16, MVT::v4f64, 2 },
1965     { ISD::FP_TO_UINT,  MVT::v8i8,  MVT::v8f32, 4 },
1966     { ISD::FP_TO_UINT,  MVT::v8i16, MVT::v8f32, 3 },
1967     { ISD::FP_TO_UINT,  MVT::v8i32, MVT::v8f32, 9 },
1968     // This node is expanded into scalarized operations but BasicTTI is overly
1969     // optimistic estimating its cost.  It computes 3 per element (one
1970     // vector-extract, one scalar conversion and one vector-insert).  The
1971     // problem is that the inserts form a read-modify-write chain so latency
1972     // should be factored in too.  Inflating the cost per element by 1.
1973     { ISD::FP_TO_UINT,  MVT::v4i32, MVT::v4f64, 4*4 },
1974 
1975     { ISD::FP_EXTEND,   MVT::v4f64,  MVT::v4f32,  1 },
1976     { ISD::FP_ROUND,    MVT::v4f32,  MVT::v4f64,  1 },
1977   };
1978 
1979   static const TypeConversionCostTblEntry SSE41ConversionTbl[] = {
1980     { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i8,    2 },
1981     { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i8,    2 },
1982     { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i16,   2 },
1983     { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i16,   2 },
1984     { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i32,   2 },
1985     { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i32,   2 },
1986 
1987     { ISD::ZERO_EXTEND, MVT::v2i16,  MVT::v2i8,   1 },
1988     { ISD::SIGN_EXTEND, MVT::v2i16,  MVT::v2i8,   1 },
1989     { ISD::ZERO_EXTEND, MVT::v2i32,  MVT::v2i8,   1 },
1990     { ISD::SIGN_EXTEND, MVT::v2i32,  MVT::v2i8,   1 },
1991     { ISD::ZERO_EXTEND, MVT::v2i64,  MVT::v2i8,   1 },
1992     { ISD::SIGN_EXTEND, MVT::v2i64,  MVT::v2i8,   1 },
1993     { ISD::ZERO_EXTEND, MVT::v4i16,  MVT::v4i8,   1 },
1994     { ISD::SIGN_EXTEND, MVT::v4i16,  MVT::v4i8,   1 },
1995     { ISD::ZERO_EXTEND, MVT::v4i32,  MVT::v4i8,   1 },
1996     { ISD::SIGN_EXTEND, MVT::v4i32,  MVT::v4i8,   1 },
1997     { ISD::ZERO_EXTEND, MVT::v8i16,  MVT::v8i8,   1 },
1998     { ISD::SIGN_EXTEND, MVT::v8i16,  MVT::v8i8,   1 },
1999     { ISD::ZERO_EXTEND, MVT::v8i32,  MVT::v8i8,   2 },
2000     { ISD::SIGN_EXTEND, MVT::v8i32,  MVT::v8i8,   2 },
2001     { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i8,  2 },
2002     { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i8,  2 },
2003     { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i8,  4 },
2004     { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i8,  4 },
2005     { ISD::ZERO_EXTEND, MVT::v2i32,  MVT::v2i16,  1 },
2006     { ISD::SIGN_EXTEND, MVT::v2i32,  MVT::v2i16,  1 },
2007     { ISD::ZERO_EXTEND, MVT::v2i64,  MVT::v2i16,  1 },
2008     { ISD::SIGN_EXTEND, MVT::v2i64,  MVT::v2i16,  1 },
2009     { ISD::ZERO_EXTEND, MVT::v4i32,  MVT::v4i16,  1 },
2010     { ISD::SIGN_EXTEND, MVT::v4i32,  MVT::v4i16,  1 },
2011     { ISD::ZERO_EXTEND, MVT::v8i32,  MVT::v8i16,  2 },
2012     { ISD::SIGN_EXTEND, MVT::v8i32,  MVT::v8i16,  2 },
2013     { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i16, 4 },
2014     { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i16, 4 },
2015     { ISD::ZERO_EXTEND, MVT::v2i64,  MVT::v2i32,  1 },
2016     { ISD::SIGN_EXTEND, MVT::v2i64,  MVT::v2i32,  1 },
2017 
2018     // These truncates end up widening elements.
2019     { ISD::TRUNCATE,    MVT::v2i1,   MVT::v2i8,   1 }, // PMOVXZBQ
2020     { ISD::TRUNCATE,    MVT::v2i1,   MVT::v2i16,  1 }, // PMOVXZWQ
2021     { ISD::TRUNCATE,    MVT::v4i1,   MVT::v4i8,   1 }, // PMOVXZBD
2022 
2023     { ISD::TRUNCATE,    MVT::v2i8,   MVT::v2i16,  1 },
2024     { ISD::TRUNCATE,    MVT::v4i8,   MVT::v4i16,  1 },
2025     { ISD::TRUNCATE,    MVT::v8i8,   MVT::v8i16,  1 },
2026     { ISD::TRUNCATE,    MVT::v4i8,   MVT::v4i32,  1 },
2027     { ISD::TRUNCATE,    MVT::v4i16,  MVT::v4i32,  1 },
2028     { ISD::TRUNCATE,    MVT::v8i8,   MVT::v8i32,  3 },
2029     { ISD::TRUNCATE,    MVT::v8i16,  MVT::v8i32,  3 },
2030     { ISD::TRUNCATE,    MVT::v16i16, MVT::v16i32, 6 },
2031     { ISD::TRUNCATE,    MVT::v2i8,   MVT::v2i64,  1 }, // PSHUFB
2032 
2033     { ISD::UINT_TO_FP,  MVT::f32,    MVT::i64,    4 },
2034     { ISD::UINT_TO_FP,  MVT::f64,    MVT::i64,    4 },
2035 
2036     { ISD::FP_TO_SINT,  MVT::v2i8,   MVT::v2f32,  3 },
2037     { ISD::FP_TO_SINT,  MVT::v2i8,   MVT::v2f64,  3 },
2038 
2039     { ISD::FP_TO_UINT,  MVT::v2i8,   MVT::v2f32,  3 },
2040     { ISD::FP_TO_UINT,  MVT::v2i8,   MVT::v2f64,  3 },
2041     { ISD::FP_TO_UINT,  MVT::v4i16,  MVT::v4f32,  2 },
2042   };
2043 
2044   static const TypeConversionCostTblEntry SSE2ConversionTbl[] = {
2045     // These are somewhat magic numbers justified by looking at the output of
2046     // Intel's IACA, running some kernels and making sure when we take
2047     // legalization into account the throughput will be overestimated.
2048     { ISD::SINT_TO_FP, MVT::v4f32, MVT::v16i8, 8 },
2049     { ISD::SINT_TO_FP, MVT::v2f64, MVT::v16i8, 16*10 },
2050     { ISD::SINT_TO_FP, MVT::v4f32, MVT::v8i16, 15 },
2051     { ISD::SINT_TO_FP, MVT::v2f64, MVT::v8i16, 8*10 },
2052     { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i32, 5 },
2053     { ISD::SINT_TO_FP, MVT::v2f64, MVT::v4i32, 2*10 },
2054     { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i32, 2*10 },
2055     { ISD::SINT_TO_FP, MVT::v4f32, MVT::v2i64, 15 },
2056     { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i64, 2*10 },
2057 
2058     { ISD::UINT_TO_FP, MVT::v2f64, MVT::v16i8, 16*10 },
2059     { ISD::UINT_TO_FP, MVT::v4f32, MVT::v16i8, 8 },
2060     { ISD::UINT_TO_FP, MVT::v4f32, MVT::v8i16, 15 },
2061     { ISD::UINT_TO_FP, MVT::v2f64, MVT::v8i16, 8*10 },
2062     { ISD::UINT_TO_FP, MVT::v2f64, MVT::v4i32, 4*10 },
2063     { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i32, 5 },
2064     { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i64, 6 },
2065     { ISD::UINT_TO_FP, MVT::v4f32, MVT::v2i64, 15 },
2066 
2067     { ISD::FP_TO_SINT,  MVT::v2i8,   MVT::v2f32,  4 },
2068     { ISD::FP_TO_SINT,  MVT::v2i16,  MVT::v2f32,  2 },
2069     { ISD::FP_TO_SINT,  MVT::v4i8,   MVT::v4f32,  3 },
2070     { ISD::FP_TO_SINT,  MVT::v4i16,  MVT::v4f32,  2 },
2071     { ISD::FP_TO_SINT,  MVT::v2i16,  MVT::v2f64,  2 },
2072     { ISD::FP_TO_SINT,  MVT::v2i8,   MVT::v2f64,  4 },
2073 
2074     { ISD::FP_TO_SINT,  MVT::v2i32,  MVT::v2f64,  1 },
2075 
2076     { ISD::UINT_TO_FP,  MVT::f32,    MVT::i64,    6 },
2077     { ISD::UINT_TO_FP,  MVT::f64,    MVT::i64,    6 },
2078 
2079     { ISD::FP_TO_UINT,  MVT::i64,    MVT::f32,    4 },
2080     { ISD::FP_TO_UINT,  MVT::i64,    MVT::f64,    4 },
2081     { ISD::FP_TO_UINT,  MVT::v2i8,   MVT::v2f32,  4 },
2082     { ISD::FP_TO_UINT,  MVT::v2i8,   MVT::v2f64,  4 },
2083     { ISD::FP_TO_UINT,  MVT::v4i8,   MVT::v4f32,  3 },
2084     { ISD::FP_TO_UINT,  MVT::v2i16,  MVT::v2f32,  2 },
2085     { ISD::FP_TO_UINT,  MVT::v2i16,  MVT::v2f64,  2 },
2086     { ISD::FP_TO_UINT,  MVT::v4i16,  MVT::v4f32,  4 },
2087     { ISD::FP_TO_UINT,  MVT::v4i32,  MVT::v4f32,  8 },
2088 
2089     { ISD::ZERO_EXTEND, MVT::v4i16,  MVT::v4i8,   1 },
2090     { ISD::SIGN_EXTEND, MVT::v4i16,  MVT::v4i8,   6 },
2091     { ISD::ZERO_EXTEND, MVT::v4i32,  MVT::v4i8,   2 },
2092     { ISD::SIGN_EXTEND, MVT::v4i32,  MVT::v4i8,   3 },
2093     { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v4i8,   4 },
2094     { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v4i8,   8 },
2095     { ISD::ZERO_EXTEND, MVT::v8i16,  MVT::v8i8,   1 },
2096     { ISD::SIGN_EXTEND, MVT::v8i16,  MVT::v8i8,   2 },
2097     { ISD::ZERO_EXTEND, MVT::v8i32,  MVT::v8i8,   6 },
2098     { ISD::SIGN_EXTEND, MVT::v8i32,  MVT::v8i8,   6 },
2099     { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i8,  3 },
2100     { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i8,  4 },
2101     { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i8,  9 },
2102     { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i8,  12 },
2103     { ISD::ZERO_EXTEND, MVT::v4i32,  MVT::v4i16,  1 },
2104     { ISD::SIGN_EXTEND, MVT::v4i32,  MVT::v4i16,  2 },
2105     { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v4i16,  3 },
2106     { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v4i16,  10 },
2107     { ISD::ZERO_EXTEND, MVT::v8i32,  MVT::v8i16,  3 },
2108     { ISD::SIGN_EXTEND, MVT::v8i32,  MVT::v8i16,  4 },
2109     { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i16, 6 },
2110     { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i16, 8 },
2111     { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v4i32,  3 },
2112     { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v4i32,  5 },
2113 
2114     // These truncates are really widening elements.
2115     { ISD::TRUNCATE,    MVT::v2i1,   MVT::v2i32,  1 }, // PSHUFD
2116     { ISD::TRUNCATE,    MVT::v2i1,   MVT::v2i16,  2 }, // PUNPCKLWD+DQ
2117     { ISD::TRUNCATE,    MVT::v2i1,   MVT::v2i8,   3 }, // PUNPCKLBW+WD+PSHUFD
2118     { ISD::TRUNCATE,    MVT::v4i1,   MVT::v4i16,  1 }, // PUNPCKLWD
2119     { ISD::TRUNCATE,    MVT::v4i1,   MVT::v4i8,   2 }, // PUNPCKLBW+WD
2120     { ISD::TRUNCATE,    MVT::v8i1,   MVT::v8i8,   1 }, // PUNPCKLBW
2121 
2122     { ISD::TRUNCATE,    MVT::v2i8,   MVT::v2i16,  2 }, // PAND+PACKUSWB
2123     { ISD::TRUNCATE,    MVT::v4i8,   MVT::v4i16,  2 }, // PAND+PACKUSWB
2124     { ISD::TRUNCATE,    MVT::v8i8,   MVT::v8i16,  2 }, // PAND+PACKUSWB
2125     { ISD::TRUNCATE,    MVT::v16i8,  MVT::v16i16, 3 },
2126     { ISD::TRUNCATE,    MVT::v2i8,   MVT::v2i32,  3 }, // PAND+2*PACKUSWB
2127     { ISD::TRUNCATE,    MVT::v2i16,  MVT::v2i32,  1 },
2128     { ISD::TRUNCATE,    MVT::v4i8,   MVT::v4i32,  3 },
2129     { ISD::TRUNCATE,    MVT::v4i16,  MVT::v4i32,  3 },
2130     { ISD::TRUNCATE,    MVT::v8i8,   MVT::v8i32,  4 },
2131     { ISD::TRUNCATE,    MVT::v16i8,  MVT::v16i32, 7 },
2132     { ISD::TRUNCATE,    MVT::v8i16,  MVT::v8i32,  5 },
2133     { ISD::TRUNCATE,    MVT::v16i16, MVT::v16i32, 10 },
2134     { ISD::TRUNCATE,    MVT::v2i8,   MVT::v2i64,  4 }, // PAND+3*PACKUSWB
2135     { ISD::TRUNCATE,    MVT::v2i16,  MVT::v2i64,  2 }, // PSHUFD+PSHUFLW
2136     { ISD::TRUNCATE,    MVT::v2i32,  MVT::v2i64,  1 }, // PSHUFD
2137   };
2138 
2139   std::pair<InstructionCost, MVT> LTSrc = TLI->getTypeLegalizationCost(DL, Src);
2140   std::pair<InstructionCost, MVT> LTDest =
2141       TLI->getTypeLegalizationCost(DL, Dst);
2142 
2143   if (ST->hasSSE41() && !ST->hasAVX())
2144     if (const auto *Entry = ConvertCostTableLookup(SSE41ConversionTbl, ISD,
2145                                                    LTDest.second, LTSrc.second))
2146       return AdjustCost(LTSrc.first * Entry->Cost);
2147 
2148   if (ST->hasSSE2() && !ST->hasAVX())
2149     if (const auto *Entry = ConvertCostTableLookup(SSE2ConversionTbl, ISD,
2150                                                    LTDest.second, LTSrc.second))
2151       return AdjustCost(LTSrc.first * Entry->Cost);
2152 
2153   EVT SrcTy = TLI->getValueType(DL, Src);
2154   EVT DstTy = TLI->getValueType(DL, Dst);
2155 
2156   // The function getSimpleVT only handles simple value types.
2157   if (!SrcTy.isSimple() || !DstTy.isSimple())
2158     return AdjustCost(BaseT::getCastInstrCost(Opcode, Dst, Src, CCH, CostKind));
2159 
2160   MVT SimpleSrcTy = SrcTy.getSimpleVT();
2161   MVT SimpleDstTy = DstTy.getSimpleVT();
2162 
2163   if (ST->useAVX512Regs()) {
2164     if (ST->hasBWI())
2165       if (const auto *Entry = ConvertCostTableLookup(AVX512BWConversionTbl, ISD,
2166                                                      SimpleDstTy, SimpleSrcTy))
2167         return AdjustCost(Entry->Cost);
2168 
2169     if (ST->hasDQI())
2170       if (const auto *Entry = ConvertCostTableLookup(AVX512DQConversionTbl, ISD,
2171                                                      SimpleDstTy, SimpleSrcTy))
2172         return AdjustCost(Entry->Cost);
2173 
2174     if (ST->hasAVX512())
2175       if (const auto *Entry = ConvertCostTableLookup(AVX512FConversionTbl, ISD,
2176                                                      SimpleDstTy, SimpleSrcTy))
2177         return AdjustCost(Entry->Cost);
2178   }
2179 
2180   if (ST->hasBWI())
2181     if (const auto *Entry = ConvertCostTableLookup(AVX512BWVLConversionTbl, ISD,
2182                                                    SimpleDstTy, SimpleSrcTy))
2183       return AdjustCost(Entry->Cost);
2184 
2185   if (ST->hasDQI())
2186     if (const auto *Entry = ConvertCostTableLookup(AVX512DQVLConversionTbl, ISD,
2187                                                    SimpleDstTy, SimpleSrcTy))
2188       return AdjustCost(Entry->Cost);
2189 
2190   if (ST->hasAVX512())
2191     if (const auto *Entry = ConvertCostTableLookup(AVX512VLConversionTbl, ISD,
2192                                                    SimpleDstTy, SimpleSrcTy))
2193       return AdjustCost(Entry->Cost);
2194 
2195   if (ST->hasAVX2()) {
2196     if (const auto *Entry = ConvertCostTableLookup(AVX2ConversionTbl, ISD,
2197                                                    SimpleDstTy, SimpleSrcTy))
2198       return AdjustCost(Entry->Cost);
2199   }
2200 
2201   if (ST->hasAVX()) {
2202     if (const auto *Entry = ConvertCostTableLookup(AVXConversionTbl, ISD,
2203                                                    SimpleDstTy, SimpleSrcTy))
2204       return AdjustCost(Entry->Cost);
2205   }
2206 
2207   if (ST->hasSSE41()) {
2208     if (const auto *Entry = ConvertCostTableLookup(SSE41ConversionTbl, ISD,
2209                                                    SimpleDstTy, SimpleSrcTy))
2210       return AdjustCost(Entry->Cost);
2211   }
2212 
2213   if (ST->hasSSE2()) {
2214     if (const auto *Entry = ConvertCostTableLookup(SSE2ConversionTbl, ISD,
2215                                                    SimpleDstTy, SimpleSrcTy))
2216       return AdjustCost(Entry->Cost);
2217   }
2218 
2219   return AdjustCost(
2220       BaseT::getCastInstrCost(Opcode, Dst, Src, CCH, CostKind, I));
2221 }
2222 
2223 InstructionCost X86TTIImpl::getCmpSelInstrCost(unsigned Opcode, Type *ValTy,
2224                                                Type *CondTy,
2225                                                CmpInst::Predicate VecPred,
2226                                                TTI::TargetCostKind CostKind,
2227                                                const Instruction *I) {
2228   // TODO: Handle other cost kinds.
2229   if (CostKind != TTI::TCK_RecipThroughput)
2230     return BaseT::getCmpSelInstrCost(Opcode, ValTy, CondTy, VecPred, CostKind,
2231                                      I);
2232 
2233   // Legalize the type.
2234   std::pair<InstructionCost, MVT> LT = TLI->getTypeLegalizationCost(DL, ValTy);
2235 
2236   MVT MTy = LT.second;
2237 
2238   int ISD = TLI->InstructionOpcodeToISD(Opcode);
2239   assert(ISD && "Invalid opcode");
2240 
2241   unsigned ExtraCost = 0;
2242   if (I && (Opcode == Instruction::ICmp || Opcode == Instruction::FCmp)) {
2243     // Some vector comparison predicates cost extra instructions.
2244     if (MTy.isVector() &&
2245         !((ST->hasXOP() && (!ST->hasAVX2() || MTy.is128BitVector())) ||
2246           (ST->hasAVX512() && 32 <= MTy.getScalarSizeInBits()) ||
2247           ST->hasBWI())) {
2248       switch (cast<CmpInst>(I)->getPredicate()) {
2249       case CmpInst::Predicate::ICMP_NE:
2250         // xor(cmpeq(x,y),-1)
2251         ExtraCost = 1;
2252         break;
2253       case CmpInst::Predicate::ICMP_SGE:
2254       case CmpInst::Predicate::ICMP_SLE:
2255         // xor(cmpgt(x,y),-1)
2256         ExtraCost = 1;
2257         break;
2258       case CmpInst::Predicate::ICMP_ULT:
2259       case CmpInst::Predicate::ICMP_UGT:
2260         // cmpgt(xor(x,signbit),xor(y,signbit))
2261         // xor(cmpeq(pmaxu(x,y),x),-1)
2262         ExtraCost = 2;
2263         break;
2264       case CmpInst::Predicate::ICMP_ULE:
2265       case CmpInst::Predicate::ICMP_UGE:
2266         if ((ST->hasSSE41() && MTy.getScalarSizeInBits() == 32) ||
2267             (ST->hasSSE2() && MTy.getScalarSizeInBits() < 32)) {
2268           // cmpeq(psubus(x,y),0)
2269           // cmpeq(pminu(x,y),x)
2270           ExtraCost = 1;
2271         } else {
2272           // xor(cmpgt(xor(x,signbit),xor(y,signbit)),-1)
2273           ExtraCost = 3;
2274         }
2275         break;
2276       default:
2277         break;
2278       }
2279     }
2280   }
2281 
2282   static const CostTblEntry SLMCostTbl[] = {
2283     // slm pcmpeq/pcmpgt throughput is 2
2284     { ISD::SETCC,   MVT::v2i64,   2 },
2285   };
2286 
2287   static const CostTblEntry AVX512BWCostTbl[] = {
2288     { ISD::SETCC,   MVT::v32i16,  1 },
2289     { ISD::SETCC,   MVT::v64i8,   1 },
2290 
2291     { ISD::SELECT,  MVT::v32i16,  1 },
2292     { ISD::SELECT,  MVT::v64i8,   1 },
2293   };
2294 
2295   static const CostTblEntry AVX512CostTbl[] = {
2296     { ISD::SETCC,   MVT::v8i64,   1 },
2297     { ISD::SETCC,   MVT::v16i32,  1 },
2298     { ISD::SETCC,   MVT::v8f64,   1 },
2299     { ISD::SETCC,   MVT::v16f32,  1 },
2300 
2301     { ISD::SELECT,  MVT::v8i64,   1 },
2302     { ISD::SELECT,  MVT::v16i32,  1 },
2303     { ISD::SELECT,  MVT::v8f64,   1 },
2304     { ISD::SELECT,  MVT::v16f32,  1 },
2305 
2306     { ISD::SETCC,   MVT::v32i16,  2 }, // FIXME: should probably be 4
2307     { ISD::SETCC,   MVT::v64i8,   2 }, // FIXME: should probably be 4
2308 
2309     { ISD::SELECT,  MVT::v32i16,  2 }, // FIXME: should be 3
2310     { ISD::SELECT,  MVT::v64i8,   2 }, // FIXME: should be 3
2311   };
2312 
2313   static const CostTblEntry AVX2CostTbl[] = {
2314     { ISD::SETCC,   MVT::v4i64,   1 },
2315     { ISD::SETCC,   MVT::v8i32,   1 },
2316     { ISD::SETCC,   MVT::v16i16,  1 },
2317     { ISD::SETCC,   MVT::v32i8,   1 },
2318 
2319     { ISD::SELECT,  MVT::v4i64,   1 }, // pblendvb
2320     { ISD::SELECT,  MVT::v8i32,   1 }, // pblendvb
2321     { ISD::SELECT,  MVT::v16i16,  1 }, // pblendvb
2322     { ISD::SELECT,  MVT::v32i8,   1 }, // pblendvb
2323   };
2324 
2325   static const CostTblEntry AVX1CostTbl[] = {
2326     { ISD::SETCC,   MVT::v4f64,   1 },
2327     { ISD::SETCC,   MVT::v8f32,   1 },
2328     // AVX1 does not support 8-wide integer compare.
2329     { ISD::SETCC,   MVT::v4i64,   4 },
2330     { ISD::SETCC,   MVT::v8i32,   4 },
2331     { ISD::SETCC,   MVT::v16i16,  4 },
2332     { ISD::SETCC,   MVT::v32i8,   4 },
2333 
2334     { ISD::SELECT,  MVT::v4f64,   1 }, // vblendvpd
2335     { ISD::SELECT,  MVT::v8f32,   1 }, // vblendvps
2336     { ISD::SELECT,  MVT::v4i64,   1 }, // vblendvpd
2337     { ISD::SELECT,  MVT::v8i32,   1 }, // vblendvps
2338     { ISD::SELECT,  MVT::v16i16,  3 }, // vandps + vandnps + vorps
2339     { ISD::SELECT,  MVT::v32i8,   3 }, // vandps + vandnps + vorps
2340   };
2341 
2342   static const CostTblEntry SSE42CostTbl[] = {
2343     { ISD::SETCC,   MVT::v2f64,   1 },
2344     { ISD::SETCC,   MVT::v4f32,   1 },
2345     { ISD::SETCC,   MVT::v2i64,   1 },
2346   };
2347 
2348   static const CostTblEntry SSE41CostTbl[] = {
2349     { ISD::SELECT,  MVT::v2f64,   1 }, // blendvpd
2350     { ISD::SELECT,  MVT::v4f32,   1 }, // blendvps
2351     { ISD::SELECT,  MVT::v2i64,   1 }, // pblendvb
2352     { ISD::SELECT,  MVT::v4i32,   1 }, // pblendvb
2353     { ISD::SELECT,  MVT::v8i16,   1 }, // pblendvb
2354     { ISD::SELECT,  MVT::v16i8,   1 }, // pblendvb
2355   };
2356 
2357   static const CostTblEntry SSE2CostTbl[] = {
2358     { ISD::SETCC,   MVT::v2f64,   2 },
2359     { ISD::SETCC,   MVT::f64,     1 },
2360     { ISD::SETCC,   MVT::v2i64,   8 },
2361     { ISD::SETCC,   MVT::v4i32,   1 },
2362     { ISD::SETCC,   MVT::v8i16,   1 },
2363     { ISD::SETCC,   MVT::v16i8,   1 },
2364 
2365     { ISD::SELECT,  MVT::v2f64,   3 }, // andpd + andnpd + orpd
2366     { ISD::SELECT,  MVT::v2i64,   3 }, // pand + pandn + por
2367     { ISD::SELECT,  MVT::v4i32,   3 }, // pand + pandn + por
2368     { ISD::SELECT,  MVT::v8i16,   3 }, // pand + pandn + por
2369     { ISD::SELECT,  MVT::v16i8,   3 }, // pand + pandn + por
2370   };
2371 
2372   static const CostTblEntry SSE1CostTbl[] = {
2373     { ISD::SETCC,   MVT::v4f32,   2 },
2374     { ISD::SETCC,   MVT::f32,     1 },
2375 
2376     { ISD::SELECT,  MVT::v4f32,   3 }, // andps + andnps + orps
2377   };
2378 
2379   if (ST->isSLM())
2380     if (const auto *Entry = CostTableLookup(SLMCostTbl, ISD, MTy))
2381       return LT.first * (ExtraCost + Entry->Cost);
2382 
2383   if (ST->hasBWI())
2384     if (const auto *Entry = CostTableLookup(AVX512BWCostTbl, ISD, MTy))
2385       return LT.first * (ExtraCost + Entry->Cost);
2386 
2387   if (ST->hasAVX512())
2388     if (const auto *Entry = CostTableLookup(AVX512CostTbl, ISD, MTy))
2389       return LT.first * (ExtraCost + Entry->Cost);
2390 
2391   if (ST->hasAVX2())
2392     if (const auto *Entry = CostTableLookup(AVX2CostTbl, ISD, MTy))
2393       return LT.first * (ExtraCost + Entry->Cost);
2394 
2395   if (ST->hasAVX())
2396     if (const auto *Entry = CostTableLookup(AVX1CostTbl, ISD, MTy))
2397       return LT.first * (ExtraCost + Entry->Cost);
2398 
2399   if (ST->hasSSE42())
2400     if (const auto *Entry = CostTableLookup(SSE42CostTbl, ISD, MTy))
2401       return LT.first * (ExtraCost + Entry->Cost);
2402 
2403   if (ST->hasSSE41())
2404     if (const auto *Entry = CostTableLookup(SSE41CostTbl, ISD, MTy))
2405       return LT.first * (ExtraCost + Entry->Cost);
2406 
2407   if (ST->hasSSE2())
2408     if (const auto *Entry = CostTableLookup(SSE2CostTbl, ISD, MTy))
2409       return LT.first * (ExtraCost + Entry->Cost);
2410 
2411   if (ST->hasSSE1())
2412     if (const auto *Entry = CostTableLookup(SSE1CostTbl, ISD, MTy))
2413       return LT.first * (ExtraCost + Entry->Cost);
2414 
2415   return BaseT::getCmpSelInstrCost(Opcode, ValTy, CondTy, VecPred, CostKind, I);
2416 }
2417 
2418 unsigned X86TTIImpl::getAtomicMemIntrinsicMaxElementSize() const { return 16; }
2419 
2420 InstructionCost
2421 X86TTIImpl::getTypeBasedIntrinsicInstrCost(const IntrinsicCostAttributes &ICA,
2422                                            TTI::TargetCostKind CostKind) {
2423 
2424   // Costs should match the codegen from:
2425   // BITREVERSE: llvm\test\CodeGen\X86\vector-bitreverse.ll
2426   // BSWAP: llvm\test\CodeGen\X86\bswap-vector.ll
2427   // CTLZ: llvm\test\CodeGen\X86\vector-lzcnt-*.ll
2428   // CTPOP: llvm\test\CodeGen\X86\vector-popcnt-*.ll
2429   // CTTZ: llvm\test\CodeGen\X86\vector-tzcnt-*.ll
2430 
2431   // TODO: Overflow intrinsics (*ADDO, *SUBO, *MULO) with vector types are not
2432   //       specialized in these tables yet.
2433   static const CostTblEntry AVX512CDCostTbl[] = {
2434     { ISD::CTLZ,       MVT::v8i64,   1 },
2435     { ISD::CTLZ,       MVT::v16i32,  1 },
2436     { ISD::CTLZ,       MVT::v32i16,  8 },
2437     { ISD::CTLZ,       MVT::v64i8,  20 },
2438     { ISD::CTLZ,       MVT::v4i64,   1 },
2439     { ISD::CTLZ,       MVT::v8i32,   1 },
2440     { ISD::CTLZ,       MVT::v16i16,  4 },
2441     { ISD::CTLZ,       MVT::v32i8,  10 },
2442     { ISD::CTLZ,       MVT::v2i64,   1 },
2443     { ISD::CTLZ,       MVT::v4i32,   1 },
2444     { ISD::CTLZ,       MVT::v8i16,   4 },
2445     { ISD::CTLZ,       MVT::v16i8,   4 },
2446   };
2447   static const CostTblEntry AVX512BWCostTbl[] = {
2448     { ISD::ABS,        MVT::v32i16,  1 },
2449     { ISD::ABS,        MVT::v64i8,   1 },
2450     { ISD::BITREVERSE, MVT::v8i64,   5 },
2451     { ISD::BITREVERSE, MVT::v16i32,  5 },
2452     { ISD::BITREVERSE, MVT::v32i16,  5 },
2453     { ISD::BITREVERSE, MVT::v64i8,   5 },
2454     { ISD::BSWAP,      MVT::v8i64,   1 },
2455     { ISD::BSWAP,      MVT::v16i32,  1 },
2456     { ISD::BSWAP,      MVT::v32i16,  1 },
2457     { ISD::CTLZ,       MVT::v8i64,  23 },
2458     { ISD::CTLZ,       MVT::v16i32, 22 },
2459     { ISD::CTLZ,       MVT::v32i16, 18 },
2460     { ISD::CTLZ,       MVT::v64i8,  17 },
2461     { ISD::CTPOP,      MVT::v8i64,   7 },
2462     { ISD::CTPOP,      MVT::v16i32, 11 },
2463     { ISD::CTPOP,      MVT::v32i16,  9 },
2464     { ISD::CTPOP,      MVT::v64i8,   6 },
2465     { ISD::CTTZ,       MVT::v8i64,  10 },
2466     { ISD::CTTZ,       MVT::v16i32, 14 },
2467     { ISD::CTTZ,       MVT::v32i16, 12 },
2468     { ISD::CTTZ,       MVT::v64i8,   9 },
2469     { ISD::SADDSAT,    MVT::v32i16,  1 },
2470     { ISD::SADDSAT,    MVT::v64i8,   1 },
2471     { ISD::SMAX,       MVT::v32i16,  1 },
2472     { ISD::SMAX,       MVT::v64i8,   1 },
2473     { ISD::SMIN,       MVT::v32i16,  1 },
2474     { ISD::SMIN,       MVT::v64i8,   1 },
2475     { ISD::SSUBSAT,    MVT::v32i16,  1 },
2476     { ISD::SSUBSAT,    MVT::v64i8,   1 },
2477     { ISD::UADDSAT,    MVT::v32i16,  1 },
2478     { ISD::UADDSAT,    MVT::v64i8,   1 },
2479     { ISD::UMAX,       MVT::v32i16,  1 },
2480     { ISD::UMAX,       MVT::v64i8,   1 },
2481     { ISD::UMIN,       MVT::v32i16,  1 },
2482     { ISD::UMIN,       MVT::v64i8,   1 },
2483     { ISD::USUBSAT,    MVT::v32i16,  1 },
2484     { ISD::USUBSAT,    MVT::v64i8,   1 },
2485   };
2486   static const CostTblEntry AVX512CostTbl[] = {
2487     { ISD::ABS,        MVT::v8i64,   1 },
2488     { ISD::ABS,        MVT::v16i32,  1 },
2489     { ISD::ABS,        MVT::v32i16,  2 }, // FIXME: include split
2490     { ISD::ABS,        MVT::v64i8,   2 }, // FIXME: include split
2491     { ISD::ABS,        MVT::v4i64,   1 },
2492     { ISD::ABS,        MVT::v2i64,   1 },
2493     { ISD::BITREVERSE, MVT::v8i64,  36 },
2494     { ISD::BITREVERSE, MVT::v16i32, 24 },
2495     { ISD::BITREVERSE, MVT::v32i16, 10 },
2496     { ISD::BITREVERSE, MVT::v64i8,  10 },
2497     { ISD::BSWAP,      MVT::v8i64,   4 },
2498     { ISD::BSWAP,      MVT::v16i32,  4 },
2499     { ISD::BSWAP,      MVT::v32i16,  4 },
2500     { ISD::CTLZ,       MVT::v8i64,  29 },
2501     { ISD::CTLZ,       MVT::v16i32, 35 },
2502     { ISD::CTLZ,       MVT::v32i16, 28 },
2503     { ISD::CTLZ,       MVT::v64i8,  18 },
2504     { ISD::CTPOP,      MVT::v8i64,  16 },
2505     { ISD::CTPOP,      MVT::v16i32, 24 },
2506     { ISD::CTPOP,      MVT::v32i16, 18 },
2507     { ISD::CTPOP,      MVT::v64i8,  12 },
2508     { ISD::CTTZ,       MVT::v8i64,  20 },
2509     { ISD::CTTZ,       MVT::v16i32, 28 },
2510     { ISD::CTTZ,       MVT::v32i16, 24 },
2511     { ISD::CTTZ,       MVT::v64i8,  18 },
2512     { ISD::SMAX,       MVT::v8i64,   1 },
2513     { ISD::SMAX,       MVT::v16i32,  1 },
2514     { ISD::SMAX,       MVT::v32i16,  2 }, // FIXME: include split
2515     { ISD::SMAX,       MVT::v64i8,   2 }, // FIXME: include split
2516     { ISD::SMAX,       MVT::v4i64,   1 },
2517     { ISD::SMAX,       MVT::v2i64,   1 },
2518     { ISD::SMIN,       MVT::v8i64,   1 },
2519     { ISD::SMIN,       MVT::v16i32,  1 },
2520     { ISD::SMIN,       MVT::v32i16,  2 }, // FIXME: include split
2521     { ISD::SMIN,       MVT::v64i8,   2 }, // FIXME: include split
2522     { ISD::SMIN,       MVT::v4i64,   1 },
2523     { ISD::SMIN,       MVT::v2i64,   1 },
2524     { ISD::UMAX,       MVT::v8i64,   1 },
2525     { ISD::UMAX,       MVT::v16i32,  1 },
2526     { ISD::UMAX,       MVT::v32i16,  2 }, // FIXME: include split
2527     { ISD::UMAX,       MVT::v64i8,   2 }, // FIXME: include split
2528     { ISD::UMAX,       MVT::v4i64,   1 },
2529     { ISD::UMAX,       MVT::v2i64,   1 },
2530     { ISD::UMIN,       MVT::v8i64,   1 },
2531     { ISD::UMIN,       MVT::v16i32,  1 },
2532     { ISD::UMIN,       MVT::v32i16,  2 }, // FIXME: include split
2533     { ISD::UMIN,       MVT::v64i8,   2 }, // FIXME: include split
2534     { ISD::UMIN,       MVT::v4i64,   1 },
2535     { ISD::UMIN,       MVT::v2i64,   1 },
2536     { ISD::USUBSAT,    MVT::v16i32,  2 }, // pmaxud + psubd
2537     { ISD::USUBSAT,    MVT::v2i64,   2 }, // pmaxuq + psubq
2538     { ISD::USUBSAT,    MVT::v4i64,   2 }, // pmaxuq + psubq
2539     { ISD::USUBSAT,    MVT::v8i64,   2 }, // pmaxuq + psubq
2540     { ISD::UADDSAT,    MVT::v16i32,  3 }, // not + pminud + paddd
2541     { ISD::UADDSAT,    MVT::v2i64,   3 }, // not + pminuq + paddq
2542     { ISD::UADDSAT,    MVT::v4i64,   3 }, // not + pminuq + paddq
2543     { ISD::UADDSAT,    MVT::v8i64,   3 }, // not + pminuq + paddq
2544     { ISD::SADDSAT,    MVT::v32i16,  2 }, // FIXME: include split
2545     { ISD::SADDSAT,    MVT::v64i8,   2 }, // FIXME: include split
2546     { ISD::SSUBSAT,    MVT::v32i16,  2 }, // FIXME: include split
2547     { ISD::SSUBSAT,    MVT::v64i8,   2 }, // FIXME: include split
2548     { ISD::UADDSAT,    MVT::v32i16,  2 }, // FIXME: include split
2549     { ISD::UADDSAT,    MVT::v64i8,   2 }, // FIXME: include split
2550     { ISD::USUBSAT,    MVT::v32i16,  2 }, // FIXME: include split
2551     { ISD::USUBSAT,    MVT::v64i8,   2 }, // FIXME: include split
2552     { ISD::FMAXNUM,    MVT::f32,     2 },
2553     { ISD::FMAXNUM,    MVT::v4f32,   2 },
2554     { ISD::FMAXNUM,    MVT::v8f32,   2 },
2555     { ISD::FMAXNUM,    MVT::v16f32,  2 },
2556     { ISD::FMAXNUM,    MVT::f64,     2 },
2557     { ISD::FMAXNUM,    MVT::v2f64,   2 },
2558     { ISD::FMAXNUM,    MVT::v4f64,   2 },
2559     { ISD::FMAXNUM,    MVT::v8f64,   2 },
2560   };
2561   static const CostTblEntry XOPCostTbl[] = {
2562     { ISD::BITREVERSE, MVT::v4i64,   4 },
2563     { ISD::BITREVERSE, MVT::v8i32,   4 },
2564     { ISD::BITREVERSE, MVT::v16i16,  4 },
2565     { ISD::BITREVERSE, MVT::v32i8,   4 },
2566     { ISD::BITREVERSE, MVT::v2i64,   1 },
2567     { ISD::BITREVERSE, MVT::v4i32,   1 },
2568     { ISD::BITREVERSE, MVT::v8i16,   1 },
2569     { ISD::BITREVERSE, MVT::v16i8,   1 },
2570     { ISD::BITREVERSE, MVT::i64,     3 },
2571     { ISD::BITREVERSE, MVT::i32,     3 },
2572     { ISD::BITREVERSE, MVT::i16,     3 },
2573     { ISD::BITREVERSE, MVT::i8,      3 }
2574   };
2575   static const CostTblEntry AVX2CostTbl[] = {
2576     { ISD::ABS,        MVT::v4i64,   2 }, // VBLENDVPD(X,VPSUBQ(0,X),X)
2577     { ISD::ABS,        MVT::v8i32,   1 },
2578     { ISD::ABS,        MVT::v16i16,  1 },
2579     { ISD::ABS,        MVT::v32i8,   1 },
2580     { ISD::BITREVERSE, MVT::v4i64,   5 },
2581     { ISD::BITREVERSE, MVT::v8i32,   5 },
2582     { ISD::BITREVERSE, MVT::v16i16,  5 },
2583     { ISD::BITREVERSE, MVT::v32i8,   5 },
2584     { ISD::BSWAP,      MVT::v4i64,   1 },
2585     { ISD::BSWAP,      MVT::v8i32,   1 },
2586     { ISD::BSWAP,      MVT::v16i16,  1 },
2587     { ISD::CTLZ,       MVT::v4i64,  23 },
2588     { ISD::CTLZ,       MVT::v8i32,  18 },
2589     { ISD::CTLZ,       MVT::v16i16, 14 },
2590     { ISD::CTLZ,       MVT::v32i8,   9 },
2591     { ISD::CTPOP,      MVT::v4i64,   7 },
2592     { ISD::CTPOP,      MVT::v8i32,  11 },
2593     { ISD::CTPOP,      MVT::v16i16,  9 },
2594     { ISD::CTPOP,      MVT::v32i8,   6 },
2595     { ISD::CTTZ,       MVT::v4i64,  10 },
2596     { ISD::CTTZ,       MVT::v8i32,  14 },
2597     { ISD::CTTZ,       MVT::v16i16, 12 },
2598     { ISD::CTTZ,       MVT::v32i8,   9 },
2599     { ISD::SADDSAT,    MVT::v16i16,  1 },
2600     { ISD::SADDSAT,    MVT::v32i8,   1 },
2601     { ISD::SMAX,       MVT::v8i32,   1 },
2602     { ISD::SMAX,       MVT::v16i16,  1 },
2603     { ISD::SMAX,       MVT::v32i8,   1 },
2604     { ISD::SMIN,       MVT::v8i32,   1 },
2605     { ISD::SMIN,       MVT::v16i16,  1 },
2606     { ISD::SMIN,       MVT::v32i8,   1 },
2607     { ISD::SSUBSAT,    MVT::v16i16,  1 },
2608     { ISD::SSUBSAT,    MVT::v32i8,   1 },
2609     { ISD::UADDSAT,    MVT::v16i16,  1 },
2610     { ISD::UADDSAT,    MVT::v32i8,   1 },
2611     { ISD::UADDSAT,    MVT::v8i32,   3 }, // not + pminud + paddd
2612     { ISD::UMAX,       MVT::v8i32,   1 },
2613     { ISD::UMAX,       MVT::v16i16,  1 },
2614     { ISD::UMAX,       MVT::v32i8,   1 },
2615     { ISD::UMIN,       MVT::v8i32,   1 },
2616     { ISD::UMIN,       MVT::v16i16,  1 },
2617     { ISD::UMIN,       MVT::v32i8,   1 },
2618     { ISD::USUBSAT,    MVT::v16i16,  1 },
2619     { ISD::USUBSAT,    MVT::v32i8,   1 },
2620     { ISD::USUBSAT,    MVT::v8i32,   2 }, // pmaxud + psubd
2621     { ISD::FMAXNUM,    MVT::v8f32,   3 }, // MAXPS + CMPUNORDPS + BLENDVPS
2622     { ISD::FMAXNUM,    MVT::v4f64,   3 }, // MAXPD + CMPUNORDPD + BLENDVPD
2623     { ISD::FSQRT,      MVT::f32,     7 }, // Haswell from http://www.agner.org/
2624     { ISD::FSQRT,      MVT::v4f32,   7 }, // Haswell from http://www.agner.org/
2625     { ISD::FSQRT,      MVT::v8f32,  14 }, // Haswell from http://www.agner.org/
2626     { ISD::FSQRT,      MVT::f64,    14 }, // Haswell from http://www.agner.org/
2627     { ISD::FSQRT,      MVT::v2f64,  14 }, // Haswell from http://www.agner.org/
2628     { ISD::FSQRT,      MVT::v4f64,  28 }, // Haswell from http://www.agner.org/
2629   };
2630   static const CostTblEntry AVX1CostTbl[] = {
2631     { ISD::ABS,        MVT::v4i64,   5 }, // VBLENDVPD(X,VPSUBQ(0,X),X)
2632     { ISD::ABS,        MVT::v8i32,   3 },
2633     { ISD::ABS,        MVT::v16i16,  3 },
2634     { ISD::ABS,        MVT::v32i8,   3 },
2635     { ISD::BITREVERSE, MVT::v4i64,  12 }, // 2 x 128-bit Op + extract/insert
2636     { ISD::BITREVERSE, MVT::v8i32,  12 }, // 2 x 128-bit Op + extract/insert
2637     { ISD::BITREVERSE, MVT::v16i16, 12 }, // 2 x 128-bit Op + extract/insert
2638     { ISD::BITREVERSE, MVT::v32i8,  12 }, // 2 x 128-bit Op + extract/insert
2639     { ISD::BSWAP,      MVT::v4i64,   4 },
2640     { ISD::BSWAP,      MVT::v8i32,   4 },
2641     { ISD::BSWAP,      MVT::v16i16,  4 },
2642     { ISD::CTLZ,       MVT::v4i64,  48 }, // 2 x 128-bit Op + extract/insert
2643     { ISD::CTLZ,       MVT::v8i32,  38 }, // 2 x 128-bit Op + extract/insert
2644     { ISD::CTLZ,       MVT::v16i16, 30 }, // 2 x 128-bit Op + extract/insert
2645     { ISD::CTLZ,       MVT::v32i8,  20 }, // 2 x 128-bit Op + extract/insert
2646     { ISD::CTPOP,      MVT::v4i64,  16 }, // 2 x 128-bit Op + extract/insert
2647     { ISD::CTPOP,      MVT::v8i32,  24 }, // 2 x 128-bit Op + extract/insert
2648     { ISD::CTPOP,      MVT::v16i16, 20 }, // 2 x 128-bit Op + extract/insert
2649     { ISD::CTPOP,      MVT::v32i8,  14 }, // 2 x 128-bit Op + extract/insert
2650     { ISD::CTTZ,       MVT::v4i64,  22 }, // 2 x 128-bit Op + extract/insert
2651     { ISD::CTTZ,       MVT::v8i32,  30 }, // 2 x 128-bit Op + extract/insert
2652     { ISD::CTTZ,       MVT::v16i16, 26 }, // 2 x 128-bit Op + extract/insert
2653     { ISD::CTTZ,       MVT::v32i8,  20 }, // 2 x 128-bit Op + extract/insert
2654     { ISD::SADDSAT,    MVT::v16i16,  4 }, // 2 x 128-bit Op + extract/insert
2655     { ISD::SADDSAT,    MVT::v32i8,   4 }, // 2 x 128-bit Op + extract/insert
2656     { ISD::SMAX,       MVT::v8i32,   4 }, // 2 x 128-bit Op + extract/insert
2657     { ISD::SMAX,       MVT::v16i16,  4 }, // 2 x 128-bit Op + extract/insert
2658     { ISD::SMAX,       MVT::v32i8,   4 }, // 2 x 128-bit Op + extract/insert
2659     { ISD::SMIN,       MVT::v8i32,   4 }, // 2 x 128-bit Op + extract/insert
2660     { ISD::SMIN,       MVT::v16i16,  4 }, // 2 x 128-bit Op + extract/insert
2661     { ISD::SMIN,       MVT::v32i8,   4 }, // 2 x 128-bit Op + extract/insert
2662     { ISD::SSUBSAT,    MVT::v16i16,  4 }, // 2 x 128-bit Op + extract/insert
2663     { ISD::SSUBSAT,    MVT::v32i8,   4 }, // 2 x 128-bit Op + extract/insert
2664     { ISD::UADDSAT,    MVT::v16i16,  4 }, // 2 x 128-bit Op + extract/insert
2665     { ISD::UADDSAT,    MVT::v32i8,   4 }, // 2 x 128-bit Op + extract/insert
2666     { ISD::UADDSAT,    MVT::v8i32,   8 }, // 2 x 128-bit Op + extract/insert
2667     { ISD::UMAX,       MVT::v8i32,   4 }, // 2 x 128-bit Op + extract/insert
2668     { ISD::UMAX,       MVT::v16i16,  4 }, // 2 x 128-bit Op + extract/insert
2669     { ISD::UMAX,       MVT::v32i8,   4 }, // 2 x 128-bit Op + extract/insert
2670     { ISD::UMIN,       MVT::v8i32,   4 }, // 2 x 128-bit Op + extract/insert
2671     { ISD::UMIN,       MVT::v16i16,  4 }, // 2 x 128-bit Op + extract/insert
2672     { ISD::UMIN,       MVT::v32i8,   4 }, // 2 x 128-bit Op + extract/insert
2673     { ISD::USUBSAT,    MVT::v16i16,  4 }, // 2 x 128-bit Op + extract/insert
2674     { ISD::USUBSAT,    MVT::v32i8,   4 }, // 2 x 128-bit Op + extract/insert
2675     { ISD::USUBSAT,    MVT::v8i32,   6 }, // 2 x 128-bit Op + extract/insert
2676     { ISD::FMAXNUM,    MVT::f32,     3 }, // MAXSS + CMPUNORDSS + BLENDVPS
2677     { ISD::FMAXNUM,    MVT::v4f32,   3 }, // MAXPS + CMPUNORDPS + BLENDVPS
2678     { ISD::FMAXNUM,    MVT::v8f32,   5 }, // MAXPS + CMPUNORDPS + BLENDVPS + ?
2679     { ISD::FMAXNUM,    MVT::f64,     3 }, // MAXSD + CMPUNORDSD + BLENDVPD
2680     { ISD::FMAXNUM,    MVT::v2f64,   3 }, // MAXPD + CMPUNORDPD + BLENDVPD
2681     { ISD::FMAXNUM,    MVT::v4f64,   5 }, // MAXPD + CMPUNORDPD + BLENDVPD + ?
2682     { ISD::FSQRT,      MVT::f32,    14 }, // SNB from http://www.agner.org/
2683     { ISD::FSQRT,      MVT::v4f32,  14 }, // SNB from http://www.agner.org/
2684     { ISD::FSQRT,      MVT::v8f32,  28 }, // SNB from http://www.agner.org/
2685     { ISD::FSQRT,      MVT::f64,    21 }, // SNB from http://www.agner.org/
2686     { ISD::FSQRT,      MVT::v2f64,  21 }, // SNB from http://www.agner.org/
2687     { ISD::FSQRT,      MVT::v4f64,  43 }, // SNB from http://www.agner.org/
2688   };
2689   static const CostTblEntry GLMCostTbl[] = {
2690     { ISD::FSQRT, MVT::f32,   19 }, // sqrtss
2691     { ISD::FSQRT, MVT::v4f32, 37 }, // sqrtps
2692     { ISD::FSQRT, MVT::f64,   34 }, // sqrtsd
2693     { ISD::FSQRT, MVT::v2f64, 67 }, // sqrtpd
2694   };
2695   static const CostTblEntry SLMCostTbl[] = {
2696     { ISD::FSQRT, MVT::f32,   20 }, // sqrtss
2697     { ISD::FSQRT, MVT::v4f32, 40 }, // sqrtps
2698     { ISD::FSQRT, MVT::f64,   35 }, // sqrtsd
2699     { ISD::FSQRT, MVT::v2f64, 70 }, // sqrtpd
2700   };
2701   static const CostTblEntry SSE42CostTbl[] = {
2702     { ISD::USUBSAT,    MVT::v4i32,   2 }, // pmaxud + psubd
2703     { ISD::UADDSAT,    MVT::v4i32,   3 }, // not + pminud + paddd
2704     { ISD::FSQRT,      MVT::f32,    18 }, // Nehalem from http://www.agner.org/
2705     { ISD::FSQRT,      MVT::v4f32,  18 }, // Nehalem from http://www.agner.org/
2706   };
2707   static const CostTblEntry SSE41CostTbl[] = {
2708     { ISD::ABS,        MVT::v2i64,   2 }, // BLENDVPD(X,PSUBQ(0,X),X)
2709     { ISD::SMAX,       MVT::v4i32,   1 },
2710     { ISD::SMAX,       MVT::v16i8,   1 },
2711     { ISD::SMIN,       MVT::v4i32,   1 },
2712     { ISD::SMIN,       MVT::v16i8,   1 },
2713     { ISD::UMAX,       MVT::v4i32,   1 },
2714     { ISD::UMAX,       MVT::v8i16,   1 },
2715     { ISD::UMIN,       MVT::v4i32,   1 },
2716     { ISD::UMIN,       MVT::v8i16,   1 },
2717   };
2718   static const CostTblEntry SSSE3CostTbl[] = {
2719     { ISD::ABS,        MVT::v4i32,   1 },
2720     { ISD::ABS,        MVT::v8i16,   1 },
2721     { ISD::ABS,        MVT::v16i8,   1 },
2722     { ISD::BITREVERSE, MVT::v2i64,   5 },
2723     { ISD::BITREVERSE, MVT::v4i32,   5 },
2724     { ISD::BITREVERSE, MVT::v8i16,   5 },
2725     { ISD::BITREVERSE, MVT::v16i8,   5 },
2726     { ISD::BSWAP,      MVT::v2i64,   1 },
2727     { ISD::BSWAP,      MVT::v4i32,   1 },
2728     { ISD::BSWAP,      MVT::v8i16,   1 },
2729     { ISD::CTLZ,       MVT::v2i64,  23 },
2730     { ISD::CTLZ,       MVT::v4i32,  18 },
2731     { ISD::CTLZ,       MVT::v8i16,  14 },
2732     { ISD::CTLZ,       MVT::v16i8,   9 },
2733     { ISD::CTPOP,      MVT::v2i64,   7 },
2734     { ISD::CTPOP,      MVT::v4i32,  11 },
2735     { ISD::CTPOP,      MVT::v8i16,   9 },
2736     { ISD::CTPOP,      MVT::v16i8,   6 },
2737     { ISD::CTTZ,       MVT::v2i64,  10 },
2738     { ISD::CTTZ,       MVT::v4i32,  14 },
2739     { ISD::CTTZ,       MVT::v8i16,  12 },
2740     { ISD::CTTZ,       MVT::v16i8,   9 }
2741   };
2742   static const CostTblEntry SSE2CostTbl[] = {
2743     { ISD::ABS,        MVT::v2i64,   4 },
2744     { ISD::ABS,        MVT::v4i32,   3 },
2745     { ISD::ABS,        MVT::v8i16,   2 },
2746     { ISD::ABS,        MVT::v16i8,   2 },
2747     { ISD::BITREVERSE, MVT::v2i64,  29 },
2748     { ISD::BITREVERSE, MVT::v4i32,  27 },
2749     { ISD::BITREVERSE, MVT::v8i16,  27 },
2750     { ISD::BITREVERSE, MVT::v16i8,  20 },
2751     { ISD::BSWAP,      MVT::v2i64,   7 },
2752     { ISD::BSWAP,      MVT::v4i32,   7 },
2753     { ISD::BSWAP,      MVT::v8i16,   7 },
2754     { ISD::CTLZ,       MVT::v2i64,  25 },
2755     { ISD::CTLZ,       MVT::v4i32,  26 },
2756     { ISD::CTLZ,       MVT::v8i16,  20 },
2757     { ISD::CTLZ,       MVT::v16i8,  17 },
2758     { ISD::CTPOP,      MVT::v2i64,  12 },
2759     { ISD::CTPOP,      MVT::v4i32,  15 },
2760     { ISD::CTPOP,      MVT::v8i16,  13 },
2761     { ISD::CTPOP,      MVT::v16i8,  10 },
2762     { ISD::CTTZ,       MVT::v2i64,  14 },
2763     { ISD::CTTZ,       MVT::v4i32,  18 },
2764     { ISD::CTTZ,       MVT::v8i16,  16 },
2765     { ISD::CTTZ,       MVT::v16i8,  13 },
2766     { ISD::SADDSAT,    MVT::v8i16,   1 },
2767     { ISD::SADDSAT,    MVT::v16i8,   1 },
2768     { ISD::SMAX,       MVT::v8i16,   1 },
2769     { ISD::SMIN,       MVT::v8i16,   1 },
2770     { ISD::SSUBSAT,    MVT::v8i16,   1 },
2771     { ISD::SSUBSAT,    MVT::v16i8,   1 },
2772     { ISD::UADDSAT,    MVT::v8i16,   1 },
2773     { ISD::UADDSAT,    MVT::v16i8,   1 },
2774     { ISD::UMAX,       MVT::v8i16,   2 },
2775     { ISD::UMAX,       MVT::v16i8,   1 },
2776     { ISD::UMIN,       MVT::v8i16,   2 },
2777     { ISD::UMIN,       MVT::v16i8,   1 },
2778     { ISD::USUBSAT,    MVT::v8i16,   1 },
2779     { ISD::USUBSAT,    MVT::v16i8,   1 },
2780     { ISD::FMAXNUM,    MVT::f64,     4 },
2781     { ISD::FMAXNUM,    MVT::v2f64,   4 },
2782     { ISD::FSQRT,      MVT::f64,    32 }, // Nehalem from http://www.agner.org/
2783     { ISD::FSQRT,      MVT::v2f64,  32 }, // Nehalem from http://www.agner.org/
2784   };
2785   static const CostTblEntry SSE1CostTbl[] = {
2786     { ISD::FMAXNUM,    MVT::f32,     4 },
2787     { ISD::FMAXNUM,    MVT::v4f32,   4 },
2788     { ISD::FSQRT,      MVT::f32,    28 }, // Pentium III from http://www.agner.org/
2789     { ISD::FSQRT,      MVT::v4f32,  56 }, // Pentium III from http://www.agner.org/
2790   };
2791   static const CostTblEntry BMI64CostTbl[] = { // 64-bit targets
2792     { ISD::CTTZ,       MVT::i64,     1 },
2793   };
2794   static const CostTblEntry BMI32CostTbl[] = { // 32 or 64-bit targets
2795     { ISD::CTTZ,       MVT::i32,     1 },
2796     { ISD::CTTZ,       MVT::i16,     1 },
2797     { ISD::CTTZ,       MVT::i8,      1 },
2798   };
2799   static const CostTblEntry LZCNT64CostTbl[] = { // 64-bit targets
2800     { ISD::CTLZ,       MVT::i64,     1 },
2801   };
2802   static const CostTblEntry LZCNT32CostTbl[] = { // 32 or 64-bit targets
2803     { ISD::CTLZ,       MVT::i32,     1 },
2804     { ISD::CTLZ,       MVT::i16,     1 },
2805     { ISD::CTLZ,       MVT::i8,      1 },
2806   };
2807   static const CostTblEntry POPCNT64CostTbl[] = { // 64-bit targets
2808     { ISD::CTPOP,      MVT::i64,     1 },
2809   };
2810   static const CostTblEntry POPCNT32CostTbl[] = { // 32 or 64-bit targets
2811     { ISD::CTPOP,      MVT::i32,     1 },
2812     { ISD::CTPOP,      MVT::i16,     1 },
2813     { ISD::CTPOP,      MVT::i8,      1 },
2814   };
2815   static const CostTblEntry X64CostTbl[] = { // 64-bit targets
2816     { ISD::ABS,        MVT::i64,     2 }, // SUB+CMOV
2817     { ISD::BITREVERSE, MVT::i64,    14 },
2818     { ISD::BSWAP,      MVT::i64,     1 },
2819     { ISD::CTLZ,       MVT::i64,     4 }, // BSR+XOR or BSR+XOR+CMOV
2820     { ISD::CTTZ,       MVT::i64,     3 }, // TEST+BSF+CMOV/BRANCH
2821     { ISD::CTPOP,      MVT::i64,    10 },
2822     { ISD::SADDO,      MVT::i64,     1 },
2823     { ISD::UADDO,      MVT::i64,     1 },
2824     { ISD::UMULO,      MVT::i64,     2 }, // mulq + seto
2825   };
2826   static const CostTblEntry X86CostTbl[] = { // 32 or 64-bit targets
2827     { ISD::ABS,        MVT::i32,     2 }, // SUB+CMOV
2828     { ISD::ABS,        MVT::i16,     2 }, // SUB+CMOV
2829     { ISD::BITREVERSE, MVT::i32,    14 },
2830     { ISD::BITREVERSE, MVT::i16,    14 },
2831     { ISD::BITREVERSE, MVT::i8,     11 },
2832     { ISD::BSWAP,      MVT::i32,     1 },
2833     { ISD::BSWAP,      MVT::i16,     1 }, // ROL
2834     { ISD::CTLZ,       MVT::i32,     4 }, // BSR+XOR or BSR+XOR+CMOV
2835     { ISD::CTLZ,       MVT::i16,     4 }, // BSR+XOR or BSR+XOR+CMOV
2836     { ISD::CTLZ,       MVT::i8,      4 }, // BSR+XOR or BSR+XOR+CMOV
2837     { ISD::CTTZ,       MVT::i32,     3 }, // TEST+BSF+CMOV/BRANCH
2838     { ISD::CTTZ,       MVT::i16,     3 }, // TEST+BSF+CMOV/BRANCH
2839     { ISD::CTTZ,       MVT::i8,      3 }, // TEST+BSF+CMOV/BRANCH
2840     { ISD::CTPOP,      MVT::i32,     8 },
2841     { ISD::CTPOP,      MVT::i16,     9 },
2842     { ISD::CTPOP,      MVT::i8,      7 },
2843     { ISD::SADDO,      MVT::i32,     1 },
2844     { ISD::SADDO,      MVT::i16,     1 },
2845     { ISD::SADDO,      MVT::i8,      1 },
2846     { ISD::UADDO,      MVT::i32,     1 },
2847     { ISD::UADDO,      MVT::i16,     1 },
2848     { ISD::UADDO,      MVT::i8,      1 },
2849     { ISD::UMULO,      MVT::i32,     2 }, // mul + seto
2850     { ISD::UMULO,      MVT::i16,     2 },
2851     { ISD::UMULO,      MVT::i8,      2 },
2852   };
2853 
2854   Type *RetTy = ICA.getReturnType();
2855   Type *OpTy = RetTy;
2856   Intrinsic::ID IID = ICA.getID();
2857   unsigned ISD = ISD::DELETED_NODE;
2858   switch (IID) {
2859   default:
2860     break;
2861   case Intrinsic::abs:
2862     ISD = ISD::ABS;
2863     break;
2864   case Intrinsic::bitreverse:
2865     ISD = ISD::BITREVERSE;
2866     break;
2867   case Intrinsic::bswap:
2868     ISD = ISD::BSWAP;
2869     break;
2870   case Intrinsic::ctlz:
2871     ISD = ISD::CTLZ;
2872     break;
2873   case Intrinsic::ctpop:
2874     ISD = ISD::CTPOP;
2875     break;
2876   case Intrinsic::cttz:
2877     ISD = ISD::CTTZ;
2878     break;
2879   case Intrinsic::maxnum:
2880   case Intrinsic::minnum:
2881     // FMINNUM has same costs so don't duplicate.
2882     ISD = ISD::FMAXNUM;
2883     break;
2884   case Intrinsic::sadd_sat:
2885     ISD = ISD::SADDSAT;
2886     break;
2887   case Intrinsic::smax:
2888     ISD = ISD::SMAX;
2889     break;
2890   case Intrinsic::smin:
2891     ISD = ISD::SMIN;
2892     break;
2893   case Intrinsic::ssub_sat:
2894     ISD = ISD::SSUBSAT;
2895     break;
2896   case Intrinsic::uadd_sat:
2897     ISD = ISD::UADDSAT;
2898     break;
2899   case Intrinsic::umax:
2900     ISD = ISD::UMAX;
2901     break;
2902   case Intrinsic::umin:
2903     ISD = ISD::UMIN;
2904     break;
2905   case Intrinsic::usub_sat:
2906     ISD = ISD::USUBSAT;
2907     break;
2908   case Intrinsic::sqrt:
2909     ISD = ISD::FSQRT;
2910     break;
2911   case Intrinsic::sadd_with_overflow:
2912   case Intrinsic::ssub_with_overflow:
2913     // SSUBO has same costs so don't duplicate.
2914     ISD = ISD::SADDO;
2915     OpTy = RetTy->getContainedType(0);
2916     break;
2917   case Intrinsic::uadd_with_overflow:
2918   case Intrinsic::usub_with_overflow:
2919     // USUBO has same costs so don't duplicate.
2920     ISD = ISD::UADDO;
2921     OpTy = RetTy->getContainedType(0);
2922     break;
2923   case Intrinsic::umul_with_overflow:
2924   case Intrinsic::smul_with_overflow:
2925     // SMULO has same costs so don't duplicate.
2926     ISD = ISD::UMULO;
2927     OpTy = RetTy->getContainedType(0);
2928     break;
2929   }
2930 
2931   if (ISD != ISD::DELETED_NODE) {
2932     // Legalize the type.
2933     std::pair<InstructionCost, MVT> LT = TLI->getTypeLegalizationCost(DL, OpTy);
2934     MVT MTy = LT.second;
2935 
2936     // Attempt to lookup cost.
2937     if (ISD == ISD::BITREVERSE && ST->hasGFNI() && ST->hasSSSE3() &&
2938         MTy.isVector()) {
2939       // With PSHUFB the code is very similar for all types. If we have integer
2940       // byte operations, we just need a GF2P8AFFINEQB for vXi8. For other types
2941       // we also need a PSHUFB.
2942       unsigned Cost = MTy.getVectorElementType() == MVT::i8 ? 1 : 2;
2943 
2944       // Without byte operations, we need twice as many GF2P8AFFINEQB and PSHUFB
2945       // instructions. We also need an extract and an insert.
2946       if (!(MTy.is128BitVector() || (ST->hasAVX2() && MTy.is256BitVector()) ||
2947             (ST->hasBWI() && MTy.is512BitVector())))
2948         Cost = Cost * 2 + 2;
2949 
2950       return LT.first * Cost;
2951     }
2952 
2953     auto adjustTableCost = [](const CostTblEntry &Entry,
2954                               InstructionCost LegalizationCost,
2955                               FastMathFlags FMF) {
2956       // If there are no NANs to deal with, then these are reduced to a
2957       // single MIN** or MAX** instruction instead of the MIN/CMP/SELECT that we
2958       // assume is used in the non-fast case.
2959       if (Entry.ISD == ISD::FMAXNUM || Entry.ISD == ISD::FMINNUM) {
2960         if (FMF.noNaNs())
2961           return LegalizationCost * 1;
2962       }
2963       return LegalizationCost * (int)Entry.Cost;
2964     };
2965 
2966     if (ST->useGLMDivSqrtCosts())
2967       if (const auto *Entry = CostTableLookup(GLMCostTbl, ISD, MTy))
2968         return adjustTableCost(*Entry, LT.first, ICA.getFlags());
2969 
2970     if (ST->isSLM())
2971       if (const auto *Entry = CostTableLookup(SLMCostTbl, ISD, MTy))
2972         return adjustTableCost(*Entry, LT.first, ICA.getFlags());
2973 
2974     if (ST->hasCDI())
2975       if (const auto *Entry = CostTableLookup(AVX512CDCostTbl, ISD, MTy))
2976         return adjustTableCost(*Entry, LT.first, ICA.getFlags());
2977 
2978     if (ST->hasBWI())
2979       if (const auto *Entry = CostTableLookup(AVX512BWCostTbl, ISD, MTy))
2980         return adjustTableCost(*Entry, LT.first, ICA.getFlags());
2981 
2982     if (ST->hasAVX512())
2983       if (const auto *Entry = CostTableLookup(AVX512CostTbl, ISD, MTy))
2984         return adjustTableCost(*Entry, LT.first, ICA.getFlags());
2985 
2986     if (ST->hasXOP())
2987       if (const auto *Entry = CostTableLookup(XOPCostTbl, ISD, MTy))
2988         return adjustTableCost(*Entry, LT.first, ICA.getFlags());
2989 
2990     if (ST->hasAVX2())
2991       if (const auto *Entry = CostTableLookup(AVX2CostTbl, ISD, MTy))
2992         return adjustTableCost(*Entry, LT.first, ICA.getFlags());
2993 
2994     if (ST->hasAVX())
2995       if (const auto *Entry = CostTableLookup(AVX1CostTbl, ISD, MTy))
2996         return adjustTableCost(*Entry, LT.first, ICA.getFlags());
2997 
2998     if (ST->hasSSE42())
2999       if (const auto *Entry = CostTableLookup(SSE42CostTbl, ISD, MTy))
3000         return adjustTableCost(*Entry, LT.first, ICA.getFlags());
3001 
3002     if (ST->hasSSE41())
3003       if (const auto *Entry = CostTableLookup(SSE41CostTbl, ISD, MTy))
3004         return adjustTableCost(*Entry, LT.first, ICA.getFlags());
3005 
3006     if (ST->hasSSSE3())
3007       if (const auto *Entry = CostTableLookup(SSSE3CostTbl, ISD, MTy))
3008         return adjustTableCost(*Entry, LT.first, ICA.getFlags());
3009 
3010     if (ST->hasSSE2())
3011       if (const auto *Entry = CostTableLookup(SSE2CostTbl, ISD, MTy))
3012         return adjustTableCost(*Entry, LT.first, ICA.getFlags());
3013 
3014     if (ST->hasSSE1())
3015       if (const auto *Entry = CostTableLookup(SSE1CostTbl, ISD, MTy))
3016         return adjustTableCost(*Entry, LT.first, ICA.getFlags());
3017 
3018     if (ST->hasBMI()) {
3019       if (ST->is64Bit())
3020         if (const auto *Entry = CostTableLookup(BMI64CostTbl, ISD, MTy))
3021           return adjustTableCost(*Entry, LT.first, ICA.getFlags());
3022 
3023       if (const auto *Entry = CostTableLookup(BMI32CostTbl, ISD, MTy))
3024         return adjustTableCost(*Entry, LT.first, ICA.getFlags());
3025     }
3026 
3027     if (ST->hasLZCNT()) {
3028       if (ST->is64Bit())
3029         if (const auto *Entry = CostTableLookup(LZCNT64CostTbl, ISD, MTy))
3030           return adjustTableCost(*Entry, LT.first, ICA.getFlags());
3031 
3032       if (const auto *Entry = CostTableLookup(LZCNT32CostTbl, ISD, MTy))
3033         return adjustTableCost(*Entry, LT.first, ICA.getFlags());
3034     }
3035 
3036     if (ST->hasPOPCNT()) {
3037       if (ST->is64Bit())
3038         if (const auto *Entry = CostTableLookup(POPCNT64CostTbl, ISD, MTy))
3039           return adjustTableCost(*Entry, LT.first, ICA.getFlags());
3040 
3041       if (const auto *Entry = CostTableLookup(POPCNT32CostTbl, ISD, MTy))
3042         return adjustTableCost(*Entry, LT.first, ICA.getFlags());
3043     }
3044 
3045     if (ISD == ISD::BSWAP && ST->hasMOVBE() && ST->hasFastMOVBE()) {
3046       if (const Instruction *II = ICA.getInst()) {
3047         if (II->hasOneUse() && isa<StoreInst>(II->user_back()))
3048           return TTI::TCC_Free;
3049         if (auto *LI = dyn_cast<LoadInst>(II->getOperand(0))) {
3050           if (LI->hasOneUse())
3051             return TTI::TCC_Free;
3052         }
3053       }
3054     }
3055 
3056     // TODO - add BMI (TZCNT) scalar handling
3057 
3058     if (ST->is64Bit())
3059       if (const auto *Entry = CostTableLookup(X64CostTbl, ISD, MTy))
3060         return adjustTableCost(*Entry, LT.first, ICA.getFlags());
3061 
3062     if (const auto *Entry = CostTableLookup(X86CostTbl, ISD, MTy))
3063       return adjustTableCost(*Entry, LT.first, ICA.getFlags());
3064   }
3065 
3066   return BaseT::getIntrinsicInstrCost(ICA, CostKind);
3067 }
3068 
3069 InstructionCost
3070 X86TTIImpl::getIntrinsicInstrCost(const IntrinsicCostAttributes &ICA,
3071                                   TTI::TargetCostKind CostKind) {
3072   if (ICA.isTypeBasedOnly())
3073     return getTypeBasedIntrinsicInstrCost(ICA, CostKind);
3074 
3075   static const CostTblEntry AVX512CostTbl[] = {
3076     { ISD::ROTL,       MVT::v8i64,   1 },
3077     { ISD::ROTL,       MVT::v4i64,   1 },
3078     { ISD::ROTL,       MVT::v2i64,   1 },
3079     { ISD::ROTL,       MVT::v16i32,  1 },
3080     { ISD::ROTL,       MVT::v8i32,   1 },
3081     { ISD::ROTL,       MVT::v4i32,   1 },
3082     { ISD::ROTR,       MVT::v8i64,   1 },
3083     { ISD::ROTR,       MVT::v4i64,   1 },
3084     { ISD::ROTR,       MVT::v2i64,   1 },
3085     { ISD::ROTR,       MVT::v16i32,  1 },
3086     { ISD::ROTR,       MVT::v8i32,   1 },
3087     { ISD::ROTR,       MVT::v4i32,   1 }
3088   };
3089   // XOP: ROTL = VPROT(X,Y), ROTR = VPROT(X,SUB(0,Y))
3090   static const CostTblEntry XOPCostTbl[] = {
3091     { ISD::ROTL,       MVT::v4i64,   4 },
3092     { ISD::ROTL,       MVT::v8i32,   4 },
3093     { ISD::ROTL,       MVT::v16i16,  4 },
3094     { ISD::ROTL,       MVT::v32i8,   4 },
3095     { ISD::ROTL,       MVT::v2i64,   1 },
3096     { ISD::ROTL,       MVT::v4i32,   1 },
3097     { ISD::ROTL,       MVT::v8i16,   1 },
3098     { ISD::ROTL,       MVT::v16i8,   1 },
3099     { ISD::ROTR,       MVT::v4i64,   6 },
3100     { ISD::ROTR,       MVT::v8i32,   6 },
3101     { ISD::ROTR,       MVT::v16i16,  6 },
3102     { ISD::ROTR,       MVT::v32i8,   6 },
3103     { ISD::ROTR,       MVT::v2i64,   2 },
3104     { ISD::ROTR,       MVT::v4i32,   2 },
3105     { ISD::ROTR,       MVT::v8i16,   2 },
3106     { ISD::ROTR,       MVT::v16i8,   2 }
3107   };
3108   static const CostTblEntry X64CostTbl[] = { // 64-bit targets
3109     { ISD::ROTL,       MVT::i64,     1 },
3110     { ISD::ROTR,       MVT::i64,     1 },
3111     { ISD::FSHL,       MVT::i64,     4 }
3112   };
3113   static const CostTblEntry X86CostTbl[] = { // 32 or 64-bit targets
3114     { ISD::ROTL,       MVT::i32,     1 },
3115     { ISD::ROTL,       MVT::i16,     1 },
3116     { ISD::ROTL,       MVT::i8,      1 },
3117     { ISD::ROTR,       MVT::i32,     1 },
3118     { ISD::ROTR,       MVT::i16,     1 },
3119     { ISD::ROTR,       MVT::i8,      1 },
3120     { ISD::FSHL,       MVT::i32,     4 },
3121     { ISD::FSHL,       MVT::i16,     4 },
3122     { ISD::FSHL,       MVT::i8,      4 }
3123   };
3124 
3125   Intrinsic::ID IID = ICA.getID();
3126   Type *RetTy = ICA.getReturnType();
3127   const SmallVectorImpl<const Value *> &Args = ICA.getArgs();
3128   unsigned ISD = ISD::DELETED_NODE;
3129   switch (IID) {
3130   default:
3131     break;
3132   case Intrinsic::fshl:
3133     ISD = ISD::FSHL;
3134     if (Args[0] == Args[1])
3135       ISD = ISD::ROTL;
3136     break;
3137   case Intrinsic::fshr:
3138     // FSHR has same costs so don't duplicate.
3139     ISD = ISD::FSHL;
3140     if (Args[0] == Args[1])
3141       ISD = ISD::ROTR;
3142     break;
3143   }
3144 
3145   if (ISD != ISD::DELETED_NODE) {
3146     // Legalize the type.
3147     std::pair<InstructionCost, MVT> LT =
3148         TLI->getTypeLegalizationCost(DL, RetTy);
3149     MVT MTy = LT.second;
3150 
3151     // Attempt to lookup cost.
3152     if (ST->hasAVX512())
3153       if (const auto *Entry = CostTableLookup(AVX512CostTbl, ISD, MTy))
3154         return LT.first * Entry->Cost;
3155 
3156     if (ST->hasXOP())
3157       if (const auto *Entry = CostTableLookup(XOPCostTbl, ISD, MTy))
3158         return LT.first * Entry->Cost;
3159 
3160     if (ST->is64Bit())
3161       if (const auto *Entry = CostTableLookup(X64CostTbl, ISD, MTy))
3162         return LT.first * Entry->Cost;
3163 
3164     if (const auto *Entry = CostTableLookup(X86CostTbl, ISD, MTy))
3165       return LT.first * Entry->Cost;
3166   }
3167 
3168   return BaseT::getIntrinsicInstrCost(ICA, CostKind);
3169 }
3170 
3171 InstructionCost X86TTIImpl::getVectorInstrCost(unsigned Opcode, Type *Val,
3172                                                unsigned Index) {
3173   static const CostTblEntry SLMCostTbl[] = {
3174      { ISD::EXTRACT_VECTOR_ELT,       MVT::i8,      4 },
3175      { ISD::EXTRACT_VECTOR_ELT,       MVT::i16,     4 },
3176      { ISD::EXTRACT_VECTOR_ELT,       MVT::i32,     4 },
3177      { ISD::EXTRACT_VECTOR_ELT,       MVT::i64,     7 }
3178    };
3179 
3180   assert(Val->isVectorTy() && "This must be a vector type");
3181   Type *ScalarType = Val->getScalarType();
3182   int RegisterFileMoveCost = 0;
3183 
3184   if (Index != -1U && (Opcode == Instruction::ExtractElement ||
3185                        Opcode == Instruction::InsertElement)) {
3186     // Legalize the type.
3187     std::pair<InstructionCost, MVT> LT = TLI->getTypeLegalizationCost(DL, Val);
3188 
3189     // This type is legalized to a scalar type.
3190     if (!LT.second.isVector())
3191       return 0;
3192 
3193     // The type may be split. Normalize the index to the new type.
3194     unsigned NumElts = LT.second.getVectorNumElements();
3195     unsigned SubNumElts = NumElts;
3196     Index = Index % NumElts;
3197 
3198     // For >128-bit vectors, we need to extract higher 128-bit subvectors.
3199     // For inserts, we also need to insert the subvector back.
3200     if (LT.second.getSizeInBits() > 128) {
3201       assert((LT.second.getSizeInBits() % 128) == 0 && "Illegal vector");
3202       unsigned NumSubVecs = LT.second.getSizeInBits() / 128;
3203       SubNumElts = NumElts / NumSubVecs;
3204       if (SubNumElts <= Index) {
3205         RegisterFileMoveCost += (Opcode == Instruction::InsertElement ? 2 : 1);
3206         Index %= SubNumElts;
3207       }
3208     }
3209 
3210     if (Index == 0) {
3211       // Floating point scalars are already located in index #0.
3212       // Many insertions to #0 can fold away for scalar fp-ops, so let's assume
3213       // true for all.
3214       if (ScalarType->isFloatingPointTy())
3215         return RegisterFileMoveCost;
3216 
3217       // Assume movd/movq XMM -> GPR is relatively cheap on all targets.
3218       if (ScalarType->isIntegerTy() && Opcode == Instruction::ExtractElement)
3219         return 1 + RegisterFileMoveCost;
3220     }
3221 
3222     int ISD = TLI->InstructionOpcodeToISD(Opcode);
3223     assert(ISD && "Unexpected vector opcode");
3224     MVT MScalarTy = LT.second.getScalarType();
3225     if (ST->isSLM())
3226       if (auto *Entry = CostTableLookup(SLMCostTbl, ISD, MScalarTy))
3227         return Entry->Cost + RegisterFileMoveCost;
3228 
3229     // Assume pinsr/pextr XMM <-> GPR is relatively cheap on all targets.
3230     if ((MScalarTy == MVT::i16 && ST->hasSSE2()) ||
3231         (MScalarTy.isInteger() && ST->hasSSE41()))
3232       return 1 + RegisterFileMoveCost;
3233 
3234     // Assume insertps is relatively cheap on all targets.
3235     if (MScalarTy == MVT::f32 && ST->hasSSE41() &&
3236         Opcode == Instruction::InsertElement)
3237       return 1 + RegisterFileMoveCost;
3238 
3239     // For extractions we just need to shuffle the element to index 0, which
3240     // should be very cheap (assume cost = 1). For insertions we need to shuffle
3241     // the elements to its destination. In both cases we must handle the
3242     // subvector move(s).
3243     // If the vector type is already less than 128-bits then don't reduce it.
3244     // TODO: Under what circumstances should we shuffle using the full width?
3245     InstructionCost ShuffleCost = 1;
3246     if (Opcode == Instruction::InsertElement) {
3247       auto *SubTy = cast<VectorType>(Val);
3248       EVT VT = TLI->getValueType(DL, Val);
3249       if (VT.getScalarType() != MScalarTy || VT.getSizeInBits() >= 128)
3250         SubTy = FixedVectorType::get(ScalarType, SubNumElts);
3251       ShuffleCost =
3252           getShuffleCost(TTI::SK_PermuteTwoSrc, SubTy, None, 0, SubTy);
3253     }
3254     int IntOrFpCost = ScalarType->isFloatingPointTy() ? 0 : 1;
3255     return ShuffleCost + IntOrFpCost + RegisterFileMoveCost;
3256   }
3257 
3258   // Add to the base cost if we know that the extracted element of a vector is
3259   // destined to be moved to and used in the integer register file.
3260   if (Opcode == Instruction::ExtractElement && ScalarType->isPointerTy())
3261     RegisterFileMoveCost += 1;
3262 
3263   return BaseT::getVectorInstrCost(Opcode, Val, Index) + RegisterFileMoveCost;
3264 }
3265 
3266 InstructionCost X86TTIImpl::getScalarizationOverhead(VectorType *Ty,
3267                                                      const APInt &DemandedElts,
3268                                                      bool Insert,
3269                                                      bool Extract) {
3270   InstructionCost Cost = 0;
3271 
3272   // For insertions, a ISD::BUILD_VECTOR style vector initialization can be much
3273   // cheaper than an accumulation of ISD::INSERT_VECTOR_ELT.
3274   if (Insert) {
3275     std::pair<InstructionCost, MVT> LT = TLI->getTypeLegalizationCost(DL, Ty);
3276     MVT MScalarTy = LT.second.getScalarType();
3277 
3278     if ((MScalarTy == MVT::i16 && ST->hasSSE2()) ||
3279         (MScalarTy.isInteger() && ST->hasSSE41()) ||
3280         (MScalarTy == MVT::f32 && ST->hasSSE41())) {
3281       // For types we can insert directly, insertion into 128-bit sub vectors is
3282       // cheap, followed by a cheap chain of concatenations.
3283       if (LT.second.getSizeInBits() <= 128) {
3284         Cost +=
3285             BaseT::getScalarizationOverhead(Ty, DemandedElts, Insert, false);
3286       } else {
3287         // In each 128-lane, if at least one index is demanded but not all
3288         // indices are demanded and this 128-lane is not the first 128-lane of
3289         // the legalized-vector, then this 128-lane needs a extracti128; If in
3290         // each 128-lane, there is at least one demanded index, this 128-lane
3291         // needs a inserti128.
3292 
3293         // The following cases will help you build a better understanding:
3294         // Assume we insert several elements into a v8i32 vector in avx2,
3295         // Case#1: inserting into 1th index needs vpinsrd + inserti128.
3296         // Case#2: inserting into 5th index needs extracti128 + vpinsrd +
3297         // inserti128.
3298         // Case#3: inserting into 4,5,6,7 index needs 4*vpinsrd + inserti128.
3299         const int CostValue = *LT.first.getValue();
3300         assert(CostValue >= 0 && "Negative cost!");
3301         unsigned Num128Lanes = LT.second.getSizeInBits() / 128 * CostValue;
3302         unsigned NumElts = LT.second.getVectorNumElements() * CostValue;
3303         APInt WidenedDemandedElts = DemandedElts.zextOrSelf(NumElts);
3304         unsigned Scale = NumElts / Num128Lanes;
3305         // We iterate each 128-lane, and check if we need a
3306         // extracti128/inserti128 for this 128-lane.
3307         for (unsigned I = 0; I < NumElts; I += Scale) {
3308           APInt Mask = WidenedDemandedElts.getBitsSet(NumElts, I, I + Scale);
3309           APInt MaskedDE = Mask & WidenedDemandedElts;
3310           unsigned Population = MaskedDE.countPopulation();
3311           Cost += (Population > 0 && Population != Scale &&
3312                    I % LT.second.getVectorNumElements() != 0);
3313           Cost += Population > 0;
3314         }
3315         Cost += DemandedElts.countPopulation();
3316 
3317         // For vXf32 cases, insertion into the 0'th index in each v4f32
3318         // 128-bit vector is free.
3319         // NOTE: This assumes legalization widens vXf32 vectors.
3320         if (MScalarTy == MVT::f32)
3321           for (unsigned i = 0, e = cast<FixedVectorType>(Ty)->getNumElements();
3322                i < e; i += 4)
3323             if (DemandedElts[i])
3324               Cost--;
3325       }
3326     } else if (LT.second.isVector()) {
3327       // Without fast insertion, we need to use MOVD/MOVQ to pass each demanded
3328       // integer element as a SCALAR_TO_VECTOR, then we build the vector as a
3329       // series of UNPCK followed by CONCAT_VECTORS - all of these can be
3330       // considered cheap.
3331       if (Ty->isIntOrIntVectorTy())
3332         Cost += DemandedElts.countPopulation();
3333 
3334       // Get the smaller of the legalized or original pow2-extended number of
3335       // vector elements, which represents the number of unpacks we'll end up
3336       // performing.
3337       unsigned NumElts = LT.second.getVectorNumElements();
3338       unsigned Pow2Elts =
3339           PowerOf2Ceil(cast<FixedVectorType>(Ty)->getNumElements());
3340       Cost += (std::min<unsigned>(NumElts, Pow2Elts) - 1) * LT.first;
3341     }
3342   }
3343 
3344   // TODO: Use default extraction for now, but we should investigate extending this
3345   // to handle repeated subvector extraction.
3346   if (Extract)
3347     Cost += BaseT::getScalarizationOverhead(Ty, DemandedElts, false, Extract);
3348 
3349   return Cost;
3350 }
3351 
3352 InstructionCost X86TTIImpl::getMemoryOpCost(unsigned Opcode, Type *Src,
3353                                             MaybeAlign Alignment,
3354                                             unsigned AddressSpace,
3355                                             TTI::TargetCostKind CostKind,
3356                                             const Instruction *I) {
3357   // TODO: Handle other cost kinds.
3358   if (CostKind != TTI::TCK_RecipThroughput) {
3359     if (auto *SI = dyn_cast_or_null<StoreInst>(I)) {
3360       // Store instruction with index and scale costs 2 Uops.
3361       // Check the preceding GEP to identify non-const indices.
3362       if (auto *GEP = dyn_cast<GetElementPtrInst>(SI->getPointerOperand())) {
3363         if (!all_of(GEP->indices(), [](Value *V) { return isa<Constant>(V); }))
3364           return TTI::TCC_Basic * 2;
3365       }
3366     }
3367     return TTI::TCC_Basic;
3368   }
3369 
3370   assert((Opcode == Instruction::Load || Opcode == Instruction::Store) &&
3371          "Invalid Opcode");
3372   // Type legalization can't handle structs
3373   if (TLI->getValueType(DL, Src, true) == MVT::Other)
3374     return BaseT::getMemoryOpCost(Opcode, Src, Alignment, AddressSpace,
3375                                   CostKind);
3376 
3377   // Legalize the type.
3378   std::pair<InstructionCost, MVT> LT = TLI->getTypeLegalizationCost(DL, Src);
3379 
3380   auto *VTy = dyn_cast<FixedVectorType>(Src);
3381 
3382   // Handle the simple case of non-vectors.
3383   // NOTE: this assumes that legalization never creates vector from scalars!
3384   if (!VTy || !LT.second.isVector())
3385     // Each load/store unit costs 1.
3386     return LT.first * 1;
3387 
3388   bool IsLoad = Opcode == Instruction::Load;
3389 
3390   Type *EltTy = VTy->getElementType();
3391 
3392   const int EltTyBits = DL.getTypeSizeInBits(EltTy);
3393 
3394   InstructionCost Cost = 0;
3395 
3396   // Source of truth: how many elements were there in the original IR vector?
3397   const unsigned SrcNumElt = VTy->getNumElements();
3398 
3399   // How far have we gotten?
3400   int NumEltRemaining = SrcNumElt;
3401   // Note that we intentionally capture by-reference, NumEltRemaining changes.
3402   auto NumEltDone = [&]() { return SrcNumElt - NumEltRemaining; };
3403 
3404   const int MaxLegalOpSizeBytes = divideCeil(LT.second.getSizeInBits(), 8);
3405 
3406   // Note that even if we can store 64 bits of an XMM, we still operate on XMM.
3407   const unsigned XMMBits = 128;
3408   if (XMMBits % EltTyBits != 0)
3409     // Vector size must be a multiple of the element size. I.e. no padding.
3410     return BaseT::getMemoryOpCost(Opcode, Src, Alignment, AddressSpace,
3411                                   CostKind);
3412   const int NumEltPerXMM = XMMBits / EltTyBits;
3413 
3414   auto *XMMVecTy = FixedVectorType::get(EltTy, NumEltPerXMM);
3415 
3416   for (int CurrOpSizeBytes = MaxLegalOpSizeBytes, SubVecEltsLeft = 0;
3417        NumEltRemaining > 0; CurrOpSizeBytes /= 2) {
3418     // How many elements would a single op deal with at once?
3419     if ((8 * CurrOpSizeBytes) % EltTyBits != 0)
3420       // Vector size must be a multiple of the element size. I.e. no padding.
3421       return BaseT::getMemoryOpCost(Opcode, Src, Alignment, AddressSpace,
3422                                     CostKind);
3423     int CurrNumEltPerOp = (8 * CurrOpSizeBytes) / EltTyBits;
3424 
3425     assert(CurrOpSizeBytes > 0 && CurrNumEltPerOp > 0 && "How'd we get here?");
3426     assert((((NumEltRemaining * EltTyBits) < (2 * 8 * CurrOpSizeBytes)) ||
3427             (CurrOpSizeBytes == MaxLegalOpSizeBytes)) &&
3428            "Unless we haven't halved the op size yet, "
3429            "we have less than two op's sized units of work left.");
3430 
3431     auto *CurrVecTy = CurrNumEltPerOp > NumEltPerXMM
3432                           ? FixedVectorType::get(EltTy, CurrNumEltPerOp)
3433                           : XMMVecTy;
3434 
3435     assert(CurrVecTy->getNumElements() % CurrNumEltPerOp == 0 &&
3436            "After halving sizes, the vector elt count is no longer a multiple "
3437            "of number of elements per operation?");
3438     auto *CoalescedVecTy =
3439         CurrNumEltPerOp == 1
3440             ? CurrVecTy
3441             : FixedVectorType::get(
3442                   IntegerType::get(Src->getContext(),
3443                                    EltTyBits * CurrNumEltPerOp),
3444                   CurrVecTy->getNumElements() / CurrNumEltPerOp);
3445     assert(DL.getTypeSizeInBits(CoalescedVecTy) ==
3446                DL.getTypeSizeInBits(CurrVecTy) &&
3447            "coalesciing elements doesn't change vector width.");
3448 
3449     while (NumEltRemaining > 0) {
3450       assert(SubVecEltsLeft >= 0 && "Subreg element count overconsumtion?");
3451 
3452       // Can we use this vector size, as per the remaining element count?
3453       // Iff the vector is naturally aligned, we can do a wide load regardless.
3454       if (NumEltRemaining < CurrNumEltPerOp &&
3455           (!IsLoad || Alignment.valueOrOne() < CurrOpSizeBytes) &&
3456           CurrOpSizeBytes != 1)
3457         break; // Try smalled vector size.
3458 
3459       bool Is0thSubVec = (NumEltDone() % LT.second.getVectorNumElements()) == 0;
3460 
3461       // If we have fully processed the previous reg, we need to replenish it.
3462       if (SubVecEltsLeft == 0) {
3463         SubVecEltsLeft += CurrVecTy->getNumElements();
3464         // And that's free only for the 0'th subvector of a legalized vector.
3465         if (!Is0thSubVec)
3466           Cost += getShuffleCost(IsLoad ? TTI::ShuffleKind::SK_InsertSubvector
3467                                         : TTI::ShuffleKind::SK_ExtractSubvector,
3468                                  VTy, None, NumEltDone(), CurrVecTy);
3469       }
3470 
3471       // While we can directly load/store ZMM, YMM, and 64-bit halves of XMM,
3472       // for smaller widths (32/16/8) we have to insert/extract them separately.
3473       // Again, it's free for the 0'th subreg (if op is 32/64 bit wide,
3474       // but let's pretend that it is also true for 16/8 bit wide ops...)
3475       if (CurrOpSizeBytes <= 32 / 8 && !Is0thSubVec) {
3476         int NumEltDoneInCurrXMM = NumEltDone() % NumEltPerXMM;
3477         assert(NumEltDoneInCurrXMM % CurrNumEltPerOp == 0 && "");
3478         int CoalescedVecEltIdx = NumEltDoneInCurrXMM / CurrNumEltPerOp;
3479         APInt DemandedElts =
3480             APInt::getBitsSet(CoalescedVecTy->getNumElements(),
3481                               CoalescedVecEltIdx, CoalescedVecEltIdx + 1);
3482         assert(DemandedElts.countPopulation() == 1 && "Inserting single value");
3483         Cost += getScalarizationOverhead(CoalescedVecTy, DemandedElts, IsLoad,
3484                                          !IsLoad);
3485       }
3486 
3487       // This isn't exactly right. We're using slow unaligned 32-byte accesses
3488       // as a proxy for a double-pumped AVX memory interface such as on
3489       // Sandybridge.
3490       if (CurrOpSizeBytes == 32 && ST->isUnalignedMem32Slow())
3491         Cost += 2;
3492       else
3493         Cost += 1;
3494 
3495       SubVecEltsLeft -= CurrNumEltPerOp;
3496       NumEltRemaining -= CurrNumEltPerOp;
3497       Alignment = commonAlignment(Alignment.valueOrOne(), CurrOpSizeBytes);
3498     }
3499   }
3500 
3501   assert(NumEltRemaining <= 0 && "Should have processed all the elements.");
3502 
3503   return Cost;
3504 }
3505 
3506 InstructionCost
3507 X86TTIImpl::getMaskedMemoryOpCost(unsigned Opcode, Type *SrcTy, Align Alignment,
3508                                   unsigned AddressSpace,
3509                                   TTI::TargetCostKind CostKind) {
3510   bool IsLoad = (Instruction::Load == Opcode);
3511   bool IsStore = (Instruction::Store == Opcode);
3512 
3513   auto *SrcVTy = dyn_cast<FixedVectorType>(SrcTy);
3514   if (!SrcVTy)
3515     // To calculate scalar take the regular cost, without mask
3516     return getMemoryOpCost(Opcode, SrcTy, Alignment, AddressSpace, CostKind);
3517 
3518   unsigned NumElem = SrcVTy->getNumElements();
3519   auto *MaskTy =
3520       FixedVectorType::get(Type::getInt8Ty(SrcVTy->getContext()), NumElem);
3521   if ((IsLoad && !isLegalMaskedLoad(SrcVTy, Alignment)) ||
3522       (IsStore && !isLegalMaskedStore(SrcVTy, Alignment))) {
3523     // Scalarization
3524     APInt DemandedElts = APInt::getAllOnesValue(NumElem);
3525     InstructionCost MaskSplitCost =
3526         getScalarizationOverhead(MaskTy, DemandedElts, false, true);
3527     InstructionCost ScalarCompareCost = getCmpSelInstrCost(
3528         Instruction::ICmp, Type::getInt8Ty(SrcVTy->getContext()), nullptr,
3529         CmpInst::BAD_ICMP_PREDICATE, CostKind);
3530     InstructionCost BranchCost = getCFInstrCost(Instruction::Br, CostKind);
3531     InstructionCost MaskCmpCost = NumElem * (BranchCost + ScalarCompareCost);
3532     InstructionCost ValueSplitCost =
3533         getScalarizationOverhead(SrcVTy, DemandedElts, IsLoad, IsStore);
3534     InstructionCost MemopCost =
3535         NumElem * BaseT::getMemoryOpCost(Opcode, SrcVTy->getScalarType(),
3536                                          Alignment, AddressSpace, CostKind);
3537     return MemopCost + ValueSplitCost + MaskSplitCost + MaskCmpCost;
3538   }
3539 
3540   // Legalize the type.
3541   std::pair<InstructionCost, MVT> LT = TLI->getTypeLegalizationCost(DL, SrcVTy);
3542   auto VT = TLI->getValueType(DL, SrcVTy);
3543   InstructionCost Cost = 0;
3544   if (VT.isSimple() && LT.second != VT.getSimpleVT() &&
3545       LT.second.getVectorNumElements() == NumElem)
3546     // Promotion requires extend/truncate for data and a shuffle for mask.
3547     Cost += getShuffleCost(TTI::SK_PermuteTwoSrc, SrcVTy, None, 0, nullptr) +
3548             getShuffleCost(TTI::SK_PermuteTwoSrc, MaskTy, None, 0, nullptr);
3549 
3550   else if (LT.first * LT.second.getVectorNumElements() > NumElem) {
3551     auto *NewMaskTy = FixedVectorType::get(MaskTy->getElementType(),
3552                                            LT.second.getVectorNumElements());
3553     // Expanding requires fill mask with zeroes
3554     Cost += getShuffleCost(TTI::SK_InsertSubvector, NewMaskTy, None, 0, MaskTy);
3555   }
3556 
3557   // Pre-AVX512 - each maskmov load costs 2 + store costs ~8.
3558   if (!ST->hasAVX512())
3559     return Cost + LT.first * (IsLoad ? 2 : 8);
3560 
3561   // AVX-512 masked load/store is cheapper
3562   return Cost + LT.first;
3563 }
3564 
3565 InstructionCost X86TTIImpl::getAddressComputationCost(Type *Ty,
3566                                                       ScalarEvolution *SE,
3567                                                       const SCEV *Ptr) {
3568   // Address computations in vectorized code with non-consecutive addresses will
3569   // likely result in more instructions compared to scalar code where the
3570   // computation can more often be merged into the index mode. The resulting
3571   // extra micro-ops can significantly decrease throughput.
3572   const unsigned NumVectorInstToHideOverhead = 10;
3573 
3574   // Cost modeling of Strided Access Computation is hidden by the indexing
3575   // modes of X86 regardless of the stride value. We dont believe that there
3576   // is a difference between constant strided access in gerenal and constant
3577   // strided value which is less than or equal to 64.
3578   // Even in the case of (loop invariant) stride whose value is not known at
3579   // compile time, the address computation will not incur more than one extra
3580   // ADD instruction.
3581   if (Ty->isVectorTy() && SE) {
3582     if (!BaseT::isStridedAccess(Ptr))
3583       return NumVectorInstToHideOverhead;
3584     if (!BaseT::getConstantStrideStep(SE, Ptr))
3585       return 1;
3586   }
3587 
3588   return BaseT::getAddressComputationCost(Ty, SE, Ptr);
3589 }
3590 
3591 InstructionCost
3592 X86TTIImpl::getArithmeticReductionCost(unsigned Opcode, VectorType *ValTy,
3593                                        bool IsPairwise,
3594                                        TTI::TargetCostKind CostKind) {
3595   // Just use the default implementation for pair reductions.
3596   if (IsPairwise)
3597     return BaseT::getArithmeticReductionCost(Opcode, ValTy, IsPairwise, CostKind);
3598 
3599   // We use the Intel Architecture Code Analyzer(IACA) to measure the throughput
3600   // and make it as the cost.
3601 
3602   static const CostTblEntry SLMCostTblNoPairWise[] = {
3603     { ISD::FADD,  MVT::v2f64,   3 },
3604     { ISD::ADD,   MVT::v2i64,   5 },
3605   };
3606 
3607   static const CostTblEntry SSE2CostTblNoPairWise[] = {
3608     { ISD::FADD,  MVT::v2f64,   2 },
3609     { ISD::FADD,  MVT::v2f32,   2 },
3610     { ISD::FADD,  MVT::v4f32,   4 },
3611     { ISD::ADD,   MVT::v2i64,   2 },      // The data reported by the IACA tool is "1.6".
3612     { ISD::ADD,   MVT::v2i32,   2 }, // FIXME: chosen to be less than v4i32
3613     { ISD::ADD,   MVT::v4i32,   3 },      // The data reported by the IACA tool is "3.3".
3614     { ISD::ADD,   MVT::v2i16,   2 },      // The data reported by the IACA tool is "4.3".
3615     { ISD::ADD,   MVT::v4i16,   3 },      // The data reported by the IACA tool is "4.3".
3616     { ISD::ADD,   MVT::v8i16,   4 },      // The data reported by the IACA tool is "4.3".
3617     { ISD::ADD,   MVT::v2i8,    2 },
3618     { ISD::ADD,   MVT::v4i8,    2 },
3619     { ISD::ADD,   MVT::v8i8,    2 },
3620     { ISD::ADD,   MVT::v16i8,   3 },
3621   };
3622 
3623   static const CostTblEntry AVX1CostTblNoPairWise[] = {
3624     { ISD::FADD,  MVT::v4f64,   3 },
3625     { ISD::FADD,  MVT::v4f32,   3 },
3626     { ISD::FADD,  MVT::v8f32,   4 },
3627     { ISD::ADD,   MVT::v2i64,   1 },      // The data reported by the IACA tool is "1.5".
3628     { ISD::ADD,   MVT::v4i64,   3 },
3629     { ISD::ADD,   MVT::v8i32,   5 },
3630     { ISD::ADD,   MVT::v16i16,  5 },
3631     { ISD::ADD,   MVT::v32i8,   4 },
3632   };
3633 
3634   int ISD = TLI->InstructionOpcodeToISD(Opcode);
3635   assert(ISD && "Invalid opcode");
3636 
3637   // Before legalizing the type, give a chance to look up illegal narrow types
3638   // in the table.
3639   // FIXME: Is there a better way to do this?
3640   EVT VT = TLI->getValueType(DL, ValTy);
3641   if (VT.isSimple()) {
3642     MVT MTy = VT.getSimpleVT();
3643     if (ST->isSLM())
3644       if (const auto *Entry = CostTableLookup(SLMCostTblNoPairWise, ISD, MTy))
3645         return Entry->Cost;
3646 
3647     if (ST->hasAVX())
3648       if (const auto *Entry = CostTableLookup(AVX1CostTblNoPairWise, ISD, MTy))
3649         return Entry->Cost;
3650 
3651     if (ST->hasSSE2())
3652       if (const auto *Entry = CostTableLookup(SSE2CostTblNoPairWise, ISD, MTy))
3653         return Entry->Cost;
3654   }
3655 
3656   std::pair<InstructionCost, MVT> LT = TLI->getTypeLegalizationCost(DL, ValTy);
3657 
3658   MVT MTy = LT.second;
3659 
3660   auto *ValVTy = cast<FixedVectorType>(ValTy);
3661 
3662   // Special case: vXi8 mul reductions are performed as vXi16.
3663   if (ISD == ISD::MUL && MTy.getScalarType() == MVT::i8) {
3664     auto *WideSclTy = IntegerType::get(ValVTy->getContext(), 16);
3665     auto *WideVecTy = FixedVectorType::get(WideSclTy, ValVTy->getNumElements());
3666     return getCastInstrCost(Instruction::ZExt, WideVecTy, ValTy,
3667                             TargetTransformInfo::CastContextHint::None,
3668                             CostKind) +
3669            getArithmeticReductionCost(Opcode, WideVecTy, IsPairwise, CostKind);
3670   }
3671 
3672   InstructionCost ArithmeticCost = 0;
3673   if (LT.first != 1 && MTy.isVector() &&
3674       MTy.getVectorNumElements() < ValVTy->getNumElements()) {
3675     // Type needs to be split. We need LT.first - 1 arithmetic ops.
3676     auto *SingleOpTy = FixedVectorType::get(ValVTy->getElementType(),
3677                                             MTy.getVectorNumElements());
3678     ArithmeticCost = getArithmeticInstrCost(Opcode, SingleOpTy, CostKind);
3679     ArithmeticCost *= LT.first - 1;
3680   }
3681 
3682   if (ST->isSLM())
3683     if (const auto *Entry = CostTableLookup(SLMCostTblNoPairWise, ISD, MTy))
3684       return ArithmeticCost + Entry->Cost;
3685 
3686   if (ST->hasAVX())
3687     if (const auto *Entry = CostTableLookup(AVX1CostTblNoPairWise, ISD, MTy))
3688       return ArithmeticCost + Entry->Cost;
3689 
3690   if (ST->hasSSE2())
3691     if (const auto *Entry = CostTableLookup(SSE2CostTblNoPairWise, ISD, MTy))
3692       return ArithmeticCost + Entry->Cost;
3693 
3694   // FIXME: These assume a naive kshift+binop lowering, which is probably
3695   // conservative in most cases.
3696   static const CostTblEntry AVX512BoolReduction[] = {
3697     { ISD::AND,  MVT::v2i1,   3 },
3698     { ISD::AND,  MVT::v4i1,   5 },
3699     { ISD::AND,  MVT::v8i1,   7 },
3700     { ISD::AND,  MVT::v16i1,  9 },
3701     { ISD::AND,  MVT::v32i1, 11 },
3702     { ISD::AND,  MVT::v64i1, 13 },
3703     { ISD::OR,   MVT::v2i1,   3 },
3704     { ISD::OR,   MVT::v4i1,   5 },
3705     { ISD::OR,   MVT::v8i1,   7 },
3706     { ISD::OR,   MVT::v16i1,  9 },
3707     { ISD::OR,   MVT::v32i1, 11 },
3708     { ISD::OR,   MVT::v64i1, 13 },
3709   };
3710 
3711   static const CostTblEntry AVX2BoolReduction[] = {
3712     { ISD::AND,  MVT::v16i16,  2 }, // vpmovmskb + cmp
3713     { ISD::AND,  MVT::v32i8,   2 }, // vpmovmskb + cmp
3714     { ISD::OR,   MVT::v16i16,  2 }, // vpmovmskb + cmp
3715     { ISD::OR,   MVT::v32i8,   2 }, // vpmovmskb + cmp
3716   };
3717 
3718   static const CostTblEntry AVX1BoolReduction[] = {
3719     { ISD::AND,  MVT::v4i64,   2 }, // vmovmskpd + cmp
3720     { ISD::AND,  MVT::v8i32,   2 }, // vmovmskps + cmp
3721     { ISD::AND,  MVT::v16i16,  4 }, // vextractf128 + vpand + vpmovmskb + cmp
3722     { ISD::AND,  MVT::v32i8,   4 }, // vextractf128 + vpand + vpmovmskb + cmp
3723     { ISD::OR,   MVT::v4i64,   2 }, // vmovmskpd + cmp
3724     { ISD::OR,   MVT::v8i32,   2 }, // vmovmskps + cmp
3725     { ISD::OR,   MVT::v16i16,  4 }, // vextractf128 + vpor + vpmovmskb + cmp
3726     { ISD::OR,   MVT::v32i8,   4 }, // vextractf128 + vpor + vpmovmskb + cmp
3727   };
3728 
3729   static const CostTblEntry SSE2BoolReduction[] = {
3730     { ISD::AND,  MVT::v2i64,   2 }, // movmskpd + cmp
3731     { ISD::AND,  MVT::v4i32,   2 }, // movmskps + cmp
3732     { ISD::AND,  MVT::v8i16,   2 }, // pmovmskb + cmp
3733     { ISD::AND,  MVT::v16i8,   2 }, // pmovmskb + cmp
3734     { ISD::OR,   MVT::v2i64,   2 }, // movmskpd + cmp
3735     { ISD::OR,   MVT::v4i32,   2 }, // movmskps + cmp
3736     { ISD::OR,   MVT::v8i16,   2 }, // pmovmskb + cmp
3737     { ISD::OR,   MVT::v16i8,   2 }, // pmovmskb + cmp
3738   };
3739 
3740   // Handle bool allof/anyof patterns.
3741   if (ValVTy->getElementType()->isIntegerTy(1)) {
3742     InstructionCost ArithmeticCost = 0;
3743     if (LT.first != 1 && MTy.isVector() &&
3744         MTy.getVectorNumElements() < ValVTy->getNumElements()) {
3745       // Type needs to be split. We need LT.first - 1 arithmetic ops.
3746       auto *SingleOpTy = FixedVectorType::get(ValVTy->getElementType(),
3747                                               MTy.getVectorNumElements());
3748       ArithmeticCost = getArithmeticInstrCost(Opcode, SingleOpTy, CostKind);
3749       ArithmeticCost *= LT.first - 1;
3750     }
3751 
3752     if (ST->hasAVX512())
3753       if (const auto *Entry = CostTableLookup(AVX512BoolReduction, ISD, MTy))
3754         return ArithmeticCost + Entry->Cost;
3755     if (ST->hasAVX2())
3756       if (const auto *Entry = CostTableLookup(AVX2BoolReduction, ISD, MTy))
3757         return ArithmeticCost + Entry->Cost;
3758     if (ST->hasAVX())
3759       if (const auto *Entry = CostTableLookup(AVX1BoolReduction, ISD, MTy))
3760         return ArithmeticCost + Entry->Cost;
3761     if (ST->hasSSE2())
3762       if (const auto *Entry = CostTableLookup(SSE2BoolReduction, ISD, MTy))
3763         return ArithmeticCost + Entry->Cost;
3764 
3765     return BaseT::getArithmeticReductionCost(Opcode, ValVTy, IsPairwise,
3766                                              CostKind);
3767   }
3768 
3769   unsigned NumVecElts = ValVTy->getNumElements();
3770   unsigned ScalarSize = ValVTy->getScalarSizeInBits();
3771 
3772   // Special case power of 2 reductions where the scalar type isn't changed
3773   // by type legalization.
3774   if (!isPowerOf2_32(NumVecElts) || ScalarSize != MTy.getScalarSizeInBits())
3775     return BaseT::getArithmeticReductionCost(Opcode, ValVTy, IsPairwise,
3776                                              CostKind);
3777 
3778   InstructionCost ReductionCost = 0;
3779 
3780   auto *Ty = ValVTy;
3781   if (LT.first != 1 && MTy.isVector() &&
3782       MTy.getVectorNumElements() < ValVTy->getNumElements()) {
3783     // Type needs to be split. We need LT.first - 1 arithmetic ops.
3784     Ty = FixedVectorType::get(ValVTy->getElementType(),
3785                               MTy.getVectorNumElements());
3786     ReductionCost = getArithmeticInstrCost(Opcode, Ty, CostKind);
3787     ReductionCost *= LT.first - 1;
3788     NumVecElts = MTy.getVectorNumElements();
3789   }
3790 
3791   // Now handle reduction with the legal type, taking into account size changes
3792   // at each level.
3793   while (NumVecElts > 1) {
3794     // Determine the size of the remaining vector we need to reduce.
3795     unsigned Size = NumVecElts * ScalarSize;
3796     NumVecElts /= 2;
3797     // If we're reducing from 256/512 bits, use an extract_subvector.
3798     if (Size > 128) {
3799       auto *SubTy = FixedVectorType::get(ValVTy->getElementType(), NumVecElts);
3800       ReductionCost +=
3801           getShuffleCost(TTI::SK_ExtractSubvector, Ty, None, NumVecElts, SubTy);
3802       Ty = SubTy;
3803     } else if (Size == 128) {
3804       // Reducing from 128 bits is a permute of v2f64/v2i64.
3805       FixedVectorType *ShufTy;
3806       if (ValVTy->isFloatingPointTy())
3807         ShufTy =
3808             FixedVectorType::get(Type::getDoubleTy(ValVTy->getContext()), 2);
3809       else
3810         ShufTy =
3811             FixedVectorType::get(Type::getInt64Ty(ValVTy->getContext()), 2);
3812       ReductionCost +=
3813           getShuffleCost(TTI::SK_PermuteSingleSrc, ShufTy, None, 0, nullptr);
3814     } else if (Size == 64) {
3815       // Reducing from 64 bits is a shuffle of v4f32/v4i32.
3816       FixedVectorType *ShufTy;
3817       if (ValVTy->isFloatingPointTy())
3818         ShufTy =
3819             FixedVectorType::get(Type::getFloatTy(ValVTy->getContext()), 4);
3820       else
3821         ShufTy =
3822             FixedVectorType::get(Type::getInt32Ty(ValVTy->getContext()), 4);
3823       ReductionCost +=
3824           getShuffleCost(TTI::SK_PermuteSingleSrc, ShufTy, None, 0, nullptr);
3825     } else {
3826       // Reducing from smaller size is a shift by immediate.
3827       auto *ShiftTy = FixedVectorType::get(
3828           Type::getIntNTy(ValVTy->getContext(), Size), 128 / Size);
3829       ReductionCost += getArithmeticInstrCost(
3830           Instruction::LShr, ShiftTy, CostKind,
3831           TargetTransformInfo::OK_AnyValue,
3832           TargetTransformInfo::OK_UniformConstantValue,
3833           TargetTransformInfo::OP_None, TargetTransformInfo::OP_None);
3834     }
3835 
3836     // Add the arithmetic op for this level.
3837     ReductionCost += getArithmeticInstrCost(Opcode, Ty, CostKind);
3838   }
3839 
3840   // Add the final extract element to the cost.
3841   return ReductionCost + getVectorInstrCost(Instruction::ExtractElement, Ty, 0);
3842 }
3843 
3844 InstructionCost X86TTIImpl::getMinMaxCost(Type *Ty, Type *CondTy,
3845                                           bool IsUnsigned) {
3846   std::pair<InstructionCost, MVT> LT = TLI->getTypeLegalizationCost(DL, Ty);
3847 
3848   MVT MTy = LT.second;
3849 
3850   int ISD;
3851   if (Ty->isIntOrIntVectorTy()) {
3852     ISD = IsUnsigned ? ISD::UMIN : ISD::SMIN;
3853   } else {
3854     assert(Ty->isFPOrFPVectorTy() &&
3855            "Expected float point or integer vector type.");
3856     ISD = ISD::FMINNUM;
3857   }
3858 
3859   static const CostTblEntry SSE1CostTbl[] = {
3860     {ISD::FMINNUM, MVT::v4f32, 1},
3861   };
3862 
3863   static const CostTblEntry SSE2CostTbl[] = {
3864     {ISD::FMINNUM, MVT::v2f64, 1},
3865     {ISD::SMIN,    MVT::v8i16, 1},
3866     {ISD::UMIN,    MVT::v16i8, 1},
3867   };
3868 
3869   static const CostTblEntry SSE41CostTbl[] = {
3870     {ISD::SMIN,    MVT::v4i32, 1},
3871     {ISD::UMIN,    MVT::v4i32, 1},
3872     {ISD::UMIN,    MVT::v8i16, 1},
3873     {ISD::SMIN,    MVT::v16i8, 1},
3874   };
3875 
3876   static const CostTblEntry SSE42CostTbl[] = {
3877     {ISD::UMIN,    MVT::v2i64, 3}, // xor+pcmpgtq+blendvpd
3878   };
3879 
3880   static const CostTblEntry AVX1CostTbl[] = {
3881     {ISD::FMINNUM, MVT::v8f32,  1},
3882     {ISD::FMINNUM, MVT::v4f64,  1},
3883     {ISD::SMIN,    MVT::v8i32,  3},
3884     {ISD::UMIN,    MVT::v8i32,  3},
3885     {ISD::SMIN,    MVT::v16i16, 3},
3886     {ISD::UMIN,    MVT::v16i16, 3},
3887     {ISD::SMIN,    MVT::v32i8,  3},
3888     {ISD::UMIN,    MVT::v32i8,  3},
3889   };
3890 
3891   static const CostTblEntry AVX2CostTbl[] = {
3892     {ISD::SMIN,    MVT::v8i32,  1},
3893     {ISD::UMIN,    MVT::v8i32,  1},
3894     {ISD::SMIN,    MVT::v16i16, 1},
3895     {ISD::UMIN,    MVT::v16i16, 1},
3896     {ISD::SMIN,    MVT::v32i8,  1},
3897     {ISD::UMIN,    MVT::v32i8,  1},
3898   };
3899 
3900   static const CostTblEntry AVX512CostTbl[] = {
3901     {ISD::FMINNUM, MVT::v16f32, 1},
3902     {ISD::FMINNUM, MVT::v8f64,  1},
3903     {ISD::SMIN,    MVT::v2i64,  1},
3904     {ISD::UMIN,    MVT::v2i64,  1},
3905     {ISD::SMIN,    MVT::v4i64,  1},
3906     {ISD::UMIN,    MVT::v4i64,  1},
3907     {ISD::SMIN,    MVT::v8i64,  1},
3908     {ISD::UMIN,    MVT::v8i64,  1},
3909     {ISD::SMIN,    MVT::v16i32, 1},
3910     {ISD::UMIN,    MVT::v16i32, 1},
3911   };
3912 
3913   static const CostTblEntry AVX512BWCostTbl[] = {
3914     {ISD::SMIN,    MVT::v32i16, 1},
3915     {ISD::UMIN,    MVT::v32i16, 1},
3916     {ISD::SMIN,    MVT::v64i8,  1},
3917     {ISD::UMIN,    MVT::v64i8,  1},
3918   };
3919 
3920   // If we have a native MIN/MAX instruction for this type, use it.
3921   if (ST->hasBWI())
3922     if (const auto *Entry = CostTableLookup(AVX512BWCostTbl, ISD, MTy))
3923       return LT.first * Entry->Cost;
3924 
3925   if (ST->hasAVX512())
3926     if (const auto *Entry = CostTableLookup(AVX512CostTbl, ISD, MTy))
3927       return LT.first * Entry->Cost;
3928 
3929   if (ST->hasAVX2())
3930     if (const auto *Entry = CostTableLookup(AVX2CostTbl, ISD, MTy))
3931       return LT.first * Entry->Cost;
3932 
3933   if (ST->hasAVX())
3934     if (const auto *Entry = CostTableLookup(AVX1CostTbl, ISD, MTy))
3935       return LT.first * Entry->Cost;
3936 
3937   if (ST->hasSSE42())
3938     if (const auto *Entry = CostTableLookup(SSE42CostTbl, ISD, MTy))
3939       return LT.first * Entry->Cost;
3940 
3941   if (ST->hasSSE41())
3942     if (const auto *Entry = CostTableLookup(SSE41CostTbl, ISD, MTy))
3943       return LT.first * Entry->Cost;
3944 
3945   if (ST->hasSSE2())
3946     if (const auto *Entry = CostTableLookup(SSE2CostTbl, ISD, MTy))
3947       return LT.first * Entry->Cost;
3948 
3949   if (ST->hasSSE1())
3950     if (const auto *Entry = CostTableLookup(SSE1CostTbl, ISD, MTy))
3951       return LT.first * Entry->Cost;
3952 
3953   unsigned CmpOpcode;
3954   if (Ty->isFPOrFPVectorTy()) {
3955     CmpOpcode = Instruction::FCmp;
3956   } else {
3957     assert(Ty->isIntOrIntVectorTy() &&
3958            "expecting floating point or integer type for min/max reduction");
3959     CmpOpcode = Instruction::ICmp;
3960   }
3961 
3962   TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
3963   // Otherwise fall back to cmp+select.
3964   InstructionCost Result =
3965       getCmpSelInstrCost(CmpOpcode, Ty, CondTy, CmpInst::BAD_ICMP_PREDICATE,
3966                          CostKind) +
3967       getCmpSelInstrCost(Instruction::Select, Ty, CondTy,
3968                          CmpInst::BAD_ICMP_PREDICATE, CostKind);
3969   return Result;
3970 }
3971 
3972 InstructionCost
3973 X86TTIImpl::getMinMaxReductionCost(VectorType *ValTy, VectorType *CondTy,
3974                                    bool IsPairwise, bool IsUnsigned,
3975                                    TTI::TargetCostKind CostKind) {
3976   // Just use the default implementation for pair reductions.
3977   if (IsPairwise)
3978     return BaseT::getMinMaxReductionCost(ValTy, CondTy, IsPairwise, IsUnsigned,
3979                                          CostKind);
3980 
3981   std::pair<InstructionCost, MVT> LT = TLI->getTypeLegalizationCost(DL, ValTy);
3982 
3983   MVT MTy = LT.second;
3984 
3985   int ISD;
3986   if (ValTy->isIntOrIntVectorTy()) {
3987     ISD = IsUnsigned ? ISD::UMIN : ISD::SMIN;
3988   } else {
3989     assert(ValTy->isFPOrFPVectorTy() &&
3990            "Expected float point or integer vector type.");
3991     ISD = ISD::FMINNUM;
3992   }
3993 
3994   // We use the Intel Architecture Code Analyzer(IACA) to measure the throughput
3995   // and make it as the cost.
3996 
3997   static const CostTblEntry SSE2CostTblNoPairWise[] = {
3998       {ISD::UMIN, MVT::v2i16, 5}, // need pxors to use pminsw/pmaxsw
3999       {ISD::UMIN, MVT::v4i16, 7}, // need pxors to use pminsw/pmaxsw
4000       {ISD::UMIN, MVT::v8i16, 9}, // need pxors to use pminsw/pmaxsw
4001   };
4002 
4003   static const CostTblEntry SSE41CostTblNoPairWise[] = {
4004       {ISD::SMIN, MVT::v2i16, 3}, // same as sse2
4005       {ISD::SMIN, MVT::v4i16, 5}, // same as sse2
4006       {ISD::UMIN, MVT::v2i16, 5}, // same as sse2
4007       {ISD::UMIN, MVT::v4i16, 7}, // same as sse2
4008       {ISD::SMIN, MVT::v8i16, 4}, // phminposuw+xor
4009       {ISD::UMIN, MVT::v8i16, 4}, // FIXME: umin is cheaper than umax
4010       {ISD::SMIN, MVT::v2i8,  3}, // pminsb
4011       {ISD::SMIN, MVT::v4i8,  5}, // pminsb
4012       {ISD::SMIN, MVT::v8i8,  7}, // pminsb
4013       {ISD::SMIN, MVT::v16i8, 6},
4014       {ISD::UMIN, MVT::v2i8,  3}, // same as sse2
4015       {ISD::UMIN, MVT::v4i8,  5}, // same as sse2
4016       {ISD::UMIN, MVT::v8i8,  7}, // same as sse2
4017       {ISD::UMIN, MVT::v16i8, 6}, // FIXME: umin is cheaper than umax
4018   };
4019 
4020   static const CostTblEntry AVX1CostTblNoPairWise[] = {
4021       {ISD::SMIN, MVT::v16i16, 6},
4022       {ISD::UMIN, MVT::v16i16, 6}, // FIXME: umin is cheaper than umax
4023       {ISD::SMIN, MVT::v32i8, 8},
4024       {ISD::UMIN, MVT::v32i8, 8},
4025   };
4026 
4027   static const CostTblEntry AVX512BWCostTblNoPairWise[] = {
4028       {ISD::SMIN, MVT::v32i16, 8},
4029       {ISD::UMIN, MVT::v32i16, 8}, // FIXME: umin is cheaper than umax
4030       {ISD::SMIN, MVT::v64i8, 10},
4031       {ISD::UMIN, MVT::v64i8, 10},
4032   };
4033 
4034   // Before legalizing the type, give a chance to look up illegal narrow types
4035   // in the table.
4036   // FIXME: Is there a better way to do this?
4037   EVT VT = TLI->getValueType(DL, ValTy);
4038   if (VT.isSimple()) {
4039     MVT MTy = VT.getSimpleVT();
4040     if (ST->hasBWI())
4041       if (const auto *Entry = CostTableLookup(AVX512BWCostTblNoPairWise, ISD, MTy))
4042         return Entry->Cost;
4043 
4044     if (ST->hasAVX())
4045       if (const auto *Entry = CostTableLookup(AVX1CostTblNoPairWise, ISD, MTy))
4046         return Entry->Cost;
4047 
4048     if (ST->hasSSE41())
4049       if (const auto *Entry = CostTableLookup(SSE41CostTblNoPairWise, ISD, MTy))
4050         return Entry->Cost;
4051 
4052     if (ST->hasSSE2())
4053       if (const auto *Entry = CostTableLookup(SSE2CostTblNoPairWise, ISD, MTy))
4054         return Entry->Cost;
4055   }
4056 
4057   auto *ValVTy = cast<FixedVectorType>(ValTy);
4058   unsigned NumVecElts = ValVTy->getNumElements();
4059 
4060   auto *Ty = ValVTy;
4061   InstructionCost MinMaxCost = 0;
4062   if (LT.first != 1 && MTy.isVector() &&
4063       MTy.getVectorNumElements() < ValVTy->getNumElements()) {
4064     // Type needs to be split. We need LT.first - 1 operations ops.
4065     Ty = FixedVectorType::get(ValVTy->getElementType(),
4066                               MTy.getVectorNumElements());
4067     auto *SubCondTy = FixedVectorType::get(CondTy->getElementType(),
4068                                            MTy.getVectorNumElements());
4069     MinMaxCost = getMinMaxCost(Ty, SubCondTy, IsUnsigned);
4070     MinMaxCost *= LT.first - 1;
4071     NumVecElts = MTy.getVectorNumElements();
4072   }
4073 
4074   if (ST->hasBWI())
4075     if (const auto *Entry = CostTableLookup(AVX512BWCostTblNoPairWise, ISD, MTy))
4076       return MinMaxCost + Entry->Cost;
4077 
4078   if (ST->hasAVX())
4079     if (const auto *Entry = CostTableLookup(AVX1CostTblNoPairWise, ISD, MTy))
4080       return MinMaxCost + Entry->Cost;
4081 
4082   if (ST->hasSSE41())
4083     if (const auto *Entry = CostTableLookup(SSE41CostTblNoPairWise, ISD, MTy))
4084       return MinMaxCost + Entry->Cost;
4085 
4086   if (ST->hasSSE2())
4087     if (const auto *Entry = CostTableLookup(SSE2CostTblNoPairWise, ISD, MTy))
4088       return MinMaxCost + Entry->Cost;
4089 
4090   unsigned ScalarSize = ValTy->getScalarSizeInBits();
4091 
4092   // Special case power of 2 reductions where the scalar type isn't changed
4093   // by type legalization.
4094   if (!isPowerOf2_32(ValVTy->getNumElements()) ||
4095       ScalarSize != MTy.getScalarSizeInBits())
4096     return BaseT::getMinMaxReductionCost(ValTy, CondTy, IsPairwise, IsUnsigned,
4097                                          CostKind);
4098 
4099   // Now handle reduction with the legal type, taking into account size changes
4100   // at each level.
4101   while (NumVecElts > 1) {
4102     // Determine the size of the remaining vector we need to reduce.
4103     unsigned Size = NumVecElts * ScalarSize;
4104     NumVecElts /= 2;
4105     // If we're reducing from 256/512 bits, use an extract_subvector.
4106     if (Size > 128) {
4107       auto *SubTy = FixedVectorType::get(ValVTy->getElementType(), NumVecElts);
4108       MinMaxCost +=
4109           getShuffleCost(TTI::SK_ExtractSubvector, Ty, None, NumVecElts, SubTy);
4110       Ty = SubTy;
4111     } else if (Size == 128) {
4112       // Reducing from 128 bits is a permute of v2f64/v2i64.
4113       VectorType *ShufTy;
4114       if (ValTy->isFloatingPointTy())
4115         ShufTy =
4116             FixedVectorType::get(Type::getDoubleTy(ValTy->getContext()), 2);
4117       else
4118         ShufTy = FixedVectorType::get(Type::getInt64Ty(ValTy->getContext()), 2);
4119       MinMaxCost +=
4120           getShuffleCost(TTI::SK_PermuteSingleSrc, ShufTy, None, 0, nullptr);
4121     } else if (Size == 64) {
4122       // Reducing from 64 bits is a shuffle of v4f32/v4i32.
4123       FixedVectorType *ShufTy;
4124       if (ValTy->isFloatingPointTy())
4125         ShufTy = FixedVectorType::get(Type::getFloatTy(ValTy->getContext()), 4);
4126       else
4127         ShufTy = FixedVectorType::get(Type::getInt32Ty(ValTy->getContext()), 4);
4128       MinMaxCost +=
4129           getShuffleCost(TTI::SK_PermuteSingleSrc, ShufTy, None, 0, nullptr);
4130     } else {
4131       // Reducing from smaller size is a shift by immediate.
4132       auto *ShiftTy = FixedVectorType::get(
4133           Type::getIntNTy(ValTy->getContext(), Size), 128 / Size);
4134       MinMaxCost += getArithmeticInstrCost(
4135           Instruction::LShr, ShiftTy, TTI::TCK_RecipThroughput,
4136           TargetTransformInfo::OK_AnyValue,
4137           TargetTransformInfo::OK_UniformConstantValue,
4138           TargetTransformInfo::OP_None, TargetTransformInfo::OP_None);
4139     }
4140 
4141     // Add the arithmetic op for this level.
4142     auto *SubCondTy =
4143         FixedVectorType::get(CondTy->getElementType(), Ty->getNumElements());
4144     MinMaxCost += getMinMaxCost(Ty, SubCondTy, IsUnsigned);
4145   }
4146 
4147   // Add the final extract element to the cost.
4148   return MinMaxCost + getVectorInstrCost(Instruction::ExtractElement, Ty, 0);
4149 }
4150 
4151 /// Calculate the cost of materializing a 64-bit value. This helper
4152 /// method might only calculate a fraction of a larger immediate. Therefore it
4153 /// is valid to return a cost of ZERO.
4154 InstructionCost X86TTIImpl::getIntImmCost(int64_t Val) {
4155   if (Val == 0)
4156     return TTI::TCC_Free;
4157 
4158   if (isInt<32>(Val))
4159     return TTI::TCC_Basic;
4160 
4161   return 2 * TTI::TCC_Basic;
4162 }
4163 
4164 InstructionCost X86TTIImpl::getIntImmCost(const APInt &Imm, Type *Ty,
4165                                           TTI::TargetCostKind CostKind) {
4166   assert(Ty->isIntegerTy());
4167 
4168   unsigned BitSize = Ty->getPrimitiveSizeInBits();
4169   if (BitSize == 0)
4170     return ~0U;
4171 
4172   // Never hoist constants larger than 128bit, because this might lead to
4173   // incorrect code generation or assertions in codegen.
4174   // Fixme: Create a cost model for types larger than i128 once the codegen
4175   // issues have been fixed.
4176   if (BitSize > 128)
4177     return TTI::TCC_Free;
4178 
4179   if (Imm == 0)
4180     return TTI::TCC_Free;
4181 
4182   // Sign-extend all constants to a multiple of 64-bit.
4183   APInt ImmVal = Imm;
4184   if (BitSize % 64 != 0)
4185     ImmVal = Imm.sext(alignTo(BitSize, 64));
4186 
4187   // Split the constant into 64-bit chunks and calculate the cost for each
4188   // chunk.
4189   InstructionCost Cost = 0;
4190   for (unsigned ShiftVal = 0; ShiftVal < BitSize; ShiftVal += 64) {
4191     APInt Tmp = ImmVal.ashr(ShiftVal).sextOrTrunc(64);
4192     int64_t Val = Tmp.getSExtValue();
4193     Cost += getIntImmCost(Val);
4194   }
4195   // We need at least one instruction to materialize the constant.
4196   return std::max<InstructionCost>(1, Cost);
4197 }
4198 
4199 InstructionCost X86TTIImpl::getIntImmCostInst(unsigned Opcode, unsigned Idx,
4200                                               const APInt &Imm, Type *Ty,
4201                                               TTI::TargetCostKind CostKind,
4202                                               Instruction *Inst) {
4203   assert(Ty->isIntegerTy());
4204 
4205   unsigned BitSize = Ty->getPrimitiveSizeInBits();
4206   // There is no cost model for constants with a bit size of 0. Return TCC_Free
4207   // here, so that constant hoisting will ignore this constant.
4208   if (BitSize == 0)
4209     return TTI::TCC_Free;
4210 
4211   unsigned ImmIdx = ~0U;
4212   switch (Opcode) {
4213   default:
4214     return TTI::TCC_Free;
4215   case Instruction::GetElementPtr:
4216     // Always hoist the base address of a GetElementPtr. This prevents the
4217     // creation of new constants for every base constant that gets constant
4218     // folded with the offset.
4219     if (Idx == 0)
4220       return 2 * TTI::TCC_Basic;
4221     return TTI::TCC_Free;
4222   case Instruction::Store:
4223     ImmIdx = 0;
4224     break;
4225   case Instruction::ICmp:
4226     // This is an imperfect hack to prevent constant hoisting of
4227     // compares that might be trying to check if a 64-bit value fits in
4228     // 32-bits. The backend can optimize these cases using a right shift by 32.
4229     // Ideally we would check the compare predicate here. There also other
4230     // similar immediates the backend can use shifts for.
4231     if (Idx == 1 && Imm.getBitWidth() == 64) {
4232       uint64_t ImmVal = Imm.getZExtValue();
4233       if (ImmVal == 0x100000000ULL || ImmVal == 0xffffffff)
4234         return TTI::TCC_Free;
4235     }
4236     ImmIdx = 1;
4237     break;
4238   case Instruction::And:
4239     // We support 64-bit ANDs with immediates with 32-bits of leading zeroes
4240     // by using a 32-bit operation with implicit zero extension. Detect such
4241     // immediates here as the normal path expects bit 31 to be sign extended.
4242     if (Idx == 1 && Imm.getBitWidth() == 64 && isUInt<32>(Imm.getZExtValue()))
4243       return TTI::TCC_Free;
4244     ImmIdx = 1;
4245     break;
4246   case Instruction::Add:
4247   case Instruction::Sub:
4248     // For add/sub, we can use the opposite instruction for INT32_MIN.
4249     if (Idx == 1 && Imm.getBitWidth() == 64 && Imm.getZExtValue() == 0x80000000)
4250       return TTI::TCC_Free;
4251     ImmIdx = 1;
4252     break;
4253   case Instruction::UDiv:
4254   case Instruction::SDiv:
4255   case Instruction::URem:
4256   case Instruction::SRem:
4257     // Division by constant is typically expanded later into a different
4258     // instruction sequence. This completely changes the constants.
4259     // Report them as "free" to stop ConstantHoist from marking them as opaque.
4260     return TTI::TCC_Free;
4261   case Instruction::Mul:
4262   case Instruction::Or:
4263   case Instruction::Xor:
4264     ImmIdx = 1;
4265     break;
4266   // Always return TCC_Free for the shift value of a shift instruction.
4267   case Instruction::Shl:
4268   case Instruction::LShr:
4269   case Instruction::AShr:
4270     if (Idx == 1)
4271       return TTI::TCC_Free;
4272     break;
4273   case Instruction::Trunc:
4274   case Instruction::ZExt:
4275   case Instruction::SExt:
4276   case Instruction::IntToPtr:
4277   case Instruction::PtrToInt:
4278   case Instruction::BitCast:
4279   case Instruction::PHI:
4280   case Instruction::Call:
4281   case Instruction::Select:
4282   case Instruction::Ret:
4283   case Instruction::Load:
4284     break;
4285   }
4286 
4287   if (Idx == ImmIdx) {
4288     int NumConstants = divideCeil(BitSize, 64);
4289     InstructionCost Cost = X86TTIImpl::getIntImmCost(Imm, Ty, CostKind);
4290     return (Cost <= NumConstants * TTI::TCC_Basic)
4291                ? static_cast<int>(TTI::TCC_Free)
4292                : Cost;
4293   }
4294 
4295   return X86TTIImpl::getIntImmCost(Imm, Ty, CostKind);
4296 }
4297 
4298 InstructionCost X86TTIImpl::getIntImmCostIntrin(Intrinsic::ID IID, unsigned Idx,
4299                                                 const APInt &Imm, Type *Ty,
4300                                                 TTI::TargetCostKind CostKind) {
4301   assert(Ty->isIntegerTy());
4302 
4303   unsigned BitSize = Ty->getPrimitiveSizeInBits();
4304   // There is no cost model for constants with a bit size of 0. Return TCC_Free
4305   // here, so that constant hoisting will ignore this constant.
4306   if (BitSize == 0)
4307     return TTI::TCC_Free;
4308 
4309   switch (IID) {
4310   default:
4311     return TTI::TCC_Free;
4312   case Intrinsic::sadd_with_overflow:
4313   case Intrinsic::uadd_with_overflow:
4314   case Intrinsic::ssub_with_overflow:
4315   case Intrinsic::usub_with_overflow:
4316   case Intrinsic::smul_with_overflow:
4317   case Intrinsic::umul_with_overflow:
4318     if ((Idx == 1) && Imm.getBitWidth() <= 64 && isInt<32>(Imm.getSExtValue()))
4319       return TTI::TCC_Free;
4320     break;
4321   case Intrinsic::experimental_stackmap:
4322     if ((Idx < 2) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue())))
4323       return TTI::TCC_Free;
4324     break;
4325   case Intrinsic::experimental_patchpoint_void:
4326   case Intrinsic::experimental_patchpoint_i64:
4327     if ((Idx < 4) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue())))
4328       return TTI::TCC_Free;
4329     break;
4330   }
4331   return X86TTIImpl::getIntImmCost(Imm, Ty, CostKind);
4332 }
4333 
4334 InstructionCost X86TTIImpl::getCFInstrCost(unsigned Opcode,
4335                                            TTI::TargetCostKind CostKind,
4336                                            const Instruction *I) {
4337   if (CostKind != TTI::TCK_RecipThroughput)
4338     return Opcode == Instruction::PHI ? 0 : 1;
4339   // Branches are assumed to be predicted.
4340   return 0;
4341 }
4342 
4343 int X86TTIImpl::getGatherOverhead() const {
4344   // Some CPUs have more overhead for gather. The specified overhead is relative
4345   // to the Load operation. "2" is the number provided by Intel architects. This
4346   // parameter is used for cost estimation of Gather Op and comparison with
4347   // other alternatives.
4348   // TODO: Remove the explicit hasAVX512()?, That would mean we would only
4349   // enable gather with a -march.
4350   if (ST->hasAVX512() || (ST->hasAVX2() && ST->hasFastGather()))
4351     return 2;
4352 
4353   return 1024;
4354 }
4355 
4356 int X86TTIImpl::getScatterOverhead() const {
4357   if (ST->hasAVX512())
4358     return 2;
4359 
4360   return 1024;
4361 }
4362 
4363 // Return an average cost of Gather / Scatter instruction, maybe improved later.
4364 // FIXME: Add TargetCostKind support.
4365 InstructionCost X86TTIImpl::getGSVectorCost(unsigned Opcode, Type *SrcVTy,
4366                                             const Value *Ptr, Align Alignment,
4367                                             unsigned AddressSpace) {
4368 
4369   assert(isa<VectorType>(SrcVTy) && "Unexpected type in getGSVectorCost");
4370   unsigned VF = cast<FixedVectorType>(SrcVTy)->getNumElements();
4371 
4372   // Try to reduce index size from 64 bit (default for GEP)
4373   // to 32. It is essential for VF 16. If the index can't be reduced to 32, the
4374   // operation will use 16 x 64 indices which do not fit in a zmm and needs
4375   // to split. Also check that the base pointer is the same for all lanes,
4376   // and that there's at most one variable index.
4377   auto getIndexSizeInBits = [](const Value *Ptr, const DataLayout &DL) {
4378     unsigned IndexSize = DL.getPointerSizeInBits();
4379     const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr);
4380     if (IndexSize < 64 || !GEP)
4381       return IndexSize;
4382 
4383     unsigned NumOfVarIndices = 0;
4384     const Value *Ptrs = GEP->getPointerOperand();
4385     if (Ptrs->getType()->isVectorTy() && !getSplatValue(Ptrs))
4386       return IndexSize;
4387     for (unsigned i = 1; i < GEP->getNumOperands(); ++i) {
4388       if (isa<Constant>(GEP->getOperand(i)))
4389         continue;
4390       Type *IndxTy = GEP->getOperand(i)->getType();
4391       if (auto *IndexVTy = dyn_cast<VectorType>(IndxTy))
4392         IndxTy = IndexVTy->getElementType();
4393       if ((IndxTy->getPrimitiveSizeInBits() == 64 &&
4394           !isa<SExtInst>(GEP->getOperand(i))) ||
4395          ++NumOfVarIndices > 1)
4396         return IndexSize; // 64
4397     }
4398     return (unsigned)32;
4399   };
4400 
4401   // Trying to reduce IndexSize to 32 bits for vector 16.
4402   // By default the IndexSize is equal to pointer size.
4403   unsigned IndexSize = (ST->hasAVX512() && VF >= 16)
4404                            ? getIndexSizeInBits(Ptr, DL)
4405                            : DL.getPointerSizeInBits();
4406 
4407   auto *IndexVTy = FixedVectorType::get(
4408       IntegerType::get(SrcVTy->getContext(), IndexSize), VF);
4409   std::pair<InstructionCost, MVT> IdxsLT =
4410       TLI->getTypeLegalizationCost(DL, IndexVTy);
4411   std::pair<InstructionCost, MVT> SrcLT =
4412       TLI->getTypeLegalizationCost(DL, SrcVTy);
4413   InstructionCost::CostType SplitFactor =
4414       *std::max(IdxsLT.first, SrcLT.first).getValue();
4415   if (SplitFactor > 1) {
4416     // Handle splitting of vector of pointers
4417     auto *SplitSrcTy =
4418         FixedVectorType::get(SrcVTy->getScalarType(), VF / SplitFactor);
4419     return SplitFactor * getGSVectorCost(Opcode, SplitSrcTy, Ptr, Alignment,
4420                                          AddressSpace);
4421   }
4422 
4423   // The gather / scatter cost is given by Intel architects. It is a rough
4424   // number since we are looking at one instruction in a time.
4425   const int GSOverhead = (Opcode == Instruction::Load)
4426                              ? getGatherOverhead()
4427                              : getScatterOverhead();
4428   return GSOverhead + VF * getMemoryOpCost(Opcode, SrcVTy->getScalarType(),
4429                                            MaybeAlign(Alignment), AddressSpace,
4430                                            TTI::TCK_RecipThroughput);
4431 }
4432 
4433 /// Return the cost of full scalarization of gather / scatter operation.
4434 ///
4435 /// Opcode - Load or Store instruction.
4436 /// SrcVTy - The type of the data vector that should be gathered or scattered.
4437 /// VariableMask - The mask is non-constant at compile time.
4438 /// Alignment - Alignment for one element.
4439 /// AddressSpace - pointer[s] address space.
4440 ///
4441 /// FIXME: Add TargetCostKind support.
4442 InstructionCost X86TTIImpl::getGSScalarCost(unsigned Opcode, Type *SrcVTy,
4443                                             bool VariableMask, Align Alignment,
4444                                             unsigned AddressSpace) {
4445   unsigned VF = cast<FixedVectorType>(SrcVTy)->getNumElements();
4446   APInt DemandedElts = APInt::getAllOnesValue(VF);
4447   TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
4448 
4449   InstructionCost MaskUnpackCost = 0;
4450   if (VariableMask) {
4451     auto *MaskTy =
4452         FixedVectorType::get(Type::getInt1Ty(SrcVTy->getContext()), VF);
4453     MaskUnpackCost =
4454         getScalarizationOverhead(MaskTy, DemandedElts, false, true);
4455     InstructionCost ScalarCompareCost = getCmpSelInstrCost(
4456         Instruction::ICmp, Type::getInt1Ty(SrcVTy->getContext()), nullptr,
4457         CmpInst::BAD_ICMP_PREDICATE, CostKind);
4458     InstructionCost BranchCost = getCFInstrCost(Instruction::Br, CostKind);
4459     MaskUnpackCost += VF * (BranchCost + ScalarCompareCost);
4460   }
4461 
4462   // The cost of the scalar loads/stores.
4463   InstructionCost MemoryOpCost =
4464       VF * getMemoryOpCost(Opcode, SrcVTy->getScalarType(),
4465                            MaybeAlign(Alignment), AddressSpace, CostKind);
4466 
4467   InstructionCost InsertExtractCost = 0;
4468   if (Opcode == Instruction::Load)
4469     for (unsigned i = 0; i < VF; ++i)
4470       // Add the cost of inserting each scalar load into the vector
4471       InsertExtractCost +=
4472         getVectorInstrCost(Instruction::InsertElement, SrcVTy, i);
4473   else
4474     for (unsigned i = 0; i < VF; ++i)
4475       // Add the cost of extracting each element out of the data vector
4476       InsertExtractCost +=
4477         getVectorInstrCost(Instruction::ExtractElement, SrcVTy, i);
4478 
4479   return MemoryOpCost + MaskUnpackCost + InsertExtractCost;
4480 }
4481 
4482 /// Calculate the cost of Gather / Scatter operation
4483 InstructionCost X86TTIImpl::getGatherScatterOpCost(
4484     unsigned Opcode, Type *SrcVTy, const Value *Ptr, bool VariableMask,
4485     Align Alignment, TTI::TargetCostKind CostKind,
4486     const Instruction *I = nullptr) {
4487   if (CostKind != TTI::TCK_RecipThroughput) {
4488     if ((Opcode == Instruction::Load &&
4489          isLegalMaskedGather(SrcVTy, Align(Alignment))) ||
4490         (Opcode == Instruction::Store &&
4491          isLegalMaskedScatter(SrcVTy, Align(Alignment))))
4492       return 1;
4493     return BaseT::getGatherScatterOpCost(Opcode, SrcVTy, Ptr, VariableMask,
4494                                          Alignment, CostKind, I);
4495   }
4496 
4497   assert(SrcVTy->isVectorTy() && "Unexpected data type for Gather/Scatter");
4498   unsigned VF = cast<FixedVectorType>(SrcVTy)->getNumElements();
4499   PointerType *PtrTy = dyn_cast<PointerType>(Ptr->getType());
4500   if (!PtrTy && Ptr->getType()->isVectorTy())
4501     PtrTy = dyn_cast<PointerType>(
4502         cast<VectorType>(Ptr->getType())->getElementType());
4503   assert(PtrTy && "Unexpected type for Ptr argument");
4504   unsigned AddressSpace = PtrTy->getAddressSpace();
4505 
4506   bool Scalarize = false;
4507   if ((Opcode == Instruction::Load &&
4508        !isLegalMaskedGather(SrcVTy, Align(Alignment))) ||
4509       (Opcode == Instruction::Store &&
4510        !isLegalMaskedScatter(SrcVTy, Align(Alignment))))
4511     Scalarize = true;
4512   // Gather / Scatter for vector 2 is not profitable on KNL / SKX
4513   // Vector-4 of gather/scatter instruction does not exist on KNL.
4514   // We can extend it to 8 elements, but zeroing upper bits of
4515   // the mask vector will add more instructions. Right now we give the scalar
4516   // cost of vector-4 for KNL. TODO: Check, maybe the gather/scatter instruction
4517   // is better in the VariableMask case.
4518   if (ST->hasAVX512() && (VF == 2 || (VF == 4 && !ST->hasVLX())))
4519     Scalarize = true;
4520 
4521   if (Scalarize)
4522     return getGSScalarCost(Opcode, SrcVTy, VariableMask, Alignment,
4523                            AddressSpace);
4524 
4525   return getGSVectorCost(Opcode, SrcVTy, Ptr, Alignment, AddressSpace);
4526 }
4527 
4528 bool X86TTIImpl::isLSRCostLess(TargetTransformInfo::LSRCost &C1,
4529                                TargetTransformInfo::LSRCost &C2) {
4530     // X86 specific here are "instruction number 1st priority".
4531     return std::tie(C1.Insns, C1.NumRegs, C1.AddRecCost,
4532                     C1.NumIVMuls, C1.NumBaseAdds,
4533                     C1.ScaleCost, C1.ImmCost, C1.SetupCost) <
4534            std::tie(C2.Insns, C2.NumRegs, C2.AddRecCost,
4535                     C2.NumIVMuls, C2.NumBaseAdds,
4536                     C2.ScaleCost, C2.ImmCost, C2.SetupCost);
4537 }
4538 
4539 bool X86TTIImpl::canMacroFuseCmp() {
4540   return ST->hasMacroFusion() || ST->hasBranchFusion();
4541 }
4542 
4543 bool X86TTIImpl::isLegalMaskedLoad(Type *DataTy, Align Alignment) {
4544   if (!ST->hasAVX())
4545     return false;
4546 
4547   // The backend can't handle a single element vector.
4548   if (isa<VectorType>(DataTy) &&
4549       cast<FixedVectorType>(DataTy)->getNumElements() == 1)
4550     return false;
4551   Type *ScalarTy = DataTy->getScalarType();
4552 
4553   if (ScalarTy->isPointerTy())
4554     return true;
4555 
4556   if (ScalarTy->isFloatTy() || ScalarTy->isDoubleTy())
4557     return true;
4558 
4559   if (!ScalarTy->isIntegerTy())
4560     return false;
4561 
4562   unsigned IntWidth = ScalarTy->getIntegerBitWidth();
4563   return IntWidth == 32 || IntWidth == 64 ||
4564          ((IntWidth == 8 || IntWidth == 16) && ST->hasBWI());
4565 }
4566 
4567 bool X86TTIImpl::isLegalMaskedStore(Type *DataType, Align Alignment) {
4568   return isLegalMaskedLoad(DataType, Alignment);
4569 }
4570 
4571 bool X86TTIImpl::isLegalNTLoad(Type *DataType, Align Alignment) {
4572   unsigned DataSize = DL.getTypeStoreSize(DataType);
4573   // The only supported nontemporal loads are for aligned vectors of 16 or 32
4574   // bytes.  Note that 32-byte nontemporal vector loads are supported by AVX2
4575   // (the equivalent stores only require AVX).
4576   if (Alignment >= DataSize && (DataSize == 16 || DataSize == 32))
4577     return DataSize == 16 ?  ST->hasSSE1() : ST->hasAVX2();
4578 
4579   return false;
4580 }
4581 
4582 bool X86TTIImpl::isLegalNTStore(Type *DataType, Align Alignment) {
4583   unsigned DataSize = DL.getTypeStoreSize(DataType);
4584 
4585   // SSE4A supports nontemporal stores of float and double at arbitrary
4586   // alignment.
4587   if (ST->hasSSE4A() && (DataType->isFloatTy() || DataType->isDoubleTy()))
4588     return true;
4589 
4590   // Besides the SSE4A subtarget exception above, only aligned stores are
4591   // available nontemporaly on any other subtarget.  And only stores with a size
4592   // of 4..32 bytes (powers of 2, only) are permitted.
4593   if (Alignment < DataSize || DataSize < 4 || DataSize > 32 ||
4594       !isPowerOf2_32(DataSize))
4595     return false;
4596 
4597   // 32-byte vector nontemporal stores are supported by AVX (the equivalent
4598   // loads require AVX2).
4599   if (DataSize == 32)
4600     return ST->hasAVX();
4601   else if (DataSize == 16)
4602     return ST->hasSSE1();
4603   return true;
4604 }
4605 
4606 bool X86TTIImpl::isLegalMaskedExpandLoad(Type *DataTy) {
4607   if (!isa<VectorType>(DataTy))
4608     return false;
4609 
4610   if (!ST->hasAVX512())
4611     return false;
4612 
4613   // The backend can't handle a single element vector.
4614   if (cast<FixedVectorType>(DataTy)->getNumElements() == 1)
4615     return false;
4616 
4617   Type *ScalarTy = cast<VectorType>(DataTy)->getElementType();
4618 
4619   if (ScalarTy->isFloatTy() || ScalarTy->isDoubleTy())
4620     return true;
4621 
4622   if (!ScalarTy->isIntegerTy())
4623     return false;
4624 
4625   unsigned IntWidth = ScalarTy->getIntegerBitWidth();
4626   return IntWidth == 32 || IntWidth == 64 ||
4627          ((IntWidth == 8 || IntWidth == 16) && ST->hasVBMI2());
4628 }
4629 
4630 bool X86TTIImpl::isLegalMaskedCompressStore(Type *DataTy) {
4631   return isLegalMaskedExpandLoad(DataTy);
4632 }
4633 
4634 bool X86TTIImpl::isLegalMaskedGather(Type *DataTy, Align Alignment) {
4635   // Some CPUs have better gather performance than others.
4636   // TODO: Remove the explicit ST->hasAVX512()?, That would mean we would only
4637   // enable gather with a -march.
4638   if (!(ST->hasAVX512() || (ST->hasFastGather() && ST->hasAVX2())))
4639     return false;
4640 
4641   // This function is called now in two cases: from the Loop Vectorizer
4642   // and from the Scalarizer.
4643   // When the Loop Vectorizer asks about legality of the feature,
4644   // the vectorization factor is not calculated yet. The Loop Vectorizer
4645   // sends a scalar type and the decision is based on the width of the
4646   // scalar element.
4647   // Later on, the cost model will estimate usage this intrinsic based on
4648   // the vector type.
4649   // The Scalarizer asks again about legality. It sends a vector type.
4650   // In this case we can reject non-power-of-2 vectors.
4651   // We also reject single element vectors as the type legalizer can't
4652   // scalarize it.
4653   if (auto *DataVTy = dyn_cast<FixedVectorType>(DataTy)) {
4654     unsigned NumElts = DataVTy->getNumElements();
4655     if (NumElts == 1)
4656       return false;
4657   }
4658   Type *ScalarTy = DataTy->getScalarType();
4659   if (ScalarTy->isPointerTy())
4660     return true;
4661 
4662   if (ScalarTy->isFloatTy() || ScalarTy->isDoubleTy())
4663     return true;
4664 
4665   if (!ScalarTy->isIntegerTy())
4666     return false;
4667 
4668   unsigned IntWidth = ScalarTy->getIntegerBitWidth();
4669   return IntWidth == 32 || IntWidth == 64;
4670 }
4671 
4672 bool X86TTIImpl::isLegalMaskedScatter(Type *DataType, Align Alignment) {
4673   // AVX2 doesn't support scatter
4674   if (!ST->hasAVX512())
4675     return false;
4676   return isLegalMaskedGather(DataType, Alignment);
4677 }
4678 
4679 bool X86TTIImpl::hasDivRemOp(Type *DataType, bool IsSigned) {
4680   EVT VT = TLI->getValueType(DL, DataType);
4681   return TLI->isOperationLegal(IsSigned ? ISD::SDIVREM : ISD::UDIVREM, VT);
4682 }
4683 
4684 bool X86TTIImpl::isFCmpOrdCheaperThanFCmpZero(Type *Ty) {
4685   return false;
4686 }
4687 
4688 bool X86TTIImpl::areInlineCompatible(const Function *Caller,
4689                                      const Function *Callee) const {
4690   const TargetMachine &TM = getTLI()->getTargetMachine();
4691 
4692   // Work this as a subsetting of subtarget features.
4693   const FeatureBitset &CallerBits =
4694       TM.getSubtargetImpl(*Caller)->getFeatureBits();
4695   const FeatureBitset &CalleeBits =
4696       TM.getSubtargetImpl(*Callee)->getFeatureBits();
4697 
4698   FeatureBitset RealCallerBits = CallerBits & ~InlineFeatureIgnoreList;
4699   FeatureBitset RealCalleeBits = CalleeBits & ~InlineFeatureIgnoreList;
4700   return (RealCallerBits & RealCalleeBits) == RealCalleeBits;
4701 }
4702 
4703 bool X86TTIImpl::areFunctionArgsABICompatible(
4704     const Function *Caller, const Function *Callee,
4705     SmallPtrSetImpl<Argument *> &Args) const {
4706   if (!BaseT::areFunctionArgsABICompatible(Caller, Callee, Args))
4707     return false;
4708 
4709   // If we get here, we know the target features match. If one function
4710   // considers 512-bit vectors legal and the other does not, consider them
4711   // incompatible.
4712   const TargetMachine &TM = getTLI()->getTargetMachine();
4713 
4714   if (TM.getSubtarget<X86Subtarget>(*Caller).useAVX512Regs() ==
4715       TM.getSubtarget<X86Subtarget>(*Callee).useAVX512Regs())
4716     return true;
4717 
4718   // Consider the arguments compatible if they aren't vectors or aggregates.
4719   // FIXME: Look at the size of vectors.
4720   // FIXME: Look at the element types of aggregates to see if there are vectors.
4721   // FIXME: The API of this function seems intended to allow arguments
4722   // to be removed from the set, but the caller doesn't check if the set
4723   // becomes empty so that may not work in practice.
4724   return llvm::none_of(Args, [](Argument *A) {
4725     auto *EltTy = cast<PointerType>(A->getType())->getElementType();
4726     return EltTy->isVectorTy() || EltTy->isAggregateType();
4727   });
4728 }
4729 
4730 X86TTIImpl::TTI::MemCmpExpansionOptions
4731 X86TTIImpl::enableMemCmpExpansion(bool OptSize, bool IsZeroCmp) const {
4732   TTI::MemCmpExpansionOptions Options;
4733   Options.MaxNumLoads = TLI->getMaxExpandSizeMemcmp(OptSize);
4734   Options.NumLoadsPerBlock = 2;
4735   // All GPR and vector loads can be unaligned.
4736   Options.AllowOverlappingLoads = true;
4737   if (IsZeroCmp) {
4738     // Only enable vector loads for equality comparison. Right now the vector
4739     // version is not as fast for three way compare (see #33329).
4740     const unsigned PreferredWidth = ST->getPreferVectorWidth();
4741     if (PreferredWidth >= 512 && ST->hasAVX512()) Options.LoadSizes.push_back(64);
4742     if (PreferredWidth >= 256 && ST->hasAVX()) Options.LoadSizes.push_back(32);
4743     if (PreferredWidth >= 128 && ST->hasSSE2()) Options.LoadSizes.push_back(16);
4744   }
4745   if (ST->is64Bit()) {
4746     Options.LoadSizes.push_back(8);
4747   }
4748   Options.LoadSizes.push_back(4);
4749   Options.LoadSizes.push_back(2);
4750   Options.LoadSizes.push_back(1);
4751   return Options;
4752 }
4753 
4754 bool X86TTIImpl::enableInterleavedAccessVectorization() {
4755   // TODO: We expect this to be beneficial regardless of arch,
4756   // but there are currently some unexplained performance artifacts on Atom.
4757   // As a temporary solution, disable on Atom.
4758   return !(ST->isAtom());
4759 }
4760 
4761 // Get estimation for interleaved load/store operations for AVX2.
4762 // \p Factor is the interleaved-access factor (stride) - number of
4763 // (interleaved) elements in the group.
4764 // \p Indices contains the indices for a strided load: when the
4765 // interleaved load has gaps they indicate which elements are used.
4766 // If Indices is empty (or if the number of indices is equal to the size
4767 // of the interleaved-access as given in \p Factor) the access has no gaps.
4768 //
4769 // As opposed to AVX-512, AVX2 does not have generic shuffles that allow
4770 // computing the cost using a generic formula as a function of generic
4771 // shuffles. We therefore use a lookup table instead, filled according to
4772 // the instruction sequences that codegen currently generates.
4773 InstructionCost X86TTIImpl::getInterleavedMemoryOpCostAVX2(
4774     unsigned Opcode, FixedVectorType *VecTy, unsigned Factor,
4775     ArrayRef<unsigned> Indices, Align Alignment, unsigned AddressSpace,
4776     TTI::TargetCostKind CostKind, bool UseMaskForCond, bool UseMaskForGaps) {
4777 
4778   if (UseMaskForCond || UseMaskForGaps)
4779     return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices,
4780                                              Alignment, AddressSpace, CostKind,
4781                                              UseMaskForCond, UseMaskForGaps);
4782 
4783   // We currently Support only fully-interleaved groups, with no gaps.
4784   // TODO: Support also strided loads (interleaved-groups with gaps).
4785   if (Indices.size() && Indices.size() != Factor)
4786     return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices,
4787                                              Alignment, AddressSpace, CostKind);
4788 
4789   // VecTy for interleave memop is <VF*Factor x Elt>.
4790   // So, for VF=4, Interleave Factor = 3, Element type = i32 we have
4791   // VecTy = <12 x i32>.
4792   MVT LegalVT = getTLI()->getTypeLegalizationCost(DL, VecTy).second;
4793 
4794   // This function can be called with VecTy=<6xi128>, Factor=3, in which case
4795   // the VF=2, while v2i128 is an unsupported MVT vector type
4796   // (see MachineValueType.h::getVectorVT()).
4797   if (!LegalVT.isVector())
4798     return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices,
4799                                              Alignment, AddressSpace, CostKind);
4800 
4801   unsigned VF = VecTy->getNumElements() / Factor;
4802   Type *ScalarTy = VecTy->getElementType();
4803   // Deduplicate entries, model floats/pointers as appropriately-sized integers.
4804   if (!ScalarTy->isIntegerTy())
4805     ScalarTy =
4806         Type::getIntNTy(ScalarTy->getContext(), DL.getTypeSizeInBits(ScalarTy));
4807 
4808   // Get the cost of all the memory operations.
4809   InstructionCost MemOpCosts = getMemoryOpCost(
4810       Opcode, VecTy, MaybeAlign(Alignment), AddressSpace, CostKind);
4811 
4812   auto *VT = FixedVectorType::get(ScalarTy, VF);
4813   EVT ETy = TLI->getValueType(DL, VT);
4814   if (!ETy.isSimple())
4815     return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices,
4816                                              Alignment, AddressSpace, CostKind);
4817 
4818   // TODO: Complete for other data-types and strides.
4819   // Each combination of Stride, element bit width and VF results in a different
4820   // sequence; The cost tables are therefore accessed with:
4821   // Factor (stride) and VectorType=VFxiN.
4822   // The Cost accounts only for the shuffle sequence;
4823   // The cost of the loads/stores is accounted for separately.
4824   //
4825   static const CostTblEntry AVX2InterleavedLoadTbl[] = {
4826       {2, MVT::v4i64, 6}, // (load 8i64 and) deinterleave into 2 x 4i64
4827 
4828       {3, MVT::v2i8, 10},  // (load 6i8 and) deinterleave into 3 x 2i8
4829       {3, MVT::v4i8, 4},   // (load 12i8 and) deinterleave into 3 x 4i8
4830       {3, MVT::v8i8, 9},   // (load 24i8 and) deinterleave into 3 x 8i8
4831       {3, MVT::v16i8, 11}, // (load 48i8 and) deinterleave into 3 x 16i8
4832       {3, MVT::v32i8, 13}, // (load 96i8 and) deinterleave into 3 x 32i8
4833 
4834       {3, MVT::v8i32, 17}, // (load 24i32 and) deinterleave into 3 x 8i32
4835 
4836       {4, MVT::v2i8, 12},  // (load 8i8 and) deinterleave into 4 x 2i8
4837       {4, MVT::v4i8, 4},   // (load 16i8 and) deinterleave into 4 x 4i8
4838       {4, MVT::v8i8, 20},  // (load 32i8 and) deinterleave into 4 x 8i8
4839       {4, MVT::v16i8, 39}, // (load 64i8 and) deinterleave into 4 x 16i8
4840       {4, MVT::v32i8, 80}, // (load 128i8 and) deinterleave into 4 x 32i8
4841 
4842       {8, MVT::v8i32, 40} // (load 64i32 and) deinterleave into 8 x 8i32
4843   };
4844 
4845   static const CostTblEntry AVX2InterleavedStoreTbl[] = {
4846       {2, MVT::v4i64, 6}, // interleave 2 x 4i64 into 8i64 (and store)
4847 
4848       {3, MVT::v2i8, 7},   // interleave 3 x 2i8 into 6i8 (and store)
4849       {3, MVT::v4i8, 8},   // interleave 3 x 4i8 into 12i8 (and store)
4850       {3, MVT::v8i8, 11},  // interleave 3 x 8i8 into 24i8 (and store)
4851       {3, MVT::v16i8, 11}, // interleave 3 x 16i8 into 48i8 (and store)
4852       {3, MVT::v32i8, 13}, // interleave 3 x 32i8 into 96i8 (and store)
4853 
4854       {4, MVT::v2i8, 12},  // interleave 4 x 2i8 into 8i8 (and store)
4855       {4, MVT::v4i8, 9},   // interleave 4 x 4i8 into 16i8 (and store)
4856       {4, MVT::v8i8, 10},  // interleave 4 x 8i8 into 32i8 (and store)
4857       {4, MVT::v16i8, 10}, // interleave 4 x 16i8 into 64i8 (and store)
4858       {4, MVT::v32i8, 12}  // interleave 4 x 32i8 into 128i8 (and store)
4859   };
4860 
4861   if (Opcode == Instruction::Load) {
4862     if (const auto *Entry =
4863             CostTableLookup(AVX2InterleavedLoadTbl, Factor, ETy.getSimpleVT()))
4864       return MemOpCosts + Entry->Cost;
4865   } else {
4866     assert(Opcode == Instruction::Store &&
4867            "Expected Store Instruction at this  point");
4868     if (const auto *Entry =
4869             CostTableLookup(AVX2InterleavedStoreTbl, Factor, ETy.getSimpleVT()))
4870       return MemOpCosts + Entry->Cost;
4871   }
4872 
4873   return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices,
4874                                            Alignment, AddressSpace, CostKind);
4875 }
4876 
4877 // Get estimation for interleaved load/store operations and strided load.
4878 // \p Indices contains indices for strided load.
4879 // \p Factor - the factor of interleaving.
4880 // AVX-512 provides 3-src shuffles that significantly reduces the cost.
4881 InstructionCost X86TTIImpl::getInterleavedMemoryOpCostAVX512(
4882     unsigned Opcode, FixedVectorType *VecTy, unsigned Factor,
4883     ArrayRef<unsigned> Indices, Align Alignment, unsigned AddressSpace,
4884     TTI::TargetCostKind CostKind, bool UseMaskForCond, bool UseMaskForGaps) {
4885 
4886   if (UseMaskForCond || UseMaskForGaps)
4887     return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices,
4888                                              Alignment, AddressSpace, CostKind,
4889                                              UseMaskForCond, UseMaskForGaps);
4890 
4891   // VecTy for interleave memop is <VF*Factor x Elt>.
4892   // So, for VF=4, Interleave Factor = 3, Element type = i32 we have
4893   // VecTy = <12 x i32>.
4894 
4895   // Calculate the number of memory operations (NumOfMemOps), required
4896   // for load/store the VecTy.
4897   MVT LegalVT = getTLI()->getTypeLegalizationCost(DL, VecTy).second;
4898   unsigned VecTySize = DL.getTypeStoreSize(VecTy);
4899   unsigned LegalVTSize = LegalVT.getStoreSize();
4900   unsigned NumOfMemOps = (VecTySize + LegalVTSize - 1) / LegalVTSize;
4901 
4902   // Get the cost of one memory operation.
4903   auto *SingleMemOpTy = FixedVectorType::get(VecTy->getElementType(),
4904                                              LegalVT.getVectorNumElements());
4905   InstructionCost MemOpCost = getMemoryOpCost(
4906       Opcode, SingleMemOpTy, MaybeAlign(Alignment), AddressSpace, CostKind);
4907 
4908   unsigned VF = VecTy->getNumElements() / Factor;
4909   MVT VT = MVT::getVectorVT(MVT::getVT(VecTy->getScalarType()), VF);
4910 
4911   if (Opcode == Instruction::Load) {
4912     // The tables (AVX512InterleavedLoadTbl and AVX512InterleavedStoreTbl)
4913     // contain the cost of the optimized shuffle sequence that the
4914     // X86InterleavedAccess pass will generate.
4915     // The cost of loads and stores are computed separately from the table.
4916 
4917     // X86InterleavedAccess support only the following interleaved-access group.
4918     static const CostTblEntry AVX512InterleavedLoadTbl[] = {
4919         {3, MVT::v16i8, 12}, //(load 48i8 and) deinterleave into 3 x 16i8
4920         {3, MVT::v32i8, 14}, //(load 96i8 and) deinterleave into 3 x 32i8
4921         {3, MVT::v64i8, 22}, //(load 96i8 and) deinterleave into 3 x 32i8
4922     };
4923 
4924     if (const auto *Entry =
4925             CostTableLookup(AVX512InterleavedLoadTbl, Factor, VT))
4926       return NumOfMemOps * MemOpCost + Entry->Cost;
4927     //If an entry does not exist, fallback to the default implementation.
4928 
4929     // Kind of shuffle depends on number of loaded values.
4930     // If we load the entire data in one register, we can use a 1-src shuffle.
4931     // Otherwise, we'll merge 2 sources in each operation.
4932     TTI::ShuffleKind ShuffleKind =
4933         (NumOfMemOps > 1) ? TTI::SK_PermuteTwoSrc : TTI::SK_PermuteSingleSrc;
4934 
4935     InstructionCost ShuffleCost =
4936         getShuffleCost(ShuffleKind, SingleMemOpTy, None, 0, nullptr);
4937 
4938     unsigned NumOfLoadsInInterleaveGrp =
4939         Indices.size() ? Indices.size() : Factor;
4940     auto *ResultTy = FixedVectorType::get(VecTy->getElementType(),
4941                                           VecTy->getNumElements() / Factor);
4942     InstructionCost NumOfResults =
4943         getTLI()->getTypeLegalizationCost(DL, ResultTy).first *
4944         NumOfLoadsInInterleaveGrp;
4945 
4946     // About a half of the loads may be folded in shuffles when we have only
4947     // one result. If we have more than one result, we do not fold loads at all.
4948     unsigned NumOfUnfoldedLoads =
4949         NumOfResults > 1 ? NumOfMemOps : NumOfMemOps / 2;
4950 
4951     // Get a number of shuffle operations per result.
4952     unsigned NumOfShufflesPerResult =
4953         std::max((unsigned)1, (unsigned)(NumOfMemOps - 1));
4954 
4955     // The SK_MergeTwoSrc shuffle clobbers one of src operands.
4956     // When we have more than one destination, we need additional instructions
4957     // to keep sources.
4958     InstructionCost NumOfMoves = 0;
4959     if (NumOfResults > 1 && ShuffleKind == TTI::SK_PermuteTwoSrc)
4960       NumOfMoves = NumOfResults * NumOfShufflesPerResult / 2;
4961 
4962     InstructionCost Cost = NumOfResults * NumOfShufflesPerResult * ShuffleCost +
4963                            NumOfUnfoldedLoads * MemOpCost + NumOfMoves;
4964 
4965     return Cost;
4966   }
4967 
4968   // Store.
4969   assert(Opcode == Instruction::Store &&
4970          "Expected Store Instruction at this  point");
4971   // X86InterleavedAccess support only the following interleaved-access group.
4972   static const CostTblEntry AVX512InterleavedStoreTbl[] = {
4973       {3, MVT::v16i8, 12}, // interleave 3 x 16i8 into 48i8 (and store)
4974       {3, MVT::v32i8, 14}, // interleave 3 x 32i8 into 96i8 (and store)
4975       {3, MVT::v64i8, 26}, // interleave 3 x 64i8 into 96i8 (and store)
4976 
4977       {4, MVT::v8i8, 10},  // interleave 4 x 8i8  into 32i8  (and store)
4978       {4, MVT::v16i8, 11}, // interleave 4 x 16i8 into 64i8  (and store)
4979       {4, MVT::v32i8, 14}, // interleave 4 x 32i8 into 128i8 (and store)
4980       {4, MVT::v64i8, 24}  // interleave 4 x 32i8 into 256i8 (and store)
4981   };
4982 
4983   if (const auto *Entry =
4984           CostTableLookup(AVX512InterleavedStoreTbl, Factor, VT))
4985     return NumOfMemOps * MemOpCost + Entry->Cost;
4986   //If an entry does not exist, fallback to the default implementation.
4987 
4988   // There is no strided stores meanwhile. And store can't be folded in
4989   // shuffle.
4990   unsigned NumOfSources = Factor; // The number of values to be merged.
4991   InstructionCost ShuffleCost =
4992       getShuffleCost(TTI::SK_PermuteTwoSrc, SingleMemOpTy, None, 0, nullptr);
4993   unsigned NumOfShufflesPerStore = NumOfSources - 1;
4994 
4995   // The SK_MergeTwoSrc shuffle clobbers one of src operands.
4996   // We need additional instructions to keep sources.
4997   unsigned NumOfMoves = NumOfMemOps * NumOfShufflesPerStore / 2;
4998   InstructionCost Cost =
4999       NumOfMemOps * (MemOpCost + NumOfShufflesPerStore * ShuffleCost) +
5000       NumOfMoves;
5001   return Cost;
5002 }
5003 
5004 InstructionCost X86TTIImpl::getInterleavedMemoryOpCost(
5005     unsigned Opcode, Type *VecTy, unsigned Factor, ArrayRef<unsigned> Indices,
5006     Align Alignment, unsigned AddressSpace, TTI::TargetCostKind CostKind,
5007     bool UseMaskForCond, bool UseMaskForGaps) {
5008   auto isSupportedOnAVX512 = [](Type *VecTy, bool HasBW) {
5009     Type *EltTy = cast<VectorType>(VecTy)->getElementType();
5010     if (EltTy->isFloatTy() || EltTy->isDoubleTy() || EltTy->isIntegerTy(64) ||
5011         EltTy->isIntegerTy(32) || EltTy->isPointerTy())
5012       return true;
5013     if (EltTy->isIntegerTy(16) || EltTy->isIntegerTy(8))
5014       return HasBW;
5015     return false;
5016   };
5017   if (ST->hasAVX512() && isSupportedOnAVX512(VecTy, ST->hasBWI()))
5018     return getInterleavedMemoryOpCostAVX512(
5019         Opcode, cast<FixedVectorType>(VecTy), Factor, Indices, Alignment,
5020         AddressSpace, CostKind, UseMaskForCond, UseMaskForGaps);
5021   if (ST->hasAVX2())
5022     return getInterleavedMemoryOpCostAVX2(
5023         Opcode, cast<FixedVectorType>(VecTy), Factor, Indices, Alignment,
5024         AddressSpace, CostKind, UseMaskForCond, UseMaskForGaps);
5025 
5026   return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices,
5027                                            Alignment, AddressSpace, CostKind,
5028                                            UseMaskForCond, UseMaskForGaps);
5029 }
5030