1 //===-- X86TargetTransformInfo.cpp - X86 specific TTI pass ----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 /// \file
9 /// This file implements a TargetTransformInfo analysis pass specific to the
10 /// X86 target machine. It uses the target's detailed information to provide
11 /// more precise answers to certain TTI queries, while letting the target
12 /// independent and default TTI implementations handle the rest.
13 ///
14 //===----------------------------------------------------------------------===//
15 /// About Cost Model numbers used below it's necessary to say the following:
16 /// the numbers correspond to some "generic" X86 CPU instead of usage of
17 /// concrete CPU model. Usually the numbers correspond to CPU where the feature
18 /// apeared at the first time. For example, if we do Subtarget.hasSSE42() in
19 /// the lookups below the cost is based on Nehalem as that was the first CPU
20 /// to support that feature level and thus has most likely the worst case cost.
21 /// Some examples of other technologies/CPUs:
22 ///   SSE 3   - Pentium4 / Athlon64
23 ///   SSE 4.1 - Penryn
24 ///   SSE 4.2 - Nehalem
25 ///   AVX     - Sandy Bridge
26 ///   AVX2    - Haswell
27 ///   AVX-512 - Xeon Phi / Skylake
28 /// And some examples of instruction target dependent costs (latency)
29 ///                   divss     sqrtss          rsqrtss
30 ///   AMD K7            11-16     19              3
31 ///   Piledriver        9-24      13-15           5
32 ///   Jaguar            14        16              2
33 ///   Pentium II,III    18        30              2
34 ///   Nehalem           7-14      7-18            3
35 ///   Haswell           10-13     11              5
36 /// TODO: Develop and implement  the target dependent cost model and
37 /// specialize cost numbers for different Cost Model Targets such as throughput,
38 /// code size, latency and uop count.
39 //===----------------------------------------------------------------------===//
40 
41 #include "X86TargetTransformInfo.h"
42 #include "llvm/Analysis/TargetTransformInfo.h"
43 #include "llvm/CodeGen/BasicTTIImpl.h"
44 #include "llvm/CodeGen/CostTable.h"
45 #include "llvm/CodeGen/TargetLowering.h"
46 #include "llvm/IR/IntrinsicInst.h"
47 #include "llvm/Support/Debug.h"
48 
49 using namespace llvm;
50 
51 #define DEBUG_TYPE "x86tti"
52 
53 //===----------------------------------------------------------------------===//
54 //
55 // X86 cost model.
56 //
57 //===----------------------------------------------------------------------===//
58 
59 TargetTransformInfo::PopcntSupportKind
60 X86TTIImpl::getPopcntSupport(unsigned TyWidth) {
61   assert(isPowerOf2_32(TyWidth) && "Ty width must be power of 2");
62   // TODO: Currently the __builtin_popcount() implementation using SSE3
63   //   instructions is inefficient. Once the problem is fixed, we should
64   //   call ST->hasSSE3() instead of ST->hasPOPCNT().
65   return ST->hasPOPCNT() ? TTI::PSK_FastHardware : TTI::PSK_Software;
66 }
67 
68 llvm::Optional<unsigned> X86TTIImpl::getCacheSize(
69   TargetTransformInfo::CacheLevel Level) const {
70   switch (Level) {
71   case TargetTransformInfo::CacheLevel::L1D:
72     //   - Penryn
73     //   - Nehalem
74     //   - Westmere
75     //   - Sandy Bridge
76     //   - Ivy Bridge
77     //   - Haswell
78     //   - Broadwell
79     //   - Skylake
80     //   - Kabylake
81     return 32 * 1024;  //  32 KByte
82   case TargetTransformInfo::CacheLevel::L2D:
83     //   - Penryn
84     //   - Nehalem
85     //   - Westmere
86     //   - Sandy Bridge
87     //   - Ivy Bridge
88     //   - Haswell
89     //   - Broadwell
90     //   - Skylake
91     //   - Kabylake
92     return 256 * 1024; // 256 KByte
93   }
94 
95   llvm_unreachable("Unknown TargetTransformInfo::CacheLevel");
96 }
97 
98 llvm::Optional<unsigned> X86TTIImpl::getCacheAssociativity(
99   TargetTransformInfo::CacheLevel Level) const {
100   //   - Penryn
101   //   - Nehalem
102   //   - Westmere
103   //   - Sandy Bridge
104   //   - Ivy Bridge
105   //   - Haswell
106   //   - Broadwell
107   //   - Skylake
108   //   - Kabylake
109   switch (Level) {
110   case TargetTransformInfo::CacheLevel::L1D:
111     LLVM_FALLTHROUGH;
112   case TargetTransformInfo::CacheLevel::L2D:
113     return 8;
114   }
115 
116   llvm_unreachable("Unknown TargetTransformInfo::CacheLevel");
117 }
118 
119 unsigned X86TTIImpl::getNumberOfRegisters(unsigned ClassID) const {
120   bool Vector = (ClassID == 1);
121   if (Vector && !ST->hasSSE1())
122     return 0;
123 
124   if (ST->is64Bit()) {
125     if (Vector && ST->hasAVX512())
126       return 32;
127     return 16;
128   }
129   return 8;
130 }
131 
132 unsigned X86TTIImpl::getRegisterBitWidth(bool Vector) const {
133   unsigned PreferVectorWidth = ST->getPreferVectorWidth();
134   if (Vector) {
135     if (ST->hasAVX512() && PreferVectorWidth >= 512)
136       return 512;
137     if (ST->hasAVX() && PreferVectorWidth >= 256)
138       return 256;
139     if (ST->hasSSE1() && PreferVectorWidth >= 128)
140       return 128;
141     return 0;
142   }
143 
144   if (ST->is64Bit())
145     return 64;
146 
147   return 32;
148 }
149 
150 unsigned X86TTIImpl::getLoadStoreVecRegBitWidth(unsigned) const {
151   return getRegisterBitWidth(true);
152 }
153 
154 unsigned X86TTIImpl::getMaxInterleaveFactor(unsigned VF) {
155   // If the loop will not be vectorized, don't interleave the loop.
156   // Let regular unroll to unroll the loop, which saves the overflow
157   // check and memory check cost.
158   if (VF == 1)
159     return 1;
160 
161   if (ST->isAtom())
162     return 1;
163 
164   // Sandybridge and Haswell have multiple execution ports and pipelined
165   // vector units.
166   if (ST->hasAVX())
167     return 4;
168 
169   return 2;
170 }
171 
172 int X86TTIImpl::getArithmeticInstrCost(unsigned Opcode, Type *Ty,
173                                        TTI::TargetCostKind CostKind,
174                                        TTI::OperandValueKind Op1Info,
175                                        TTI::OperandValueKind Op2Info,
176                                        TTI::OperandValueProperties Opd1PropInfo,
177                                        TTI::OperandValueProperties Opd2PropInfo,
178                                        ArrayRef<const Value *> Args,
179                                        const Instruction *CxtI) {
180   // Legalize the type.
181   std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Ty);
182 
183   int ISD = TLI->InstructionOpcodeToISD(Opcode);
184   assert(ISD && "Invalid opcode");
185 
186   static const CostTblEntry GLMCostTable[] = {
187     { ISD::FDIV,  MVT::f32,   18 }, // divss
188     { ISD::FDIV,  MVT::v4f32, 35 }, // divps
189     { ISD::FDIV,  MVT::f64,   33 }, // divsd
190     { ISD::FDIV,  MVT::v2f64, 65 }, // divpd
191   };
192 
193   if (ST->useGLMDivSqrtCosts())
194     if (const auto *Entry = CostTableLookup(GLMCostTable, ISD,
195                                             LT.second))
196       return LT.first * Entry->Cost;
197 
198   static const CostTblEntry SLMCostTable[] = {
199     { ISD::MUL,   MVT::v4i32, 11 }, // pmulld
200     { ISD::MUL,   MVT::v8i16, 2  }, // pmullw
201     { ISD::MUL,   MVT::v16i8, 14 }, // extend/pmullw/trunc sequence.
202     { ISD::FMUL,  MVT::f64,   2  }, // mulsd
203     { ISD::FMUL,  MVT::v2f64, 4  }, // mulpd
204     { ISD::FMUL,  MVT::v4f32, 2  }, // mulps
205     { ISD::FDIV,  MVT::f32,   17 }, // divss
206     { ISD::FDIV,  MVT::v4f32, 39 }, // divps
207     { ISD::FDIV,  MVT::f64,   32 }, // divsd
208     { ISD::FDIV,  MVT::v2f64, 69 }, // divpd
209     { ISD::FADD,  MVT::v2f64, 2  }, // addpd
210     { ISD::FSUB,  MVT::v2f64, 2  }, // subpd
211     // v2i64/v4i64 mul is custom lowered as a series of long:
212     // multiplies(3), shifts(3) and adds(2)
213     // slm muldq version throughput is 2 and addq throughput 4
214     // thus: 3X2 (muldq throughput) + 3X1 (shift throughput) +
215     //       3X4 (addq throughput) = 17
216     { ISD::MUL,   MVT::v2i64, 17 },
217     // slm addq\subq throughput is 4
218     { ISD::ADD,   MVT::v2i64, 4  },
219     { ISD::SUB,   MVT::v2i64, 4  },
220   };
221 
222   if (ST->isSLM()) {
223     if (Args.size() == 2 && ISD == ISD::MUL && LT.second == MVT::v4i32) {
224       // Check if the operands can be shrinked into a smaller datatype.
225       bool Op1Signed = false;
226       unsigned Op1MinSize = BaseT::minRequiredElementSize(Args[0], Op1Signed);
227       bool Op2Signed = false;
228       unsigned Op2MinSize = BaseT::minRequiredElementSize(Args[1], Op2Signed);
229 
230       bool signedMode = Op1Signed | Op2Signed;
231       unsigned OpMinSize = std::max(Op1MinSize, Op2MinSize);
232 
233       if (OpMinSize <= 7)
234         return LT.first * 3; // pmullw/sext
235       if (!signedMode && OpMinSize <= 8)
236         return LT.first * 3; // pmullw/zext
237       if (OpMinSize <= 15)
238         return LT.first * 5; // pmullw/pmulhw/pshuf
239       if (!signedMode && OpMinSize <= 16)
240         return LT.first * 5; // pmullw/pmulhw/pshuf
241     }
242 
243     if (const auto *Entry = CostTableLookup(SLMCostTable, ISD,
244                                             LT.second)) {
245       return LT.first * Entry->Cost;
246     }
247   }
248 
249   if ((ISD == ISD::SDIV || ISD == ISD::SREM || ISD == ISD::UDIV ||
250        ISD == ISD::UREM) &&
251       (Op2Info == TargetTransformInfo::OK_UniformConstantValue ||
252        Op2Info == TargetTransformInfo::OK_NonUniformConstantValue) &&
253       Opd2PropInfo == TargetTransformInfo::OP_PowerOf2) {
254     if (ISD == ISD::SDIV || ISD == ISD::SREM) {
255       // On X86, vector signed division by constants power-of-two are
256       // normally expanded to the sequence SRA + SRL + ADD + SRA.
257       // The OperandValue properties may not be the same as that of the previous
258       // operation; conservatively assume OP_None.
259       int Cost =
260           2 * getArithmeticInstrCost(Instruction::AShr, Ty, CostKind, Op1Info,
261                                      Op2Info,
262                                      TargetTransformInfo::OP_None,
263                                      TargetTransformInfo::OP_None);
264       Cost += getArithmeticInstrCost(Instruction::LShr, Ty, CostKind, Op1Info,
265                                      Op2Info,
266                                      TargetTransformInfo::OP_None,
267                                      TargetTransformInfo::OP_None);
268       Cost += getArithmeticInstrCost(Instruction::Add, Ty, CostKind, Op1Info,
269                                      Op2Info,
270                                      TargetTransformInfo::OP_None,
271                                      TargetTransformInfo::OP_None);
272 
273       if (ISD == ISD::SREM) {
274         // For SREM: (X % C) is the equivalent of (X - (X/C)*C)
275         Cost += getArithmeticInstrCost(Instruction::Mul, Ty, CostKind, Op1Info,
276                                        Op2Info);
277         Cost += getArithmeticInstrCost(Instruction::Sub, Ty, CostKind, Op1Info,
278                                        Op2Info);
279       }
280 
281       return Cost;
282     }
283 
284     // Vector unsigned division/remainder will be simplified to shifts/masks.
285     if (ISD == ISD::UDIV)
286       return getArithmeticInstrCost(Instruction::LShr, Ty, CostKind,
287                                     Op1Info, Op2Info,
288                                     TargetTransformInfo::OP_None,
289                                     TargetTransformInfo::OP_None);
290 
291     else // UREM
292       return getArithmeticInstrCost(Instruction::And, Ty, CostKind,
293                                     Op1Info, Op2Info,
294                                     TargetTransformInfo::OP_None,
295                                     TargetTransformInfo::OP_None);
296   }
297 
298   static const CostTblEntry AVX512BWUniformConstCostTable[] = {
299     { ISD::SHL,  MVT::v64i8,   2 }, // psllw + pand.
300     { ISD::SRL,  MVT::v64i8,   2 }, // psrlw + pand.
301     { ISD::SRA,  MVT::v64i8,   4 }, // psrlw, pand, pxor, psubb.
302   };
303 
304   if (Op2Info == TargetTransformInfo::OK_UniformConstantValue &&
305       ST->hasBWI()) {
306     if (const auto *Entry = CostTableLookup(AVX512BWUniformConstCostTable, ISD,
307                                             LT.second))
308       return LT.first * Entry->Cost;
309   }
310 
311   static const CostTblEntry AVX512UniformConstCostTable[] = {
312     { ISD::SRA,  MVT::v2i64,   1 },
313     { ISD::SRA,  MVT::v4i64,   1 },
314     { ISD::SRA,  MVT::v8i64,   1 },
315 
316     { ISD::SHL,  MVT::v64i8,   4 }, // psllw + pand.
317     { ISD::SRL,  MVT::v64i8,   4 }, // psrlw + pand.
318     { ISD::SRA,  MVT::v64i8,   8 }, // psrlw, pand, pxor, psubb.
319   };
320 
321   if (Op2Info == TargetTransformInfo::OK_UniformConstantValue &&
322       ST->hasAVX512()) {
323     if (const auto *Entry = CostTableLookup(AVX512UniformConstCostTable, ISD,
324                                             LT.second))
325       return LT.first * Entry->Cost;
326   }
327 
328   static const CostTblEntry AVX2UniformConstCostTable[] = {
329     { ISD::SHL,  MVT::v32i8,   2 }, // psllw + pand.
330     { ISD::SRL,  MVT::v32i8,   2 }, // psrlw + pand.
331     { ISD::SRA,  MVT::v32i8,   4 }, // psrlw, pand, pxor, psubb.
332 
333     { ISD::SRA,  MVT::v4i64,   4 }, // 2 x psrad + shuffle.
334   };
335 
336   if (Op2Info == TargetTransformInfo::OK_UniformConstantValue &&
337       ST->hasAVX2()) {
338     if (const auto *Entry = CostTableLookup(AVX2UniformConstCostTable, ISD,
339                                             LT.second))
340       return LT.first * Entry->Cost;
341   }
342 
343   static const CostTblEntry SSE2UniformConstCostTable[] = {
344     { ISD::SHL,  MVT::v16i8,     2 }, // psllw + pand.
345     { ISD::SRL,  MVT::v16i8,     2 }, // psrlw + pand.
346     { ISD::SRA,  MVT::v16i8,     4 }, // psrlw, pand, pxor, psubb.
347 
348     { ISD::SHL,  MVT::v32i8,   4+2 }, // 2*(psllw + pand) + split.
349     { ISD::SRL,  MVT::v32i8,   4+2 }, // 2*(psrlw + pand) + split.
350     { ISD::SRA,  MVT::v32i8,   8+2 }, // 2*(psrlw, pand, pxor, psubb) + split.
351   };
352 
353   // XOP has faster vXi8 shifts.
354   if (Op2Info == TargetTransformInfo::OK_UniformConstantValue &&
355       ST->hasSSE2() && !ST->hasXOP()) {
356     if (const auto *Entry =
357             CostTableLookup(SSE2UniformConstCostTable, ISD, LT.second))
358       return LT.first * Entry->Cost;
359   }
360 
361   static const CostTblEntry AVX512BWConstCostTable[] = {
362     { ISD::SDIV, MVT::v64i8,  14 }, // 2*ext+2*pmulhw sequence
363     { ISD::SREM, MVT::v64i8,  16 }, // 2*ext+2*pmulhw+mul+sub sequence
364     { ISD::UDIV, MVT::v64i8,  14 }, // 2*ext+2*pmulhw sequence
365     { ISD::UREM, MVT::v64i8,  16 }, // 2*ext+2*pmulhw+mul+sub sequence
366     { ISD::SDIV, MVT::v32i16,  6 }, // vpmulhw sequence
367     { ISD::SREM, MVT::v32i16,  8 }, // vpmulhw+mul+sub sequence
368     { ISD::UDIV, MVT::v32i16,  6 }, // vpmulhuw sequence
369     { ISD::UREM, MVT::v32i16,  8 }, // vpmulhuw+mul+sub sequence
370   };
371 
372   if ((Op2Info == TargetTransformInfo::OK_UniformConstantValue ||
373        Op2Info == TargetTransformInfo::OK_NonUniformConstantValue) &&
374       ST->hasBWI()) {
375     if (const auto *Entry =
376             CostTableLookup(AVX512BWConstCostTable, ISD, LT.second))
377       return LT.first * Entry->Cost;
378   }
379 
380   static const CostTblEntry AVX512ConstCostTable[] = {
381     { ISD::SDIV, MVT::v16i32, 15 }, // vpmuldq sequence
382     { ISD::SREM, MVT::v16i32, 17 }, // vpmuldq+mul+sub sequence
383     { ISD::UDIV, MVT::v16i32, 15 }, // vpmuludq sequence
384     { ISD::UREM, MVT::v16i32, 17 }, // vpmuludq+mul+sub sequence
385     { ISD::SDIV, MVT::v64i8,  28 }, // 4*ext+4*pmulhw sequence
386     { ISD::SREM, MVT::v64i8,  32 }, // 4*ext+4*pmulhw+mul+sub sequence
387     { ISD::UDIV, MVT::v64i8,  28 }, // 4*ext+4*pmulhw sequence
388     { ISD::UREM, MVT::v64i8,  32 }, // 4*ext+4*pmulhw+mul+sub sequence
389     { ISD::SDIV, MVT::v32i16, 12 }, // 2*vpmulhw sequence
390     { ISD::SREM, MVT::v32i16, 16 }, // 2*vpmulhw+mul+sub sequence
391     { ISD::UDIV, MVT::v32i16, 12 }, // 2*vpmulhuw sequence
392     { ISD::UREM, MVT::v32i16, 16 }, // 2*vpmulhuw+mul+sub sequence
393   };
394 
395   if ((Op2Info == TargetTransformInfo::OK_UniformConstantValue ||
396        Op2Info == TargetTransformInfo::OK_NonUniformConstantValue) &&
397       ST->hasAVX512()) {
398     if (const auto *Entry =
399             CostTableLookup(AVX512ConstCostTable, ISD, LT.second))
400       return LT.first * Entry->Cost;
401   }
402 
403   static const CostTblEntry AVX2ConstCostTable[] = {
404     { ISD::SDIV, MVT::v32i8,  14 }, // 2*ext+2*pmulhw sequence
405     { ISD::SREM, MVT::v32i8,  16 }, // 2*ext+2*pmulhw+mul+sub sequence
406     { ISD::UDIV, MVT::v32i8,  14 }, // 2*ext+2*pmulhw sequence
407     { ISD::UREM, MVT::v32i8,  16 }, // 2*ext+2*pmulhw+mul+sub sequence
408     { ISD::SDIV, MVT::v16i16,  6 }, // vpmulhw sequence
409     { ISD::SREM, MVT::v16i16,  8 }, // vpmulhw+mul+sub sequence
410     { ISD::UDIV, MVT::v16i16,  6 }, // vpmulhuw sequence
411     { ISD::UREM, MVT::v16i16,  8 }, // vpmulhuw+mul+sub sequence
412     { ISD::SDIV, MVT::v8i32,  15 }, // vpmuldq sequence
413     { ISD::SREM, MVT::v8i32,  19 }, // vpmuldq+mul+sub sequence
414     { ISD::UDIV, MVT::v8i32,  15 }, // vpmuludq sequence
415     { ISD::UREM, MVT::v8i32,  19 }, // vpmuludq+mul+sub sequence
416   };
417 
418   if ((Op2Info == TargetTransformInfo::OK_UniformConstantValue ||
419        Op2Info == TargetTransformInfo::OK_NonUniformConstantValue) &&
420       ST->hasAVX2()) {
421     if (const auto *Entry = CostTableLookup(AVX2ConstCostTable, ISD, LT.second))
422       return LT.first * Entry->Cost;
423   }
424 
425   static const CostTblEntry SSE2ConstCostTable[] = {
426     { ISD::SDIV, MVT::v32i8,  28+2 }, // 4*ext+4*pmulhw sequence + split.
427     { ISD::SREM, MVT::v32i8,  32+2 }, // 4*ext+4*pmulhw+mul+sub sequence + split.
428     { ISD::SDIV, MVT::v16i8,    14 }, // 2*ext+2*pmulhw sequence
429     { ISD::SREM, MVT::v16i8,    16 }, // 2*ext+2*pmulhw+mul+sub sequence
430     { ISD::UDIV, MVT::v32i8,  28+2 }, // 4*ext+4*pmulhw sequence + split.
431     { ISD::UREM, MVT::v32i8,  32+2 }, // 4*ext+4*pmulhw+mul+sub sequence + split.
432     { ISD::UDIV, MVT::v16i8,    14 }, // 2*ext+2*pmulhw sequence
433     { ISD::UREM, MVT::v16i8,    16 }, // 2*ext+2*pmulhw+mul+sub sequence
434     { ISD::SDIV, MVT::v16i16, 12+2 }, // 2*pmulhw sequence + split.
435     { ISD::SREM, MVT::v16i16, 16+2 }, // 2*pmulhw+mul+sub sequence + split.
436     { ISD::SDIV, MVT::v8i16,     6 }, // pmulhw sequence
437     { ISD::SREM, MVT::v8i16,     8 }, // pmulhw+mul+sub sequence
438     { ISD::UDIV, MVT::v16i16, 12+2 }, // 2*pmulhuw sequence + split.
439     { ISD::UREM, MVT::v16i16, 16+2 }, // 2*pmulhuw+mul+sub sequence + split.
440     { ISD::UDIV, MVT::v8i16,     6 }, // pmulhuw sequence
441     { ISD::UREM, MVT::v8i16,     8 }, // pmulhuw+mul+sub sequence
442     { ISD::SDIV, MVT::v8i32,  38+2 }, // 2*pmuludq sequence + split.
443     { ISD::SREM, MVT::v8i32,  48+2 }, // 2*pmuludq+mul+sub sequence + split.
444     { ISD::SDIV, MVT::v4i32,    19 }, // pmuludq sequence
445     { ISD::SREM, MVT::v4i32,    24 }, // pmuludq+mul+sub sequence
446     { ISD::UDIV, MVT::v8i32,  30+2 }, // 2*pmuludq sequence + split.
447     { ISD::UREM, MVT::v8i32,  40+2 }, // 2*pmuludq+mul+sub sequence + split.
448     { ISD::UDIV, MVT::v4i32,    15 }, // pmuludq sequence
449     { ISD::UREM, MVT::v4i32,    20 }, // pmuludq+mul+sub sequence
450   };
451 
452   if ((Op2Info == TargetTransformInfo::OK_UniformConstantValue ||
453        Op2Info == TargetTransformInfo::OK_NonUniformConstantValue) &&
454       ST->hasSSE2()) {
455     // pmuldq sequence.
456     if (ISD == ISD::SDIV && LT.second == MVT::v8i32 && ST->hasAVX())
457       return LT.first * 32;
458     if (ISD == ISD::SREM && LT.second == MVT::v8i32 && ST->hasAVX())
459       return LT.first * 38;
460     if (ISD == ISD::SDIV && LT.second == MVT::v4i32 && ST->hasSSE41())
461       return LT.first * 15;
462     if (ISD == ISD::SREM && LT.second == MVT::v4i32 && ST->hasSSE41())
463       return LT.first * 20;
464 
465     if (const auto *Entry = CostTableLookup(SSE2ConstCostTable, ISD, LT.second))
466       return LT.first * Entry->Cost;
467   }
468 
469   static const CostTblEntry AVX512BWShiftCostTable[] = {
470     { ISD::SHL,   MVT::v8i16,      1 }, // vpsllvw
471     { ISD::SRL,   MVT::v8i16,      1 }, // vpsrlvw
472     { ISD::SRA,   MVT::v8i16,      1 }, // vpsravw
473 
474     { ISD::SHL,   MVT::v16i16,     1 }, // vpsllvw
475     { ISD::SRL,   MVT::v16i16,     1 }, // vpsrlvw
476     { ISD::SRA,   MVT::v16i16,     1 }, // vpsravw
477 
478     { ISD::SHL,   MVT::v32i16,     1 }, // vpsllvw
479     { ISD::SRL,   MVT::v32i16,     1 }, // vpsrlvw
480     { ISD::SRA,   MVT::v32i16,     1 }, // vpsravw
481   };
482 
483   if (ST->hasBWI())
484     if (const auto *Entry = CostTableLookup(AVX512BWShiftCostTable, ISD, LT.second))
485       return LT.first * Entry->Cost;
486 
487   static const CostTblEntry AVX2UniformCostTable[] = {
488     // Uniform splats are cheaper for the following instructions.
489     { ISD::SHL,  MVT::v16i16, 1 }, // psllw.
490     { ISD::SRL,  MVT::v16i16, 1 }, // psrlw.
491     { ISD::SRA,  MVT::v16i16, 1 }, // psraw.
492     { ISD::SHL,  MVT::v32i16, 2 }, // 2*psllw.
493     { ISD::SRL,  MVT::v32i16, 2 }, // 2*psrlw.
494     { ISD::SRA,  MVT::v32i16, 2 }, // 2*psraw.
495   };
496 
497   if (ST->hasAVX2() &&
498       ((Op2Info == TargetTransformInfo::OK_UniformConstantValue) ||
499        (Op2Info == TargetTransformInfo::OK_UniformValue))) {
500     if (const auto *Entry =
501             CostTableLookup(AVX2UniformCostTable, ISD, LT.second))
502       return LT.first * Entry->Cost;
503   }
504 
505   static const CostTblEntry SSE2UniformCostTable[] = {
506     // Uniform splats are cheaper for the following instructions.
507     { ISD::SHL,  MVT::v8i16,  1 }, // psllw.
508     { ISD::SHL,  MVT::v4i32,  1 }, // pslld
509     { ISD::SHL,  MVT::v2i64,  1 }, // psllq.
510 
511     { ISD::SRL,  MVT::v8i16,  1 }, // psrlw.
512     { ISD::SRL,  MVT::v4i32,  1 }, // psrld.
513     { ISD::SRL,  MVT::v2i64,  1 }, // psrlq.
514 
515     { ISD::SRA,  MVT::v8i16,  1 }, // psraw.
516     { ISD::SRA,  MVT::v4i32,  1 }, // psrad.
517   };
518 
519   if (ST->hasSSE2() &&
520       ((Op2Info == TargetTransformInfo::OK_UniformConstantValue) ||
521        (Op2Info == TargetTransformInfo::OK_UniformValue))) {
522     if (const auto *Entry =
523             CostTableLookup(SSE2UniformCostTable, ISD, LT.second))
524       return LT.first * Entry->Cost;
525   }
526 
527   static const CostTblEntry AVX512DQCostTable[] = {
528     { ISD::MUL,  MVT::v2i64, 1 },
529     { ISD::MUL,  MVT::v4i64, 1 },
530     { ISD::MUL,  MVT::v8i64, 1 }
531   };
532 
533   // Look for AVX512DQ lowering tricks for custom cases.
534   if (ST->hasDQI())
535     if (const auto *Entry = CostTableLookup(AVX512DQCostTable, ISD, LT.second))
536       return LT.first * Entry->Cost;
537 
538   static const CostTblEntry AVX512BWCostTable[] = {
539     { ISD::SHL,   MVT::v64i8,     11 }, // vpblendvb sequence.
540     { ISD::SRL,   MVT::v64i8,     11 }, // vpblendvb sequence.
541     { ISD::SRA,   MVT::v64i8,     24 }, // vpblendvb sequence.
542 
543     { ISD::MUL,   MVT::v64i8,     11 }, // extend/pmullw/trunc sequence.
544     { ISD::MUL,   MVT::v32i8,      4 }, // extend/pmullw/trunc sequence.
545     { ISD::MUL,   MVT::v16i8,      4 }, // extend/pmullw/trunc sequence.
546   };
547 
548   // Look for AVX512BW lowering tricks for custom cases.
549   if (ST->hasBWI())
550     if (const auto *Entry = CostTableLookup(AVX512BWCostTable, ISD, LT.second))
551       return LT.first * Entry->Cost;
552 
553   static const CostTblEntry AVX512CostTable[] = {
554     { ISD::SHL,     MVT::v16i32,     1 },
555     { ISD::SRL,     MVT::v16i32,     1 },
556     { ISD::SRA,     MVT::v16i32,     1 },
557 
558     { ISD::SHL,     MVT::v8i64,      1 },
559     { ISD::SRL,     MVT::v8i64,      1 },
560 
561     { ISD::SRA,     MVT::v2i64,      1 },
562     { ISD::SRA,     MVT::v4i64,      1 },
563     { ISD::SRA,     MVT::v8i64,      1 },
564 
565     { ISD::MUL,     MVT::v64i8,     26 }, // extend/pmullw/trunc sequence.
566     { ISD::MUL,     MVT::v32i8,     13 }, // extend/pmullw/trunc sequence.
567     { ISD::MUL,     MVT::v16i8,      5 }, // extend/pmullw/trunc sequence.
568     { ISD::MUL,     MVT::v16i32,     1 }, // pmulld (Skylake from agner.org)
569     { ISD::MUL,     MVT::v8i32,      1 }, // pmulld (Skylake from agner.org)
570     { ISD::MUL,     MVT::v4i32,      1 }, // pmulld (Skylake from agner.org)
571     { ISD::MUL,     MVT::v8i64,      8 }, // 3*pmuludq/3*shift/2*add
572 
573     { ISD::FADD,    MVT::v8f64,      1 }, // Skylake from http://www.agner.org/
574     { ISD::FSUB,    MVT::v8f64,      1 }, // Skylake from http://www.agner.org/
575     { ISD::FMUL,    MVT::v8f64,      1 }, // Skylake from http://www.agner.org/
576 
577     { ISD::FADD,    MVT::v16f32,     1 }, // Skylake from http://www.agner.org/
578     { ISD::FSUB,    MVT::v16f32,     1 }, // Skylake from http://www.agner.org/
579     { ISD::FMUL,    MVT::v16f32,     1 }, // Skylake from http://www.agner.org/
580   };
581 
582   if (ST->hasAVX512())
583     if (const auto *Entry = CostTableLookup(AVX512CostTable, ISD, LT.second))
584       return LT.first * Entry->Cost;
585 
586   static const CostTblEntry AVX2ShiftCostTable[] = {
587     // Shifts on v4i64/v8i32 on AVX2 is legal even though we declare to
588     // customize them to detect the cases where shift amount is a scalar one.
589     { ISD::SHL,     MVT::v4i32,    1 },
590     { ISD::SRL,     MVT::v4i32,    1 },
591     { ISD::SRA,     MVT::v4i32,    1 },
592     { ISD::SHL,     MVT::v8i32,    1 },
593     { ISD::SRL,     MVT::v8i32,    1 },
594     { ISD::SRA,     MVT::v8i32,    1 },
595     { ISD::SHL,     MVT::v2i64,    1 },
596     { ISD::SRL,     MVT::v2i64,    1 },
597     { ISD::SHL,     MVT::v4i64,    1 },
598     { ISD::SRL,     MVT::v4i64,    1 },
599   };
600 
601   if (ST->hasAVX512()) {
602     if (ISD == ISD::SHL && LT.second == MVT::v32i16 &&
603         (Op2Info == TargetTransformInfo::OK_UniformConstantValue ||
604          Op2Info == TargetTransformInfo::OK_NonUniformConstantValue))
605       // On AVX512, a packed v32i16 shift left by a constant build_vector
606       // is lowered into a vector multiply (vpmullw).
607       return getArithmeticInstrCost(Instruction::Mul, Ty, CostKind,
608                                     Op1Info, Op2Info,
609                                     TargetTransformInfo::OP_None,
610                                     TargetTransformInfo::OP_None);
611   }
612 
613   // Look for AVX2 lowering tricks.
614   if (ST->hasAVX2()) {
615     if (ISD == ISD::SHL && LT.second == MVT::v16i16 &&
616         (Op2Info == TargetTransformInfo::OK_UniformConstantValue ||
617          Op2Info == TargetTransformInfo::OK_NonUniformConstantValue))
618       // On AVX2, a packed v16i16 shift left by a constant build_vector
619       // is lowered into a vector multiply (vpmullw).
620       return getArithmeticInstrCost(Instruction::Mul, Ty, CostKind,
621                                     Op1Info, Op2Info,
622                                     TargetTransformInfo::OP_None,
623                                     TargetTransformInfo::OP_None);
624 
625     if (const auto *Entry = CostTableLookup(AVX2ShiftCostTable, ISD, LT.second))
626       return LT.first * Entry->Cost;
627   }
628 
629   static const CostTblEntry XOPShiftCostTable[] = {
630     // 128bit shifts take 1cy, but right shifts require negation beforehand.
631     { ISD::SHL,     MVT::v16i8,    1 },
632     { ISD::SRL,     MVT::v16i8,    2 },
633     { ISD::SRA,     MVT::v16i8,    2 },
634     { ISD::SHL,     MVT::v8i16,    1 },
635     { ISD::SRL,     MVT::v8i16,    2 },
636     { ISD::SRA,     MVT::v8i16,    2 },
637     { ISD::SHL,     MVT::v4i32,    1 },
638     { ISD::SRL,     MVT::v4i32,    2 },
639     { ISD::SRA,     MVT::v4i32,    2 },
640     { ISD::SHL,     MVT::v2i64,    1 },
641     { ISD::SRL,     MVT::v2i64,    2 },
642     { ISD::SRA,     MVT::v2i64,    2 },
643     // 256bit shifts require splitting if AVX2 didn't catch them above.
644     { ISD::SHL,     MVT::v32i8,  2+2 },
645     { ISD::SRL,     MVT::v32i8,  4+2 },
646     { ISD::SRA,     MVT::v32i8,  4+2 },
647     { ISD::SHL,     MVT::v16i16, 2+2 },
648     { ISD::SRL,     MVT::v16i16, 4+2 },
649     { ISD::SRA,     MVT::v16i16, 4+2 },
650     { ISD::SHL,     MVT::v8i32,  2+2 },
651     { ISD::SRL,     MVT::v8i32,  4+2 },
652     { ISD::SRA,     MVT::v8i32,  4+2 },
653     { ISD::SHL,     MVT::v4i64,  2+2 },
654     { ISD::SRL,     MVT::v4i64,  4+2 },
655     { ISD::SRA,     MVT::v4i64,  4+2 },
656   };
657 
658   // Look for XOP lowering tricks.
659   if (ST->hasXOP()) {
660     // If the right shift is constant then we'll fold the negation so
661     // it's as cheap as a left shift.
662     int ShiftISD = ISD;
663     if ((ShiftISD == ISD::SRL || ShiftISD == ISD::SRA) &&
664         (Op2Info == TargetTransformInfo::OK_UniformConstantValue ||
665          Op2Info == TargetTransformInfo::OK_NonUniformConstantValue))
666       ShiftISD = ISD::SHL;
667     if (const auto *Entry =
668             CostTableLookup(XOPShiftCostTable, ShiftISD, LT.second))
669       return LT.first * Entry->Cost;
670   }
671 
672   static const CostTblEntry SSE2UniformShiftCostTable[] = {
673     // Uniform splats are cheaper for the following instructions.
674     { ISD::SHL,  MVT::v16i16, 2+2 }, // 2*psllw + split.
675     { ISD::SHL,  MVT::v8i32,  2+2 }, // 2*pslld + split.
676     { ISD::SHL,  MVT::v4i64,  2+2 }, // 2*psllq + split.
677 
678     { ISD::SRL,  MVT::v16i16, 2+2 }, // 2*psrlw + split.
679     { ISD::SRL,  MVT::v8i32,  2+2 }, // 2*psrld + split.
680     { ISD::SRL,  MVT::v4i64,  2+2 }, // 2*psrlq + split.
681 
682     { ISD::SRA,  MVT::v16i16, 2+2 }, // 2*psraw + split.
683     { ISD::SRA,  MVT::v8i32,  2+2 }, // 2*psrad + split.
684     { ISD::SRA,  MVT::v2i64,    4 }, // 2*psrad + shuffle.
685     { ISD::SRA,  MVT::v4i64,  8+2 }, // 2*(2*psrad + shuffle) + split.
686   };
687 
688   if (ST->hasSSE2() &&
689       ((Op2Info == TargetTransformInfo::OK_UniformConstantValue) ||
690        (Op2Info == TargetTransformInfo::OK_UniformValue))) {
691 
692     // Handle AVX2 uniform v4i64 ISD::SRA, it's not worth a table.
693     if (ISD == ISD::SRA && LT.second == MVT::v4i64 && ST->hasAVX2())
694       return LT.first * 4; // 2*psrad + shuffle.
695 
696     if (const auto *Entry =
697             CostTableLookup(SSE2UniformShiftCostTable, ISD, LT.second))
698       return LT.first * Entry->Cost;
699   }
700 
701   if (ISD == ISD::SHL &&
702       Op2Info == TargetTransformInfo::OK_NonUniformConstantValue) {
703     MVT VT = LT.second;
704     // Vector shift left by non uniform constant can be lowered
705     // into vector multiply.
706     if (((VT == MVT::v8i16 || VT == MVT::v4i32) && ST->hasSSE2()) ||
707         ((VT == MVT::v16i16 || VT == MVT::v8i32) && ST->hasAVX()))
708       ISD = ISD::MUL;
709   }
710 
711   static const CostTblEntry AVX2CostTable[] = {
712     { ISD::SHL,  MVT::v32i8,     11 }, // vpblendvb sequence.
713     { ISD::SHL,  MVT::v64i8,     22 }, // 2*vpblendvb sequence.
714     { ISD::SHL,  MVT::v16i16,    10 }, // extend/vpsrlvd/pack sequence.
715     { ISD::SHL,  MVT::v32i16,    20 }, // 2*extend/vpsrlvd/pack sequence.
716 
717     { ISD::SRL,  MVT::v32i8,     11 }, // vpblendvb sequence.
718     { ISD::SRL,  MVT::v64i8,     22 }, // 2*vpblendvb sequence.
719     { ISD::SRL,  MVT::v16i16,    10 }, // extend/vpsrlvd/pack sequence.
720     { ISD::SRL,  MVT::v32i16,    20 }, // 2*extend/vpsrlvd/pack sequence.
721 
722     { ISD::SRA,  MVT::v32i8,     24 }, // vpblendvb sequence.
723     { ISD::SRA,  MVT::v64i8,     48 }, // 2*vpblendvb sequence.
724     { ISD::SRA,  MVT::v16i16,    10 }, // extend/vpsravd/pack sequence.
725     { ISD::SRA,  MVT::v32i16,    20 }, // 2*extend/vpsravd/pack sequence.
726     { ISD::SRA,  MVT::v2i64,      4 }, // srl/xor/sub sequence.
727     { ISD::SRA,  MVT::v4i64,      4 }, // srl/xor/sub sequence.
728 
729     { ISD::SUB,  MVT::v32i8,      1 }, // psubb
730     { ISD::ADD,  MVT::v32i8,      1 }, // paddb
731     { ISD::SUB,  MVT::v16i16,     1 }, // psubw
732     { ISD::ADD,  MVT::v16i16,     1 }, // paddw
733     { ISD::SUB,  MVT::v8i32,      1 }, // psubd
734     { ISD::ADD,  MVT::v8i32,      1 }, // paddd
735     { ISD::SUB,  MVT::v4i64,      1 }, // psubq
736     { ISD::ADD,  MVT::v4i64,      1 }, // paddq
737 
738     { ISD::MUL,  MVT::v32i8,     17 }, // extend/pmullw/trunc sequence.
739     { ISD::MUL,  MVT::v16i8,      7 }, // extend/pmullw/trunc sequence.
740     { ISD::MUL,  MVT::v16i16,     1 }, // pmullw
741     { ISD::MUL,  MVT::v8i32,      2 }, // pmulld (Haswell from agner.org)
742     { ISD::MUL,  MVT::v4i64,      8 }, // 3*pmuludq/3*shift/2*add
743 
744     { ISD::FADD, MVT::v4f64,      1 }, // Haswell from http://www.agner.org/
745     { ISD::FADD, MVT::v8f32,      1 }, // Haswell from http://www.agner.org/
746     { ISD::FSUB, MVT::v4f64,      1 }, // Haswell from http://www.agner.org/
747     { ISD::FSUB, MVT::v8f32,      1 }, // Haswell from http://www.agner.org/
748     { ISD::FMUL, MVT::v4f64,      1 }, // Haswell from http://www.agner.org/
749     { ISD::FMUL, MVT::v8f32,      1 }, // Haswell from http://www.agner.org/
750 
751     { ISD::FDIV, MVT::f32,        7 }, // Haswell from http://www.agner.org/
752     { ISD::FDIV, MVT::v4f32,      7 }, // Haswell from http://www.agner.org/
753     { ISD::FDIV, MVT::v8f32,     14 }, // Haswell from http://www.agner.org/
754     { ISD::FDIV, MVT::f64,       14 }, // Haswell from http://www.agner.org/
755     { ISD::FDIV, MVT::v2f64,     14 }, // Haswell from http://www.agner.org/
756     { ISD::FDIV, MVT::v4f64,     28 }, // Haswell from http://www.agner.org/
757   };
758 
759   // Look for AVX2 lowering tricks for custom cases.
760   if (ST->hasAVX2())
761     if (const auto *Entry = CostTableLookup(AVX2CostTable, ISD, LT.second))
762       return LT.first * Entry->Cost;
763 
764   static const CostTblEntry AVX1CostTable[] = {
765     // We don't have to scalarize unsupported ops. We can issue two half-sized
766     // operations and we only need to extract the upper YMM half.
767     // Two ops + 1 extract + 1 insert = 4.
768     { ISD::MUL,     MVT::v16i16,     4 },
769     { ISD::MUL,     MVT::v8i32,      4 },
770     { ISD::SUB,     MVT::v32i8,      4 },
771     { ISD::ADD,     MVT::v32i8,      4 },
772     { ISD::SUB,     MVT::v16i16,     4 },
773     { ISD::ADD,     MVT::v16i16,     4 },
774     { ISD::SUB,     MVT::v8i32,      4 },
775     { ISD::ADD,     MVT::v8i32,      4 },
776     { ISD::SUB,     MVT::v4i64,      4 },
777     { ISD::ADD,     MVT::v4i64,      4 },
778 
779     // A v4i64 multiply is custom lowered as two split v2i64 vectors that then
780     // are lowered as a series of long multiplies(3), shifts(3) and adds(2)
781     // Because we believe v4i64 to be a legal type, we must also include the
782     // extract+insert in the cost table. Therefore, the cost here is 18
783     // instead of 8.
784     { ISD::MUL,     MVT::v4i64,     18 },
785 
786     { ISD::MUL,     MVT::v32i8,     26 }, // extend/pmullw/trunc sequence.
787 
788     { ISD::FDIV,    MVT::f32,       14 }, // SNB from http://www.agner.org/
789     { ISD::FDIV,    MVT::v4f32,     14 }, // SNB from http://www.agner.org/
790     { ISD::FDIV,    MVT::v8f32,     28 }, // SNB from http://www.agner.org/
791     { ISD::FDIV,    MVT::f64,       22 }, // SNB from http://www.agner.org/
792     { ISD::FDIV,    MVT::v2f64,     22 }, // SNB from http://www.agner.org/
793     { ISD::FDIV,    MVT::v4f64,     44 }, // SNB from http://www.agner.org/
794   };
795 
796   if (ST->hasAVX())
797     if (const auto *Entry = CostTableLookup(AVX1CostTable, ISD, LT.second))
798       return LT.first * Entry->Cost;
799 
800   static const CostTblEntry SSE42CostTable[] = {
801     { ISD::FADD, MVT::f64,     1 }, // Nehalem from http://www.agner.org/
802     { ISD::FADD, MVT::f32,     1 }, // Nehalem from http://www.agner.org/
803     { ISD::FADD, MVT::v2f64,   1 }, // Nehalem from http://www.agner.org/
804     { ISD::FADD, MVT::v4f32,   1 }, // Nehalem from http://www.agner.org/
805 
806     { ISD::FSUB, MVT::f64,     1 }, // Nehalem from http://www.agner.org/
807     { ISD::FSUB, MVT::f32 ,    1 }, // Nehalem from http://www.agner.org/
808     { ISD::FSUB, MVT::v2f64,   1 }, // Nehalem from http://www.agner.org/
809     { ISD::FSUB, MVT::v4f32,   1 }, // Nehalem from http://www.agner.org/
810 
811     { ISD::FMUL, MVT::f64,     1 }, // Nehalem from http://www.agner.org/
812     { ISD::FMUL, MVT::f32,     1 }, // Nehalem from http://www.agner.org/
813     { ISD::FMUL, MVT::v2f64,   1 }, // Nehalem from http://www.agner.org/
814     { ISD::FMUL, MVT::v4f32,   1 }, // Nehalem from http://www.agner.org/
815 
816     { ISD::FDIV,  MVT::f32,   14 }, // Nehalem from http://www.agner.org/
817     { ISD::FDIV,  MVT::v4f32, 14 }, // Nehalem from http://www.agner.org/
818     { ISD::FDIV,  MVT::f64,   22 }, // Nehalem from http://www.agner.org/
819     { ISD::FDIV,  MVT::v2f64, 22 }, // Nehalem from http://www.agner.org/
820   };
821 
822   if (ST->hasSSE42())
823     if (const auto *Entry = CostTableLookup(SSE42CostTable, ISD, LT.second))
824       return LT.first * Entry->Cost;
825 
826   static const CostTblEntry SSE41CostTable[] = {
827     { ISD::SHL,  MVT::v16i8,      11 }, // pblendvb sequence.
828     { ISD::SHL,  MVT::v32i8,  2*11+2 }, // pblendvb sequence + split.
829     { ISD::SHL,  MVT::v8i16,      14 }, // pblendvb sequence.
830     { ISD::SHL,  MVT::v16i16, 2*14+2 }, // pblendvb sequence + split.
831     { ISD::SHL,  MVT::v4i32,       4 }, // pslld/paddd/cvttps2dq/pmulld
832     { ISD::SHL,  MVT::v8i32,   2*4+2 }, // pslld/paddd/cvttps2dq/pmulld + split
833 
834     { ISD::SRL,  MVT::v16i8,      12 }, // pblendvb sequence.
835     { ISD::SRL,  MVT::v32i8,  2*12+2 }, // pblendvb sequence + split.
836     { ISD::SRL,  MVT::v8i16,      14 }, // pblendvb sequence.
837     { ISD::SRL,  MVT::v16i16, 2*14+2 }, // pblendvb sequence + split.
838     { ISD::SRL,  MVT::v4i32,      11 }, // Shift each lane + blend.
839     { ISD::SRL,  MVT::v8i32,  2*11+2 }, // Shift each lane + blend + split.
840 
841     { ISD::SRA,  MVT::v16i8,      24 }, // pblendvb sequence.
842     { ISD::SRA,  MVT::v32i8,  2*24+2 }, // pblendvb sequence + split.
843     { ISD::SRA,  MVT::v8i16,      14 }, // pblendvb sequence.
844     { ISD::SRA,  MVT::v16i16, 2*14+2 }, // pblendvb sequence + split.
845     { ISD::SRA,  MVT::v4i32,      12 }, // Shift each lane + blend.
846     { ISD::SRA,  MVT::v8i32,  2*12+2 }, // Shift each lane + blend + split.
847 
848     { ISD::MUL,  MVT::v4i32,       2 }  // pmulld (Nehalem from agner.org)
849   };
850 
851   if (ST->hasSSE41())
852     if (const auto *Entry = CostTableLookup(SSE41CostTable, ISD, LT.second))
853       return LT.first * Entry->Cost;
854 
855   static const CostTblEntry SSE2CostTable[] = {
856     // We don't correctly identify costs of casts because they are marked as
857     // custom.
858     { ISD::SHL,  MVT::v16i8,      26 }, // cmpgtb sequence.
859     { ISD::SHL,  MVT::v8i16,      32 }, // cmpgtb sequence.
860     { ISD::SHL,  MVT::v4i32,     2*5 }, // We optimized this using mul.
861     { ISD::SHL,  MVT::v2i64,       4 }, // splat+shuffle sequence.
862     { ISD::SHL,  MVT::v4i64,   2*4+2 }, // splat+shuffle sequence + split.
863 
864     { ISD::SRL,  MVT::v16i8,      26 }, // cmpgtb sequence.
865     { ISD::SRL,  MVT::v8i16,      32 }, // cmpgtb sequence.
866     { ISD::SRL,  MVT::v4i32,      16 }, // Shift each lane + blend.
867     { ISD::SRL,  MVT::v2i64,       4 }, // splat+shuffle sequence.
868     { ISD::SRL,  MVT::v4i64,   2*4+2 }, // splat+shuffle sequence + split.
869 
870     { ISD::SRA,  MVT::v16i8,      54 }, // unpacked cmpgtb sequence.
871     { ISD::SRA,  MVT::v8i16,      32 }, // cmpgtb sequence.
872     { ISD::SRA,  MVT::v4i32,      16 }, // Shift each lane + blend.
873     { ISD::SRA,  MVT::v2i64,      12 }, // srl/xor/sub sequence.
874     { ISD::SRA,  MVT::v4i64,  2*12+2 }, // srl/xor/sub sequence+split.
875 
876     { ISD::MUL,  MVT::v16i8,      12 }, // extend/pmullw/trunc sequence.
877     { ISD::MUL,  MVT::v8i16,       1 }, // pmullw
878     { ISD::MUL,  MVT::v4i32,       6 }, // 3*pmuludq/4*shuffle
879     { ISD::MUL,  MVT::v2i64,       8 }, // 3*pmuludq/3*shift/2*add
880 
881     { ISD::FDIV, MVT::f32,        23 }, // Pentium IV from http://www.agner.org/
882     { ISD::FDIV, MVT::v4f32,      39 }, // Pentium IV from http://www.agner.org/
883     { ISD::FDIV, MVT::f64,        38 }, // Pentium IV from http://www.agner.org/
884     { ISD::FDIV, MVT::v2f64,      69 }, // Pentium IV from http://www.agner.org/
885 
886     { ISD::FADD, MVT::f32,         2 }, // Pentium IV from http://www.agner.org/
887     { ISD::FADD, MVT::f64,         2 }, // Pentium IV from http://www.agner.org/
888 
889     { ISD::FSUB, MVT::f32,         2 }, // Pentium IV from http://www.agner.org/
890     { ISD::FSUB, MVT::f64,         2 }, // Pentium IV from http://www.agner.org/
891   };
892 
893   if (ST->hasSSE2())
894     if (const auto *Entry = CostTableLookup(SSE2CostTable, ISD, LT.second))
895       return LT.first * Entry->Cost;
896 
897   static const CostTblEntry SSE1CostTable[] = {
898     { ISD::FDIV, MVT::f32,   17 }, // Pentium III from http://www.agner.org/
899     { ISD::FDIV, MVT::v4f32, 34 }, // Pentium III from http://www.agner.org/
900 
901     { ISD::FADD, MVT::f32,    1 }, // Pentium III from http://www.agner.org/
902     { ISD::FADD, MVT::v4f32,  2 }, // Pentium III from http://www.agner.org/
903 
904     { ISD::FSUB, MVT::f32,    1 }, // Pentium III from http://www.agner.org/
905     { ISD::FSUB, MVT::v4f32,  2 }, // Pentium III from http://www.agner.org/
906 
907     { ISD::ADD, MVT::i8,      1 }, // Pentium III from http://www.agner.org/
908     { ISD::ADD, MVT::i16,     1 }, // Pentium III from http://www.agner.org/
909     { ISD::ADD, MVT::i32,     1 }, // Pentium III from http://www.agner.org/
910 
911     { ISD::SUB, MVT::i8,      1 }, // Pentium III from http://www.agner.org/
912     { ISD::SUB, MVT::i16,     1 }, // Pentium III from http://www.agner.org/
913     { ISD::SUB, MVT::i32,     1 }, // Pentium III from http://www.agner.org/
914   };
915 
916   if (ST->hasSSE1())
917     if (const auto *Entry = CostTableLookup(SSE1CostTable, ISD, LT.second))
918       return LT.first * Entry->Cost;
919 
920   // It is not a good idea to vectorize division. We have to scalarize it and
921   // in the process we will often end up having to spilling regular
922   // registers. The overhead of division is going to dominate most kernels
923   // anyways so try hard to prevent vectorization of division - it is
924   // generally a bad idea. Assume somewhat arbitrarily that we have to be able
925   // to hide "20 cycles" for each lane.
926   if (LT.second.isVector() && (ISD == ISD::SDIV || ISD == ISD::SREM ||
927                                ISD == ISD::UDIV || ISD == ISD::UREM)) {
928     int ScalarCost = getArithmeticInstrCost(
929         Opcode, Ty->getScalarType(), CostKind, Op1Info, Op2Info,
930         TargetTransformInfo::OP_None, TargetTransformInfo::OP_None);
931     return 20 * LT.first * LT.second.getVectorNumElements() * ScalarCost;
932   }
933 
934   // Fallback to the default implementation.
935   return BaseT::getArithmeticInstrCost(Opcode, Ty, CostKind, Op1Info, Op2Info);
936 }
937 
938 int X86TTIImpl::getShuffleCost(TTI::ShuffleKind Kind, VectorType *BaseTp,
939                                int Index, VectorType *SubTp) {
940   // 64-bit packed float vectors (v2f32) are widened to type v4f32.
941   // 64-bit packed integer vectors (v2i32) are widened to type v4i32.
942   std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, BaseTp);
943 
944   // Treat Transpose as 2-op shuffles - there's no difference in lowering.
945   if (Kind == TTI::SK_Transpose)
946     Kind = TTI::SK_PermuteTwoSrc;
947 
948   // For Broadcasts we are splatting the first element from the first input
949   // register, so only need to reference that input and all the output
950   // registers are the same.
951   if (Kind == TTI::SK_Broadcast)
952     LT.first = 1;
953 
954   // Subvector extractions are free if they start at the beginning of a
955   // vector and cheap if the subvectors are aligned.
956   if (Kind == TTI::SK_ExtractSubvector && LT.second.isVector()) {
957     int NumElts = LT.second.getVectorNumElements();
958     if ((Index % NumElts) == 0)
959       return 0;
960     std::pair<int, MVT> SubLT = TLI->getTypeLegalizationCost(DL, SubTp);
961     if (SubLT.second.isVector()) {
962       int NumSubElts = SubLT.second.getVectorNumElements();
963       if ((Index % NumSubElts) == 0 && (NumElts % NumSubElts) == 0)
964         return SubLT.first;
965       // Handle some cases for widening legalization. For now we only handle
966       // cases where the original subvector was naturally aligned and evenly
967       // fit in its legalized subvector type.
968       // FIXME: Remove some of the alignment restrictions.
969       // FIXME: We can use permq for 64-bit or larger extracts from 256-bit
970       // vectors.
971       int OrigSubElts = cast<VectorType>(SubTp)->getNumElements();
972       if (NumSubElts > OrigSubElts && (Index % OrigSubElts) == 0 &&
973           (NumSubElts % OrigSubElts) == 0 &&
974           LT.second.getVectorElementType() ==
975               SubLT.second.getVectorElementType() &&
976           LT.second.getVectorElementType().getSizeInBits() ==
977               BaseTp->getElementType()->getPrimitiveSizeInBits()) {
978         assert(NumElts >= NumSubElts && NumElts > OrigSubElts &&
979                "Unexpected number of elements!");
980         VectorType *VecTy = VectorType::get(BaseTp->getElementType(),
981                                             LT.second.getVectorNumElements());
982         VectorType *SubTy =
983           VectorType::get(BaseTp->getElementType(),
984                           SubLT.second.getVectorNumElements());
985         int ExtractIndex = alignDown((Index % NumElts), NumSubElts);
986         int ExtractCost = getShuffleCost(TTI::SK_ExtractSubvector, VecTy,
987                                          ExtractIndex, SubTy);
988 
989         // If the original size is 32-bits or more, we can use pshufd. Otherwise
990         // if we have SSSE3 we can use pshufb.
991         if (SubTp->getPrimitiveSizeInBits() >= 32 || ST->hasSSSE3())
992           return ExtractCost + 1; // pshufd or pshufb
993 
994         assert(SubTp->getPrimitiveSizeInBits() == 16 &&
995                "Unexpected vector size");
996 
997         return ExtractCost + 2; // worst case pshufhw + pshufd
998       }
999     }
1000   }
1001 
1002   // Handle some common (illegal) sub-vector types as they are often very cheap
1003   // to shuffle even on targets without PSHUFB.
1004   EVT VT = TLI->getValueType(DL, BaseTp);
1005   if (VT.isSimple() && VT.isVector() && VT.getSizeInBits() < 128 &&
1006       !ST->hasSSSE3()) {
1007      static const CostTblEntry SSE2SubVectorShuffleTbl[] = {
1008       {TTI::SK_Broadcast,        MVT::v4i16, 1}, // pshuflw
1009       {TTI::SK_Broadcast,        MVT::v2i16, 1}, // pshuflw
1010       {TTI::SK_Broadcast,        MVT::v8i8,  2}, // punpck/pshuflw
1011       {TTI::SK_Broadcast,        MVT::v4i8,  2}, // punpck/pshuflw
1012       {TTI::SK_Broadcast,        MVT::v2i8,  1}, // punpck
1013 
1014       {TTI::SK_Reverse,          MVT::v4i16, 1}, // pshuflw
1015       {TTI::SK_Reverse,          MVT::v2i16, 1}, // pshuflw
1016       {TTI::SK_Reverse,          MVT::v4i8,  3}, // punpck/pshuflw/packus
1017       {TTI::SK_Reverse,          MVT::v2i8,  1}, // punpck
1018 
1019       {TTI::SK_PermuteTwoSrc,    MVT::v4i16, 2}, // punpck/pshuflw
1020       {TTI::SK_PermuteTwoSrc,    MVT::v2i16, 2}, // punpck/pshuflw
1021       {TTI::SK_PermuteTwoSrc,    MVT::v8i8,  7}, // punpck/pshuflw
1022       {TTI::SK_PermuteTwoSrc,    MVT::v4i8,  4}, // punpck/pshuflw
1023       {TTI::SK_PermuteTwoSrc,    MVT::v2i8,  2}, // punpck
1024 
1025       {TTI::SK_PermuteSingleSrc, MVT::v4i16, 1}, // pshuflw
1026       {TTI::SK_PermuteSingleSrc, MVT::v2i16, 1}, // pshuflw
1027       {TTI::SK_PermuteSingleSrc, MVT::v8i8,  5}, // punpck/pshuflw
1028       {TTI::SK_PermuteSingleSrc, MVT::v4i8,  3}, // punpck/pshuflw
1029       {TTI::SK_PermuteSingleSrc, MVT::v2i8,  1}, // punpck
1030     };
1031 
1032     if (ST->hasSSE2())
1033       if (const auto *Entry =
1034               CostTableLookup(SSE2SubVectorShuffleTbl, Kind, VT.getSimpleVT()))
1035         return Entry->Cost;
1036   }
1037 
1038   // We are going to permute multiple sources and the result will be in multiple
1039   // destinations. Providing an accurate cost only for splits where the element
1040   // type remains the same.
1041   if (Kind == TTI::SK_PermuteSingleSrc && LT.first != 1) {
1042     MVT LegalVT = LT.second;
1043     if (LegalVT.isVector() &&
1044         LegalVT.getVectorElementType().getSizeInBits() ==
1045             BaseTp->getElementType()->getPrimitiveSizeInBits() &&
1046         LegalVT.getVectorNumElements() < BaseTp->getNumElements()) {
1047 
1048       unsigned VecTySize = DL.getTypeStoreSize(BaseTp);
1049       unsigned LegalVTSize = LegalVT.getStoreSize();
1050       // Number of source vectors after legalization:
1051       unsigned NumOfSrcs = (VecTySize + LegalVTSize - 1) / LegalVTSize;
1052       // Number of destination vectors after legalization:
1053       unsigned NumOfDests = LT.first;
1054 
1055       VectorType *SingleOpTy =
1056         VectorType::get(BaseTp->getElementType(),
1057                         LegalVT.getVectorNumElements());
1058 
1059       unsigned NumOfShuffles = (NumOfSrcs - 1) * NumOfDests;
1060       return NumOfShuffles *
1061              getShuffleCost(TTI::SK_PermuteTwoSrc, SingleOpTy, 0, nullptr);
1062     }
1063 
1064     return BaseT::getShuffleCost(Kind, BaseTp, Index, SubTp);
1065   }
1066 
1067   // For 2-input shuffles, we must account for splitting the 2 inputs into many.
1068   if (Kind == TTI::SK_PermuteTwoSrc && LT.first != 1) {
1069     // We assume that source and destination have the same vector type.
1070     int NumOfDests = LT.first;
1071     int NumOfShufflesPerDest = LT.first * 2 - 1;
1072     LT.first = NumOfDests * NumOfShufflesPerDest;
1073   }
1074 
1075   static const CostTblEntry AVX512VBMIShuffleTbl[] = {
1076       {TTI::SK_Reverse, MVT::v64i8, 1}, // vpermb
1077       {TTI::SK_Reverse, MVT::v32i8, 1}, // vpermb
1078 
1079       {TTI::SK_PermuteSingleSrc, MVT::v64i8, 1}, // vpermb
1080       {TTI::SK_PermuteSingleSrc, MVT::v32i8, 1}, // vpermb
1081 
1082       {TTI::SK_PermuteTwoSrc, MVT::v64i8, 2}, // vpermt2b
1083       {TTI::SK_PermuteTwoSrc, MVT::v32i8, 2}, // vpermt2b
1084       {TTI::SK_PermuteTwoSrc, MVT::v16i8, 2}  // vpermt2b
1085   };
1086 
1087   if (ST->hasVBMI())
1088     if (const auto *Entry =
1089             CostTableLookup(AVX512VBMIShuffleTbl, Kind, LT.second))
1090       return LT.first * Entry->Cost;
1091 
1092   static const CostTblEntry AVX512BWShuffleTbl[] = {
1093       {TTI::SK_Broadcast, MVT::v32i16, 1}, // vpbroadcastw
1094       {TTI::SK_Broadcast, MVT::v64i8, 1},  // vpbroadcastb
1095 
1096       {TTI::SK_Reverse, MVT::v32i16, 2}, // vpermw
1097       {TTI::SK_Reverse, MVT::v16i16, 2}, // vpermw
1098       {TTI::SK_Reverse, MVT::v64i8, 2},  // pshufb + vshufi64x2
1099 
1100       {TTI::SK_PermuteSingleSrc, MVT::v32i16, 2}, // vpermw
1101       {TTI::SK_PermuteSingleSrc, MVT::v16i16, 2}, // vpermw
1102       {TTI::SK_PermuteSingleSrc, MVT::v64i8, 8},  // extend to v32i16
1103 
1104       {TTI::SK_PermuteTwoSrc, MVT::v32i16, 2}, // vpermt2w
1105       {TTI::SK_PermuteTwoSrc, MVT::v16i16, 2}, // vpermt2w
1106       {TTI::SK_PermuteTwoSrc, MVT::v8i16, 2},  // vpermt2w
1107       {TTI::SK_PermuteTwoSrc, MVT::v64i8, 19}, // 6 * v32i8 + 1
1108   };
1109 
1110   if (ST->hasBWI())
1111     if (const auto *Entry =
1112             CostTableLookup(AVX512BWShuffleTbl, Kind, LT.second))
1113       return LT.first * Entry->Cost;
1114 
1115   static const CostTblEntry AVX512ShuffleTbl[] = {
1116       {TTI::SK_Broadcast, MVT::v8f64, 1},  // vbroadcastpd
1117       {TTI::SK_Broadcast, MVT::v16f32, 1}, // vbroadcastps
1118       {TTI::SK_Broadcast, MVT::v8i64, 1},  // vpbroadcastq
1119       {TTI::SK_Broadcast, MVT::v16i32, 1}, // vpbroadcastd
1120       {TTI::SK_Broadcast, MVT::v32i16, 1}, // vpbroadcastw
1121       {TTI::SK_Broadcast, MVT::v64i8, 1},  // vpbroadcastb
1122 
1123       {TTI::SK_Reverse, MVT::v8f64, 1},  // vpermpd
1124       {TTI::SK_Reverse, MVT::v16f32, 1}, // vpermps
1125       {TTI::SK_Reverse, MVT::v8i64, 1},  // vpermq
1126       {TTI::SK_Reverse, MVT::v16i32, 1}, // vpermd
1127 
1128       {TTI::SK_PermuteSingleSrc, MVT::v8f64, 1},  // vpermpd
1129       {TTI::SK_PermuteSingleSrc, MVT::v4f64, 1},  // vpermpd
1130       {TTI::SK_PermuteSingleSrc, MVT::v2f64, 1},  // vpermpd
1131       {TTI::SK_PermuteSingleSrc, MVT::v16f32, 1}, // vpermps
1132       {TTI::SK_PermuteSingleSrc, MVT::v8f32, 1},  // vpermps
1133       {TTI::SK_PermuteSingleSrc, MVT::v4f32, 1},  // vpermps
1134       {TTI::SK_PermuteSingleSrc, MVT::v8i64, 1},  // vpermq
1135       {TTI::SK_PermuteSingleSrc, MVT::v4i64, 1},  // vpermq
1136       {TTI::SK_PermuteSingleSrc, MVT::v2i64, 1},  // vpermq
1137       {TTI::SK_PermuteSingleSrc, MVT::v16i32, 1}, // vpermd
1138       {TTI::SK_PermuteSingleSrc, MVT::v8i32, 1},  // vpermd
1139       {TTI::SK_PermuteSingleSrc, MVT::v4i32, 1},  // vpermd
1140       {TTI::SK_PermuteSingleSrc, MVT::v16i8, 1},  // pshufb
1141 
1142       {TTI::SK_PermuteTwoSrc, MVT::v8f64, 1},  // vpermt2pd
1143       {TTI::SK_PermuteTwoSrc, MVT::v16f32, 1}, // vpermt2ps
1144       {TTI::SK_PermuteTwoSrc, MVT::v8i64, 1},  // vpermt2q
1145       {TTI::SK_PermuteTwoSrc, MVT::v16i32, 1}, // vpermt2d
1146       {TTI::SK_PermuteTwoSrc, MVT::v4f64, 1},  // vpermt2pd
1147       {TTI::SK_PermuteTwoSrc, MVT::v8f32, 1},  // vpermt2ps
1148       {TTI::SK_PermuteTwoSrc, MVT::v4i64, 1},  // vpermt2q
1149       {TTI::SK_PermuteTwoSrc, MVT::v8i32, 1},  // vpermt2d
1150       {TTI::SK_PermuteTwoSrc, MVT::v2f64, 1},  // vpermt2pd
1151       {TTI::SK_PermuteTwoSrc, MVT::v4f32, 1},  // vpermt2ps
1152       {TTI::SK_PermuteTwoSrc, MVT::v2i64, 1},  // vpermt2q
1153       {TTI::SK_PermuteTwoSrc, MVT::v4i32, 1},  // vpermt2d
1154 
1155       // FIXME: This just applies the type legalization cost rules above
1156       // assuming these completely split.
1157       {TTI::SK_PermuteSingleSrc, MVT::v32i16, 14},
1158       {TTI::SK_PermuteSingleSrc, MVT::v64i8,  14},
1159       {TTI::SK_PermuteTwoSrc,    MVT::v32i16, 42},
1160       {TTI::SK_PermuteTwoSrc,    MVT::v64i8,  42},
1161   };
1162 
1163   if (ST->hasAVX512())
1164     if (const auto *Entry = CostTableLookup(AVX512ShuffleTbl, Kind, LT.second))
1165       return LT.first * Entry->Cost;
1166 
1167   static const CostTblEntry AVX2ShuffleTbl[] = {
1168       {TTI::SK_Broadcast, MVT::v4f64, 1},  // vbroadcastpd
1169       {TTI::SK_Broadcast, MVT::v8f32, 1},  // vbroadcastps
1170       {TTI::SK_Broadcast, MVT::v4i64, 1},  // vpbroadcastq
1171       {TTI::SK_Broadcast, MVT::v8i32, 1},  // vpbroadcastd
1172       {TTI::SK_Broadcast, MVT::v16i16, 1}, // vpbroadcastw
1173       {TTI::SK_Broadcast, MVT::v32i8, 1},  // vpbroadcastb
1174 
1175       {TTI::SK_Reverse, MVT::v4f64, 1},  // vpermpd
1176       {TTI::SK_Reverse, MVT::v8f32, 1},  // vpermps
1177       {TTI::SK_Reverse, MVT::v4i64, 1},  // vpermq
1178       {TTI::SK_Reverse, MVT::v8i32, 1},  // vpermd
1179       {TTI::SK_Reverse, MVT::v16i16, 2}, // vperm2i128 + pshufb
1180       {TTI::SK_Reverse, MVT::v32i8, 2},  // vperm2i128 + pshufb
1181 
1182       {TTI::SK_Select, MVT::v16i16, 1}, // vpblendvb
1183       {TTI::SK_Select, MVT::v32i8, 1},  // vpblendvb
1184 
1185       {TTI::SK_PermuteSingleSrc, MVT::v4f64, 1},  // vpermpd
1186       {TTI::SK_PermuteSingleSrc, MVT::v8f32, 1},  // vpermps
1187       {TTI::SK_PermuteSingleSrc, MVT::v4i64, 1},  // vpermq
1188       {TTI::SK_PermuteSingleSrc, MVT::v8i32, 1},  // vpermd
1189       {TTI::SK_PermuteSingleSrc, MVT::v16i16, 4}, // vperm2i128 + 2*vpshufb
1190                                                   // + vpblendvb
1191       {TTI::SK_PermuteSingleSrc, MVT::v32i8, 4},  // vperm2i128 + 2*vpshufb
1192                                                   // + vpblendvb
1193 
1194       {TTI::SK_PermuteTwoSrc, MVT::v4f64, 3},  // 2*vpermpd + vblendpd
1195       {TTI::SK_PermuteTwoSrc, MVT::v8f32, 3},  // 2*vpermps + vblendps
1196       {TTI::SK_PermuteTwoSrc, MVT::v4i64, 3},  // 2*vpermq + vpblendd
1197       {TTI::SK_PermuteTwoSrc, MVT::v8i32, 3},  // 2*vpermd + vpblendd
1198       {TTI::SK_PermuteTwoSrc, MVT::v16i16, 7}, // 2*vperm2i128 + 4*vpshufb
1199                                                // + vpblendvb
1200       {TTI::SK_PermuteTwoSrc, MVT::v32i8, 7},  // 2*vperm2i128 + 4*vpshufb
1201                                                // + vpblendvb
1202   };
1203 
1204   if (ST->hasAVX2())
1205     if (const auto *Entry = CostTableLookup(AVX2ShuffleTbl, Kind, LT.second))
1206       return LT.first * Entry->Cost;
1207 
1208   static const CostTblEntry XOPShuffleTbl[] = {
1209       {TTI::SK_PermuteSingleSrc, MVT::v4f64, 2},  // vperm2f128 + vpermil2pd
1210       {TTI::SK_PermuteSingleSrc, MVT::v8f32, 2},  // vperm2f128 + vpermil2ps
1211       {TTI::SK_PermuteSingleSrc, MVT::v4i64, 2},  // vperm2f128 + vpermil2pd
1212       {TTI::SK_PermuteSingleSrc, MVT::v8i32, 2},  // vperm2f128 + vpermil2ps
1213       {TTI::SK_PermuteSingleSrc, MVT::v16i16, 4}, // vextractf128 + 2*vpperm
1214                                                   // + vinsertf128
1215       {TTI::SK_PermuteSingleSrc, MVT::v32i8, 4},  // vextractf128 + 2*vpperm
1216                                                   // + vinsertf128
1217 
1218       {TTI::SK_PermuteTwoSrc, MVT::v16i16, 9}, // 2*vextractf128 + 6*vpperm
1219                                                // + vinsertf128
1220       {TTI::SK_PermuteTwoSrc, MVT::v8i16, 1},  // vpperm
1221       {TTI::SK_PermuteTwoSrc, MVT::v32i8, 9},  // 2*vextractf128 + 6*vpperm
1222                                                // + vinsertf128
1223       {TTI::SK_PermuteTwoSrc, MVT::v16i8, 1},  // vpperm
1224   };
1225 
1226   if (ST->hasXOP())
1227     if (const auto *Entry = CostTableLookup(XOPShuffleTbl, Kind, LT.second))
1228       return LT.first * Entry->Cost;
1229 
1230   static const CostTblEntry AVX1ShuffleTbl[] = {
1231       {TTI::SK_Broadcast, MVT::v4f64, 2},  // vperm2f128 + vpermilpd
1232       {TTI::SK_Broadcast, MVT::v8f32, 2},  // vperm2f128 + vpermilps
1233       {TTI::SK_Broadcast, MVT::v4i64, 2},  // vperm2f128 + vpermilpd
1234       {TTI::SK_Broadcast, MVT::v8i32, 2},  // vperm2f128 + vpermilps
1235       {TTI::SK_Broadcast, MVT::v16i16, 3}, // vpshuflw + vpshufd + vinsertf128
1236       {TTI::SK_Broadcast, MVT::v32i8, 2},  // vpshufb + vinsertf128
1237 
1238       {TTI::SK_Reverse, MVT::v4f64, 2},  // vperm2f128 + vpermilpd
1239       {TTI::SK_Reverse, MVT::v8f32, 2},  // vperm2f128 + vpermilps
1240       {TTI::SK_Reverse, MVT::v4i64, 2},  // vperm2f128 + vpermilpd
1241       {TTI::SK_Reverse, MVT::v8i32, 2},  // vperm2f128 + vpermilps
1242       {TTI::SK_Reverse, MVT::v16i16, 4}, // vextractf128 + 2*pshufb
1243                                          // + vinsertf128
1244       {TTI::SK_Reverse, MVT::v32i8, 4},  // vextractf128 + 2*pshufb
1245                                          // + vinsertf128
1246 
1247       {TTI::SK_Select, MVT::v4i64, 1},  // vblendpd
1248       {TTI::SK_Select, MVT::v4f64, 1},  // vblendpd
1249       {TTI::SK_Select, MVT::v8i32, 1},  // vblendps
1250       {TTI::SK_Select, MVT::v8f32, 1},  // vblendps
1251       {TTI::SK_Select, MVT::v16i16, 3}, // vpand + vpandn + vpor
1252       {TTI::SK_Select, MVT::v32i8, 3},  // vpand + vpandn + vpor
1253 
1254       {TTI::SK_PermuteSingleSrc, MVT::v4f64, 2},  // vperm2f128 + vshufpd
1255       {TTI::SK_PermuteSingleSrc, MVT::v4i64, 2},  // vperm2f128 + vshufpd
1256       {TTI::SK_PermuteSingleSrc, MVT::v8f32, 4},  // 2*vperm2f128 + 2*vshufps
1257       {TTI::SK_PermuteSingleSrc, MVT::v8i32, 4},  // 2*vperm2f128 + 2*vshufps
1258       {TTI::SK_PermuteSingleSrc, MVT::v16i16, 8}, // vextractf128 + 4*pshufb
1259                                                   // + 2*por + vinsertf128
1260       {TTI::SK_PermuteSingleSrc, MVT::v32i8, 8},  // vextractf128 + 4*pshufb
1261                                                   // + 2*por + vinsertf128
1262 
1263       {TTI::SK_PermuteTwoSrc, MVT::v4f64, 3},   // 2*vperm2f128 + vshufpd
1264       {TTI::SK_PermuteTwoSrc, MVT::v4i64, 3},   // 2*vperm2f128 + vshufpd
1265       {TTI::SK_PermuteTwoSrc, MVT::v8f32, 4},   // 2*vperm2f128 + 2*vshufps
1266       {TTI::SK_PermuteTwoSrc, MVT::v8i32, 4},   // 2*vperm2f128 + 2*vshufps
1267       {TTI::SK_PermuteTwoSrc, MVT::v16i16, 15}, // 2*vextractf128 + 8*pshufb
1268                                                 // + 4*por + vinsertf128
1269       {TTI::SK_PermuteTwoSrc, MVT::v32i8, 15},  // 2*vextractf128 + 8*pshufb
1270                                                 // + 4*por + vinsertf128
1271   };
1272 
1273   if (ST->hasAVX())
1274     if (const auto *Entry = CostTableLookup(AVX1ShuffleTbl, Kind, LT.second))
1275       return LT.first * Entry->Cost;
1276 
1277   static const CostTblEntry SSE41ShuffleTbl[] = {
1278       {TTI::SK_Select, MVT::v2i64, 1}, // pblendw
1279       {TTI::SK_Select, MVT::v2f64, 1}, // movsd
1280       {TTI::SK_Select, MVT::v4i32, 1}, // pblendw
1281       {TTI::SK_Select, MVT::v4f32, 1}, // blendps
1282       {TTI::SK_Select, MVT::v8i16, 1}, // pblendw
1283       {TTI::SK_Select, MVT::v16i8, 1}  // pblendvb
1284   };
1285 
1286   if (ST->hasSSE41())
1287     if (const auto *Entry = CostTableLookup(SSE41ShuffleTbl, Kind, LT.second))
1288       return LT.first * Entry->Cost;
1289 
1290   static const CostTblEntry SSSE3ShuffleTbl[] = {
1291       {TTI::SK_Broadcast, MVT::v8i16, 1}, // pshufb
1292       {TTI::SK_Broadcast, MVT::v16i8, 1}, // pshufb
1293 
1294       {TTI::SK_Reverse, MVT::v8i16, 1}, // pshufb
1295       {TTI::SK_Reverse, MVT::v16i8, 1}, // pshufb
1296 
1297       {TTI::SK_Select, MVT::v8i16, 3}, // 2*pshufb + por
1298       {TTI::SK_Select, MVT::v16i8, 3}, // 2*pshufb + por
1299 
1300       {TTI::SK_PermuteSingleSrc, MVT::v8i16, 1}, // pshufb
1301       {TTI::SK_PermuteSingleSrc, MVT::v16i8, 1}, // pshufb
1302 
1303       {TTI::SK_PermuteTwoSrc, MVT::v8i16, 3}, // 2*pshufb + por
1304       {TTI::SK_PermuteTwoSrc, MVT::v16i8, 3}, // 2*pshufb + por
1305   };
1306 
1307   if (ST->hasSSSE3())
1308     if (const auto *Entry = CostTableLookup(SSSE3ShuffleTbl, Kind, LT.second))
1309       return LT.first * Entry->Cost;
1310 
1311   static const CostTblEntry SSE2ShuffleTbl[] = {
1312       {TTI::SK_Broadcast, MVT::v2f64, 1}, // shufpd
1313       {TTI::SK_Broadcast, MVT::v2i64, 1}, // pshufd
1314       {TTI::SK_Broadcast, MVT::v4i32, 1}, // pshufd
1315       {TTI::SK_Broadcast, MVT::v8i16, 2}, // pshuflw + pshufd
1316       {TTI::SK_Broadcast, MVT::v16i8, 3}, // unpck + pshuflw + pshufd
1317 
1318       {TTI::SK_Reverse, MVT::v2f64, 1}, // shufpd
1319       {TTI::SK_Reverse, MVT::v2i64, 1}, // pshufd
1320       {TTI::SK_Reverse, MVT::v4i32, 1}, // pshufd
1321       {TTI::SK_Reverse, MVT::v8i16, 3}, // pshuflw + pshufhw + pshufd
1322       {TTI::SK_Reverse, MVT::v16i8, 9}, // 2*pshuflw + 2*pshufhw
1323                                         // + 2*pshufd + 2*unpck + packus
1324 
1325       {TTI::SK_Select, MVT::v2i64, 1}, // movsd
1326       {TTI::SK_Select, MVT::v2f64, 1}, // movsd
1327       {TTI::SK_Select, MVT::v4i32, 2}, // 2*shufps
1328       {TTI::SK_Select, MVT::v8i16, 3}, // pand + pandn + por
1329       {TTI::SK_Select, MVT::v16i8, 3}, // pand + pandn + por
1330 
1331       {TTI::SK_PermuteSingleSrc, MVT::v2f64, 1}, // shufpd
1332       {TTI::SK_PermuteSingleSrc, MVT::v2i64, 1}, // pshufd
1333       {TTI::SK_PermuteSingleSrc, MVT::v4i32, 1}, // pshufd
1334       {TTI::SK_PermuteSingleSrc, MVT::v8i16, 5}, // 2*pshuflw + 2*pshufhw
1335                                                   // + pshufd/unpck
1336     { TTI::SK_PermuteSingleSrc, MVT::v16i8, 10 }, // 2*pshuflw + 2*pshufhw
1337                                                   // + 2*pshufd + 2*unpck + 2*packus
1338 
1339     { TTI::SK_PermuteTwoSrc,    MVT::v2f64,  1 }, // shufpd
1340     { TTI::SK_PermuteTwoSrc,    MVT::v2i64,  1 }, // shufpd
1341     { TTI::SK_PermuteTwoSrc,    MVT::v4i32,  2 }, // 2*{unpck,movsd,pshufd}
1342     { TTI::SK_PermuteTwoSrc,    MVT::v8i16,  8 }, // blend+permute
1343     { TTI::SK_PermuteTwoSrc,    MVT::v16i8, 13 }, // blend+permute
1344   };
1345 
1346   if (ST->hasSSE2())
1347     if (const auto *Entry = CostTableLookup(SSE2ShuffleTbl, Kind, LT.second))
1348       return LT.first * Entry->Cost;
1349 
1350   static const CostTblEntry SSE1ShuffleTbl[] = {
1351     { TTI::SK_Broadcast,        MVT::v4f32, 1 }, // shufps
1352     { TTI::SK_Reverse,          MVT::v4f32, 1 }, // shufps
1353     { TTI::SK_Select,           MVT::v4f32, 2 }, // 2*shufps
1354     { TTI::SK_PermuteSingleSrc, MVT::v4f32, 1 }, // shufps
1355     { TTI::SK_PermuteTwoSrc,    MVT::v4f32, 2 }, // 2*shufps
1356   };
1357 
1358   if (ST->hasSSE1())
1359     if (const auto *Entry = CostTableLookup(SSE1ShuffleTbl, Kind, LT.second))
1360       return LT.first * Entry->Cost;
1361 
1362   return BaseT::getShuffleCost(Kind, BaseTp, Index, SubTp);
1363 }
1364 
1365 int X86TTIImpl::getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src,
1366                                  TTI::TargetCostKind CostKind,
1367                                  const Instruction *I) {
1368   int ISD = TLI->InstructionOpcodeToISD(Opcode);
1369   assert(ISD && "Invalid opcode");
1370 
1371   // TODO: Allow non-throughput costs that aren't binary.
1372   auto AdjustCost = [&CostKind](int Cost) {
1373     if (CostKind != TTI::TCK_RecipThroughput)
1374       return Cost == 0 ? 0 : 1;
1375     return Cost;
1376   };
1377 
1378   // FIXME: Need a better design of the cost table to handle non-simple types of
1379   // potential massive combinations (elem_num x src_type x dst_type).
1380 
1381   static const TypeConversionCostTblEntry AVX512BWConversionTbl[] {
1382     { ISD::SIGN_EXTEND, MVT::v32i16, MVT::v32i8, 1 },
1383     { ISD::ZERO_EXTEND, MVT::v32i16, MVT::v32i8, 1 },
1384 
1385     // Mask sign extend has an instruction.
1386     { ISD::SIGN_EXTEND, MVT::v2i8,   MVT::v2i1,  1 },
1387     { ISD::SIGN_EXTEND, MVT::v2i16,  MVT::v2i1,  1 },
1388     { ISD::SIGN_EXTEND, MVT::v4i8,   MVT::v4i1,  1 },
1389     { ISD::SIGN_EXTEND, MVT::v4i16,  MVT::v4i1,  1 },
1390     { ISD::SIGN_EXTEND, MVT::v8i8,   MVT::v8i1,  1 },
1391     { ISD::SIGN_EXTEND, MVT::v8i16,  MVT::v8i1,  1 },
1392     { ISD::SIGN_EXTEND, MVT::v16i8,  MVT::v16i1, 1 },
1393     { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i1, 1 },
1394     { ISD::SIGN_EXTEND, MVT::v32i8,  MVT::v32i1, 1 },
1395     { ISD::SIGN_EXTEND, MVT::v32i16, MVT::v32i1, 1 },
1396     { ISD::SIGN_EXTEND, MVT::v64i8,  MVT::v64i1, 1 },
1397 
1398     // Mask zero extend is a sext + shift.
1399     { ISD::ZERO_EXTEND, MVT::v2i8,   MVT::v2i1,  2 },
1400     { ISD::ZERO_EXTEND, MVT::v2i16,  MVT::v2i1,  2 },
1401     { ISD::ZERO_EXTEND, MVT::v4i8,   MVT::v4i1,  2 },
1402     { ISD::ZERO_EXTEND, MVT::v4i16,  MVT::v4i1,  2 },
1403     { ISD::ZERO_EXTEND, MVT::v8i8,   MVT::v8i1,  2 },
1404     { ISD::ZERO_EXTEND, MVT::v8i16,  MVT::v8i1,  2 },
1405     { ISD::ZERO_EXTEND, MVT::v16i8,  MVT::v16i1, 2 },
1406     { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i1, 2 },
1407     { ISD::ZERO_EXTEND, MVT::v32i8,  MVT::v32i1, 2 },
1408     { ISD::ZERO_EXTEND, MVT::v32i16, MVT::v32i1, 2 },
1409     { ISD::ZERO_EXTEND, MVT::v64i8,  MVT::v64i1, 2 },
1410 
1411     { ISD::TRUNCATE,    MVT::v32i8,  MVT::v32i16, 2 },
1412     { ISD::TRUNCATE,    MVT::v16i8,  MVT::v16i16, 2 }, // widen to zmm
1413     { ISD::TRUNCATE,    MVT::v2i1,   MVT::v2i8,   2 }, // widen to zmm
1414     { ISD::TRUNCATE,    MVT::v2i1,   MVT::v2i16,  2 }, // widen to zmm
1415     { ISD::TRUNCATE,    MVT::v4i1,   MVT::v4i8,   2 }, // widen to zmm
1416     { ISD::TRUNCATE,    MVT::v4i1,   MVT::v4i16,  2 }, // widen to zmm
1417     { ISD::TRUNCATE,    MVT::v8i1,   MVT::v8i8,   2 }, // widen to zmm
1418     { ISD::TRUNCATE,    MVT::v8i1,   MVT::v8i16,  2 }, // widen to zmm
1419     { ISD::TRUNCATE,    MVT::v16i1,  MVT::v16i8,  2 }, // widen to zmm
1420     { ISD::TRUNCATE,    MVT::v16i1,  MVT::v16i16, 2 }, // widen to zmm
1421     { ISD::TRUNCATE,    MVT::v32i1,  MVT::v32i8,  2 }, // widen to zmm
1422     { ISD::TRUNCATE,    MVT::v32i1,  MVT::v32i16, 2 },
1423     { ISD::TRUNCATE,    MVT::v64i1,  MVT::v64i8,  2 },
1424   };
1425 
1426   static const TypeConversionCostTblEntry AVX512DQConversionTbl[] = {
1427     { ISD::SINT_TO_FP,  MVT::v8f32,  MVT::v8i64,  1 },
1428     { ISD::SINT_TO_FP,  MVT::v8f64,  MVT::v8i64,  1 },
1429 
1430     { ISD::UINT_TO_FP,  MVT::v8f32,  MVT::v8i64,  1 },
1431     { ISD::UINT_TO_FP,  MVT::v8f64,  MVT::v8i64,  1 },
1432 
1433     { ISD::FP_TO_SINT,  MVT::v8i64,  MVT::v8f32,  1 },
1434     { ISD::FP_TO_SINT,  MVT::v8i64,  MVT::v8f64,  1 },
1435 
1436     { ISD::FP_TO_UINT,  MVT::v8i64,  MVT::v8f32,  1 },
1437     { ISD::FP_TO_UINT,  MVT::v8i64,  MVT::v8f64,  1 },
1438   };
1439 
1440   // TODO: For AVX512DQ + AVX512VL, we also have cheap casts for 128-bit and
1441   // 256-bit wide vectors.
1442 
1443   static const TypeConversionCostTblEntry AVX512FConversionTbl[] = {
1444     { ISD::FP_EXTEND, MVT::v8f64,   MVT::v8f32,  1 },
1445     { ISD::FP_EXTEND, MVT::v8f64,   MVT::v16f32, 3 },
1446     { ISD::FP_ROUND,  MVT::v8f32,   MVT::v8f64,  1 },
1447 
1448     { ISD::TRUNCATE,  MVT::v2i1,    MVT::v2i8,   3 }, // sext+vpslld+vptestmd
1449     { ISD::TRUNCATE,  MVT::v4i1,    MVT::v4i8,   3 }, // sext+vpslld+vptestmd
1450     { ISD::TRUNCATE,  MVT::v8i1,    MVT::v8i8,   3 }, // sext+vpslld+vptestmd
1451     { ISD::TRUNCATE,  MVT::v16i1,   MVT::v16i8,  3 }, // sext+vpslld+vptestmd
1452     { ISD::TRUNCATE,  MVT::v2i1,    MVT::v2i16,  3 }, // sext+vpsllq+vptestmq
1453     { ISD::TRUNCATE,  MVT::v4i1,    MVT::v4i16,  3 }, // sext+vpsllq+vptestmq
1454     { ISD::TRUNCATE,  MVT::v8i1,    MVT::v8i16,  3 }, // sext+vpsllq+vptestmq
1455     { ISD::TRUNCATE,  MVT::v16i1,   MVT::v16i16, 3 }, // sext+vpslld+vptestmd
1456     { ISD::TRUNCATE,  MVT::v2i1,    MVT::v2i32,  2 }, // zmm vpslld+vptestmd
1457     { ISD::TRUNCATE,  MVT::v4i1,    MVT::v4i32,  2 }, // zmm vpslld+vptestmd
1458     { ISD::TRUNCATE,  MVT::v8i1,    MVT::v8i32,  2 }, // zmm vpslld+vptestmd
1459     { ISD::TRUNCATE,  MVT::v16i1,   MVT::v16i32, 2 }, // vpslld+vptestmd
1460     { ISD::TRUNCATE,  MVT::v2i1,    MVT::v2i64,  2 }, // zmm vpsllq+vptestmq
1461     { ISD::TRUNCATE,  MVT::v4i1,    MVT::v4i64,  2 }, // zmm vpsllq+vptestmq
1462     { ISD::TRUNCATE,  MVT::v8i1,    MVT::v8i64,  2 }, // vpsllq+vptestmq
1463     { ISD::TRUNCATE,  MVT::v16i8,   MVT::v16i32, 2 },
1464     { ISD::TRUNCATE,  MVT::v16i16,  MVT::v16i32, 2 },
1465     { ISD::TRUNCATE,  MVT::v8i8,    MVT::v8i64,  2 },
1466     { ISD::TRUNCATE,  MVT::v8i16,   MVT::v8i64,  2 },
1467     { ISD::TRUNCATE,  MVT::v8i32,   MVT::v8i64,  1 },
1468     { ISD::TRUNCATE,  MVT::v4i32,   MVT::v4i64,  1 }, // zmm vpmovqd
1469     { ISD::TRUNCATE,  MVT::v16i8,   MVT::v16i64, 5 },// 2*vpmovqd+concat+vpmovdb
1470 
1471     { ISD::TRUNCATE,  MVT::v16i8,  MVT::v16i16,  3 }, // extend to v16i32
1472     { ISD::TRUNCATE,  MVT::v32i8,  MVT::v32i16,  8 },
1473 
1474     // Sign extend is zmm vpternlogd+vptruncdb.
1475     // Zero extend is zmm broadcast load+vptruncdw.
1476     { ISD::SIGN_EXTEND, MVT::v2i8,   MVT::v2i1,   3 },
1477     { ISD::ZERO_EXTEND, MVT::v2i8,   MVT::v2i1,   4 },
1478     { ISD::SIGN_EXTEND, MVT::v4i8,   MVT::v4i1,   3 },
1479     { ISD::ZERO_EXTEND, MVT::v4i8,   MVT::v4i1,   4 },
1480     { ISD::SIGN_EXTEND, MVT::v8i8,   MVT::v8i1,   3 },
1481     { ISD::ZERO_EXTEND, MVT::v8i8,   MVT::v8i1,   4 },
1482     { ISD::SIGN_EXTEND, MVT::v16i8,  MVT::v16i1,  3 },
1483     { ISD::ZERO_EXTEND, MVT::v16i8,  MVT::v16i1,  4 },
1484 
1485     // Sign extend is zmm vpternlogd+vptruncdw.
1486     // Zero extend is zmm vpternlogd+vptruncdw+vpsrlw.
1487     { ISD::SIGN_EXTEND, MVT::v2i16,  MVT::v2i1,   3 },
1488     { ISD::ZERO_EXTEND, MVT::v2i16,  MVT::v2i1,   4 },
1489     { ISD::SIGN_EXTEND, MVT::v4i16,  MVT::v4i1,   3 },
1490     { ISD::ZERO_EXTEND, MVT::v4i16,  MVT::v4i1,   4 },
1491     { ISD::SIGN_EXTEND, MVT::v8i16,  MVT::v8i1,   3 },
1492     { ISD::ZERO_EXTEND, MVT::v8i16,  MVT::v8i1,   4 },
1493     { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i1,  3 },
1494     { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i1,  4 },
1495 
1496     { ISD::SIGN_EXTEND, MVT::v2i32,  MVT::v2i1,   1 }, // zmm vpternlogd
1497     { ISD::ZERO_EXTEND, MVT::v2i32,  MVT::v2i1,   2 }, // zmm vpternlogd+psrld
1498     { ISD::SIGN_EXTEND, MVT::v4i32,  MVT::v4i1,   1 }, // zmm vpternlogd
1499     { ISD::ZERO_EXTEND, MVT::v4i32,  MVT::v4i1,   2 }, // zmm vpternlogd+psrld
1500     { ISD::SIGN_EXTEND, MVT::v8i32,  MVT::v8i1,   1 }, // zmm vpternlogd
1501     { ISD::ZERO_EXTEND, MVT::v8i32,  MVT::v8i1,   2 }, // zmm vpternlogd+psrld
1502     { ISD::SIGN_EXTEND, MVT::v2i64,  MVT::v2i1,   1 }, // zmm vpternlogq
1503     { ISD::ZERO_EXTEND, MVT::v2i64,  MVT::v2i1,   2 }, // zmm vpternlogq+psrlq
1504     { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v4i1,   1 }, // zmm vpternlogq
1505     { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v4i1,   2 }, // zmm vpternlogq+psrlq
1506 
1507     { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i1,  1 }, // vpternlogd
1508     { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i1,  2 }, // vpternlogd+psrld
1509     { ISD::SIGN_EXTEND, MVT::v8i64,  MVT::v8i1,   1 }, // vpternlogq
1510     { ISD::ZERO_EXTEND, MVT::v8i64,  MVT::v8i1,   2 }, // vpternlogq+psrlq
1511 
1512     { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i8,  1 },
1513     { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i8,  1 },
1514     { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i16, 1 },
1515     { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i16, 1 },
1516     { ISD::SIGN_EXTEND, MVT::v8i64,  MVT::v8i8,   1 },
1517     { ISD::ZERO_EXTEND, MVT::v8i64,  MVT::v8i8,   1 },
1518     { ISD::SIGN_EXTEND, MVT::v8i64,  MVT::v8i16,  1 },
1519     { ISD::ZERO_EXTEND, MVT::v8i64,  MVT::v8i16,  1 },
1520     { ISD::SIGN_EXTEND, MVT::v8i64,  MVT::v8i32,  1 },
1521     { ISD::ZERO_EXTEND, MVT::v8i64,  MVT::v8i32,  1 },
1522 
1523     { ISD::SIGN_EXTEND, MVT::v32i16, MVT::v32i8, 3 }, // FIXME: May not be right
1524     { ISD::ZERO_EXTEND, MVT::v32i16, MVT::v32i8, 3 }, // FIXME: May not be right
1525 
1526     { ISD::SINT_TO_FP,  MVT::v8f64,  MVT::v8i1,   4 },
1527     { ISD::SINT_TO_FP,  MVT::v16f32, MVT::v16i1,  3 },
1528     { ISD::SINT_TO_FP,  MVT::v8f64,  MVT::v8i8,   2 },
1529     { ISD::SINT_TO_FP,  MVT::v16f32, MVT::v16i8,  2 },
1530     { ISD::SINT_TO_FP,  MVT::v8f64,  MVT::v8i16,  2 },
1531     { ISD::SINT_TO_FP,  MVT::v16f32, MVT::v16i16, 2 },
1532     { ISD::SINT_TO_FP,  MVT::v16f32, MVT::v16i32, 1 },
1533     { ISD::SINT_TO_FP,  MVT::v8f64,  MVT::v8i32,  1 },
1534 
1535     { ISD::UINT_TO_FP,  MVT::v8f64,  MVT::v8i1,   4 },
1536     { ISD::UINT_TO_FP,  MVT::v16f32, MVT::v16i1,  3 },
1537     { ISD::UINT_TO_FP,  MVT::v8f64,  MVT::v8i8,   2 },
1538     { ISD::UINT_TO_FP,  MVT::v16f32, MVT::v16i8,  2 },
1539     { ISD::UINT_TO_FP,  MVT::v8f64,  MVT::v8i16,  2 },
1540     { ISD::UINT_TO_FP,  MVT::v16f32, MVT::v16i16, 2 },
1541     { ISD::UINT_TO_FP,  MVT::v8f64,  MVT::v8i32,  1 },
1542     { ISD::UINT_TO_FP,  MVT::v16f32, MVT::v16i32, 1 },
1543     { ISD::UINT_TO_FP,  MVT::v8f32,  MVT::v8i64, 26 },
1544     { ISD::UINT_TO_FP,  MVT::v8f64,  MVT::v8i64,  5 },
1545 
1546     { ISD::FP_TO_SINT,  MVT::v8i8,   MVT::v8f64,  3 },
1547     { ISD::FP_TO_SINT,  MVT::v8i16,  MVT::v8f64,  3 },
1548     { ISD::FP_TO_SINT,  MVT::v16i8,  MVT::v16f32, 3 },
1549     { ISD::FP_TO_SINT,  MVT::v16i16, MVT::v16f32, 3 },
1550 
1551     { ISD::FP_TO_UINT,  MVT::v8i32,  MVT::v8f64,  1 },
1552     { ISD::FP_TO_UINT,  MVT::v8i16,  MVT::v8f64,  3 },
1553     { ISD::FP_TO_UINT,  MVT::v8i8,   MVT::v8f64,  3 },
1554     { ISD::FP_TO_UINT,  MVT::v16i32, MVT::v16f32, 1 },
1555     { ISD::FP_TO_UINT,  MVT::v16i16, MVT::v16f32, 3 },
1556     { ISD::FP_TO_UINT,  MVT::v16i8,  MVT::v16f32, 3 },
1557   };
1558 
1559   static const TypeConversionCostTblEntry AVX512BWVLConversionTbl[] {
1560     // Mask sign extend has an instruction.
1561     { ISD::SIGN_EXTEND, MVT::v2i8,   MVT::v2i1,  1 },
1562     { ISD::SIGN_EXTEND, MVT::v2i16,  MVT::v2i1,  1 },
1563     { ISD::SIGN_EXTEND, MVT::v4i8,   MVT::v4i1,  1 },
1564     { ISD::SIGN_EXTEND, MVT::v4i16,  MVT::v4i1,  1 },
1565     { ISD::SIGN_EXTEND, MVT::v8i8,   MVT::v8i1,  1 },
1566     { ISD::SIGN_EXTEND, MVT::v8i16,  MVT::v8i1,  1 },
1567     { ISD::SIGN_EXTEND, MVT::v16i8,  MVT::v16i1, 1 },
1568     { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i1, 1 },
1569     { ISD::SIGN_EXTEND, MVT::v32i8,  MVT::v32i1, 1 },
1570 
1571     // Mask zero extend is a sext + shift.
1572     { ISD::ZERO_EXTEND, MVT::v2i8,   MVT::v2i1,  2 },
1573     { ISD::ZERO_EXTEND, MVT::v2i16,  MVT::v2i1,  2 },
1574     { ISD::ZERO_EXTEND, MVT::v4i8,   MVT::v4i1,  2 },
1575     { ISD::ZERO_EXTEND, MVT::v4i16,  MVT::v4i1,  2 },
1576     { ISD::ZERO_EXTEND, MVT::v8i8,   MVT::v8i1,  2 },
1577     { ISD::ZERO_EXTEND, MVT::v8i16,  MVT::v8i1,  2 },
1578     { ISD::ZERO_EXTEND, MVT::v16i8,  MVT::v16i1, 2 },
1579     { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i1, 2 },
1580     { ISD::ZERO_EXTEND, MVT::v32i8,  MVT::v32i1, 2 },
1581 
1582     { ISD::TRUNCATE,    MVT::v16i8,  MVT::v16i16, 2 },
1583     { ISD::TRUNCATE,    MVT::v2i1,   MVT::v2i8,   2 }, // vpsllw+vptestmb
1584     { ISD::TRUNCATE,    MVT::v2i1,   MVT::v2i16,  2 }, // vpsllw+vptestmw
1585     { ISD::TRUNCATE,    MVT::v4i1,   MVT::v4i8,   2 }, // vpsllw+vptestmb
1586     { ISD::TRUNCATE,    MVT::v4i1,   MVT::v4i16,  2 }, // vpsllw+vptestmw
1587     { ISD::TRUNCATE,    MVT::v8i1,   MVT::v8i8,   2 }, // vpsllw+vptestmb
1588     { ISD::TRUNCATE,    MVT::v8i1,   MVT::v8i16,  2 }, // vpsllw+vptestmw
1589     { ISD::TRUNCATE,    MVT::v16i1,  MVT::v16i8,  2 }, // vpsllw+vptestmb
1590     { ISD::TRUNCATE,    MVT::v16i1,  MVT::v16i16, 2 }, // vpsllw+vptestmw
1591     { ISD::TRUNCATE,    MVT::v32i1,  MVT::v32i8,  2 }, // vpsllw+vptestmb
1592   };
1593 
1594   static const TypeConversionCostTblEntry AVX512DQVLConversionTbl[] = {
1595     { ISD::SINT_TO_FP,  MVT::v2f32,  MVT::v2i64,  1 },
1596     { ISD::SINT_TO_FP,  MVT::v2f64,  MVT::v2i64,  1 },
1597     { ISD::SINT_TO_FP,  MVT::v4f32,  MVT::v4i64,  1 },
1598     { ISD::SINT_TO_FP,  MVT::v4f64,  MVT::v4i64,  1 },
1599 
1600     { ISD::UINT_TO_FP,  MVT::v2f32,  MVT::v2i64,  1 },
1601     { ISD::UINT_TO_FP,  MVT::v2f64,  MVT::v2i64,  1 },
1602     { ISD::UINT_TO_FP,  MVT::v4f32,  MVT::v4i64,  1 },
1603     { ISD::UINT_TO_FP,  MVT::v4f64,  MVT::v4i64,  1 },
1604 
1605     { ISD::FP_TO_SINT,  MVT::v2i64,  MVT::v2f32,  1 },
1606     { ISD::FP_TO_SINT,  MVT::v4i64,  MVT::v4f32,  1 },
1607     { ISD::FP_TO_SINT,  MVT::v2i64,  MVT::v2f64,  1 },
1608     { ISD::FP_TO_SINT,  MVT::v4i64,  MVT::v4f64,  1 },
1609 
1610     { ISD::FP_TO_UINT,  MVT::v2i64,  MVT::v2f32,  1 },
1611     { ISD::FP_TO_UINT,  MVT::v4i64,  MVT::v4f32,  1 },
1612     { ISD::FP_TO_UINT,  MVT::v2i64,  MVT::v2f64,  1 },
1613     { ISD::FP_TO_UINT,  MVT::v4i64,  MVT::v4f64,  1 },
1614   };
1615 
1616   static const TypeConversionCostTblEntry AVX512VLConversionTbl[] = {
1617     { ISD::TRUNCATE,  MVT::v2i1,    MVT::v2i8,   3 }, // sext+vpslld+vptestmd
1618     { ISD::TRUNCATE,  MVT::v4i1,    MVT::v4i8,   3 }, // sext+vpslld+vptestmd
1619     { ISD::TRUNCATE,  MVT::v8i1,    MVT::v8i8,   3 }, // sext+vpslld+vptestmd
1620     { ISD::TRUNCATE,  MVT::v16i1,   MVT::v16i8,  8 }, // split+2*v8i8
1621     { ISD::TRUNCATE,  MVT::v2i1,    MVT::v2i16,  3 }, // sext+vpsllq+vptestmq
1622     { ISD::TRUNCATE,  MVT::v4i1,    MVT::v4i16,  3 }, // sext+vpsllq+vptestmq
1623     { ISD::TRUNCATE,  MVT::v8i1,    MVT::v8i16,  3 }, // sext+vpsllq+vptestmq
1624     { ISD::TRUNCATE,  MVT::v16i1,   MVT::v16i16, 8 }, // split+2*v8i16
1625     { ISD::TRUNCATE,  MVT::v2i1,    MVT::v2i32,  2 }, // vpslld+vptestmd
1626     { ISD::TRUNCATE,  MVT::v4i1,    MVT::v4i32,  2 }, // vpslld+vptestmd
1627     { ISD::TRUNCATE,  MVT::v8i1,    MVT::v8i32,  2 }, // vpslld+vptestmd
1628     { ISD::TRUNCATE,  MVT::v2i1,    MVT::v2i64,  2 }, // vpsllq+vptestmq
1629     { ISD::TRUNCATE,  MVT::v4i1,    MVT::v4i64,  2 }, // vpsllq+vptestmq
1630     { ISD::TRUNCATE,  MVT::v4i32,   MVT::v4i64,  1 }, // vpmovqd
1631 
1632     // sign extend is vpcmpeq+maskedmove+vpmovdw+vpacksswb
1633     // zero extend is vpcmpeq+maskedmove+vpmovdw+vpsrlw+vpackuswb
1634     { ISD::SIGN_EXTEND, MVT::v2i8,   MVT::v2i1,   5 },
1635     { ISD::ZERO_EXTEND, MVT::v2i8,   MVT::v2i1,   6 },
1636     { ISD::SIGN_EXTEND, MVT::v4i8,   MVT::v4i1,   5 },
1637     { ISD::ZERO_EXTEND, MVT::v4i8,   MVT::v4i1,   6 },
1638     { ISD::SIGN_EXTEND, MVT::v8i8,   MVT::v8i1,   5 },
1639     { ISD::ZERO_EXTEND, MVT::v8i8,   MVT::v8i1,   6 },
1640     { ISD::SIGN_EXTEND, MVT::v16i8,  MVT::v16i1, 10 },
1641     { ISD::ZERO_EXTEND, MVT::v16i8,  MVT::v16i1, 12 },
1642 
1643     // sign extend is vpcmpeq+maskedmove+vpmovdw
1644     // zero extend is vpcmpeq+maskedmove+vpmovdw+vpsrlw
1645     { ISD::SIGN_EXTEND, MVT::v2i16,  MVT::v2i1,   4 },
1646     { ISD::ZERO_EXTEND, MVT::v2i16,  MVT::v2i1,   5 },
1647     { ISD::SIGN_EXTEND, MVT::v4i16,  MVT::v4i1,   4 },
1648     { ISD::ZERO_EXTEND, MVT::v4i16,  MVT::v4i1,   5 },
1649     { ISD::SIGN_EXTEND, MVT::v8i16,  MVT::v8i1,   4 },
1650     { ISD::ZERO_EXTEND, MVT::v8i16,  MVT::v8i1,   5 },
1651     { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i1, 10 },
1652     { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i1, 12 },
1653 
1654     { ISD::SIGN_EXTEND, MVT::v2i32,  MVT::v2i1,   1 }, // vpternlogd
1655     { ISD::ZERO_EXTEND, MVT::v2i32,  MVT::v2i1,   2 }, // vpternlogd+psrld
1656     { ISD::SIGN_EXTEND, MVT::v4i32,  MVT::v4i1,   1 }, // vpternlogd
1657     { ISD::ZERO_EXTEND, MVT::v4i32,  MVT::v4i1,   2 }, // vpternlogd+psrld
1658     { ISD::SIGN_EXTEND, MVT::v8i32,  MVT::v8i1,   1 }, // vpternlogd
1659     { ISD::ZERO_EXTEND, MVT::v8i32,  MVT::v8i1,   2 }, // vpternlogd+psrld
1660     { ISD::SIGN_EXTEND, MVT::v2i64,  MVT::v2i1,   1 }, // vpternlogq
1661     { ISD::ZERO_EXTEND, MVT::v2i64,  MVT::v2i1,   2 }, // vpternlogq+psrlq
1662     { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v4i1,   1 }, // vpternlogq
1663     { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v4i1,   2 }, // vpternlogq+psrlq
1664 
1665     { ISD::UINT_TO_FP,  MVT::v2f64,  MVT::v2i8,   2 },
1666     { ISD::UINT_TO_FP,  MVT::v4f64,  MVT::v4i8,   2 },
1667     { ISD::UINT_TO_FP,  MVT::v8f32,  MVT::v8i8,   2 },
1668     { ISD::UINT_TO_FP,  MVT::v2f64,  MVT::v2i16,  5 },
1669     { ISD::UINT_TO_FP,  MVT::v4f64,  MVT::v4i16,  2 },
1670     { ISD::UINT_TO_FP,  MVT::v8f32,  MVT::v8i16,  2 },
1671     { ISD::UINT_TO_FP,  MVT::v2f32,  MVT::v2i32,  2 },
1672     { ISD::UINT_TO_FP,  MVT::v2f64,  MVT::v2i32,  1 },
1673     { ISD::UINT_TO_FP,  MVT::v4f32,  MVT::v4i32,  1 },
1674     { ISD::UINT_TO_FP,  MVT::v4f64,  MVT::v4i32,  1 },
1675     { ISD::UINT_TO_FP,  MVT::v8f32,  MVT::v8i32,  1 },
1676     { ISD::UINT_TO_FP,  MVT::v2f32,  MVT::v2i64,  5 },
1677     { ISD::UINT_TO_FP,  MVT::v2f64,  MVT::v2i64,  5 },
1678     { ISD::UINT_TO_FP,  MVT::v4f64,  MVT::v4i64,  5 },
1679 
1680     { ISD::UINT_TO_FP,  MVT::f32,    MVT::i64,    1 },
1681     { ISD::UINT_TO_FP,  MVT::f64,    MVT::i64,    1 },
1682 
1683     { ISD::FP_TO_SINT,  MVT::v8i8,   MVT::v8f32,  3 },
1684     { ISD::FP_TO_UINT,  MVT::v8i8,   MVT::v8f32,  3 },
1685 
1686     { ISD::FP_TO_UINT,  MVT::i64,    MVT::f32,    1 },
1687     { ISD::FP_TO_UINT,  MVT::i64,    MVT::f64,    1 },
1688 
1689     { ISD::FP_TO_UINT,  MVT::v2i32,  MVT::v2f32,  1 },
1690     { ISD::FP_TO_UINT,  MVT::v4i32,  MVT::v4f32,  1 },
1691     { ISD::FP_TO_UINT,  MVT::v2i32,  MVT::v2f64,  1 },
1692     { ISD::FP_TO_UINT,  MVT::v4i32,  MVT::v4f64,  1 },
1693     { ISD::FP_TO_UINT,  MVT::v8i32,  MVT::v8f32,  1 },
1694   };
1695 
1696   static const TypeConversionCostTblEntry AVX2ConversionTbl[] = {
1697     { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v4i1,   3 },
1698     { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v4i1,   3 },
1699     { ISD::SIGN_EXTEND, MVT::v8i32,  MVT::v8i1,   3 },
1700     { ISD::ZERO_EXTEND, MVT::v8i32,  MVT::v8i1,   3 },
1701     { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v4i8,   1 },
1702     { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v4i8,   1 },
1703     { ISD::SIGN_EXTEND, MVT::v8i32,  MVT::v8i8,   1 },
1704     { ISD::ZERO_EXTEND, MVT::v8i32,  MVT::v8i8,   1 },
1705     { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i1,  1 },
1706     { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i1,  1 },
1707     { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i8,  1 },
1708     { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i8,  1 },
1709     { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v4i16,  1 },
1710     { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v4i16,  1 },
1711     { ISD::SIGN_EXTEND, MVT::v8i32,  MVT::v8i16,  1 },
1712     { ISD::ZERO_EXTEND, MVT::v8i32,  MVT::v8i16,  1 },
1713     { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v4i32,  1 },
1714     { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v4i32,  1 },
1715     { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i16, 3 },
1716     { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i16, 3 },
1717 
1718     { ISD::TRUNCATE,    MVT::v4i32,  MVT::v4i64,  2 },
1719     { ISD::TRUNCATE,    MVT::v8i1,   MVT::v8i32,  2 },
1720 
1721     { ISD::TRUNCATE,    MVT::v4i8,   MVT::v4i64,  2 },
1722     { ISD::TRUNCATE,    MVT::v4i16,  MVT::v4i64,  2 },
1723     { ISD::TRUNCATE,    MVT::v8i8,   MVT::v8i32,  2 },
1724     { ISD::TRUNCATE,    MVT::v8i16,  MVT::v8i32,  2 },
1725 
1726     { ISD::FP_EXTEND,   MVT::v8f64,  MVT::v8f32,  3 },
1727     { ISD::FP_ROUND,    MVT::v8f32,  MVT::v8f64,  3 },
1728 
1729     { ISD::UINT_TO_FP,  MVT::v8f32,  MVT::v8i32,  8 },
1730   };
1731 
1732   static const TypeConversionCostTblEntry AVXConversionTbl[] = {
1733     { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v4i1,  6 },
1734     { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v4i1,  4 },
1735     { ISD::SIGN_EXTEND, MVT::v8i32,  MVT::v8i1,  7 },
1736     { ISD::ZERO_EXTEND, MVT::v8i32,  MVT::v8i1,  4 },
1737     { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v4i8,  4 },
1738     { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v4i8,  4 },
1739     { ISD::SIGN_EXTEND, MVT::v8i32,  MVT::v8i8,  4 },
1740     { ISD::ZERO_EXTEND, MVT::v8i32,  MVT::v8i8,  4 },
1741     { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i1, 4 },
1742     { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i1, 4 },
1743     { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i8, 4 },
1744     { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i8, 4 },
1745     { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v4i16, 4 },
1746     { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v4i16, 3 },
1747     { ISD::SIGN_EXTEND, MVT::v8i32,  MVT::v8i16, 4 },
1748     { ISD::ZERO_EXTEND, MVT::v8i32,  MVT::v8i16, 4 },
1749     { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v4i32, 4 },
1750     { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v4i32, 4 },
1751 
1752     { ISD::TRUNCATE,    MVT::v4i1,  MVT::v4i64,  4 },
1753     { ISD::TRUNCATE,    MVT::v8i1,  MVT::v8i32,  5 },
1754     { ISD::TRUNCATE,    MVT::v16i1, MVT::v16i16, 4 },
1755     { ISD::TRUNCATE,    MVT::v8i1,  MVT::v8i64,  9 },
1756     { ISD::TRUNCATE,    MVT::v16i1, MVT::v16i64, 11 },
1757 
1758     { ISD::TRUNCATE,    MVT::v16i8, MVT::v16i16, 4 },
1759     { ISD::TRUNCATE,    MVT::v8i8,  MVT::v8i32,  4 },
1760     { ISD::TRUNCATE,    MVT::v8i16, MVT::v8i32,  5 },
1761     { ISD::TRUNCATE,    MVT::v4i8,  MVT::v4i64,  4 },
1762     { ISD::TRUNCATE,    MVT::v4i16, MVT::v4i64,  4 },
1763     { ISD::TRUNCATE,    MVT::v4i32, MVT::v4i64,  2 },
1764     { ISD::TRUNCATE,    MVT::v8i8,  MVT::v8i64, 11 },
1765     { ISD::TRUNCATE,    MVT::v8i16, MVT::v8i64,  9 },
1766     { ISD::TRUNCATE,    MVT::v8i32, MVT::v8i64,  3 },
1767     { ISD::TRUNCATE,    MVT::v16i8, MVT::v16i64, 11 },
1768 
1769     { ISD::SINT_TO_FP,  MVT::v4f32, MVT::v4i1,  3 },
1770     { ISD::SINT_TO_FP,  MVT::v4f64, MVT::v4i1,  3 },
1771     { ISD::SINT_TO_FP,  MVT::v8f32, MVT::v8i1,  8 },
1772     { ISD::SINT_TO_FP,  MVT::v4f32, MVT::v4i8,  3 },
1773     { ISD::SINT_TO_FP,  MVT::v4f64, MVT::v4i8,  3 },
1774     { ISD::SINT_TO_FP,  MVT::v8f32, MVT::v8i8,  8 },
1775     { ISD::SINT_TO_FP,  MVT::v4f32, MVT::v4i16, 3 },
1776     { ISD::SINT_TO_FP,  MVT::v4f64, MVT::v4i16, 3 },
1777     { ISD::SINT_TO_FP,  MVT::v8f32, MVT::v8i16, 5 },
1778     { ISD::SINT_TO_FP,  MVT::v4f32, MVT::v4i32, 1 },
1779     { ISD::SINT_TO_FP,  MVT::v4f64, MVT::v4i32, 1 },
1780     { ISD::SINT_TO_FP,  MVT::v8f32, MVT::v8i32, 1 },
1781 
1782     { ISD::UINT_TO_FP,  MVT::v4f32, MVT::v4i1,  7 },
1783     { ISD::UINT_TO_FP,  MVT::v4f64, MVT::v4i1,  7 },
1784     { ISD::UINT_TO_FP,  MVT::v8f32, MVT::v8i1,  6 },
1785     { ISD::UINT_TO_FP,  MVT::v4f32, MVT::v4i8,  2 },
1786     { ISD::UINT_TO_FP,  MVT::v4f64, MVT::v4i8,  2 },
1787     { ISD::UINT_TO_FP,  MVT::v8f32, MVT::v8i8,  5 },
1788     { ISD::UINT_TO_FP,  MVT::v4f32, MVT::v4i16, 2 },
1789     { ISD::UINT_TO_FP,  MVT::v4f64, MVT::v4i16, 2 },
1790     { ISD::UINT_TO_FP,  MVT::v8f32, MVT::v8i16, 5 },
1791     { ISD::UINT_TO_FP,  MVT::v2f64, MVT::v2i32, 6 },
1792     { ISD::UINT_TO_FP,  MVT::v4f32, MVT::v4i32, 6 },
1793     { ISD::UINT_TO_FP,  MVT::v4f64, MVT::v4i32, 6 },
1794     { ISD::UINT_TO_FP,  MVT::v8f32, MVT::v8i32, 9 },
1795     { ISD::UINT_TO_FP,  MVT::v2f64, MVT::v2i64, 5 },
1796     { ISD::UINT_TO_FP,  MVT::v4f64, MVT::v4i64, 6 },
1797     // The generic code to compute the scalar overhead is currently broken.
1798     // Workaround this limitation by estimating the scalarization overhead
1799     // here. We have roughly 10 instructions per scalar element.
1800     // Multiply that by the vector width.
1801     // FIXME: remove that when PR19268 is fixed.
1802     { ISD::SINT_TO_FP,  MVT::v4f64, MVT::v4i64, 13 },
1803     { ISD::SINT_TO_FP,  MVT::v4f64, MVT::v4i64, 13 },
1804 
1805     { ISD::FP_TO_SINT,  MVT::v8i8,  MVT::v8f32, 4 },
1806     { ISD::FP_TO_SINT,  MVT::v4i8,  MVT::v4f64, 3 },
1807     { ISD::FP_TO_SINT,  MVT::v4i16, MVT::v4f64, 2 },
1808     { ISD::FP_TO_SINT,  MVT::v8i16, MVT::v8f32, 3 },
1809 
1810     { ISD::FP_TO_UINT,  MVT::v4i8,  MVT::v4f64, 3 },
1811     { ISD::FP_TO_UINT,  MVT::v4i16, MVT::v4f64, 2 },
1812     { ISD::FP_TO_UINT,  MVT::v8i8,  MVT::v8f32, 4 },
1813     { ISD::FP_TO_UINT,  MVT::v8i16, MVT::v8f32, 3 },
1814     // This node is expanded into scalarized operations but BasicTTI is overly
1815     // optimistic estimating its cost.  It computes 3 per element (one
1816     // vector-extract, one scalar conversion and one vector-insert).  The
1817     // problem is that the inserts form a read-modify-write chain so latency
1818     // should be factored in too.  Inflating the cost per element by 1.
1819     { ISD::FP_TO_UINT,  MVT::v8i32, MVT::v8f32, 8*4 },
1820     { ISD::FP_TO_UINT,  MVT::v4i32, MVT::v4f64, 4*4 },
1821 
1822     { ISD::FP_EXTEND,   MVT::v4f64,  MVT::v4f32,  1 },
1823     { ISD::FP_ROUND,    MVT::v4f32,  MVT::v4f64,  1 },
1824   };
1825 
1826   static const TypeConversionCostTblEntry SSE41ConversionTbl[] = {
1827     { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i8,    2 },
1828     { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i8,    2 },
1829     { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i16,   2 },
1830     { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i16,   2 },
1831     { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i32,   2 },
1832     { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i32,   2 },
1833 
1834     { ISD::ZERO_EXTEND, MVT::v4i16,  MVT::v4i8,   1 },
1835     { ISD::SIGN_EXTEND, MVT::v4i16,  MVT::v4i8,   2 },
1836     { ISD::ZERO_EXTEND, MVT::v4i32,  MVT::v4i8,   1 },
1837     { ISD::SIGN_EXTEND, MVT::v4i32,  MVT::v4i8,   1 },
1838     { ISD::ZERO_EXTEND, MVT::v8i16,  MVT::v8i8,   1 },
1839     { ISD::SIGN_EXTEND, MVT::v8i16,  MVT::v8i8,   1 },
1840     { ISD::ZERO_EXTEND, MVT::v8i32,  MVT::v8i8,   2 },
1841     { ISD::SIGN_EXTEND, MVT::v8i32,  MVT::v8i8,   2 },
1842     { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i8,  2 },
1843     { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i8,  2 },
1844     { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i8,  4 },
1845     { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i8,  4 },
1846     { ISD::ZERO_EXTEND, MVT::v4i32,  MVT::v4i16,  1 },
1847     { ISD::SIGN_EXTEND, MVT::v4i32,  MVT::v4i16,  1 },
1848     { ISD::ZERO_EXTEND, MVT::v8i32,  MVT::v8i16,  2 },
1849     { ISD::SIGN_EXTEND, MVT::v8i32,  MVT::v8i16,  2 },
1850     { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i16, 4 },
1851     { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i16, 4 },
1852 
1853     // These truncates end up widening elements.
1854     { ISD::TRUNCATE,    MVT::v2i1,   MVT::v2i8,   1 }, // PMOVXZBQ
1855     { ISD::TRUNCATE,    MVT::v2i1,   MVT::v2i16,  1 }, // PMOVXZWQ
1856     { ISD::TRUNCATE,    MVT::v4i1,   MVT::v4i8,   1 }, // PMOVXZBD
1857 
1858     { ISD::TRUNCATE,    MVT::v2i8,   MVT::v2i16,  1 },
1859     { ISD::TRUNCATE,    MVT::v4i8,   MVT::v4i16,  1 },
1860     { ISD::TRUNCATE,    MVT::v8i8,   MVT::v8i16,  1 },
1861     { ISD::TRUNCATE,    MVT::v4i8,   MVT::v4i32,  1 },
1862     { ISD::TRUNCATE,    MVT::v4i16,  MVT::v4i32,  1 },
1863     { ISD::TRUNCATE,    MVT::v8i8,   MVT::v8i32,  3 },
1864     { ISD::TRUNCATE,    MVT::v8i16,  MVT::v8i32,  3 },
1865     { ISD::TRUNCATE,    MVT::v16i16, MVT::v16i32, 6 },
1866     { ISD::TRUNCATE,    MVT::v2i8,   MVT::v2i64,  1 }, // PSHUFB
1867 
1868     { ISD::UINT_TO_FP,  MVT::f32,    MVT::i64,    4 },
1869     { ISD::UINT_TO_FP,  MVT::f64,    MVT::i64,    4 },
1870 
1871     { ISD::FP_TO_SINT,  MVT::v2i8,   MVT::v2f32,  3 },
1872     { ISD::FP_TO_SINT,  MVT::v2i8,   MVT::v2f64,  3 },
1873 
1874     { ISD::FP_TO_UINT,  MVT::v2i8,   MVT::v2f32,  3 },
1875     { ISD::FP_TO_UINT,  MVT::v2i8,   MVT::v2f64,  3 },
1876     { ISD::FP_TO_UINT,  MVT::v4i16,  MVT::v4f32,  2 },
1877   };
1878 
1879   static const TypeConversionCostTblEntry SSE2ConversionTbl[] = {
1880     // These are somewhat magic numbers justified by looking at the output of
1881     // Intel's IACA, running some kernels and making sure when we take
1882     // legalization into account the throughput will be overestimated.
1883     { ISD::SINT_TO_FP, MVT::v4f32, MVT::v16i8, 8 },
1884     { ISD::SINT_TO_FP, MVT::v2f64, MVT::v16i8, 16*10 },
1885     { ISD::SINT_TO_FP, MVT::v4f32, MVT::v8i16, 15 },
1886     { ISD::SINT_TO_FP, MVT::v2f64, MVT::v8i16, 8*10 },
1887     { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i32, 5 },
1888     { ISD::SINT_TO_FP, MVT::v2f64, MVT::v4i32, 2*10 },
1889     { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i32, 2*10 },
1890     { ISD::SINT_TO_FP, MVT::v4f32, MVT::v2i64, 15 },
1891     { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i64, 2*10 },
1892 
1893     { ISD::UINT_TO_FP, MVT::v2f64, MVT::v16i8, 16*10 },
1894     { ISD::UINT_TO_FP, MVT::v4f32, MVT::v16i8, 8 },
1895     { ISD::UINT_TO_FP, MVT::v4f32, MVT::v8i16, 15 },
1896     { ISD::UINT_TO_FP, MVT::v2f64, MVT::v8i16, 8*10 },
1897     { ISD::UINT_TO_FP, MVT::v2f64, MVT::v4i32, 4*10 },
1898     { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i32, 8 },
1899     { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i64, 6 },
1900     { ISD::UINT_TO_FP, MVT::v4f32, MVT::v2i64, 15 },
1901 
1902     { ISD::FP_TO_SINT,  MVT::v2i8,   MVT::v2f32,  4 },
1903     { ISD::FP_TO_SINT,  MVT::v2i16,  MVT::v2f32,  2 },
1904     { ISD::FP_TO_SINT,  MVT::v4i8,   MVT::v4f32,  3 },
1905     { ISD::FP_TO_SINT,  MVT::v4i16,  MVT::v4f32,  2 },
1906     { ISD::FP_TO_SINT,  MVT::v2i16,  MVT::v2f64,  2 },
1907     { ISD::FP_TO_SINT,  MVT::v2i8,   MVT::v2f64,  4 },
1908 
1909     { ISD::FP_TO_SINT,  MVT::v2i32,  MVT::v2f64,  1 },
1910 
1911     { ISD::UINT_TO_FP,  MVT::f32,    MVT::i64,    6 },
1912     { ISD::UINT_TO_FP,  MVT::f64,    MVT::i64,    6 },
1913 
1914     { ISD::FP_TO_UINT,  MVT::i64,    MVT::f32,    4 },
1915     { ISD::FP_TO_UINT,  MVT::i64,    MVT::f64,    4 },
1916     { ISD::FP_TO_UINT,  MVT::v2i8,   MVT::v2f32,  4 },
1917     { ISD::FP_TO_UINT,  MVT::v2i8,   MVT::v2f64,  4 },
1918     { ISD::FP_TO_UINT,  MVT::v4i8,   MVT::v4f32,  3 },
1919     { ISD::FP_TO_UINT,  MVT::v2i16,  MVT::v2f32,  2 },
1920     { ISD::FP_TO_UINT,  MVT::v2i16,  MVT::v2f64,  2 },
1921     { ISD::FP_TO_UINT,  MVT::v4i16,  MVT::v4f32,  4 },
1922 
1923     { ISD::ZERO_EXTEND, MVT::v4i16,  MVT::v4i8,   1 },
1924     { ISD::SIGN_EXTEND, MVT::v4i16,  MVT::v4i8,   6 },
1925     { ISD::ZERO_EXTEND, MVT::v4i32,  MVT::v4i8,   2 },
1926     { ISD::SIGN_EXTEND, MVT::v4i32,  MVT::v4i8,   3 },
1927     { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v4i8,   4 },
1928     { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v4i8,   8 },
1929     { ISD::ZERO_EXTEND, MVT::v8i16,  MVT::v8i8,   1 },
1930     { ISD::SIGN_EXTEND, MVT::v8i16,  MVT::v8i8,   2 },
1931     { ISD::ZERO_EXTEND, MVT::v8i32,  MVT::v8i8,   6 },
1932     { ISD::SIGN_EXTEND, MVT::v8i32,  MVT::v8i8,   6 },
1933     { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i8,  3 },
1934     { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i8,  4 },
1935     { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i8,  9 },
1936     { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i8,  12 },
1937     { ISD::ZERO_EXTEND, MVT::v4i32,  MVT::v4i16,  1 },
1938     { ISD::SIGN_EXTEND, MVT::v4i32,  MVT::v4i16,  2 },
1939     { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v4i16,  3 },
1940     { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v4i16,  10 },
1941     { ISD::ZERO_EXTEND, MVT::v8i32,  MVT::v8i16,  3 },
1942     { ISD::SIGN_EXTEND, MVT::v8i32,  MVT::v8i16,  4 },
1943     { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i16, 6 },
1944     { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i16, 8 },
1945     { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v4i32,  3 },
1946     { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v4i32,  5 },
1947 
1948     // These truncates are really widening elements.
1949     { ISD::TRUNCATE,    MVT::v2i1,   MVT::v2i32,  1 }, // PSHUFD
1950     { ISD::TRUNCATE,    MVT::v2i1,   MVT::v2i16,  2 }, // PUNPCKLWD+DQ
1951     { ISD::TRUNCATE,    MVT::v2i1,   MVT::v2i8,   3 }, // PUNPCKLBW+WD+PSHUFD
1952     { ISD::TRUNCATE,    MVT::v4i1,   MVT::v4i16,  1 }, // PUNPCKLWD
1953     { ISD::TRUNCATE,    MVT::v4i1,   MVT::v4i8,   2 }, // PUNPCKLBW+WD
1954     { ISD::TRUNCATE,    MVT::v8i1,   MVT::v8i8,   1 }, // PUNPCKLBW
1955 
1956     { ISD::TRUNCATE,    MVT::v2i8,   MVT::v2i16,  2 }, // PAND+PACKUSWB
1957     { ISD::TRUNCATE,    MVT::v4i8,   MVT::v4i16,  2 }, // PAND+PACKUSWB
1958     { ISD::TRUNCATE,    MVT::v8i8,   MVT::v8i16,  2 }, // PAND+PACKUSWB
1959     { ISD::TRUNCATE,    MVT::v16i8,  MVT::v16i16, 3 },
1960     { ISD::TRUNCATE,    MVT::v2i8,   MVT::v2i32,  3 }, // PAND+2*PACKUSWB
1961     { ISD::TRUNCATE,    MVT::v2i16,  MVT::v2i32,  1 },
1962     { ISD::TRUNCATE,    MVT::v4i8,   MVT::v4i32,  3 },
1963     { ISD::TRUNCATE,    MVT::v4i16,  MVT::v4i32,  3 },
1964     { ISD::TRUNCATE,    MVT::v8i8,   MVT::v8i32,  4 },
1965     { ISD::TRUNCATE,    MVT::v16i8,  MVT::v16i32, 7 },
1966     { ISD::TRUNCATE,    MVT::v8i16,  MVT::v8i32,  5 },
1967     { ISD::TRUNCATE,    MVT::v16i16, MVT::v16i32, 10 },
1968     { ISD::TRUNCATE,    MVT::v2i8,   MVT::v2i64,  4 }, // PAND+3*PACKUSWB
1969     { ISD::TRUNCATE,    MVT::v2i16,  MVT::v2i64,  2 }, // PSHUFD+PSHUFLW
1970     { ISD::TRUNCATE,    MVT::v2i32,  MVT::v2i64,  1 }, // PSHUFD
1971   };
1972 
1973   std::pair<int, MVT> LTSrc = TLI->getTypeLegalizationCost(DL, Src);
1974   std::pair<int, MVT> LTDest = TLI->getTypeLegalizationCost(DL, Dst);
1975 
1976   if (ST->hasSSE2() && !ST->hasAVX()) {
1977     if (const auto *Entry = ConvertCostTableLookup(SSE2ConversionTbl, ISD,
1978                                                    LTDest.second, LTSrc.second))
1979       return AdjustCost(LTSrc.first * Entry->Cost);
1980   }
1981 
1982   EVT SrcTy = TLI->getValueType(DL, Src);
1983   EVT DstTy = TLI->getValueType(DL, Dst);
1984 
1985   // The function getSimpleVT only handles simple value types.
1986   if (!SrcTy.isSimple() || !DstTy.isSimple())
1987     return AdjustCost(BaseT::getCastInstrCost(Opcode, Dst, Src, CostKind));
1988 
1989   MVT SimpleSrcTy = SrcTy.getSimpleVT();
1990   MVT SimpleDstTy = DstTy.getSimpleVT();
1991 
1992   if (ST->useAVX512Regs()) {
1993     if (ST->hasBWI())
1994       if (const auto *Entry = ConvertCostTableLookup(AVX512BWConversionTbl, ISD,
1995                                                      SimpleDstTy, SimpleSrcTy))
1996         return AdjustCost(Entry->Cost);
1997 
1998     if (ST->hasDQI())
1999       if (const auto *Entry = ConvertCostTableLookup(AVX512DQConversionTbl, ISD,
2000                                                      SimpleDstTy, SimpleSrcTy))
2001         return AdjustCost(Entry->Cost);
2002 
2003     if (ST->hasAVX512())
2004       if (const auto *Entry = ConvertCostTableLookup(AVX512FConversionTbl, ISD,
2005                                                      SimpleDstTy, SimpleSrcTy))
2006         return AdjustCost(Entry->Cost);
2007   }
2008 
2009   if (ST->hasBWI())
2010     if (const auto *Entry = ConvertCostTableLookup(AVX512BWVLConversionTbl, ISD,
2011                                                    SimpleDstTy, SimpleSrcTy))
2012       return AdjustCost(Entry->Cost);
2013 
2014   if (ST->hasDQI())
2015     if (const auto *Entry = ConvertCostTableLookup(AVX512DQVLConversionTbl, ISD,
2016                                                    SimpleDstTy, SimpleSrcTy))
2017       return AdjustCost(Entry->Cost);
2018 
2019   if (ST->hasAVX512())
2020     if (const auto *Entry = ConvertCostTableLookup(AVX512VLConversionTbl, ISD,
2021                                                    SimpleDstTy, SimpleSrcTy))
2022       return AdjustCost(Entry->Cost);
2023 
2024   if (ST->hasAVX2()) {
2025     if (const auto *Entry = ConvertCostTableLookup(AVX2ConversionTbl, ISD,
2026                                                    SimpleDstTy, SimpleSrcTy))
2027       return AdjustCost(Entry->Cost);
2028   }
2029 
2030   if (ST->hasAVX()) {
2031     if (const auto *Entry = ConvertCostTableLookup(AVXConversionTbl, ISD,
2032                                                    SimpleDstTy, SimpleSrcTy))
2033       return AdjustCost(Entry->Cost);
2034   }
2035 
2036   if (ST->hasSSE41()) {
2037     if (const auto *Entry = ConvertCostTableLookup(SSE41ConversionTbl, ISD,
2038                                                    SimpleDstTy, SimpleSrcTy))
2039       return AdjustCost(Entry->Cost);
2040   }
2041 
2042   if (ST->hasSSE2()) {
2043     if (const auto *Entry = ConvertCostTableLookup(SSE2ConversionTbl, ISD,
2044                                                    SimpleDstTy, SimpleSrcTy))
2045       return AdjustCost(Entry->Cost);
2046   }
2047 
2048   return AdjustCost(BaseT::getCastInstrCost(Opcode, Dst, Src, CostKind, I));
2049 }
2050 
2051 int X86TTIImpl::getCmpSelInstrCost(unsigned Opcode, Type *ValTy, Type *CondTy,
2052                                    TTI::TargetCostKind CostKind,
2053                                    const Instruction *I) {
2054   // Legalize the type.
2055   std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, ValTy);
2056 
2057   MVT MTy = LT.second;
2058 
2059   int ISD = TLI->InstructionOpcodeToISD(Opcode);
2060   assert(ISD && "Invalid opcode");
2061 
2062   unsigned ExtraCost = 0;
2063   if (I && (Opcode == Instruction::ICmp || Opcode == Instruction::FCmp)) {
2064     // Some vector comparison predicates cost extra instructions.
2065     if (MTy.isVector() &&
2066         !((ST->hasXOP() && (!ST->hasAVX2() || MTy.is128BitVector())) ||
2067           (ST->hasAVX512() && 32 <= MTy.getScalarSizeInBits()) ||
2068           ST->hasBWI())) {
2069       switch (cast<CmpInst>(I)->getPredicate()) {
2070       case CmpInst::Predicate::ICMP_NE:
2071         // xor(cmpeq(x,y),-1)
2072         ExtraCost = 1;
2073         break;
2074       case CmpInst::Predicate::ICMP_SGE:
2075       case CmpInst::Predicate::ICMP_SLE:
2076         // xor(cmpgt(x,y),-1)
2077         ExtraCost = 1;
2078         break;
2079       case CmpInst::Predicate::ICMP_ULT:
2080       case CmpInst::Predicate::ICMP_UGT:
2081         // cmpgt(xor(x,signbit),xor(y,signbit))
2082         // xor(cmpeq(pmaxu(x,y),x),-1)
2083         ExtraCost = 2;
2084         break;
2085       case CmpInst::Predicate::ICMP_ULE:
2086       case CmpInst::Predicate::ICMP_UGE:
2087         if ((ST->hasSSE41() && MTy.getScalarSizeInBits() == 32) ||
2088             (ST->hasSSE2() && MTy.getScalarSizeInBits() < 32)) {
2089           // cmpeq(psubus(x,y),0)
2090           // cmpeq(pminu(x,y),x)
2091           ExtraCost = 1;
2092         } else {
2093           // xor(cmpgt(xor(x,signbit),xor(y,signbit)),-1)
2094           ExtraCost = 3;
2095         }
2096         break;
2097       default:
2098         break;
2099       }
2100     }
2101   }
2102 
2103   static const CostTblEntry SLMCostTbl[] = {
2104     // slm pcmpeq/pcmpgt throughput is 2
2105     { ISD::SETCC,   MVT::v2i64,   2 },
2106   };
2107 
2108   static const CostTblEntry AVX512BWCostTbl[] = {
2109     { ISD::SETCC,   MVT::v32i16,  1 },
2110     { ISD::SETCC,   MVT::v64i8,   1 },
2111 
2112     { ISD::SELECT,  MVT::v32i16,  1 },
2113     { ISD::SELECT,  MVT::v64i8,   1 },
2114   };
2115 
2116   static const CostTblEntry AVX512CostTbl[] = {
2117     { ISD::SETCC,   MVT::v8i64,   1 },
2118     { ISD::SETCC,   MVT::v16i32,  1 },
2119     { ISD::SETCC,   MVT::v8f64,   1 },
2120     { ISD::SETCC,   MVT::v16f32,  1 },
2121 
2122     { ISD::SELECT,  MVT::v8i64,   1 },
2123     { ISD::SELECT,  MVT::v16i32,  1 },
2124     { ISD::SELECT,  MVT::v8f64,   1 },
2125     { ISD::SELECT,  MVT::v16f32,  1 },
2126 
2127     { ISD::SETCC,   MVT::v32i16,  2 }, // FIXME: should probably be 4
2128     { ISD::SETCC,   MVT::v64i8,   2 }, // FIXME: should probably be 4
2129 
2130     { ISD::SELECT,  MVT::v32i16,  2 }, // FIXME: should be 3
2131     { ISD::SELECT,  MVT::v64i8,   2 }, // FIXME: should be 3
2132   };
2133 
2134   static const CostTblEntry AVX2CostTbl[] = {
2135     { ISD::SETCC,   MVT::v4i64,   1 },
2136     { ISD::SETCC,   MVT::v8i32,   1 },
2137     { ISD::SETCC,   MVT::v16i16,  1 },
2138     { ISD::SETCC,   MVT::v32i8,   1 },
2139 
2140     { ISD::SELECT,  MVT::v4i64,   1 }, // pblendvb
2141     { ISD::SELECT,  MVT::v8i32,   1 }, // pblendvb
2142     { ISD::SELECT,  MVT::v16i16,  1 }, // pblendvb
2143     { ISD::SELECT,  MVT::v32i8,   1 }, // pblendvb
2144   };
2145 
2146   static const CostTblEntry AVX1CostTbl[] = {
2147     { ISD::SETCC,   MVT::v4f64,   1 },
2148     { ISD::SETCC,   MVT::v8f32,   1 },
2149     // AVX1 does not support 8-wide integer compare.
2150     { ISD::SETCC,   MVT::v4i64,   4 },
2151     { ISD::SETCC,   MVT::v8i32,   4 },
2152     { ISD::SETCC,   MVT::v16i16,  4 },
2153     { ISD::SETCC,   MVT::v32i8,   4 },
2154 
2155     { ISD::SELECT,  MVT::v4f64,   1 }, // vblendvpd
2156     { ISD::SELECT,  MVT::v8f32,   1 }, // vblendvps
2157     { ISD::SELECT,  MVT::v4i64,   1 }, // vblendvpd
2158     { ISD::SELECT,  MVT::v8i32,   1 }, // vblendvps
2159     { ISD::SELECT,  MVT::v16i16,  3 }, // vandps + vandnps + vorps
2160     { ISD::SELECT,  MVT::v32i8,   3 }, // vandps + vandnps + vorps
2161   };
2162 
2163   static const CostTblEntry SSE42CostTbl[] = {
2164     { ISD::SETCC,   MVT::v2f64,   1 },
2165     { ISD::SETCC,   MVT::v4f32,   1 },
2166     { ISD::SETCC,   MVT::v2i64,   1 },
2167   };
2168 
2169   static const CostTblEntry SSE41CostTbl[] = {
2170     { ISD::SELECT,  MVT::v2f64,   1 }, // blendvpd
2171     { ISD::SELECT,  MVT::v4f32,   1 }, // blendvps
2172     { ISD::SELECT,  MVT::v2i64,   1 }, // pblendvb
2173     { ISD::SELECT,  MVT::v4i32,   1 }, // pblendvb
2174     { ISD::SELECT,  MVT::v8i16,   1 }, // pblendvb
2175     { ISD::SELECT,  MVT::v16i8,   1 }, // pblendvb
2176   };
2177 
2178   static const CostTblEntry SSE2CostTbl[] = {
2179     { ISD::SETCC,   MVT::v2f64,   2 },
2180     { ISD::SETCC,   MVT::f64,     1 },
2181     { ISD::SETCC,   MVT::v2i64,   8 },
2182     { ISD::SETCC,   MVT::v4i32,   1 },
2183     { ISD::SETCC,   MVT::v8i16,   1 },
2184     { ISD::SETCC,   MVT::v16i8,   1 },
2185 
2186     { ISD::SELECT,  MVT::v2f64,   3 }, // andpd + andnpd + orpd
2187     { ISD::SELECT,  MVT::v2i64,   3 }, // pand + pandn + por
2188     { ISD::SELECT,  MVT::v4i32,   3 }, // pand + pandn + por
2189     { ISD::SELECT,  MVT::v8i16,   3 }, // pand + pandn + por
2190     { ISD::SELECT,  MVT::v16i8,   3 }, // pand + pandn + por
2191   };
2192 
2193   static const CostTblEntry SSE1CostTbl[] = {
2194     { ISD::SETCC,   MVT::v4f32,   2 },
2195     { ISD::SETCC,   MVT::f32,     1 },
2196 
2197     { ISD::SELECT,  MVT::v4f32,   3 }, // andps + andnps + orps
2198   };
2199 
2200   if (ST->isSLM())
2201     if (const auto *Entry = CostTableLookup(SLMCostTbl, ISD, MTy))
2202       return LT.first * (ExtraCost + Entry->Cost);
2203 
2204   if (ST->hasBWI())
2205     if (const auto *Entry = CostTableLookup(AVX512BWCostTbl, ISD, MTy))
2206       return LT.first * (ExtraCost + Entry->Cost);
2207 
2208   if (ST->hasAVX512())
2209     if (const auto *Entry = CostTableLookup(AVX512CostTbl, ISD, MTy))
2210       return LT.first * (ExtraCost + Entry->Cost);
2211 
2212   if (ST->hasAVX2())
2213     if (const auto *Entry = CostTableLookup(AVX2CostTbl, ISD, MTy))
2214       return LT.first * (ExtraCost + Entry->Cost);
2215 
2216   if (ST->hasAVX())
2217     if (const auto *Entry = CostTableLookup(AVX1CostTbl, ISD, MTy))
2218       return LT.first * (ExtraCost + Entry->Cost);
2219 
2220   if (ST->hasSSE42())
2221     if (const auto *Entry = CostTableLookup(SSE42CostTbl, ISD, MTy))
2222       return LT.first * (ExtraCost + Entry->Cost);
2223 
2224   if (ST->hasSSE41())
2225     if (const auto *Entry = CostTableLookup(SSE41CostTbl, ISD, MTy))
2226       return LT.first * (ExtraCost + Entry->Cost);
2227 
2228   if (ST->hasSSE2())
2229     if (const auto *Entry = CostTableLookup(SSE2CostTbl, ISD, MTy))
2230       return LT.first * (ExtraCost + Entry->Cost);
2231 
2232   if (ST->hasSSE1())
2233     if (const auto *Entry = CostTableLookup(SSE1CostTbl, ISD, MTy))
2234       return LT.first * (ExtraCost + Entry->Cost);
2235 
2236   return BaseT::getCmpSelInstrCost(Opcode, ValTy, CondTy, CostKind, I);
2237 }
2238 
2239 unsigned X86TTIImpl::getAtomicMemIntrinsicMaxElementSize() const { return 16; }
2240 
2241 int X86TTIImpl::getTypeBasedIntrinsicInstrCost(
2242   const IntrinsicCostAttributes &ICA, TTI::TargetCostKind CostKind) {
2243 
2244   // Costs should match the codegen from:
2245   // BITREVERSE: llvm\test\CodeGen\X86\vector-bitreverse.ll
2246   // BSWAP: llvm\test\CodeGen\X86\bswap-vector.ll
2247   // CTLZ: llvm\test\CodeGen\X86\vector-lzcnt-*.ll
2248   // CTPOP: llvm\test\CodeGen\X86\vector-popcnt-*.ll
2249   // CTTZ: llvm\test\CodeGen\X86\vector-tzcnt-*.ll
2250   static const CostTblEntry AVX512CDCostTbl[] = {
2251     { ISD::CTLZ,       MVT::v8i64,   1 },
2252     { ISD::CTLZ,       MVT::v16i32,  1 },
2253     { ISD::CTLZ,       MVT::v32i16,  8 },
2254     { ISD::CTLZ,       MVT::v64i8,  20 },
2255     { ISD::CTLZ,       MVT::v4i64,   1 },
2256     { ISD::CTLZ,       MVT::v8i32,   1 },
2257     { ISD::CTLZ,       MVT::v16i16,  4 },
2258     { ISD::CTLZ,       MVT::v32i8,  10 },
2259     { ISD::CTLZ,       MVT::v2i64,   1 },
2260     { ISD::CTLZ,       MVT::v4i32,   1 },
2261     { ISD::CTLZ,       MVT::v8i16,   4 },
2262     { ISD::CTLZ,       MVT::v16i8,   4 },
2263   };
2264   static const CostTblEntry AVX512BWCostTbl[] = {
2265     { ISD::BITREVERSE, MVT::v8i64,   5 },
2266     { ISD::BITREVERSE, MVT::v16i32,  5 },
2267     { ISD::BITREVERSE, MVT::v32i16,  5 },
2268     { ISD::BITREVERSE, MVT::v64i8,   5 },
2269     { ISD::CTLZ,       MVT::v8i64,  23 },
2270     { ISD::CTLZ,       MVT::v16i32, 22 },
2271     { ISD::CTLZ,       MVT::v32i16, 18 },
2272     { ISD::CTLZ,       MVT::v64i8,  17 },
2273     { ISD::CTPOP,      MVT::v8i64,   7 },
2274     { ISD::CTPOP,      MVT::v16i32, 11 },
2275     { ISD::CTPOP,      MVT::v32i16,  9 },
2276     { ISD::CTPOP,      MVT::v64i8,   6 },
2277     { ISD::CTTZ,       MVT::v8i64,  10 },
2278     { ISD::CTTZ,       MVT::v16i32, 14 },
2279     { ISD::CTTZ,       MVT::v32i16, 12 },
2280     { ISD::CTTZ,       MVT::v64i8,   9 },
2281     { ISD::SADDSAT,    MVT::v32i16,  1 },
2282     { ISD::SADDSAT,    MVT::v64i8,   1 },
2283     { ISD::SSUBSAT,    MVT::v32i16,  1 },
2284     { ISD::SSUBSAT,    MVT::v64i8,   1 },
2285     { ISD::UADDSAT,    MVT::v32i16,  1 },
2286     { ISD::UADDSAT,    MVT::v64i8,   1 },
2287     { ISD::USUBSAT,    MVT::v32i16,  1 },
2288     { ISD::USUBSAT,    MVT::v64i8,   1 },
2289   };
2290   static const CostTblEntry AVX512CostTbl[] = {
2291     { ISD::BITREVERSE, MVT::v8i64,  36 },
2292     { ISD::BITREVERSE, MVT::v16i32, 24 },
2293     { ISD::BITREVERSE, MVT::v32i16, 10 },
2294     { ISD::BITREVERSE, MVT::v64i8,  10 },
2295     { ISD::CTLZ,       MVT::v8i64,  29 },
2296     { ISD::CTLZ,       MVT::v16i32, 35 },
2297     { ISD::CTLZ,       MVT::v32i16, 28 },
2298     { ISD::CTLZ,       MVT::v64i8,  18 },
2299     { ISD::CTPOP,      MVT::v8i64,  16 },
2300     { ISD::CTPOP,      MVT::v16i32, 24 },
2301     { ISD::CTPOP,      MVT::v32i16, 18 },
2302     { ISD::CTPOP,      MVT::v64i8,  12 },
2303     { ISD::CTTZ,       MVT::v8i64,  20 },
2304     { ISD::CTTZ,       MVT::v16i32, 28 },
2305     { ISD::CTTZ,       MVT::v32i16, 24 },
2306     { ISD::CTTZ,       MVT::v64i8,  18 },
2307     { ISD::USUBSAT,    MVT::v16i32,  2 }, // pmaxud + psubd
2308     { ISD::USUBSAT,    MVT::v2i64,   2 }, // pmaxuq + psubq
2309     { ISD::USUBSAT,    MVT::v4i64,   2 }, // pmaxuq + psubq
2310     { ISD::USUBSAT,    MVT::v8i64,   2 }, // pmaxuq + psubq
2311     { ISD::UADDSAT,    MVT::v16i32,  3 }, // not + pminud + paddd
2312     { ISD::UADDSAT,    MVT::v2i64,   3 }, // not + pminuq + paddq
2313     { ISD::UADDSAT,    MVT::v4i64,   3 }, // not + pminuq + paddq
2314     { ISD::UADDSAT,    MVT::v8i64,   3 }, // not + pminuq + paddq
2315     { ISD::SADDSAT,    MVT::v32i16,  2 }, // FIXME: include split
2316     { ISD::SADDSAT,    MVT::v64i8,   2 }, // FIXME: include split
2317     { ISD::SSUBSAT,    MVT::v32i16,  2 }, // FIXME: include split
2318     { ISD::SSUBSAT,    MVT::v64i8,   2 }, // FIXME: include split
2319     { ISD::UADDSAT,    MVT::v32i16,  2 }, // FIXME: include split
2320     { ISD::UADDSAT,    MVT::v64i8,   2 }, // FIXME: include split
2321     { ISD::USUBSAT,    MVT::v32i16,  2 }, // FIXME: include split
2322     { ISD::USUBSAT,    MVT::v64i8,   2 }, // FIXME: include split
2323     { ISD::FMAXNUM,    MVT::f32,     2 },
2324     { ISD::FMAXNUM,    MVT::v4f32,   2 },
2325     { ISD::FMAXNUM,    MVT::v8f32,   2 },
2326     { ISD::FMAXNUM,    MVT::v16f32,  2 },
2327     { ISD::FMAXNUM,    MVT::f64,     2 },
2328     { ISD::FMAXNUM,    MVT::v2f64,   2 },
2329     { ISD::FMAXNUM,    MVT::v4f64,   2 },
2330     { ISD::FMAXNUM,    MVT::v8f64,   2 },
2331   };
2332   static const CostTblEntry XOPCostTbl[] = {
2333     { ISD::BITREVERSE, MVT::v4i64,   4 },
2334     { ISD::BITREVERSE, MVT::v8i32,   4 },
2335     { ISD::BITREVERSE, MVT::v16i16,  4 },
2336     { ISD::BITREVERSE, MVT::v32i8,   4 },
2337     { ISD::BITREVERSE, MVT::v2i64,   1 },
2338     { ISD::BITREVERSE, MVT::v4i32,   1 },
2339     { ISD::BITREVERSE, MVT::v8i16,   1 },
2340     { ISD::BITREVERSE, MVT::v16i8,   1 },
2341     { ISD::BITREVERSE, MVT::i64,     3 },
2342     { ISD::BITREVERSE, MVT::i32,     3 },
2343     { ISD::BITREVERSE, MVT::i16,     3 },
2344     { ISD::BITREVERSE, MVT::i8,      3 }
2345   };
2346   static const CostTblEntry AVX2CostTbl[] = {
2347     { ISD::BITREVERSE, MVT::v4i64,   5 },
2348     { ISD::BITREVERSE, MVT::v8i32,   5 },
2349     { ISD::BITREVERSE, MVT::v16i16,  5 },
2350     { ISD::BITREVERSE, MVT::v32i8,   5 },
2351     { ISD::BSWAP,      MVT::v4i64,   1 },
2352     { ISD::BSWAP,      MVT::v8i32,   1 },
2353     { ISD::BSWAP,      MVT::v16i16,  1 },
2354     { ISD::CTLZ,       MVT::v4i64,  23 },
2355     { ISD::CTLZ,       MVT::v8i32,  18 },
2356     { ISD::CTLZ,       MVT::v16i16, 14 },
2357     { ISD::CTLZ,       MVT::v32i8,   9 },
2358     { ISD::CTPOP,      MVT::v4i64,   7 },
2359     { ISD::CTPOP,      MVT::v8i32,  11 },
2360     { ISD::CTPOP,      MVT::v16i16,  9 },
2361     { ISD::CTPOP,      MVT::v32i8,   6 },
2362     { ISD::CTTZ,       MVT::v4i64,  10 },
2363     { ISD::CTTZ,       MVT::v8i32,  14 },
2364     { ISD::CTTZ,       MVT::v16i16, 12 },
2365     { ISD::CTTZ,       MVT::v32i8,   9 },
2366     { ISD::SADDSAT,    MVT::v16i16,  1 },
2367     { ISD::SADDSAT,    MVT::v32i8,   1 },
2368     { ISD::SSUBSAT,    MVT::v16i16,  1 },
2369     { ISD::SSUBSAT,    MVT::v32i8,   1 },
2370     { ISD::UADDSAT,    MVT::v16i16,  1 },
2371     { ISD::UADDSAT,    MVT::v32i8,   1 },
2372     { ISD::UADDSAT,    MVT::v8i32,   3 }, // not + pminud + paddd
2373     { ISD::USUBSAT,    MVT::v16i16,  1 },
2374     { ISD::USUBSAT,    MVT::v32i8,   1 },
2375     { ISD::USUBSAT,    MVT::v8i32,   2 }, // pmaxud + psubd
2376     { ISD::FSQRT,      MVT::f32,     7 }, // Haswell from http://www.agner.org/
2377     { ISD::FSQRT,      MVT::v4f32,   7 }, // Haswell from http://www.agner.org/
2378     { ISD::FSQRT,      MVT::v8f32,  14 }, // Haswell from http://www.agner.org/
2379     { ISD::FSQRT,      MVT::f64,    14 }, // Haswell from http://www.agner.org/
2380     { ISD::FSQRT,      MVT::v2f64,  14 }, // Haswell from http://www.agner.org/
2381     { ISD::FSQRT,      MVT::v4f64,  28 }, // Haswell from http://www.agner.org/
2382   };
2383   static const CostTblEntry AVX1CostTbl[] = {
2384     { ISD::BITREVERSE, MVT::v4i64,  12 }, // 2 x 128-bit Op + extract/insert
2385     { ISD::BITREVERSE, MVT::v8i32,  12 }, // 2 x 128-bit Op + extract/insert
2386     { ISD::BITREVERSE, MVT::v16i16, 12 }, // 2 x 128-bit Op + extract/insert
2387     { ISD::BITREVERSE, MVT::v32i8,  12 }, // 2 x 128-bit Op + extract/insert
2388     { ISD::BSWAP,      MVT::v4i64,   4 },
2389     { ISD::BSWAP,      MVT::v8i32,   4 },
2390     { ISD::BSWAP,      MVT::v16i16,  4 },
2391     { ISD::CTLZ,       MVT::v4i64,  48 }, // 2 x 128-bit Op + extract/insert
2392     { ISD::CTLZ,       MVT::v8i32,  38 }, // 2 x 128-bit Op + extract/insert
2393     { ISD::CTLZ,       MVT::v16i16, 30 }, // 2 x 128-bit Op + extract/insert
2394     { ISD::CTLZ,       MVT::v32i8,  20 }, // 2 x 128-bit Op + extract/insert
2395     { ISD::CTPOP,      MVT::v4i64,  16 }, // 2 x 128-bit Op + extract/insert
2396     { ISD::CTPOP,      MVT::v8i32,  24 }, // 2 x 128-bit Op + extract/insert
2397     { ISD::CTPOP,      MVT::v16i16, 20 }, // 2 x 128-bit Op + extract/insert
2398     { ISD::CTPOP,      MVT::v32i8,  14 }, // 2 x 128-bit Op + extract/insert
2399     { ISD::CTTZ,       MVT::v4i64,  22 }, // 2 x 128-bit Op + extract/insert
2400     { ISD::CTTZ,       MVT::v8i32,  30 }, // 2 x 128-bit Op + extract/insert
2401     { ISD::CTTZ,       MVT::v16i16, 26 }, // 2 x 128-bit Op + extract/insert
2402     { ISD::CTTZ,       MVT::v32i8,  20 }, // 2 x 128-bit Op + extract/insert
2403     { ISD::SADDSAT,    MVT::v16i16,  4 }, // 2 x 128-bit Op + extract/insert
2404     { ISD::SADDSAT,    MVT::v32i8,   4 }, // 2 x 128-bit Op + extract/insert
2405     { ISD::SSUBSAT,    MVT::v16i16,  4 }, // 2 x 128-bit Op + extract/insert
2406     { ISD::SSUBSAT,    MVT::v32i8,   4 }, // 2 x 128-bit Op + extract/insert
2407     { ISD::UADDSAT,    MVT::v16i16,  4 }, // 2 x 128-bit Op + extract/insert
2408     { ISD::UADDSAT,    MVT::v32i8,   4 }, // 2 x 128-bit Op + extract/insert
2409     { ISD::UADDSAT,    MVT::v8i32,   8 }, // 2 x 128-bit Op + extract/insert
2410     { ISD::USUBSAT,    MVT::v16i16,  4 }, // 2 x 128-bit Op + extract/insert
2411     { ISD::USUBSAT,    MVT::v32i8,   4 }, // 2 x 128-bit Op + extract/insert
2412     { ISD::USUBSAT,    MVT::v8i32,   6 }, // 2 x 128-bit Op + extract/insert
2413     { ISD::FMAXNUM,    MVT::f32,     3 },
2414     { ISD::FMAXNUM,    MVT::v4f32,   3 },
2415     { ISD::FMAXNUM,    MVT::v8f32,   5 },
2416     { ISD::FMAXNUM,    MVT::f64,     3 },
2417     { ISD::FMAXNUM,    MVT::v2f64,   3 },
2418     { ISD::FMAXNUM,    MVT::v4f64,   5 },
2419     { ISD::FSQRT,      MVT::f32,    14 }, // SNB from http://www.agner.org/
2420     { ISD::FSQRT,      MVT::v4f32,  14 }, // SNB from http://www.agner.org/
2421     { ISD::FSQRT,      MVT::v8f32,  28 }, // SNB from http://www.agner.org/
2422     { ISD::FSQRT,      MVT::f64,    21 }, // SNB from http://www.agner.org/
2423     { ISD::FSQRT,      MVT::v2f64,  21 }, // SNB from http://www.agner.org/
2424     { ISD::FSQRT,      MVT::v4f64,  43 }, // SNB from http://www.agner.org/
2425   };
2426   static const CostTblEntry GLMCostTbl[] = {
2427     { ISD::FSQRT, MVT::f32,   19 }, // sqrtss
2428     { ISD::FSQRT, MVT::v4f32, 37 }, // sqrtps
2429     { ISD::FSQRT, MVT::f64,   34 }, // sqrtsd
2430     { ISD::FSQRT, MVT::v2f64, 67 }, // sqrtpd
2431   };
2432   static const CostTblEntry SLMCostTbl[] = {
2433     { ISD::FSQRT, MVT::f32,   20 }, // sqrtss
2434     { ISD::FSQRT, MVT::v4f32, 40 }, // sqrtps
2435     { ISD::FSQRT, MVT::f64,   35 }, // sqrtsd
2436     { ISD::FSQRT, MVT::v2f64, 70 }, // sqrtpd
2437   };
2438   static const CostTblEntry SSE42CostTbl[] = {
2439     { ISD::USUBSAT,    MVT::v4i32,   2 }, // pmaxud + psubd
2440     { ISD::UADDSAT,    MVT::v4i32,   3 }, // not + pminud + paddd
2441     { ISD::FSQRT,      MVT::f32,    18 }, // Nehalem from http://www.agner.org/
2442     { ISD::FSQRT,      MVT::v4f32,  18 }, // Nehalem from http://www.agner.org/
2443   };
2444   static const CostTblEntry SSSE3CostTbl[] = {
2445     { ISD::BITREVERSE, MVT::v2i64,   5 },
2446     { ISD::BITREVERSE, MVT::v4i32,   5 },
2447     { ISD::BITREVERSE, MVT::v8i16,   5 },
2448     { ISD::BITREVERSE, MVT::v16i8,   5 },
2449     { ISD::BSWAP,      MVT::v2i64,   1 },
2450     { ISD::BSWAP,      MVT::v4i32,   1 },
2451     { ISD::BSWAP,      MVT::v8i16,   1 },
2452     { ISD::CTLZ,       MVT::v2i64,  23 },
2453     { ISD::CTLZ,       MVT::v4i32,  18 },
2454     { ISD::CTLZ,       MVT::v8i16,  14 },
2455     { ISD::CTLZ,       MVT::v16i8,   9 },
2456     { ISD::CTPOP,      MVT::v2i64,   7 },
2457     { ISD::CTPOP,      MVT::v4i32,  11 },
2458     { ISD::CTPOP,      MVT::v8i16,   9 },
2459     { ISD::CTPOP,      MVT::v16i8,   6 },
2460     { ISD::CTTZ,       MVT::v2i64,  10 },
2461     { ISD::CTTZ,       MVT::v4i32,  14 },
2462     { ISD::CTTZ,       MVT::v8i16,  12 },
2463     { ISD::CTTZ,       MVT::v16i8,   9 }
2464   };
2465   static const CostTblEntry SSE2CostTbl[] = {
2466     { ISD::BITREVERSE, MVT::v2i64,  29 },
2467     { ISD::BITREVERSE, MVT::v4i32,  27 },
2468     { ISD::BITREVERSE, MVT::v8i16,  27 },
2469     { ISD::BITREVERSE, MVT::v16i8,  20 },
2470     { ISD::BSWAP,      MVT::v2i64,   7 },
2471     { ISD::BSWAP,      MVT::v4i32,   7 },
2472     { ISD::BSWAP,      MVT::v8i16,   7 },
2473     { ISD::CTLZ,       MVT::v2i64,  25 },
2474     { ISD::CTLZ,       MVT::v4i32,  26 },
2475     { ISD::CTLZ,       MVT::v8i16,  20 },
2476     { ISD::CTLZ,       MVT::v16i8,  17 },
2477     { ISD::CTPOP,      MVT::v2i64,  12 },
2478     { ISD::CTPOP,      MVT::v4i32,  15 },
2479     { ISD::CTPOP,      MVT::v8i16,  13 },
2480     { ISD::CTPOP,      MVT::v16i8,  10 },
2481     { ISD::CTTZ,       MVT::v2i64,  14 },
2482     { ISD::CTTZ,       MVT::v4i32,  18 },
2483     { ISD::CTTZ,       MVT::v8i16,  16 },
2484     { ISD::CTTZ,       MVT::v16i8,  13 },
2485     { ISD::SADDSAT,    MVT::v8i16,   1 },
2486     { ISD::SADDSAT,    MVT::v16i8,   1 },
2487     { ISD::SSUBSAT,    MVT::v8i16,   1 },
2488     { ISD::SSUBSAT,    MVT::v16i8,   1 },
2489     { ISD::UADDSAT,    MVT::v8i16,   1 },
2490     { ISD::UADDSAT,    MVT::v16i8,   1 },
2491     { ISD::USUBSAT,    MVT::v8i16,   1 },
2492     { ISD::USUBSAT,    MVT::v16i8,   1 },
2493     { ISD::FMAXNUM,    MVT::f64,     4 },
2494     { ISD::FMAXNUM,    MVT::v2f64,   4 },
2495     { ISD::FSQRT,      MVT::f64,    32 }, // Nehalem from http://www.agner.org/
2496     { ISD::FSQRT,      MVT::v2f64,  32 }, // Nehalem from http://www.agner.org/
2497   };
2498   static const CostTblEntry SSE1CostTbl[] = {
2499     { ISD::FMAXNUM,    MVT::f32,     4 },
2500     { ISD::FMAXNUM,    MVT::v4f32,   4 },
2501     { ISD::FSQRT,      MVT::f32,    28 }, // Pentium III from http://www.agner.org/
2502     { ISD::FSQRT,      MVT::v4f32,  56 }, // Pentium III from http://www.agner.org/
2503   };
2504   static const CostTblEntry BMI64CostTbl[] = { // 64-bit targets
2505     { ISD::CTTZ,       MVT::i64,     1 },
2506   };
2507   static const CostTblEntry BMI32CostTbl[] = { // 32 or 64-bit targets
2508     { ISD::CTTZ,       MVT::i32,     1 },
2509     { ISD::CTTZ,       MVT::i16,     1 },
2510     { ISD::CTTZ,       MVT::i8,      1 },
2511   };
2512   static const CostTblEntry LZCNT64CostTbl[] = { // 64-bit targets
2513     { ISD::CTLZ,       MVT::i64,     1 },
2514   };
2515   static const CostTblEntry LZCNT32CostTbl[] = { // 32 or 64-bit targets
2516     { ISD::CTLZ,       MVT::i32,     1 },
2517     { ISD::CTLZ,       MVT::i16,     1 },
2518     { ISD::CTLZ,       MVT::i8,      1 },
2519   };
2520   static const CostTblEntry POPCNT64CostTbl[] = { // 64-bit targets
2521     { ISD::CTPOP,      MVT::i64,     1 },
2522   };
2523   static const CostTblEntry POPCNT32CostTbl[] = { // 32 or 64-bit targets
2524     { ISD::CTPOP,      MVT::i32,     1 },
2525     { ISD::CTPOP,      MVT::i16,     1 },
2526     { ISD::CTPOP,      MVT::i8,      1 },
2527   };
2528   static const CostTblEntry X64CostTbl[] = { // 64-bit targets
2529     { ISD::BITREVERSE, MVT::i64,    14 },
2530     { ISD::CTLZ,       MVT::i64,     4 }, // BSR+XOR or BSR+XOR+CMOV
2531     { ISD::CTTZ,       MVT::i64,     3 }, // TEST+BSF+CMOV/BRANCH
2532     { ISD::CTPOP,      MVT::i64,    10 },
2533     { ISD::SADDO,      MVT::i64,     1 },
2534     { ISD::UADDO,      MVT::i64,     1 },
2535   };
2536   static const CostTblEntry X86CostTbl[] = { // 32 or 64-bit targets
2537     { ISD::BITREVERSE, MVT::i32,    14 },
2538     { ISD::BITREVERSE, MVT::i16,    14 },
2539     { ISD::BITREVERSE, MVT::i8,     11 },
2540     { ISD::CTLZ,       MVT::i32,     4 }, // BSR+XOR or BSR+XOR+CMOV
2541     { ISD::CTLZ,       MVT::i16,     4 }, // BSR+XOR or BSR+XOR+CMOV
2542     { ISD::CTLZ,       MVT::i8,      4 }, // BSR+XOR or BSR+XOR+CMOV
2543     { ISD::CTTZ,       MVT::i32,     3 }, // TEST+BSF+CMOV/BRANCH
2544     { ISD::CTTZ,       MVT::i16,     3 }, // TEST+BSF+CMOV/BRANCH
2545     { ISD::CTTZ,       MVT::i8,      3 }, // TEST+BSF+CMOV/BRANCH
2546     { ISD::CTPOP,      MVT::i32,     8 },
2547     { ISD::CTPOP,      MVT::i16,     9 },
2548     { ISD::CTPOP,      MVT::i8,      7 },
2549     { ISD::SADDO,      MVT::i32,     1 },
2550     { ISD::SADDO,      MVT::i16,     1 },
2551     { ISD::SADDO,      MVT::i8,      1 },
2552     { ISD::UADDO,      MVT::i32,     1 },
2553     { ISD::UADDO,      MVT::i16,     1 },
2554     { ISD::UADDO,      MVT::i8,      1 },
2555   };
2556 
2557   Type *RetTy = ICA.getReturnType();
2558   Type *OpTy = RetTy;
2559   Intrinsic::ID IID = ICA.getID();
2560   unsigned ISD = ISD::DELETED_NODE;
2561   switch (IID) {
2562   default:
2563     break;
2564   case Intrinsic::bitreverse:
2565     ISD = ISD::BITREVERSE;
2566     break;
2567   case Intrinsic::bswap:
2568     ISD = ISD::BSWAP;
2569     break;
2570   case Intrinsic::ctlz:
2571     ISD = ISD::CTLZ;
2572     break;
2573   case Intrinsic::ctpop:
2574     ISD = ISD::CTPOP;
2575     break;
2576   case Intrinsic::cttz:
2577     ISD = ISD::CTTZ;
2578     break;
2579   case Intrinsic::maxnum:
2580   case Intrinsic::minnum:
2581     // FMINNUM has same costs so don't duplicate.
2582     ISD = ISD::FMAXNUM;
2583     break;
2584   case Intrinsic::sadd_sat:
2585     ISD = ISD::SADDSAT;
2586     break;
2587   case Intrinsic::ssub_sat:
2588     ISD = ISD::SSUBSAT;
2589     break;
2590   case Intrinsic::uadd_sat:
2591     ISD = ISD::UADDSAT;
2592     break;
2593   case Intrinsic::usub_sat:
2594     ISD = ISD::USUBSAT;
2595     break;
2596   case Intrinsic::sqrt:
2597     ISD = ISD::FSQRT;
2598     break;
2599   case Intrinsic::sadd_with_overflow:
2600   case Intrinsic::ssub_with_overflow:
2601     // SSUBO has same costs so don't duplicate.
2602     ISD = ISD::SADDO;
2603     OpTy = RetTy->getContainedType(0);
2604     break;
2605   case Intrinsic::uadd_with_overflow:
2606   case Intrinsic::usub_with_overflow:
2607     // USUBO has same costs so don't duplicate.
2608     ISD = ISD::UADDO;
2609     OpTy = RetTy->getContainedType(0);
2610     break;
2611   }
2612 
2613   if (ISD != ISD::DELETED_NODE) {
2614     // Legalize the type.
2615     std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, OpTy);
2616     MVT MTy = LT.second;
2617 
2618     // Attempt to lookup cost.
2619     if (ST->useGLMDivSqrtCosts())
2620       if (const auto *Entry = CostTableLookup(GLMCostTbl, ISD, MTy))
2621         return LT.first * Entry->Cost;
2622 
2623     if (ST->isSLM())
2624       if (const auto *Entry = CostTableLookup(SLMCostTbl, ISD, MTy))
2625         return LT.first * Entry->Cost;
2626 
2627     if (ST->hasCDI())
2628       if (const auto *Entry = CostTableLookup(AVX512CDCostTbl, ISD, MTy))
2629         return LT.first * Entry->Cost;
2630 
2631     if (ST->hasBWI())
2632       if (const auto *Entry = CostTableLookup(AVX512BWCostTbl, ISD, MTy))
2633         return LT.first * Entry->Cost;
2634 
2635     if (ST->hasAVX512())
2636       if (const auto *Entry = CostTableLookup(AVX512CostTbl, ISD, MTy))
2637         return LT.first * Entry->Cost;
2638 
2639     if (ST->hasXOP())
2640       if (const auto *Entry = CostTableLookup(XOPCostTbl, ISD, MTy))
2641         return LT.first * Entry->Cost;
2642 
2643     if (ST->hasAVX2())
2644       if (const auto *Entry = CostTableLookup(AVX2CostTbl, ISD, MTy))
2645         return LT.first * Entry->Cost;
2646 
2647     if (ST->hasAVX())
2648       if (const auto *Entry = CostTableLookup(AVX1CostTbl, ISD, MTy))
2649         return LT.first * Entry->Cost;
2650 
2651     if (ST->hasSSE42())
2652       if (const auto *Entry = CostTableLookup(SSE42CostTbl, ISD, MTy))
2653         return LT.first * Entry->Cost;
2654 
2655     if (ST->hasSSSE3())
2656       if (const auto *Entry = CostTableLookup(SSSE3CostTbl, ISD, MTy))
2657         return LT.first * Entry->Cost;
2658 
2659     if (ST->hasSSE2())
2660       if (const auto *Entry = CostTableLookup(SSE2CostTbl, ISD, MTy))
2661         return LT.first * Entry->Cost;
2662 
2663     if (ST->hasSSE1())
2664       if (const auto *Entry = CostTableLookup(SSE1CostTbl, ISD, MTy))
2665         return LT.first * Entry->Cost;
2666 
2667     if (ST->hasBMI()) {
2668       if (ST->is64Bit())
2669         if (const auto *Entry = CostTableLookup(BMI64CostTbl, ISD, MTy))
2670           return LT.first * Entry->Cost;
2671 
2672       if (const auto *Entry = CostTableLookup(BMI32CostTbl, ISD, MTy))
2673         return LT.first * Entry->Cost;
2674     }
2675 
2676     if (ST->hasLZCNT()) {
2677       if (ST->is64Bit())
2678         if (const auto *Entry = CostTableLookup(LZCNT64CostTbl, ISD, MTy))
2679           return LT.first * Entry->Cost;
2680 
2681       if (const auto *Entry = CostTableLookup(LZCNT32CostTbl, ISD, MTy))
2682         return LT.first * Entry->Cost;
2683     }
2684 
2685     if (ST->hasPOPCNT()) {
2686       if (ST->is64Bit())
2687         if (const auto *Entry = CostTableLookup(POPCNT64CostTbl, ISD, MTy))
2688           return LT.first * Entry->Cost;
2689 
2690       if (const auto *Entry = CostTableLookup(POPCNT32CostTbl, ISD, MTy))
2691         return LT.first * Entry->Cost;
2692     }
2693 
2694     // TODO - add BMI (TZCNT) scalar handling
2695 
2696     if (ST->is64Bit())
2697       if (const auto *Entry = CostTableLookup(X64CostTbl, ISD, MTy))
2698         return LT.first * Entry->Cost;
2699 
2700     if (const auto *Entry = CostTableLookup(X86CostTbl, ISD, MTy))
2701       return LT.first * Entry->Cost;
2702   }
2703 
2704   return BaseT::getIntrinsicInstrCost(ICA, CostKind);
2705 }
2706 
2707 int X86TTIImpl::getIntrinsicInstrCost(const IntrinsicCostAttributes &ICA,
2708                                       TTI::TargetCostKind CostKind) {
2709   if (CostKind != TTI::TCK_RecipThroughput)
2710     return BaseT::getIntrinsicInstrCost(ICA, CostKind);
2711 
2712   if (ICA.isTypeBasedOnly())
2713     return getTypeBasedIntrinsicInstrCost(ICA, CostKind);
2714 
2715   static const CostTblEntry AVX512CostTbl[] = {
2716     { ISD::ROTL,       MVT::v8i64,   1 },
2717     { ISD::ROTL,       MVT::v4i64,   1 },
2718     { ISD::ROTL,       MVT::v2i64,   1 },
2719     { ISD::ROTL,       MVT::v16i32,  1 },
2720     { ISD::ROTL,       MVT::v8i32,   1 },
2721     { ISD::ROTL,       MVT::v4i32,   1 },
2722     { ISD::ROTR,       MVT::v8i64,   1 },
2723     { ISD::ROTR,       MVT::v4i64,   1 },
2724     { ISD::ROTR,       MVT::v2i64,   1 },
2725     { ISD::ROTR,       MVT::v16i32,  1 },
2726     { ISD::ROTR,       MVT::v8i32,   1 },
2727     { ISD::ROTR,       MVT::v4i32,   1 }
2728   };
2729   // XOP: ROTL = VPROT(X,Y), ROTR = VPROT(X,SUB(0,Y))
2730   static const CostTblEntry XOPCostTbl[] = {
2731     { ISD::ROTL,       MVT::v4i64,   4 },
2732     { ISD::ROTL,       MVT::v8i32,   4 },
2733     { ISD::ROTL,       MVT::v16i16,  4 },
2734     { ISD::ROTL,       MVT::v32i8,   4 },
2735     { ISD::ROTL,       MVT::v2i64,   1 },
2736     { ISD::ROTL,       MVT::v4i32,   1 },
2737     { ISD::ROTL,       MVT::v8i16,   1 },
2738     { ISD::ROTL,       MVT::v16i8,   1 },
2739     { ISD::ROTR,       MVT::v4i64,   6 },
2740     { ISD::ROTR,       MVT::v8i32,   6 },
2741     { ISD::ROTR,       MVT::v16i16,  6 },
2742     { ISD::ROTR,       MVT::v32i8,   6 },
2743     { ISD::ROTR,       MVT::v2i64,   2 },
2744     { ISD::ROTR,       MVT::v4i32,   2 },
2745     { ISD::ROTR,       MVT::v8i16,   2 },
2746     { ISD::ROTR,       MVT::v16i8,   2 }
2747   };
2748   static const CostTblEntry X64CostTbl[] = { // 64-bit targets
2749     { ISD::ROTL,       MVT::i64,     1 },
2750     { ISD::ROTR,       MVT::i64,     1 },
2751     { ISD::FSHL,       MVT::i64,     4 }
2752   };
2753   static const CostTblEntry X86CostTbl[] = { // 32 or 64-bit targets
2754     { ISD::ROTL,       MVT::i32,     1 },
2755     { ISD::ROTL,       MVT::i16,     1 },
2756     { ISD::ROTL,       MVT::i8,      1 },
2757     { ISD::ROTR,       MVT::i32,     1 },
2758     { ISD::ROTR,       MVT::i16,     1 },
2759     { ISD::ROTR,       MVT::i8,      1 },
2760     { ISD::FSHL,       MVT::i32,     4 },
2761     { ISD::FSHL,       MVT::i16,     4 },
2762     { ISD::FSHL,       MVT::i8,      4 }
2763   };
2764 
2765   Intrinsic::ID IID = ICA.getID();
2766   Type *RetTy = ICA.getReturnType();
2767   const SmallVectorImpl<Value *> &Args = ICA.getArgs();
2768   unsigned ISD = ISD::DELETED_NODE;
2769   switch (IID) {
2770   default:
2771     break;
2772   case Intrinsic::fshl:
2773     ISD = ISD::FSHL;
2774     if (Args[0] == Args[1])
2775       ISD = ISD::ROTL;
2776     break;
2777   case Intrinsic::fshr:
2778     // FSHR has same costs so don't duplicate.
2779     ISD = ISD::FSHL;
2780     if (Args[0] == Args[1])
2781       ISD = ISD::ROTR;
2782     break;
2783   }
2784 
2785   if (ISD != ISD::DELETED_NODE) {
2786     // Legalize the type.
2787     std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, RetTy);
2788     MVT MTy = LT.second;
2789 
2790     // Attempt to lookup cost.
2791     if (ST->hasAVX512())
2792       if (const auto *Entry = CostTableLookup(AVX512CostTbl, ISD, MTy))
2793         return LT.first * Entry->Cost;
2794 
2795     if (ST->hasXOP())
2796       if (const auto *Entry = CostTableLookup(XOPCostTbl, ISD, MTy))
2797         return LT.first * Entry->Cost;
2798 
2799     if (ST->is64Bit())
2800       if (const auto *Entry = CostTableLookup(X64CostTbl, ISD, MTy))
2801         return LT.first * Entry->Cost;
2802 
2803     if (const auto *Entry = CostTableLookup(X86CostTbl, ISD, MTy))
2804       return LT.first * Entry->Cost;
2805   }
2806 
2807   return BaseT::getIntrinsicInstrCost(ICA, CostKind);
2808 }
2809 
2810 int X86TTIImpl::getVectorInstrCost(unsigned Opcode, Type *Val, unsigned Index) {
2811   static const CostTblEntry SLMCostTbl[] = {
2812      { ISD::EXTRACT_VECTOR_ELT,       MVT::i8,      4 },
2813      { ISD::EXTRACT_VECTOR_ELT,       MVT::i16,     4 },
2814      { ISD::EXTRACT_VECTOR_ELT,       MVT::i32,     4 },
2815      { ISD::EXTRACT_VECTOR_ELT,       MVT::i64,     7 }
2816    };
2817 
2818   assert(Val->isVectorTy() && "This must be a vector type");
2819   Type *ScalarType = Val->getScalarType();
2820   int RegisterFileMoveCost = 0;
2821 
2822   if (Index != -1U && (Opcode == Instruction::ExtractElement ||
2823                        Opcode == Instruction::InsertElement)) {
2824     // Legalize the type.
2825     std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Val);
2826 
2827     // This type is legalized to a scalar type.
2828     if (!LT.second.isVector())
2829       return 0;
2830 
2831     // The type may be split. Normalize the index to the new type.
2832     unsigned NumElts = LT.second.getVectorNumElements();
2833     unsigned SubNumElts = NumElts;
2834     Index = Index % NumElts;
2835 
2836     // For >128-bit vectors, we need to extract higher 128-bit subvectors.
2837     // For inserts, we also need to insert the subvector back.
2838     if (LT.second.getSizeInBits() > 128) {
2839       assert((LT.second.getSizeInBits() % 128) == 0 && "Illegal vector");
2840       unsigned NumSubVecs = LT.second.getSizeInBits() / 128;
2841       SubNumElts = NumElts / NumSubVecs;
2842       if (SubNumElts <= Index) {
2843         RegisterFileMoveCost += (Opcode == Instruction::InsertElement ? 2 : 1);
2844         Index %= SubNumElts;
2845       }
2846     }
2847 
2848     if (Index == 0) {
2849       // Floating point scalars are already located in index #0.
2850       // Many insertions to #0 can fold away for scalar fp-ops, so let's assume
2851       // true for all.
2852       if (ScalarType->isFloatingPointTy())
2853         return RegisterFileMoveCost;
2854 
2855       // Assume movd/movq XMM -> GPR is relatively cheap on all targets.
2856       if (ScalarType->isIntegerTy() && Opcode == Instruction::ExtractElement)
2857         return 1 + RegisterFileMoveCost;
2858     }
2859 
2860     int ISD = TLI->InstructionOpcodeToISD(Opcode);
2861     assert(ISD && "Unexpected vector opcode");
2862     MVT MScalarTy = LT.second.getScalarType();
2863     if (ST->isSLM())
2864       if (auto *Entry = CostTableLookup(SLMCostTbl, ISD, MScalarTy))
2865         return Entry->Cost + RegisterFileMoveCost;
2866 
2867     // Assume pinsr/pextr XMM <-> GPR is relatively cheap on all targets.
2868     if ((MScalarTy == MVT::i16 && ST->hasSSE2()) ||
2869         (MScalarTy.isInteger() && ST->hasSSE41()))
2870       return 1 + RegisterFileMoveCost;
2871 
2872     // Assume insertps is relatively cheap on all targets.
2873     if (MScalarTy == MVT::f32 && ST->hasSSE41() &&
2874         Opcode == Instruction::InsertElement)
2875       return 1 + RegisterFileMoveCost;
2876 
2877     // For extractions we just need to shuffle the element to index 0, which
2878     // should be very cheap (assume cost = 1). For insertions we need to shuffle
2879     // the elements to its destination. In both cases we must handle the
2880     // subvector move(s).
2881     // If the vector type is already less than 128-bits then don't reduce it.
2882     // TODO: Under what circumstances should we shuffle using the full width?
2883     int ShuffleCost = 1;
2884     if (Opcode == Instruction::InsertElement) {
2885       auto *SubTy = cast<VectorType>(Val);
2886       EVT VT = TLI->getValueType(DL, Val);
2887       if (VT.getScalarType() != MScalarTy || VT.getSizeInBits() >= 128)
2888         SubTy = VectorType::get(ScalarType, SubNumElts);
2889       ShuffleCost = getShuffleCost(TTI::SK_PermuteTwoSrc, SubTy, 0, SubTy);
2890     }
2891     int IntOrFpCost = ScalarType->isFloatingPointTy() ? 0 : 1;
2892     return ShuffleCost + IntOrFpCost + RegisterFileMoveCost;
2893   }
2894 
2895   // Add to the base cost if we know that the extracted element of a vector is
2896   // destined to be moved to and used in the integer register file.
2897   if (Opcode == Instruction::ExtractElement && ScalarType->isPointerTy())
2898     RegisterFileMoveCost += 1;
2899 
2900   return BaseT::getVectorInstrCost(Opcode, Val, Index) + RegisterFileMoveCost;
2901 }
2902 
2903 unsigned X86TTIImpl::getScalarizationOverhead(VectorType *Ty,
2904                                               const APInt &DemandedElts,
2905                                               bool Insert, bool Extract) {
2906   unsigned Cost = 0;
2907 
2908   // For insertions, a ISD::BUILD_VECTOR style vector initialization can be much
2909   // cheaper than an accumulation of ISD::INSERT_VECTOR_ELT.
2910   if (Insert) {
2911     std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Ty);
2912     MVT MScalarTy = LT.second.getScalarType();
2913 
2914     if ((MScalarTy == MVT::i16 && ST->hasSSE2()) ||
2915         (MScalarTy.isInteger() && ST->hasSSE41()) ||
2916         (MScalarTy == MVT::f32 && ST->hasSSE41())) {
2917       // For types we can insert directly, insertion into 128-bit sub vectors is
2918       // cheap, followed by a cheap chain of concatenations.
2919       if (LT.second.getSizeInBits() <= 128) {
2920         Cost +=
2921             BaseT::getScalarizationOverhead(Ty, DemandedElts, Insert, false);
2922       } else {
2923         unsigned NumSubVecs = LT.second.getSizeInBits() / 128;
2924         Cost += (PowerOf2Ceil(NumSubVecs) - 1) * LT.first;
2925         Cost += DemandedElts.countPopulation();
2926 
2927         // For vXf32 cases, insertion into the 0'th index in each v4f32
2928         // 128-bit vector is free.
2929         // NOTE: This assumes legalization widens vXf32 vectors.
2930         if (MScalarTy == MVT::f32)
2931           for (unsigned i = 0, e = Ty->getNumElements(); i < e; i += 4)
2932             if (DemandedElts[i])
2933               Cost--;
2934       }
2935     } else if (LT.second.isVector()) {
2936       // Without fast insertion, we need to use MOVD/MOVQ to pass each demanded
2937       // integer element as a SCALAR_TO_VECTOR, then we build the vector as a
2938       // series of UNPCK followed by CONCAT_VECTORS - all of these can be
2939       // considered cheap.
2940       if (Ty->isIntOrIntVectorTy())
2941         Cost += DemandedElts.countPopulation();
2942 
2943       // Get the smaller of the legalized or original pow2-extended number of
2944       // vector elements, which represents the number of unpacks we'll end up
2945       // performing.
2946       unsigned NumElts = LT.second.getVectorNumElements();
2947       unsigned Pow2Elts = PowerOf2Ceil(Ty->getNumElements());
2948       Cost += (std::min<unsigned>(NumElts, Pow2Elts) - 1) * LT.first;
2949     }
2950   }
2951 
2952   // TODO: Use default extraction for now, but we should investigate extending this
2953   // to handle repeated subvector extraction.
2954   if (Extract)
2955     Cost += BaseT::getScalarizationOverhead(Ty, DemandedElts, false, Extract);
2956 
2957   return Cost;
2958 }
2959 
2960 int X86TTIImpl::getMemoryOpCost(unsigned Opcode, Type *Src,
2961                                 MaybeAlign Alignment, unsigned AddressSpace,
2962                                 TTI::TargetCostKind CostKind,
2963                                 const Instruction *I) {
2964   // Handle non-power-of-two vectors such as <3 x float>
2965   if (VectorType *VTy = dyn_cast<VectorType>(Src)) {
2966     unsigned NumElem = VTy->getNumElements();
2967 
2968     // Handle a few common cases:
2969     // <3 x float>
2970     if (NumElem == 3 && VTy->getScalarSizeInBits() == 32)
2971       // Cost = 64 bit store + extract + 32 bit store.
2972       return 3;
2973 
2974     // <3 x double>
2975     if (NumElem == 3 && VTy->getScalarSizeInBits() == 64)
2976       // Cost = 128 bit store + unpack + 64 bit store.
2977       return 3;
2978 
2979     // Assume that all other non-power-of-two numbers are scalarized.
2980     if (!isPowerOf2_32(NumElem)) {
2981       APInt DemandedElts = APInt::getAllOnesValue(NumElem);
2982       int Cost = BaseT::getMemoryOpCost(Opcode, VTy->getScalarType(), Alignment,
2983                                         AddressSpace, CostKind);
2984       int SplitCost = getScalarizationOverhead(VTy, DemandedElts,
2985                                                Opcode == Instruction::Load,
2986                                                Opcode == Instruction::Store);
2987       return NumElem * Cost + SplitCost;
2988     }
2989   }
2990 
2991   // Legalize the type.
2992   std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Src);
2993   assert((Opcode == Instruction::Load || Opcode == Instruction::Store) &&
2994          "Invalid Opcode");
2995 
2996   // Each load/store unit costs 1.
2997   int Cost = LT.first * 1;
2998 
2999   // This isn't exactly right. We're using slow unaligned 32-byte accesses as a
3000   // proxy for a double-pumped AVX memory interface such as on Sandybridge.
3001   if (LT.second.getStoreSize() == 32 && ST->isUnalignedMem32Slow())
3002     Cost *= 2;
3003 
3004   return Cost;
3005 }
3006 
3007 int X86TTIImpl::getMaskedMemoryOpCost(unsigned Opcode, Type *SrcTy,
3008                                       unsigned Alignment,
3009                                       unsigned AddressSpace,
3010                                       TTI::TargetCostKind CostKind) {
3011   bool IsLoad = (Instruction::Load == Opcode);
3012   bool IsStore = (Instruction::Store == Opcode);
3013 
3014   VectorType *SrcVTy = dyn_cast<VectorType>(SrcTy);
3015   if (!SrcVTy)
3016     // To calculate scalar take the regular cost, without mask
3017     return getMemoryOpCost(Opcode, SrcTy, MaybeAlign(Alignment), AddressSpace,
3018                            CostKind);
3019 
3020   unsigned NumElem = SrcVTy->getNumElements();
3021   VectorType *MaskTy =
3022       VectorType::get(Type::getInt8Ty(SrcVTy->getContext()), NumElem);
3023   if ((IsLoad && !isLegalMaskedLoad(SrcVTy, MaybeAlign(Alignment))) ||
3024       (IsStore && !isLegalMaskedStore(SrcVTy, MaybeAlign(Alignment))) ||
3025       !isPowerOf2_32(NumElem)) {
3026     // Scalarization
3027     APInt DemandedElts = APInt::getAllOnesValue(NumElem);
3028     int MaskSplitCost =
3029         getScalarizationOverhead(MaskTy, DemandedElts, false, true);
3030     int ScalarCompareCost = getCmpSelInstrCost(
3031         Instruction::ICmp, Type::getInt8Ty(SrcVTy->getContext()), nullptr,
3032         CostKind);
3033     int BranchCost = getCFInstrCost(Instruction::Br, CostKind);
3034     int MaskCmpCost = NumElem * (BranchCost + ScalarCompareCost);
3035     int ValueSplitCost =
3036         getScalarizationOverhead(SrcVTy, DemandedElts, IsLoad, IsStore);
3037     int MemopCost =
3038         NumElem * BaseT::getMemoryOpCost(Opcode, SrcVTy->getScalarType(),
3039                                          MaybeAlign(Alignment), AddressSpace,
3040                                          CostKind);
3041     return MemopCost + ValueSplitCost + MaskSplitCost + MaskCmpCost;
3042   }
3043 
3044   // Legalize the type.
3045   std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, SrcVTy);
3046   auto VT = TLI->getValueType(DL, SrcVTy);
3047   int Cost = 0;
3048   if (VT.isSimple() && LT.second != VT.getSimpleVT() &&
3049       LT.second.getVectorNumElements() == NumElem)
3050     // Promotion requires expand/truncate for data and a shuffle for mask.
3051     Cost += getShuffleCost(TTI::SK_PermuteTwoSrc, SrcVTy, 0, nullptr) +
3052             getShuffleCost(TTI::SK_PermuteTwoSrc, MaskTy, 0, nullptr);
3053 
3054   else if (LT.second.getVectorNumElements() > NumElem) {
3055     VectorType *NewMaskTy = VectorType::get(MaskTy->getElementType(),
3056                                             LT.second.getVectorNumElements());
3057     // Expanding requires fill mask with zeroes
3058     Cost += getShuffleCost(TTI::SK_InsertSubvector, NewMaskTy, 0, MaskTy);
3059   }
3060 
3061   // Pre-AVX512 - each maskmov load costs 2 + store costs ~8.
3062   if (!ST->hasAVX512())
3063     return Cost + LT.first * (IsLoad ? 2 : 8);
3064 
3065   // AVX-512 masked load/store is cheapper
3066   return Cost + LT.first;
3067 }
3068 
3069 int X86TTIImpl::getAddressComputationCost(Type *Ty, ScalarEvolution *SE,
3070                                           const SCEV *Ptr) {
3071   // Address computations in vectorized code with non-consecutive addresses will
3072   // likely result in more instructions compared to scalar code where the
3073   // computation can more often be merged into the index mode. The resulting
3074   // extra micro-ops can significantly decrease throughput.
3075   const unsigned NumVectorInstToHideOverhead = 10;
3076 
3077   // Cost modeling of Strided Access Computation is hidden by the indexing
3078   // modes of X86 regardless of the stride value. We dont believe that there
3079   // is a difference between constant strided access in gerenal and constant
3080   // strided value which is less than or equal to 64.
3081   // Even in the case of (loop invariant) stride whose value is not known at
3082   // compile time, the address computation will not incur more than one extra
3083   // ADD instruction.
3084   if (Ty->isVectorTy() && SE) {
3085     if (!BaseT::isStridedAccess(Ptr))
3086       return NumVectorInstToHideOverhead;
3087     if (!BaseT::getConstantStrideStep(SE, Ptr))
3088       return 1;
3089   }
3090 
3091   return BaseT::getAddressComputationCost(Ty, SE, Ptr);
3092 }
3093 
3094 int X86TTIImpl::getArithmeticReductionCost(unsigned Opcode, VectorType *ValTy,
3095                                            bool IsPairwise,
3096                                            TTI::TargetCostKind CostKind) {
3097   // Just use the default implementation for pair reductions.
3098   if (IsPairwise)
3099     return BaseT::getArithmeticReductionCost(Opcode, ValTy, IsPairwise, CostKind);
3100 
3101   // We use the Intel Architecture Code Analyzer(IACA) to measure the throughput
3102   // and make it as the cost.
3103 
3104   static const CostTblEntry SLMCostTblNoPairWise[] = {
3105     { ISD::FADD,  MVT::v2f64,   3 },
3106     { ISD::ADD,   MVT::v2i64,   5 },
3107   };
3108 
3109   static const CostTblEntry SSE2CostTblNoPairWise[] = {
3110     { ISD::FADD,  MVT::v2f64,   2 },
3111     { ISD::FADD,  MVT::v4f32,   4 },
3112     { ISD::ADD,   MVT::v2i64,   2 },      // The data reported by the IACA tool is "1.6".
3113     { ISD::ADD,   MVT::v2i32,   2 }, // FIXME: chosen to be less than v4i32
3114     { ISD::ADD,   MVT::v4i32,   3 },      // The data reported by the IACA tool is "3.3".
3115     { ISD::ADD,   MVT::v2i16,   2 },      // The data reported by the IACA tool is "4.3".
3116     { ISD::ADD,   MVT::v4i16,   3 },      // The data reported by the IACA tool is "4.3".
3117     { ISD::ADD,   MVT::v8i16,   4 },      // The data reported by the IACA tool is "4.3".
3118     { ISD::ADD,   MVT::v2i8,    2 },
3119     { ISD::ADD,   MVT::v4i8,    2 },
3120     { ISD::ADD,   MVT::v8i8,    2 },
3121     { ISD::ADD,   MVT::v16i8,   3 },
3122   };
3123 
3124   static const CostTblEntry AVX1CostTblNoPairWise[] = {
3125     { ISD::FADD,  MVT::v4f64,   3 },
3126     { ISD::FADD,  MVT::v4f32,   3 },
3127     { ISD::FADD,  MVT::v8f32,   4 },
3128     { ISD::ADD,   MVT::v2i64,   1 },      // The data reported by the IACA tool is "1.5".
3129     { ISD::ADD,   MVT::v4i64,   3 },
3130     { ISD::ADD,   MVT::v8i32,   5 },
3131     { ISD::ADD,   MVT::v16i16,  5 },
3132     { ISD::ADD,   MVT::v32i8,   4 },
3133   };
3134 
3135   int ISD = TLI->InstructionOpcodeToISD(Opcode);
3136   assert(ISD && "Invalid opcode");
3137 
3138   // Before legalizing the type, give a chance to look up illegal narrow types
3139   // in the table.
3140   // FIXME: Is there a better way to do this?
3141   EVT VT = TLI->getValueType(DL, ValTy);
3142   if (VT.isSimple()) {
3143     MVT MTy = VT.getSimpleVT();
3144     if (ST->isSLM())
3145       if (const auto *Entry = CostTableLookup(SLMCostTblNoPairWise, ISD, MTy))
3146         return Entry->Cost;
3147 
3148     if (ST->hasAVX())
3149       if (const auto *Entry = CostTableLookup(AVX1CostTblNoPairWise, ISD, MTy))
3150         return Entry->Cost;
3151 
3152     if (ST->hasSSE2())
3153       if (const auto *Entry = CostTableLookup(SSE2CostTblNoPairWise, ISD, MTy))
3154         return Entry->Cost;
3155   }
3156 
3157   std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, ValTy);
3158 
3159   MVT MTy = LT.second;
3160 
3161   auto *ValVTy = cast<VectorType>(ValTy);
3162 
3163   unsigned ArithmeticCost = 0;
3164   if (LT.first != 1 && MTy.isVector() &&
3165       MTy.getVectorNumElements() < ValVTy->getNumElements()) {
3166     // Type needs to be split. We need LT.first - 1 arithmetic ops.
3167     auto *SingleOpTy = FixedVectorType::get(ValVTy->getElementType(),
3168                                             MTy.getVectorNumElements());
3169     ArithmeticCost = getArithmeticInstrCost(Opcode, SingleOpTy, CostKind);
3170     ArithmeticCost *= LT.first - 1;
3171   }
3172 
3173   if (ST->isSLM())
3174     if (const auto *Entry = CostTableLookup(SLMCostTblNoPairWise, ISD, MTy))
3175       return ArithmeticCost + Entry->Cost;
3176 
3177   if (ST->hasAVX())
3178     if (const auto *Entry = CostTableLookup(AVX1CostTblNoPairWise, ISD, MTy))
3179       return ArithmeticCost + Entry->Cost;
3180 
3181   if (ST->hasSSE2())
3182     if (const auto *Entry = CostTableLookup(SSE2CostTblNoPairWise, ISD, MTy))
3183       return ArithmeticCost + Entry->Cost;
3184 
3185   // FIXME: These assume a naive kshift+binop lowering, which is probably
3186   // conservative in most cases.
3187   static const CostTblEntry AVX512BoolReduction[] = {
3188     { ISD::AND,  MVT::v2i1,   3 },
3189     { ISD::AND,  MVT::v4i1,   5 },
3190     { ISD::AND,  MVT::v8i1,   7 },
3191     { ISD::AND,  MVT::v16i1,  9 },
3192     { ISD::AND,  MVT::v32i1, 11 },
3193     { ISD::AND,  MVT::v64i1, 13 },
3194     { ISD::OR,   MVT::v2i1,   3 },
3195     { ISD::OR,   MVT::v4i1,   5 },
3196     { ISD::OR,   MVT::v8i1,   7 },
3197     { ISD::OR,   MVT::v16i1,  9 },
3198     { ISD::OR,   MVT::v32i1, 11 },
3199     { ISD::OR,   MVT::v64i1, 13 },
3200   };
3201 
3202   static const CostTblEntry AVX2BoolReduction[] = {
3203     { ISD::AND,  MVT::v16i16,  2 }, // vpmovmskb + cmp
3204     { ISD::AND,  MVT::v32i8,   2 }, // vpmovmskb + cmp
3205     { ISD::OR,   MVT::v16i16,  2 }, // vpmovmskb + cmp
3206     { ISD::OR,   MVT::v32i8,   2 }, // vpmovmskb + cmp
3207   };
3208 
3209   static const CostTblEntry AVX1BoolReduction[] = {
3210     { ISD::AND,  MVT::v4i64,   2 }, // vmovmskpd + cmp
3211     { ISD::AND,  MVT::v8i32,   2 }, // vmovmskps + cmp
3212     { ISD::AND,  MVT::v16i16,  4 }, // vextractf128 + vpand + vpmovmskb + cmp
3213     { ISD::AND,  MVT::v32i8,   4 }, // vextractf128 + vpand + vpmovmskb + cmp
3214     { ISD::OR,   MVT::v4i64,   2 }, // vmovmskpd + cmp
3215     { ISD::OR,   MVT::v8i32,   2 }, // vmovmskps + cmp
3216     { ISD::OR,   MVT::v16i16,  4 }, // vextractf128 + vpor + vpmovmskb + cmp
3217     { ISD::OR,   MVT::v32i8,   4 }, // vextractf128 + vpor + vpmovmskb + cmp
3218   };
3219 
3220   static const CostTblEntry SSE2BoolReduction[] = {
3221     { ISD::AND,  MVT::v2i64,   2 }, // movmskpd + cmp
3222     { ISD::AND,  MVT::v4i32,   2 }, // movmskps + cmp
3223     { ISD::AND,  MVT::v8i16,   2 }, // pmovmskb + cmp
3224     { ISD::AND,  MVT::v16i8,   2 }, // pmovmskb + cmp
3225     { ISD::OR,   MVT::v2i64,   2 }, // movmskpd + cmp
3226     { ISD::OR,   MVT::v4i32,   2 }, // movmskps + cmp
3227     { ISD::OR,   MVT::v8i16,   2 }, // pmovmskb + cmp
3228     { ISD::OR,   MVT::v16i8,   2 }, // pmovmskb + cmp
3229   };
3230 
3231   // Handle bool allof/anyof patterns.
3232   if (ValVTy->getElementType()->isIntegerTy(1)) {
3233     unsigned ArithmeticCost = 0;
3234     if (LT.first != 1 && MTy.isVector() &&
3235         MTy.getVectorNumElements() < ValVTy->getNumElements()) {
3236       // Type needs to be split. We need LT.first - 1 arithmetic ops.
3237       auto *SingleOpTy = FixedVectorType::get(ValVTy->getElementType(),
3238                                               MTy.getVectorNumElements());
3239       ArithmeticCost = getArithmeticInstrCost(Opcode, SingleOpTy, CostKind);
3240       ArithmeticCost *= LT.first - 1;
3241     }
3242 
3243     if (ST->hasAVX512())
3244       if (const auto *Entry = CostTableLookup(AVX512BoolReduction, ISD, MTy))
3245         return ArithmeticCost + Entry->Cost;
3246     if (ST->hasAVX2())
3247       if (const auto *Entry = CostTableLookup(AVX2BoolReduction, ISD, MTy))
3248         return ArithmeticCost + Entry->Cost;
3249     if (ST->hasAVX())
3250       if (const auto *Entry = CostTableLookup(AVX1BoolReduction, ISD, MTy))
3251         return ArithmeticCost + Entry->Cost;
3252     if (ST->hasSSE2())
3253       if (const auto *Entry = CostTableLookup(SSE2BoolReduction, ISD, MTy))
3254         return ArithmeticCost + Entry->Cost;
3255 
3256     return BaseT::getArithmeticReductionCost(Opcode, ValVTy, IsPairwise,
3257                                              CostKind);
3258   }
3259 
3260   unsigned NumVecElts = ValVTy->getNumElements();
3261   unsigned ScalarSize = ValVTy->getScalarSizeInBits();
3262 
3263   // Special case power of 2 reductions where the scalar type isn't changed
3264   // by type legalization.
3265   if (!isPowerOf2_32(NumVecElts) || ScalarSize != MTy.getScalarSizeInBits())
3266     return BaseT::getArithmeticReductionCost(Opcode, ValVTy, IsPairwise,
3267                                              CostKind);
3268 
3269   unsigned ReductionCost = 0;
3270 
3271   auto *Ty = ValVTy;
3272   if (LT.first != 1 && MTy.isVector() &&
3273       MTy.getVectorNumElements() < ValVTy->getNumElements()) {
3274     // Type needs to be split. We need LT.first - 1 arithmetic ops.
3275     Ty = VectorType::get(ValVTy->getElementType(), MTy.getVectorNumElements());
3276     ReductionCost = getArithmeticInstrCost(Opcode, Ty, CostKind);
3277     ReductionCost *= LT.first - 1;
3278     NumVecElts = MTy.getVectorNumElements();
3279   }
3280 
3281   // Now handle reduction with the legal type, taking into account size changes
3282   // at each level.
3283   while (NumVecElts > 1) {
3284     // Determine the size of the remaining vector we need to reduce.
3285     unsigned Size = NumVecElts * ScalarSize;
3286     NumVecElts /= 2;
3287     // If we're reducing from 256/512 bits, use an extract_subvector.
3288     if (Size > 128) {
3289       auto *SubTy = VectorType::get(ValVTy->getElementType(), NumVecElts);
3290       ReductionCost +=
3291           getShuffleCost(TTI::SK_ExtractSubvector, Ty, NumVecElts, SubTy);
3292       Ty = SubTy;
3293     } else if (Size == 128) {
3294       // Reducing from 128 bits is a permute of v2f64/v2i64.
3295       VectorType *ShufTy;
3296       if (ValVTy->isFloatingPointTy())
3297         ShufTy = VectorType::get(Type::getDoubleTy(ValVTy->getContext()), 2);
3298       else
3299         ShufTy = VectorType::get(Type::getInt64Ty(ValVTy->getContext()), 2);
3300       ReductionCost +=
3301           getShuffleCost(TTI::SK_PermuteSingleSrc, ShufTy, 0, nullptr);
3302     } else if (Size == 64) {
3303       // Reducing from 64 bits is a shuffle of v4f32/v4i32.
3304       VectorType *ShufTy;
3305       if (ValVTy->isFloatingPointTy())
3306         ShufTy = VectorType::get(Type::getFloatTy(ValVTy->getContext()), 4);
3307       else
3308         ShufTy = VectorType::get(Type::getInt32Ty(ValVTy->getContext()), 4);
3309       ReductionCost +=
3310           getShuffleCost(TTI::SK_PermuteSingleSrc, ShufTy, 0, nullptr);
3311     } else {
3312       // Reducing from smaller size is a shift by immediate.
3313       auto *ShiftTy = FixedVectorType::get(
3314           Type::getIntNTy(ValVTy->getContext(), Size), 128 / Size);
3315       ReductionCost += getArithmeticInstrCost(
3316           Instruction::LShr, ShiftTy, CostKind,
3317           TargetTransformInfo::OK_AnyValue,
3318           TargetTransformInfo::OK_UniformConstantValue,
3319           TargetTransformInfo::OP_None, TargetTransformInfo::OP_None);
3320     }
3321 
3322     // Add the arithmetic op for this level.
3323     ReductionCost += getArithmeticInstrCost(Opcode, Ty, CostKind);
3324   }
3325 
3326   // Add the final extract element to the cost.
3327   return ReductionCost + getVectorInstrCost(Instruction::ExtractElement, Ty, 0);
3328 }
3329 
3330 int X86TTIImpl::getMinMaxCost(Type *Ty, Type *CondTy, bool IsUnsigned) {
3331   std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Ty);
3332 
3333   MVT MTy = LT.second;
3334 
3335   int ISD;
3336   if (Ty->isIntOrIntVectorTy()) {
3337     ISD = IsUnsigned ? ISD::UMIN : ISD::SMIN;
3338   } else {
3339     assert(Ty->isFPOrFPVectorTy() &&
3340            "Expected float point or integer vector type.");
3341     ISD = ISD::FMINNUM;
3342   }
3343 
3344   static const CostTblEntry SSE1CostTbl[] = {
3345     {ISD::FMINNUM, MVT::v4f32, 1},
3346   };
3347 
3348   static const CostTblEntry SSE2CostTbl[] = {
3349     {ISD::FMINNUM, MVT::v2f64, 1},
3350     {ISD::SMIN,    MVT::v8i16, 1},
3351     {ISD::UMIN,    MVT::v16i8, 1},
3352   };
3353 
3354   static const CostTblEntry SSE41CostTbl[] = {
3355     {ISD::SMIN,    MVT::v4i32, 1},
3356     {ISD::UMIN,    MVT::v4i32, 1},
3357     {ISD::UMIN,    MVT::v8i16, 1},
3358     {ISD::SMIN,    MVT::v16i8, 1},
3359   };
3360 
3361   static const CostTblEntry SSE42CostTbl[] = {
3362     {ISD::UMIN,    MVT::v2i64, 3}, // xor+pcmpgtq+blendvpd
3363   };
3364 
3365   static const CostTblEntry AVX1CostTbl[] = {
3366     {ISD::FMINNUM, MVT::v8f32,  1},
3367     {ISD::FMINNUM, MVT::v4f64,  1},
3368     {ISD::SMIN,    MVT::v8i32,  3},
3369     {ISD::UMIN,    MVT::v8i32,  3},
3370     {ISD::SMIN,    MVT::v16i16, 3},
3371     {ISD::UMIN,    MVT::v16i16, 3},
3372     {ISD::SMIN,    MVT::v32i8,  3},
3373     {ISD::UMIN,    MVT::v32i8,  3},
3374   };
3375 
3376   static const CostTblEntry AVX2CostTbl[] = {
3377     {ISD::SMIN,    MVT::v8i32,  1},
3378     {ISD::UMIN,    MVT::v8i32,  1},
3379     {ISD::SMIN,    MVT::v16i16, 1},
3380     {ISD::UMIN,    MVT::v16i16, 1},
3381     {ISD::SMIN,    MVT::v32i8,  1},
3382     {ISD::UMIN,    MVT::v32i8,  1},
3383   };
3384 
3385   static const CostTblEntry AVX512CostTbl[] = {
3386     {ISD::FMINNUM, MVT::v16f32, 1},
3387     {ISD::FMINNUM, MVT::v8f64,  1},
3388     {ISD::SMIN,    MVT::v2i64,  1},
3389     {ISD::UMIN,    MVT::v2i64,  1},
3390     {ISD::SMIN,    MVT::v4i64,  1},
3391     {ISD::UMIN,    MVT::v4i64,  1},
3392     {ISD::SMIN,    MVT::v8i64,  1},
3393     {ISD::UMIN,    MVT::v8i64,  1},
3394     {ISD::SMIN,    MVT::v16i32, 1},
3395     {ISD::UMIN,    MVT::v16i32, 1},
3396   };
3397 
3398   static const CostTblEntry AVX512BWCostTbl[] = {
3399     {ISD::SMIN,    MVT::v32i16, 1},
3400     {ISD::UMIN,    MVT::v32i16, 1},
3401     {ISD::SMIN,    MVT::v64i8,  1},
3402     {ISD::UMIN,    MVT::v64i8,  1},
3403   };
3404 
3405   // If we have a native MIN/MAX instruction for this type, use it.
3406   if (ST->hasBWI())
3407     if (const auto *Entry = CostTableLookup(AVX512BWCostTbl, ISD, MTy))
3408       return LT.first * Entry->Cost;
3409 
3410   if (ST->hasAVX512())
3411     if (const auto *Entry = CostTableLookup(AVX512CostTbl, ISD, MTy))
3412       return LT.first * Entry->Cost;
3413 
3414   if (ST->hasAVX2())
3415     if (const auto *Entry = CostTableLookup(AVX2CostTbl, ISD, MTy))
3416       return LT.first * Entry->Cost;
3417 
3418   if (ST->hasAVX())
3419     if (const auto *Entry = CostTableLookup(AVX1CostTbl, ISD, MTy))
3420       return LT.first * Entry->Cost;
3421 
3422   if (ST->hasSSE42())
3423     if (const auto *Entry = CostTableLookup(SSE42CostTbl, ISD, MTy))
3424       return LT.first * Entry->Cost;
3425 
3426   if (ST->hasSSE41())
3427     if (const auto *Entry = CostTableLookup(SSE41CostTbl, ISD, MTy))
3428       return LT.first * Entry->Cost;
3429 
3430   if (ST->hasSSE2())
3431     if (const auto *Entry = CostTableLookup(SSE2CostTbl, ISD, MTy))
3432       return LT.first * Entry->Cost;
3433 
3434   if (ST->hasSSE1())
3435     if (const auto *Entry = CostTableLookup(SSE1CostTbl, ISD, MTy))
3436       return LT.first * Entry->Cost;
3437 
3438   unsigned CmpOpcode;
3439   if (Ty->isFPOrFPVectorTy()) {
3440     CmpOpcode = Instruction::FCmp;
3441   } else {
3442     assert(Ty->isIntOrIntVectorTy() &&
3443            "expecting floating point or integer type for min/max reduction");
3444     CmpOpcode = Instruction::ICmp;
3445   }
3446 
3447   TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
3448   // Otherwise fall back to cmp+select.
3449   return getCmpSelInstrCost(CmpOpcode, Ty, CondTy, CostKind) +
3450          getCmpSelInstrCost(Instruction::Select, Ty, CondTy, CostKind);
3451 }
3452 
3453 int X86TTIImpl::getMinMaxReductionCost(VectorType *ValTy, VectorType *CondTy,
3454                                        bool IsPairwise, bool IsUnsigned,
3455                                        TTI::TargetCostKind CostKind) {
3456   // Just use the default implementation for pair reductions.
3457   if (IsPairwise)
3458     return BaseT::getMinMaxReductionCost(ValTy, CondTy, IsPairwise, IsUnsigned,
3459                                          CostKind);
3460 
3461   std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, ValTy);
3462 
3463   MVT MTy = LT.second;
3464 
3465   int ISD;
3466   if (ValTy->isIntOrIntVectorTy()) {
3467     ISD = IsUnsigned ? ISD::UMIN : ISD::SMIN;
3468   } else {
3469     assert(ValTy->isFPOrFPVectorTy() &&
3470            "Expected float point or integer vector type.");
3471     ISD = ISD::FMINNUM;
3472   }
3473 
3474   // We use the Intel Architecture Code Analyzer(IACA) to measure the throughput
3475   // and make it as the cost.
3476 
3477   static const CostTblEntry SSE2CostTblNoPairWise[] = {
3478       {ISD::UMIN, MVT::v2i16, 5}, // need pxors to use pminsw/pmaxsw
3479       {ISD::UMIN, MVT::v4i16, 7}, // need pxors to use pminsw/pmaxsw
3480       {ISD::UMIN, MVT::v8i16, 9}, // need pxors to use pminsw/pmaxsw
3481   };
3482 
3483   static const CostTblEntry SSE41CostTblNoPairWise[] = {
3484       {ISD::SMIN, MVT::v2i16, 3}, // same as sse2
3485       {ISD::SMIN, MVT::v4i16, 5}, // same as sse2
3486       {ISD::UMIN, MVT::v2i16, 5}, // same as sse2
3487       {ISD::UMIN, MVT::v4i16, 7}, // same as sse2
3488       {ISD::SMIN, MVT::v8i16, 4}, // phminposuw+xor
3489       {ISD::UMIN, MVT::v8i16, 4}, // FIXME: umin is cheaper than umax
3490       {ISD::SMIN, MVT::v2i8,  3}, // pminsb
3491       {ISD::SMIN, MVT::v4i8,  5}, // pminsb
3492       {ISD::SMIN, MVT::v8i8,  7}, // pminsb
3493       {ISD::SMIN, MVT::v16i8, 6},
3494       {ISD::UMIN, MVT::v2i8,  3}, // same as sse2
3495       {ISD::UMIN, MVT::v4i8,  5}, // same as sse2
3496       {ISD::UMIN, MVT::v8i8,  7}, // same as sse2
3497       {ISD::UMIN, MVT::v16i8, 6}, // FIXME: umin is cheaper than umax
3498   };
3499 
3500   static const CostTblEntry AVX1CostTblNoPairWise[] = {
3501       {ISD::SMIN, MVT::v16i16, 6},
3502       {ISD::UMIN, MVT::v16i16, 6}, // FIXME: umin is cheaper than umax
3503       {ISD::SMIN, MVT::v32i8, 8},
3504       {ISD::UMIN, MVT::v32i8, 8},
3505   };
3506 
3507   static const CostTblEntry AVX512BWCostTblNoPairWise[] = {
3508       {ISD::SMIN, MVT::v32i16, 8},
3509       {ISD::UMIN, MVT::v32i16, 8}, // FIXME: umin is cheaper than umax
3510       {ISD::SMIN, MVT::v64i8, 10},
3511       {ISD::UMIN, MVT::v64i8, 10},
3512   };
3513 
3514   // Before legalizing the type, give a chance to look up illegal narrow types
3515   // in the table.
3516   // FIXME: Is there a better way to do this?
3517   EVT VT = TLI->getValueType(DL, ValTy);
3518   if (VT.isSimple()) {
3519     MVT MTy = VT.getSimpleVT();
3520     if (ST->hasBWI())
3521       if (const auto *Entry = CostTableLookup(AVX512BWCostTblNoPairWise, ISD, MTy))
3522         return Entry->Cost;
3523 
3524     if (ST->hasAVX())
3525       if (const auto *Entry = CostTableLookup(AVX1CostTblNoPairWise, ISD, MTy))
3526         return Entry->Cost;
3527 
3528     if (ST->hasSSE41())
3529       if (const auto *Entry = CostTableLookup(SSE41CostTblNoPairWise, ISD, MTy))
3530         return Entry->Cost;
3531 
3532     if (ST->hasSSE2())
3533       if (const auto *Entry = CostTableLookup(SSE2CostTblNoPairWise, ISD, MTy))
3534         return Entry->Cost;
3535   }
3536 
3537   auto *ValVTy = cast<VectorType>(ValTy);
3538   unsigned NumVecElts = ValVTy->getNumElements();
3539 
3540   auto *Ty = ValVTy;
3541   unsigned MinMaxCost = 0;
3542   if (LT.first != 1 && MTy.isVector() &&
3543       MTy.getVectorNumElements() < ValVTy->getNumElements()) {
3544     // Type needs to be split. We need LT.first - 1 operations ops.
3545     Ty = VectorType::get(ValVTy->getElementType(), MTy.getVectorNumElements());
3546     auto *SubCondTy = VectorType::get(
3547         cast<VectorType>(CondTy)->getElementType(), MTy.getVectorNumElements());
3548     MinMaxCost = getMinMaxCost(Ty, SubCondTy, IsUnsigned);
3549     MinMaxCost *= LT.first - 1;
3550     NumVecElts = MTy.getVectorNumElements();
3551   }
3552 
3553   if (ST->hasBWI())
3554     if (const auto *Entry = CostTableLookup(AVX512BWCostTblNoPairWise, ISD, MTy))
3555       return MinMaxCost + Entry->Cost;
3556 
3557   if (ST->hasAVX())
3558     if (const auto *Entry = CostTableLookup(AVX1CostTblNoPairWise, ISD, MTy))
3559       return MinMaxCost + Entry->Cost;
3560 
3561   if (ST->hasSSE41())
3562     if (const auto *Entry = CostTableLookup(SSE41CostTblNoPairWise, ISD, MTy))
3563       return MinMaxCost + Entry->Cost;
3564 
3565   if (ST->hasSSE2())
3566     if (const auto *Entry = CostTableLookup(SSE2CostTblNoPairWise, ISD, MTy))
3567       return MinMaxCost + Entry->Cost;
3568 
3569   unsigned ScalarSize = ValTy->getScalarSizeInBits();
3570 
3571   // Special case power of 2 reductions where the scalar type isn't changed
3572   // by type legalization.
3573   if (!isPowerOf2_32(ValVTy->getNumElements()) ||
3574       ScalarSize != MTy.getScalarSizeInBits())
3575     return BaseT::getMinMaxReductionCost(ValTy, CondTy, IsPairwise, IsUnsigned,
3576                                          CostKind);
3577 
3578   // Now handle reduction with the legal type, taking into account size changes
3579   // at each level.
3580   while (NumVecElts > 1) {
3581     // Determine the size of the remaining vector we need to reduce.
3582     unsigned Size = NumVecElts * ScalarSize;
3583     NumVecElts /= 2;
3584     // If we're reducing from 256/512 bits, use an extract_subvector.
3585     if (Size > 128) {
3586       auto *SubTy = VectorType::get(ValVTy->getElementType(), NumVecElts);
3587       MinMaxCost +=
3588           getShuffleCost(TTI::SK_ExtractSubvector, Ty, NumVecElts, SubTy);
3589       Ty = SubTy;
3590     } else if (Size == 128) {
3591       // Reducing from 128 bits is a permute of v2f64/v2i64.
3592       VectorType *ShufTy;
3593       if (ValTy->isFloatingPointTy())
3594         ShufTy = VectorType::get(Type::getDoubleTy(ValTy->getContext()), 2);
3595       else
3596         ShufTy = VectorType::get(Type::getInt64Ty(ValTy->getContext()), 2);
3597       MinMaxCost +=
3598           getShuffleCost(TTI::SK_PermuteSingleSrc, ShufTy, 0, nullptr);
3599     } else if (Size == 64) {
3600       // Reducing from 64 bits is a shuffle of v4f32/v4i32.
3601       VectorType *ShufTy;
3602       if (ValTy->isFloatingPointTy())
3603         ShufTy = VectorType::get(Type::getFloatTy(ValTy->getContext()), 4);
3604       else
3605         ShufTy = VectorType::get(Type::getInt32Ty(ValTy->getContext()), 4);
3606       MinMaxCost +=
3607           getShuffleCost(TTI::SK_PermuteSingleSrc, ShufTy, 0, nullptr);
3608     } else {
3609       // Reducing from smaller size is a shift by immediate.
3610       VectorType *ShiftTy = VectorType::get(
3611           Type::getIntNTy(ValTy->getContext(), Size), 128 / Size);
3612       MinMaxCost += getArithmeticInstrCost(
3613           Instruction::LShr, ShiftTy, TTI::TCK_RecipThroughput,
3614           TargetTransformInfo::OK_AnyValue,
3615           TargetTransformInfo::OK_UniformConstantValue,
3616           TargetTransformInfo::OP_None, TargetTransformInfo::OP_None);
3617     }
3618 
3619     // Add the arithmetic op for this level.
3620     auto *SubCondTy =
3621         FixedVectorType::get(CondTy->getElementType(), Ty->getNumElements());
3622     MinMaxCost += getMinMaxCost(Ty, SubCondTy, IsUnsigned);
3623   }
3624 
3625   // Add the final extract element to the cost.
3626   return MinMaxCost + getVectorInstrCost(Instruction::ExtractElement, Ty, 0);
3627 }
3628 
3629 /// Calculate the cost of materializing a 64-bit value. This helper
3630 /// method might only calculate a fraction of a larger immediate. Therefore it
3631 /// is valid to return a cost of ZERO.
3632 int X86TTIImpl::getIntImmCost(int64_t Val) {
3633   if (Val == 0)
3634     return TTI::TCC_Free;
3635 
3636   if (isInt<32>(Val))
3637     return TTI::TCC_Basic;
3638 
3639   return 2 * TTI::TCC_Basic;
3640 }
3641 
3642 int X86TTIImpl::getIntImmCost(const APInt &Imm, Type *Ty,
3643                               TTI::TargetCostKind CostKind) {
3644   assert(Ty->isIntegerTy());
3645 
3646   unsigned BitSize = Ty->getPrimitiveSizeInBits();
3647   if (BitSize == 0)
3648     return ~0U;
3649 
3650   // Never hoist constants larger than 128bit, because this might lead to
3651   // incorrect code generation or assertions in codegen.
3652   // Fixme: Create a cost model for types larger than i128 once the codegen
3653   // issues have been fixed.
3654   if (BitSize > 128)
3655     return TTI::TCC_Free;
3656 
3657   if (Imm == 0)
3658     return TTI::TCC_Free;
3659 
3660   // Sign-extend all constants to a multiple of 64-bit.
3661   APInt ImmVal = Imm;
3662   if (BitSize % 64 != 0)
3663     ImmVal = Imm.sext(alignTo(BitSize, 64));
3664 
3665   // Split the constant into 64-bit chunks and calculate the cost for each
3666   // chunk.
3667   int Cost = 0;
3668   for (unsigned ShiftVal = 0; ShiftVal < BitSize; ShiftVal += 64) {
3669     APInt Tmp = ImmVal.ashr(ShiftVal).sextOrTrunc(64);
3670     int64_t Val = Tmp.getSExtValue();
3671     Cost += getIntImmCost(Val);
3672   }
3673   // We need at least one instruction to materialize the constant.
3674   return std::max(1, Cost);
3675 }
3676 
3677 int X86TTIImpl::getIntImmCostInst(unsigned Opcode, unsigned Idx, const APInt &Imm,
3678                                   Type *Ty, TTI::TargetCostKind CostKind) {
3679   assert(Ty->isIntegerTy());
3680 
3681   unsigned BitSize = Ty->getPrimitiveSizeInBits();
3682   // There is no cost model for constants with a bit size of 0. Return TCC_Free
3683   // here, so that constant hoisting will ignore this constant.
3684   if (BitSize == 0)
3685     return TTI::TCC_Free;
3686 
3687   unsigned ImmIdx = ~0U;
3688   switch (Opcode) {
3689   default:
3690     return TTI::TCC_Free;
3691   case Instruction::GetElementPtr:
3692     // Always hoist the base address of a GetElementPtr. This prevents the
3693     // creation of new constants for every base constant that gets constant
3694     // folded with the offset.
3695     if (Idx == 0)
3696       return 2 * TTI::TCC_Basic;
3697     return TTI::TCC_Free;
3698   case Instruction::Store:
3699     ImmIdx = 0;
3700     break;
3701   case Instruction::ICmp:
3702     // This is an imperfect hack to prevent constant hoisting of
3703     // compares that might be trying to check if a 64-bit value fits in
3704     // 32-bits. The backend can optimize these cases using a right shift by 32.
3705     // Ideally we would check the compare predicate here. There also other
3706     // similar immediates the backend can use shifts for.
3707     if (Idx == 1 && Imm.getBitWidth() == 64) {
3708       uint64_t ImmVal = Imm.getZExtValue();
3709       if (ImmVal == 0x100000000ULL || ImmVal == 0xffffffff)
3710         return TTI::TCC_Free;
3711     }
3712     ImmIdx = 1;
3713     break;
3714   case Instruction::And:
3715     // We support 64-bit ANDs with immediates with 32-bits of leading zeroes
3716     // by using a 32-bit operation with implicit zero extension. Detect such
3717     // immediates here as the normal path expects bit 31 to be sign extended.
3718     if (Idx == 1 && Imm.getBitWidth() == 64 && isUInt<32>(Imm.getZExtValue()))
3719       return TTI::TCC_Free;
3720     ImmIdx = 1;
3721     break;
3722   case Instruction::Add:
3723   case Instruction::Sub:
3724     // For add/sub, we can use the opposite instruction for INT32_MIN.
3725     if (Idx == 1 && Imm.getBitWidth() == 64 && Imm.getZExtValue() == 0x80000000)
3726       return TTI::TCC_Free;
3727     ImmIdx = 1;
3728     break;
3729   case Instruction::UDiv:
3730   case Instruction::SDiv:
3731   case Instruction::URem:
3732   case Instruction::SRem:
3733     // Division by constant is typically expanded later into a different
3734     // instruction sequence. This completely changes the constants.
3735     // Report them as "free" to stop ConstantHoist from marking them as opaque.
3736     return TTI::TCC_Free;
3737   case Instruction::Mul:
3738   case Instruction::Or:
3739   case Instruction::Xor:
3740     ImmIdx = 1;
3741     break;
3742   // Always return TCC_Free for the shift value of a shift instruction.
3743   case Instruction::Shl:
3744   case Instruction::LShr:
3745   case Instruction::AShr:
3746     if (Idx == 1)
3747       return TTI::TCC_Free;
3748     break;
3749   case Instruction::Trunc:
3750   case Instruction::ZExt:
3751   case Instruction::SExt:
3752   case Instruction::IntToPtr:
3753   case Instruction::PtrToInt:
3754   case Instruction::BitCast:
3755   case Instruction::PHI:
3756   case Instruction::Call:
3757   case Instruction::Select:
3758   case Instruction::Ret:
3759   case Instruction::Load:
3760     break;
3761   }
3762 
3763   if (Idx == ImmIdx) {
3764     int NumConstants = divideCeil(BitSize, 64);
3765     int Cost = X86TTIImpl::getIntImmCost(Imm, Ty, CostKind);
3766     return (Cost <= NumConstants * TTI::TCC_Basic)
3767                ? static_cast<int>(TTI::TCC_Free)
3768                : Cost;
3769   }
3770 
3771   return X86TTIImpl::getIntImmCost(Imm, Ty, CostKind);
3772 }
3773 
3774 int X86TTIImpl::getIntImmCostIntrin(Intrinsic::ID IID, unsigned Idx,
3775                                     const APInt &Imm, Type *Ty,
3776                                     TTI::TargetCostKind CostKind) {
3777   assert(Ty->isIntegerTy());
3778 
3779   unsigned BitSize = Ty->getPrimitiveSizeInBits();
3780   // There is no cost model for constants with a bit size of 0. Return TCC_Free
3781   // here, so that constant hoisting will ignore this constant.
3782   if (BitSize == 0)
3783     return TTI::TCC_Free;
3784 
3785   switch (IID) {
3786   default:
3787     return TTI::TCC_Free;
3788   case Intrinsic::sadd_with_overflow:
3789   case Intrinsic::uadd_with_overflow:
3790   case Intrinsic::ssub_with_overflow:
3791   case Intrinsic::usub_with_overflow:
3792   case Intrinsic::smul_with_overflow:
3793   case Intrinsic::umul_with_overflow:
3794     if ((Idx == 1) && Imm.getBitWidth() <= 64 && isInt<32>(Imm.getSExtValue()))
3795       return TTI::TCC_Free;
3796     break;
3797   case Intrinsic::experimental_stackmap:
3798     if ((Idx < 2) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue())))
3799       return TTI::TCC_Free;
3800     break;
3801   case Intrinsic::experimental_patchpoint_void:
3802   case Intrinsic::experimental_patchpoint_i64:
3803     if ((Idx < 4) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue())))
3804       return TTI::TCC_Free;
3805     break;
3806   }
3807   return X86TTIImpl::getIntImmCost(Imm, Ty, CostKind);
3808 }
3809 
3810 unsigned
3811 X86TTIImpl::getUserCost(const User *U, ArrayRef<const Value *> Operands,
3812                         TTI::TargetCostKind CostKind) {
3813   if (isa<StoreInst>(U)) {
3814     Value *Ptr = U->getOperand(1);
3815     // Store instruction with index and scale costs 2 Uops.
3816     // Check the preceding GEP to identify non-const indices.
3817     if (auto GEP = dyn_cast<GetElementPtrInst>(Ptr)) {
3818       if (!all_of(GEP->indices(), [](Value *V) { return isa<Constant>(V); }))
3819         return TTI::TCC_Basic * 2;
3820     }
3821     return TTI::TCC_Basic;
3822   }
3823   return BaseT::getUserCost(U, Operands, CostKind);
3824 }
3825 
3826 // Return an average cost of Gather / Scatter instruction, maybe improved later
3827 int X86TTIImpl::getGSVectorCost(unsigned Opcode, Type *SrcVTy, Value *Ptr,
3828                                 unsigned Alignment, unsigned AddressSpace) {
3829 
3830   assert(isa<VectorType>(SrcVTy) && "Unexpected type in getGSVectorCost");
3831   unsigned VF = cast<VectorType>(SrcVTy)->getNumElements();
3832 
3833   // Try to reduce index size from 64 bit (default for GEP)
3834   // to 32. It is essential for VF 16. If the index can't be reduced to 32, the
3835   // operation will use 16 x 64 indices which do not fit in a zmm and needs
3836   // to split. Also check that the base pointer is the same for all lanes,
3837   // and that there's at most one variable index.
3838   auto getIndexSizeInBits = [](Value *Ptr, const DataLayout& DL) {
3839     unsigned IndexSize = DL.getPointerSizeInBits();
3840     GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr);
3841     if (IndexSize < 64 || !GEP)
3842       return IndexSize;
3843 
3844     unsigned NumOfVarIndices = 0;
3845     Value *Ptrs = GEP->getPointerOperand();
3846     if (Ptrs->getType()->isVectorTy() && !getSplatValue(Ptrs))
3847       return IndexSize;
3848     for (unsigned i = 1; i < GEP->getNumOperands(); ++i) {
3849       if (isa<Constant>(GEP->getOperand(i)))
3850         continue;
3851       Type *IndxTy = GEP->getOperand(i)->getType();
3852       if (auto *IndexVTy = dyn_cast<VectorType>(IndxTy))
3853         IndxTy = IndexVTy->getElementType();
3854       if ((IndxTy->getPrimitiveSizeInBits() == 64 &&
3855           !isa<SExtInst>(GEP->getOperand(i))) ||
3856          ++NumOfVarIndices > 1)
3857         return IndexSize; // 64
3858     }
3859     return (unsigned)32;
3860   };
3861 
3862 
3863   // Trying to reduce IndexSize to 32 bits for vector 16.
3864   // By default the IndexSize is equal to pointer size.
3865   unsigned IndexSize = (ST->hasAVX512() && VF >= 16)
3866                            ? getIndexSizeInBits(Ptr, DL)
3867                            : DL.getPointerSizeInBits();
3868 
3869   auto *IndexVTy = FixedVectorType::get(
3870       IntegerType::get(SrcVTy->getContext(), IndexSize), VF);
3871   std::pair<int, MVT> IdxsLT = TLI->getTypeLegalizationCost(DL, IndexVTy);
3872   std::pair<int, MVT> SrcLT = TLI->getTypeLegalizationCost(DL, SrcVTy);
3873   int SplitFactor = std::max(IdxsLT.first, SrcLT.first);
3874   if (SplitFactor > 1) {
3875     // Handle splitting of vector of pointers
3876     auto *SplitSrcTy =
3877         FixedVectorType::get(SrcVTy->getScalarType(), VF / SplitFactor);
3878     return SplitFactor * getGSVectorCost(Opcode, SplitSrcTy, Ptr, Alignment,
3879                                          AddressSpace);
3880   }
3881 
3882   // The gather / scatter cost is given by Intel architects. It is a rough
3883   // number since we are looking at one instruction in a time.
3884   const int GSOverhead = (Opcode == Instruction::Load)
3885                              ? ST->getGatherOverhead()
3886                              : ST->getScatterOverhead();
3887   return GSOverhead + VF * getMemoryOpCost(Opcode, SrcVTy->getScalarType(),
3888                                            MaybeAlign(Alignment), AddressSpace,
3889                                            TTI::TCK_RecipThroughput);
3890 }
3891 
3892 /// Return the cost of full scalarization of gather / scatter operation.
3893 ///
3894 /// Opcode - Load or Store instruction.
3895 /// SrcVTy - The type of the data vector that should be gathered or scattered.
3896 /// VariableMask - The mask is non-constant at compile time.
3897 /// Alignment - Alignment for one element.
3898 /// AddressSpace - pointer[s] address space.
3899 ///
3900 int X86TTIImpl::getGSScalarCost(unsigned Opcode, Type *SrcVTy,
3901                                 bool VariableMask, unsigned Alignment,
3902                                 unsigned AddressSpace) {
3903   unsigned VF = cast<VectorType>(SrcVTy)->getNumElements();
3904   APInt DemandedElts = APInt::getAllOnesValue(VF);
3905   TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
3906 
3907   int MaskUnpackCost = 0;
3908   if (VariableMask) {
3909     VectorType *MaskTy =
3910       VectorType::get(Type::getInt1Ty(SrcVTy->getContext()), VF);
3911     MaskUnpackCost =
3912         getScalarizationOverhead(MaskTy, DemandedElts, false, true);
3913     int ScalarCompareCost =
3914       getCmpSelInstrCost(Instruction::ICmp, Type::getInt1Ty(SrcVTy->getContext()),
3915                          nullptr, CostKind);
3916     int BranchCost = getCFInstrCost(Instruction::Br, CostKind);
3917     MaskUnpackCost += VF * (BranchCost + ScalarCompareCost);
3918   }
3919 
3920   // The cost of the scalar loads/stores.
3921   int MemoryOpCost = VF * getMemoryOpCost(Opcode, SrcVTy->getScalarType(),
3922                                           MaybeAlign(Alignment), AddressSpace,
3923                                           CostKind);
3924 
3925   int InsertExtractCost = 0;
3926   if (Opcode == Instruction::Load)
3927     for (unsigned i = 0; i < VF; ++i)
3928       // Add the cost of inserting each scalar load into the vector
3929       InsertExtractCost +=
3930         getVectorInstrCost(Instruction::InsertElement, SrcVTy, i);
3931   else
3932     for (unsigned i = 0; i < VF; ++i)
3933       // Add the cost of extracting each element out of the data vector
3934       InsertExtractCost +=
3935         getVectorInstrCost(Instruction::ExtractElement, SrcVTy, i);
3936 
3937   return MemoryOpCost + MaskUnpackCost + InsertExtractCost;
3938 }
3939 
3940 /// Calculate the cost of Gather / Scatter operation
3941 int X86TTIImpl::getGatherScatterOpCost(
3942     unsigned Opcode, Type *SrcVTy, Value *Ptr, bool VariableMask,
3943     unsigned Alignment, TTI::TargetCostKind CostKind,
3944     const Instruction *I = nullptr) {
3945 
3946   if (CostKind != TTI::TCK_RecipThroughput)
3947     return 1;
3948 
3949   assert(SrcVTy->isVectorTy() && "Unexpected data type for Gather/Scatter");
3950   unsigned VF = cast<VectorType>(SrcVTy)->getNumElements();
3951   PointerType *PtrTy = dyn_cast<PointerType>(Ptr->getType());
3952   if (!PtrTy && Ptr->getType()->isVectorTy())
3953     PtrTy = dyn_cast<PointerType>(
3954         cast<VectorType>(Ptr->getType())->getElementType());
3955   assert(PtrTy && "Unexpected type for Ptr argument");
3956   unsigned AddressSpace = PtrTy->getAddressSpace();
3957 
3958   bool Scalarize = false;
3959   if ((Opcode == Instruction::Load &&
3960        !isLegalMaskedGather(SrcVTy, MaybeAlign(Alignment))) ||
3961       (Opcode == Instruction::Store &&
3962        !isLegalMaskedScatter(SrcVTy, MaybeAlign(Alignment))))
3963     Scalarize = true;
3964   // Gather / Scatter for vector 2 is not profitable on KNL / SKX
3965   // Vector-4 of gather/scatter instruction does not exist on KNL.
3966   // We can extend it to 8 elements, but zeroing upper bits of
3967   // the mask vector will add more instructions. Right now we give the scalar
3968   // cost of vector-4 for KNL. TODO: Check, maybe the gather/scatter instruction
3969   // is better in the VariableMask case.
3970   if (ST->hasAVX512() && (VF == 2 || (VF == 4 && !ST->hasVLX())))
3971     Scalarize = true;
3972 
3973   if (Scalarize)
3974     return getGSScalarCost(Opcode, SrcVTy, VariableMask, Alignment,
3975                            AddressSpace);
3976 
3977   return getGSVectorCost(Opcode, SrcVTy, Ptr, Alignment, AddressSpace);
3978 }
3979 
3980 bool X86TTIImpl::isLSRCostLess(TargetTransformInfo::LSRCost &C1,
3981                                TargetTransformInfo::LSRCost &C2) {
3982     // X86 specific here are "instruction number 1st priority".
3983     return std::tie(C1.Insns, C1.NumRegs, C1.AddRecCost,
3984                     C1.NumIVMuls, C1.NumBaseAdds,
3985                     C1.ScaleCost, C1.ImmCost, C1.SetupCost) <
3986            std::tie(C2.Insns, C2.NumRegs, C2.AddRecCost,
3987                     C2.NumIVMuls, C2.NumBaseAdds,
3988                     C2.ScaleCost, C2.ImmCost, C2.SetupCost);
3989 }
3990 
3991 bool X86TTIImpl::canMacroFuseCmp() {
3992   return ST->hasMacroFusion() || ST->hasBranchFusion();
3993 }
3994 
3995 bool X86TTIImpl::isLegalMaskedLoad(Type *DataTy, MaybeAlign Alignment) {
3996   if (!ST->hasAVX())
3997     return false;
3998 
3999   // The backend can't handle a single element vector.
4000   if (isa<VectorType>(DataTy) &&
4001       cast<VectorType>(DataTy)->getNumElements() == 1)
4002     return false;
4003   Type *ScalarTy = DataTy->getScalarType();
4004 
4005   if (ScalarTy->isPointerTy())
4006     return true;
4007 
4008   if (ScalarTy->isFloatTy() || ScalarTy->isDoubleTy())
4009     return true;
4010 
4011   if (!ScalarTy->isIntegerTy())
4012     return false;
4013 
4014   unsigned IntWidth = ScalarTy->getIntegerBitWidth();
4015   return IntWidth == 32 || IntWidth == 64 ||
4016          ((IntWidth == 8 || IntWidth == 16) && ST->hasBWI());
4017 }
4018 
4019 bool X86TTIImpl::isLegalMaskedStore(Type *DataType, MaybeAlign Alignment) {
4020   return isLegalMaskedLoad(DataType, Alignment);
4021 }
4022 
4023 bool X86TTIImpl::isLegalNTLoad(Type *DataType, Align Alignment) {
4024   unsigned DataSize = DL.getTypeStoreSize(DataType);
4025   // The only supported nontemporal loads are for aligned vectors of 16 or 32
4026   // bytes.  Note that 32-byte nontemporal vector loads are supported by AVX2
4027   // (the equivalent stores only require AVX).
4028   if (Alignment >= DataSize && (DataSize == 16 || DataSize == 32))
4029     return DataSize == 16 ?  ST->hasSSE1() : ST->hasAVX2();
4030 
4031   return false;
4032 }
4033 
4034 bool X86TTIImpl::isLegalNTStore(Type *DataType, Align Alignment) {
4035   unsigned DataSize = DL.getTypeStoreSize(DataType);
4036 
4037   // SSE4A supports nontemporal stores of float and double at arbitrary
4038   // alignment.
4039   if (ST->hasSSE4A() && (DataType->isFloatTy() || DataType->isDoubleTy()))
4040     return true;
4041 
4042   // Besides the SSE4A subtarget exception above, only aligned stores are
4043   // available nontemporaly on any other subtarget.  And only stores with a size
4044   // of 4..32 bytes (powers of 2, only) are permitted.
4045   if (Alignment < DataSize || DataSize < 4 || DataSize > 32 ||
4046       !isPowerOf2_32(DataSize))
4047     return false;
4048 
4049   // 32-byte vector nontemporal stores are supported by AVX (the equivalent
4050   // loads require AVX2).
4051   if (DataSize == 32)
4052     return ST->hasAVX();
4053   else if (DataSize == 16)
4054     return ST->hasSSE1();
4055   return true;
4056 }
4057 
4058 bool X86TTIImpl::isLegalMaskedExpandLoad(Type *DataTy) {
4059   if (!isa<VectorType>(DataTy))
4060     return false;
4061 
4062   if (!ST->hasAVX512())
4063     return false;
4064 
4065   // The backend can't handle a single element vector.
4066   if (cast<VectorType>(DataTy)->getNumElements() == 1)
4067     return false;
4068 
4069   Type *ScalarTy = cast<VectorType>(DataTy)->getElementType();
4070 
4071   if (ScalarTy->isFloatTy() || ScalarTy->isDoubleTy())
4072     return true;
4073 
4074   if (!ScalarTy->isIntegerTy())
4075     return false;
4076 
4077   unsigned IntWidth = ScalarTy->getIntegerBitWidth();
4078   return IntWidth == 32 || IntWidth == 64 ||
4079          ((IntWidth == 8 || IntWidth == 16) && ST->hasVBMI2());
4080 }
4081 
4082 bool X86TTIImpl::isLegalMaskedCompressStore(Type *DataTy) {
4083   return isLegalMaskedExpandLoad(DataTy);
4084 }
4085 
4086 bool X86TTIImpl::isLegalMaskedGather(Type *DataTy, MaybeAlign Alignment) {
4087   // Some CPUs have better gather performance than others.
4088   // TODO: Remove the explicit ST->hasAVX512()?, That would mean we would only
4089   // enable gather with a -march.
4090   if (!(ST->hasAVX512() || (ST->hasFastGather() && ST->hasAVX2())))
4091     return false;
4092 
4093   // This function is called now in two cases: from the Loop Vectorizer
4094   // and from the Scalarizer.
4095   // When the Loop Vectorizer asks about legality of the feature,
4096   // the vectorization factor is not calculated yet. The Loop Vectorizer
4097   // sends a scalar type and the decision is based on the width of the
4098   // scalar element.
4099   // Later on, the cost model will estimate usage this intrinsic based on
4100   // the vector type.
4101   // The Scalarizer asks again about legality. It sends a vector type.
4102   // In this case we can reject non-power-of-2 vectors.
4103   // We also reject single element vectors as the type legalizer can't
4104   // scalarize it.
4105   if (auto *DataVTy = dyn_cast<VectorType>(DataTy)) {
4106     unsigned NumElts = DataVTy->getNumElements();
4107     if (NumElts == 1 || !isPowerOf2_32(NumElts))
4108       return false;
4109   }
4110   Type *ScalarTy = DataTy->getScalarType();
4111   if (ScalarTy->isPointerTy())
4112     return true;
4113 
4114   if (ScalarTy->isFloatTy() || ScalarTy->isDoubleTy())
4115     return true;
4116 
4117   if (!ScalarTy->isIntegerTy())
4118     return false;
4119 
4120   unsigned IntWidth = ScalarTy->getIntegerBitWidth();
4121   return IntWidth == 32 || IntWidth == 64;
4122 }
4123 
4124 bool X86TTIImpl::isLegalMaskedScatter(Type *DataType, MaybeAlign Alignment) {
4125   // AVX2 doesn't support scatter
4126   if (!ST->hasAVX512())
4127     return false;
4128   return isLegalMaskedGather(DataType, Alignment);
4129 }
4130 
4131 bool X86TTIImpl::hasDivRemOp(Type *DataType, bool IsSigned) {
4132   EVT VT = TLI->getValueType(DL, DataType);
4133   return TLI->isOperationLegal(IsSigned ? ISD::SDIVREM : ISD::UDIVREM, VT);
4134 }
4135 
4136 bool X86TTIImpl::isFCmpOrdCheaperThanFCmpZero(Type *Ty) {
4137   return false;
4138 }
4139 
4140 bool X86TTIImpl::areInlineCompatible(const Function *Caller,
4141                                      const Function *Callee) const {
4142   const TargetMachine &TM = getTLI()->getTargetMachine();
4143 
4144   // Work this as a subsetting of subtarget features.
4145   const FeatureBitset &CallerBits =
4146       TM.getSubtargetImpl(*Caller)->getFeatureBits();
4147   const FeatureBitset &CalleeBits =
4148       TM.getSubtargetImpl(*Callee)->getFeatureBits();
4149 
4150   FeatureBitset RealCallerBits = CallerBits & ~InlineFeatureIgnoreList;
4151   FeatureBitset RealCalleeBits = CalleeBits & ~InlineFeatureIgnoreList;
4152   return (RealCallerBits & RealCalleeBits) == RealCalleeBits;
4153 }
4154 
4155 bool X86TTIImpl::areFunctionArgsABICompatible(
4156     const Function *Caller, const Function *Callee,
4157     SmallPtrSetImpl<Argument *> &Args) const {
4158   if (!BaseT::areFunctionArgsABICompatible(Caller, Callee, Args))
4159     return false;
4160 
4161   // If we get here, we know the target features match. If one function
4162   // considers 512-bit vectors legal and the other does not, consider them
4163   // incompatible.
4164   const TargetMachine &TM = getTLI()->getTargetMachine();
4165 
4166   if (TM.getSubtarget<X86Subtarget>(*Caller).useAVX512Regs() ==
4167       TM.getSubtarget<X86Subtarget>(*Callee).useAVX512Regs())
4168     return true;
4169 
4170   // Consider the arguments compatible if they aren't vectors or aggregates.
4171   // FIXME: Look at the size of vectors.
4172   // FIXME: Look at the element types of aggregates to see if there are vectors.
4173   // FIXME: The API of this function seems intended to allow arguments
4174   // to be removed from the set, but the caller doesn't check if the set
4175   // becomes empty so that may not work in practice.
4176   return llvm::none_of(Args, [](Argument *A) {
4177     auto *EltTy = cast<PointerType>(A->getType())->getElementType();
4178     return EltTy->isVectorTy() || EltTy->isAggregateType();
4179   });
4180 }
4181 
4182 X86TTIImpl::TTI::MemCmpExpansionOptions
4183 X86TTIImpl::enableMemCmpExpansion(bool OptSize, bool IsZeroCmp) const {
4184   TTI::MemCmpExpansionOptions Options;
4185   Options.MaxNumLoads = TLI->getMaxExpandSizeMemcmp(OptSize);
4186   Options.NumLoadsPerBlock = 2;
4187   // All GPR and vector loads can be unaligned.
4188   Options.AllowOverlappingLoads = true;
4189   if (IsZeroCmp) {
4190     // Only enable vector loads for equality comparison. Right now the vector
4191     // version is not as fast for three way compare (see #33329).
4192     const unsigned PreferredWidth = ST->getPreferVectorWidth();
4193     if (PreferredWidth >= 512 && ST->hasAVX512()) Options.LoadSizes.push_back(64);
4194     if (PreferredWidth >= 256 && ST->hasAVX()) Options.LoadSizes.push_back(32);
4195     if (PreferredWidth >= 128 && ST->hasSSE2()) Options.LoadSizes.push_back(16);
4196   }
4197   if (ST->is64Bit()) {
4198     Options.LoadSizes.push_back(8);
4199   }
4200   Options.LoadSizes.push_back(4);
4201   Options.LoadSizes.push_back(2);
4202   Options.LoadSizes.push_back(1);
4203   return Options;
4204 }
4205 
4206 bool X86TTIImpl::enableInterleavedAccessVectorization() {
4207   // TODO: We expect this to be beneficial regardless of arch,
4208   // but there are currently some unexplained performance artifacts on Atom.
4209   // As a temporary solution, disable on Atom.
4210   return !(ST->isAtom());
4211 }
4212 
4213 // Get estimation for interleaved load/store operations for AVX2.
4214 // \p Factor is the interleaved-access factor (stride) - number of
4215 // (interleaved) elements in the group.
4216 // \p Indices contains the indices for a strided load: when the
4217 // interleaved load has gaps they indicate which elements are used.
4218 // If Indices is empty (or if the number of indices is equal to the size
4219 // of the interleaved-access as given in \p Factor) the access has no gaps.
4220 //
4221 // As opposed to AVX-512, AVX2 does not have generic shuffles that allow
4222 // computing the cost using a generic formula as a function of generic
4223 // shuffles. We therefore use a lookup table instead, filled according to
4224 // the instruction sequences that codegen currently generates.
4225 int X86TTIImpl::getInterleavedMemoryOpCostAVX2(unsigned Opcode, Type *VecTy,
4226                                                unsigned Factor,
4227                                                ArrayRef<unsigned> Indices,
4228                                                unsigned Alignment,
4229                                                unsigned AddressSpace,
4230                                                TTI::TargetCostKind CostKind,
4231                                                bool UseMaskForCond,
4232                                                bool UseMaskForGaps) {
4233 
4234   if (UseMaskForCond || UseMaskForGaps)
4235     return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices,
4236                                              Alignment, AddressSpace, CostKind,
4237                                              UseMaskForCond, UseMaskForGaps);
4238 
4239   // We currently Support only fully-interleaved groups, with no gaps.
4240   // TODO: Support also strided loads (interleaved-groups with gaps).
4241   if (Indices.size() && Indices.size() != Factor)
4242     return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices,
4243                                              Alignment, AddressSpace,
4244                                              CostKind);
4245 
4246   // VecTy for interleave memop is <VF*Factor x Elt>.
4247   // So, for VF=4, Interleave Factor = 3, Element type = i32 we have
4248   // VecTy = <12 x i32>.
4249   MVT LegalVT = getTLI()->getTypeLegalizationCost(DL, VecTy).second;
4250 
4251   // This function can be called with VecTy=<6xi128>, Factor=3, in which case
4252   // the VF=2, while v2i128 is an unsupported MVT vector type
4253   // (see MachineValueType.h::getVectorVT()).
4254   if (!LegalVT.isVector())
4255     return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices,
4256                                              Alignment, AddressSpace,
4257                                              CostKind);
4258 
4259   unsigned VF = cast<VectorType>(VecTy)->getNumElements() / Factor;
4260   Type *ScalarTy = cast<VectorType>(VecTy)->getElementType();
4261 
4262   // Calculate the number of memory operations (NumOfMemOps), required
4263   // for load/store the VecTy.
4264   unsigned VecTySize = DL.getTypeStoreSize(VecTy);
4265   unsigned LegalVTSize = LegalVT.getStoreSize();
4266   unsigned NumOfMemOps = (VecTySize + LegalVTSize - 1) / LegalVTSize;
4267 
4268   // Get the cost of one memory operation.
4269   auto *SingleMemOpTy =
4270       FixedVectorType::get(cast<VectorType>(VecTy)->getElementType(),
4271                            LegalVT.getVectorNumElements());
4272   unsigned MemOpCost = getMemoryOpCost(Opcode, SingleMemOpTy,
4273                                        MaybeAlign(Alignment), AddressSpace,
4274                                        CostKind);
4275 
4276   auto *VT = FixedVectorType::get(ScalarTy, VF);
4277   EVT ETy = TLI->getValueType(DL, VT);
4278   if (!ETy.isSimple())
4279     return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices,
4280                                              Alignment, AddressSpace,
4281                                              CostKind);
4282 
4283   // TODO: Complete for other data-types and strides.
4284   // Each combination of Stride, ElementTy and VF results in a different
4285   // sequence; The cost tables are therefore accessed with:
4286   // Factor (stride) and VectorType=VFxElemType.
4287   // The Cost accounts only for the shuffle sequence;
4288   // The cost of the loads/stores is accounted for separately.
4289   //
4290   static const CostTblEntry AVX2InterleavedLoadTbl[] = {
4291     { 2, MVT::v4i64, 6 }, //(load 8i64 and) deinterleave into 2 x 4i64
4292     { 2, MVT::v4f64, 6 }, //(load 8f64 and) deinterleave into 2 x 4f64
4293 
4294     { 3, MVT::v2i8,  10 }, //(load 6i8 and)  deinterleave into 3 x 2i8
4295     { 3, MVT::v4i8,  4 },  //(load 12i8 and) deinterleave into 3 x 4i8
4296     { 3, MVT::v8i8,  9 },  //(load 24i8 and) deinterleave into 3 x 8i8
4297     { 3, MVT::v16i8, 11},  //(load 48i8 and) deinterleave into 3 x 16i8
4298     { 3, MVT::v32i8, 13},  //(load 96i8 and) deinterleave into 3 x 32i8
4299     { 3, MVT::v8f32, 17 }, //(load 24f32 and)deinterleave into 3 x 8f32
4300 
4301     { 4, MVT::v2i8,  12 }, //(load 8i8 and)   deinterleave into 4 x 2i8
4302     { 4, MVT::v4i8,  4 },  //(load 16i8 and)  deinterleave into 4 x 4i8
4303     { 4, MVT::v8i8,  20 }, //(load 32i8 and)  deinterleave into 4 x 8i8
4304     { 4, MVT::v16i8, 39 }, //(load 64i8 and)  deinterleave into 4 x 16i8
4305     { 4, MVT::v32i8, 80 }, //(load 128i8 and) deinterleave into 4 x 32i8
4306 
4307     { 8, MVT::v8f32, 40 }  //(load 64f32 and)deinterleave into 8 x 8f32
4308   };
4309 
4310   static const CostTblEntry AVX2InterleavedStoreTbl[] = {
4311     { 2, MVT::v4i64, 6 }, //interleave into 2 x 4i64 into 8i64 (and store)
4312     { 2, MVT::v4f64, 6 }, //interleave into 2 x 4f64 into 8f64 (and store)
4313 
4314     { 3, MVT::v2i8,  7 },  //interleave 3 x 2i8  into 6i8 (and store)
4315     { 3, MVT::v4i8,  8 },  //interleave 3 x 4i8  into 12i8 (and store)
4316     { 3, MVT::v8i8,  11 }, //interleave 3 x 8i8  into 24i8 (and store)
4317     { 3, MVT::v16i8, 11 }, //interleave 3 x 16i8 into 48i8 (and store)
4318     { 3, MVT::v32i8, 13 }, //interleave 3 x 32i8 into 96i8 (and store)
4319 
4320     { 4, MVT::v2i8,  12 }, //interleave 4 x 2i8  into 8i8 (and store)
4321     { 4, MVT::v4i8,  9 },  //interleave 4 x 4i8  into 16i8 (and store)
4322     { 4, MVT::v8i8,  10 }, //interleave 4 x 8i8  into 32i8 (and store)
4323     { 4, MVT::v16i8, 10 }, //interleave 4 x 16i8 into 64i8 (and store)
4324     { 4, MVT::v32i8, 12 }  //interleave 4 x 32i8 into 128i8 (and store)
4325   };
4326 
4327   if (Opcode == Instruction::Load) {
4328     if (const auto *Entry =
4329             CostTableLookup(AVX2InterleavedLoadTbl, Factor, ETy.getSimpleVT()))
4330       return NumOfMemOps * MemOpCost + Entry->Cost;
4331   } else {
4332     assert(Opcode == Instruction::Store &&
4333            "Expected Store Instruction at this  point");
4334     if (const auto *Entry =
4335             CostTableLookup(AVX2InterleavedStoreTbl, Factor, ETy.getSimpleVT()))
4336       return NumOfMemOps * MemOpCost + Entry->Cost;
4337   }
4338 
4339   return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices,
4340                                            Alignment, AddressSpace, CostKind);
4341 }
4342 
4343 // Get estimation for interleaved load/store operations and strided load.
4344 // \p Indices contains indices for strided load.
4345 // \p Factor - the factor of interleaving.
4346 // AVX-512 provides 3-src shuffles that significantly reduces the cost.
4347 int X86TTIImpl::getInterleavedMemoryOpCostAVX512(unsigned Opcode, Type *VecTy,
4348                                                  unsigned Factor,
4349                                                  ArrayRef<unsigned> Indices,
4350                                                  unsigned Alignment,
4351                                                  unsigned AddressSpace,
4352                                                  TTI::TargetCostKind CostKind,
4353                                                  bool UseMaskForCond,
4354                                                  bool UseMaskForGaps) {
4355 
4356   if (UseMaskForCond || UseMaskForGaps)
4357     return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices,
4358                                              Alignment, AddressSpace, CostKind,
4359                                              UseMaskForCond, UseMaskForGaps);
4360 
4361   // VecTy for interleave memop is <VF*Factor x Elt>.
4362   // So, for VF=4, Interleave Factor = 3, Element type = i32 we have
4363   // VecTy = <12 x i32>.
4364 
4365   // Calculate the number of memory operations (NumOfMemOps), required
4366   // for load/store the VecTy.
4367   MVT LegalVT = getTLI()->getTypeLegalizationCost(DL, VecTy).second;
4368   unsigned VecTySize = DL.getTypeStoreSize(VecTy);
4369   unsigned LegalVTSize = LegalVT.getStoreSize();
4370   unsigned NumOfMemOps = (VecTySize + LegalVTSize - 1) / LegalVTSize;
4371 
4372   // Get the cost of one memory operation.
4373   auto *SingleMemOpTy =
4374       VectorType::get(cast<VectorType>(VecTy)->getElementType(),
4375                       LegalVT.getVectorNumElements());
4376   unsigned MemOpCost = getMemoryOpCost(Opcode, SingleMemOpTy,
4377                                        MaybeAlign(Alignment), AddressSpace,
4378                                        CostKind);
4379 
4380   unsigned VF = cast<VectorType>(VecTy)->getNumElements() / Factor;
4381   MVT VT = MVT::getVectorVT(MVT::getVT(VecTy->getScalarType()), VF);
4382 
4383   if (Opcode == Instruction::Load) {
4384     // The tables (AVX512InterleavedLoadTbl and AVX512InterleavedStoreTbl)
4385     // contain the cost of the optimized shuffle sequence that the
4386     // X86InterleavedAccess pass will generate.
4387     // The cost of loads and stores are computed separately from the table.
4388 
4389     // X86InterleavedAccess support only the following interleaved-access group.
4390     static const CostTblEntry AVX512InterleavedLoadTbl[] = {
4391         {3, MVT::v16i8, 12}, //(load 48i8 and) deinterleave into 3 x 16i8
4392         {3, MVT::v32i8, 14}, //(load 96i8 and) deinterleave into 3 x 32i8
4393         {3, MVT::v64i8, 22}, //(load 96i8 and) deinterleave into 3 x 32i8
4394     };
4395 
4396     if (const auto *Entry =
4397             CostTableLookup(AVX512InterleavedLoadTbl, Factor, VT))
4398       return NumOfMemOps * MemOpCost + Entry->Cost;
4399     //If an entry does not exist, fallback to the default implementation.
4400 
4401     // Kind of shuffle depends on number of loaded values.
4402     // If we load the entire data in one register, we can use a 1-src shuffle.
4403     // Otherwise, we'll merge 2 sources in each operation.
4404     TTI::ShuffleKind ShuffleKind =
4405         (NumOfMemOps > 1) ? TTI::SK_PermuteTwoSrc : TTI::SK_PermuteSingleSrc;
4406 
4407     unsigned ShuffleCost =
4408         getShuffleCost(ShuffleKind, SingleMemOpTy, 0, nullptr);
4409 
4410     unsigned NumOfLoadsInInterleaveGrp =
4411         Indices.size() ? Indices.size() : Factor;
4412     auto *ResultTy = FixedVectorType::get(
4413         cast<VectorType>(VecTy)->getElementType(),
4414         cast<VectorType>(VecTy)->getNumElements() / Factor);
4415     unsigned NumOfResults =
4416         getTLI()->getTypeLegalizationCost(DL, ResultTy).first *
4417         NumOfLoadsInInterleaveGrp;
4418 
4419     // About a half of the loads may be folded in shuffles when we have only
4420     // one result. If we have more than one result, we do not fold loads at all.
4421     unsigned NumOfUnfoldedLoads =
4422         NumOfResults > 1 ? NumOfMemOps : NumOfMemOps / 2;
4423 
4424     // Get a number of shuffle operations per result.
4425     unsigned NumOfShufflesPerResult =
4426         std::max((unsigned)1, (unsigned)(NumOfMemOps - 1));
4427 
4428     // The SK_MergeTwoSrc shuffle clobbers one of src operands.
4429     // When we have more than one destination, we need additional instructions
4430     // to keep sources.
4431     unsigned NumOfMoves = 0;
4432     if (NumOfResults > 1 && ShuffleKind == TTI::SK_PermuteTwoSrc)
4433       NumOfMoves = NumOfResults * NumOfShufflesPerResult / 2;
4434 
4435     int Cost = NumOfResults * NumOfShufflesPerResult * ShuffleCost +
4436                NumOfUnfoldedLoads * MemOpCost + NumOfMoves;
4437 
4438     return Cost;
4439   }
4440 
4441   // Store.
4442   assert(Opcode == Instruction::Store &&
4443          "Expected Store Instruction at this  point");
4444   // X86InterleavedAccess support only the following interleaved-access group.
4445   static const CostTblEntry AVX512InterleavedStoreTbl[] = {
4446       {3, MVT::v16i8, 12}, // interleave 3 x 16i8 into 48i8 (and store)
4447       {3, MVT::v32i8, 14}, // interleave 3 x 32i8 into 96i8 (and store)
4448       {3, MVT::v64i8, 26}, // interleave 3 x 64i8 into 96i8 (and store)
4449 
4450       {4, MVT::v8i8, 10},  // interleave 4 x 8i8  into 32i8  (and store)
4451       {4, MVT::v16i8, 11}, // interleave 4 x 16i8 into 64i8  (and store)
4452       {4, MVT::v32i8, 14}, // interleave 4 x 32i8 into 128i8 (and store)
4453       {4, MVT::v64i8, 24}  // interleave 4 x 32i8 into 256i8 (and store)
4454   };
4455 
4456   if (const auto *Entry =
4457           CostTableLookup(AVX512InterleavedStoreTbl, Factor, VT))
4458     return NumOfMemOps * MemOpCost + Entry->Cost;
4459   //If an entry does not exist, fallback to the default implementation.
4460 
4461   // There is no strided stores meanwhile. And store can't be folded in
4462   // shuffle.
4463   unsigned NumOfSources = Factor; // The number of values to be merged.
4464   unsigned ShuffleCost =
4465       getShuffleCost(TTI::SK_PermuteTwoSrc, SingleMemOpTy, 0, nullptr);
4466   unsigned NumOfShufflesPerStore = NumOfSources - 1;
4467 
4468   // The SK_MergeTwoSrc shuffle clobbers one of src operands.
4469   // We need additional instructions to keep sources.
4470   unsigned NumOfMoves = NumOfMemOps * NumOfShufflesPerStore / 2;
4471   int Cost = NumOfMemOps * (MemOpCost + NumOfShufflesPerStore * ShuffleCost) +
4472              NumOfMoves;
4473   return Cost;
4474 }
4475 
4476 int X86TTIImpl::getInterleavedMemoryOpCost(unsigned Opcode, Type *VecTy,
4477                                            unsigned Factor,
4478                                            ArrayRef<unsigned> Indices,
4479                                            unsigned Alignment,
4480                                            unsigned AddressSpace,
4481                                            TTI::TargetCostKind CostKind,
4482                                            bool UseMaskForCond,
4483                                            bool UseMaskForGaps) {
4484   auto isSupportedOnAVX512 = [](Type *VecTy, bool HasBW) {
4485     Type *EltTy = cast<VectorType>(VecTy)->getElementType();
4486     if (EltTy->isFloatTy() || EltTy->isDoubleTy() || EltTy->isIntegerTy(64) ||
4487         EltTy->isIntegerTy(32) || EltTy->isPointerTy())
4488       return true;
4489     if (EltTy->isIntegerTy(16) || EltTy->isIntegerTy(8))
4490       return HasBW;
4491     return false;
4492   };
4493   if (ST->hasAVX512() && isSupportedOnAVX512(VecTy, ST->hasBWI()))
4494     return getInterleavedMemoryOpCostAVX512(Opcode, VecTy, Factor, Indices,
4495                                             Alignment, AddressSpace, CostKind,
4496                                             UseMaskForCond, UseMaskForGaps);
4497   if (ST->hasAVX2())
4498     return getInterleavedMemoryOpCostAVX2(Opcode, VecTy, Factor, Indices,
4499                                           Alignment, AddressSpace, CostKind,
4500                                           UseMaskForCond, UseMaskForGaps);
4501 
4502   return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices,
4503                                            Alignment, AddressSpace, CostKind,
4504                                            UseMaskForCond, UseMaskForGaps);
4505 }
4506