1 //===-- X86TargetTransformInfo.cpp - X86 specific TTI pass ----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 /// \file 10 /// This file implements a TargetTransformInfo analysis pass specific to the 11 /// X86 target machine. It uses the target's detailed information to provide 12 /// more precise answers to certain TTI queries, while letting the target 13 /// independent and default TTI implementations handle the rest. 14 /// 15 //===----------------------------------------------------------------------===// 16 17 #include "X86TargetTransformInfo.h" 18 #include "llvm/Analysis/TargetTransformInfo.h" 19 #include "llvm/CodeGen/BasicTTIImpl.h" 20 #include "llvm/IR/IntrinsicInst.h" 21 #include "llvm/Support/Debug.h" 22 #include "llvm/Target/CostTable.h" 23 #include "llvm/Target/TargetLowering.h" 24 using namespace llvm; 25 26 #define DEBUG_TYPE "x86tti" 27 28 //===----------------------------------------------------------------------===// 29 // 30 // X86 cost model. 31 // 32 //===----------------------------------------------------------------------===// 33 34 TargetTransformInfo::PopcntSupportKind 35 X86TTIImpl::getPopcntSupport(unsigned TyWidth) { 36 assert(isPowerOf2_32(TyWidth) && "Ty width must be power of 2"); 37 // TODO: Currently the __builtin_popcount() implementation using SSE3 38 // instructions is inefficient. Once the problem is fixed, we should 39 // call ST->hasSSE3() instead of ST->hasPOPCNT(). 40 return ST->hasPOPCNT() ? TTI::PSK_FastHardware : TTI::PSK_Software; 41 } 42 43 unsigned X86TTIImpl::getNumberOfRegisters(bool Vector) { 44 if (Vector && !ST->hasSSE1()) 45 return 0; 46 47 if (ST->is64Bit()) { 48 if (Vector && ST->hasAVX512()) 49 return 32; 50 return 16; 51 } 52 return 8; 53 } 54 55 unsigned X86TTIImpl::getRegisterBitWidth(bool Vector) { 56 if (Vector) { 57 if (ST->hasAVX512()) return 512; 58 if (ST->hasAVX()) return 256; 59 if (ST->hasSSE1()) return 128; 60 return 0; 61 } 62 63 if (ST->is64Bit()) 64 return 64; 65 return 32; 66 67 } 68 69 unsigned X86TTIImpl::getMaxInterleaveFactor(unsigned VF) { 70 // If the loop will not be vectorized, don't interleave the loop. 71 // Let regular unroll to unroll the loop, which saves the overflow 72 // check and memory check cost. 73 if (VF == 1) 74 return 1; 75 76 if (ST->isAtom()) 77 return 1; 78 79 // Sandybridge and Haswell have multiple execution ports and pipelined 80 // vector units. 81 if (ST->hasAVX()) 82 return 4; 83 84 return 2; 85 } 86 87 unsigned X86TTIImpl::getArithmeticInstrCost( 88 unsigned Opcode, Type *Ty, TTI::OperandValueKind Op1Info, 89 TTI::OperandValueKind Op2Info, TTI::OperandValueProperties Opd1PropInfo, 90 TTI::OperandValueProperties Opd2PropInfo) { 91 // Legalize the type. 92 std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(DL, Ty); 93 94 int ISD = TLI->InstructionOpcodeToISD(Opcode); 95 assert(ISD && "Invalid opcode"); 96 97 if (ISD == ISD::SDIV && 98 Op2Info == TargetTransformInfo::OK_UniformConstantValue && 99 Opd2PropInfo == TargetTransformInfo::OP_PowerOf2) { 100 // On X86, vector signed division by constants power-of-two are 101 // normally expanded to the sequence SRA + SRL + ADD + SRA. 102 // The OperandValue properties many not be same as that of previous 103 // operation;conservatively assume OP_None. 104 unsigned Cost = 105 2 * getArithmeticInstrCost(Instruction::AShr, Ty, Op1Info, Op2Info, 106 TargetTransformInfo::OP_None, 107 TargetTransformInfo::OP_None); 108 Cost += getArithmeticInstrCost(Instruction::LShr, Ty, Op1Info, Op2Info, 109 TargetTransformInfo::OP_None, 110 TargetTransformInfo::OP_None); 111 Cost += getArithmeticInstrCost(Instruction::Add, Ty, Op1Info, Op2Info, 112 TargetTransformInfo::OP_None, 113 TargetTransformInfo::OP_None); 114 115 return Cost; 116 } 117 118 static const CostTblEntry<MVT::SimpleValueType> 119 AVX2UniformConstCostTable[] = { 120 { ISD::SRA, MVT::v4i64, 4 }, // 2 x psrad + shuffle. 121 122 { ISD::SDIV, MVT::v16i16, 6 }, // vpmulhw sequence 123 { ISD::UDIV, MVT::v16i16, 6 }, // vpmulhuw sequence 124 { ISD::SDIV, MVT::v8i32, 15 }, // vpmuldq sequence 125 { ISD::UDIV, MVT::v8i32, 15 }, // vpmuludq sequence 126 }; 127 128 if (Op2Info == TargetTransformInfo::OK_UniformConstantValue && 129 ST->hasAVX2()) { 130 int Idx = CostTableLookup(AVX2UniformConstCostTable, ISD, LT.second); 131 if (Idx != -1) 132 return LT.first * AVX2UniformConstCostTable[Idx].Cost; 133 } 134 135 static const CostTblEntry<MVT::SimpleValueType> AVX512CostTable[] = { 136 { ISD::SHL, MVT::v16i32, 1 }, 137 { ISD::SRL, MVT::v16i32, 1 }, 138 { ISD::SRA, MVT::v16i32, 1 }, 139 { ISD::SHL, MVT::v8i64, 1 }, 140 { ISD::SRL, MVT::v8i64, 1 }, 141 { ISD::SRA, MVT::v8i64, 1 }, 142 }; 143 144 static const CostTblEntry<MVT::SimpleValueType> AVX2CostTable[] = { 145 // Shifts on v4i64/v8i32 on AVX2 is legal even though we declare to 146 // customize them to detect the cases where shift amount is a scalar one. 147 { ISD::SHL, MVT::v4i32, 1 }, 148 { ISD::SRL, MVT::v4i32, 1 }, 149 { ISD::SRA, MVT::v4i32, 1 }, 150 { ISD::SHL, MVT::v8i32, 1 }, 151 { ISD::SRL, MVT::v8i32, 1 }, 152 { ISD::SRA, MVT::v8i32, 1 }, 153 { ISD::SHL, MVT::v2i64, 1 }, 154 { ISD::SRL, MVT::v2i64, 1 }, 155 { ISD::SHL, MVT::v4i64, 1 }, 156 { ISD::SRL, MVT::v4i64, 1 }, 157 158 { ISD::SHL, MVT::v32i8, 11 }, // vpblendvb sequence. 159 { ISD::SHL, MVT::v16i16, 10 }, // extend/vpsrlvd/pack sequence. 160 161 { ISD::SRL, MVT::v32i8, 11 }, // vpblendvb sequence. 162 { ISD::SRL, MVT::v16i16, 10 }, // extend/vpsrlvd/pack sequence. 163 164 { ISD::SRA, MVT::v32i8, 24 }, // vpblendvb sequence. 165 { ISD::SRA, MVT::v16i16, 10 }, // extend/vpsravd/pack sequence. 166 { ISD::SRA, MVT::v4i64, 4*10 }, // Scalarized. 167 168 // Vectorizing division is a bad idea. See the SSE2 table for more comments. 169 { ISD::SDIV, MVT::v32i8, 32*20 }, 170 { ISD::SDIV, MVT::v16i16, 16*20 }, 171 { ISD::SDIV, MVT::v8i32, 8*20 }, 172 { ISD::SDIV, MVT::v4i64, 4*20 }, 173 { ISD::UDIV, MVT::v32i8, 32*20 }, 174 { ISD::UDIV, MVT::v16i16, 16*20 }, 175 { ISD::UDIV, MVT::v8i32, 8*20 }, 176 { ISD::UDIV, MVT::v4i64, 4*20 }, 177 }; 178 179 if (ST->hasAVX512()) { 180 int Idx = CostTableLookup(AVX512CostTable, ISD, LT.second); 181 if (Idx != -1) 182 return LT.first * AVX512CostTable[Idx].Cost; 183 } 184 // Look for AVX2 lowering tricks. 185 if (ST->hasAVX2()) { 186 if (ISD == ISD::SHL && LT.second == MVT::v16i16 && 187 (Op2Info == TargetTransformInfo::OK_UniformConstantValue || 188 Op2Info == TargetTransformInfo::OK_NonUniformConstantValue)) 189 // On AVX2, a packed v16i16 shift left by a constant build_vector 190 // is lowered into a vector multiply (vpmullw). 191 return LT.first; 192 193 int Idx = CostTableLookup(AVX2CostTable, ISD, LT.second); 194 if (Idx != -1) 195 return LT.first * AVX2CostTable[Idx].Cost; 196 } 197 198 static const CostTblEntry<MVT::SimpleValueType> 199 SSE2UniformConstCostTable[] = { 200 // We don't correctly identify costs of casts because they are marked as 201 // custom. 202 // Constant splats are cheaper for the following instructions. 203 { ISD::SHL, MVT::v16i8, 1 }, // psllw. 204 { ISD::SHL, MVT::v8i16, 1 }, // psllw. 205 { ISD::SHL, MVT::v4i32, 1 }, // pslld 206 { ISD::SHL, MVT::v2i64, 1 }, // psllq. 207 208 { ISD::SRL, MVT::v16i8, 1 }, // psrlw. 209 { ISD::SRL, MVT::v8i16, 1 }, // psrlw. 210 { ISD::SRL, MVT::v4i32, 1 }, // psrld. 211 { ISD::SRL, MVT::v2i64, 1 }, // psrlq. 212 213 { ISD::SRA, MVT::v16i8, 4 }, // psrlw, pand, pxor, psubb. 214 { ISD::SRA, MVT::v8i16, 1 }, // psraw. 215 { ISD::SRA, MVT::v4i32, 1 }, // psrad. 216 { ISD::SRA, MVT::v2i64, 4 }, // 2 x psrad + shuffle. 217 218 { ISD::SDIV, MVT::v8i16, 6 }, // pmulhw sequence 219 { ISD::UDIV, MVT::v8i16, 6 }, // pmulhuw sequence 220 { ISD::SDIV, MVT::v4i32, 19 }, // pmuludq sequence 221 { ISD::UDIV, MVT::v4i32, 15 }, // pmuludq sequence 222 }; 223 224 if (Op2Info == TargetTransformInfo::OK_UniformConstantValue && 225 ST->hasSSE2()) { 226 // pmuldq sequence. 227 if (ISD == ISD::SDIV && LT.second == MVT::v4i32 && ST->hasSSE41()) 228 return LT.first * 15; 229 230 int Idx = CostTableLookup(SSE2UniformConstCostTable, ISD, LT.second); 231 if (Idx != -1) 232 return LT.first * SSE2UniformConstCostTable[Idx].Cost; 233 } 234 235 if (ISD == ISD::SHL && 236 Op2Info == TargetTransformInfo::OK_NonUniformConstantValue) { 237 EVT VT = LT.second; 238 if ((VT == MVT::v8i16 && ST->hasSSE2()) || 239 (VT == MVT::v4i32 && ST->hasSSE41())) 240 // Vector shift left by non uniform constant can be lowered 241 // into vector multiply (pmullw/pmulld). 242 return LT.first; 243 if (VT == MVT::v4i32 && ST->hasSSE2()) 244 // A vector shift left by non uniform constant is converted 245 // into a vector multiply; the new multiply is eventually 246 // lowered into a sequence of shuffles and 2 x pmuludq. 247 ISD = ISD::MUL; 248 } 249 250 static const CostTblEntry<MVT::SimpleValueType> SSE2CostTable[] = { 251 // We don't correctly identify costs of casts because they are marked as 252 // custom. 253 // For some cases, where the shift amount is a scalar we would be able 254 // to generate better code. Unfortunately, when this is the case the value 255 // (the splat) will get hoisted out of the loop, thereby making it invisible 256 // to ISel. The cost model must return worst case assumptions because it is 257 // used for vectorization and we don't want to make vectorized code worse 258 // than scalar code. 259 { ISD::SHL, MVT::v16i8, 26 }, // cmpgtb sequence. 260 { ISD::SHL, MVT::v8i16, 32 }, // cmpgtb sequence. 261 { ISD::SHL, MVT::v4i32, 2*5 }, // We optimized this using mul. 262 { ISD::SHL, MVT::v2i64, 2*10 }, // Scalarized. 263 { ISD::SHL, MVT::v4i64, 4*10 }, // Scalarized. 264 265 { ISD::SRL, MVT::v16i8, 26 }, // cmpgtb sequence. 266 { ISD::SRL, MVT::v8i16, 32 }, // cmpgtb sequence. 267 { ISD::SRL, MVT::v4i32, 4*10 }, // Scalarized. 268 { ISD::SRL, MVT::v2i64, 2*10 }, // Scalarized. 269 270 { ISD::SRA, MVT::v16i8, 54 }, // unpacked cmpgtb sequence. 271 { ISD::SRA, MVT::v8i16, 32 }, // cmpgtb sequence. 272 { ISD::SRA, MVT::v4i32, 4*10 }, // Scalarized. 273 { ISD::SRA, MVT::v2i64, 2*10 }, // Scalarized. 274 275 // It is not a good idea to vectorize division. We have to scalarize it and 276 // in the process we will often end up having to spilling regular 277 // registers. The overhead of division is going to dominate most kernels 278 // anyways so try hard to prevent vectorization of division - it is 279 // generally a bad idea. Assume somewhat arbitrarily that we have to be able 280 // to hide "20 cycles" for each lane. 281 { ISD::SDIV, MVT::v16i8, 16*20 }, 282 { ISD::SDIV, MVT::v8i16, 8*20 }, 283 { ISD::SDIV, MVT::v4i32, 4*20 }, 284 { ISD::SDIV, MVT::v2i64, 2*20 }, 285 { ISD::UDIV, MVT::v16i8, 16*20 }, 286 { ISD::UDIV, MVT::v8i16, 8*20 }, 287 { ISD::UDIV, MVT::v4i32, 4*20 }, 288 { ISD::UDIV, MVT::v2i64, 2*20 }, 289 }; 290 291 if (ST->hasSSE2()) { 292 int Idx = CostTableLookup(SSE2CostTable, ISD, LT.second); 293 if (Idx != -1) 294 return LT.first * SSE2CostTable[Idx].Cost; 295 } 296 297 static const CostTblEntry<MVT::SimpleValueType> AVX1CostTable[] = { 298 // We don't have to scalarize unsupported ops. We can issue two half-sized 299 // operations and we only need to extract the upper YMM half. 300 // Two ops + 1 extract + 1 insert = 4. 301 { ISD::MUL, MVT::v16i16, 4 }, 302 { ISD::MUL, MVT::v8i32, 4 }, 303 { ISD::SUB, MVT::v8i32, 4 }, 304 { ISD::ADD, MVT::v8i32, 4 }, 305 { ISD::SUB, MVT::v4i64, 4 }, 306 { ISD::ADD, MVT::v4i64, 4 }, 307 // A v4i64 multiply is custom lowered as two split v2i64 vectors that then 308 // are lowered as a series of long multiplies(3), shifts(4) and adds(2) 309 // Because we believe v4i64 to be a legal type, we must also include the 310 // split factor of two in the cost table. Therefore, the cost here is 18 311 // instead of 9. 312 { ISD::MUL, MVT::v4i64, 18 }, 313 }; 314 315 // Look for AVX1 lowering tricks. 316 if (ST->hasAVX() && !ST->hasAVX2()) { 317 EVT VT = LT.second; 318 319 // v16i16 and v8i32 shifts by non-uniform constants are lowered into a 320 // sequence of extract + two vector multiply + insert. 321 if (ISD == ISD::SHL && (VT == MVT::v8i32 || VT == MVT::v16i16) && 322 Op2Info == TargetTransformInfo::OK_NonUniformConstantValue) 323 ISD = ISD::MUL; 324 325 int Idx = CostTableLookup(AVX1CostTable, ISD, VT); 326 if (Idx != -1) 327 return LT.first * AVX1CostTable[Idx].Cost; 328 } 329 330 // Custom lowering of vectors. 331 static const CostTblEntry<MVT::SimpleValueType> CustomLowered[] = { 332 // A v2i64/v4i64 and multiply is custom lowered as a series of long 333 // multiplies(3), shifts(4) and adds(2). 334 { ISD::MUL, MVT::v2i64, 9 }, 335 { ISD::MUL, MVT::v4i64, 9 }, 336 }; 337 int Idx = CostTableLookup(CustomLowered, ISD, LT.second); 338 if (Idx != -1) 339 return LT.first * CustomLowered[Idx].Cost; 340 341 // Special lowering of v4i32 mul on sse2, sse3: Lower v4i32 mul as 2x shuffle, 342 // 2x pmuludq, 2x shuffle. 343 if (ISD == ISD::MUL && LT.second == MVT::v4i32 && ST->hasSSE2() && 344 !ST->hasSSE41()) 345 return LT.first * 6; 346 347 // Fallback to the default implementation. 348 return BaseT::getArithmeticInstrCost(Opcode, Ty, Op1Info, Op2Info); 349 } 350 351 unsigned X86TTIImpl::getShuffleCost(TTI::ShuffleKind Kind, Type *Tp, int Index, 352 Type *SubTp) { 353 // We only estimate the cost of reverse and alternate shuffles. 354 if (Kind != TTI::SK_Reverse && Kind != TTI::SK_Alternate) 355 return BaseT::getShuffleCost(Kind, Tp, Index, SubTp); 356 357 if (Kind == TTI::SK_Reverse) { 358 std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(DL, Tp); 359 unsigned Cost = 1; 360 if (LT.second.getSizeInBits() > 128) 361 Cost = 3; // Extract + insert + copy. 362 363 // Multiple by the number of parts. 364 return Cost * LT.first; 365 } 366 367 if (Kind == TTI::SK_Alternate) { 368 // 64-bit packed float vectors (v2f32) are widened to type v4f32. 369 // 64-bit packed integer vectors (v2i32) are promoted to type v2i64. 370 std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(DL, Tp); 371 372 // The backend knows how to generate a single VEX.256 version of 373 // instruction VPBLENDW if the target supports AVX2. 374 if (ST->hasAVX2() && LT.second == MVT::v16i16) 375 return LT.first; 376 377 static const CostTblEntry<MVT::SimpleValueType> AVXAltShuffleTbl[] = { 378 {ISD::VECTOR_SHUFFLE, MVT::v4i64, 1}, // vblendpd 379 {ISD::VECTOR_SHUFFLE, MVT::v4f64, 1}, // vblendpd 380 381 {ISD::VECTOR_SHUFFLE, MVT::v8i32, 1}, // vblendps 382 {ISD::VECTOR_SHUFFLE, MVT::v8f32, 1}, // vblendps 383 384 // This shuffle is custom lowered into a sequence of: 385 // 2x vextractf128 , 2x vpblendw , 1x vinsertf128 386 {ISD::VECTOR_SHUFFLE, MVT::v16i16, 5}, 387 388 // This shuffle is custom lowered into a long sequence of: 389 // 2x vextractf128 , 4x vpshufb , 2x vpor , 1x vinsertf128 390 {ISD::VECTOR_SHUFFLE, MVT::v32i8, 9} 391 }; 392 393 if (ST->hasAVX()) { 394 int Idx = CostTableLookup(AVXAltShuffleTbl, ISD::VECTOR_SHUFFLE, LT.second); 395 if (Idx != -1) 396 return LT.first * AVXAltShuffleTbl[Idx].Cost; 397 } 398 399 static const CostTblEntry<MVT::SimpleValueType> SSE41AltShuffleTbl[] = { 400 // These are lowered into movsd. 401 {ISD::VECTOR_SHUFFLE, MVT::v2i64, 1}, 402 {ISD::VECTOR_SHUFFLE, MVT::v2f64, 1}, 403 404 // packed float vectors with four elements are lowered into BLENDI dag 405 // nodes. A v4i32/v4f32 BLENDI generates a single 'blendps'/'blendpd'. 406 {ISD::VECTOR_SHUFFLE, MVT::v4i32, 1}, 407 {ISD::VECTOR_SHUFFLE, MVT::v4f32, 1}, 408 409 // This shuffle generates a single pshufw. 410 {ISD::VECTOR_SHUFFLE, MVT::v8i16, 1}, 411 412 // There is no instruction that matches a v16i8 alternate shuffle. 413 // The backend will expand it into the sequence 'pshufb + pshufb + or'. 414 {ISD::VECTOR_SHUFFLE, MVT::v16i8, 3} 415 }; 416 417 if (ST->hasSSE41()) { 418 int Idx = CostTableLookup(SSE41AltShuffleTbl, ISD::VECTOR_SHUFFLE, LT.second); 419 if (Idx != -1) 420 return LT.first * SSE41AltShuffleTbl[Idx].Cost; 421 } 422 423 static const CostTblEntry<MVT::SimpleValueType> SSSE3AltShuffleTbl[] = { 424 {ISD::VECTOR_SHUFFLE, MVT::v2i64, 1}, // movsd 425 {ISD::VECTOR_SHUFFLE, MVT::v2f64, 1}, // movsd 426 427 // SSE3 doesn't have 'blendps'. The following shuffles are expanded into 428 // the sequence 'shufps + pshufd' 429 {ISD::VECTOR_SHUFFLE, MVT::v4i32, 2}, 430 {ISD::VECTOR_SHUFFLE, MVT::v4f32, 2}, 431 432 {ISD::VECTOR_SHUFFLE, MVT::v8i16, 3}, // pshufb + pshufb + or 433 {ISD::VECTOR_SHUFFLE, MVT::v16i8, 3} // pshufb + pshufb + or 434 }; 435 436 if (ST->hasSSSE3()) { 437 int Idx = CostTableLookup(SSSE3AltShuffleTbl, ISD::VECTOR_SHUFFLE, LT.second); 438 if (Idx != -1) 439 return LT.first * SSSE3AltShuffleTbl[Idx].Cost; 440 } 441 442 static const CostTblEntry<MVT::SimpleValueType> SSEAltShuffleTbl[] = { 443 {ISD::VECTOR_SHUFFLE, MVT::v2i64, 1}, // movsd 444 {ISD::VECTOR_SHUFFLE, MVT::v2f64, 1}, // movsd 445 446 {ISD::VECTOR_SHUFFLE, MVT::v4i32, 2}, // shufps + pshufd 447 {ISD::VECTOR_SHUFFLE, MVT::v4f32, 2}, // shufps + pshufd 448 449 // This is expanded into a long sequence of four extract + four insert. 450 {ISD::VECTOR_SHUFFLE, MVT::v8i16, 8}, // 4 x pextrw + 4 pinsrw. 451 452 // 8 x (pinsrw + pextrw + and + movb + movzb + or) 453 {ISD::VECTOR_SHUFFLE, MVT::v16i8, 48} 454 }; 455 456 // Fall-back (SSE3 and SSE2). 457 int Idx = CostTableLookup(SSEAltShuffleTbl, ISD::VECTOR_SHUFFLE, LT.second); 458 if (Idx != -1) 459 return LT.first * SSEAltShuffleTbl[Idx].Cost; 460 return BaseT::getShuffleCost(Kind, Tp, Index, SubTp); 461 } 462 463 return BaseT::getShuffleCost(Kind, Tp, Index, SubTp); 464 } 465 466 unsigned X86TTIImpl::getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src) { 467 int ISD = TLI->InstructionOpcodeToISD(Opcode); 468 assert(ISD && "Invalid opcode"); 469 470 std::pair<unsigned, MVT> LTSrc = TLI->getTypeLegalizationCost(DL, Src); 471 std::pair<unsigned, MVT> LTDest = TLI->getTypeLegalizationCost(DL, Dst); 472 473 static const TypeConversionCostTblEntry<MVT::SimpleValueType> 474 SSE2ConvTbl[] = { 475 // These are somewhat magic numbers justified by looking at the output of 476 // Intel's IACA, running some kernels and making sure when we take 477 // legalization into account the throughput will be overestimated. 478 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i64, 2*10 }, 479 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v4i32, 4*10 }, 480 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v8i16, 8*10 }, 481 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v16i8, 16*10 }, 482 { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i64, 2*10 }, 483 { ISD::SINT_TO_FP, MVT::v2f64, MVT::v4i32, 4*10 }, 484 { ISD::SINT_TO_FP, MVT::v2f64, MVT::v8i16, 8*10 }, 485 { ISD::SINT_TO_FP, MVT::v2f64, MVT::v16i8, 16*10 }, 486 // There are faster sequences for float conversions. 487 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v2i64, 15 }, 488 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i32, 8 }, 489 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v8i16, 15 }, 490 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v16i8, 8 }, 491 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v2i64, 15 }, 492 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i32, 15 }, 493 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v8i16, 15 }, 494 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v16i8, 8 }, 495 }; 496 497 if (ST->hasSSE2() && !ST->hasAVX()) { 498 int Idx = 499 ConvertCostTableLookup(SSE2ConvTbl, ISD, LTDest.second, LTSrc.second); 500 if (Idx != -1) 501 return LTSrc.first * SSE2ConvTbl[Idx].Cost; 502 } 503 504 static const TypeConversionCostTblEntry<MVT::SimpleValueType> 505 AVX512ConversionTbl[] = { 506 { ISD::FP_EXTEND, MVT::v8f64, MVT::v8f32, 1 }, 507 { ISD::FP_EXTEND, MVT::v8f64, MVT::v16f32, 3 }, 508 { ISD::FP_ROUND, MVT::v8f32, MVT::v8f64, 1 }, 509 { ISD::FP_ROUND, MVT::v16f32, MVT::v8f64, 3 }, 510 511 { ISD::TRUNCATE, MVT::v16i8, MVT::v16i32, 1 }, 512 { ISD::TRUNCATE, MVT::v16i16, MVT::v16i32, 1 }, 513 { ISD::TRUNCATE, MVT::v8i16, MVT::v8i64, 1 }, 514 { ISD::TRUNCATE, MVT::v8i32, MVT::v8i64, 1 }, 515 { ISD::TRUNCATE, MVT::v16i32, MVT::v8i64, 4 }, 516 517 // v16i1 -> v16i32 - load + broadcast 518 { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i1, 2 }, 519 { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i1, 2 }, 520 521 { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i8, 1 }, 522 { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i8, 1 }, 523 { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i16, 1 }, 524 { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i16, 1 }, 525 { ISD::SIGN_EXTEND, MVT::v8i64, MVT::v16i32, 3 }, 526 { ISD::ZERO_EXTEND, MVT::v8i64, MVT::v16i32, 3 }, 527 528 { ISD::SINT_TO_FP, MVT::v16f32, MVT::v16i1, 3 }, 529 { ISD::SINT_TO_FP, MVT::v16f32, MVT::v16i8, 2 }, 530 { ISD::SINT_TO_FP, MVT::v16f32, MVT::v16i16, 2 }, 531 { ISD::SINT_TO_FP, MVT::v16f32, MVT::v16i32, 1 }, 532 { ISD::SINT_TO_FP, MVT::v8f64, MVT::v8i1, 4 }, 533 { ISD::SINT_TO_FP, MVT::v8f64, MVT::v8i16, 2 }, 534 { ISD::SINT_TO_FP, MVT::v8f64, MVT::v8i32, 1 }, 535 }; 536 537 if (ST->hasAVX512()) { 538 int Idx = ConvertCostTableLookup(AVX512ConversionTbl, ISD, LTDest.second, 539 LTSrc.second); 540 if (Idx != -1) 541 return AVX512ConversionTbl[Idx].Cost; 542 } 543 EVT SrcTy = TLI->getValueType(DL, Src); 544 EVT DstTy = TLI->getValueType(DL, Dst); 545 546 // The function getSimpleVT only handles simple value types. 547 if (!SrcTy.isSimple() || !DstTy.isSimple()) 548 return BaseT::getCastInstrCost(Opcode, Dst, Src); 549 550 static const TypeConversionCostTblEntry<MVT::SimpleValueType> 551 AVX2ConversionTbl[] = { 552 { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i8, 1 }, 553 { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i8, 1 }, 554 { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i1, 3 }, 555 { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i1, 3 }, 556 { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i8, 3 }, 557 { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i8, 3 }, 558 { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i16, 1 }, 559 { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i16, 1 }, 560 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i1, 3 }, 561 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i1, 3 }, 562 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i8, 3 }, 563 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i8, 3 }, 564 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i16, 3 }, 565 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i16, 3 }, 566 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i32, 1 }, 567 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i32, 1 }, 568 569 { ISD::TRUNCATE, MVT::v4i8, MVT::v4i64, 2 }, 570 { ISD::TRUNCATE, MVT::v4i16, MVT::v4i64, 2 }, 571 { ISD::TRUNCATE, MVT::v4i32, MVT::v4i64, 2 }, 572 { ISD::TRUNCATE, MVT::v8i8, MVT::v8i32, 2 }, 573 { ISD::TRUNCATE, MVT::v8i16, MVT::v8i32, 2 }, 574 { ISD::TRUNCATE, MVT::v8i32, MVT::v8i64, 4 }, 575 576 { ISD::FP_EXTEND, MVT::v8f64, MVT::v8f32, 3 }, 577 { ISD::FP_ROUND, MVT::v8f32, MVT::v8f64, 3 }, 578 579 { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i32, 8 }, 580 }; 581 582 static const TypeConversionCostTblEntry<MVT::SimpleValueType> 583 AVXConversionTbl[] = { 584 { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i8, 4 }, 585 { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i8, 4 }, 586 { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i1, 7 }, 587 { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i1, 4 }, 588 { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i8, 7 }, 589 { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i8, 4 }, 590 { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i16, 4 }, 591 { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i16, 4 }, 592 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i1, 6 }, 593 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i1, 4 }, 594 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i8, 6 }, 595 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i8, 4 }, 596 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i16, 6 }, 597 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i16, 3 }, 598 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i32, 4 }, 599 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i32, 4 }, 600 601 { ISD::TRUNCATE, MVT::v4i8, MVT::v4i64, 4 }, 602 { ISD::TRUNCATE, MVT::v4i16, MVT::v4i64, 4 }, 603 { ISD::TRUNCATE, MVT::v4i32, MVT::v4i64, 4 }, 604 { ISD::TRUNCATE, MVT::v8i8, MVT::v8i32, 4 }, 605 { ISD::TRUNCATE, MVT::v8i16, MVT::v8i32, 5 }, 606 { ISD::TRUNCATE, MVT::v16i8, MVT::v16i16, 4 }, 607 { ISD::TRUNCATE, MVT::v8i32, MVT::v8i64, 9 }, 608 609 { ISD::SINT_TO_FP, MVT::v8f32, MVT::v8i1, 8 }, 610 { ISD::SINT_TO_FP, MVT::v8f32, MVT::v8i8, 8 }, 611 { ISD::SINT_TO_FP, MVT::v8f32, MVT::v8i16, 5 }, 612 { ISD::SINT_TO_FP, MVT::v8f32, MVT::v8i32, 1 }, 613 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i1, 3 }, 614 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i8, 3 }, 615 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i16, 3 }, 616 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i32, 1 }, 617 { ISD::SINT_TO_FP, MVT::v4f64, MVT::v4i1, 3 }, 618 { ISD::SINT_TO_FP, MVT::v4f64, MVT::v4i8, 3 }, 619 { ISD::SINT_TO_FP, MVT::v4f64, MVT::v4i16, 3 }, 620 { ISD::SINT_TO_FP, MVT::v4f64, MVT::v4i32, 1 }, 621 622 { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i1, 6 }, 623 { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i8, 5 }, 624 { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i16, 5 }, 625 { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i32, 9 }, 626 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i1, 7 }, 627 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i8, 2 }, 628 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i16, 2 }, 629 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i32, 6 }, 630 { ISD::UINT_TO_FP, MVT::v4f64, MVT::v4i1, 7 }, 631 { ISD::UINT_TO_FP, MVT::v4f64, MVT::v4i8, 2 }, 632 { ISD::UINT_TO_FP, MVT::v4f64, MVT::v4i16, 2 }, 633 { ISD::UINT_TO_FP, MVT::v4f64, MVT::v4i32, 6 }, 634 // The generic code to compute the scalar overhead is currently broken. 635 // Workaround this limitation by estimating the scalarization overhead 636 // here. We have roughly 10 instructions per scalar element. 637 // Multiply that by the vector width. 638 // FIXME: remove that when PR19268 is fixed. 639 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i64, 2*10 }, 640 { ISD::UINT_TO_FP, MVT::v4f64, MVT::v4i64, 4*10 }, 641 642 { ISD::FP_TO_SINT, MVT::v8i8, MVT::v8f32, 7 }, 643 { ISD::FP_TO_SINT, MVT::v4i8, MVT::v4f32, 1 }, 644 // This node is expanded into scalarized operations but BasicTTI is overly 645 // optimistic estimating its cost. It computes 3 per element (one 646 // vector-extract, one scalar conversion and one vector-insert). The 647 // problem is that the inserts form a read-modify-write chain so latency 648 // should be factored in too. Inflating the cost per element by 1. 649 { ISD::FP_TO_UINT, MVT::v8i32, MVT::v8f32, 8*4 }, 650 { ISD::FP_TO_UINT, MVT::v4i32, MVT::v4f64, 4*4 }, 651 }; 652 653 if (ST->hasAVX2()) { 654 int Idx = ConvertCostTableLookup(AVX2ConversionTbl, ISD, 655 DstTy.getSimpleVT(), SrcTy.getSimpleVT()); 656 if (Idx != -1) 657 return AVX2ConversionTbl[Idx].Cost; 658 } 659 660 if (ST->hasAVX()) { 661 int Idx = ConvertCostTableLookup(AVXConversionTbl, ISD, DstTy.getSimpleVT(), 662 SrcTy.getSimpleVT()); 663 if (Idx != -1) 664 return AVXConversionTbl[Idx].Cost; 665 } 666 667 return BaseT::getCastInstrCost(Opcode, Dst, Src); 668 } 669 670 unsigned X86TTIImpl::getCmpSelInstrCost(unsigned Opcode, Type *ValTy, 671 Type *CondTy) { 672 // Legalize the type. 673 std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(DL, ValTy); 674 675 MVT MTy = LT.second; 676 677 int ISD = TLI->InstructionOpcodeToISD(Opcode); 678 assert(ISD && "Invalid opcode"); 679 680 static const CostTblEntry<MVT::SimpleValueType> SSE42CostTbl[] = { 681 { ISD::SETCC, MVT::v2f64, 1 }, 682 { ISD::SETCC, MVT::v4f32, 1 }, 683 { ISD::SETCC, MVT::v2i64, 1 }, 684 { ISD::SETCC, MVT::v4i32, 1 }, 685 { ISD::SETCC, MVT::v8i16, 1 }, 686 { ISD::SETCC, MVT::v16i8, 1 }, 687 }; 688 689 static const CostTblEntry<MVT::SimpleValueType> AVX1CostTbl[] = { 690 { ISD::SETCC, MVT::v4f64, 1 }, 691 { ISD::SETCC, MVT::v8f32, 1 }, 692 // AVX1 does not support 8-wide integer compare. 693 { ISD::SETCC, MVT::v4i64, 4 }, 694 { ISD::SETCC, MVT::v8i32, 4 }, 695 { ISD::SETCC, MVT::v16i16, 4 }, 696 { ISD::SETCC, MVT::v32i8, 4 }, 697 }; 698 699 static const CostTblEntry<MVT::SimpleValueType> AVX2CostTbl[] = { 700 { ISD::SETCC, MVT::v4i64, 1 }, 701 { ISD::SETCC, MVT::v8i32, 1 }, 702 { ISD::SETCC, MVT::v16i16, 1 }, 703 { ISD::SETCC, MVT::v32i8, 1 }, 704 }; 705 706 static const CostTblEntry<MVT::SimpleValueType> AVX512CostTbl[] = { 707 { ISD::SETCC, MVT::v8i64, 1 }, 708 { ISD::SETCC, MVT::v16i32, 1 }, 709 { ISD::SETCC, MVT::v8f64, 1 }, 710 { ISD::SETCC, MVT::v16f32, 1 }, 711 }; 712 713 if (ST->hasAVX512()) { 714 int Idx = CostTableLookup(AVX512CostTbl, ISD, MTy); 715 if (Idx != -1) 716 return LT.first * AVX512CostTbl[Idx].Cost; 717 } 718 719 if (ST->hasAVX2()) { 720 int Idx = CostTableLookup(AVX2CostTbl, ISD, MTy); 721 if (Idx != -1) 722 return LT.first * AVX2CostTbl[Idx].Cost; 723 } 724 725 if (ST->hasAVX()) { 726 int Idx = CostTableLookup(AVX1CostTbl, ISD, MTy); 727 if (Idx != -1) 728 return LT.first * AVX1CostTbl[Idx].Cost; 729 } 730 731 if (ST->hasSSE42()) { 732 int Idx = CostTableLookup(SSE42CostTbl, ISD, MTy); 733 if (Idx != -1) 734 return LT.first * SSE42CostTbl[Idx].Cost; 735 } 736 737 return BaseT::getCmpSelInstrCost(Opcode, ValTy, CondTy); 738 } 739 740 unsigned X86TTIImpl::getVectorInstrCost(unsigned Opcode, Type *Val, 741 unsigned Index) { 742 assert(Val->isVectorTy() && "This must be a vector type"); 743 744 if (Index != -1U) { 745 // Legalize the type. 746 std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(DL, Val); 747 748 // This type is legalized to a scalar type. 749 if (!LT.second.isVector()) 750 return 0; 751 752 // The type may be split. Normalize the index to the new type. 753 unsigned Width = LT.second.getVectorNumElements(); 754 Index = Index % Width; 755 756 // Floating point scalars are already located in index #0. 757 if (Val->getScalarType()->isFloatingPointTy() && Index == 0) 758 return 0; 759 } 760 761 return BaseT::getVectorInstrCost(Opcode, Val, Index); 762 } 763 764 unsigned X86TTIImpl::getScalarizationOverhead(Type *Ty, bool Insert, 765 bool Extract) { 766 assert (Ty->isVectorTy() && "Can only scalarize vectors"); 767 unsigned Cost = 0; 768 769 for (int i = 0, e = Ty->getVectorNumElements(); i < e; ++i) { 770 if (Insert) 771 Cost += getVectorInstrCost(Instruction::InsertElement, Ty, i); 772 if (Extract) 773 Cost += getVectorInstrCost(Instruction::ExtractElement, Ty, i); 774 } 775 776 return Cost; 777 } 778 779 unsigned X86TTIImpl::getMemoryOpCost(unsigned Opcode, Type *Src, 780 unsigned Alignment, 781 unsigned AddressSpace) { 782 // Handle non-power-of-two vectors such as <3 x float> 783 if (VectorType *VTy = dyn_cast<VectorType>(Src)) { 784 unsigned NumElem = VTy->getVectorNumElements(); 785 786 // Handle a few common cases: 787 // <3 x float> 788 if (NumElem == 3 && VTy->getScalarSizeInBits() == 32) 789 // Cost = 64 bit store + extract + 32 bit store. 790 return 3; 791 792 // <3 x double> 793 if (NumElem == 3 && VTy->getScalarSizeInBits() == 64) 794 // Cost = 128 bit store + unpack + 64 bit store. 795 return 3; 796 797 // Assume that all other non-power-of-two numbers are scalarized. 798 if (!isPowerOf2_32(NumElem)) { 799 unsigned Cost = BaseT::getMemoryOpCost(Opcode, VTy->getScalarType(), 800 Alignment, AddressSpace); 801 unsigned SplitCost = getScalarizationOverhead(Src, 802 Opcode == Instruction::Load, 803 Opcode==Instruction::Store); 804 return NumElem * Cost + SplitCost; 805 } 806 } 807 808 // Legalize the type. 809 std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(DL, Src); 810 assert((Opcode == Instruction::Load || Opcode == Instruction::Store) && 811 "Invalid Opcode"); 812 813 // Each load/store unit costs 1. 814 unsigned Cost = LT.first * 1; 815 816 // On Sandybridge 256bit load/stores are double pumped 817 // (but not on Haswell). 818 if (LT.second.getSizeInBits() > 128 && !ST->hasAVX2()) 819 Cost*=2; 820 821 return Cost; 822 } 823 824 unsigned X86TTIImpl::getMaskedMemoryOpCost(unsigned Opcode, Type *SrcTy, 825 unsigned Alignment, 826 unsigned AddressSpace) { 827 VectorType *SrcVTy = dyn_cast<VectorType>(SrcTy); 828 if (!SrcVTy) 829 // To calculate scalar take the regular cost, without mask 830 return getMemoryOpCost(Opcode, SrcTy, Alignment, AddressSpace); 831 832 unsigned NumElem = SrcVTy->getVectorNumElements(); 833 VectorType *MaskTy = 834 VectorType::get(Type::getInt8Ty(getGlobalContext()), NumElem); 835 if ((Opcode == Instruction::Load && !isLegalMaskedLoad(SrcVTy, 1)) || 836 (Opcode == Instruction::Store && !isLegalMaskedStore(SrcVTy, 1)) || 837 !isPowerOf2_32(NumElem)) { 838 // Scalarization 839 unsigned MaskSplitCost = getScalarizationOverhead(MaskTy, false, true); 840 unsigned ScalarCompareCost = 841 getCmpSelInstrCost(Instruction::ICmp, 842 Type::getInt8Ty(getGlobalContext()), NULL); 843 unsigned BranchCost = getCFInstrCost(Instruction::Br); 844 unsigned MaskCmpCost = NumElem * (BranchCost + ScalarCompareCost); 845 846 unsigned ValueSplitCost = 847 getScalarizationOverhead(SrcVTy, Opcode == Instruction::Load, 848 Opcode == Instruction::Store); 849 unsigned MemopCost = 850 NumElem * BaseT::getMemoryOpCost(Opcode, SrcVTy->getScalarType(), 851 Alignment, AddressSpace); 852 return MemopCost + ValueSplitCost + MaskSplitCost + MaskCmpCost; 853 } 854 855 // Legalize the type. 856 std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(DL, SrcVTy); 857 unsigned Cost = 0; 858 if (LT.second != TLI->getValueType(DL, SrcVTy).getSimpleVT() && 859 LT.second.getVectorNumElements() == NumElem) 860 // Promotion requires expand/truncate for data and a shuffle for mask. 861 Cost += getShuffleCost(TTI::SK_Alternate, SrcVTy, 0, 0) + 862 getShuffleCost(TTI::SK_Alternate, MaskTy, 0, 0); 863 864 else if (LT.second.getVectorNumElements() > NumElem) { 865 VectorType *NewMaskTy = VectorType::get(MaskTy->getVectorElementType(), 866 LT.second.getVectorNumElements()); 867 // Expanding requires fill mask with zeroes 868 Cost += getShuffleCost(TTI::SK_InsertSubvector, NewMaskTy, 0, MaskTy); 869 } 870 if (!ST->hasAVX512()) 871 return Cost + LT.first*4; // Each maskmov costs 4 872 873 // AVX-512 masked load/store is cheapper 874 return Cost+LT.first; 875 } 876 877 unsigned X86TTIImpl::getAddressComputationCost(Type *Ty, bool IsComplex) { 878 // Address computations in vectorized code with non-consecutive addresses will 879 // likely result in more instructions compared to scalar code where the 880 // computation can more often be merged into the index mode. The resulting 881 // extra micro-ops can significantly decrease throughput. 882 unsigned NumVectorInstToHideOverhead = 10; 883 884 if (Ty->isVectorTy() && IsComplex) 885 return NumVectorInstToHideOverhead; 886 887 return BaseT::getAddressComputationCost(Ty, IsComplex); 888 } 889 890 unsigned X86TTIImpl::getReductionCost(unsigned Opcode, Type *ValTy, 891 bool IsPairwise) { 892 893 std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(DL, ValTy); 894 895 MVT MTy = LT.second; 896 897 int ISD = TLI->InstructionOpcodeToISD(Opcode); 898 assert(ISD && "Invalid opcode"); 899 900 // We use the Intel Architecture Code Analyzer(IACA) to measure the throughput 901 // and make it as the cost. 902 903 static const CostTblEntry<MVT::SimpleValueType> SSE42CostTblPairWise[] = { 904 { ISD::FADD, MVT::v2f64, 2 }, 905 { ISD::FADD, MVT::v4f32, 4 }, 906 { ISD::ADD, MVT::v2i64, 2 }, // The data reported by the IACA tool is "1.6". 907 { ISD::ADD, MVT::v4i32, 3 }, // The data reported by the IACA tool is "3.5". 908 { ISD::ADD, MVT::v8i16, 5 }, 909 }; 910 911 static const CostTblEntry<MVT::SimpleValueType> AVX1CostTblPairWise[] = { 912 { ISD::FADD, MVT::v4f32, 4 }, 913 { ISD::FADD, MVT::v4f64, 5 }, 914 { ISD::FADD, MVT::v8f32, 7 }, 915 { ISD::ADD, MVT::v2i64, 1 }, // The data reported by the IACA tool is "1.5". 916 { ISD::ADD, MVT::v4i32, 3 }, // The data reported by the IACA tool is "3.5". 917 { ISD::ADD, MVT::v4i64, 5 }, // The data reported by the IACA tool is "4.8". 918 { ISD::ADD, MVT::v8i16, 5 }, 919 { ISD::ADD, MVT::v8i32, 5 }, 920 }; 921 922 static const CostTblEntry<MVT::SimpleValueType> SSE42CostTblNoPairWise[] = { 923 { ISD::FADD, MVT::v2f64, 2 }, 924 { ISD::FADD, MVT::v4f32, 4 }, 925 { ISD::ADD, MVT::v2i64, 2 }, // The data reported by the IACA tool is "1.6". 926 { ISD::ADD, MVT::v4i32, 3 }, // The data reported by the IACA tool is "3.3". 927 { ISD::ADD, MVT::v8i16, 4 }, // The data reported by the IACA tool is "4.3". 928 }; 929 930 static const CostTblEntry<MVT::SimpleValueType> AVX1CostTblNoPairWise[] = { 931 { ISD::FADD, MVT::v4f32, 3 }, 932 { ISD::FADD, MVT::v4f64, 3 }, 933 { ISD::FADD, MVT::v8f32, 4 }, 934 { ISD::ADD, MVT::v2i64, 1 }, // The data reported by the IACA tool is "1.5". 935 { ISD::ADD, MVT::v4i32, 3 }, // The data reported by the IACA tool is "2.8". 936 { ISD::ADD, MVT::v4i64, 3 }, 937 { ISD::ADD, MVT::v8i16, 4 }, 938 { ISD::ADD, MVT::v8i32, 5 }, 939 }; 940 941 if (IsPairwise) { 942 if (ST->hasAVX()) { 943 int Idx = CostTableLookup(AVX1CostTblPairWise, ISD, MTy); 944 if (Idx != -1) 945 return LT.first * AVX1CostTblPairWise[Idx].Cost; 946 } 947 948 if (ST->hasSSE42()) { 949 int Idx = CostTableLookup(SSE42CostTblPairWise, ISD, MTy); 950 if (Idx != -1) 951 return LT.first * SSE42CostTblPairWise[Idx].Cost; 952 } 953 } else { 954 if (ST->hasAVX()) { 955 int Idx = CostTableLookup(AVX1CostTblNoPairWise, ISD, MTy); 956 if (Idx != -1) 957 return LT.first * AVX1CostTblNoPairWise[Idx].Cost; 958 } 959 960 if (ST->hasSSE42()) { 961 int Idx = CostTableLookup(SSE42CostTblNoPairWise, ISD, MTy); 962 if (Idx != -1) 963 return LT.first * SSE42CostTblNoPairWise[Idx].Cost; 964 } 965 } 966 967 return BaseT::getReductionCost(Opcode, ValTy, IsPairwise); 968 } 969 970 /// \brief Calculate the cost of materializing a 64-bit value. This helper 971 /// method might only calculate a fraction of a larger immediate. Therefore it 972 /// is valid to return a cost of ZERO. 973 unsigned X86TTIImpl::getIntImmCost(int64_t Val) { 974 if (Val == 0) 975 return TTI::TCC_Free; 976 977 if (isInt<32>(Val)) 978 return TTI::TCC_Basic; 979 980 return 2 * TTI::TCC_Basic; 981 } 982 983 unsigned X86TTIImpl::getIntImmCost(const APInt &Imm, Type *Ty) { 984 assert(Ty->isIntegerTy()); 985 986 unsigned BitSize = Ty->getPrimitiveSizeInBits(); 987 if (BitSize == 0) 988 return ~0U; 989 990 // Never hoist constants larger than 128bit, because this might lead to 991 // incorrect code generation or assertions in codegen. 992 // Fixme: Create a cost model for types larger than i128 once the codegen 993 // issues have been fixed. 994 if (BitSize > 128) 995 return TTI::TCC_Free; 996 997 if (Imm == 0) 998 return TTI::TCC_Free; 999 1000 // Sign-extend all constants to a multiple of 64-bit. 1001 APInt ImmVal = Imm; 1002 if (BitSize & 0x3f) 1003 ImmVal = Imm.sext((BitSize + 63) & ~0x3fU); 1004 1005 // Split the constant into 64-bit chunks and calculate the cost for each 1006 // chunk. 1007 unsigned Cost = 0; 1008 for (unsigned ShiftVal = 0; ShiftVal < BitSize; ShiftVal += 64) { 1009 APInt Tmp = ImmVal.ashr(ShiftVal).sextOrTrunc(64); 1010 int64_t Val = Tmp.getSExtValue(); 1011 Cost += getIntImmCost(Val); 1012 } 1013 // We need at least one instruction to materialze the constant. 1014 return std::max(1U, Cost); 1015 } 1016 1017 unsigned X86TTIImpl::getIntImmCost(unsigned Opcode, unsigned Idx, 1018 const APInt &Imm, Type *Ty) { 1019 assert(Ty->isIntegerTy()); 1020 1021 unsigned BitSize = Ty->getPrimitiveSizeInBits(); 1022 // There is no cost model for constants with a bit size of 0. Return TCC_Free 1023 // here, so that constant hoisting will ignore this constant. 1024 if (BitSize == 0) 1025 return TTI::TCC_Free; 1026 1027 unsigned ImmIdx = ~0U; 1028 switch (Opcode) { 1029 default: 1030 return TTI::TCC_Free; 1031 case Instruction::GetElementPtr: 1032 // Always hoist the base address of a GetElementPtr. This prevents the 1033 // creation of new constants for every base constant that gets constant 1034 // folded with the offset. 1035 if (Idx == 0) 1036 return 2 * TTI::TCC_Basic; 1037 return TTI::TCC_Free; 1038 case Instruction::Store: 1039 ImmIdx = 0; 1040 break; 1041 case Instruction::Add: 1042 case Instruction::Sub: 1043 case Instruction::Mul: 1044 case Instruction::UDiv: 1045 case Instruction::SDiv: 1046 case Instruction::URem: 1047 case Instruction::SRem: 1048 case Instruction::And: 1049 case Instruction::Or: 1050 case Instruction::Xor: 1051 case Instruction::ICmp: 1052 ImmIdx = 1; 1053 break; 1054 // Always return TCC_Free for the shift value of a shift instruction. 1055 case Instruction::Shl: 1056 case Instruction::LShr: 1057 case Instruction::AShr: 1058 if (Idx == 1) 1059 return TTI::TCC_Free; 1060 break; 1061 case Instruction::Trunc: 1062 case Instruction::ZExt: 1063 case Instruction::SExt: 1064 case Instruction::IntToPtr: 1065 case Instruction::PtrToInt: 1066 case Instruction::BitCast: 1067 case Instruction::PHI: 1068 case Instruction::Call: 1069 case Instruction::Select: 1070 case Instruction::Ret: 1071 case Instruction::Load: 1072 break; 1073 } 1074 1075 if (Idx == ImmIdx) { 1076 unsigned NumConstants = (BitSize + 63) / 64; 1077 unsigned Cost = X86TTIImpl::getIntImmCost(Imm, Ty); 1078 return (Cost <= NumConstants * TTI::TCC_Basic) 1079 ? static_cast<unsigned>(TTI::TCC_Free) 1080 : Cost; 1081 } 1082 1083 return X86TTIImpl::getIntImmCost(Imm, Ty); 1084 } 1085 1086 unsigned X86TTIImpl::getIntImmCost(Intrinsic::ID IID, unsigned Idx, 1087 const APInt &Imm, Type *Ty) { 1088 assert(Ty->isIntegerTy()); 1089 1090 unsigned BitSize = Ty->getPrimitiveSizeInBits(); 1091 // There is no cost model for constants with a bit size of 0. Return TCC_Free 1092 // here, so that constant hoisting will ignore this constant. 1093 if (BitSize == 0) 1094 return TTI::TCC_Free; 1095 1096 switch (IID) { 1097 default: 1098 return TTI::TCC_Free; 1099 case Intrinsic::sadd_with_overflow: 1100 case Intrinsic::uadd_with_overflow: 1101 case Intrinsic::ssub_with_overflow: 1102 case Intrinsic::usub_with_overflow: 1103 case Intrinsic::smul_with_overflow: 1104 case Intrinsic::umul_with_overflow: 1105 if ((Idx == 1) && Imm.getBitWidth() <= 64 && isInt<32>(Imm.getSExtValue())) 1106 return TTI::TCC_Free; 1107 break; 1108 case Intrinsic::experimental_stackmap: 1109 if ((Idx < 2) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue()))) 1110 return TTI::TCC_Free; 1111 break; 1112 case Intrinsic::experimental_patchpoint_void: 1113 case Intrinsic::experimental_patchpoint_i64: 1114 if ((Idx < 4) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue()))) 1115 return TTI::TCC_Free; 1116 break; 1117 } 1118 return X86TTIImpl::getIntImmCost(Imm, Ty); 1119 } 1120 1121 bool X86TTIImpl::isLegalMaskedLoad(Type *DataTy, int Consecutive) { 1122 int DataWidth = DataTy->getPrimitiveSizeInBits(); 1123 1124 // Todo: AVX512 allows gather/scatter, works with strided and random as well 1125 if ((DataWidth < 32) || (Consecutive == 0)) 1126 return false; 1127 if (ST->hasAVX512() || ST->hasAVX2()) 1128 return true; 1129 return false; 1130 } 1131 1132 bool X86TTIImpl::isLegalMaskedStore(Type *DataType, int Consecutive) { 1133 return isLegalMaskedLoad(DataType, Consecutive); 1134 } 1135 1136 bool X86TTIImpl::hasCompatibleFunctionAttributes(const Function *Caller, 1137 const Function *Callee) const { 1138 const TargetMachine &TM = getTLI()->getTargetMachine(); 1139 1140 // Work this as a subsetting of subtarget features. 1141 const FeatureBitset &CallerBits = 1142 TM.getSubtargetImpl(*Caller)->getFeatureBits(); 1143 const FeatureBitset &CalleeBits = 1144 TM.getSubtargetImpl(*Callee)->getFeatureBits(); 1145 1146 // FIXME: This is likely too limiting as it will include subtarget features 1147 // that we might not care about for inlining, but it is conservatively 1148 // correct. 1149 return (CallerBits & CalleeBits) == CalleeBits; 1150 } 1151