1 //===-- X86TargetTransformInfo.cpp - X86 specific TTI pass ----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 /// \file
9 /// This file implements a TargetTransformInfo analysis pass specific to the
10 /// X86 target machine. It uses the target's detailed information to provide
11 /// more precise answers to certain TTI queries, while letting the target
12 /// independent and default TTI implementations handle the rest.
13 ///
14 //===----------------------------------------------------------------------===//
15 /// About Cost Model numbers used below it's necessary to say the following:
16 /// the numbers correspond to some "generic" X86 CPU instead of usage of
17 /// concrete CPU model. Usually the numbers correspond to CPU where the feature
18 /// apeared at the first time. For example, if we do Subtarget.hasSSE42() in
19 /// the lookups below the cost is based on Nehalem as that was the first CPU
20 /// to support that feature level and thus has most likely the worst case cost.
21 /// Some examples of other technologies/CPUs:
22 ///   SSE 3   - Pentium4 / Athlon64
23 ///   SSE 4.1 - Penryn
24 ///   SSE 4.2 - Nehalem
25 ///   AVX     - Sandy Bridge
26 ///   AVX2    - Haswell
27 ///   AVX-512 - Xeon Phi / Skylake
28 /// And some examples of instruction target dependent costs (latency)
29 ///                   divss     sqrtss          rsqrtss
30 ///   AMD K7            11-16     19              3
31 ///   Piledriver        9-24      13-15           5
32 ///   Jaguar            14        16              2
33 ///   Pentium II,III    18        30              2
34 ///   Nehalem           7-14      7-18            3
35 ///   Haswell           10-13     11              5
36 /// TODO: Develop and implement  the target dependent cost model and
37 /// specialize cost numbers for different Cost Model Targets such as throughput,
38 /// code size, latency and uop count.
39 //===----------------------------------------------------------------------===//
40 
41 #include "X86TargetTransformInfo.h"
42 #include "llvm/Analysis/TargetTransformInfo.h"
43 #include "llvm/CodeGen/BasicTTIImpl.h"
44 #include "llvm/CodeGen/CostTable.h"
45 #include "llvm/CodeGen/TargetLowering.h"
46 #include "llvm/IR/IntrinsicInst.h"
47 #include "llvm/Support/Debug.h"
48 
49 using namespace llvm;
50 
51 #define DEBUG_TYPE "x86tti"
52 
53 extern cl::opt<bool> ExperimentalVectorWideningLegalization;
54 
55 //===----------------------------------------------------------------------===//
56 //
57 // X86 cost model.
58 //
59 //===----------------------------------------------------------------------===//
60 
61 TargetTransformInfo::PopcntSupportKind
62 X86TTIImpl::getPopcntSupport(unsigned TyWidth) {
63   assert(isPowerOf2_32(TyWidth) && "Ty width must be power of 2");
64   // TODO: Currently the __builtin_popcount() implementation using SSE3
65   //   instructions is inefficient. Once the problem is fixed, we should
66   //   call ST->hasSSE3() instead of ST->hasPOPCNT().
67   return ST->hasPOPCNT() ? TTI::PSK_FastHardware : TTI::PSK_Software;
68 }
69 
70 llvm::Optional<unsigned> X86TTIImpl::getCacheSize(
71   TargetTransformInfo::CacheLevel Level) const {
72   switch (Level) {
73   case TargetTransformInfo::CacheLevel::L1D:
74     //   - Penryn
75     //   - Nehalem
76     //   - Westmere
77     //   - Sandy Bridge
78     //   - Ivy Bridge
79     //   - Haswell
80     //   - Broadwell
81     //   - Skylake
82     //   - Kabylake
83     return 32 * 1024;  //  32 KByte
84   case TargetTransformInfo::CacheLevel::L2D:
85     //   - Penryn
86     //   - Nehalem
87     //   - Westmere
88     //   - Sandy Bridge
89     //   - Ivy Bridge
90     //   - Haswell
91     //   - Broadwell
92     //   - Skylake
93     //   - Kabylake
94     return 256 * 1024; // 256 KByte
95   }
96 
97   llvm_unreachable("Unknown TargetTransformInfo::CacheLevel");
98 }
99 
100 llvm::Optional<unsigned> X86TTIImpl::getCacheAssociativity(
101   TargetTransformInfo::CacheLevel Level) const {
102   //   - Penryn
103   //   - Nehalem
104   //   - Westmere
105   //   - Sandy Bridge
106   //   - Ivy Bridge
107   //   - Haswell
108   //   - Broadwell
109   //   - Skylake
110   //   - Kabylake
111   switch (Level) {
112   case TargetTransformInfo::CacheLevel::L1D:
113     LLVM_FALLTHROUGH;
114   case TargetTransformInfo::CacheLevel::L2D:
115     return 8;
116   }
117 
118   llvm_unreachable("Unknown TargetTransformInfo::CacheLevel");
119 }
120 
121 unsigned X86TTIImpl::getNumberOfRegisters(bool Vector) {
122   if (Vector && !ST->hasSSE1())
123     return 0;
124 
125   if (ST->is64Bit()) {
126     if (Vector && ST->hasAVX512())
127       return 32;
128     return 16;
129   }
130   return 8;
131 }
132 
133 unsigned X86TTIImpl::getRegisterBitWidth(bool Vector) const {
134   unsigned PreferVectorWidth = ST->getPreferVectorWidth();
135   if (Vector) {
136     if (ST->hasAVX512() && PreferVectorWidth >= 512)
137       return 512;
138     if (ST->hasAVX() && PreferVectorWidth >= 256)
139       return 256;
140     if (ST->hasSSE1() && PreferVectorWidth >= 128)
141       return 128;
142     return 0;
143   }
144 
145   if (ST->is64Bit())
146     return 64;
147 
148   return 32;
149 }
150 
151 unsigned X86TTIImpl::getLoadStoreVecRegBitWidth(unsigned) const {
152   return getRegisterBitWidth(true);
153 }
154 
155 unsigned X86TTIImpl::getMaxInterleaveFactor(unsigned VF) {
156   // If the loop will not be vectorized, don't interleave the loop.
157   // Let regular unroll to unroll the loop, which saves the overflow
158   // check and memory check cost.
159   if (VF == 1)
160     return 1;
161 
162   if (ST->isAtom())
163     return 1;
164 
165   // Sandybridge and Haswell have multiple execution ports and pipelined
166   // vector units.
167   if (ST->hasAVX())
168     return 4;
169 
170   return 2;
171 }
172 
173 int X86TTIImpl::getArithmeticInstrCost(
174     unsigned Opcode, Type *Ty,
175     TTI::OperandValueKind Op1Info, TTI::OperandValueKind Op2Info,
176     TTI::OperandValueProperties Opd1PropInfo,
177     TTI::OperandValueProperties Opd2PropInfo,
178     ArrayRef<const Value *> Args) {
179   // Legalize the type.
180   std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Ty);
181 
182   int ISD = TLI->InstructionOpcodeToISD(Opcode);
183   assert(ISD && "Invalid opcode");
184 
185   static const CostTblEntry GLMCostTable[] = {
186     { ISD::FDIV,  MVT::f32,   18 }, // divss
187     { ISD::FDIV,  MVT::v4f32, 35 }, // divps
188     { ISD::FDIV,  MVT::f64,   33 }, // divsd
189     { ISD::FDIV,  MVT::v2f64, 65 }, // divpd
190   };
191 
192   if (ST->isGLM())
193     if (const auto *Entry = CostTableLookup(GLMCostTable, ISD,
194                                             LT.second))
195       return LT.first * Entry->Cost;
196 
197   static const CostTblEntry SLMCostTable[] = {
198     { ISD::MUL,   MVT::v4i32, 11 }, // pmulld
199     { ISD::MUL,   MVT::v8i16, 2  }, // pmullw
200     { ISD::MUL,   MVT::v16i8, 14 }, // extend/pmullw/trunc sequence.
201     { ISD::FMUL,  MVT::f64,   2  }, // mulsd
202     { ISD::FMUL,  MVT::v2f64, 4  }, // mulpd
203     { ISD::FMUL,  MVT::v4f32, 2  }, // mulps
204     { ISD::FDIV,  MVT::f32,   17 }, // divss
205     { ISD::FDIV,  MVT::v4f32, 39 }, // divps
206     { ISD::FDIV,  MVT::f64,   32 }, // divsd
207     { ISD::FDIV,  MVT::v2f64, 69 }, // divpd
208     { ISD::FADD,  MVT::v2f64, 2  }, // addpd
209     { ISD::FSUB,  MVT::v2f64, 2  }, // subpd
210     // v2i64/v4i64 mul is custom lowered as a series of long:
211     // multiplies(3), shifts(3) and adds(2)
212     // slm muldq version throughput is 2 and addq throughput 4
213     // thus: 3X2 (muldq throughput) + 3X1 (shift throughput) +
214     //       3X4 (addq throughput) = 17
215     { ISD::MUL,   MVT::v2i64, 17 },
216     // slm addq\subq throughput is 4
217     { ISD::ADD,   MVT::v2i64, 4  },
218     { ISD::SUB,   MVT::v2i64, 4  },
219   };
220 
221   if (ST->isSLM()) {
222     if (Args.size() == 2 && ISD == ISD::MUL && LT.second == MVT::v4i32) {
223       // Check if the operands can be shrinked into a smaller datatype.
224       bool Op1Signed = false;
225       unsigned Op1MinSize = BaseT::minRequiredElementSize(Args[0], Op1Signed);
226       bool Op2Signed = false;
227       unsigned Op2MinSize = BaseT::minRequiredElementSize(Args[1], Op2Signed);
228 
229       bool signedMode = Op1Signed | Op2Signed;
230       unsigned OpMinSize = std::max(Op1MinSize, Op2MinSize);
231 
232       if (OpMinSize <= 7)
233         return LT.first * 3; // pmullw/sext
234       if (!signedMode && OpMinSize <= 8)
235         return LT.first * 3; // pmullw/zext
236       if (OpMinSize <= 15)
237         return LT.first * 5; // pmullw/pmulhw/pshuf
238       if (!signedMode && OpMinSize <= 16)
239         return LT.first * 5; // pmullw/pmulhw/pshuf
240     }
241 
242     if (const auto *Entry = CostTableLookup(SLMCostTable, ISD,
243                                             LT.second)) {
244       return LT.first * Entry->Cost;
245     }
246   }
247 
248   if ((ISD == ISD::SDIV || ISD == ISD::SREM || ISD == ISD::UDIV ||
249        ISD == ISD::UREM) &&
250       (Op2Info == TargetTransformInfo::OK_UniformConstantValue ||
251        Op2Info == TargetTransformInfo::OK_NonUniformConstantValue) &&
252       Opd2PropInfo == TargetTransformInfo::OP_PowerOf2) {
253     if (ISD == ISD::SDIV || ISD == ISD::SREM) {
254       // On X86, vector signed division by constants power-of-two are
255       // normally expanded to the sequence SRA + SRL + ADD + SRA.
256       // The OperandValue properties may not be the same as that of the previous
257       // operation; conservatively assume OP_None.
258       int Cost =
259           2 * getArithmeticInstrCost(Instruction::AShr, Ty, Op1Info, Op2Info,
260                                      TargetTransformInfo::OP_None,
261                                      TargetTransformInfo::OP_None);
262       Cost += getArithmeticInstrCost(Instruction::LShr, Ty, Op1Info, Op2Info,
263                                      TargetTransformInfo::OP_None,
264                                      TargetTransformInfo::OP_None);
265       Cost += getArithmeticInstrCost(Instruction::Add, Ty, Op1Info, Op2Info,
266                                      TargetTransformInfo::OP_None,
267                                      TargetTransformInfo::OP_None);
268 
269       if (ISD == ISD::SREM) {
270         // For SREM: (X % C) is the equivalent of (X - (X/C)*C)
271         Cost += getArithmeticInstrCost(Instruction::Mul, Ty, Op1Info, Op2Info);
272         Cost += getArithmeticInstrCost(Instruction::Sub, Ty, Op1Info, Op2Info);
273       }
274 
275       return Cost;
276     }
277 
278     // Vector unsigned division/remainder will be simplified to shifts/masks.
279     if (ISD == ISD::UDIV)
280       return getArithmeticInstrCost(Instruction::LShr, Ty, Op1Info, Op2Info,
281                                     TargetTransformInfo::OP_None,
282                                     TargetTransformInfo::OP_None);
283 
284     if (ISD == ISD::UREM)
285       return getArithmeticInstrCost(Instruction::And, Ty, Op1Info, Op2Info,
286                                     TargetTransformInfo::OP_None,
287                                     TargetTransformInfo::OP_None);
288   }
289 
290   static const CostTblEntry AVX512BWUniformConstCostTable[] = {
291     { ISD::SHL,  MVT::v64i8,   2 }, // psllw + pand.
292     { ISD::SRL,  MVT::v64i8,   2 }, // psrlw + pand.
293     { ISD::SRA,  MVT::v64i8,   4 }, // psrlw, pand, pxor, psubb.
294   };
295 
296   if (Op2Info == TargetTransformInfo::OK_UniformConstantValue &&
297       ST->hasBWI()) {
298     if (const auto *Entry = CostTableLookup(AVX512BWUniformConstCostTable, ISD,
299                                             LT.second))
300       return LT.first * Entry->Cost;
301   }
302 
303   static const CostTblEntry AVX512UniformConstCostTable[] = {
304     { ISD::SRA,  MVT::v2i64,   1 },
305     { ISD::SRA,  MVT::v4i64,   1 },
306     { ISD::SRA,  MVT::v8i64,   1 },
307   };
308 
309   if (Op2Info == TargetTransformInfo::OK_UniformConstantValue &&
310       ST->hasAVX512()) {
311     if (const auto *Entry = CostTableLookup(AVX512UniformConstCostTable, ISD,
312                                             LT.second))
313       return LT.first * Entry->Cost;
314   }
315 
316   static const CostTblEntry AVX2UniformConstCostTable[] = {
317     { ISD::SHL,  MVT::v32i8,   2 }, // psllw + pand.
318     { ISD::SRL,  MVT::v32i8,   2 }, // psrlw + pand.
319     { ISD::SRA,  MVT::v32i8,   4 }, // psrlw, pand, pxor, psubb.
320 
321     { ISD::SRA,  MVT::v4i64,   4 }, // 2 x psrad + shuffle.
322   };
323 
324   if (Op2Info == TargetTransformInfo::OK_UniformConstantValue &&
325       ST->hasAVX2()) {
326     if (const auto *Entry = CostTableLookup(AVX2UniformConstCostTable, ISD,
327                                             LT.second))
328       return LT.first * Entry->Cost;
329   }
330 
331   static const CostTblEntry SSE2UniformConstCostTable[] = {
332     { ISD::SHL,  MVT::v16i8,     2 }, // psllw + pand.
333     { ISD::SRL,  MVT::v16i8,     2 }, // psrlw + pand.
334     { ISD::SRA,  MVT::v16i8,     4 }, // psrlw, pand, pxor, psubb.
335 
336     { ISD::SHL,  MVT::v32i8,   4+2 }, // 2*(psllw + pand) + split.
337     { ISD::SRL,  MVT::v32i8,   4+2 }, // 2*(psrlw + pand) + split.
338     { ISD::SRA,  MVT::v32i8,   8+2 }, // 2*(psrlw, pand, pxor, psubb) + split.
339   };
340 
341   // XOP has faster vXi8 shifts.
342   if (Op2Info == TargetTransformInfo::OK_UniformConstantValue &&
343       ST->hasSSE2() && !ST->hasXOP()) {
344     if (const auto *Entry =
345             CostTableLookup(SSE2UniformConstCostTable, ISD, LT.second))
346       return LT.first * Entry->Cost;
347   }
348 
349   static const CostTblEntry AVX512BWConstCostTable[] = {
350     { ISD::SDIV, MVT::v64i8,  14 }, // 2*ext+2*pmulhw sequence
351     { ISD::SREM, MVT::v64i8,  16 }, // 2*ext+2*pmulhw+mul+sub sequence
352     { ISD::UDIV, MVT::v64i8,  14 }, // 2*ext+2*pmulhw sequence
353     { ISD::UREM, MVT::v64i8,  16 }, // 2*ext+2*pmulhw+mul+sub sequence
354     { ISD::SDIV, MVT::v32i16,  6 }, // vpmulhw sequence
355     { ISD::SREM, MVT::v32i16,  8 }, // vpmulhw+mul+sub sequence
356     { ISD::UDIV, MVT::v32i16,  6 }, // vpmulhuw sequence
357     { ISD::UREM, MVT::v32i16,  8 }, // vpmulhuw+mul+sub sequence
358   };
359 
360   if ((Op2Info == TargetTransformInfo::OK_UniformConstantValue ||
361        Op2Info == TargetTransformInfo::OK_NonUniformConstantValue) &&
362       ST->hasBWI()) {
363     if (const auto *Entry =
364             CostTableLookup(AVX512BWConstCostTable, ISD, LT.second))
365       return LT.first * Entry->Cost;
366   }
367 
368   static const CostTblEntry AVX512ConstCostTable[] = {
369     { ISD::SDIV, MVT::v16i32, 15 }, // vpmuldq sequence
370     { ISD::SREM, MVT::v16i32, 17 }, // vpmuldq+mul+sub sequence
371     { ISD::UDIV, MVT::v16i32, 15 }, // vpmuludq sequence
372     { ISD::UREM, MVT::v16i32, 17 }, // vpmuludq+mul+sub sequence
373   };
374 
375   if ((Op2Info == TargetTransformInfo::OK_UniformConstantValue ||
376        Op2Info == TargetTransformInfo::OK_NonUniformConstantValue) &&
377       ST->hasAVX512()) {
378     if (const auto *Entry =
379             CostTableLookup(AVX512ConstCostTable, ISD, LT.second))
380       return LT.first * Entry->Cost;
381   }
382 
383   static const CostTblEntry AVX2ConstCostTable[] = {
384     { ISD::SDIV, MVT::v32i8,  14 }, // 2*ext+2*pmulhw sequence
385     { ISD::SREM, MVT::v32i8,  16 }, // 2*ext+2*pmulhw+mul+sub sequence
386     { ISD::UDIV, MVT::v32i8,  14 }, // 2*ext+2*pmulhw sequence
387     { ISD::UREM, MVT::v32i8,  16 }, // 2*ext+2*pmulhw+mul+sub sequence
388     { ISD::SDIV, MVT::v16i16,  6 }, // vpmulhw sequence
389     { ISD::SREM, MVT::v16i16,  8 }, // vpmulhw+mul+sub sequence
390     { ISD::UDIV, MVT::v16i16,  6 }, // vpmulhuw sequence
391     { ISD::UREM, MVT::v16i16,  8 }, // vpmulhuw+mul+sub sequence
392     { ISD::SDIV, MVT::v8i32,  15 }, // vpmuldq sequence
393     { ISD::SREM, MVT::v8i32,  19 }, // vpmuldq+mul+sub sequence
394     { ISD::UDIV, MVT::v8i32,  15 }, // vpmuludq sequence
395     { ISD::UREM, MVT::v8i32,  19 }, // vpmuludq+mul+sub sequence
396   };
397 
398   if ((Op2Info == TargetTransformInfo::OK_UniformConstantValue ||
399        Op2Info == TargetTransformInfo::OK_NonUniformConstantValue) &&
400       ST->hasAVX2()) {
401     if (const auto *Entry = CostTableLookup(AVX2ConstCostTable, ISD, LT.second))
402       return LT.first * Entry->Cost;
403   }
404 
405   static const CostTblEntry SSE2ConstCostTable[] = {
406     { ISD::SDIV, MVT::v32i8,  28+2 }, // 4*ext+4*pmulhw sequence + split.
407     { ISD::SREM, MVT::v32i8,  32+2 }, // 4*ext+4*pmulhw+mul+sub sequence + split.
408     { ISD::SDIV, MVT::v16i8,    14 }, // 2*ext+2*pmulhw sequence
409     { ISD::SREM, MVT::v16i8,    16 }, // 2*ext+2*pmulhw+mul+sub sequence
410     { ISD::UDIV, MVT::v32i8,  28+2 }, // 4*ext+4*pmulhw sequence + split.
411     { ISD::UREM, MVT::v32i8,  32+2 }, // 4*ext+4*pmulhw+mul+sub sequence + split.
412     { ISD::UDIV, MVT::v16i8,    14 }, // 2*ext+2*pmulhw sequence
413     { ISD::UREM, MVT::v16i8,    16 }, // 2*ext+2*pmulhw+mul+sub sequence
414     { ISD::SDIV, MVT::v16i16, 12+2 }, // 2*pmulhw sequence + split.
415     { ISD::SREM, MVT::v16i16, 16+2 }, // 2*pmulhw+mul+sub sequence + split.
416     { ISD::SDIV, MVT::v8i16,     6 }, // pmulhw sequence
417     { ISD::SREM, MVT::v8i16,     8 }, // pmulhw+mul+sub sequence
418     { ISD::UDIV, MVT::v16i16, 12+2 }, // 2*pmulhuw sequence + split.
419     { ISD::UREM, MVT::v16i16, 16+2 }, // 2*pmulhuw+mul+sub sequence + split.
420     { ISD::UDIV, MVT::v8i16,     6 }, // pmulhuw sequence
421     { ISD::UREM, MVT::v8i16,     8 }, // pmulhuw+mul+sub sequence
422     { ISD::SDIV, MVT::v8i32,  38+2 }, // 2*pmuludq sequence + split.
423     { ISD::SREM, MVT::v8i32,  48+2 }, // 2*pmuludq+mul+sub sequence + split.
424     { ISD::SDIV, MVT::v4i32,    19 }, // pmuludq sequence
425     { ISD::SREM, MVT::v4i32,    24 }, // pmuludq+mul+sub sequence
426     { ISD::UDIV, MVT::v8i32,  30+2 }, // 2*pmuludq sequence + split.
427     { ISD::UREM, MVT::v8i32,  40+2 }, // 2*pmuludq+mul+sub sequence + split.
428     { ISD::UDIV, MVT::v4i32,    15 }, // pmuludq sequence
429     { ISD::UREM, MVT::v4i32,    20 }, // pmuludq+mul+sub sequence
430   };
431 
432   if ((Op2Info == TargetTransformInfo::OK_UniformConstantValue ||
433        Op2Info == TargetTransformInfo::OK_NonUniformConstantValue) &&
434       ST->hasSSE2()) {
435     // pmuldq sequence.
436     if (ISD == ISD::SDIV && LT.second == MVT::v8i32 && ST->hasAVX())
437       return LT.first * 32;
438     if (ISD == ISD::SREM && LT.second == MVT::v8i32 && ST->hasAVX())
439       return LT.first * 38;
440     if (ISD == ISD::SDIV && LT.second == MVT::v4i32 && ST->hasSSE41())
441       return LT.first * 15;
442     if (ISD == ISD::SREM && LT.second == MVT::v4i32 && ST->hasSSE41())
443       return LT.first * 20;
444 
445     if (const auto *Entry = CostTableLookup(SSE2ConstCostTable, ISD, LT.second))
446       return LT.first * Entry->Cost;
447   }
448 
449   static const CostTblEntry AVX2UniformCostTable[] = {
450     // Uniform splats are cheaper for the following instructions.
451     { ISD::SHL,  MVT::v16i16, 1 }, // psllw.
452     { ISD::SRL,  MVT::v16i16, 1 }, // psrlw.
453     { ISD::SRA,  MVT::v16i16, 1 }, // psraw.
454   };
455 
456   if (ST->hasAVX2() &&
457       ((Op2Info == TargetTransformInfo::OK_UniformConstantValue) ||
458        (Op2Info == TargetTransformInfo::OK_UniformValue))) {
459     if (const auto *Entry =
460             CostTableLookup(AVX2UniformCostTable, ISD, LT.second))
461       return LT.first * Entry->Cost;
462   }
463 
464   static const CostTblEntry SSE2UniformCostTable[] = {
465     // Uniform splats are cheaper for the following instructions.
466     { ISD::SHL,  MVT::v8i16,  1 }, // psllw.
467     { ISD::SHL,  MVT::v4i32,  1 }, // pslld
468     { ISD::SHL,  MVT::v2i64,  1 }, // psllq.
469 
470     { ISD::SRL,  MVT::v8i16,  1 }, // psrlw.
471     { ISD::SRL,  MVT::v4i32,  1 }, // psrld.
472     { ISD::SRL,  MVT::v2i64,  1 }, // psrlq.
473 
474     { ISD::SRA,  MVT::v8i16,  1 }, // psraw.
475     { ISD::SRA,  MVT::v4i32,  1 }, // psrad.
476   };
477 
478   if (ST->hasSSE2() &&
479       ((Op2Info == TargetTransformInfo::OK_UniformConstantValue) ||
480        (Op2Info == TargetTransformInfo::OK_UniformValue))) {
481     if (const auto *Entry =
482             CostTableLookup(SSE2UniformCostTable, ISD, LT.second))
483       return LT.first * Entry->Cost;
484   }
485 
486   static const CostTblEntry AVX512DQCostTable[] = {
487     { ISD::MUL,  MVT::v2i64, 1 },
488     { ISD::MUL,  MVT::v4i64, 1 },
489     { ISD::MUL,  MVT::v8i64, 1 }
490   };
491 
492   // Look for AVX512DQ lowering tricks for custom cases.
493   if (ST->hasDQI())
494     if (const auto *Entry = CostTableLookup(AVX512DQCostTable, ISD, LT.second))
495       return LT.first * Entry->Cost;
496 
497   static const CostTblEntry AVX512BWCostTable[] = {
498     { ISD::SHL,   MVT::v8i16,      1 }, // vpsllvw
499     { ISD::SRL,   MVT::v8i16,      1 }, // vpsrlvw
500     { ISD::SRA,   MVT::v8i16,      1 }, // vpsravw
501 
502     { ISD::SHL,   MVT::v16i16,     1 }, // vpsllvw
503     { ISD::SRL,   MVT::v16i16,     1 }, // vpsrlvw
504     { ISD::SRA,   MVT::v16i16,     1 }, // vpsravw
505 
506     { ISD::SHL,   MVT::v32i16,     1 }, // vpsllvw
507     { ISD::SRL,   MVT::v32i16,     1 }, // vpsrlvw
508     { ISD::SRA,   MVT::v32i16,     1 }, // vpsravw
509 
510     { ISD::SHL,   MVT::v64i8,     11 }, // vpblendvb sequence.
511     { ISD::SRL,   MVT::v64i8,     11 }, // vpblendvb sequence.
512     { ISD::SRA,   MVT::v64i8,     24 }, // vpblendvb sequence.
513 
514     { ISD::MUL,   MVT::v64i8,     11 }, // extend/pmullw/trunc sequence.
515     { ISD::MUL,   MVT::v32i8,      4 }, // extend/pmullw/trunc sequence.
516     { ISD::MUL,   MVT::v16i8,      4 }, // extend/pmullw/trunc sequence.
517   };
518 
519   // Look for AVX512BW lowering tricks for custom cases.
520   if (ST->hasBWI())
521     if (const auto *Entry = CostTableLookup(AVX512BWCostTable, ISD, LT.second))
522       return LT.first * Entry->Cost;
523 
524   static const CostTblEntry AVX512CostTable[] = {
525     { ISD::SHL,     MVT::v16i32,     1 },
526     { ISD::SRL,     MVT::v16i32,     1 },
527     { ISD::SRA,     MVT::v16i32,     1 },
528 
529     { ISD::SHL,     MVT::v8i64,      1 },
530     { ISD::SRL,     MVT::v8i64,      1 },
531 
532     { ISD::SRA,     MVT::v2i64,      1 },
533     { ISD::SRA,     MVT::v4i64,      1 },
534     { ISD::SRA,     MVT::v8i64,      1 },
535 
536     { ISD::MUL,     MVT::v32i8,     13 }, // extend/pmullw/trunc sequence.
537     { ISD::MUL,     MVT::v16i8,      5 }, // extend/pmullw/trunc sequence.
538     { ISD::MUL,     MVT::v16i32,     1 }, // pmulld (Skylake from agner.org)
539     { ISD::MUL,     MVT::v8i32,      1 }, // pmulld (Skylake from agner.org)
540     { ISD::MUL,     MVT::v4i32,      1 }, // pmulld (Skylake from agner.org)
541     { ISD::MUL,     MVT::v8i64,      8 }, // 3*pmuludq/3*shift/2*add
542 
543     { ISD::FADD,    MVT::v8f64,      1 }, // Skylake from http://www.agner.org/
544     { ISD::FSUB,    MVT::v8f64,      1 }, // Skylake from http://www.agner.org/
545     { ISD::FMUL,    MVT::v8f64,      1 }, // Skylake from http://www.agner.org/
546 
547     { ISD::FADD,    MVT::v16f32,     1 }, // Skylake from http://www.agner.org/
548     { ISD::FSUB,    MVT::v16f32,     1 }, // Skylake from http://www.agner.org/
549     { ISD::FMUL,    MVT::v16f32,     1 }, // Skylake from http://www.agner.org/
550   };
551 
552   if (ST->hasAVX512())
553     if (const auto *Entry = CostTableLookup(AVX512CostTable, ISD, LT.second))
554       return LT.first * Entry->Cost;
555 
556   static const CostTblEntry AVX2ShiftCostTable[] = {
557     // Shifts on v4i64/v8i32 on AVX2 is legal even though we declare to
558     // customize them to detect the cases where shift amount is a scalar one.
559     { ISD::SHL,     MVT::v4i32,    1 },
560     { ISD::SRL,     MVT::v4i32,    1 },
561     { ISD::SRA,     MVT::v4i32,    1 },
562     { ISD::SHL,     MVT::v8i32,    1 },
563     { ISD::SRL,     MVT::v8i32,    1 },
564     { ISD::SRA,     MVT::v8i32,    1 },
565     { ISD::SHL,     MVT::v2i64,    1 },
566     { ISD::SRL,     MVT::v2i64,    1 },
567     { ISD::SHL,     MVT::v4i64,    1 },
568     { ISD::SRL,     MVT::v4i64,    1 },
569   };
570 
571   // Look for AVX2 lowering tricks.
572   if (ST->hasAVX2()) {
573     if (ISD == ISD::SHL && LT.second == MVT::v16i16 &&
574         (Op2Info == TargetTransformInfo::OK_UniformConstantValue ||
575          Op2Info == TargetTransformInfo::OK_NonUniformConstantValue))
576       // On AVX2, a packed v16i16 shift left by a constant build_vector
577       // is lowered into a vector multiply (vpmullw).
578       return getArithmeticInstrCost(Instruction::Mul, Ty, Op1Info, Op2Info,
579                                     TargetTransformInfo::OP_None,
580                                     TargetTransformInfo::OP_None);
581 
582     if (const auto *Entry = CostTableLookup(AVX2ShiftCostTable, ISD, LT.second))
583       return LT.first * Entry->Cost;
584   }
585 
586   static const CostTblEntry XOPShiftCostTable[] = {
587     // 128bit shifts take 1cy, but right shifts require negation beforehand.
588     { ISD::SHL,     MVT::v16i8,    1 },
589     { ISD::SRL,     MVT::v16i8,    2 },
590     { ISD::SRA,     MVT::v16i8,    2 },
591     { ISD::SHL,     MVT::v8i16,    1 },
592     { ISD::SRL,     MVT::v8i16,    2 },
593     { ISD::SRA,     MVT::v8i16,    2 },
594     { ISD::SHL,     MVT::v4i32,    1 },
595     { ISD::SRL,     MVT::v4i32,    2 },
596     { ISD::SRA,     MVT::v4i32,    2 },
597     { ISD::SHL,     MVT::v2i64,    1 },
598     { ISD::SRL,     MVT::v2i64,    2 },
599     { ISD::SRA,     MVT::v2i64,    2 },
600     // 256bit shifts require splitting if AVX2 didn't catch them above.
601     { ISD::SHL,     MVT::v32i8,  2+2 },
602     { ISD::SRL,     MVT::v32i8,  4+2 },
603     { ISD::SRA,     MVT::v32i8,  4+2 },
604     { ISD::SHL,     MVT::v16i16, 2+2 },
605     { ISD::SRL,     MVT::v16i16, 4+2 },
606     { ISD::SRA,     MVT::v16i16, 4+2 },
607     { ISD::SHL,     MVT::v8i32,  2+2 },
608     { ISD::SRL,     MVT::v8i32,  4+2 },
609     { ISD::SRA,     MVT::v8i32,  4+2 },
610     { ISD::SHL,     MVT::v4i64,  2+2 },
611     { ISD::SRL,     MVT::v4i64,  4+2 },
612     { ISD::SRA,     MVT::v4i64,  4+2 },
613   };
614 
615   // Look for XOP lowering tricks.
616   if (ST->hasXOP()) {
617     // If the right shift is constant then we'll fold the negation so
618     // it's as cheap as a left shift.
619     int ShiftISD = ISD;
620     if ((ShiftISD == ISD::SRL || ShiftISD == ISD::SRA) &&
621         (Op2Info == TargetTransformInfo::OK_UniformConstantValue ||
622          Op2Info == TargetTransformInfo::OK_NonUniformConstantValue))
623       ShiftISD = ISD::SHL;
624     if (const auto *Entry =
625             CostTableLookup(XOPShiftCostTable, ShiftISD, LT.second))
626       return LT.first * Entry->Cost;
627   }
628 
629   static const CostTblEntry SSE2UniformShiftCostTable[] = {
630     // Uniform splats are cheaper for the following instructions.
631     { ISD::SHL,  MVT::v16i16, 2+2 }, // 2*psllw + split.
632     { ISD::SHL,  MVT::v8i32,  2+2 }, // 2*pslld + split.
633     { ISD::SHL,  MVT::v4i64,  2+2 }, // 2*psllq + split.
634 
635     { ISD::SRL,  MVT::v16i16, 2+2 }, // 2*psrlw + split.
636     { ISD::SRL,  MVT::v8i32,  2+2 }, // 2*psrld + split.
637     { ISD::SRL,  MVT::v4i64,  2+2 }, // 2*psrlq + split.
638 
639     { ISD::SRA,  MVT::v16i16, 2+2 }, // 2*psraw + split.
640     { ISD::SRA,  MVT::v8i32,  2+2 }, // 2*psrad + split.
641     { ISD::SRA,  MVT::v2i64,    4 }, // 2*psrad + shuffle.
642     { ISD::SRA,  MVT::v4i64,  8+2 }, // 2*(2*psrad + shuffle) + split.
643   };
644 
645   if (ST->hasSSE2() &&
646       ((Op2Info == TargetTransformInfo::OK_UniformConstantValue) ||
647        (Op2Info == TargetTransformInfo::OK_UniformValue))) {
648 
649     // Handle AVX2 uniform v4i64 ISD::SRA, it's not worth a table.
650     if (ISD == ISD::SRA && LT.second == MVT::v4i64 && ST->hasAVX2())
651       return LT.first * 4; // 2*psrad + shuffle.
652 
653     if (const auto *Entry =
654             CostTableLookup(SSE2UniformShiftCostTable, ISD, LT.second))
655       return LT.first * Entry->Cost;
656   }
657 
658   if (ISD == ISD::SHL &&
659       Op2Info == TargetTransformInfo::OK_NonUniformConstantValue) {
660     MVT VT = LT.second;
661     // Vector shift left by non uniform constant can be lowered
662     // into vector multiply.
663     if (((VT == MVT::v8i16 || VT == MVT::v4i32) && ST->hasSSE2()) ||
664         ((VT == MVT::v16i16 || VT == MVT::v8i32) && ST->hasAVX()))
665       ISD = ISD::MUL;
666   }
667 
668   static const CostTblEntry AVX2CostTable[] = {
669     { ISD::SHL,  MVT::v32i8,     11 }, // vpblendvb sequence.
670     { ISD::SHL,  MVT::v16i16,    10 }, // extend/vpsrlvd/pack sequence.
671 
672     { ISD::SRL,  MVT::v32i8,     11 }, // vpblendvb sequence.
673     { ISD::SRL,  MVT::v16i16,    10 }, // extend/vpsrlvd/pack sequence.
674 
675     { ISD::SRA,  MVT::v32i8,     24 }, // vpblendvb sequence.
676     { ISD::SRA,  MVT::v16i16,    10 }, // extend/vpsravd/pack sequence.
677     { ISD::SRA,  MVT::v2i64,      4 }, // srl/xor/sub sequence.
678     { ISD::SRA,  MVT::v4i64,      4 }, // srl/xor/sub sequence.
679 
680     { ISD::SUB,  MVT::v32i8,      1 }, // psubb
681     { ISD::ADD,  MVT::v32i8,      1 }, // paddb
682     { ISD::SUB,  MVT::v16i16,     1 }, // psubw
683     { ISD::ADD,  MVT::v16i16,     1 }, // paddw
684     { ISD::SUB,  MVT::v8i32,      1 }, // psubd
685     { ISD::ADD,  MVT::v8i32,      1 }, // paddd
686     { ISD::SUB,  MVT::v4i64,      1 }, // psubq
687     { ISD::ADD,  MVT::v4i64,      1 }, // paddq
688 
689     { ISD::MUL,  MVT::v32i8,     17 }, // extend/pmullw/trunc sequence.
690     { ISD::MUL,  MVT::v16i8,      7 }, // extend/pmullw/trunc sequence.
691     { ISD::MUL,  MVT::v16i16,     1 }, // pmullw
692     { ISD::MUL,  MVT::v8i32,      2 }, // pmulld (Haswell from agner.org)
693     { ISD::MUL,  MVT::v4i64,      8 }, // 3*pmuludq/3*shift/2*add
694 
695     { ISD::FADD, MVT::v4f64,      1 }, // Haswell from http://www.agner.org/
696     { ISD::FADD, MVT::v8f32,      1 }, // Haswell from http://www.agner.org/
697     { ISD::FSUB, MVT::v4f64,      1 }, // Haswell from http://www.agner.org/
698     { ISD::FSUB, MVT::v8f32,      1 }, // Haswell from http://www.agner.org/
699     { ISD::FMUL, MVT::v4f64,      1 }, // Haswell from http://www.agner.org/
700     { ISD::FMUL, MVT::v8f32,      1 }, // Haswell from http://www.agner.org/
701 
702     { ISD::FDIV, MVT::f32,        7 }, // Haswell from http://www.agner.org/
703     { ISD::FDIV, MVT::v4f32,      7 }, // Haswell from http://www.agner.org/
704     { ISD::FDIV, MVT::v8f32,     14 }, // Haswell from http://www.agner.org/
705     { ISD::FDIV, MVT::f64,       14 }, // Haswell from http://www.agner.org/
706     { ISD::FDIV, MVT::v2f64,     14 }, // Haswell from http://www.agner.org/
707     { ISD::FDIV, MVT::v4f64,     28 }, // Haswell from http://www.agner.org/
708   };
709 
710   // Look for AVX2 lowering tricks for custom cases.
711   if (ST->hasAVX2())
712     if (const auto *Entry = CostTableLookup(AVX2CostTable, ISD, LT.second))
713       return LT.first * Entry->Cost;
714 
715   static const CostTblEntry AVX1CostTable[] = {
716     // We don't have to scalarize unsupported ops. We can issue two half-sized
717     // operations and we only need to extract the upper YMM half.
718     // Two ops + 1 extract + 1 insert = 4.
719     { ISD::MUL,     MVT::v16i16,     4 },
720     { ISD::MUL,     MVT::v8i32,      4 },
721     { ISD::SUB,     MVT::v32i8,      4 },
722     { ISD::ADD,     MVT::v32i8,      4 },
723     { ISD::SUB,     MVT::v16i16,     4 },
724     { ISD::ADD,     MVT::v16i16,     4 },
725     { ISD::SUB,     MVT::v8i32,      4 },
726     { ISD::ADD,     MVT::v8i32,      4 },
727     { ISD::SUB,     MVT::v4i64,      4 },
728     { ISD::ADD,     MVT::v4i64,      4 },
729 
730     // A v4i64 multiply is custom lowered as two split v2i64 vectors that then
731     // are lowered as a series of long multiplies(3), shifts(3) and adds(2)
732     // Because we believe v4i64 to be a legal type, we must also include the
733     // extract+insert in the cost table. Therefore, the cost here is 18
734     // instead of 8.
735     { ISD::MUL,     MVT::v4i64,     18 },
736 
737     { ISD::MUL,     MVT::v32i8,     26 }, // extend/pmullw/trunc sequence.
738 
739     { ISD::FDIV,    MVT::f32,       14 }, // SNB from http://www.agner.org/
740     { ISD::FDIV,    MVT::v4f32,     14 }, // SNB from http://www.agner.org/
741     { ISD::FDIV,    MVT::v8f32,     28 }, // SNB from http://www.agner.org/
742     { ISD::FDIV,    MVT::f64,       22 }, // SNB from http://www.agner.org/
743     { ISD::FDIV,    MVT::v2f64,     22 }, // SNB from http://www.agner.org/
744     { ISD::FDIV,    MVT::v4f64,     44 }, // SNB from http://www.agner.org/
745   };
746 
747   if (ST->hasAVX())
748     if (const auto *Entry = CostTableLookup(AVX1CostTable, ISD, LT.second))
749       return LT.first * Entry->Cost;
750 
751   static const CostTblEntry SSE42CostTable[] = {
752     { ISD::FADD, MVT::f64,     1 }, // Nehalem from http://www.agner.org/
753     { ISD::FADD, MVT::f32,     1 }, // Nehalem from http://www.agner.org/
754     { ISD::FADD, MVT::v2f64,   1 }, // Nehalem from http://www.agner.org/
755     { ISD::FADD, MVT::v4f32,   1 }, // Nehalem from http://www.agner.org/
756 
757     { ISD::FSUB, MVT::f64,     1 }, // Nehalem from http://www.agner.org/
758     { ISD::FSUB, MVT::f32 ,    1 }, // Nehalem from http://www.agner.org/
759     { ISD::FSUB, MVT::v2f64,   1 }, // Nehalem from http://www.agner.org/
760     { ISD::FSUB, MVT::v4f32,   1 }, // Nehalem from http://www.agner.org/
761 
762     { ISD::FMUL, MVT::f64,     1 }, // Nehalem from http://www.agner.org/
763     { ISD::FMUL, MVT::f32,     1 }, // Nehalem from http://www.agner.org/
764     { ISD::FMUL, MVT::v2f64,   1 }, // Nehalem from http://www.agner.org/
765     { ISD::FMUL, MVT::v4f32,   1 }, // Nehalem from http://www.agner.org/
766 
767     { ISD::FDIV,  MVT::f32,   14 }, // Nehalem from http://www.agner.org/
768     { ISD::FDIV,  MVT::v4f32, 14 }, // Nehalem from http://www.agner.org/
769     { ISD::FDIV,  MVT::f64,   22 }, // Nehalem from http://www.agner.org/
770     { ISD::FDIV,  MVT::v2f64, 22 }, // Nehalem from http://www.agner.org/
771   };
772 
773   if (ST->hasSSE42())
774     if (const auto *Entry = CostTableLookup(SSE42CostTable, ISD, LT.second))
775       return LT.first * Entry->Cost;
776 
777   static const CostTblEntry SSE41CostTable[] = {
778     { ISD::SHL,  MVT::v16i8,      11 }, // pblendvb sequence.
779     { ISD::SHL,  MVT::v32i8,  2*11+2 }, // pblendvb sequence + split.
780     { ISD::SHL,  MVT::v8i16,      14 }, // pblendvb sequence.
781     { ISD::SHL,  MVT::v16i16, 2*14+2 }, // pblendvb sequence + split.
782     { ISD::SHL,  MVT::v4i32,       4 }, // pslld/paddd/cvttps2dq/pmulld
783     { ISD::SHL,  MVT::v8i32,   2*4+2 }, // pslld/paddd/cvttps2dq/pmulld + split
784 
785     { ISD::SRL,  MVT::v16i8,      12 }, // pblendvb sequence.
786     { ISD::SRL,  MVT::v32i8,  2*12+2 }, // pblendvb sequence + split.
787     { ISD::SRL,  MVT::v8i16,      14 }, // pblendvb sequence.
788     { ISD::SRL,  MVT::v16i16, 2*14+2 }, // pblendvb sequence + split.
789     { ISD::SRL,  MVT::v4i32,      11 }, // Shift each lane + blend.
790     { ISD::SRL,  MVT::v8i32,  2*11+2 }, // Shift each lane + blend + split.
791 
792     { ISD::SRA,  MVT::v16i8,      24 }, // pblendvb sequence.
793     { ISD::SRA,  MVT::v32i8,  2*24+2 }, // pblendvb sequence + split.
794     { ISD::SRA,  MVT::v8i16,      14 }, // pblendvb sequence.
795     { ISD::SRA,  MVT::v16i16, 2*14+2 }, // pblendvb sequence + split.
796     { ISD::SRA,  MVT::v4i32,      12 }, // Shift each lane + blend.
797     { ISD::SRA,  MVT::v8i32,  2*12+2 }, // Shift each lane + blend + split.
798 
799     { ISD::MUL,  MVT::v4i32,       2 }  // pmulld (Nehalem from agner.org)
800   };
801 
802   if (ST->hasSSE41())
803     if (const auto *Entry = CostTableLookup(SSE41CostTable, ISD, LT.second))
804       return LT.first * Entry->Cost;
805 
806   static const CostTblEntry SSE2CostTable[] = {
807     // We don't correctly identify costs of casts because they are marked as
808     // custom.
809     { ISD::SHL,  MVT::v16i8,      26 }, // cmpgtb sequence.
810     { ISD::SHL,  MVT::v8i16,      32 }, // cmpgtb sequence.
811     { ISD::SHL,  MVT::v4i32,     2*5 }, // We optimized this using mul.
812     { ISD::SHL,  MVT::v2i64,       4 }, // splat+shuffle sequence.
813     { ISD::SHL,  MVT::v4i64,   2*4+2 }, // splat+shuffle sequence + split.
814 
815     { ISD::SRL,  MVT::v16i8,      26 }, // cmpgtb sequence.
816     { ISD::SRL,  MVT::v8i16,      32 }, // cmpgtb sequence.
817     { ISD::SRL,  MVT::v4i32,      16 }, // Shift each lane + blend.
818     { ISD::SRL,  MVT::v2i64,       4 }, // splat+shuffle sequence.
819     { ISD::SRL,  MVT::v4i64,   2*4+2 }, // splat+shuffle sequence + split.
820 
821     { ISD::SRA,  MVT::v16i8,      54 }, // unpacked cmpgtb sequence.
822     { ISD::SRA,  MVT::v8i16,      32 }, // cmpgtb sequence.
823     { ISD::SRA,  MVT::v4i32,      16 }, // Shift each lane + blend.
824     { ISD::SRA,  MVT::v2i64,      12 }, // srl/xor/sub sequence.
825     { ISD::SRA,  MVT::v4i64,  2*12+2 }, // srl/xor/sub sequence+split.
826 
827     { ISD::MUL,  MVT::v16i8,      12 }, // extend/pmullw/trunc sequence.
828     { ISD::MUL,  MVT::v8i16,       1 }, // pmullw
829     { ISD::MUL,  MVT::v4i32,       6 }, // 3*pmuludq/4*shuffle
830     { ISD::MUL,  MVT::v2i64,       8 }, // 3*pmuludq/3*shift/2*add
831 
832     { ISD::FDIV, MVT::f32,        23 }, // Pentium IV from http://www.agner.org/
833     { ISD::FDIV, MVT::v4f32,      39 }, // Pentium IV from http://www.agner.org/
834     { ISD::FDIV, MVT::f64,        38 }, // Pentium IV from http://www.agner.org/
835     { ISD::FDIV, MVT::v2f64,      69 }, // Pentium IV from http://www.agner.org/
836 
837     { ISD::FADD, MVT::f32,         2 }, // Pentium IV from http://www.agner.org/
838     { ISD::FADD, MVT::f64,         2 }, // Pentium IV from http://www.agner.org/
839 
840     { ISD::FSUB, MVT::f32,         2 }, // Pentium IV from http://www.agner.org/
841     { ISD::FSUB, MVT::f64,         2 }, // Pentium IV from http://www.agner.org/
842   };
843 
844   if (ST->hasSSE2())
845     if (const auto *Entry = CostTableLookup(SSE2CostTable, ISD, LT.second))
846       return LT.first * Entry->Cost;
847 
848   static const CostTblEntry SSE1CostTable[] = {
849     { ISD::FDIV, MVT::f32,   17 }, // Pentium III from http://www.agner.org/
850     { ISD::FDIV, MVT::v4f32, 34 }, // Pentium III from http://www.agner.org/
851 
852     { ISD::FADD, MVT::f32,    1 }, // Pentium III from http://www.agner.org/
853     { ISD::FADD, MVT::v4f32,  2 }, // Pentium III from http://www.agner.org/
854 
855     { ISD::FSUB, MVT::f32,    1 }, // Pentium III from http://www.agner.org/
856     { ISD::FSUB, MVT::v4f32,  2 }, // Pentium III from http://www.agner.org/
857 
858     { ISD::ADD, MVT::i8,      1 }, // Pentium III from http://www.agner.org/
859     { ISD::ADD, MVT::i16,     1 }, // Pentium III from http://www.agner.org/
860     { ISD::ADD, MVT::i32,     1 }, // Pentium III from http://www.agner.org/
861 
862     { ISD::SUB, MVT::i8,      1 }, // Pentium III from http://www.agner.org/
863     { ISD::SUB, MVT::i16,     1 }, // Pentium III from http://www.agner.org/
864     { ISD::SUB, MVT::i32,     1 }, // Pentium III from http://www.agner.org/
865   };
866 
867   if (ST->hasSSE1())
868     if (const auto *Entry = CostTableLookup(SSE1CostTable, ISD, LT.second))
869       return LT.first * Entry->Cost;
870 
871   // It is not a good idea to vectorize division. We have to scalarize it and
872   // in the process we will often end up having to spilling regular
873   // registers. The overhead of division is going to dominate most kernels
874   // anyways so try hard to prevent vectorization of division - it is
875   // generally a bad idea. Assume somewhat arbitrarily that we have to be able
876   // to hide "20 cycles" for each lane.
877   if (LT.second.isVector() && (ISD == ISD::SDIV || ISD == ISD::SREM ||
878                                ISD == ISD::UDIV || ISD == ISD::UREM)) {
879     int ScalarCost = getArithmeticInstrCost(
880         Opcode, Ty->getScalarType(), Op1Info, Op2Info,
881         TargetTransformInfo::OP_None, TargetTransformInfo::OP_None);
882     return 20 * LT.first * LT.second.getVectorNumElements() * ScalarCost;
883   }
884 
885   // Fallback to the default implementation.
886   return BaseT::getArithmeticInstrCost(Opcode, Ty, Op1Info, Op2Info);
887 }
888 
889 int X86TTIImpl::getShuffleCost(TTI::ShuffleKind Kind, Type *Tp, int Index,
890                                Type *SubTp) {
891   // 64-bit packed float vectors (v2f32) are widened to type v4f32.
892   // 64-bit packed integer vectors (v2i32) are widened to type v4i32.
893   std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Tp);
894 
895   // Treat Transpose as 2-op shuffles - there's no difference in lowering.
896   if (Kind == TTI::SK_Transpose)
897     Kind = TTI::SK_PermuteTwoSrc;
898 
899   // For Broadcasts we are splatting the first element from the first input
900   // register, so only need to reference that input and all the output
901   // registers are the same.
902   if (Kind == TTI::SK_Broadcast)
903     LT.first = 1;
904 
905   // Subvector extractions are free if they start at the beginning of a
906   // vector and cheap if the subvectors are aligned.
907   if (Kind == TTI::SK_ExtractSubvector && LT.second.isVector()) {
908     int NumElts = LT.second.getVectorNumElements();
909     if ((Index % NumElts) == 0)
910       return 0;
911     std::pair<int, MVT> SubLT = TLI->getTypeLegalizationCost(DL, SubTp);
912     if (SubLT.second.isVector()) {
913       int NumSubElts = SubLT.second.getVectorNumElements();
914       if ((Index % NumSubElts) == 0 && (NumElts % NumSubElts) == 0)
915         return SubLT.first;
916       // Handle some cases for widening legalization. For now we only handle
917       // cases where the original subvector was naturally aligned and evenly
918       // fit in its legalized subvector type.
919       // FIXME: Remove some of the alignment restrictions.
920       // FIXME: We can use permq for 64-bit or larger extracts from 256-bit
921       // vectors.
922       int OrigSubElts = SubTp->getVectorNumElements();
923       if (ExperimentalVectorWideningLegalization &&
924           NumSubElts > OrigSubElts &&
925           (Index % OrigSubElts) == 0 && (NumSubElts % OrigSubElts) == 0 &&
926           LT.second.getVectorElementType() ==
927             SubLT.second.getVectorElementType() &&
928           LT.second.getVectorElementType().getSizeInBits() ==
929             Tp->getVectorElementType()->getPrimitiveSizeInBits()) {
930         assert(NumElts >= NumSubElts && NumElts > OrigSubElts &&
931                "Unexpected number of elements!");
932         Type *VecTy = VectorType::get(Tp->getVectorElementType(),
933                                       LT.second.getVectorNumElements());
934         Type *SubTy = VectorType::get(Tp->getVectorElementType(),
935                                       SubLT.second.getVectorNumElements());
936         int ExtractIndex = alignDown((Index % NumElts), NumSubElts);
937         int ExtractCost = getShuffleCost(TTI::SK_ExtractSubvector, VecTy,
938                                          ExtractIndex, SubTy);
939 
940         // If the original size is 32-bits or more, we can use pshufd. Otherwise
941         // if we have SSSE3 we can use pshufb.
942         if (SubTp->getPrimitiveSizeInBits() >= 32 || ST->hasSSSE3())
943           return ExtractCost + 1; // pshufd or pshufb
944 
945         assert(SubTp->getPrimitiveSizeInBits() == 16 &&
946                "Unexpected vector size");
947 
948         return ExtractCost + 2; // worst case pshufhw + pshufd
949       }
950     }
951   }
952 
953   // We are going to permute multiple sources and the result will be in multiple
954   // destinations. Providing an accurate cost only for splits where the element
955   // type remains the same.
956   if (Kind == TTI::SK_PermuteSingleSrc && LT.first != 1) {
957     MVT LegalVT = LT.second;
958     if (LegalVT.isVector() &&
959         LegalVT.getVectorElementType().getSizeInBits() ==
960             Tp->getVectorElementType()->getPrimitiveSizeInBits() &&
961         LegalVT.getVectorNumElements() < Tp->getVectorNumElements()) {
962 
963       unsigned VecTySize = DL.getTypeStoreSize(Tp);
964       unsigned LegalVTSize = LegalVT.getStoreSize();
965       // Number of source vectors after legalization:
966       unsigned NumOfSrcs = (VecTySize + LegalVTSize - 1) / LegalVTSize;
967       // Number of destination vectors after legalization:
968       unsigned NumOfDests = LT.first;
969 
970       Type *SingleOpTy = VectorType::get(Tp->getVectorElementType(),
971                                          LegalVT.getVectorNumElements());
972 
973       unsigned NumOfShuffles = (NumOfSrcs - 1) * NumOfDests;
974       return NumOfShuffles *
975              getShuffleCost(TTI::SK_PermuteTwoSrc, SingleOpTy, 0, nullptr);
976     }
977 
978     return BaseT::getShuffleCost(Kind, Tp, Index, SubTp);
979   }
980 
981   // For 2-input shuffles, we must account for splitting the 2 inputs into many.
982   if (Kind == TTI::SK_PermuteTwoSrc && LT.first != 1) {
983     // We assume that source and destination have the same vector type.
984     int NumOfDests = LT.first;
985     int NumOfShufflesPerDest = LT.first * 2 - 1;
986     LT.first = NumOfDests * NumOfShufflesPerDest;
987   }
988 
989   static const CostTblEntry AVX512VBMIShuffleTbl[] = {
990       {TTI::SK_Reverse, MVT::v64i8, 1}, // vpermb
991       {TTI::SK_Reverse, MVT::v32i8, 1}, // vpermb
992 
993       {TTI::SK_PermuteSingleSrc, MVT::v64i8, 1}, // vpermb
994       {TTI::SK_PermuteSingleSrc, MVT::v32i8, 1}, // vpermb
995 
996       {TTI::SK_PermuteTwoSrc, MVT::v64i8, 1}, // vpermt2b
997       {TTI::SK_PermuteTwoSrc, MVT::v32i8, 1}, // vpermt2b
998       {TTI::SK_PermuteTwoSrc, MVT::v16i8, 1}  // vpermt2b
999   };
1000 
1001   if (ST->hasVBMI())
1002     if (const auto *Entry =
1003             CostTableLookup(AVX512VBMIShuffleTbl, Kind, LT.second))
1004       return LT.first * Entry->Cost;
1005 
1006   static const CostTblEntry AVX512BWShuffleTbl[] = {
1007       {TTI::SK_Broadcast, MVT::v32i16, 1}, // vpbroadcastw
1008       {TTI::SK_Broadcast, MVT::v64i8, 1},  // vpbroadcastb
1009 
1010       {TTI::SK_Reverse, MVT::v32i16, 1}, // vpermw
1011       {TTI::SK_Reverse, MVT::v16i16, 1}, // vpermw
1012       {TTI::SK_Reverse, MVT::v64i8, 2},  // pshufb + vshufi64x2
1013 
1014       {TTI::SK_PermuteSingleSrc, MVT::v32i16, 1}, // vpermw
1015       {TTI::SK_PermuteSingleSrc, MVT::v16i16, 1}, // vpermw
1016       {TTI::SK_PermuteSingleSrc, MVT::v8i16, 1},  // vpermw
1017       {TTI::SK_PermuteSingleSrc, MVT::v64i8, 8},  // extend to v32i16
1018       {TTI::SK_PermuteSingleSrc, MVT::v32i8, 3},  // vpermw + zext/trunc
1019 
1020       {TTI::SK_PermuteTwoSrc, MVT::v32i16, 1}, // vpermt2w
1021       {TTI::SK_PermuteTwoSrc, MVT::v16i16, 1}, // vpermt2w
1022       {TTI::SK_PermuteTwoSrc, MVT::v8i16, 1},  // vpermt2w
1023       {TTI::SK_PermuteTwoSrc, MVT::v32i8, 3},  // zext + vpermt2w + trunc
1024       {TTI::SK_PermuteTwoSrc, MVT::v64i8, 19}, // 6 * v32i8 + 1
1025       {TTI::SK_PermuteTwoSrc, MVT::v16i8, 3}   // zext + vpermt2w + trunc
1026   };
1027 
1028   if (ST->hasBWI())
1029     if (const auto *Entry =
1030             CostTableLookup(AVX512BWShuffleTbl, Kind, LT.second))
1031       return LT.first * Entry->Cost;
1032 
1033   static const CostTblEntry AVX512ShuffleTbl[] = {
1034       {TTI::SK_Broadcast, MVT::v8f64, 1},  // vbroadcastpd
1035       {TTI::SK_Broadcast, MVT::v16f32, 1}, // vbroadcastps
1036       {TTI::SK_Broadcast, MVT::v8i64, 1},  // vpbroadcastq
1037       {TTI::SK_Broadcast, MVT::v16i32, 1}, // vpbroadcastd
1038 
1039       {TTI::SK_Reverse, MVT::v8f64, 1},  // vpermpd
1040       {TTI::SK_Reverse, MVT::v16f32, 1}, // vpermps
1041       {TTI::SK_Reverse, MVT::v8i64, 1},  // vpermq
1042       {TTI::SK_Reverse, MVT::v16i32, 1}, // vpermd
1043 
1044       {TTI::SK_PermuteSingleSrc, MVT::v8f64, 1},  // vpermpd
1045       {TTI::SK_PermuteSingleSrc, MVT::v4f64, 1},  // vpermpd
1046       {TTI::SK_PermuteSingleSrc, MVT::v2f64, 1},  // vpermpd
1047       {TTI::SK_PermuteSingleSrc, MVT::v16f32, 1}, // vpermps
1048       {TTI::SK_PermuteSingleSrc, MVT::v8f32, 1},  // vpermps
1049       {TTI::SK_PermuteSingleSrc, MVT::v4f32, 1},  // vpermps
1050       {TTI::SK_PermuteSingleSrc, MVT::v8i64, 1},  // vpermq
1051       {TTI::SK_PermuteSingleSrc, MVT::v4i64, 1},  // vpermq
1052       {TTI::SK_PermuteSingleSrc, MVT::v2i64, 1},  // vpermq
1053       {TTI::SK_PermuteSingleSrc, MVT::v16i32, 1}, // vpermd
1054       {TTI::SK_PermuteSingleSrc, MVT::v8i32, 1},  // vpermd
1055       {TTI::SK_PermuteSingleSrc, MVT::v4i32, 1},  // vpermd
1056       {TTI::SK_PermuteSingleSrc, MVT::v16i8, 1},  // pshufb
1057 
1058       {TTI::SK_PermuteTwoSrc, MVT::v8f64, 1},  // vpermt2pd
1059       {TTI::SK_PermuteTwoSrc, MVT::v16f32, 1}, // vpermt2ps
1060       {TTI::SK_PermuteTwoSrc, MVT::v8i64, 1},  // vpermt2q
1061       {TTI::SK_PermuteTwoSrc, MVT::v16i32, 1}, // vpermt2d
1062       {TTI::SK_PermuteTwoSrc, MVT::v4f64, 1},  // vpermt2pd
1063       {TTI::SK_PermuteTwoSrc, MVT::v8f32, 1},  // vpermt2ps
1064       {TTI::SK_PermuteTwoSrc, MVT::v4i64, 1},  // vpermt2q
1065       {TTI::SK_PermuteTwoSrc, MVT::v8i32, 1},  // vpermt2d
1066       {TTI::SK_PermuteTwoSrc, MVT::v2f64, 1},  // vpermt2pd
1067       {TTI::SK_PermuteTwoSrc, MVT::v4f32, 1},  // vpermt2ps
1068       {TTI::SK_PermuteTwoSrc, MVT::v2i64, 1},  // vpermt2q
1069       {TTI::SK_PermuteTwoSrc, MVT::v4i32, 1}   // vpermt2d
1070   };
1071 
1072   if (ST->hasAVX512())
1073     if (const auto *Entry = CostTableLookup(AVX512ShuffleTbl, Kind, LT.second))
1074       return LT.first * Entry->Cost;
1075 
1076   static const CostTblEntry AVX2ShuffleTbl[] = {
1077       {TTI::SK_Broadcast, MVT::v4f64, 1},  // vbroadcastpd
1078       {TTI::SK_Broadcast, MVT::v8f32, 1},  // vbroadcastps
1079       {TTI::SK_Broadcast, MVT::v4i64, 1},  // vpbroadcastq
1080       {TTI::SK_Broadcast, MVT::v8i32, 1},  // vpbroadcastd
1081       {TTI::SK_Broadcast, MVT::v16i16, 1}, // vpbroadcastw
1082       {TTI::SK_Broadcast, MVT::v32i8, 1},  // vpbroadcastb
1083 
1084       {TTI::SK_Reverse, MVT::v4f64, 1},  // vpermpd
1085       {TTI::SK_Reverse, MVT::v8f32, 1},  // vpermps
1086       {TTI::SK_Reverse, MVT::v4i64, 1},  // vpermq
1087       {TTI::SK_Reverse, MVT::v8i32, 1},  // vpermd
1088       {TTI::SK_Reverse, MVT::v16i16, 2}, // vperm2i128 + pshufb
1089       {TTI::SK_Reverse, MVT::v32i8, 2},  // vperm2i128 + pshufb
1090 
1091       {TTI::SK_Select, MVT::v16i16, 1}, // vpblendvb
1092       {TTI::SK_Select, MVT::v32i8, 1},  // vpblendvb
1093 
1094       {TTI::SK_PermuteSingleSrc, MVT::v4f64, 1},  // vpermpd
1095       {TTI::SK_PermuteSingleSrc, MVT::v8f32, 1},  // vpermps
1096       {TTI::SK_PermuteSingleSrc, MVT::v4i64, 1},  // vpermq
1097       {TTI::SK_PermuteSingleSrc, MVT::v8i32, 1},  // vpermd
1098       {TTI::SK_PermuteSingleSrc, MVT::v16i16, 4}, // vperm2i128 + 2*vpshufb
1099                                                   // + vpblendvb
1100       {TTI::SK_PermuteSingleSrc, MVT::v32i8, 4},  // vperm2i128 + 2*vpshufb
1101                                                   // + vpblendvb
1102 
1103       {TTI::SK_PermuteTwoSrc, MVT::v4f64, 3},  // 2*vpermpd + vblendpd
1104       {TTI::SK_PermuteTwoSrc, MVT::v8f32, 3},  // 2*vpermps + vblendps
1105       {TTI::SK_PermuteTwoSrc, MVT::v4i64, 3},  // 2*vpermq + vpblendd
1106       {TTI::SK_PermuteTwoSrc, MVT::v8i32, 3},  // 2*vpermd + vpblendd
1107       {TTI::SK_PermuteTwoSrc, MVT::v16i16, 7}, // 2*vperm2i128 + 4*vpshufb
1108                                                // + vpblendvb
1109       {TTI::SK_PermuteTwoSrc, MVT::v32i8, 7},  // 2*vperm2i128 + 4*vpshufb
1110                                                // + vpblendvb
1111   };
1112 
1113   if (ST->hasAVX2())
1114     if (const auto *Entry = CostTableLookup(AVX2ShuffleTbl, Kind, LT.second))
1115       return LT.first * Entry->Cost;
1116 
1117   static const CostTblEntry XOPShuffleTbl[] = {
1118       {TTI::SK_PermuteSingleSrc, MVT::v4f64, 2},  // vperm2f128 + vpermil2pd
1119       {TTI::SK_PermuteSingleSrc, MVT::v8f32, 2},  // vperm2f128 + vpermil2ps
1120       {TTI::SK_PermuteSingleSrc, MVT::v4i64, 2},  // vperm2f128 + vpermil2pd
1121       {TTI::SK_PermuteSingleSrc, MVT::v8i32, 2},  // vperm2f128 + vpermil2ps
1122       {TTI::SK_PermuteSingleSrc, MVT::v16i16, 4}, // vextractf128 + 2*vpperm
1123                                                   // + vinsertf128
1124       {TTI::SK_PermuteSingleSrc, MVT::v32i8, 4},  // vextractf128 + 2*vpperm
1125                                                   // + vinsertf128
1126 
1127       {TTI::SK_PermuteTwoSrc, MVT::v16i16, 9}, // 2*vextractf128 + 6*vpperm
1128                                                // + vinsertf128
1129       {TTI::SK_PermuteTwoSrc, MVT::v8i16, 1},  // vpperm
1130       {TTI::SK_PermuteTwoSrc, MVT::v32i8, 9},  // 2*vextractf128 + 6*vpperm
1131                                                // + vinsertf128
1132       {TTI::SK_PermuteTwoSrc, MVT::v16i8, 1},  // vpperm
1133   };
1134 
1135   if (ST->hasXOP())
1136     if (const auto *Entry = CostTableLookup(XOPShuffleTbl, Kind, LT.second))
1137       return LT.first * Entry->Cost;
1138 
1139   static const CostTblEntry AVX1ShuffleTbl[] = {
1140       {TTI::SK_Broadcast, MVT::v4f64, 2},  // vperm2f128 + vpermilpd
1141       {TTI::SK_Broadcast, MVT::v8f32, 2},  // vperm2f128 + vpermilps
1142       {TTI::SK_Broadcast, MVT::v4i64, 2},  // vperm2f128 + vpermilpd
1143       {TTI::SK_Broadcast, MVT::v8i32, 2},  // vperm2f128 + vpermilps
1144       {TTI::SK_Broadcast, MVT::v16i16, 3}, // vpshuflw + vpshufd + vinsertf128
1145       {TTI::SK_Broadcast, MVT::v32i8, 2},  // vpshufb + vinsertf128
1146 
1147       {TTI::SK_Reverse, MVT::v4f64, 2},  // vperm2f128 + vpermilpd
1148       {TTI::SK_Reverse, MVT::v8f32, 2},  // vperm2f128 + vpermilps
1149       {TTI::SK_Reverse, MVT::v4i64, 2},  // vperm2f128 + vpermilpd
1150       {TTI::SK_Reverse, MVT::v8i32, 2},  // vperm2f128 + vpermilps
1151       {TTI::SK_Reverse, MVT::v16i16, 4}, // vextractf128 + 2*pshufb
1152                                          // + vinsertf128
1153       {TTI::SK_Reverse, MVT::v32i8, 4},  // vextractf128 + 2*pshufb
1154                                          // + vinsertf128
1155 
1156       {TTI::SK_Select, MVT::v4i64, 1},  // vblendpd
1157       {TTI::SK_Select, MVT::v4f64, 1},  // vblendpd
1158       {TTI::SK_Select, MVT::v8i32, 1},  // vblendps
1159       {TTI::SK_Select, MVT::v8f32, 1},  // vblendps
1160       {TTI::SK_Select, MVT::v16i16, 3}, // vpand + vpandn + vpor
1161       {TTI::SK_Select, MVT::v32i8, 3},  // vpand + vpandn + vpor
1162 
1163       {TTI::SK_PermuteSingleSrc, MVT::v4f64, 2},  // vperm2f128 + vshufpd
1164       {TTI::SK_PermuteSingleSrc, MVT::v4i64, 2},  // vperm2f128 + vshufpd
1165       {TTI::SK_PermuteSingleSrc, MVT::v8f32, 4},  // 2*vperm2f128 + 2*vshufps
1166       {TTI::SK_PermuteSingleSrc, MVT::v8i32, 4},  // 2*vperm2f128 + 2*vshufps
1167       {TTI::SK_PermuteSingleSrc, MVT::v16i16, 8}, // vextractf128 + 4*pshufb
1168                                                   // + 2*por + vinsertf128
1169       {TTI::SK_PermuteSingleSrc, MVT::v32i8, 8},  // vextractf128 + 4*pshufb
1170                                                   // + 2*por + vinsertf128
1171 
1172       {TTI::SK_PermuteTwoSrc, MVT::v4f64, 3},   // 2*vperm2f128 + vshufpd
1173       {TTI::SK_PermuteTwoSrc, MVT::v4i64, 3},   // 2*vperm2f128 + vshufpd
1174       {TTI::SK_PermuteTwoSrc, MVT::v8f32, 4},   // 2*vperm2f128 + 2*vshufps
1175       {TTI::SK_PermuteTwoSrc, MVT::v8i32, 4},   // 2*vperm2f128 + 2*vshufps
1176       {TTI::SK_PermuteTwoSrc, MVT::v16i16, 15}, // 2*vextractf128 + 8*pshufb
1177                                                 // + 4*por + vinsertf128
1178       {TTI::SK_PermuteTwoSrc, MVT::v32i8, 15},  // 2*vextractf128 + 8*pshufb
1179                                                 // + 4*por + vinsertf128
1180   };
1181 
1182   if (ST->hasAVX())
1183     if (const auto *Entry = CostTableLookup(AVX1ShuffleTbl, Kind, LT.second))
1184       return LT.first * Entry->Cost;
1185 
1186   static const CostTblEntry SSE41ShuffleTbl[] = {
1187       {TTI::SK_Select, MVT::v2i64, 1}, // pblendw
1188       {TTI::SK_Select, MVT::v2f64, 1}, // movsd
1189       {TTI::SK_Select, MVT::v4i32, 1}, // pblendw
1190       {TTI::SK_Select, MVT::v4f32, 1}, // blendps
1191       {TTI::SK_Select, MVT::v8i16, 1}, // pblendw
1192       {TTI::SK_Select, MVT::v16i8, 1}  // pblendvb
1193   };
1194 
1195   if (ST->hasSSE41())
1196     if (const auto *Entry = CostTableLookup(SSE41ShuffleTbl, Kind, LT.second))
1197       return LT.first * Entry->Cost;
1198 
1199   static const CostTblEntry SSSE3ShuffleTbl[] = {
1200       {TTI::SK_Broadcast, MVT::v8i16, 1}, // pshufb
1201       {TTI::SK_Broadcast, MVT::v16i8, 1}, // pshufb
1202 
1203       {TTI::SK_Reverse, MVT::v8i16, 1}, // pshufb
1204       {TTI::SK_Reverse, MVT::v16i8, 1}, // pshufb
1205 
1206       {TTI::SK_Select, MVT::v8i16, 3}, // 2*pshufb + por
1207       {TTI::SK_Select, MVT::v16i8, 3}, // 2*pshufb + por
1208 
1209       {TTI::SK_PermuteSingleSrc, MVT::v8i16, 1}, // pshufb
1210       {TTI::SK_PermuteSingleSrc, MVT::v16i8, 1}, // pshufb
1211 
1212       {TTI::SK_PermuteTwoSrc, MVT::v8i16, 3}, // 2*pshufb + por
1213       {TTI::SK_PermuteTwoSrc, MVT::v16i8, 3}, // 2*pshufb + por
1214   };
1215 
1216   if (ST->hasSSSE3())
1217     if (const auto *Entry = CostTableLookup(SSSE3ShuffleTbl, Kind, LT.second))
1218       return LT.first * Entry->Cost;
1219 
1220   static const CostTblEntry SSE2ShuffleTbl[] = {
1221       {TTI::SK_Broadcast, MVT::v2f64, 1}, // shufpd
1222       {TTI::SK_Broadcast, MVT::v2i64, 1}, // pshufd
1223       {TTI::SK_Broadcast, MVT::v4i32, 1}, // pshufd
1224       {TTI::SK_Broadcast, MVT::v8i16, 2}, // pshuflw + pshufd
1225       {TTI::SK_Broadcast, MVT::v16i8, 3}, // unpck + pshuflw + pshufd
1226 
1227       {TTI::SK_Reverse, MVT::v2f64, 1}, // shufpd
1228       {TTI::SK_Reverse, MVT::v2i64, 1}, // pshufd
1229       {TTI::SK_Reverse, MVT::v4i32, 1}, // pshufd
1230       {TTI::SK_Reverse, MVT::v8i16, 3}, // pshuflw + pshufhw + pshufd
1231       {TTI::SK_Reverse, MVT::v16i8, 9}, // 2*pshuflw + 2*pshufhw
1232                                         // + 2*pshufd + 2*unpck + packus
1233 
1234       {TTI::SK_Select, MVT::v2i64, 1}, // movsd
1235       {TTI::SK_Select, MVT::v2f64, 1}, // movsd
1236       {TTI::SK_Select, MVT::v4i32, 2}, // 2*shufps
1237       {TTI::SK_Select, MVT::v8i16, 3}, // pand + pandn + por
1238       {TTI::SK_Select, MVT::v16i8, 3}, // pand + pandn + por
1239 
1240       {TTI::SK_PermuteSingleSrc, MVT::v2f64, 1}, // shufpd
1241       {TTI::SK_PermuteSingleSrc, MVT::v2i64, 1}, // pshufd
1242       {TTI::SK_PermuteSingleSrc, MVT::v4i32, 1}, // pshufd
1243       {TTI::SK_PermuteSingleSrc, MVT::v8i16, 5}, // 2*pshuflw + 2*pshufhw
1244                                                   // + pshufd/unpck
1245     { TTI::SK_PermuteSingleSrc, MVT::v16i8, 10 }, // 2*pshuflw + 2*pshufhw
1246                                                   // + 2*pshufd + 2*unpck + 2*packus
1247 
1248     { TTI::SK_PermuteTwoSrc,    MVT::v2f64,  1 }, // shufpd
1249     { TTI::SK_PermuteTwoSrc,    MVT::v2i64,  1 }, // shufpd
1250     { TTI::SK_PermuteTwoSrc,    MVT::v4i32,  2 }, // 2*{unpck,movsd,pshufd}
1251     { TTI::SK_PermuteTwoSrc,    MVT::v8i16,  8 }, // blend+permute
1252     { TTI::SK_PermuteTwoSrc,    MVT::v16i8, 13 }, // blend+permute
1253   };
1254 
1255   if (ST->hasSSE2())
1256     if (const auto *Entry = CostTableLookup(SSE2ShuffleTbl, Kind, LT.second))
1257       return LT.first * Entry->Cost;
1258 
1259   static const CostTblEntry SSE1ShuffleTbl[] = {
1260     { TTI::SK_Broadcast,        MVT::v4f32, 1 }, // shufps
1261     { TTI::SK_Reverse,          MVT::v4f32, 1 }, // shufps
1262     { TTI::SK_Select,           MVT::v4f32, 2 }, // 2*shufps
1263     { TTI::SK_PermuteSingleSrc, MVT::v4f32, 1 }, // shufps
1264     { TTI::SK_PermuteTwoSrc,    MVT::v4f32, 2 }, // 2*shufps
1265   };
1266 
1267   if (ST->hasSSE1())
1268     if (const auto *Entry = CostTableLookup(SSE1ShuffleTbl, Kind, LT.second))
1269       return LT.first * Entry->Cost;
1270 
1271   return BaseT::getShuffleCost(Kind, Tp, Index, SubTp);
1272 }
1273 
1274 int X86TTIImpl::getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src,
1275                                  const Instruction *I) {
1276   int ISD = TLI->InstructionOpcodeToISD(Opcode);
1277   assert(ISD && "Invalid opcode");
1278 
1279   // FIXME: Need a better design of the cost table to handle non-simple types of
1280   // potential massive combinations (elem_num x src_type x dst_type).
1281 
1282   static const TypeConversionCostTblEntry AVX512BWConversionTbl[] {
1283     { ISD::SIGN_EXTEND, MVT::v32i16, MVT::v32i8, 1 },
1284     { ISD::ZERO_EXTEND, MVT::v32i16, MVT::v32i8, 1 },
1285 
1286     // Mask sign extend has an instruction.
1287     { ISD::SIGN_EXTEND, MVT::v8i16,  MVT::v8i1,  1 },
1288     { ISD::SIGN_EXTEND, MVT::v16i8,  MVT::v16i1, 1 },
1289     { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i1, 1 },
1290     { ISD::SIGN_EXTEND, MVT::v32i8,  MVT::v32i1, 1 },
1291     { ISD::SIGN_EXTEND, MVT::v32i16, MVT::v32i1, 1 },
1292     { ISD::SIGN_EXTEND, MVT::v64i8,  MVT::v64i1, 1 },
1293 
1294     // Mask zero extend is a load + broadcast.
1295     { ISD::ZERO_EXTEND, MVT::v8i16,  MVT::v8i1,  2 },
1296     { ISD::ZERO_EXTEND, MVT::v16i8,  MVT::v16i1, 2 },
1297     { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i1, 2 },
1298     { ISD::ZERO_EXTEND, MVT::v32i8,  MVT::v32i1, 2 },
1299     { ISD::ZERO_EXTEND, MVT::v32i16, MVT::v32i1, 2 },
1300     { ISD::ZERO_EXTEND, MVT::v64i8,  MVT::v64i1, 2 },
1301   };
1302 
1303   static const TypeConversionCostTblEntry AVX512DQConversionTbl[] = {
1304     { ISD::SINT_TO_FP,  MVT::v2f32,  MVT::v2i64,  1 },
1305     { ISD::SINT_TO_FP,  MVT::v2f64,  MVT::v2i64,  1 },
1306     { ISD::SINT_TO_FP,  MVT::v4f32,  MVT::v4i64,  1 },
1307     { ISD::SINT_TO_FP,  MVT::v4f64,  MVT::v4i64,  1 },
1308     { ISD::SINT_TO_FP,  MVT::v8f32,  MVT::v8i64,  1 },
1309     { ISD::SINT_TO_FP,  MVT::v8f64,  MVT::v8i64,  1 },
1310 
1311     { ISD::UINT_TO_FP,  MVT::v2f32,  MVT::v2i64,  1 },
1312     { ISD::UINT_TO_FP,  MVT::v2f64,  MVT::v2i64,  1 },
1313     { ISD::UINT_TO_FP,  MVT::v4f32,  MVT::v4i64,  1 },
1314     { ISD::UINT_TO_FP,  MVT::v4f64,  MVT::v4i64,  1 },
1315     { ISD::UINT_TO_FP,  MVT::v8f32,  MVT::v8i64,  1 },
1316     { ISD::UINT_TO_FP,  MVT::v8f64,  MVT::v8i64,  1 },
1317 
1318     { ISD::FP_TO_SINT,  MVT::v2i64,  MVT::v2f32,  1 },
1319     { ISD::FP_TO_SINT,  MVT::v4i64,  MVT::v4f32,  1 },
1320     { ISD::FP_TO_SINT,  MVT::v8i64,  MVT::v8f32,  1 },
1321     { ISD::FP_TO_SINT,  MVT::v2i64,  MVT::v2f64,  1 },
1322     { ISD::FP_TO_SINT,  MVT::v4i64,  MVT::v4f64,  1 },
1323     { ISD::FP_TO_SINT,  MVT::v8i64,  MVT::v8f64,  1 },
1324 
1325     { ISD::FP_TO_UINT,  MVT::v2i64,  MVT::v2f32,  1 },
1326     { ISD::FP_TO_UINT,  MVT::v4i64,  MVT::v4f32,  1 },
1327     { ISD::FP_TO_UINT,  MVT::v8i64,  MVT::v8f32,  1 },
1328     { ISD::FP_TO_UINT,  MVT::v2i64,  MVT::v2f64,  1 },
1329     { ISD::FP_TO_UINT,  MVT::v4i64,  MVT::v4f64,  1 },
1330     { ISD::FP_TO_UINT,  MVT::v8i64,  MVT::v8f64,  1 },
1331   };
1332 
1333   // TODO: For AVX512DQ + AVX512VL, we also have cheap casts for 128-bit and
1334   // 256-bit wide vectors.
1335 
1336   // Used with widening legalization
1337   static const TypeConversionCostTblEntry AVX512FConversionTblWide[] = {
1338     { ISD::SIGN_EXTEND, MVT::v8i64,  MVT::v8i8,   1 },
1339     { ISD::ZERO_EXTEND, MVT::v8i64,  MVT::v8i8,   1 },
1340   };
1341 
1342   static const TypeConversionCostTblEntry AVX512FConversionTbl[] = {
1343     { ISD::FP_EXTEND, MVT::v8f64,   MVT::v8f32,  1 },
1344     { ISD::FP_EXTEND, MVT::v8f64,   MVT::v16f32, 3 },
1345     { ISD::FP_ROUND,  MVT::v8f32,   MVT::v8f64,  1 },
1346 
1347     { ISD::TRUNCATE,  MVT::v16i8,   MVT::v16i32, 1 },
1348     { ISD::TRUNCATE,  MVT::v16i16,  MVT::v16i32, 1 },
1349     { ISD::TRUNCATE,  MVT::v8i16,   MVT::v8i64,  1 },
1350     { ISD::TRUNCATE,  MVT::v8i32,   MVT::v8i64,  1 },
1351 
1352     // v16i1 -> v16i32 - load + broadcast
1353     { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i1,  2 },
1354     { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i1,  2 },
1355     { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i8,  1 },
1356     { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i8,  1 },
1357     { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i16, 1 },
1358     { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i16, 1 },
1359     { ISD::SIGN_EXTEND, MVT::v8i64,  MVT::v8i16,  1 },
1360     { ISD::ZERO_EXTEND, MVT::v8i64,  MVT::v8i16,  1 },
1361     { ISD::SIGN_EXTEND, MVT::v8i64,  MVT::v8i32,  1 },
1362     { ISD::ZERO_EXTEND, MVT::v8i64,  MVT::v8i32,  1 },
1363 
1364     { ISD::SINT_TO_FP,  MVT::v8f64,  MVT::v8i1,   4 },
1365     { ISD::SINT_TO_FP,  MVT::v16f32, MVT::v16i1,  3 },
1366     { ISD::SINT_TO_FP,  MVT::v8f64,  MVT::v8i8,   2 },
1367     { ISD::SINT_TO_FP,  MVT::v16f32, MVT::v16i8,  2 },
1368     { ISD::SINT_TO_FP,  MVT::v8f64,  MVT::v8i16,  2 },
1369     { ISD::SINT_TO_FP,  MVT::v16f32, MVT::v16i16, 2 },
1370     { ISD::SINT_TO_FP,  MVT::v16f32, MVT::v16i32, 1 },
1371     { ISD::SINT_TO_FP,  MVT::v8f64,  MVT::v8i32,  1 },
1372 
1373     { ISD::UINT_TO_FP,  MVT::v8f64,  MVT::v8i1,   4 },
1374     { ISD::UINT_TO_FP,  MVT::v16f32, MVT::v16i1,  3 },
1375     { ISD::UINT_TO_FP,  MVT::v2f64,  MVT::v2i8,   2 },
1376     { ISD::UINT_TO_FP,  MVT::v4f64,  MVT::v4i8,   2 },
1377     { ISD::UINT_TO_FP,  MVT::v8f32,  MVT::v8i8,   2 },
1378     { ISD::UINT_TO_FP,  MVT::v8f64,  MVT::v8i8,   2 },
1379     { ISD::UINT_TO_FP,  MVT::v16f32, MVT::v16i8,  2 },
1380     { ISD::UINT_TO_FP,  MVT::v2f64,  MVT::v2i16,  5 },
1381     { ISD::UINT_TO_FP,  MVT::v4f64,  MVT::v4i16,  2 },
1382     { ISD::UINT_TO_FP,  MVT::v8f32,  MVT::v8i16,  2 },
1383     { ISD::UINT_TO_FP,  MVT::v8f64,  MVT::v8i16,  2 },
1384     { ISD::UINT_TO_FP,  MVT::v16f32, MVT::v16i16, 2 },
1385     { ISD::UINT_TO_FP,  MVT::v2f32,  MVT::v2i32,  2 },
1386     { ISD::UINT_TO_FP,  MVT::v2f64,  MVT::v2i32,  1 },
1387     { ISD::UINT_TO_FP,  MVT::v4f32,  MVT::v4i32,  1 },
1388     { ISD::UINT_TO_FP,  MVT::v4f64,  MVT::v4i32,  1 },
1389     { ISD::UINT_TO_FP,  MVT::v8f32,  MVT::v8i32,  1 },
1390     { ISD::UINT_TO_FP,  MVT::v8f64,  MVT::v8i32,  1 },
1391     { ISD::UINT_TO_FP,  MVT::v16f32, MVT::v16i32, 1 },
1392     { ISD::UINT_TO_FP,  MVT::v2f32,  MVT::v2i64,  5 },
1393     { ISD::UINT_TO_FP,  MVT::v8f32,  MVT::v8i64, 26 },
1394     { ISD::UINT_TO_FP,  MVT::v2f64,  MVT::v2i64,  5 },
1395     { ISD::UINT_TO_FP,  MVT::v4f64,  MVT::v4i64,  5 },
1396     { ISD::UINT_TO_FP,  MVT::v8f64,  MVT::v8i64,  5 },
1397 
1398     { ISD::UINT_TO_FP,  MVT::f64,    MVT::i64,    1 },
1399     { ISD::FP_TO_UINT,  MVT::i64,    MVT::f32,    1 },
1400     { ISD::FP_TO_UINT,  MVT::i64,    MVT::f64,    1 },
1401 
1402     { ISD::FP_TO_UINT,  MVT::v2i32,  MVT::v2f32,  1 },
1403     { ISD::FP_TO_UINT,  MVT::v4i32,  MVT::v4f32,  1 },
1404     { ISD::FP_TO_UINT,  MVT::v4i32,  MVT::v4f64,  1 },
1405     { ISD::FP_TO_UINT,  MVT::v8i32,  MVT::v8f32,  1 },
1406     { ISD::FP_TO_UINT,  MVT::v8i16,  MVT::v8f64,  2 },
1407     { ISD::FP_TO_UINT,  MVT::v8i8,   MVT::v8f64,  2 },
1408     { ISD::FP_TO_UINT,  MVT::v16i32, MVT::v16f32, 1 },
1409     { ISD::FP_TO_UINT,  MVT::v16i16, MVT::v16f32, 2 },
1410     { ISD::FP_TO_UINT,  MVT::v16i8,  MVT::v16f32, 2 },
1411   };
1412 
1413   static const TypeConversionCostTblEntry AVX2ConversionTblWide[] = {
1414     { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v4i8,   1 },
1415     { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v4i8,   1 },
1416     { ISD::SIGN_EXTEND, MVT::v8i32,  MVT::v8i8,   1 },
1417     { ISD::ZERO_EXTEND, MVT::v8i32,  MVT::v8i8,   1 },
1418     { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v4i16,  1 },
1419     { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v4i16,  1 },
1420   };
1421 
1422   static const TypeConversionCostTblEntry AVX2ConversionTbl[] = {
1423     { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v4i1,   3 },
1424     { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v4i1,   3 },
1425     { ISD::SIGN_EXTEND, MVT::v8i32,  MVT::v8i1,   3 },
1426     { ISD::ZERO_EXTEND, MVT::v8i32,  MVT::v8i1,   3 },
1427     { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v4i8,   3 },
1428     { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v4i8,   3 },
1429     { ISD::SIGN_EXTEND, MVT::v8i32,  MVT::v8i8,   3 },
1430     { ISD::ZERO_EXTEND, MVT::v8i32,  MVT::v8i8,   3 },
1431     { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i8,  1 },
1432     { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i8,  1 },
1433     { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v4i16,  3 },
1434     { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v4i16,  3 },
1435     { ISD::SIGN_EXTEND, MVT::v8i32,  MVT::v8i16,  1 },
1436     { ISD::ZERO_EXTEND, MVT::v8i32,  MVT::v8i16,  1 },
1437     { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v4i32,  1 },
1438     { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v4i32,  1 },
1439 
1440     { ISD::TRUNCATE,    MVT::v4i8,   MVT::v4i64,  2 },
1441     { ISD::TRUNCATE,    MVT::v4i16,  MVT::v4i64,  2 },
1442     { ISD::TRUNCATE,    MVT::v4i32,  MVT::v4i64,  2 },
1443     { ISD::TRUNCATE,    MVT::v8i8,   MVT::v8i32,  2 },
1444     { ISD::TRUNCATE,    MVT::v8i16,  MVT::v8i32,  2 },
1445     { ISD::TRUNCATE,    MVT::v8i32,  MVT::v8i64,  4 },
1446 
1447     { ISD::FP_EXTEND,   MVT::v8f64,  MVT::v8f32,  3 },
1448     { ISD::FP_ROUND,    MVT::v8f32,  MVT::v8f64,  3 },
1449 
1450     { ISD::UINT_TO_FP,  MVT::v8f32,  MVT::v8i32,  8 },
1451   };
1452 
1453   static const TypeConversionCostTblEntry AVXConversionTblWide[] = {
1454     { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v4i8,  4 },
1455     { ISD::SIGN_EXTEND, MVT::v8i32,  MVT::v8i8,  4 },
1456     { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v4i16, 4 },
1457   };
1458 
1459   static const TypeConversionCostTblEntry AVXConversionTbl[] = {
1460     { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v4i1,  6 },
1461     { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v4i1,  4 },
1462     { ISD::SIGN_EXTEND, MVT::v8i32,  MVT::v8i1,  7 },
1463     { ISD::ZERO_EXTEND, MVT::v8i32,  MVT::v8i1,  4 },
1464     { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v4i8,  6 },
1465     { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v4i8,  4 },
1466     { ISD::SIGN_EXTEND, MVT::v8i32,  MVT::v8i8,  7 },
1467     { ISD::ZERO_EXTEND, MVT::v8i32,  MVT::v8i8,  4 },
1468     { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i8, 4 },
1469     { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i8, 4 },
1470     { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v4i16, 6 },
1471     { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v4i16, 3 },
1472     { ISD::SIGN_EXTEND, MVT::v8i32,  MVT::v8i16, 4 },
1473     { ISD::ZERO_EXTEND, MVT::v8i32,  MVT::v8i16, 4 },
1474     { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v4i32, 4 },
1475     { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v4i32, 4 },
1476 
1477     { ISD::TRUNCATE,    MVT::v16i8, MVT::v16i16, 4 },
1478     { ISD::TRUNCATE,    MVT::v8i8,  MVT::v8i32,  4 },
1479     { ISD::TRUNCATE,    MVT::v8i16, MVT::v8i32,  5 },
1480     { ISD::TRUNCATE,    MVT::v4i8,  MVT::v4i64,  4 },
1481     { ISD::TRUNCATE,    MVT::v4i16, MVT::v4i64,  4 },
1482     { ISD::TRUNCATE,    MVT::v4i32, MVT::v4i64,  4 },
1483     { ISD::TRUNCATE,    MVT::v8i32, MVT::v8i64,  9 },
1484 
1485     { ISD::SINT_TO_FP,  MVT::v4f32, MVT::v4i1,  3 },
1486     { ISD::SINT_TO_FP,  MVT::v4f64, MVT::v4i1,  3 },
1487     { ISD::SINT_TO_FP,  MVT::v8f32, MVT::v8i1,  8 },
1488     { ISD::SINT_TO_FP,  MVT::v4f32, MVT::v4i8,  3 },
1489     { ISD::SINT_TO_FP,  MVT::v4f64, MVT::v4i8,  3 },
1490     { ISD::SINT_TO_FP,  MVT::v8f32, MVT::v8i8,  8 },
1491     { ISD::SINT_TO_FP,  MVT::v4f32, MVT::v4i16, 3 },
1492     { ISD::SINT_TO_FP,  MVT::v4f64, MVT::v4i16, 3 },
1493     { ISD::SINT_TO_FP,  MVT::v8f32, MVT::v8i16, 5 },
1494     { ISD::SINT_TO_FP,  MVT::v4f32, MVT::v4i32, 1 },
1495     { ISD::SINT_TO_FP,  MVT::v4f64, MVT::v4i32, 1 },
1496     { ISD::SINT_TO_FP,  MVT::v8f32, MVT::v8i32, 1 },
1497 
1498     { ISD::UINT_TO_FP,  MVT::v4f32, MVT::v4i1,  7 },
1499     { ISD::UINT_TO_FP,  MVT::v4f64, MVT::v4i1,  7 },
1500     { ISD::UINT_TO_FP,  MVT::v8f32, MVT::v8i1,  6 },
1501     { ISD::UINT_TO_FP,  MVT::v4f32, MVT::v4i8,  2 },
1502     { ISD::UINT_TO_FP,  MVT::v4f64, MVT::v4i8,  2 },
1503     { ISD::UINT_TO_FP,  MVT::v8f32, MVT::v8i8,  5 },
1504     { ISD::UINT_TO_FP,  MVT::v4f32, MVT::v4i16, 2 },
1505     { ISD::UINT_TO_FP,  MVT::v4f64, MVT::v4i16, 2 },
1506     { ISD::UINT_TO_FP,  MVT::v8f32, MVT::v8i16, 5 },
1507     { ISD::UINT_TO_FP,  MVT::v2f64, MVT::v2i32, 6 },
1508     { ISD::UINT_TO_FP,  MVT::v4f32, MVT::v4i32, 6 },
1509     { ISD::UINT_TO_FP,  MVT::v4f64, MVT::v4i32, 6 },
1510     { ISD::UINT_TO_FP,  MVT::v8f32, MVT::v8i32, 9 },
1511     { ISD::UINT_TO_FP,  MVT::v2f64, MVT::v2i64, 5 },
1512     { ISD::UINT_TO_FP,  MVT::v4f64, MVT::v4i64, 6 },
1513     // The generic code to compute the scalar overhead is currently broken.
1514     // Workaround this limitation by estimating the scalarization overhead
1515     // here. We have roughly 10 instructions per scalar element.
1516     // Multiply that by the vector width.
1517     // FIXME: remove that when PR19268 is fixed.
1518     { ISD::SINT_TO_FP,  MVT::v4f64, MVT::v4i64, 13 },
1519     { ISD::SINT_TO_FP,  MVT::v4f64, MVT::v4i64, 13 },
1520 
1521     { ISD::FP_TO_SINT,  MVT::v4i8,  MVT::v4f32, 1 },
1522     { ISD::FP_TO_SINT,  MVT::v8i8,  MVT::v8f32, 7 },
1523     // This node is expanded into scalarized operations but BasicTTI is overly
1524     // optimistic estimating its cost.  It computes 3 per element (one
1525     // vector-extract, one scalar conversion and one vector-insert).  The
1526     // problem is that the inserts form a read-modify-write chain so latency
1527     // should be factored in too.  Inflating the cost per element by 1.
1528     { ISD::FP_TO_UINT,  MVT::v8i32, MVT::v8f32, 8*4 },
1529     { ISD::FP_TO_UINT,  MVT::v4i32, MVT::v4f64, 4*4 },
1530 
1531     { ISD::FP_EXTEND,   MVT::v4f64,  MVT::v4f32,  1 },
1532     { ISD::FP_ROUND,    MVT::v4f32,  MVT::v4f64,  1 },
1533   };
1534 
1535   static const TypeConversionCostTblEntry SSE41ConversionTbl[] = {
1536     { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i8,    2 },
1537     { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i8,    2 },
1538     { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i16,   2 },
1539     { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i16,   2 },
1540     { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i32,   2 },
1541     { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i32,   2 },
1542 
1543     { ISD::ZERO_EXTEND, MVT::v4i16,  MVT::v4i8,   1 },
1544     { ISD::SIGN_EXTEND, MVT::v4i16,  MVT::v4i8,   2 },
1545     { ISD::ZERO_EXTEND, MVT::v4i32,  MVT::v4i8,   1 },
1546     { ISD::SIGN_EXTEND, MVT::v4i32,  MVT::v4i8,   1 },
1547     { ISD::ZERO_EXTEND, MVT::v8i16,  MVT::v8i8,   1 },
1548     { ISD::SIGN_EXTEND, MVT::v8i16,  MVT::v8i8,   1 },
1549     { ISD::ZERO_EXTEND, MVT::v8i32,  MVT::v8i8,   2 },
1550     { ISD::SIGN_EXTEND, MVT::v8i32,  MVT::v8i8,   2 },
1551     { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i8,  2 },
1552     { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i8,  2 },
1553     { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i8,  4 },
1554     { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i8,  4 },
1555     { ISD::ZERO_EXTEND, MVT::v4i32,  MVT::v4i16,  1 },
1556     { ISD::SIGN_EXTEND, MVT::v4i32,  MVT::v4i16,  1 },
1557     { ISD::ZERO_EXTEND, MVT::v8i32,  MVT::v8i16,  2 },
1558     { ISD::SIGN_EXTEND, MVT::v8i32,  MVT::v8i16,  2 },
1559     { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i16, 4 },
1560     { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i16, 4 },
1561 
1562     { ISD::TRUNCATE,    MVT::v4i8,   MVT::v4i16,  2 },
1563     { ISD::TRUNCATE,    MVT::v8i8,   MVT::v8i16,  1 },
1564     { ISD::TRUNCATE,    MVT::v4i8,   MVT::v4i32,  1 },
1565     { ISD::TRUNCATE,    MVT::v4i16,  MVT::v4i32,  1 },
1566     { ISD::TRUNCATE,    MVT::v8i8,   MVT::v8i32,  3 },
1567     { ISD::TRUNCATE,    MVT::v8i16,  MVT::v8i32,  3 },
1568     { ISD::TRUNCATE,    MVT::v16i16, MVT::v16i32, 6 },
1569 
1570     { ISD::UINT_TO_FP,  MVT::f64,    MVT::i64,    4 },
1571   };
1572 
1573   static const TypeConversionCostTblEntry SSE2ConversionTblWide[] = {
1574     { ISD::SINT_TO_FP, MVT::v2f64, MVT::v4i32, 2*10 },
1575     { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i32, 2*10 },
1576   };
1577 
1578   static const TypeConversionCostTblEntry SSE2ConversionTbl[] = {
1579     // These are somewhat magic numbers justified by looking at the output of
1580     // Intel's IACA, running some kernels and making sure when we take
1581     // legalization into account the throughput will be overestimated.
1582     { ISD::SINT_TO_FP, MVT::v4f32, MVT::v16i8, 8 },
1583     { ISD::SINT_TO_FP, MVT::v2f64, MVT::v16i8, 16*10 },
1584     { ISD::SINT_TO_FP, MVT::v4f32, MVT::v8i16, 15 },
1585     { ISD::SINT_TO_FP, MVT::v2f64, MVT::v8i16, 8*10 },
1586     { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i32, 5 },
1587     { ISD::SINT_TO_FP, MVT::v2f64, MVT::v4i32, 4*10 },
1588     { ISD::SINT_TO_FP, MVT::v4f32, MVT::v2i64, 15 },
1589     { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i64, 2*10 },
1590 
1591     { ISD::UINT_TO_FP, MVT::v2f64, MVT::v16i8, 16*10 },
1592     { ISD::UINT_TO_FP, MVT::v4f32, MVT::v16i8, 8 },
1593     { ISD::UINT_TO_FP, MVT::v4f32, MVT::v8i16, 15 },
1594     { ISD::UINT_TO_FP, MVT::v2f64, MVT::v8i16, 8*10 },
1595     { ISD::UINT_TO_FP, MVT::v2f64, MVT::v4i32, 4*10 },
1596     { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i32, 8 },
1597     { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i64, 6 },
1598     { ISD::UINT_TO_FP, MVT::v4f32, MVT::v2i64, 15 },
1599 
1600     { ISD::FP_TO_SINT,  MVT::v2i32,  MVT::v2f64,  3 },
1601 
1602     { ISD::UINT_TO_FP,  MVT::f64,    MVT::i64,    6 },
1603     { ISD::FP_TO_UINT,  MVT::i64,    MVT::f32,    4 },
1604     { ISD::FP_TO_UINT,  MVT::i64,    MVT::f64,    4 },
1605 
1606     { ISD::ZERO_EXTEND, MVT::v4i16,  MVT::v4i8,   1 },
1607     { ISD::SIGN_EXTEND, MVT::v4i16,  MVT::v4i8,   6 },
1608     { ISD::ZERO_EXTEND, MVT::v4i32,  MVT::v4i8,   2 },
1609     { ISD::SIGN_EXTEND, MVT::v4i32,  MVT::v4i8,   3 },
1610     { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v4i8,   4 },
1611     { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v4i8,   8 },
1612     { ISD::ZERO_EXTEND, MVT::v8i16,  MVT::v8i8,   1 },
1613     { ISD::SIGN_EXTEND, MVT::v8i16,  MVT::v8i8,   2 },
1614     { ISD::ZERO_EXTEND, MVT::v8i32,  MVT::v8i8,   6 },
1615     { ISD::SIGN_EXTEND, MVT::v8i32,  MVT::v8i8,   6 },
1616     { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i8,  3 },
1617     { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i8,  4 },
1618     { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i8,  9 },
1619     { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i8,  12 },
1620     { ISD::ZERO_EXTEND, MVT::v4i32,  MVT::v4i16,  1 },
1621     { ISD::SIGN_EXTEND, MVT::v4i32,  MVT::v4i16,  2 },
1622     { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v4i16,  3 },
1623     { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v4i16,  10 },
1624     { ISD::ZERO_EXTEND, MVT::v8i32,  MVT::v8i16,  3 },
1625     { ISD::SIGN_EXTEND, MVT::v8i32,  MVT::v8i16,  4 },
1626     { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i16, 6 },
1627     { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i16, 8 },
1628     { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v4i32,  3 },
1629     { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v4i32,  5 },
1630 
1631     { ISD::TRUNCATE,    MVT::v4i8,   MVT::v4i16,  4 },
1632     { ISD::TRUNCATE,    MVT::v8i8,   MVT::v8i16,  2 },
1633     { ISD::TRUNCATE,    MVT::v16i8,  MVT::v16i16, 3 },
1634     { ISD::TRUNCATE,    MVT::v4i8,   MVT::v4i32,  3 },
1635     { ISD::TRUNCATE,    MVT::v4i16,  MVT::v4i32,  3 },
1636     { ISD::TRUNCATE,    MVT::v8i8,   MVT::v8i32,  4 },
1637     { ISD::TRUNCATE,    MVT::v16i8,  MVT::v16i32, 7 },
1638     { ISD::TRUNCATE,    MVT::v8i16,  MVT::v8i32,  5 },
1639     { ISD::TRUNCATE,    MVT::v16i16, MVT::v16i32, 10 },
1640   };
1641 
1642   std::pair<int, MVT> LTSrc = TLI->getTypeLegalizationCost(DL, Src);
1643   std::pair<int, MVT> LTDest = TLI->getTypeLegalizationCost(DL, Dst);
1644 
1645   if (ST->hasSSE2() && !ST->hasAVX() &&
1646       ExperimentalVectorWideningLegalization) {
1647     if (const auto *Entry = ConvertCostTableLookup(SSE2ConversionTblWide, ISD,
1648                                                    LTDest.second, LTSrc.second))
1649       return LTSrc.first * Entry->Cost;
1650   }
1651 
1652   if (ST->hasSSE2() && !ST->hasAVX()) {
1653     if (const auto *Entry = ConvertCostTableLookup(SSE2ConversionTbl, ISD,
1654                                                    LTDest.second, LTSrc.second))
1655       return LTSrc.first * Entry->Cost;
1656   }
1657 
1658   EVT SrcTy = TLI->getValueType(DL, Src);
1659   EVT DstTy = TLI->getValueType(DL, Dst);
1660 
1661   // The function getSimpleVT only handles simple value types.
1662   if (!SrcTy.isSimple() || !DstTy.isSimple())
1663     return BaseT::getCastInstrCost(Opcode, Dst, Src);
1664 
1665   MVT SimpleSrcTy = SrcTy.getSimpleVT();
1666   MVT SimpleDstTy = DstTy.getSimpleVT();
1667 
1668   // Make sure that neither type is going to be split before using the
1669   // AVX512 tables. This handles -mprefer-vector-width=256
1670   // with -min-legal-vector-width<=256
1671   if (TLI->getTypeAction(SimpleSrcTy) != TargetLowering::TypeSplitVector &&
1672       TLI->getTypeAction(SimpleDstTy) != TargetLowering::TypeSplitVector) {
1673     if (ST->hasBWI())
1674       if (const auto *Entry = ConvertCostTableLookup(AVX512BWConversionTbl, ISD,
1675                                                      SimpleDstTy, SimpleSrcTy))
1676         return Entry->Cost;
1677 
1678     if (ST->hasDQI())
1679       if (const auto *Entry = ConvertCostTableLookup(AVX512DQConversionTbl, ISD,
1680                                                      SimpleDstTy, SimpleSrcTy))
1681         return Entry->Cost;
1682 
1683     if (ST->hasAVX512() && ExperimentalVectorWideningLegalization)
1684       if (const auto *Entry = ConvertCostTableLookup(AVX512FConversionTblWide, ISD,
1685                                                      SimpleDstTy, SimpleSrcTy))
1686         return Entry->Cost;
1687 
1688     if (ST->hasAVX512())
1689       if (const auto *Entry = ConvertCostTableLookup(AVX512FConversionTbl, ISD,
1690                                                      SimpleDstTy, SimpleSrcTy))
1691         return Entry->Cost;
1692   }
1693 
1694   if (ST->hasAVX2() && ExperimentalVectorWideningLegalization) {
1695     if (const auto *Entry = ConvertCostTableLookup(AVX2ConversionTblWide, ISD,
1696                                                    SimpleDstTy, SimpleSrcTy))
1697       return Entry->Cost;
1698   }
1699 
1700   if (ST->hasAVX2()) {
1701     if (const auto *Entry = ConvertCostTableLookup(AVX2ConversionTbl, ISD,
1702                                                    SimpleDstTy, SimpleSrcTy))
1703       return Entry->Cost;
1704   }
1705 
1706   if (ST->hasAVX() && ExperimentalVectorWideningLegalization) {
1707     if (const auto *Entry = ConvertCostTableLookup(AVXConversionTblWide, ISD,
1708                                                    SimpleDstTy, SimpleSrcTy))
1709       return Entry->Cost;
1710   }
1711 
1712   if (ST->hasAVX()) {
1713     if (const auto *Entry = ConvertCostTableLookup(AVXConversionTbl, ISD,
1714                                                    SimpleDstTy, SimpleSrcTy))
1715       return Entry->Cost;
1716   }
1717 
1718   if (ST->hasSSE41()) {
1719     if (const auto *Entry = ConvertCostTableLookup(SSE41ConversionTbl, ISD,
1720                                                    SimpleDstTy, SimpleSrcTy))
1721       return Entry->Cost;
1722   }
1723 
1724   if (ST->hasSSE2() && ExperimentalVectorWideningLegalization) {
1725     if (const auto *Entry = ConvertCostTableLookup(SSE2ConversionTblWide, ISD,
1726                                                    SimpleDstTy, SimpleSrcTy))
1727       return Entry->Cost;
1728   }
1729 
1730   if (ST->hasSSE2()) {
1731     if (const auto *Entry = ConvertCostTableLookup(SSE2ConversionTbl, ISD,
1732                                                    SimpleDstTy, SimpleSrcTy))
1733       return Entry->Cost;
1734   }
1735 
1736   return BaseT::getCastInstrCost(Opcode, Dst, Src, I);
1737 }
1738 
1739 int X86TTIImpl::getCmpSelInstrCost(unsigned Opcode, Type *ValTy, Type *CondTy,
1740                                    const Instruction *I) {
1741   // Legalize the type.
1742   std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, ValTy);
1743 
1744   MVT MTy = LT.second;
1745 
1746   int ISD = TLI->InstructionOpcodeToISD(Opcode);
1747   assert(ISD && "Invalid opcode");
1748 
1749   unsigned ExtraCost = 0;
1750   if (I && (Opcode == Instruction::ICmp || Opcode == Instruction::FCmp)) {
1751     // Some vector comparison predicates cost extra instructions.
1752     if (MTy.isVector() &&
1753         !((ST->hasXOP() && (!ST->hasAVX2() || MTy.is128BitVector())) ||
1754           (ST->hasAVX512() && 32 <= MTy.getScalarSizeInBits()) ||
1755           ST->hasBWI())) {
1756       switch (cast<CmpInst>(I)->getPredicate()) {
1757       case CmpInst::Predicate::ICMP_NE:
1758         // xor(cmpeq(x,y),-1)
1759         ExtraCost = 1;
1760         break;
1761       case CmpInst::Predicate::ICMP_SGE:
1762       case CmpInst::Predicate::ICMP_SLE:
1763         // xor(cmpgt(x,y),-1)
1764         ExtraCost = 1;
1765         break;
1766       case CmpInst::Predicate::ICMP_ULT:
1767       case CmpInst::Predicate::ICMP_UGT:
1768         // cmpgt(xor(x,signbit),xor(y,signbit))
1769         // xor(cmpeq(pmaxu(x,y),x),-1)
1770         ExtraCost = 2;
1771         break;
1772       case CmpInst::Predicate::ICMP_ULE:
1773       case CmpInst::Predicate::ICMP_UGE:
1774         if ((ST->hasSSE41() && MTy.getScalarSizeInBits() == 32) ||
1775             (ST->hasSSE2() && MTy.getScalarSizeInBits() < 32)) {
1776           // cmpeq(psubus(x,y),0)
1777           // cmpeq(pminu(x,y),x)
1778           ExtraCost = 1;
1779         } else {
1780           // xor(cmpgt(xor(x,signbit),xor(y,signbit)),-1)
1781           ExtraCost = 3;
1782         }
1783         break;
1784       default:
1785         break;
1786       }
1787     }
1788   }
1789 
1790   static const CostTblEntry AVX512BWCostTbl[] = {
1791     { ISD::SETCC,   MVT::v32i16,  1 },
1792     { ISD::SETCC,   MVT::v64i8,   1 },
1793 
1794     { ISD::SELECT,  MVT::v32i16,  1 },
1795     { ISD::SELECT,  MVT::v64i8,   1 },
1796   };
1797 
1798   static const CostTblEntry AVX512CostTbl[] = {
1799     { ISD::SETCC,   MVT::v8i64,   1 },
1800     { ISD::SETCC,   MVT::v16i32,  1 },
1801     { ISD::SETCC,   MVT::v8f64,   1 },
1802     { ISD::SETCC,   MVT::v16f32,  1 },
1803 
1804     { ISD::SELECT,  MVT::v8i64,   1 },
1805     { ISD::SELECT,  MVT::v16i32,  1 },
1806     { ISD::SELECT,  MVT::v8f64,   1 },
1807     { ISD::SELECT,  MVT::v16f32,  1 },
1808   };
1809 
1810   static const CostTblEntry AVX2CostTbl[] = {
1811     { ISD::SETCC,   MVT::v4i64,   1 },
1812     { ISD::SETCC,   MVT::v8i32,   1 },
1813     { ISD::SETCC,   MVT::v16i16,  1 },
1814     { ISD::SETCC,   MVT::v32i8,   1 },
1815 
1816     { ISD::SELECT,  MVT::v4i64,   1 }, // pblendvb
1817     { ISD::SELECT,  MVT::v8i32,   1 }, // pblendvb
1818     { ISD::SELECT,  MVT::v16i16,  1 }, // pblendvb
1819     { ISD::SELECT,  MVT::v32i8,   1 }, // pblendvb
1820   };
1821 
1822   static const CostTblEntry AVX1CostTbl[] = {
1823     { ISD::SETCC,   MVT::v4f64,   1 },
1824     { ISD::SETCC,   MVT::v8f32,   1 },
1825     // AVX1 does not support 8-wide integer compare.
1826     { ISD::SETCC,   MVT::v4i64,   4 },
1827     { ISD::SETCC,   MVT::v8i32,   4 },
1828     { ISD::SETCC,   MVT::v16i16,  4 },
1829     { ISD::SETCC,   MVT::v32i8,   4 },
1830 
1831     { ISD::SELECT,  MVT::v4f64,   1 }, // vblendvpd
1832     { ISD::SELECT,  MVT::v8f32,   1 }, // vblendvps
1833     { ISD::SELECT,  MVT::v4i64,   1 }, // vblendvpd
1834     { ISD::SELECT,  MVT::v8i32,   1 }, // vblendvps
1835     { ISD::SELECT,  MVT::v16i16,  3 }, // vandps + vandnps + vorps
1836     { ISD::SELECT,  MVT::v32i8,   3 }, // vandps + vandnps + vorps
1837   };
1838 
1839   static const CostTblEntry SSE42CostTbl[] = {
1840     { ISD::SETCC,   MVT::v2f64,   1 },
1841     { ISD::SETCC,   MVT::v4f32,   1 },
1842     { ISD::SETCC,   MVT::v2i64,   1 },
1843   };
1844 
1845   static const CostTblEntry SSE41CostTbl[] = {
1846     { ISD::SELECT,  MVT::v2f64,   1 }, // blendvpd
1847     { ISD::SELECT,  MVT::v4f32,   1 }, // blendvps
1848     { ISD::SELECT,  MVT::v2i64,   1 }, // pblendvb
1849     { ISD::SELECT,  MVT::v4i32,   1 }, // pblendvb
1850     { ISD::SELECT,  MVT::v8i16,   1 }, // pblendvb
1851     { ISD::SELECT,  MVT::v16i8,   1 }, // pblendvb
1852   };
1853 
1854   static const CostTblEntry SSE2CostTbl[] = {
1855     { ISD::SETCC,   MVT::v2f64,   2 },
1856     { ISD::SETCC,   MVT::f64,     1 },
1857     { ISD::SETCC,   MVT::v2i64,   8 },
1858     { ISD::SETCC,   MVT::v4i32,   1 },
1859     { ISD::SETCC,   MVT::v8i16,   1 },
1860     { ISD::SETCC,   MVT::v16i8,   1 },
1861 
1862     { ISD::SELECT,  MVT::v2f64,   3 }, // andpd + andnpd + orpd
1863     { ISD::SELECT,  MVT::v2i64,   3 }, // pand + pandn + por
1864     { ISD::SELECT,  MVT::v4i32,   3 }, // pand + pandn + por
1865     { ISD::SELECT,  MVT::v8i16,   3 }, // pand + pandn + por
1866     { ISD::SELECT,  MVT::v16i8,   3 }, // pand + pandn + por
1867   };
1868 
1869   static const CostTblEntry SSE1CostTbl[] = {
1870     { ISD::SETCC,   MVT::v4f32,   2 },
1871     { ISD::SETCC,   MVT::f32,     1 },
1872 
1873     { ISD::SELECT,  MVT::v4f32,   3 }, // andps + andnps + orps
1874   };
1875 
1876   if (ST->hasBWI())
1877     if (const auto *Entry = CostTableLookup(AVX512BWCostTbl, ISD, MTy))
1878       return LT.first * (ExtraCost + Entry->Cost);
1879 
1880   if (ST->hasAVX512())
1881     if (const auto *Entry = CostTableLookup(AVX512CostTbl, ISD, MTy))
1882       return LT.first * (ExtraCost + Entry->Cost);
1883 
1884   if (ST->hasAVX2())
1885     if (const auto *Entry = CostTableLookup(AVX2CostTbl, ISD, MTy))
1886       return LT.first * (ExtraCost + Entry->Cost);
1887 
1888   if (ST->hasAVX())
1889     if (const auto *Entry = CostTableLookup(AVX1CostTbl, ISD, MTy))
1890       return LT.first * (ExtraCost + Entry->Cost);
1891 
1892   if (ST->hasSSE42())
1893     if (const auto *Entry = CostTableLookup(SSE42CostTbl, ISD, MTy))
1894       return LT.first * (ExtraCost + Entry->Cost);
1895 
1896   if (ST->hasSSE41())
1897     if (const auto *Entry = CostTableLookup(SSE41CostTbl, ISD, MTy))
1898       return LT.first * (ExtraCost + Entry->Cost);
1899 
1900   if (ST->hasSSE2())
1901     if (const auto *Entry = CostTableLookup(SSE2CostTbl, ISD, MTy))
1902       return LT.first * (ExtraCost + Entry->Cost);
1903 
1904   if (ST->hasSSE1())
1905     if (const auto *Entry = CostTableLookup(SSE1CostTbl, ISD, MTy))
1906       return LT.first * (ExtraCost + Entry->Cost);
1907 
1908   return BaseT::getCmpSelInstrCost(Opcode, ValTy, CondTy, I);
1909 }
1910 
1911 unsigned X86TTIImpl::getAtomicMemIntrinsicMaxElementSize() const { return 16; }
1912 
1913 int X86TTIImpl::getIntrinsicInstrCost(Intrinsic::ID IID, Type *RetTy,
1914                                       ArrayRef<Type *> Tys, FastMathFlags FMF,
1915                                       unsigned ScalarizationCostPassed) {
1916   // Costs should match the codegen from:
1917   // BITREVERSE: llvm\test\CodeGen\X86\vector-bitreverse.ll
1918   // BSWAP: llvm\test\CodeGen\X86\bswap-vector.ll
1919   // CTLZ: llvm\test\CodeGen\X86\vector-lzcnt-*.ll
1920   // CTPOP: llvm\test\CodeGen\X86\vector-popcnt-*.ll
1921   // CTTZ: llvm\test\CodeGen\X86\vector-tzcnt-*.ll
1922   static const CostTblEntry AVX512CDCostTbl[] = {
1923     { ISD::CTLZ,       MVT::v8i64,   1 },
1924     { ISD::CTLZ,       MVT::v16i32,  1 },
1925     { ISD::CTLZ,       MVT::v32i16,  8 },
1926     { ISD::CTLZ,       MVT::v64i8,  20 },
1927     { ISD::CTLZ,       MVT::v4i64,   1 },
1928     { ISD::CTLZ,       MVT::v8i32,   1 },
1929     { ISD::CTLZ,       MVT::v16i16,  4 },
1930     { ISD::CTLZ,       MVT::v32i8,  10 },
1931     { ISD::CTLZ,       MVT::v2i64,   1 },
1932     { ISD::CTLZ,       MVT::v4i32,   1 },
1933     { ISD::CTLZ,       MVT::v8i16,   4 },
1934     { ISD::CTLZ,       MVT::v16i8,   4 },
1935   };
1936   static const CostTblEntry AVX512BWCostTbl[] = {
1937     { ISD::BITREVERSE, MVT::v8i64,   5 },
1938     { ISD::BITREVERSE, MVT::v16i32,  5 },
1939     { ISD::BITREVERSE, MVT::v32i16,  5 },
1940     { ISD::BITREVERSE, MVT::v64i8,   5 },
1941     { ISD::CTLZ,       MVT::v8i64,  23 },
1942     { ISD::CTLZ,       MVT::v16i32, 22 },
1943     { ISD::CTLZ,       MVT::v32i16, 18 },
1944     { ISD::CTLZ,       MVT::v64i8,  17 },
1945     { ISD::CTPOP,      MVT::v8i64,   7 },
1946     { ISD::CTPOP,      MVT::v16i32, 11 },
1947     { ISD::CTPOP,      MVT::v32i16,  9 },
1948     { ISD::CTPOP,      MVT::v64i8,   6 },
1949     { ISD::CTTZ,       MVT::v8i64,  10 },
1950     { ISD::CTTZ,       MVT::v16i32, 14 },
1951     { ISD::CTTZ,       MVT::v32i16, 12 },
1952     { ISD::CTTZ,       MVT::v64i8,   9 },
1953     { ISD::SADDSAT,    MVT::v32i16,  1 },
1954     { ISD::SADDSAT,    MVT::v64i8,   1 },
1955     { ISD::SSUBSAT,    MVT::v32i16,  1 },
1956     { ISD::SSUBSAT,    MVT::v64i8,   1 },
1957     { ISD::UADDSAT,    MVT::v32i16,  1 },
1958     { ISD::UADDSAT,    MVT::v64i8,   1 },
1959     { ISD::USUBSAT,    MVT::v32i16,  1 },
1960     { ISD::USUBSAT,    MVT::v64i8,   1 },
1961   };
1962   static const CostTblEntry AVX512CostTbl[] = {
1963     { ISD::BITREVERSE, MVT::v8i64,  36 },
1964     { ISD::BITREVERSE, MVT::v16i32, 24 },
1965     { ISD::CTLZ,       MVT::v8i64,  29 },
1966     { ISD::CTLZ,       MVT::v16i32, 35 },
1967     { ISD::CTPOP,      MVT::v8i64,  16 },
1968     { ISD::CTPOP,      MVT::v16i32, 24 },
1969     { ISD::CTTZ,       MVT::v8i64,  20 },
1970     { ISD::CTTZ,       MVT::v16i32, 28 },
1971     { ISD::USUBSAT,    MVT::v16i32,  2 }, // pmaxud + psubd
1972     { ISD::USUBSAT,    MVT::v2i64,   2 }, // pmaxuq + psubq
1973     { ISD::USUBSAT,    MVT::v4i64,   2 }, // pmaxuq + psubq
1974     { ISD::USUBSAT,    MVT::v8i64,   2 }, // pmaxuq + psubq
1975     { ISD::UADDSAT,    MVT::v16i32,  3 }, // not + pminud + paddd
1976     { ISD::UADDSAT,    MVT::v2i64,   3 }, // not + pminuq + paddq
1977     { ISD::UADDSAT,    MVT::v4i64,   3 }, // not + pminuq + paddq
1978     { ISD::UADDSAT,    MVT::v8i64,   3 }, // not + pminuq + paddq
1979   };
1980   static const CostTblEntry XOPCostTbl[] = {
1981     { ISD::BITREVERSE, MVT::v4i64,   4 },
1982     { ISD::BITREVERSE, MVT::v8i32,   4 },
1983     { ISD::BITREVERSE, MVT::v16i16,  4 },
1984     { ISD::BITREVERSE, MVT::v32i8,   4 },
1985     { ISD::BITREVERSE, MVT::v2i64,   1 },
1986     { ISD::BITREVERSE, MVT::v4i32,   1 },
1987     { ISD::BITREVERSE, MVT::v8i16,   1 },
1988     { ISD::BITREVERSE, MVT::v16i8,   1 },
1989     { ISD::BITREVERSE, MVT::i64,     3 },
1990     { ISD::BITREVERSE, MVT::i32,     3 },
1991     { ISD::BITREVERSE, MVT::i16,     3 },
1992     { ISD::BITREVERSE, MVT::i8,      3 }
1993   };
1994   static const CostTblEntry AVX2CostTbl[] = {
1995     { ISD::BITREVERSE, MVT::v4i64,   5 },
1996     { ISD::BITREVERSE, MVT::v8i32,   5 },
1997     { ISD::BITREVERSE, MVT::v16i16,  5 },
1998     { ISD::BITREVERSE, MVT::v32i8,   5 },
1999     { ISD::BSWAP,      MVT::v4i64,   1 },
2000     { ISD::BSWAP,      MVT::v8i32,   1 },
2001     { ISD::BSWAP,      MVT::v16i16,  1 },
2002     { ISD::CTLZ,       MVT::v4i64,  23 },
2003     { ISD::CTLZ,       MVT::v8i32,  18 },
2004     { ISD::CTLZ,       MVT::v16i16, 14 },
2005     { ISD::CTLZ,       MVT::v32i8,   9 },
2006     { ISD::CTPOP,      MVT::v4i64,   7 },
2007     { ISD::CTPOP,      MVT::v8i32,  11 },
2008     { ISD::CTPOP,      MVT::v16i16,  9 },
2009     { ISD::CTPOP,      MVT::v32i8,   6 },
2010     { ISD::CTTZ,       MVT::v4i64,  10 },
2011     { ISD::CTTZ,       MVT::v8i32,  14 },
2012     { ISD::CTTZ,       MVT::v16i16, 12 },
2013     { ISD::CTTZ,       MVT::v32i8,   9 },
2014     { ISD::SADDSAT,    MVT::v16i16,  1 },
2015     { ISD::SADDSAT,    MVT::v32i8,   1 },
2016     { ISD::SSUBSAT,    MVT::v16i16,  1 },
2017     { ISD::SSUBSAT,    MVT::v32i8,   1 },
2018     { ISD::UADDSAT,    MVT::v16i16,  1 },
2019     { ISD::UADDSAT,    MVT::v32i8,   1 },
2020     { ISD::UADDSAT,    MVT::v8i32,   3 }, // not + pminud + paddd
2021     { ISD::USUBSAT,    MVT::v16i16,  1 },
2022     { ISD::USUBSAT,    MVT::v32i8,   1 },
2023     { ISD::USUBSAT,    MVT::v8i32,   2 }, // pmaxud + psubd
2024     { ISD::FSQRT,      MVT::f32,     7 }, // Haswell from http://www.agner.org/
2025     { ISD::FSQRT,      MVT::v4f32,   7 }, // Haswell from http://www.agner.org/
2026     { ISD::FSQRT,      MVT::v8f32,  14 }, // Haswell from http://www.agner.org/
2027     { ISD::FSQRT,      MVT::f64,    14 }, // Haswell from http://www.agner.org/
2028     { ISD::FSQRT,      MVT::v2f64,  14 }, // Haswell from http://www.agner.org/
2029     { ISD::FSQRT,      MVT::v4f64,  28 }, // Haswell from http://www.agner.org/
2030   };
2031   static const CostTblEntry AVX1CostTbl[] = {
2032     { ISD::BITREVERSE, MVT::v4i64,  12 }, // 2 x 128-bit Op + extract/insert
2033     { ISD::BITREVERSE, MVT::v8i32,  12 }, // 2 x 128-bit Op + extract/insert
2034     { ISD::BITREVERSE, MVT::v16i16, 12 }, // 2 x 128-bit Op + extract/insert
2035     { ISD::BITREVERSE, MVT::v32i8,  12 }, // 2 x 128-bit Op + extract/insert
2036     { ISD::BSWAP,      MVT::v4i64,   4 },
2037     { ISD::BSWAP,      MVT::v8i32,   4 },
2038     { ISD::BSWAP,      MVT::v16i16,  4 },
2039     { ISD::CTLZ,       MVT::v4i64,  48 }, // 2 x 128-bit Op + extract/insert
2040     { ISD::CTLZ,       MVT::v8i32,  38 }, // 2 x 128-bit Op + extract/insert
2041     { ISD::CTLZ,       MVT::v16i16, 30 }, // 2 x 128-bit Op + extract/insert
2042     { ISD::CTLZ,       MVT::v32i8,  20 }, // 2 x 128-bit Op + extract/insert
2043     { ISD::CTPOP,      MVT::v4i64,  16 }, // 2 x 128-bit Op + extract/insert
2044     { ISD::CTPOP,      MVT::v8i32,  24 }, // 2 x 128-bit Op + extract/insert
2045     { ISD::CTPOP,      MVT::v16i16, 20 }, // 2 x 128-bit Op + extract/insert
2046     { ISD::CTPOP,      MVT::v32i8,  14 }, // 2 x 128-bit Op + extract/insert
2047     { ISD::CTTZ,       MVT::v4i64,  22 }, // 2 x 128-bit Op + extract/insert
2048     { ISD::CTTZ,       MVT::v8i32,  30 }, // 2 x 128-bit Op + extract/insert
2049     { ISD::CTTZ,       MVT::v16i16, 26 }, // 2 x 128-bit Op + extract/insert
2050     { ISD::CTTZ,       MVT::v32i8,  20 }, // 2 x 128-bit Op + extract/insert
2051     { ISD::SADDSAT,    MVT::v16i16,  4 }, // 2 x 128-bit Op + extract/insert
2052     { ISD::SADDSAT,    MVT::v32i8,   4 }, // 2 x 128-bit Op + extract/insert
2053     { ISD::SSUBSAT,    MVT::v16i16,  4 }, // 2 x 128-bit Op + extract/insert
2054     { ISD::SSUBSAT,    MVT::v32i8,   4 }, // 2 x 128-bit Op + extract/insert
2055     { ISD::UADDSAT,    MVT::v16i16,  4 }, // 2 x 128-bit Op + extract/insert
2056     { ISD::UADDSAT,    MVT::v32i8,   4 }, // 2 x 128-bit Op + extract/insert
2057     { ISD::UADDSAT,    MVT::v8i32,   8 }, // 2 x 128-bit Op + extract/insert
2058     { ISD::USUBSAT,    MVT::v16i16,  4 }, // 2 x 128-bit Op + extract/insert
2059     { ISD::USUBSAT,    MVT::v32i8,   4 }, // 2 x 128-bit Op + extract/insert
2060     { ISD::USUBSAT,    MVT::v8i32,   6 }, // 2 x 128-bit Op + extract/insert
2061     { ISD::FSQRT,      MVT::f32,    14 }, // SNB from http://www.agner.org/
2062     { ISD::FSQRT,      MVT::v4f32,  14 }, // SNB from http://www.agner.org/
2063     { ISD::FSQRT,      MVT::v8f32,  28 }, // SNB from http://www.agner.org/
2064     { ISD::FSQRT,      MVT::f64,    21 }, // SNB from http://www.agner.org/
2065     { ISD::FSQRT,      MVT::v2f64,  21 }, // SNB from http://www.agner.org/
2066     { ISD::FSQRT,      MVT::v4f64,  43 }, // SNB from http://www.agner.org/
2067   };
2068   static const CostTblEntry GLMCostTbl[] = {
2069     { ISD::FSQRT, MVT::f32,   19 }, // sqrtss
2070     { ISD::FSQRT, MVT::v4f32, 37 }, // sqrtps
2071     { ISD::FSQRT, MVT::f64,   34 }, // sqrtsd
2072     { ISD::FSQRT, MVT::v2f64, 67 }, // sqrtpd
2073   };
2074   static const CostTblEntry SLMCostTbl[] = {
2075     { ISD::FSQRT, MVT::f32,   20 }, // sqrtss
2076     { ISD::FSQRT, MVT::v4f32, 40 }, // sqrtps
2077     { ISD::FSQRT, MVT::f64,   35 }, // sqrtsd
2078     { ISD::FSQRT, MVT::v2f64, 70 }, // sqrtpd
2079   };
2080   static const CostTblEntry SSE42CostTbl[] = {
2081     { ISD::USUBSAT,    MVT::v4i32,   2 }, // pmaxud + psubd
2082     { ISD::UADDSAT,    MVT::v4i32,   3 }, // not + pminud + paddd
2083     { ISD::FSQRT,      MVT::f32,    18 }, // Nehalem from http://www.agner.org/
2084     { ISD::FSQRT,      MVT::v4f32,  18 }, // Nehalem from http://www.agner.org/
2085   };
2086   static const CostTblEntry SSSE3CostTbl[] = {
2087     { ISD::BITREVERSE, MVT::v2i64,   5 },
2088     { ISD::BITREVERSE, MVT::v4i32,   5 },
2089     { ISD::BITREVERSE, MVT::v8i16,   5 },
2090     { ISD::BITREVERSE, MVT::v16i8,   5 },
2091     { ISD::BSWAP,      MVT::v2i64,   1 },
2092     { ISD::BSWAP,      MVT::v4i32,   1 },
2093     { ISD::BSWAP,      MVT::v8i16,   1 },
2094     { ISD::CTLZ,       MVT::v2i64,  23 },
2095     { ISD::CTLZ,       MVT::v4i32,  18 },
2096     { ISD::CTLZ,       MVT::v8i16,  14 },
2097     { ISD::CTLZ,       MVT::v16i8,   9 },
2098     { ISD::CTPOP,      MVT::v2i64,   7 },
2099     { ISD::CTPOP,      MVT::v4i32,  11 },
2100     { ISD::CTPOP,      MVT::v8i16,   9 },
2101     { ISD::CTPOP,      MVT::v16i8,   6 },
2102     { ISD::CTTZ,       MVT::v2i64,  10 },
2103     { ISD::CTTZ,       MVT::v4i32,  14 },
2104     { ISD::CTTZ,       MVT::v8i16,  12 },
2105     { ISD::CTTZ,       MVT::v16i8,   9 }
2106   };
2107   static const CostTblEntry SSE2CostTbl[] = {
2108     { ISD::BITREVERSE, MVT::v2i64,  29 },
2109     { ISD::BITREVERSE, MVT::v4i32,  27 },
2110     { ISD::BITREVERSE, MVT::v8i16,  27 },
2111     { ISD::BITREVERSE, MVT::v16i8,  20 },
2112     { ISD::BSWAP,      MVT::v2i64,   7 },
2113     { ISD::BSWAP,      MVT::v4i32,   7 },
2114     { ISD::BSWAP,      MVT::v8i16,   7 },
2115     { ISD::CTLZ,       MVT::v2i64,  25 },
2116     { ISD::CTLZ,       MVT::v4i32,  26 },
2117     { ISD::CTLZ,       MVT::v8i16,  20 },
2118     { ISD::CTLZ,       MVT::v16i8,  17 },
2119     { ISD::CTPOP,      MVT::v2i64,  12 },
2120     { ISD::CTPOP,      MVT::v4i32,  15 },
2121     { ISD::CTPOP,      MVT::v8i16,  13 },
2122     { ISD::CTPOP,      MVT::v16i8,  10 },
2123     { ISD::CTTZ,       MVT::v2i64,  14 },
2124     { ISD::CTTZ,       MVT::v4i32,  18 },
2125     { ISD::CTTZ,       MVT::v8i16,  16 },
2126     { ISD::CTTZ,       MVT::v16i8,  13 },
2127     { ISD::SADDSAT,    MVT::v8i16,   1 },
2128     { ISD::SADDSAT,    MVT::v16i8,   1 },
2129     { ISD::SSUBSAT,    MVT::v8i16,   1 },
2130     { ISD::SSUBSAT,    MVT::v16i8,   1 },
2131     { ISD::UADDSAT,    MVT::v8i16,   1 },
2132     { ISD::UADDSAT,    MVT::v16i8,   1 },
2133     { ISD::USUBSAT,    MVT::v8i16,   1 },
2134     { ISD::USUBSAT,    MVT::v16i8,   1 },
2135     { ISD::FSQRT,      MVT::f64,    32 }, // Nehalem from http://www.agner.org/
2136     { ISD::FSQRT,      MVT::v2f64,  32 }, // Nehalem from http://www.agner.org/
2137   };
2138   static const CostTblEntry SSE1CostTbl[] = {
2139     { ISD::FSQRT,      MVT::f32,    28 }, // Pentium III from http://www.agner.org/
2140     { ISD::FSQRT,      MVT::v4f32,  56 }, // Pentium III from http://www.agner.org/
2141   };
2142   static const CostTblEntry X64CostTbl[] = { // 64-bit targets
2143     { ISD::BITREVERSE, MVT::i64,    14 },
2144     { ISD::SADDO,      MVT::i64,     1 },
2145     { ISD::UADDO,      MVT::i64,     1 },
2146   };
2147   static const CostTblEntry X86CostTbl[] = { // 32 or 64-bit targets
2148     { ISD::BITREVERSE, MVT::i32,    14 },
2149     { ISD::BITREVERSE, MVT::i16,    14 },
2150     { ISD::BITREVERSE, MVT::i8,     11 },
2151     { ISD::SADDO,      MVT::i32,     1 },
2152     { ISD::SADDO,      MVT::i16,     1 },
2153     { ISD::SADDO,      MVT::i8,      1 },
2154     { ISD::UADDO,      MVT::i32,     1 },
2155     { ISD::UADDO,      MVT::i16,     1 },
2156     { ISD::UADDO,      MVT::i8,      1 },
2157   };
2158 
2159   Type *OpTy = RetTy;
2160   unsigned ISD = ISD::DELETED_NODE;
2161   switch (IID) {
2162   default:
2163     break;
2164   case Intrinsic::bitreverse:
2165     ISD = ISD::BITREVERSE;
2166     break;
2167   case Intrinsic::bswap:
2168     ISD = ISD::BSWAP;
2169     break;
2170   case Intrinsic::ctlz:
2171     ISD = ISD::CTLZ;
2172     break;
2173   case Intrinsic::ctpop:
2174     ISD = ISD::CTPOP;
2175     break;
2176   case Intrinsic::cttz:
2177     ISD = ISD::CTTZ;
2178     break;
2179   case Intrinsic::sadd_sat:
2180     ISD = ISD::SADDSAT;
2181     break;
2182   case Intrinsic::ssub_sat:
2183     ISD = ISD::SSUBSAT;
2184     break;
2185   case Intrinsic::uadd_sat:
2186     ISD = ISD::UADDSAT;
2187     break;
2188   case Intrinsic::usub_sat:
2189     ISD = ISD::USUBSAT;
2190     break;
2191   case Intrinsic::sqrt:
2192     ISD = ISD::FSQRT;
2193     break;
2194   case Intrinsic::sadd_with_overflow:
2195   case Intrinsic::ssub_with_overflow:
2196     // SSUBO has same costs so don't duplicate.
2197     ISD = ISD::SADDO;
2198     OpTy = RetTy->getContainedType(0);
2199     break;
2200   case Intrinsic::uadd_with_overflow:
2201   case Intrinsic::usub_with_overflow:
2202     // USUBO has same costs so don't duplicate.
2203     ISD = ISD::UADDO;
2204     OpTy = RetTy->getContainedType(0);
2205     break;
2206   }
2207 
2208   if (ISD != ISD::DELETED_NODE) {
2209     // Legalize the type.
2210     std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, OpTy);
2211     MVT MTy = LT.second;
2212 
2213     // Attempt to lookup cost.
2214     if (ST->isGLM())
2215       if (const auto *Entry = CostTableLookup(GLMCostTbl, ISD, MTy))
2216         return LT.first * Entry->Cost;
2217 
2218     if (ST->isSLM())
2219       if (const auto *Entry = CostTableLookup(SLMCostTbl, ISD, MTy))
2220         return LT.first * Entry->Cost;
2221 
2222     if (ST->hasCDI())
2223       if (const auto *Entry = CostTableLookup(AVX512CDCostTbl, ISD, MTy))
2224         return LT.first * Entry->Cost;
2225 
2226     if (ST->hasBWI())
2227       if (const auto *Entry = CostTableLookup(AVX512BWCostTbl, ISD, MTy))
2228         return LT.first * Entry->Cost;
2229 
2230     if (ST->hasAVX512())
2231       if (const auto *Entry = CostTableLookup(AVX512CostTbl, ISD, MTy))
2232         return LT.first * Entry->Cost;
2233 
2234     if (ST->hasXOP())
2235       if (const auto *Entry = CostTableLookup(XOPCostTbl, ISD, MTy))
2236         return LT.first * Entry->Cost;
2237 
2238     if (ST->hasAVX2())
2239       if (const auto *Entry = CostTableLookup(AVX2CostTbl, ISD, MTy))
2240         return LT.first * Entry->Cost;
2241 
2242     if (ST->hasAVX())
2243       if (const auto *Entry = CostTableLookup(AVX1CostTbl, ISD, MTy))
2244         return LT.first * Entry->Cost;
2245 
2246     if (ST->hasSSE42())
2247       if (const auto *Entry = CostTableLookup(SSE42CostTbl, ISD, MTy))
2248         return LT.first * Entry->Cost;
2249 
2250     if (ST->hasSSSE3())
2251       if (const auto *Entry = CostTableLookup(SSSE3CostTbl, ISD, MTy))
2252         return LT.first * Entry->Cost;
2253 
2254     if (ST->hasSSE2())
2255       if (const auto *Entry = CostTableLookup(SSE2CostTbl, ISD, MTy))
2256         return LT.first * Entry->Cost;
2257 
2258     if (ST->hasSSE1())
2259       if (const auto *Entry = CostTableLookup(SSE1CostTbl, ISD, MTy))
2260         return LT.first * Entry->Cost;
2261 
2262     if (ST->is64Bit())
2263       if (const auto *Entry = CostTableLookup(X64CostTbl, ISD, MTy))
2264         return LT.first * Entry->Cost;
2265 
2266     if (const auto *Entry = CostTableLookup(X86CostTbl, ISD, MTy))
2267       return LT.first * Entry->Cost;
2268   }
2269 
2270   return BaseT::getIntrinsicInstrCost(IID, RetTy, Tys, FMF, ScalarizationCostPassed);
2271 }
2272 
2273 int X86TTIImpl::getIntrinsicInstrCost(Intrinsic::ID IID, Type *RetTy,
2274                                       ArrayRef<Value *> Args, FastMathFlags FMF,
2275                                       unsigned VF) {
2276   static const CostTblEntry AVX512CostTbl[] = {
2277     { ISD::ROTL,       MVT::v8i64,   1 },
2278     { ISD::ROTL,       MVT::v4i64,   1 },
2279     { ISD::ROTL,       MVT::v2i64,   1 },
2280     { ISD::ROTL,       MVT::v16i32,  1 },
2281     { ISD::ROTL,       MVT::v8i32,   1 },
2282     { ISD::ROTL,       MVT::v4i32,   1 },
2283     { ISD::ROTR,       MVT::v8i64,   1 },
2284     { ISD::ROTR,       MVT::v4i64,   1 },
2285     { ISD::ROTR,       MVT::v2i64,   1 },
2286     { ISD::ROTR,       MVT::v16i32,  1 },
2287     { ISD::ROTR,       MVT::v8i32,   1 },
2288     { ISD::ROTR,       MVT::v4i32,   1 }
2289   };
2290   // XOP: ROTL = VPROT(X,Y), ROTR = VPROT(X,SUB(0,Y))
2291   static const CostTblEntry XOPCostTbl[] = {
2292     { ISD::ROTL,       MVT::v4i64,   4 },
2293     { ISD::ROTL,       MVT::v8i32,   4 },
2294     { ISD::ROTL,       MVT::v16i16,  4 },
2295     { ISD::ROTL,       MVT::v32i8,   4 },
2296     { ISD::ROTL,       MVT::v2i64,   1 },
2297     { ISD::ROTL,       MVT::v4i32,   1 },
2298     { ISD::ROTL,       MVT::v8i16,   1 },
2299     { ISD::ROTL,       MVT::v16i8,   1 },
2300     { ISD::ROTR,       MVT::v4i64,   6 },
2301     { ISD::ROTR,       MVT::v8i32,   6 },
2302     { ISD::ROTR,       MVT::v16i16,  6 },
2303     { ISD::ROTR,       MVT::v32i8,   6 },
2304     { ISD::ROTR,       MVT::v2i64,   2 },
2305     { ISD::ROTR,       MVT::v4i32,   2 },
2306     { ISD::ROTR,       MVT::v8i16,   2 },
2307     { ISD::ROTR,       MVT::v16i8,   2 }
2308   };
2309   static const CostTblEntry X64CostTbl[] = { // 64-bit targets
2310     { ISD::ROTL,       MVT::i64,     1 },
2311     { ISD::ROTR,       MVT::i64,     1 },
2312     { ISD::FSHL,       MVT::i64,     4 }
2313   };
2314   static const CostTblEntry X86CostTbl[] = { // 32 or 64-bit targets
2315     { ISD::ROTL,       MVT::i32,     1 },
2316     { ISD::ROTL,       MVT::i16,     1 },
2317     { ISD::ROTL,       MVT::i8,      1 },
2318     { ISD::ROTR,       MVT::i32,     1 },
2319     { ISD::ROTR,       MVT::i16,     1 },
2320     { ISD::ROTR,       MVT::i8,      1 },
2321     { ISD::FSHL,       MVT::i32,     4 },
2322     { ISD::FSHL,       MVT::i16,     4 },
2323     { ISD::FSHL,       MVT::i8,      4 }
2324   };
2325 
2326   unsigned ISD = ISD::DELETED_NODE;
2327   switch (IID) {
2328   default:
2329     break;
2330   case Intrinsic::fshl:
2331     ISD = ISD::FSHL;
2332     if (Args[0] == Args[1])
2333       ISD = ISD::ROTL;
2334     break;
2335   case Intrinsic::fshr:
2336     // FSHR has same costs so don't duplicate.
2337     ISD = ISD::FSHL;
2338     if (Args[0] == Args[1])
2339       ISD = ISD::ROTR;
2340     break;
2341   }
2342 
2343   if (ISD != ISD::DELETED_NODE) {
2344     // Legalize the type.
2345     std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, RetTy);
2346     MVT MTy = LT.second;
2347 
2348     // Attempt to lookup cost.
2349     if (ST->hasAVX512())
2350       if (const auto *Entry = CostTableLookup(AVX512CostTbl, ISD, MTy))
2351         return LT.first * Entry->Cost;
2352 
2353     if (ST->hasXOP())
2354       if (const auto *Entry = CostTableLookup(XOPCostTbl, ISD, MTy))
2355         return LT.first * Entry->Cost;
2356 
2357     if (ST->is64Bit())
2358       if (const auto *Entry = CostTableLookup(X64CostTbl, ISD, MTy))
2359         return LT.first * Entry->Cost;
2360 
2361     if (const auto *Entry = CostTableLookup(X86CostTbl, ISD, MTy))
2362       return LT.first * Entry->Cost;
2363   }
2364 
2365   return BaseT::getIntrinsicInstrCost(IID, RetTy, Args, FMF, VF);
2366 }
2367 
2368 int X86TTIImpl::getVectorInstrCost(unsigned Opcode, Type *Val, unsigned Index) {
2369   assert(Val->isVectorTy() && "This must be a vector type");
2370 
2371   Type *ScalarType = Val->getScalarType();
2372 
2373   if (Index != -1U) {
2374     // Legalize the type.
2375     std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Val);
2376 
2377     // This type is legalized to a scalar type.
2378     if (!LT.second.isVector())
2379       return 0;
2380 
2381     // The type may be split. Normalize the index to the new type.
2382     unsigned Width = LT.second.getVectorNumElements();
2383     Index = Index % Width;
2384 
2385     // Floating point scalars are already located in index #0.
2386     if (ScalarType->isFloatingPointTy() && Index == 0)
2387       return 0;
2388   }
2389 
2390   // Add to the base cost if we know that the extracted element of a vector is
2391   // destined to be moved to and used in the integer register file.
2392   int RegisterFileMoveCost = 0;
2393   if (Opcode == Instruction::ExtractElement && ScalarType->isPointerTy())
2394     RegisterFileMoveCost = 1;
2395 
2396   return BaseT::getVectorInstrCost(Opcode, Val, Index) + RegisterFileMoveCost;
2397 }
2398 
2399 int X86TTIImpl::getMemoryOpCost(unsigned Opcode, Type *Src, unsigned Alignment,
2400                                 unsigned AddressSpace, const Instruction *I) {
2401   // Handle non-power-of-two vectors such as <3 x float>
2402   if (VectorType *VTy = dyn_cast<VectorType>(Src)) {
2403     unsigned NumElem = VTy->getVectorNumElements();
2404 
2405     // Handle a few common cases:
2406     // <3 x float>
2407     if (NumElem == 3 && VTy->getScalarSizeInBits() == 32)
2408       // Cost = 64 bit store + extract + 32 bit store.
2409       return 3;
2410 
2411     // <3 x double>
2412     if (NumElem == 3 && VTy->getScalarSizeInBits() == 64)
2413       // Cost = 128 bit store + unpack + 64 bit store.
2414       return 3;
2415 
2416     // Assume that all other non-power-of-two numbers are scalarized.
2417     if (!isPowerOf2_32(NumElem)) {
2418       int Cost = BaseT::getMemoryOpCost(Opcode, VTy->getScalarType(), Alignment,
2419                                         AddressSpace);
2420       int SplitCost = getScalarizationOverhead(Src, Opcode == Instruction::Load,
2421                                                Opcode == Instruction::Store);
2422       return NumElem * Cost + SplitCost;
2423     }
2424   }
2425 
2426   // Legalize the type.
2427   std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Src);
2428   assert((Opcode == Instruction::Load || Opcode == Instruction::Store) &&
2429          "Invalid Opcode");
2430 
2431   // Each load/store unit costs 1.
2432   int Cost = LT.first * 1;
2433 
2434   // This isn't exactly right. We're using slow unaligned 32-byte accesses as a
2435   // proxy for a double-pumped AVX memory interface such as on Sandybridge.
2436   if (LT.second.getStoreSize() == 32 && ST->isUnalignedMem32Slow())
2437     Cost *= 2;
2438 
2439   return Cost;
2440 }
2441 
2442 int X86TTIImpl::getMaskedMemoryOpCost(unsigned Opcode, Type *SrcTy,
2443                                       unsigned Alignment,
2444                                       unsigned AddressSpace) {
2445   bool IsLoad = (Instruction::Load == Opcode);
2446   bool IsStore = (Instruction::Store == Opcode);
2447 
2448   VectorType *SrcVTy = dyn_cast<VectorType>(SrcTy);
2449   if (!SrcVTy)
2450     // To calculate scalar take the regular cost, without mask
2451     return getMemoryOpCost(Opcode, SrcTy, Alignment, AddressSpace);
2452 
2453   unsigned NumElem = SrcVTy->getVectorNumElements();
2454   VectorType *MaskTy =
2455       VectorType::get(Type::getInt8Ty(SrcVTy->getContext()), NumElem);
2456   if ((IsLoad && !isLegalMaskedLoad(SrcVTy)) ||
2457       (IsStore && !isLegalMaskedStore(SrcVTy)) || !isPowerOf2_32(NumElem)) {
2458     // Scalarization
2459     int MaskSplitCost = getScalarizationOverhead(MaskTy, false, true);
2460     int ScalarCompareCost = getCmpSelInstrCost(
2461         Instruction::ICmp, Type::getInt8Ty(SrcVTy->getContext()), nullptr);
2462     int BranchCost = getCFInstrCost(Instruction::Br);
2463     int MaskCmpCost = NumElem * (BranchCost + ScalarCompareCost);
2464 
2465     int ValueSplitCost = getScalarizationOverhead(SrcVTy, IsLoad, IsStore);
2466     int MemopCost =
2467         NumElem * BaseT::getMemoryOpCost(Opcode, SrcVTy->getScalarType(),
2468                                          Alignment, AddressSpace);
2469     return MemopCost + ValueSplitCost + MaskSplitCost + MaskCmpCost;
2470   }
2471 
2472   // Legalize the type.
2473   std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, SrcVTy);
2474   auto VT = TLI->getValueType(DL, SrcVTy);
2475   int Cost = 0;
2476   if (VT.isSimple() && LT.second != VT.getSimpleVT() &&
2477       LT.second.getVectorNumElements() == NumElem)
2478     // Promotion requires expand/truncate for data and a shuffle for mask.
2479     Cost += getShuffleCost(TTI::SK_PermuteTwoSrc, SrcVTy, 0, nullptr) +
2480             getShuffleCost(TTI::SK_PermuteTwoSrc, MaskTy, 0, nullptr);
2481 
2482   else if (LT.second.getVectorNumElements() > NumElem) {
2483     VectorType *NewMaskTy = VectorType::get(MaskTy->getVectorElementType(),
2484                                             LT.second.getVectorNumElements());
2485     // Expanding requires fill mask with zeroes
2486     Cost += getShuffleCost(TTI::SK_InsertSubvector, NewMaskTy, 0, MaskTy);
2487   }
2488 
2489   // Pre-AVX512 - each maskmov load costs 2 + store costs ~8.
2490   if (!ST->hasAVX512())
2491     return Cost + LT.first * (IsLoad ? 2 : 8);
2492 
2493   // AVX-512 masked load/store is cheapper
2494   return Cost + LT.first;
2495 }
2496 
2497 int X86TTIImpl::getAddressComputationCost(Type *Ty, ScalarEvolution *SE,
2498                                           const SCEV *Ptr) {
2499   // Address computations in vectorized code with non-consecutive addresses will
2500   // likely result in more instructions compared to scalar code where the
2501   // computation can more often be merged into the index mode. The resulting
2502   // extra micro-ops can significantly decrease throughput.
2503   const unsigned NumVectorInstToHideOverhead = 10;
2504 
2505   // Cost modeling of Strided Access Computation is hidden by the indexing
2506   // modes of X86 regardless of the stride value. We dont believe that there
2507   // is a difference between constant strided access in gerenal and constant
2508   // strided value which is less than or equal to 64.
2509   // Even in the case of (loop invariant) stride whose value is not known at
2510   // compile time, the address computation will not incur more than one extra
2511   // ADD instruction.
2512   if (Ty->isVectorTy() && SE) {
2513     if (!BaseT::isStridedAccess(Ptr))
2514       return NumVectorInstToHideOverhead;
2515     if (!BaseT::getConstantStrideStep(SE, Ptr))
2516       return 1;
2517   }
2518 
2519   return BaseT::getAddressComputationCost(Ty, SE, Ptr);
2520 }
2521 
2522 int X86TTIImpl::getArithmeticReductionCost(unsigned Opcode, Type *ValTy,
2523                                            bool IsPairwise) {
2524   // We use the Intel Architecture Code Analyzer(IACA) to measure the throughput
2525   // and make it as the cost.
2526 
2527   static const CostTblEntry SSE42CostTblPairWise[] = {
2528     { ISD::FADD,  MVT::v2f64,   2 },
2529     { ISD::FADD,  MVT::v4f32,   4 },
2530     { ISD::ADD,   MVT::v2i64,   2 },      // The data reported by the IACA tool is "1.6".
2531     { ISD::ADD,   MVT::v2i32,   2 }, // FIXME: chosen to be less than v4i32.
2532     { ISD::ADD,   MVT::v4i32,   3 },      // The data reported by the IACA tool is "3.5".
2533     { ISD::ADD,   MVT::v2i16,   3 }, // FIXME: chosen to be less than v4i16
2534     { ISD::ADD,   MVT::v4i16,   4 }, // FIXME: chosen to be less than v8i16
2535     { ISD::ADD,   MVT::v8i16,   5 },
2536   };
2537 
2538   static const CostTblEntry AVX1CostTblPairWise[] = {
2539     { ISD::FADD,  MVT::v4f32,   4 },
2540     { ISD::FADD,  MVT::v4f64,   5 },
2541     { ISD::FADD,  MVT::v8f32,   7 },
2542     { ISD::ADD,   MVT::v2i64,   1 },      // The data reported by the IACA tool is "1.5".
2543     { ISD::ADD,   MVT::v2i32,   2 }, // FIXME: chosen to be less than v4i32
2544     { ISD::ADD,   MVT::v4i32,   3 },      // The data reported by the IACA tool is "3.5".
2545     { ISD::ADD,   MVT::v4i64,   5 },      // The data reported by the IACA tool is "4.8".
2546     { ISD::ADD,   MVT::v2i16,   3 }, // FIXME: chosen to be less than v4i16
2547     { ISD::ADD,   MVT::v4i16,   4 }, // FIXME: chosen to be less than v8i16
2548     { ISD::ADD,   MVT::v8i16,   5 },
2549     { ISD::ADD,   MVT::v8i32,   5 },
2550   };
2551 
2552   static const CostTblEntry SSE42CostTblNoPairWise[] = {
2553     { ISD::FADD,  MVT::v2f64,   2 },
2554     { ISD::FADD,  MVT::v4f32,   4 },
2555     { ISD::ADD,   MVT::v2i64,   2 },      // The data reported by the IACA tool is "1.6".
2556     { ISD::ADD,   MVT::v2i32,   2 }, // FIXME: chosen to be less than v4i32
2557     { ISD::ADD,   MVT::v4i32,   3 },      // The data reported by the IACA tool is "3.3".
2558     { ISD::ADD,   MVT::v2i16,   2 },      // The data reported by the IACA tool is "4.3".
2559     { ISD::ADD,   MVT::v4i16,   3 },      // The data reported by the IACA tool is "4.3".
2560     { ISD::ADD,   MVT::v8i16,   4 },      // The data reported by the IACA tool is "4.3".
2561   };
2562 
2563   static const CostTblEntry AVX1CostTblNoPairWise[] = {
2564     { ISD::FADD,  MVT::v4f32,   3 },
2565     { ISD::FADD,  MVT::v4f64,   3 },
2566     { ISD::FADD,  MVT::v8f32,   4 },
2567     { ISD::ADD,   MVT::v2i64,   1 },      // The data reported by the IACA tool is "1.5".
2568     { ISD::ADD,   MVT::v2i32,   2 }, // FIXME: chosen to be less than v4i32
2569     { ISD::ADD,   MVT::v4i32,   3 },      // The data reported by the IACA tool is "2.8".
2570     { ISD::ADD,   MVT::v4i64,   3 },
2571     { ISD::ADD,   MVT::v2i16,   2 },      // The data reported by the IACA tool is "4.3".
2572     { ISD::ADD,   MVT::v4i16,   3 },      // The data reported by the IACA tool is "4.3".
2573     { ISD::ADD,   MVT::v8i16,   4 },
2574     { ISD::ADD,   MVT::v8i32,   5 },
2575   };
2576 
2577   int ISD = TLI->InstructionOpcodeToISD(Opcode);
2578   assert(ISD && "Invalid opcode");
2579 
2580   // Before legalizing the type, give a chance to look up illegal narrow types
2581   // in the table.
2582   // FIXME: Is there a better way to do this?
2583   EVT VT = TLI->getValueType(DL, ValTy);
2584   if (VT.isSimple() && ExperimentalVectorWideningLegalization) {
2585     MVT MTy = VT.getSimpleVT();
2586     if (IsPairwise) {
2587       if (ST->hasAVX())
2588         if (const auto *Entry = CostTableLookup(AVX1CostTblPairWise, ISD, MTy))
2589           return Entry->Cost;
2590 
2591       if (ST->hasSSE42())
2592         if (const auto *Entry = CostTableLookup(SSE42CostTblPairWise, ISD, MTy))
2593           return Entry->Cost;
2594     } else {
2595       if (ST->hasAVX())
2596         if (const auto *Entry = CostTableLookup(AVX1CostTblNoPairWise, ISD, MTy))
2597           return Entry->Cost;
2598 
2599       if (ST->hasSSE42())
2600         if (const auto *Entry = CostTableLookup(SSE42CostTblNoPairWise, ISD, MTy))
2601           return Entry->Cost;
2602     }
2603   }
2604 
2605   std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, ValTy);
2606 
2607   MVT MTy = LT.second;
2608 
2609   if (IsPairwise) {
2610     if (ST->hasAVX())
2611       if (const auto *Entry = CostTableLookup(AVX1CostTblPairWise, ISD, MTy))
2612         return LT.first * Entry->Cost;
2613 
2614     if (ST->hasSSE42())
2615       if (const auto *Entry = CostTableLookup(SSE42CostTblPairWise, ISD, MTy))
2616         return LT.first * Entry->Cost;
2617   } else {
2618     if (ST->hasAVX())
2619       if (const auto *Entry = CostTableLookup(AVX1CostTblNoPairWise, ISD, MTy))
2620         return LT.first * Entry->Cost;
2621 
2622     if (ST->hasSSE42())
2623       if (const auto *Entry = CostTableLookup(SSE42CostTblNoPairWise, ISD, MTy))
2624         return LT.first * Entry->Cost;
2625   }
2626 
2627   static const CostTblEntry AVX2BoolReduction[] = {
2628     { ISD::AND,  MVT::v16i16,  2 }, // vpmovmskb + cmp
2629     { ISD::AND,  MVT::v32i8,   2 }, // vpmovmskb + cmp
2630     { ISD::OR,   MVT::v16i16,  2 }, // vpmovmskb + cmp
2631     { ISD::OR,   MVT::v32i8,   2 }, // vpmovmskb + cmp
2632   };
2633 
2634   static const CostTblEntry AVX1BoolReduction[] = {
2635     { ISD::AND,  MVT::v4i64,   2 }, // vmovmskpd + cmp
2636     { ISD::AND,  MVT::v8i32,   2 }, // vmovmskps + cmp
2637     { ISD::AND,  MVT::v16i16,  4 }, // vextractf128 + vpand + vpmovmskb + cmp
2638     { ISD::AND,  MVT::v32i8,   4 }, // vextractf128 + vpand + vpmovmskb + cmp
2639     { ISD::OR,   MVT::v4i64,   2 }, // vmovmskpd + cmp
2640     { ISD::OR,   MVT::v8i32,   2 }, // vmovmskps + cmp
2641     { ISD::OR,   MVT::v16i16,  4 }, // vextractf128 + vpor + vpmovmskb + cmp
2642     { ISD::OR,   MVT::v32i8,   4 }, // vextractf128 + vpor + vpmovmskb + cmp
2643   };
2644 
2645   static const CostTblEntry SSE2BoolReduction[] = {
2646     { ISD::AND,  MVT::v2i64,   2 }, // movmskpd + cmp
2647     { ISD::AND,  MVT::v4i32,   2 }, // movmskps + cmp
2648     { ISD::AND,  MVT::v8i16,   2 }, // pmovmskb + cmp
2649     { ISD::AND,  MVT::v16i8,   2 }, // pmovmskb + cmp
2650     { ISD::OR,   MVT::v2i64,   2 }, // movmskpd + cmp
2651     { ISD::OR,   MVT::v4i32,   2 }, // movmskps + cmp
2652     { ISD::OR,   MVT::v8i16,   2 }, // pmovmskb + cmp
2653     { ISD::OR,   MVT::v16i8,   2 }, // pmovmskb + cmp
2654   };
2655 
2656   // Handle bool allof/anyof patterns.
2657   if (ValTy->getVectorElementType()->isIntegerTy(1)) {
2658     if (ST->hasAVX2())
2659       if (const auto *Entry = CostTableLookup(AVX2BoolReduction, ISD, MTy))
2660         return LT.first * Entry->Cost;
2661     if (ST->hasAVX())
2662       if (const auto *Entry = CostTableLookup(AVX1BoolReduction, ISD, MTy))
2663         return LT.first * Entry->Cost;
2664     if (ST->hasSSE2())
2665       if (const auto *Entry = CostTableLookup(SSE2BoolReduction, ISD, MTy))
2666         return LT.first * Entry->Cost;
2667   }
2668 
2669   return BaseT::getArithmeticReductionCost(Opcode, ValTy, IsPairwise);
2670 }
2671 
2672 int X86TTIImpl::getMinMaxReductionCost(Type *ValTy, Type *CondTy,
2673                                        bool IsPairwise, bool IsUnsigned) {
2674   std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, ValTy);
2675 
2676   MVT MTy = LT.second;
2677 
2678   int ISD;
2679   if (ValTy->isIntOrIntVectorTy()) {
2680     ISD = IsUnsigned ? ISD::UMIN : ISD::SMIN;
2681   } else {
2682     assert(ValTy->isFPOrFPVectorTy() &&
2683            "Expected float point or integer vector type.");
2684     ISD = ISD::FMINNUM;
2685   }
2686 
2687   // We use the Intel Architecture Code Analyzer(IACA) to measure the throughput
2688   // and make it as the cost.
2689 
2690   static const CostTblEntry SSE1CostTblPairWise[] = {
2691       {ISD::FMINNUM, MVT::v4f32, 4},
2692   };
2693 
2694   static const CostTblEntry SSE2CostTblPairWise[] = {
2695       {ISD::FMINNUM, MVT::v2f64, 3},
2696       {ISD::SMIN, MVT::v2i64, 6},
2697       {ISD::UMIN, MVT::v2i64, 8},
2698       {ISD::SMIN, MVT::v4i32, 6},
2699       {ISD::UMIN, MVT::v4i32, 8},
2700       {ISD::SMIN, MVT::v8i16, 4},
2701       {ISD::UMIN, MVT::v8i16, 6},
2702       {ISD::SMIN, MVT::v16i8, 8},
2703       {ISD::UMIN, MVT::v16i8, 6},
2704   };
2705 
2706   static const CostTblEntry SSE41CostTblPairWise[] = {
2707       {ISD::FMINNUM, MVT::v4f32, 2},
2708       {ISD::SMIN, MVT::v2i64, 9},
2709       {ISD::UMIN, MVT::v2i64,10},
2710       {ISD::SMIN, MVT::v4i32, 1}, // The data reported by the IACA is "1.5"
2711       {ISD::UMIN, MVT::v4i32, 2}, // The data reported by the IACA is "1.8"
2712       {ISD::SMIN, MVT::v8i16, 2},
2713       {ISD::UMIN, MVT::v8i16, 2},
2714       {ISD::SMIN, MVT::v16i8, 3},
2715       {ISD::UMIN, MVT::v16i8, 3},
2716   };
2717 
2718   static const CostTblEntry SSE42CostTblPairWise[] = {
2719       {ISD::SMIN, MVT::v2i64, 7}, // The data reported by the IACA is "6.8"
2720       {ISD::UMIN, MVT::v2i64, 8}, // The data reported by the IACA is "8.6"
2721   };
2722 
2723   static const CostTblEntry AVX1CostTblPairWise[] = {
2724       {ISD::FMINNUM, MVT::v4f32, 1},
2725       {ISD::FMINNUM, MVT::v4f64, 1},
2726       {ISD::FMINNUM, MVT::v8f32, 2},
2727       {ISD::SMIN, MVT::v2i64, 3},
2728       {ISD::UMIN, MVT::v2i64, 3},
2729       {ISD::SMIN, MVT::v4i32, 1},
2730       {ISD::UMIN, MVT::v4i32, 1},
2731       {ISD::SMIN, MVT::v8i16, 1},
2732       {ISD::UMIN, MVT::v8i16, 1},
2733       {ISD::SMIN, MVT::v16i8, 2},
2734       {ISD::UMIN, MVT::v16i8, 2},
2735       {ISD::SMIN, MVT::v4i64, 7},
2736       {ISD::UMIN, MVT::v4i64, 7},
2737       {ISD::SMIN, MVT::v8i32, 3},
2738       {ISD::UMIN, MVT::v8i32, 3},
2739       {ISD::SMIN, MVT::v16i16, 3},
2740       {ISD::UMIN, MVT::v16i16, 3},
2741       {ISD::SMIN, MVT::v32i8, 3},
2742       {ISD::UMIN, MVT::v32i8, 3},
2743   };
2744 
2745   static const CostTblEntry AVX2CostTblPairWise[] = {
2746       {ISD::SMIN, MVT::v4i64, 2},
2747       {ISD::UMIN, MVT::v4i64, 2},
2748       {ISD::SMIN, MVT::v8i32, 1},
2749       {ISD::UMIN, MVT::v8i32, 1},
2750       {ISD::SMIN, MVT::v16i16, 1},
2751       {ISD::UMIN, MVT::v16i16, 1},
2752       {ISD::SMIN, MVT::v32i8, 2},
2753       {ISD::UMIN, MVT::v32i8, 2},
2754   };
2755 
2756   static const CostTblEntry AVX512CostTblPairWise[] = {
2757       {ISD::FMINNUM, MVT::v8f64, 1},
2758       {ISD::FMINNUM, MVT::v16f32, 2},
2759       {ISD::SMIN, MVT::v8i64, 2},
2760       {ISD::UMIN, MVT::v8i64, 2},
2761       {ISD::SMIN, MVT::v16i32, 1},
2762       {ISD::UMIN, MVT::v16i32, 1},
2763   };
2764 
2765   static const CostTblEntry SSE1CostTblNoPairWise[] = {
2766       {ISD::FMINNUM, MVT::v4f32, 4},
2767   };
2768 
2769   static const CostTblEntry SSE2CostTblNoPairWise[] = {
2770       {ISD::FMINNUM, MVT::v2f64, 3},
2771       {ISD::SMIN, MVT::v2i64, 6},
2772       {ISD::UMIN, MVT::v2i64, 8},
2773       {ISD::SMIN, MVT::v4i32, 6},
2774       {ISD::UMIN, MVT::v4i32, 8},
2775       {ISD::SMIN, MVT::v8i16, 4},
2776       {ISD::UMIN, MVT::v8i16, 6},
2777       {ISD::SMIN, MVT::v16i8, 8},
2778       {ISD::UMIN, MVT::v16i8, 6},
2779   };
2780 
2781   static const CostTblEntry SSE41CostTblNoPairWise[] = {
2782       {ISD::FMINNUM, MVT::v4f32, 3},
2783       {ISD::SMIN, MVT::v2i64, 9},
2784       {ISD::UMIN, MVT::v2i64,11},
2785       {ISD::SMIN, MVT::v4i32, 1}, // The data reported by the IACA is "1.5"
2786       {ISD::UMIN, MVT::v4i32, 2}, // The data reported by the IACA is "1.8"
2787       {ISD::SMIN, MVT::v8i16, 1}, // The data reported by the IACA is "1.5"
2788       {ISD::UMIN, MVT::v8i16, 2}, // The data reported by the IACA is "1.8"
2789       {ISD::SMIN, MVT::v16i8, 3},
2790       {ISD::UMIN, MVT::v16i8, 3},
2791   };
2792 
2793   static const CostTblEntry SSE42CostTblNoPairWise[] = {
2794       {ISD::SMIN, MVT::v2i64, 7}, // The data reported by the IACA is "6.8"
2795       {ISD::UMIN, MVT::v2i64, 9}, // The data reported by the IACA is "8.6"
2796   };
2797 
2798   static const CostTblEntry AVX1CostTblNoPairWise[] = {
2799       {ISD::FMINNUM, MVT::v4f32, 1},
2800       {ISD::FMINNUM, MVT::v4f64, 1},
2801       {ISD::FMINNUM, MVT::v8f32, 1},
2802       {ISD::SMIN, MVT::v2i64, 3},
2803       {ISD::UMIN, MVT::v2i64, 3},
2804       {ISD::SMIN, MVT::v4i32, 1},
2805       {ISD::UMIN, MVT::v4i32, 1},
2806       {ISD::SMIN, MVT::v8i16, 1},
2807       {ISD::UMIN, MVT::v8i16, 1},
2808       {ISD::SMIN, MVT::v16i8, 2},
2809       {ISD::UMIN, MVT::v16i8, 2},
2810       {ISD::SMIN, MVT::v4i64, 7},
2811       {ISD::UMIN, MVT::v4i64, 7},
2812       {ISD::SMIN, MVT::v8i32, 2},
2813       {ISD::UMIN, MVT::v8i32, 2},
2814       {ISD::SMIN, MVT::v16i16, 2},
2815       {ISD::UMIN, MVT::v16i16, 2},
2816       {ISD::SMIN, MVT::v32i8, 2},
2817       {ISD::UMIN, MVT::v32i8, 2},
2818   };
2819 
2820   static const CostTblEntry AVX2CostTblNoPairWise[] = {
2821       {ISD::SMIN, MVT::v4i64, 1},
2822       {ISD::UMIN, MVT::v4i64, 1},
2823       {ISD::SMIN, MVT::v8i32, 1},
2824       {ISD::UMIN, MVT::v8i32, 1},
2825       {ISD::SMIN, MVT::v16i16, 1},
2826       {ISD::UMIN, MVT::v16i16, 1},
2827       {ISD::SMIN, MVT::v32i8, 1},
2828       {ISD::UMIN, MVT::v32i8, 1},
2829   };
2830 
2831   static const CostTblEntry AVX512CostTblNoPairWise[] = {
2832       {ISD::FMINNUM, MVT::v8f64, 1},
2833       {ISD::FMINNUM, MVT::v16f32, 2},
2834       {ISD::SMIN, MVT::v8i64, 1},
2835       {ISD::UMIN, MVT::v8i64, 1},
2836       {ISD::SMIN, MVT::v16i32, 1},
2837       {ISD::UMIN, MVT::v16i32, 1},
2838   };
2839 
2840   if (IsPairwise) {
2841     if (ST->hasAVX512())
2842       if (const auto *Entry = CostTableLookup(AVX512CostTblPairWise, ISD, MTy))
2843         return LT.first * Entry->Cost;
2844 
2845     if (ST->hasAVX2())
2846       if (const auto *Entry = CostTableLookup(AVX2CostTblPairWise, ISD, MTy))
2847         return LT.first * Entry->Cost;
2848 
2849     if (ST->hasAVX())
2850       if (const auto *Entry = CostTableLookup(AVX1CostTblPairWise, ISD, MTy))
2851         return LT.first * Entry->Cost;
2852 
2853     if (ST->hasSSE42())
2854       if (const auto *Entry = CostTableLookup(SSE42CostTblPairWise, ISD, MTy))
2855         return LT.first * Entry->Cost;
2856 
2857     if (ST->hasSSE41())
2858       if (const auto *Entry = CostTableLookup(SSE41CostTblPairWise, ISD, MTy))
2859         return LT.first * Entry->Cost;
2860 
2861     if (ST->hasSSE2())
2862       if (const auto *Entry = CostTableLookup(SSE2CostTblPairWise, ISD, MTy))
2863         return LT.first * Entry->Cost;
2864 
2865     if (ST->hasSSE1())
2866       if (const auto *Entry = CostTableLookup(SSE1CostTblPairWise, ISD, MTy))
2867         return LT.first * Entry->Cost;
2868   } else {
2869     if (ST->hasAVX512())
2870       if (const auto *Entry =
2871               CostTableLookup(AVX512CostTblNoPairWise, ISD, MTy))
2872         return LT.first * Entry->Cost;
2873 
2874     if (ST->hasAVX2())
2875       if (const auto *Entry = CostTableLookup(AVX2CostTblNoPairWise, ISD, MTy))
2876         return LT.first * Entry->Cost;
2877 
2878     if (ST->hasAVX())
2879       if (const auto *Entry = CostTableLookup(AVX1CostTblNoPairWise, ISD, MTy))
2880         return LT.first * Entry->Cost;
2881 
2882     if (ST->hasSSE42())
2883       if (const auto *Entry = CostTableLookup(SSE42CostTblNoPairWise, ISD, MTy))
2884         return LT.first * Entry->Cost;
2885 
2886     if (ST->hasSSE41())
2887       if (const auto *Entry = CostTableLookup(SSE41CostTblNoPairWise, ISD, MTy))
2888         return LT.first * Entry->Cost;
2889 
2890     if (ST->hasSSE2())
2891       if (const auto *Entry = CostTableLookup(SSE2CostTblNoPairWise, ISD, MTy))
2892         return LT.first * Entry->Cost;
2893 
2894     if (ST->hasSSE1())
2895       if (const auto *Entry = CostTableLookup(SSE1CostTblNoPairWise, ISD, MTy))
2896         return LT.first * Entry->Cost;
2897   }
2898 
2899   return BaseT::getMinMaxReductionCost(ValTy, CondTy, IsPairwise, IsUnsigned);
2900 }
2901 
2902 /// Calculate the cost of materializing a 64-bit value. This helper
2903 /// method might only calculate a fraction of a larger immediate. Therefore it
2904 /// is valid to return a cost of ZERO.
2905 int X86TTIImpl::getIntImmCost(int64_t Val) {
2906   if (Val == 0)
2907     return TTI::TCC_Free;
2908 
2909   if (isInt<32>(Val))
2910     return TTI::TCC_Basic;
2911 
2912   return 2 * TTI::TCC_Basic;
2913 }
2914 
2915 int X86TTIImpl::getIntImmCost(const APInt &Imm, Type *Ty) {
2916   assert(Ty->isIntegerTy());
2917 
2918   unsigned BitSize = Ty->getPrimitiveSizeInBits();
2919   if (BitSize == 0)
2920     return ~0U;
2921 
2922   // Never hoist constants larger than 128bit, because this might lead to
2923   // incorrect code generation or assertions in codegen.
2924   // Fixme: Create a cost model for types larger than i128 once the codegen
2925   // issues have been fixed.
2926   if (BitSize > 128)
2927     return TTI::TCC_Free;
2928 
2929   if (Imm == 0)
2930     return TTI::TCC_Free;
2931 
2932   // Sign-extend all constants to a multiple of 64-bit.
2933   APInt ImmVal = Imm;
2934   if (BitSize % 64 != 0)
2935     ImmVal = Imm.sext(alignTo(BitSize, 64));
2936 
2937   // Split the constant into 64-bit chunks and calculate the cost for each
2938   // chunk.
2939   int Cost = 0;
2940   for (unsigned ShiftVal = 0; ShiftVal < BitSize; ShiftVal += 64) {
2941     APInt Tmp = ImmVal.ashr(ShiftVal).sextOrTrunc(64);
2942     int64_t Val = Tmp.getSExtValue();
2943     Cost += getIntImmCost(Val);
2944   }
2945   // We need at least one instruction to materialize the constant.
2946   return std::max(1, Cost);
2947 }
2948 
2949 int X86TTIImpl::getIntImmCost(unsigned Opcode, unsigned Idx, const APInt &Imm,
2950                               Type *Ty) {
2951   assert(Ty->isIntegerTy());
2952 
2953   unsigned BitSize = Ty->getPrimitiveSizeInBits();
2954   // There is no cost model for constants with a bit size of 0. Return TCC_Free
2955   // here, so that constant hoisting will ignore this constant.
2956   if (BitSize == 0)
2957     return TTI::TCC_Free;
2958 
2959   unsigned ImmIdx = ~0U;
2960   switch (Opcode) {
2961   default:
2962     return TTI::TCC_Free;
2963   case Instruction::GetElementPtr:
2964     // Always hoist the base address of a GetElementPtr. This prevents the
2965     // creation of new constants for every base constant that gets constant
2966     // folded with the offset.
2967     if (Idx == 0)
2968       return 2 * TTI::TCC_Basic;
2969     return TTI::TCC_Free;
2970   case Instruction::Store:
2971     ImmIdx = 0;
2972     break;
2973   case Instruction::ICmp:
2974     // This is an imperfect hack to prevent constant hoisting of
2975     // compares that might be trying to check if a 64-bit value fits in
2976     // 32-bits. The backend can optimize these cases using a right shift by 32.
2977     // Ideally we would check the compare predicate here. There also other
2978     // similar immediates the backend can use shifts for.
2979     if (Idx == 1 && Imm.getBitWidth() == 64) {
2980       uint64_t ImmVal = Imm.getZExtValue();
2981       if (ImmVal == 0x100000000ULL || ImmVal == 0xffffffff)
2982         return TTI::TCC_Free;
2983     }
2984     ImmIdx = 1;
2985     break;
2986   case Instruction::And:
2987     // We support 64-bit ANDs with immediates with 32-bits of leading zeroes
2988     // by using a 32-bit operation with implicit zero extension. Detect such
2989     // immediates here as the normal path expects bit 31 to be sign extended.
2990     if (Idx == 1 && Imm.getBitWidth() == 64 && isUInt<32>(Imm.getZExtValue()))
2991       return TTI::TCC_Free;
2992     ImmIdx = 1;
2993     break;
2994   case Instruction::Add:
2995   case Instruction::Sub:
2996     // For add/sub, we can use the opposite instruction for INT32_MIN.
2997     if (Idx == 1 && Imm.getBitWidth() == 64 && Imm.getZExtValue() == 0x80000000)
2998       return TTI::TCC_Free;
2999     ImmIdx = 1;
3000     break;
3001   case Instruction::UDiv:
3002   case Instruction::SDiv:
3003   case Instruction::URem:
3004   case Instruction::SRem:
3005     // Division by constant is typically expanded later into a different
3006     // instruction sequence. This completely changes the constants.
3007     // Report them as "free" to stop ConstantHoist from marking them as opaque.
3008     return TTI::TCC_Free;
3009   case Instruction::Mul:
3010   case Instruction::Or:
3011   case Instruction::Xor:
3012     ImmIdx = 1;
3013     break;
3014   // Always return TCC_Free for the shift value of a shift instruction.
3015   case Instruction::Shl:
3016   case Instruction::LShr:
3017   case Instruction::AShr:
3018     if (Idx == 1)
3019       return TTI::TCC_Free;
3020     break;
3021   case Instruction::Trunc:
3022   case Instruction::ZExt:
3023   case Instruction::SExt:
3024   case Instruction::IntToPtr:
3025   case Instruction::PtrToInt:
3026   case Instruction::BitCast:
3027   case Instruction::PHI:
3028   case Instruction::Call:
3029   case Instruction::Select:
3030   case Instruction::Ret:
3031   case Instruction::Load:
3032     break;
3033   }
3034 
3035   if (Idx == ImmIdx) {
3036     int NumConstants = divideCeil(BitSize, 64);
3037     int Cost = X86TTIImpl::getIntImmCost(Imm, Ty);
3038     return (Cost <= NumConstants * TTI::TCC_Basic)
3039                ? static_cast<int>(TTI::TCC_Free)
3040                : Cost;
3041   }
3042 
3043   return X86TTIImpl::getIntImmCost(Imm, Ty);
3044 }
3045 
3046 int X86TTIImpl::getIntImmCost(Intrinsic::ID IID, unsigned Idx, const APInt &Imm,
3047                               Type *Ty) {
3048   assert(Ty->isIntegerTy());
3049 
3050   unsigned BitSize = Ty->getPrimitiveSizeInBits();
3051   // There is no cost model for constants with a bit size of 0. Return TCC_Free
3052   // here, so that constant hoisting will ignore this constant.
3053   if (BitSize == 0)
3054     return TTI::TCC_Free;
3055 
3056   switch (IID) {
3057   default:
3058     return TTI::TCC_Free;
3059   case Intrinsic::sadd_with_overflow:
3060   case Intrinsic::uadd_with_overflow:
3061   case Intrinsic::ssub_with_overflow:
3062   case Intrinsic::usub_with_overflow:
3063   case Intrinsic::smul_with_overflow:
3064   case Intrinsic::umul_with_overflow:
3065     if ((Idx == 1) && Imm.getBitWidth() <= 64 && isInt<32>(Imm.getSExtValue()))
3066       return TTI::TCC_Free;
3067     break;
3068   case Intrinsic::experimental_stackmap:
3069     if ((Idx < 2) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue())))
3070       return TTI::TCC_Free;
3071     break;
3072   case Intrinsic::experimental_patchpoint_void:
3073   case Intrinsic::experimental_patchpoint_i64:
3074     if ((Idx < 4) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue())))
3075       return TTI::TCC_Free;
3076     break;
3077   }
3078   return X86TTIImpl::getIntImmCost(Imm, Ty);
3079 }
3080 
3081 unsigned X86TTIImpl::getUserCost(const User *U,
3082                                  ArrayRef<const Value *> Operands) {
3083   if (isa<StoreInst>(U)) {
3084     Value *Ptr = U->getOperand(1);
3085     // Store instruction with index and scale costs 2 Uops.
3086     // Check the preceding GEP to identify non-const indices.
3087     if (auto GEP = dyn_cast<GetElementPtrInst>(Ptr)) {
3088       if (!all_of(GEP->indices(), [](Value *V) { return isa<Constant>(V); }))
3089         return TTI::TCC_Basic * 2;
3090     }
3091     return TTI::TCC_Basic;
3092   }
3093   return BaseT::getUserCost(U, Operands);
3094 }
3095 
3096 // Return an average cost of Gather / Scatter instruction, maybe improved later
3097 int X86TTIImpl::getGSVectorCost(unsigned Opcode, Type *SrcVTy, Value *Ptr,
3098                                 unsigned Alignment, unsigned AddressSpace) {
3099 
3100   assert(isa<VectorType>(SrcVTy) && "Unexpected type in getGSVectorCost");
3101   unsigned VF = SrcVTy->getVectorNumElements();
3102 
3103   // Try to reduce index size from 64 bit (default for GEP)
3104   // to 32. It is essential for VF 16. If the index can't be reduced to 32, the
3105   // operation will use 16 x 64 indices which do not fit in a zmm and needs
3106   // to split. Also check that the base pointer is the same for all lanes,
3107   // and that there's at most one variable index.
3108   auto getIndexSizeInBits = [](Value *Ptr, const DataLayout& DL) {
3109     unsigned IndexSize = DL.getPointerSizeInBits();
3110     GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr);
3111     if (IndexSize < 64 || !GEP)
3112       return IndexSize;
3113 
3114     unsigned NumOfVarIndices = 0;
3115     Value *Ptrs = GEP->getPointerOperand();
3116     if (Ptrs->getType()->isVectorTy() && !getSplatValue(Ptrs))
3117       return IndexSize;
3118     for (unsigned i = 1; i < GEP->getNumOperands(); ++i) {
3119       if (isa<Constant>(GEP->getOperand(i)))
3120         continue;
3121       Type *IndxTy = GEP->getOperand(i)->getType();
3122       if (IndxTy->isVectorTy())
3123         IndxTy = IndxTy->getVectorElementType();
3124       if ((IndxTy->getPrimitiveSizeInBits() == 64 &&
3125           !isa<SExtInst>(GEP->getOperand(i))) ||
3126          ++NumOfVarIndices > 1)
3127         return IndexSize; // 64
3128     }
3129     return (unsigned)32;
3130   };
3131 
3132 
3133   // Trying to reduce IndexSize to 32 bits for vector 16.
3134   // By default the IndexSize is equal to pointer size.
3135   unsigned IndexSize = (ST->hasAVX512() && VF >= 16)
3136                            ? getIndexSizeInBits(Ptr, DL)
3137                            : DL.getPointerSizeInBits();
3138 
3139   Type *IndexVTy = VectorType::get(IntegerType::get(SrcVTy->getContext(),
3140                                                     IndexSize), VF);
3141   std::pair<int, MVT> IdxsLT = TLI->getTypeLegalizationCost(DL, IndexVTy);
3142   std::pair<int, MVT> SrcLT = TLI->getTypeLegalizationCost(DL, SrcVTy);
3143   int SplitFactor = std::max(IdxsLT.first, SrcLT.first);
3144   if (SplitFactor > 1) {
3145     // Handle splitting of vector of pointers
3146     Type *SplitSrcTy = VectorType::get(SrcVTy->getScalarType(), VF / SplitFactor);
3147     return SplitFactor * getGSVectorCost(Opcode, SplitSrcTy, Ptr, Alignment,
3148                                          AddressSpace);
3149   }
3150 
3151   // The gather / scatter cost is given by Intel architects. It is a rough
3152   // number since we are looking at one instruction in a time.
3153   const int GSOverhead = (Opcode == Instruction::Load)
3154                              ? ST->getGatherOverhead()
3155                              : ST->getScatterOverhead();
3156   return GSOverhead + VF * getMemoryOpCost(Opcode, SrcVTy->getScalarType(),
3157                                            Alignment, AddressSpace);
3158 }
3159 
3160 /// Return the cost of full scalarization of gather / scatter operation.
3161 ///
3162 /// Opcode - Load or Store instruction.
3163 /// SrcVTy - The type of the data vector that should be gathered or scattered.
3164 /// VariableMask - The mask is non-constant at compile time.
3165 /// Alignment - Alignment for one element.
3166 /// AddressSpace - pointer[s] address space.
3167 ///
3168 int X86TTIImpl::getGSScalarCost(unsigned Opcode, Type *SrcVTy,
3169                                 bool VariableMask, unsigned Alignment,
3170                                 unsigned AddressSpace) {
3171   unsigned VF = SrcVTy->getVectorNumElements();
3172 
3173   int MaskUnpackCost = 0;
3174   if (VariableMask) {
3175     VectorType *MaskTy =
3176       VectorType::get(Type::getInt1Ty(SrcVTy->getContext()), VF);
3177     MaskUnpackCost = getScalarizationOverhead(MaskTy, false, true);
3178     int ScalarCompareCost =
3179       getCmpSelInstrCost(Instruction::ICmp, Type::getInt1Ty(SrcVTy->getContext()),
3180                          nullptr);
3181     int BranchCost = getCFInstrCost(Instruction::Br);
3182     MaskUnpackCost += VF * (BranchCost + ScalarCompareCost);
3183   }
3184 
3185   // The cost of the scalar loads/stores.
3186   int MemoryOpCost = VF * getMemoryOpCost(Opcode, SrcVTy->getScalarType(),
3187                                           Alignment, AddressSpace);
3188 
3189   int InsertExtractCost = 0;
3190   if (Opcode == Instruction::Load)
3191     for (unsigned i = 0; i < VF; ++i)
3192       // Add the cost of inserting each scalar load into the vector
3193       InsertExtractCost +=
3194         getVectorInstrCost(Instruction::InsertElement, SrcVTy, i);
3195   else
3196     for (unsigned i = 0; i < VF; ++i)
3197       // Add the cost of extracting each element out of the data vector
3198       InsertExtractCost +=
3199         getVectorInstrCost(Instruction::ExtractElement, SrcVTy, i);
3200 
3201   return MemoryOpCost + MaskUnpackCost + InsertExtractCost;
3202 }
3203 
3204 /// Calculate the cost of Gather / Scatter operation
3205 int X86TTIImpl::getGatherScatterOpCost(unsigned Opcode, Type *SrcVTy,
3206                                        Value *Ptr, bool VariableMask,
3207                                        unsigned Alignment) {
3208   assert(SrcVTy->isVectorTy() && "Unexpected data type for Gather/Scatter");
3209   unsigned VF = SrcVTy->getVectorNumElements();
3210   PointerType *PtrTy = dyn_cast<PointerType>(Ptr->getType());
3211   if (!PtrTy && Ptr->getType()->isVectorTy())
3212     PtrTy = dyn_cast<PointerType>(Ptr->getType()->getVectorElementType());
3213   assert(PtrTy && "Unexpected type for Ptr argument");
3214   unsigned AddressSpace = PtrTy->getAddressSpace();
3215 
3216   bool Scalarize = false;
3217   if ((Opcode == Instruction::Load && !isLegalMaskedGather(SrcVTy)) ||
3218       (Opcode == Instruction::Store && !isLegalMaskedScatter(SrcVTy)))
3219     Scalarize = true;
3220   // Gather / Scatter for vector 2 is not profitable on KNL / SKX
3221   // Vector-4 of gather/scatter instruction does not exist on KNL.
3222   // We can extend it to 8 elements, but zeroing upper bits of
3223   // the mask vector will add more instructions. Right now we give the scalar
3224   // cost of vector-4 for KNL. TODO: Check, maybe the gather/scatter instruction
3225   // is better in the VariableMask case.
3226   if (ST->hasAVX512() && (VF == 2 || (VF == 4 && !ST->hasVLX())))
3227     Scalarize = true;
3228 
3229   if (Scalarize)
3230     return getGSScalarCost(Opcode, SrcVTy, VariableMask, Alignment,
3231                            AddressSpace);
3232 
3233   return getGSVectorCost(Opcode, SrcVTy, Ptr, Alignment, AddressSpace);
3234 }
3235 
3236 bool X86TTIImpl::isLSRCostLess(TargetTransformInfo::LSRCost &C1,
3237                                TargetTransformInfo::LSRCost &C2) {
3238     // X86 specific here are "instruction number 1st priority".
3239     return std::tie(C1.Insns, C1.NumRegs, C1.AddRecCost,
3240                     C1.NumIVMuls, C1.NumBaseAdds,
3241                     C1.ScaleCost, C1.ImmCost, C1.SetupCost) <
3242            std::tie(C2.Insns, C2.NumRegs, C2.AddRecCost,
3243                     C2.NumIVMuls, C2.NumBaseAdds,
3244                     C2.ScaleCost, C2.ImmCost, C2.SetupCost);
3245 }
3246 
3247 bool X86TTIImpl::canMacroFuseCmp() {
3248   return ST->hasMacroFusion() || ST->hasBranchFusion();
3249 }
3250 
3251 bool X86TTIImpl::isLegalMaskedLoad(Type *DataTy) {
3252   if (!ST->hasAVX())
3253     return false;
3254 
3255   // The backend can't handle a single element vector.
3256   if (isa<VectorType>(DataTy) && DataTy->getVectorNumElements() == 1)
3257     return false;
3258   Type *ScalarTy = DataTy->getScalarType();
3259 
3260   if (ScalarTy->isPointerTy())
3261     return true;
3262 
3263   if (ScalarTy->isFloatTy() || ScalarTy->isDoubleTy())
3264     return true;
3265 
3266   if (!ScalarTy->isIntegerTy())
3267     return false;
3268 
3269   unsigned IntWidth = ScalarTy->getIntegerBitWidth();
3270   return IntWidth == 32 || IntWidth == 64 ||
3271          ((IntWidth == 8 || IntWidth == 16) && ST->hasBWI());
3272 }
3273 
3274 bool X86TTIImpl::isLegalMaskedStore(Type *DataType) {
3275   return isLegalMaskedLoad(DataType);
3276 }
3277 
3278 bool X86TTIImpl::isLegalNTLoad(Type *DataType, llvm::Align Alignment) {
3279   unsigned DataSize = DL.getTypeStoreSize(DataType);
3280   // The only supported nontemporal loads are for aligned vectors of 16 or 32
3281   // bytes.  Note that 32-byte nontemporal vector loads are supported by AVX2
3282   // (the equivalent stores only require AVX).
3283   if (Alignment >= DataSize && (DataSize == 16 || DataSize == 32))
3284     return DataSize == 16 ?  ST->hasSSE1() : ST->hasAVX2();
3285 
3286   return false;
3287 }
3288 
3289 bool X86TTIImpl::isLegalNTStore(Type *DataType, llvm::Align Alignment) {
3290   unsigned DataSize = DL.getTypeStoreSize(DataType);
3291 
3292   // SSE4A supports nontemporal stores of float and double at arbitrary
3293   // alignment.
3294   if (ST->hasSSE4A() && (DataType->isFloatTy() || DataType->isDoubleTy()))
3295     return true;
3296 
3297   // Besides the SSE4A subtarget exception above, only aligned stores are
3298   // available nontemporaly on any other subtarget.  And only stores with a size
3299   // of 4..32 bytes (powers of 2, only) are permitted.
3300   if (Alignment < DataSize || DataSize < 4 || DataSize > 32 ||
3301       !isPowerOf2_32(DataSize))
3302     return false;
3303 
3304   // 32-byte vector nontemporal stores are supported by AVX (the equivalent
3305   // loads require AVX2).
3306   if (DataSize == 32)
3307     return ST->hasAVX();
3308   else if (DataSize == 16)
3309     return ST->hasSSE1();
3310   return true;
3311 }
3312 
3313 bool X86TTIImpl::isLegalMaskedExpandLoad(Type *DataTy) {
3314   if (!isa<VectorType>(DataTy))
3315     return false;
3316 
3317   if (!ST->hasAVX512())
3318     return false;
3319 
3320   // The backend can't handle a single element vector.
3321   if (DataTy->getVectorNumElements() == 1)
3322     return false;
3323 
3324   Type *ScalarTy = DataTy->getVectorElementType();
3325 
3326   if (ScalarTy->isFloatTy() || ScalarTy->isDoubleTy())
3327     return true;
3328 
3329   if (!ScalarTy->isIntegerTy())
3330     return false;
3331 
3332   unsigned IntWidth = ScalarTy->getIntegerBitWidth();
3333   return IntWidth == 32 || IntWidth == 64 ||
3334          ((IntWidth == 8 || IntWidth == 16) && ST->hasVBMI2());
3335 }
3336 
3337 bool X86TTIImpl::isLegalMaskedCompressStore(Type *DataTy) {
3338   return isLegalMaskedExpandLoad(DataTy);
3339 }
3340 
3341 bool X86TTIImpl::isLegalMaskedGather(Type *DataTy) {
3342   // Some CPUs have better gather performance than others.
3343   // TODO: Remove the explicit ST->hasAVX512()?, That would mean we would only
3344   // enable gather with a -march.
3345   if (!(ST->hasAVX512() || (ST->hasFastGather() && ST->hasAVX2())))
3346     return false;
3347 
3348   // This function is called now in two cases: from the Loop Vectorizer
3349   // and from the Scalarizer.
3350   // When the Loop Vectorizer asks about legality of the feature,
3351   // the vectorization factor is not calculated yet. The Loop Vectorizer
3352   // sends a scalar type and the decision is based on the width of the
3353   // scalar element.
3354   // Later on, the cost model will estimate usage this intrinsic based on
3355   // the vector type.
3356   // The Scalarizer asks again about legality. It sends a vector type.
3357   // In this case we can reject non-power-of-2 vectors.
3358   // We also reject single element vectors as the type legalizer can't
3359   // scalarize it.
3360   if (isa<VectorType>(DataTy)) {
3361     unsigned NumElts = DataTy->getVectorNumElements();
3362     if (NumElts == 1 || !isPowerOf2_32(NumElts))
3363       return false;
3364   }
3365   Type *ScalarTy = DataTy->getScalarType();
3366   if (ScalarTy->isPointerTy())
3367     return true;
3368 
3369   if (ScalarTy->isFloatTy() || ScalarTy->isDoubleTy())
3370     return true;
3371 
3372   if (!ScalarTy->isIntegerTy())
3373     return false;
3374 
3375   unsigned IntWidth = ScalarTy->getIntegerBitWidth();
3376   return IntWidth == 32 || IntWidth == 64;
3377 }
3378 
3379 bool X86TTIImpl::isLegalMaskedScatter(Type *DataType) {
3380   // AVX2 doesn't support scatter
3381   if (!ST->hasAVX512())
3382     return false;
3383   return isLegalMaskedGather(DataType);
3384 }
3385 
3386 bool X86TTIImpl::hasDivRemOp(Type *DataType, bool IsSigned) {
3387   EVT VT = TLI->getValueType(DL, DataType);
3388   return TLI->isOperationLegal(IsSigned ? ISD::SDIVREM : ISD::UDIVREM, VT);
3389 }
3390 
3391 bool X86TTIImpl::isFCmpOrdCheaperThanFCmpZero(Type *Ty) {
3392   return false;
3393 }
3394 
3395 bool X86TTIImpl::areInlineCompatible(const Function *Caller,
3396                                      const Function *Callee) const {
3397   const TargetMachine &TM = getTLI()->getTargetMachine();
3398 
3399   // Work this as a subsetting of subtarget features.
3400   const FeatureBitset &CallerBits =
3401       TM.getSubtargetImpl(*Caller)->getFeatureBits();
3402   const FeatureBitset &CalleeBits =
3403       TM.getSubtargetImpl(*Callee)->getFeatureBits();
3404 
3405   FeatureBitset RealCallerBits = CallerBits & ~InlineFeatureIgnoreList;
3406   FeatureBitset RealCalleeBits = CalleeBits & ~InlineFeatureIgnoreList;
3407   return (RealCallerBits & RealCalleeBits) == RealCalleeBits;
3408 }
3409 
3410 bool X86TTIImpl::areFunctionArgsABICompatible(
3411     const Function *Caller, const Function *Callee,
3412     SmallPtrSetImpl<Argument *> &Args) const {
3413   if (!BaseT::areFunctionArgsABICompatible(Caller, Callee, Args))
3414     return false;
3415 
3416   // If we get here, we know the target features match. If one function
3417   // considers 512-bit vectors legal and the other does not, consider them
3418   // incompatible.
3419   // FIXME Look at the arguments and only consider 512 bit or larger vectors?
3420   const TargetMachine &TM = getTLI()->getTargetMachine();
3421 
3422   return TM.getSubtarget<X86Subtarget>(*Caller).useAVX512Regs() ==
3423          TM.getSubtarget<X86Subtarget>(*Callee).useAVX512Regs();
3424 }
3425 
3426 X86TTIImpl::TTI::MemCmpExpansionOptions
3427 X86TTIImpl::enableMemCmpExpansion(bool OptSize, bool IsZeroCmp) const {
3428   TTI::MemCmpExpansionOptions Options;
3429   Options.MaxNumLoads = TLI->getMaxExpandSizeMemcmp(OptSize);
3430   Options.NumLoadsPerBlock = 2;
3431   if (IsZeroCmp) {
3432     // Only enable vector loads for equality comparison. Right now the vector
3433     // version is not as fast for three way compare (see #33329).
3434     // TODO: enable AVX512 when the DAG is ready.
3435     // if (ST->hasAVX512()) Options.LoadSizes.push_back(64);
3436     const unsigned PreferredWidth = ST->getPreferVectorWidth();
3437     if (PreferredWidth >= 256 && ST->hasAVX2()) Options.LoadSizes.push_back(32);
3438     if (PreferredWidth >= 128 && ST->hasSSE2()) Options.LoadSizes.push_back(16);
3439     // All GPR and vector loads can be unaligned. SIMD compare requires integer
3440     // vectors (SSE2/AVX2).
3441     Options.AllowOverlappingLoads = true;
3442   }
3443   if (ST->is64Bit()) {
3444     Options.LoadSizes.push_back(8);
3445   }
3446   Options.LoadSizes.push_back(4);
3447   Options.LoadSizes.push_back(2);
3448   Options.LoadSizes.push_back(1);
3449   return Options;
3450 }
3451 
3452 bool X86TTIImpl::enableInterleavedAccessVectorization() {
3453   // TODO: We expect this to be beneficial regardless of arch,
3454   // but there are currently some unexplained performance artifacts on Atom.
3455   // As a temporary solution, disable on Atom.
3456   return !(ST->isAtom());
3457 }
3458 
3459 // Get estimation for interleaved load/store operations for AVX2.
3460 // \p Factor is the interleaved-access factor (stride) - number of
3461 // (interleaved) elements in the group.
3462 // \p Indices contains the indices for a strided load: when the
3463 // interleaved load has gaps they indicate which elements are used.
3464 // If Indices is empty (or if the number of indices is equal to the size
3465 // of the interleaved-access as given in \p Factor) the access has no gaps.
3466 //
3467 // As opposed to AVX-512, AVX2 does not have generic shuffles that allow
3468 // computing the cost using a generic formula as a function of generic
3469 // shuffles. We therefore use a lookup table instead, filled according to
3470 // the instruction sequences that codegen currently generates.
3471 int X86TTIImpl::getInterleavedMemoryOpCostAVX2(unsigned Opcode, Type *VecTy,
3472                                                unsigned Factor,
3473                                                ArrayRef<unsigned> Indices,
3474                                                unsigned Alignment,
3475                                                unsigned AddressSpace,
3476                                                bool UseMaskForCond,
3477                                                bool UseMaskForGaps) {
3478 
3479   if (UseMaskForCond || UseMaskForGaps)
3480     return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices,
3481                                              Alignment, AddressSpace,
3482                                              UseMaskForCond, UseMaskForGaps);
3483 
3484   // We currently Support only fully-interleaved groups, with no gaps.
3485   // TODO: Support also strided loads (interleaved-groups with gaps).
3486   if (Indices.size() && Indices.size() != Factor)
3487     return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices,
3488                                              Alignment, AddressSpace);
3489 
3490   // VecTy for interleave memop is <VF*Factor x Elt>.
3491   // So, for VF=4, Interleave Factor = 3, Element type = i32 we have
3492   // VecTy = <12 x i32>.
3493   MVT LegalVT = getTLI()->getTypeLegalizationCost(DL, VecTy).second;
3494 
3495   // This function can be called with VecTy=<6xi128>, Factor=3, in which case
3496   // the VF=2, while v2i128 is an unsupported MVT vector type
3497   // (see MachineValueType.h::getVectorVT()).
3498   if (!LegalVT.isVector())
3499     return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices,
3500                                              Alignment, AddressSpace);
3501 
3502   unsigned VF = VecTy->getVectorNumElements() / Factor;
3503   Type *ScalarTy = VecTy->getVectorElementType();
3504 
3505   // Calculate the number of memory operations (NumOfMemOps), required
3506   // for load/store the VecTy.
3507   unsigned VecTySize = DL.getTypeStoreSize(VecTy);
3508   unsigned LegalVTSize = LegalVT.getStoreSize();
3509   unsigned NumOfMemOps = (VecTySize + LegalVTSize - 1) / LegalVTSize;
3510 
3511   // Get the cost of one memory operation.
3512   Type *SingleMemOpTy = VectorType::get(VecTy->getVectorElementType(),
3513                                         LegalVT.getVectorNumElements());
3514   unsigned MemOpCost =
3515       getMemoryOpCost(Opcode, SingleMemOpTy, Alignment, AddressSpace);
3516 
3517   VectorType *VT = VectorType::get(ScalarTy, VF);
3518   EVT ETy = TLI->getValueType(DL, VT);
3519   if (!ETy.isSimple())
3520     return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices,
3521                                              Alignment, AddressSpace);
3522 
3523   // TODO: Complete for other data-types and strides.
3524   // Each combination of Stride, ElementTy and VF results in a different
3525   // sequence; The cost tables are therefore accessed with:
3526   // Factor (stride) and VectorType=VFxElemType.
3527   // The Cost accounts only for the shuffle sequence;
3528   // The cost of the loads/stores is accounted for separately.
3529   //
3530   static const CostTblEntry AVX2InterleavedLoadTbl[] = {
3531     { 2, MVT::v4i64, 6 }, //(load 8i64 and) deinterleave into 2 x 4i64
3532     { 2, MVT::v4f64, 6 }, //(load 8f64 and) deinterleave into 2 x 4f64
3533 
3534     { 3, MVT::v2i8,  10 }, //(load 6i8 and)  deinterleave into 3 x 2i8
3535     { 3, MVT::v4i8,  4 },  //(load 12i8 and) deinterleave into 3 x 4i8
3536     { 3, MVT::v8i8,  9 },  //(load 24i8 and) deinterleave into 3 x 8i8
3537     { 3, MVT::v16i8, 11},  //(load 48i8 and) deinterleave into 3 x 16i8
3538     { 3, MVT::v32i8, 13},  //(load 96i8 and) deinterleave into 3 x 32i8
3539     { 3, MVT::v8f32, 17 }, //(load 24f32 and)deinterleave into 3 x 8f32
3540 
3541     { 4, MVT::v2i8,  12 }, //(load 8i8 and)   deinterleave into 4 x 2i8
3542     { 4, MVT::v4i8,  4 },  //(load 16i8 and)  deinterleave into 4 x 4i8
3543     { 4, MVT::v8i8,  20 }, //(load 32i8 and)  deinterleave into 4 x 8i8
3544     { 4, MVT::v16i8, 39 }, //(load 64i8 and)  deinterleave into 4 x 16i8
3545     { 4, MVT::v32i8, 80 }, //(load 128i8 and) deinterleave into 4 x 32i8
3546 
3547     { 8, MVT::v8f32, 40 }  //(load 64f32 and)deinterleave into 8 x 8f32
3548   };
3549 
3550   static const CostTblEntry AVX2InterleavedStoreTbl[] = {
3551     { 2, MVT::v4i64, 6 }, //interleave into 2 x 4i64 into 8i64 (and store)
3552     { 2, MVT::v4f64, 6 }, //interleave into 2 x 4f64 into 8f64 (and store)
3553 
3554     { 3, MVT::v2i8,  7 },  //interleave 3 x 2i8  into 6i8 (and store)
3555     { 3, MVT::v4i8,  8 },  //interleave 3 x 4i8  into 12i8 (and store)
3556     { 3, MVT::v8i8,  11 }, //interleave 3 x 8i8  into 24i8 (and store)
3557     { 3, MVT::v16i8, 11 }, //interleave 3 x 16i8 into 48i8 (and store)
3558     { 3, MVT::v32i8, 13 }, //interleave 3 x 32i8 into 96i8 (and store)
3559 
3560     { 4, MVT::v2i8,  12 }, //interleave 4 x 2i8  into 8i8 (and store)
3561     { 4, MVT::v4i8,  9 },  //interleave 4 x 4i8  into 16i8 (and store)
3562     { 4, MVT::v8i8,  10 }, //interleave 4 x 8i8  into 32i8 (and store)
3563     { 4, MVT::v16i8, 10 }, //interleave 4 x 16i8 into 64i8 (and store)
3564     { 4, MVT::v32i8, 12 }  //interleave 4 x 32i8 into 128i8 (and store)
3565   };
3566 
3567   if (Opcode == Instruction::Load) {
3568     if (const auto *Entry =
3569             CostTableLookup(AVX2InterleavedLoadTbl, Factor, ETy.getSimpleVT()))
3570       return NumOfMemOps * MemOpCost + Entry->Cost;
3571   } else {
3572     assert(Opcode == Instruction::Store &&
3573            "Expected Store Instruction at this  point");
3574     if (const auto *Entry =
3575             CostTableLookup(AVX2InterleavedStoreTbl, Factor, ETy.getSimpleVT()))
3576       return NumOfMemOps * MemOpCost + Entry->Cost;
3577   }
3578 
3579   return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices,
3580                                            Alignment, AddressSpace);
3581 }
3582 
3583 // Get estimation for interleaved load/store operations and strided load.
3584 // \p Indices contains indices for strided load.
3585 // \p Factor - the factor of interleaving.
3586 // AVX-512 provides 3-src shuffles that significantly reduces the cost.
3587 int X86TTIImpl::getInterleavedMemoryOpCostAVX512(unsigned Opcode, Type *VecTy,
3588                                                  unsigned Factor,
3589                                                  ArrayRef<unsigned> Indices,
3590                                                  unsigned Alignment,
3591                                                  unsigned AddressSpace,
3592                                                  bool UseMaskForCond,
3593                                                  bool UseMaskForGaps) {
3594 
3595   if (UseMaskForCond || UseMaskForGaps)
3596     return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices,
3597                                              Alignment, AddressSpace,
3598                                              UseMaskForCond, UseMaskForGaps);
3599 
3600   // VecTy for interleave memop is <VF*Factor x Elt>.
3601   // So, for VF=4, Interleave Factor = 3, Element type = i32 we have
3602   // VecTy = <12 x i32>.
3603 
3604   // Calculate the number of memory operations (NumOfMemOps), required
3605   // for load/store the VecTy.
3606   MVT LegalVT = getTLI()->getTypeLegalizationCost(DL, VecTy).second;
3607   unsigned VecTySize = DL.getTypeStoreSize(VecTy);
3608   unsigned LegalVTSize = LegalVT.getStoreSize();
3609   unsigned NumOfMemOps = (VecTySize + LegalVTSize - 1) / LegalVTSize;
3610 
3611   // Get the cost of one memory operation.
3612   Type *SingleMemOpTy = VectorType::get(VecTy->getVectorElementType(),
3613                                         LegalVT.getVectorNumElements());
3614   unsigned MemOpCost =
3615       getMemoryOpCost(Opcode, SingleMemOpTy, Alignment, AddressSpace);
3616 
3617   unsigned VF = VecTy->getVectorNumElements() / Factor;
3618   MVT VT = MVT::getVectorVT(MVT::getVT(VecTy->getScalarType()), VF);
3619 
3620   if (Opcode == Instruction::Load) {
3621     // The tables (AVX512InterleavedLoadTbl and AVX512InterleavedStoreTbl)
3622     // contain the cost of the optimized shuffle sequence that the
3623     // X86InterleavedAccess pass will generate.
3624     // The cost of loads and stores are computed separately from the table.
3625 
3626     // X86InterleavedAccess support only the following interleaved-access group.
3627     static const CostTblEntry AVX512InterleavedLoadTbl[] = {
3628         {3, MVT::v16i8, 12}, //(load 48i8 and) deinterleave into 3 x 16i8
3629         {3, MVT::v32i8, 14}, //(load 96i8 and) deinterleave into 3 x 32i8
3630         {3, MVT::v64i8, 22}, //(load 96i8 and) deinterleave into 3 x 32i8
3631     };
3632 
3633     if (const auto *Entry =
3634             CostTableLookup(AVX512InterleavedLoadTbl, Factor, VT))
3635       return NumOfMemOps * MemOpCost + Entry->Cost;
3636     //If an entry does not exist, fallback to the default implementation.
3637 
3638     // Kind of shuffle depends on number of loaded values.
3639     // If we load the entire data in one register, we can use a 1-src shuffle.
3640     // Otherwise, we'll merge 2 sources in each operation.
3641     TTI::ShuffleKind ShuffleKind =
3642         (NumOfMemOps > 1) ? TTI::SK_PermuteTwoSrc : TTI::SK_PermuteSingleSrc;
3643 
3644     unsigned ShuffleCost =
3645         getShuffleCost(ShuffleKind, SingleMemOpTy, 0, nullptr);
3646 
3647     unsigned NumOfLoadsInInterleaveGrp =
3648         Indices.size() ? Indices.size() : Factor;
3649     Type *ResultTy = VectorType::get(VecTy->getVectorElementType(),
3650                                      VecTy->getVectorNumElements() / Factor);
3651     unsigned NumOfResults =
3652         getTLI()->getTypeLegalizationCost(DL, ResultTy).first *
3653         NumOfLoadsInInterleaveGrp;
3654 
3655     // About a half of the loads may be folded in shuffles when we have only
3656     // one result. If we have more than one result, we do not fold loads at all.
3657     unsigned NumOfUnfoldedLoads =
3658         NumOfResults > 1 ? NumOfMemOps : NumOfMemOps / 2;
3659 
3660     // Get a number of shuffle operations per result.
3661     unsigned NumOfShufflesPerResult =
3662         std::max((unsigned)1, (unsigned)(NumOfMemOps - 1));
3663 
3664     // The SK_MergeTwoSrc shuffle clobbers one of src operands.
3665     // When we have more than one destination, we need additional instructions
3666     // to keep sources.
3667     unsigned NumOfMoves = 0;
3668     if (NumOfResults > 1 && ShuffleKind == TTI::SK_PermuteTwoSrc)
3669       NumOfMoves = NumOfResults * NumOfShufflesPerResult / 2;
3670 
3671     int Cost = NumOfResults * NumOfShufflesPerResult * ShuffleCost +
3672                NumOfUnfoldedLoads * MemOpCost + NumOfMoves;
3673 
3674     return Cost;
3675   }
3676 
3677   // Store.
3678   assert(Opcode == Instruction::Store &&
3679          "Expected Store Instruction at this  point");
3680   // X86InterleavedAccess support only the following interleaved-access group.
3681   static const CostTblEntry AVX512InterleavedStoreTbl[] = {
3682       {3, MVT::v16i8, 12}, // interleave 3 x 16i8 into 48i8 (and store)
3683       {3, MVT::v32i8, 14}, // interleave 3 x 32i8 into 96i8 (and store)
3684       {3, MVT::v64i8, 26}, // interleave 3 x 64i8 into 96i8 (and store)
3685 
3686       {4, MVT::v8i8, 10},  // interleave 4 x 8i8  into 32i8  (and store)
3687       {4, MVT::v16i8, 11}, // interleave 4 x 16i8 into 64i8  (and store)
3688       {4, MVT::v32i8, 14}, // interleave 4 x 32i8 into 128i8 (and store)
3689       {4, MVT::v64i8, 24}  // interleave 4 x 32i8 into 256i8 (and store)
3690   };
3691 
3692   if (const auto *Entry =
3693           CostTableLookup(AVX512InterleavedStoreTbl, Factor, VT))
3694     return NumOfMemOps * MemOpCost + Entry->Cost;
3695   //If an entry does not exist, fallback to the default implementation.
3696 
3697   // There is no strided stores meanwhile. And store can't be folded in
3698   // shuffle.
3699   unsigned NumOfSources = Factor; // The number of values to be merged.
3700   unsigned ShuffleCost =
3701       getShuffleCost(TTI::SK_PermuteTwoSrc, SingleMemOpTy, 0, nullptr);
3702   unsigned NumOfShufflesPerStore = NumOfSources - 1;
3703 
3704   // The SK_MergeTwoSrc shuffle clobbers one of src operands.
3705   // We need additional instructions to keep sources.
3706   unsigned NumOfMoves = NumOfMemOps * NumOfShufflesPerStore / 2;
3707   int Cost = NumOfMemOps * (MemOpCost + NumOfShufflesPerStore * ShuffleCost) +
3708              NumOfMoves;
3709   return Cost;
3710 }
3711 
3712 int X86TTIImpl::getInterleavedMemoryOpCost(unsigned Opcode, Type *VecTy,
3713                                            unsigned Factor,
3714                                            ArrayRef<unsigned> Indices,
3715                                            unsigned Alignment,
3716                                            unsigned AddressSpace,
3717                                            bool UseMaskForCond,
3718                                            bool UseMaskForGaps) {
3719   auto isSupportedOnAVX512 = [](Type *VecTy, bool HasBW) {
3720     Type *EltTy = VecTy->getVectorElementType();
3721     if (EltTy->isFloatTy() || EltTy->isDoubleTy() || EltTy->isIntegerTy(64) ||
3722         EltTy->isIntegerTy(32) || EltTy->isPointerTy())
3723       return true;
3724     if (EltTy->isIntegerTy(16) || EltTy->isIntegerTy(8))
3725       return HasBW;
3726     return false;
3727   };
3728   if (ST->hasAVX512() && isSupportedOnAVX512(VecTy, ST->hasBWI()))
3729     return getInterleavedMemoryOpCostAVX512(Opcode, VecTy, Factor, Indices,
3730                                             Alignment, AddressSpace,
3731                                             UseMaskForCond, UseMaskForGaps);
3732   if (ST->hasAVX2())
3733     return getInterleavedMemoryOpCostAVX2(Opcode, VecTy, Factor, Indices,
3734                                           Alignment, AddressSpace,
3735                                           UseMaskForCond, UseMaskForGaps);
3736 
3737   return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices,
3738                                            Alignment, AddressSpace,
3739                                            UseMaskForCond, UseMaskForGaps);
3740 }
3741