1 //===-- X86TargetTransformInfo.cpp - X86 specific TTI pass ----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 /// \file
9 /// This file implements a TargetTransformInfo analysis pass specific to the
10 /// X86 target machine. It uses the target's detailed information to provide
11 /// more precise answers to certain TTI queries, while letting the target
12 /// independent and default TTI implementations handle the rest.
13 ///
14 //===----------------------------------------------------------------------===//
15 /// About Cost Model numbers used below it's necessary to say the following:
16 /// the numbers correspond to some "generic" X86 CPU instead of usage of
17 /// concrete CPU model. Usually the numbers correspond to CPU where the feature
18 /// apeared at the first time. For example, if we do Subtarget.hasSSE42() in
19 /// the lookups below the cost is based on Nehalem as that was the first CPU
20 /// to support that feature level and thus has most likely the worst case cost.
21 /// Some examples of other technologies/CPUs:
22 ///   SSE 3   - Pentium4 / Athlon64
23 ///   SSE 4.1 - Penryn
24 ///   SSE 4.2 - Nehalem
25 ///   AVX     - Sandy Bridge
26 ///   AVX2    - Haswell
27 ///   AVX-512 - Xeon Phi / Skylake
28 /// And some examples of instruction target dependent costs (latency)
29 ///                   divss     sqrtss          rsqrtss
30 ///   AMD K7            11-16     19              3
31 ///   Piledriver        9-24      13-15           5
32 ///   Jaguar            14        16              2
33 ///   Pentium II,III    18        30              2
34 ///   Nehalem           7-14      7-18            3
35 ///   Haswell           10-13     11              5
36 /// TODO: Develop and implement  the target dependent cost model and
37 /// specialize cost numbers for different Cost Model Targets such as throughput,
38 /// code size, latency and uop count.
39 //===----------------------------------------------------------------------===//
40 
41 #include "X86TargetTransformInfo.h"
42 #include "llvm/Analysis/TargetTransformInfo.h"
43 #include "llvm/CodeGen/BasicTTIImpl.h"
44 #include "llvm/CodeGen/CostTable.h"
45 #include "llvm/CodeGen/TargetLowering.h"
46 #include "llvm/IR/IntrinsicInst.h"
47 #include "llvm/Support/Debug.h"
48 
49 using namespace llvm;
50 
51 #define DEBUG_TYPE "x86tti"
52 
53 //===----------------------------------------------------------------------===//
54 //
55 // X86 cost model.
56 //
57 //===----------------------------------------------------------------------===//
58 
59 TargetTransformInfo::PopcntSupportKind
60 X86TTIImpl::getPopcntSupport(unsigned TyWidth) {
61   assert(isPowerOf2_32(TyWidth) && "Ty width must be power of 2");
62   // TODO: Currently the __builtin_popcount() implementation using SSE3
63   //   instructions is inefficient. Once the problem is fixed, we should
64   //   call ST->hasSSE3() instead of ST->hasPOPCNT().
65   return ST->hasPOPCNT() ? TTI::PSK_FastHardware : TTI::PSK_Software;
66 }
67 
68 llvm::Optional<unsigned> X86TTIImpl::getCacheSize(
69   TargetTransformInfo::CacheLevel Level) const {
70   switch (Level) {
71   case TargetTransformInfo::CacheLevel::L1D:
72     //   - Penryn
73     //   - Nehalem
74     //   - Westmere
75     //   - Sandy Bridge
76     //   - Ivy Bridge
77     //   - Haswell
78     //   - Broadwell
79     //   - Skylake
80     //   - Kabylake
81     return 32 * 1024;  //  32 KByte
82   case TargetTransformInfo::CacheLevel::L2D:
83     //   - Penryn
84     //   - Nehalem
85     //   - Westmere
86     //   - Sandy Bridge
87     //   - Ivy Bridge
88     //   - Haswell
89     //   - Broadwell
90     //   - Skylake
91     //   - Kabylake
92     return 256 * 1024; // 256 KByte
93   }
94 
95   llvm_unreachable("Unknown TargetTransformInfo::CacheLevel");
96 }
97 
98 llvm::Optional<unsigned> X86TTIImpl::getCacheAssociativity(
99   TargetTransformInfo::CacheLevel Level) const {
100   //   - Penryn
101   //   - Nehalem
102   //   - Westmere
103   //   - Sandy Bridge
104   //   - Ivy Bridge
105   //   - Haswell
106   //   - Broadwell
107   //   - Skylake
108   //   - Kabylake
109   switch (Level) {
110   case TargetTransformInfo::CacheLevel::L1D:
111     LLVM_FALLTHROUGH;
112   case TargetTransformInfo::CacheLevel::L2D:
113     return 8;
114   }
115 
116   llvm_unreachable("Unknown TargetTransformInfo::CacheLevel");
117 }
118 
119 unsigned X86TTIImpl::getNumberOfRegisters(unsigned ClassID) const {
120   bool Vector = (ClassID == 1);
121   if (Vector && !ST->hasSSE1())
122     return 0;
123 
124   if (ST->is64Bit()) {
125     if (Vector && ST->hasAVX512())
126       return 32;
127     return 16;
128   }
129   return 8;
130 }
131 
132 unsigned X86TTIImpl::getRegisterBitWidth(bool Vector) const {
133   unsigned PreferVectorWidth = ST->getPreferVectorWidth();
134   if (Vector) {
135     if (ST->hasAVX512() && PreferVectorWidth >= 512)
136       return 512;
137     if (ST->hasAVX() && PreferVectorWidth >= 256)
138       return 256;
139     if (ST->hasSSE1() && PreferVectorWidth >= 128)
140       return 128;
141     return 0;
142   }
143 
144   if (ST->is64Bit())
145     return 64;
146 
147   return 32;
148 }
149 
150 unsigned X86TTIImpl::getLoadStoreVecRegBitWidth(unsigned) const {
151   return getRegisterBitWidth(true);
152 }
153 
154 unsigned X86TTIImpl::getMaxInterleaveFactor(unsigned VF) {
155   // If the loop will not be vectorized, don't interleave the loop.
156   // Let regular unroll to unroll the loop, which saves the overflow
157   // check and memory check cost.
158   if (VF == 1)
159     return 1;
160 
161   if (ST->isAtom())
162     return 1;
163 
164   // Sandybridge and Haswell have multiple execution ports and pipelined
165   // vector units.
166   if (ST->hasAVX())
167     return 4;
168 
169   return 2;
170 }
171 
172 int X86TTIImpl::getArithmeticInstrCost(unsigned Opcode, Type *Ty,
173                                        TTI::TargetCostKind CostKind,
174                                        TTI::OperandValueKind Op1Info,
175                                        TTI::OperandValueKind Op2Info,
176                                        TTI::OperandValueProperties Opd1PropInfo,
177                                        TTI::OperandValueProperties Opd2PropInfo,
178                                        ArrayRef<const Value *> Args,
179                                        const Instruction *CxtI) {
180   // TODO: Handle more cost kinds.
181   if (CostKind != TTI::TCK_RecipThroughput)
182     return BaseT::getArithmeticInstrCost(Opcode, Ty, CostKind, Op1Info,
183                                          Op2Info, Opd1PropInfo,
184                                          Opd2PropInfo, Args, CxtI);
185   // Legalize the type.
186   std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Ty);
187 
188   int ISD = TLI->InstructionOpcodeToISD(Opcode);
189   assert(ISD && "Invalid opcode");
190 
191   static const CostTblEntry GLMCostTable[] = {
192     { ISD::FDIV,  MVT::f32,   18 }, // divss
193     { ISD::FDIV,  MVT::v4f32, 35 }, // divps
194     { ISD::FDIV,  MVT::f64,   33 }, // divsd
195     { ISD::FDIV,  MVT::v2f64, 65 }, // divpd
196   };
197 
198   if (ST->useGLMDivSqrtCosts())
199     if (const auto *Entry = CostTableLookup(GLMCostTable, ISD,
200                                             LT.second))
201       return LT.first * Entry->Cost;
202 
203   static const CostTblEntry SLMCostTable[] = {
204     { ISD::MUL,   MVT::v4i32, 11 }, // pmulld
205     { ISD::MUL,   MVT::v8i16, 2  }, // pmullw
206     { ISD::MUL,   MVT::v16i8, 14 }, // extend/pmullw/trunc sequence.
207     { ISD::FMUL,  MVT::f64,   2  }, // mulsd
208     { ISD::FMUL,  MVT::v2f64, 4  }, // mulpd
209     { ISD::FMUL,  MVT::v4f32, 2  }, // mulps
210     { ISD::FDIV,  MVT::f32,   17 }, // divss
211     { ISD::FDIV,  MVT::v4f32, 39 }, // divps
212     { ISD::FDIV,  MVT::f64,   32 }, // divsd
213     { ISD::FDIV,  MVT::v2f64, 69 }, // divpd
214     { ISD::FADD,  MVT::v2f64, 2  }, // addpd
215     { ISD::FSUB,  MVT::v2f64, 2  }, // subpd
216     // v2i64/v4i64 mul is custom lowered as a series of long:
217     // multiplies(3), shifts(3) and adds(2)
218     // slm muldq version throughput is 2 and addq throughput 4
219     // thus: 3X2 (muldq throughput) + 3X1 (shift throughput) +
220     //       3X4 (addq throughput) = 17
221     { ISD::MUL,   MVT::v2i64, 17 },
222     // slm addq\subq throughput is 4
223     { ISD::ADD,   MVT::v2i64, 4  },
224     { ISD::SUB,   MVT::v2i64, 4  },
225   };
226 
227   if (ST->isSLM()) {
228     if (Args.size() == 2 && ISD == ISD::MUL && LT.second == MVT::v4i32) {
229       // Check if the operands can be shrinked into a smaller datatype.
230       bool Op1Signed = false;
231       unsigned Op1MinSize = BaseT::minRequiredElementSize(Args[0], Op1Signed);
232       bool Op2Signed = false;
233       unsigned Op2MinSize = BaseT::minRequiredElementSize(Args[1], Op2Signed);
234 
235       bool SignedMode = Op1Signed || Op2Signed;
236       unsigned OpMinSize = std::max(Op1MinSize, Op2MinSize);
237 
238       if (OpMinSize <= 7)
239         return LT.first * 3; // pmullw/sext
240       if (!SignedMode && OpMinSize <= 8)
241         return LT.first * 3; // pmullw/zext
242       if (OpMinSize <= 15)
243         return LT.first * 5; // pmullw/pmulhw/pshuf
244       if (!SignedMode && OpMinSize <= 16)
245         return LT.first * 5; // pmullw/pmulhw/pshuf
246     }
247 
248     if (const auto *Entry = CostTableLookup(SLMCostTable, ISD,
249                                             LT.second)) {
250       return LT.first * Entry->Cost;
251     }
252   }
253 
254   if ((ISD == ISD::SDIV || ISD == ISD::SREM || ISD == ISD::UDIV ||
255        ISD == ISD::UREM) &&
256       (Op2Info == TargetTransformInfo::OK_UniformConstantValue ||
257        Op2Info == TargetTransformInfo::OK_NonUniformConstantValue) &&
258       Opd2PropInfo == TargetTransformInfo::OP_PowerOf2) {
259     if (ISD == ISD::SDIV || ISD == ISD::SREM) {
260       // On X86, vector signed division by constants power-of-two are
261       // normally expanded to the sequence SRA + SRL + ADD + SRA.
262       // The OperandValue properties may not be the same as that of the previous
263       // operation; conservatively assume OP_None.
264       int Cost =
265           2 * getArithmeticInstrCost(Instruction::AShr, Ty, CostKind, Op1Info,
266                                      Op2Info,
267                                      TargetTransformInfo::OP_None,
268                                      TargetTransformInfo::OP_None);
269       Cost += getArithmeticInstrCost(Instruction::LShr, Ty, CostKind, Op1Info,
270                                      Op2Info,
271                                      TargetTransformInfo::OP_None,
272                                      TargetTransformInfo::OP_None);
273       Cost += getArithmeticInstrCost(Instruction::Add, Ty, CostKind, Op1Info,
274                                      Op2Info,
275                                      TargetTransformInfo::OP_None,
276                                      TargetTransformInfo::OP_None);
277 
278       if (ISD == ISD::SREM) {
279         // For SREM: (X % C) is the equivalent of (X - (X/C)*C)
280         Cost += getArithmeticInstrCost(Instruction::Mul, Ty, CostKind, Op1Info,
281                                        Op2Info);
282         Cost += getArithmeticInstrCost(Instruction::Sub, Ty, CostKind, Op1Info,
283                                        Op2Info);
284       }
285 
286       return Cost;
287     }
288 
289     // Vector unsigned division/remainder will be simplified to shifts/masks.
290     if (ISD == ISD::UDIV)
291       return getArithmeticInstrCost(Instruction::LShr, Ty, CostKind,
292                                     Op1Info, Op2Info,
293                                     TargetTransformInfo::OP_None,
294                                     TargetTransformInfo::OP_None);
295 
296     else // UREM
297       return getArithmeticInstrCost(Instruction::And, Ty, CostKind,
298                                     Op1Info, Op2Info,
299                                     TargetTransformInfo::OP_None,
300                                     TargetTransformInfo::OP_None);
301   }
302 
303   static const CostTblEntry AVX512BWUniformConstCostTable[] = {
304     { ISD::SHL,  MVT::v64i8,   2 }, // psllw + pand.
305     { ISD::SRL,  MVT::v64i8,   2 }, // psrlw + pand.
306     { ISD::SRA,  MVT::v64i8,   4 }, // psrlw, pand, pxor, psubb.
307   };
308 
309   if (Op2Info == TargetTransformInfo::OK_UniformConstantValue &&
310       ST->hasBWI()) {
311     if (const auto *Entry = CostTableLookup(AVX512BWUniformConstCostTable, ISD,
312                                             LT.second))
313       return LT.first * Entry->Cost;
314   }
315 
316   static const CostTblEntry AVX512UniformConstCostTable[] = {
317     { ISD::SRA,  MVT::v2i64,   1 },
318     { ISD::SRA,  MVT::v4i64,   1 },
319     { ISD::SRA,  MVT::v8i64,   1 },
320 
321     { ISD::SHL,  MVT::v64i8,   4 }, // psllw + pand.
322     { ISD::SRL,  MVT::v64i8,   4 }, // psrlw + pand.
323     { ISD::SRA,  MVT::v64i8,   8 }, // psrlw, pand, pxor, psubb.
324 
325     { ISD::SDIV, MVT::v16i32,  6 }, // pmuludq sequence
326     { ISD::SREM, MVT::v16i32,  8 }, // pmuludq+mul+sub sequence
327     { ISD::UDIV, MVT::v16i32,  5 }, // pmuludq sequence
328     { ISD::UREM, MVT::v16i32,  7 }, // pmuludq+mul+sub sequence
329   };
330 
331   if (Op2Info == TargetTransformInfo::OK_UniformConstantValue &&
332       ST->hasAVX512()) {
333     if (const auto *Entry = CostTableLookup(AVX512UniformConstCostTable, ISD,
334                                             LT.second))
335       return LT.first * Entry->Cost;
336   }
337 
338   static const CostTblEntry AVX2UniformConstCostTable[] = {
339     { ISD::SHL,  MVT::v32i8,   2 }, // psllw + pand.
340     { ISD::SRL,  MVT::v32i8,   2 }, // psrlw + pand.
341     { ISD::SRA,  MVT::v32i8,   4 }, // psrlw, pand, pxor, psubb.
342 
343     { ISD::SRA,  MVT::v4i64,   4 }, // 2 x psrad + shuffle.
344 
345     { ISD::SDIV, MVT::v8i32,   6 }, // pmuludq sequence
346     { ISD::SREM, MVT::v8i32,   8 }, // pmuludq+mul+sub sequence
347     { ISD::UDIV, MVT::v8i32,   5 }, // pmuludq sequence
348     { ISD::UREM, MVT::v8i32,   7 }, // pmuludq+mul+sub sequence
349   };
350 
351   if (Op2Info == TargetTransformInfo::OK_UniformConstantValue &&
352       ST->hasAVX2()) {
353     if (const auto *Entry = CostTableLookup(AVX2UniformConstCostTable, ISD,
354                                             LT.second))
355       return LT.first * Entry->Cost;
356   }
357 
358   static const CostTblEntry SSE2UniformConstCostTable[] = {
359     { ISD::SHL,  MVT::v16i8,     2 }, // psllw + pand.
360     { ISD::SRL,  MVT::v16i8,     2 }, // psrlw + pand.
361     { ISD::SRA,  MVT::v16i8,     4 }, // psrlw, pand, pxor, psubb.
362 
363     { ISD::SHL,  MVT::v32i8,   4+2 }, // 2*(psllw + pand) + split.
364     { ISD::SRL,  MVT::v32i8,   4+2 }, // 2*(psrlw + pand) + split.
365     { ISD::SRA,  MVT::v32i8,   8+2 }, // 2*(psrlw, pand, pxor, psubb) + split.
366 
367     { ISD::SDIV, MVT::v8i32,  12+2 }, // 2*pmuludq sequence + split.
368     { ISD::SREM, MVT::v8i32,  16+2 }, // 2*pmuludq+mul+sub sequence + split.
369     { ISD::SDIV, MVT::v4i32,     6 }, // pmuludq sequence
370     { ISD::SREM, MVT::v4i32,     8 }, // pmuludq+mul+sub sequence
371     { ISD::UDIV, MVT::v8i32,  10+2 }, // 2*pmuludq sequence + split.
372     { ISD::UREM, MVT::v8i32,  14+2 }, // 2*pmuludq+mul+sub sequence + split.
373     { ISD::UDIV, MVT::v4i32,     5 }, // pmuludq sequence
374     { ISD::UREM, MVT::v4i32,     7 }, // pmuludq+mul+sub sequence
375   };
376 
377   // XOP has faster vXi8 shifts.
378   if (Op2Info == TargetTransformInfo::OK_UniformConstantValue &&
379       ST->hasSSE2() && !ST->hasXOP()) {
380     if (const auto *Entry =
381             CostTableLookup(SSE2UniformConstCostTable, ISD, LT.second))
382       return LT.first * Entry->Cost;
383   }
384 
385   static const CostTblEntry AVX512BWConstCostTable[] = {
386     { ISD::SDIV, MVT::v64i8,  14 }, // 2*ext+2*pmulhw sequence
387     { ISD::SREM, MVT::v64i8,  16 }, // 2*ext+2*pmulhw+mul+sub sequence
388     { ISD::UDIV, MVT::v64i8,  14 }, // 2*ext+2*pmulhw sequence
389     { ISD::UREM, MVT::v64i8,  16 }, // 2*ext+2*pmulhw+mul+sub sequence
390     { ISD::SDIV, MVT::v32i16,  6 }, // vpmulhw sequence
391     { ISD::SREM, MVT::v32i16,  8 }, // vpmulhw+mul+sub sequence
392     { ISD::UDIV, MVT::v32i16,  6 }, // vpmulhuw sequence
393     { ISD::UREM, MVT::v32i16,  8 }, // vpmulhuw+mul+sub sequence
394   };
395 
396   if ((Op2Info == TargetTransformInfo::OK_UniformConstantValue ||
397        Op2Info == TargetTransformInfo::OK_NonUniformConstantValue) &&
398       ST->hasBWI()) {
399     if (const auto *Entry =
400             CostTableLookup(AVX512BWConstCostTable, ISD, LT.second))
401       return LT.first * Entry->Cost;
402   }
403 
404   static const CostTblEntry AVX512ConstCostTable[] = {
405     { ISD::SDIV, MVT::v16i32, 15 }, // vpmuldq sequence
406     { ISD::SREM, MVT::v16i32, 17 }, // vpmuldq+mul+sub sequence
407     { ISD::UDIV, MVT::v16i32, 15 }, // vpmuludq sequence
408     { ISD::UREM, MVT::v16i32, 17 }, // vpmuludq+mul+sub sequence
409     { ISD::SDIV, MVT::v64i8,  28 }, // 4*ext+4*pmulhw sequence
410     { ISD::SREM, MVT::v64i8,  32 }, // 4*ext+4*pmulhw+mul+sub sequence
411     { ISD::UDIV, MVT::v64i8,  28 }, // 4*ext+4*pmulhw sequence
412     { ISD::UREM, MVT::v64i8,  32 }, // 4*ext+4*pmulhw+mul+sub sequence
413     { ISD::SDIV, MVT::v32i16, 12 }, // 2*vpmulhw sequence
414     { ISD::SREM, MVT::v32i16, 16 }, // 2*vpmulhw+mul+sub sequence
415     { ISD::UDIV, MVT::v32i16, 12 }, // 2*vpmulhuw sequence
416     { ISD::UREM, MVT::v32i16, 16 }, // 2*vpmulhuw+mul+sub sequence
417   };
418 
419   if ((Op2Info == TargetTransformInfo::OK_UniformConstantValue ||
420        Op2Info == TargetTransformInfo::OK_NonUniformConstantValue) &&
421       ST->hasAVX512()) {
422     if (const auto *Entry =
423             CostTableLookup(AVX512ConstCostTable, ISD, LT.second))
424       return LT.first * Entry->Cost;
425   }
426 
427   static const CostTblEntry AVX2ConstCostTable[] = {
428     { ISD::SDIV, MVT::v32i8,  14 }, // 2*ext+2*pmulhw sequence
429     { ISD::SREM, MVT::v32i8,  16 }, // 2*ext+2*pmulhw+mul+sub sequence
430     { ISD::UDIV, MVT::v32i8,  14 }, // 2*ext+2*pmulhw sequence
431     { ISD::UREM, MVT::v32i8,  16 }, // 2*ext+2*pmulhw+mul+sub sequence
432     { ISD::SDIV, MVT::v16i16,  6 }, // vpmulhw sequence
433     { ISD::SREM, MVT::v16i16,  8 }, // vpmulhw+mul+sub sequence
434     { ISD::UDIV, MVT::v16i16,  6 }, // vpmulhuw sequence
435     { ISD::UREM, MVT::v16i16,  8 }, // vpmulhuw+mul+sub sequence
436     { ISD::SDIV, MVT::v8i32,  15 }, // vpmuldq sequence
437     { ISD::SREM, MVT::v8i32,  19 }, // vpmuldq+mul+sub sequence
438     { ISD::UDIV, MVT::v8i32,  15 }, // vpmuludq sequence
439     { ISD::UREM, MVT::v8i32,  19 }, // vpmuludq+mul+sub sequence
440   };
441 
442   if ((Op2Info == TargetTransformInfo::OK_UniformConstantValue ||
443        Op2Info == TargetTransformInfo::OK_NonUniformConstantValue) &&
444       ST->hasAVX2()) {
445     if (const auto *Entry = CostTableLookup(AVX2ConstCostTable, ISD, LT.second))
446       return LT.first * Entry->Cost;
447   }
448 
449   static const CostTblEntry SSE2ConstCostTable[] = {
450     { ISD::SDIV, MVT::v32i8,  28+2 }, // 4*ext+4*pmulhw sequence + split.
451     { ISD::SREM, MVT::v32i8,  32+2 }, // 4*ext+4*pmulhw+mul+sub sequence + split.
452     { ISD::SDIV, MVT::v16i8,    14 }, // 2*ext+2*pmulhw sequence
453     { ISD::SREM, MVT::v16i8,    16 }, // 2*ext+2*pmulhw+mul+sub sequence
454     { ISD::UDIV, MVT::v32i8,  28+2 }, // 4*ext+4*pmulhw sequence + split.
455     { ISD::UREM, MVT::v32i8,  32+2 }, // 4*ext+4*pmulhw+mul+sub sequence + split.
456     { ISD::UDIV, MVT::v16i8,    14 }, // 2*ext+2*pmulhw sequence
457     { ISD::UREM, MVT::v16i8,    16 }, // 2*ext+2*pmulhw+mul+sub sequence
458     { ISD::SDIV, MVT::v16i16, 12+2 }, // 2*pmulhw sequence + split.
459     { ISD::SREM, MVT::v16i16, 16+2 }, // 2*pmulhw+mul+sub sequence + split.
460     { ISD::SDIV, MVT::v8i16,     6 }, // pmulhw sequence
461     { ISD::SREM, MVT::v8i16,     8 }, // pmulhw+mul+sub sequence
462     { ISD::UDIV, MVT::v16i16, 12+2 }, // 2*pmulhuw sequence + split.
463     { ISD::UREM, MVT::v16i16, 16+2 }, // 2*pmulhuw+mul+sub sequence + split.
464     { ISD::UDIV, MVT::v8i16,     6 }, // pmulhuw sequence
465     { ISD::UREM, MVT::v8i16,     8 }, // pmulhuw+mul+sub sequence
466     { ISD::SDIV, MVT::v8i32,  38+2 }, // 2*pmuludq sequence + split.
467     { ISD::SREM, MVT::v8i32,  48+2 }, // 2*pmuludq+mul+sub sequence + split.
468     { ISD::SDIV, MVT::v4i32,    19 }, // pmuludq sequence
469     { ISD::SREM, MVT::v4i32,    24 }, // pmuludq+mul+sub sequence
470     { ISD::UDIV, MVT::v8i32,  30+2 }, // 2*pmuludq sequence + split.
471     { ISD::UREM, MVT::v8i32,  40+2 }, // 2*pmuludq+mul+sub sequence + split.
472     { ISD::UDIV, MVT::v4i32,    15 }, // pmuludq sequence
473     { ISD::UREM, MVT::v4i32,    20 }, // pmuludq+mul+sub sequence
474   };
475 
476   if ((Op2Info == TargetTransformInfo::OK_UniformConstantValue ||
477        Op2Info == TargetTransformInfo::OK_NonUniformConstantValue) &&
478       ST->hasSSE2()) {
479     // pmuldq sequence.
480     if (ISD == ISD::SDIV && LT.second == MVT::v8i32 && ST->hasAVX())
481       return LT.first * 32;
482     if (ISD == ISD::SREM && LT.second == MVT::v8i32 && ST->hasAVX())
483       return LT.first * 38;
484     if (ISD == ISD::SDIV && LT.second == MVT::v4i32 && ST->hasSSE41())
485       return LT.first * 15;
486     if (ISD == ISD::SREM && LT.second == MVT::v4i32 && ST->hasSSE41())
487       return LT.first * 20;
488 
489     if (const auto *Entry = CostTableLookup(SSE2ConstCostTable, ISD, LT.second))
490       return LT.first * Entry->Cost;
491   }
492 
493   static const CostTblEntry AVX512BWShiftCostTable[] = {
494     { ISD::SHL,   MVT::v8i16,      1 }, // vpsllvw
495     { ISD::SRL,   MVT::v8i16,      1 }, // vpsrlvw
496     { ISD::SRA,   MVT::v8i16,      1 }, // vpsravw
497 
498     { ISD::SHL,   MVT::v16i16,     1 }, // vpsllvw
499     { ISD::SRL,   MVT::v16i16,     1 }, // vpsrlvw
500     { ISD::SRA,   MVT::v16i16,     1 }, // vpsravw
501 
502     { ISD::SHL,   MVT::v32i16,     1 }, // vpsllvw
503     { ISD::SRL,   MVT::v32i16,     1 }, // vpsrlvw
504     { ISD::SRA,   MVT::v32i16,     1 }, // vpsravw
505   };
506 
507   if (ST->hasBWI())
508     if (const auto *Entry = CostTableLookup(AVX512BWShiftCostTable, ISD, LT.second))
509       return LT.first * Entry->Cost;
510 
511   static const CostTblEntry AVX2UniformCostTable[] = {
512     // Uniform splats are cheaper for the following instructions.
513     { ISD::SHL,  MVT::v16i16, 1 }, // psllw.
514     { ISD::SRL,  MVT::v16i16, 1 }, // psrlw.
515     { ISD::SRA,  MVT::v16i16, 1 }, // psraw.
516     { ISD::SHL,  MVT::v32i16, 2 }, // 2*psllw.
517     { ISD::SRL,  MVT::v32i16, 2 }, // 2*psrlw.
518     { ISD::SRA,  MVT::v32i16, 2 }, // 2*psraw.
519   };
520 
521   if (ST->hasAVX2() &&
522       ((Op2Info == TargetTransformInfo::OK_UniformConstantValue) ||
523        (Op2Info == TargetTransformInfo::OK_UniformValue))) {
524     if (const auto *Entry =
525             CostTableLookup(AVX2UniformCostTable, ISD, LT.second))
526       return LT.first * Entry->Cost;
527   }
528 
529   static const CostTblEntry SSE2UniformCostTable[] = {
530     // Uniform splats are cheaper for the following instructions.
531     { ISD::SHL,  MVT::v8i16,  1 }, // psllw.
532     { ISD::SHL,  MVT::v4i32,  1 }, // pslld
533     { ISD::SHL,  MVT::v2i64,  1 }, // psllq.
534 
535     { ISD::SRL,  MVT::v8i16,  1 }, // psrlw.
536     { ISD::SRL,  MVT::v4i32,  1 }, // psrld.
537     { ISD::SRL,  MVT::v2i64,  1 }, // psrlq.
538 
539     { ISD::SRA,  MVT::v8i16,  1 }, // psraw.
540     { ISD::SRA,  MVT::v4i32,  1 }, // psrad.
541   };
542 
543   if (ST->hasSSE2() &&
544       ((Op2Info == TargetTransformInfo::OK_UniformConstantValue) ||
545        (Op2Info == TargetTransformInfo::OK_UniformValue))) {
546     if (const auto *Entry =
547             CostTableLookup(SSE2UniformCostTable, ISD, LT.second))
548       return LT.first * Entry->Cost;
549   }
550 
551   static const CostTblEntry AVX512DQCostTable[] = {
552     { ISD::MUL,  MVT::v2i64, 1 },
553     { ISD::MUL,  MVT::v4i64, 1 },
554     { ISD::MUL,  MVT::v8i64, 1 }
555   };
556 
557   // Look for AVX512DQ lowering tricks for custom cases.
558   if (ST->hasDQI())
559     if (const auto *Entry = CostTableLookup(AVX512DQCostTable, ISD, LT.second))
560       return LT.first * Entry->Cost;
561 
562   static const CostTblEntry AVX512BWCostTable[] = {
563     { ISD::SHL,   MVT::v64i8,     11 }, // vpblendvb sequence.
564     { ISD::SRL,   MVT::v64i8,     11 }, // vpblendvb sequence.
565     { ISD::SRA,   MVT::v64i8,     24 }, // vpblendvb sequence.
566 
567     { ISD::MUL,   MVT::v64i8,     11 }, // extend/pmullw/trunc sequence.
568     { ISD::MUL,   MVT::v32i8,      4 }, // extend/pmullw/trunc sequence.
569     { ISD::MUL,   MVT::v16i8,      4 }, // extend/pmullw/trunc sequence.
570   };
571 
572   // Look for AVX512BW lowering tricks for custom cases.
573   if (ST->hasBWI())
574     if (const auto *Entry = CostTableLookup(AVX512BWCostTable, ISD, LT.second))
575       return LT.first * Entry->Cost;
576 
577   static const CostTblEntry AVX512CostTable[] = {
578     { ISD::SHL,     MVT::v16i32,     1 },
579     { ISD::SRL,     MVT::v16i32,     1 },
580     { ISD::SRA,     MVT::v16i32,     1 },
581 
582     { ISD::SHL,     MVT::v8i64,      1 },
583     { ISD::SRL,     MVT::v8i64,      1 },
584 
585     { ISD::SRA,     MVT::v2i64,      1 },
586     { ISD::SRA,     MVT::v4i64,      1 },
587     { ISD::SRA,     MVT::v8i64,      1 },
588 
589     { ISD::MUL,     MVT::v64i8,     26 }, // extend/pmullw/trunc sequence.
590     { ISD::MUL,     MVT::v32i8,     13 }, // extend/pmullw/trunc sequence.
591     { ISD::MUL,     MVT::v16i8,      5 }, // extend/pmullw/trunc sequence.
592     { ISD::MUL,     MVT::v16i32,     1 }, // pmulld (Skylake from agner.org)
593     { ISD::MUL,     MVT::v8i32,      1 }, // pmulld (Skylake from agner.org)
594     { ISD::MUL,     MVT::v4i32,      1 }, // pmulld (Skylake from agner.org)
595     { ISD::MUL,     MVT::v8i64,      8 }, // 3*pmuludq/3*shift/2*add
596 
597     { ISD::FADD,    MVT::v8f64,      1 }, // Skylake from http://www.agner.org/
598     { ISD::FSUB,    MVT::v8f64,      1 }, // Skylake from http://www.agner.org/
599     { ISD::FMUL,    MVT::v8f64,      1 }, // Skylake from http://www.agner.org/
600 
601     { ISD::FADD,    MVT::v16f32,     1 }, // Skylake from http://www.agner.org/
602     { ISD::FSUB,    MVT::v16f32,     1 }, // Skylake from http://www.agner.org/
603     { ISD::FMUL,    MVT::v16f32,     1 }, // Skylake from http://www.agner.org/
604   };
605 
606   if (ST->hasAVX512())
607     if (const auto *Entry = CostTableLookup(AVX512CostTable, ISD, LT.second))
608       return LT.first * Entry->Cost;
609 
610   static const CostTblEntry AVX2ShiftCostTable[] = {
611     // Shifts on v4i64/v8i32 on AVX2 is legal even though we declare to
612     // customize them to detect the cases where shift amount is a scalar one.
613     { ISD::SHL,     MVT::v4i32,    1 },
614     { ISD::SRL,     MVT::v4i32,    1 },
615     { ISD::SRA,     MVT::v4i32,    1 },
616     { ISD::SHL,     MVT::v8i32,    1 },
617     { ISD::SRL,     MVT::v8i32,    1 },
618     { ISD::SRA,     MVT::v8i32,    1 },
619     { ISD::SHL,     MVT::v2i64,    1 },
620     { ISD::SRL,     MVT::v2i64,    1 },
621     { ISD::SHL,     MVT::v4i64,    1 },
622     { ISD::SRL,     MVT::v4i64,    1 },
623   };
624 
625   if (ST->hasAVX512()) {
626     if (ISD == ISD::SHL && LT.second == MVT::v32i16 &&
627         (Op2Info == TargetTransformInfo::OK_UniformConstantValue ||
628          Op2Info == TargetTransformInfo::OK_NonUniformConstantValue))
629       // On AVX512, a packed v32i16 shift left by a constant build_vector
630       // is lowered into a vector multiply (vpmullw).
631       return getArithmeticInstrCost(Instruction::Mul, Ty, CostKind,
632                                     Op1Info, Op2Info,
633                                     TargetTransformInfo::OP_None,
634                                     TargetTransformInfo::OP_None);
635   }
636 
637   // Look for AVX2 lowering tricks.
638   if (ST->hasAVX2()) {
639     if (ISD == ISD::SHL && LT.second == MVT::v16i16 &&
640         (Op2Info == TargetTransformInfo::OK_UniformConstantValue ||
641          Op2Info == TargetTransformInfo::OK_NonUniformConstantValue))
642       // On AVX2, a packed v16i16 shift left by a constant build_vector
643       // is lowered into a vector multiply (vpmullw).
644       return getArithmeticInstrCost(Instruction::Mul, Ty, CostKind,
645                                     Op1Info, Op2Info,
646                                     TargetTransformInfo::OP_None,
647                                     TargetTransformInfo::OP_None);
648 
649     if (const auto *Entry = CostTableLookup(AVX2ShiftCostTable, ISD, LT.second))
650       return LT.first * Entry->Cost;
651   }
652 
653   static const CostTblEntry XOPShiftCostTable[] = {
654     // 128bit shifts take 1cy, but right shifts require negation beforehand.
655     { ISD::SHL,     MVT::v16i8,    1 },
656     { ISD::SRL,     MVT::v16i8,    2 },
657     { ISD::SRA,     MVT::v16i8,    2 },
658     { ISD::SHL,     MVT::v8i16,    1 },
659     { ISD::SRL,     MVT::v8i16,    2 },
660     { ISD::SRA,     MVT::v8i16,    2 },
661     { ISD::SHL,     MVT::v4i32,    1 },
662     { ISD::SRL,     MVT::v4i32,    2 },
663     { ISD::SRA,     MVT::v4i32,    2 },
664     { ISD::SHL,     MVT::v2i64,    1 },
665     { ISD::SRL,     MVT::v2i64,    2 },
666     { ISD::SRA,     MVT::v2i64,    2 },
667     // 256bit shifts require splitting if AVX2 didn't catch them above.
668     { ISD::SHL,     MVT::v32i8,  2+2 },
669     { ISD::SRL,     MVT::v32i8,  4+2 },
670     { ISD::SRA,     MVT::v32i8,  4+2 },
671     { ISD::SHL,     MVT::v16i16, 2+2 },
672     { ISD::SRL,     MVT::v16i16, 4+2 },
673     { ISD::SRA,     MVT::v16i16, 4+2 },
674     { ISD::SHL,     MVT::v8i32,  2+2 },
675     { ISD::SRL,     MVT::v8i32,  4+2 },
676     { ISD::SRA,     MVT::v8i32,  4+2 },
677     { ISD::SHL,     MVT::v4i64,  2+2 },
678     { ISD::SRL,     MVT::v4i64,  4+2 },
679     { ISD::SRA,     MVT::v4i64,  4+2 },
680   };
681 
682   // Look for XOP lowering tricks.
683   if (ST->hasXOP()) {
684     // If the right shift is constant then we'll fold the negation so
685     // it's as cheap as a left shift.
686     int ShiftISD = ISD;
687     if ((ShiftISD == ISD::SRL || ShiftISD == ISD::SRA) &&
688         (Op2Info == TargetTransformInfo::OK_UniformConstantValue ||
689          Op2Info == TargetTransformInfo::OK_NonUniformConstantValue))
690       ShiftISD = ISD::SHL;
691     if (const auto *Entry =
692             CostTableLookup(XOPShiftCostTable, ShiftISD, LT.second))
693       return LT.first * Entry->Cost;
694   }
695 
696   static const CostTblEntry SSE2UniformShiftCostTable[] = {
697     // Uniform splats are cheaper for the following instructions.
698     { ISD::SHL,  MVT::v16i16, 2+2 }, // 2*psllw + split.
699     { ISD::SHL,  MVT::v8i32,  2+2 }, // 2*pslld + split.
700     { ISD::SHL,  MVT::v4i64,  2+2 }, // 2*psllq + split.
701 
702     { ISD::SRL,  MVT::v16i16, 2+2 }, // 2*psrlw + split.
703     { ISD::SRL,  MVT::v8i32,  2+2 }, // 2*psrld + split.
704     { ISD::SRL,  MVT::v4i64,  2+2 }, // 2*psrlq + split.
705 
706     { ISD::SRA,  MVT::v16i16, 2+2 }, // 2*psraw + split.
707     { ISD::SRA,  MVT::v8i32,  2+2 }, // 2*psrad + split.
708     { ISD::SRA,  MVT::v2i64,    4 }, // 2*psrad + shuffle.
709     { ISD::SRA,  MVT::v4i64,  8+2 }, // 2*(2*psrad + shuffle) + split.
710   };
711 
712   if (ST->hasSSE2() &&
713       ((Op2Info == TargetTransformInfo::OK_UniformConstantValue) ||
714        (Op2Info == TargetTransformInfo::OK_UniformValue))) {
715 
716     // Handle AVX2 uniform v4i64 ISD::SRA, it's not worth a table.
717     if (ISD == ISD::SRA && LT.second == MVT::v4i64 && ST->hasAVX2())
718       return LT.first * 4; // 2*psrad + shuffle.
719 
720     if (const auto *Entry =
721             CostTableLookup(SSE2UniformShiftCostTable, ISD, LT.second))
722       return LT.first * Entry->Cost;
723   }
724 
725   if (ISD == ISD::SHL &&
726       Op2Info == TargetTransformInfo::OK_NonUniformConstantValue) {
727     MVT VT = LT.second;
728     // Vector shift left by non uniform constant can be lowered
729     // into vector multiply.
730     if (((VT == MVT::v8i16 || VT == MVT::v4i32) && ST->hasSSE2()) ||
731         ((VT == MVT::v16i16 || VT == MVT::v8i32) && ST->hasAVX()))
732       ISD = ISD::MUL;
733   }
734 
735   static const CostTblEntry AVX2CostTable[] = {
736     { ISD::SHL,  MVT::v32i8,     11 }, // vpblendvb sequence.
737     { ISD::SHL,  MVT::v64i8,     22 }, // 2*vpblendvb sequence.
738     { ISD::SHL,  MVT::v16i16,    10 }, // extend/vpsrlvd/pack sequence.
739     { ISD::SHL,  MVT::v32i16,    20 }, // 2*extend/vpsrlvd/pack sequence.
740 
741     { ISD::SRL,  MVT::v32i8,     11 }, // vpblendvb sequence.
742     { ISD::SRL,  MVT::v64i8,     22 }, // 2*vpblendvb sequence.
743     { ISD::SRL,  MVT::v16i16,    10 }, // extend/vpsrlvd/pack sequence.
744     { ISD::SRL,  MVT::v32i16,    20 }, // 2*extend/vpsrlvd/pack sequence.
745 
746     { ISD::SRA,  MVT::v32i8,     24 }, // vpblendvb sequence.
747     { ISD::SRA,  MVT::v64i8,     48 }, // 2*vpblendvb sequence.
748     { ISD::SRA,  MVT::v16i16,    10 }, // extend/vpsravd/pack sequence.
749     { ISD::SRA,  MVT::v32i16,    20 }, // 2*extend/vpsravd/pack sequence.
750     { ISD::SRA,  MVT::v2i64,      4 }, // srl/xor/sub sequence.
751     { ISD::SRA,  MVT::v4i64,      4 }, // srl/xor/sub sequence.
752 
753     { ISD::SUB,  MVT::v32i8,      1 }, // psubb
754     { ISD::ADD,  MVT::v32i8,      1 }, // paddb
755     { ISD::SUB,  MVT::v16i16,     1 }, // psubw
756     { ISD::ADD,  MVT::v16i16,     1 }, // paddw
757     { ISD::SUB,  MVT::v8i32,      1 }, // psubd
758     { ISD::ADD,  MVT::v8i32,      1 }, // paddd
759     { ISD::SUB,  MVT::v4i64,      1 }, // psubq
760     { ISD::ADD,  MVT::v4i64,      1 }, // paddq
761 
762     { ISD::MUL,  MVT::v32i8,     17 }, // extend/pmullw/trunc sequence.
763     { ISD::MUL,  MVT::v16i8,      7 }, // extend/pmullw/trunc sequence.
764     { ISD::MUL,  MVT::v16i16,     1 }, // pmullw
765     { ISD::MUL,  MVT::v8i32,      2 }, // pmulld (Haswell from agner.org)
766     { ISD::MUL,  MVT::v4i64,      8 }, // 3*pmuludq/3*shift/2*add
767 
768     { ISD::FADD, MVT::v4f64,      1 }, // Haswell from http://www.agner.org/
769     { ISD::FADD, MVT::v8f32,      1 }, // Haswell from http://www.agner.org/
770     { ISD::FSUB, MVT::v4f64,      1 }, // Haswell from http://www.agner.org/
771     { ISD::FSUB, MVT::v8f32,      1 }, // Haswell from http://www.agner.org/
772     { ISD::FMUL, MVT::v4f64,      1 }, // Haswell from http://www.agner.org/
773     { ISD::FMUL, MVT::v8f32,      1 }, // Haswell from http://www.agner.org/
774 
775     { ISD::FDIV, MVT::f32,        7 }, // Haswell from http://www.agner.org/
776     { ISD::FDIV, MVT::v4f32,      7 }, // Haswell from http://www.agner.org/
777     { ISD::FDIV, MVT::v8f32,     14 }, // Haswell from http://www.agner.org/
778     { ISD::FDIV, MVT::f64,       14 }, // Haswell from http://www.agner.org/
779     { ISD::FDIV, MVT::v2f64,     14 }, // Haswell from http://www.agner.org/
780     { ISD::FDIV, MVT::v4f64,     28 }, // Haswell from http://www.agner.org/
781   };
782 
783   // Look for AVX2 lowering tricks for custom cases.
784   if (ST->hasAVX2())
785     if (const auto *Entry = CostTableLookup(AVX2CostTable, ISD, LT.second))
786       return LT.first * Entry->Cost;
787 
788   static const CostTblEntry AVX1CostTable[] = {
789     // We don't have to scalarize unsupported ops. We can issue two half-sized
790     // operations and we only need to extract the upper YMM half.
791     // Two ops + 1 extract + 1 insert = 4.
792     { ISD::MUL,     MVT::v16i16,     4 },
793     { ISD::MUL,     MVT::v8i32,      4 },
794     { ISD::SUB,     MVT::v32i8,      4 },
795     { ISD::ADD,     MVT::v32i8,      4 },
796     { ISD::SUB,     MVT::v16i16,     4 },
797     { ISD::ADD,     MVT::v16i16,     4 },
798     { ISD::SUB,     MVT::v8i32,      4 },
799     { ISD::ADD,     MVT::v8i32,      4 },
800     { ISD::SUB,     MVT::v4i64,      4 },
801     { ISD::ADD,     MVT::v4i64,      4 },
802 
803     // A v4i64 multiply is custom lowered as two split v2i64 vectors that then
804     // are lowered as a series of long multiplies(3), shifts(3) and adds(2)
805     // Because we believe v4i64 to be a legal type, we must also include the
806     // extract+insert in the cost table. Therefore, the cost here is 18
807     // instead of 8.
808     { ISD::MUL,     MVT::v4i64,     18 },
809 
810     { ISD::MUL,     MVT::v32i8,     26 }, // extend/pmullw/trunc sequence.
811 
812     { ISD::FDIV,    MVT::f32,       14 }, // SNB from http://www.agner.org/
813     { ISD::FDIV,    MVT::v4f32,     14 }, // SNB from http://www.agner.org/
814     { ISD::FDIV,    MVT::v8f32,     28 }, // SNB from http://www.agner.org/
815     { ISD::FDIV,    MVT::f64,       22 }, // SNB from http://www.agner.org/
816     { ISD::FDIV,    MVT::v2f64,     22 }, // SNB from http://www.agner.org/
817     { ISD::FDIV,    MVT::v4f64,     44 }, // SNB from http://www.agner.org/
818   };
819 
820   if (ST->hasAVX())
821     if (const auto *Entry = CostTableLookup(AVX1CostTable, ISD, LT.second))
822       return LT.first * Entry->Cost;
823 
824   static const CostTblEntry SSE42CostTable[] = {
825     { ISD::FADD, MVT::f64,     1 }, // Nehalem from http://www.agner.org/
826     { ISD::FADD, MVT::f32,     1 }, // Nehalem from http://www.agner.org/
827     { ISD::FADD, MVT::v2f64,   1 }, // Nehalem from http://www.agner.org/
828     { ISD::FADD, MVT::v4f32,   1 }, // Nehalem from http://www.agner.org/
829 
830     { ISD::FSUB, MVT::f64,     1 }, // Nehalem from http://www.agner.org/
831     { ISD::FSUB, MVT::f32 ,    1 }, // Nehalem from http://www.agner.org/
832     { ISD::FSUB, MVT::v2f64,   1 }, // Nehalem from http://www.agner.org/
833     { ISD::FSUB, MVT::v4f32,   1 }, // Nehalem from http://www.agner.org/
834 
835     { ISD::FMUL, MVT::f64,     1 }, // Nehalem from http://www.agner.org/
836     { ISD::FMUL, MVT::f32,     1 }, // Nehalem from http://www.agner.org/
837     { ISD::FMUL, MVT::v2f64,   1 }, // Nehalem from http://www.agner.org/
838     { ISD::FMUL, MVT::v4f32,   1 }, // Nehalem from http://www.agner.org/
839 
840     { ISD::FDIV,  MVT::f32,   14 }, // Nehalem from http://www.agner.org/
841     { ISD::FDIV,  MVT::v4f32, 14 }, // Nehalem from http://www.agner.org/
842     { ISD::FDIV,  MVT::f64,   22 }, // Nehalem from http://www.agner.org/
843     { ISD::FDIV,  MVT::v2f64, 22 }, // Nehalem from http://www.agner.org/
844   };
845 
846   if (ST->hasSSE42())
847     if (const auto *Entry = CostTableLookup(SSE42CostTable, ISD, LT.second))
848       return LT.first * Entry->Cost;
849 
850   static const CostTblEntry SSE41CostTable[] = {
851     { ISD::SHL,  MVT::v16i8,      11 }, // pblendvb sequence.
852     { ISD::SHL,  MVT::v32i8,  2*11+2 }, // pblendvb sequence + split.
853     { ISD::SHL,  MVT::v8i16,      14 }, // pblendvb sequence.
854     { ISD::SHL,  MVT::v16i16, 2*14+2 }, // pblendvb sequence + split.
855     { ISD::SHL,  MVT::v4i32,       4 }, // pslld/paddd/cvttps2dq/pmulld
856     { ISD::SHL,  MVT::v8i32,   2*4+2 }, // pslld/paddd/cvttps2dq/pmulld + split
857 
858     { ISD::SRL,  MVT::v16i8,      12 }, // pblendvb sequence.
859     { ISD::SRL,  MVT::v32i8,  2*12+2 }, // pblendvb sequence + split.
860     { ISD::SRL,  MVT::v8i16,      14 }, // pblendvb sequence.
861     { ISD::SRL,  MVT::v16i16, 2*14+2 }, // pblendvb sequence + split.
862     { ISD::SRL,  MVT::v4i32,      11 }, // Shift each lane + blend.
863     { ISD::SRL,  MVT::v8i32,  2*11+2 }, // Shift each lane + blend + split.
864 
865     { ISD::SRA,  MVT::v16i8,      24 }, // pblendvb sequence.
866     { ISD::SRA,  MVT::v32i8,  2*24+2 }, // pblendvb sequence + split.
867     { ISD::SRA,  MVT::v8i16,      14 }, // pblendvb sequence.
868     { ISD::SRA,  MVT::v16i16, 2*14+2 }, // pblendvb sequence + split.
869     { ISD::SRA,  MVT::v4i32,      12 }, // Shift each lane + blend.
870     { ISD::SRA,  MVT::v8i32,  2*12+2 }, // Shift each lane + blend + split.
871 
872     { ISD::MUL,  MVT::v4i32,       2 }  // pmulld (Nehalem from agner.org)
873   };
874 
875   if (ST->hasSSE41())
876     if (const auto *Entry = CostTableLookup(SSE41CostTable, ISD, LT.second))
877       return LT.first * Entry->Cost;
878 
879   static const CostTblEntry SSE2CostTable[] = {
880     // We don't correctly identify costs of casts because they are marked as
881     // custom.
882     { ISD::SHL,  MVT::v16i8,      26 }, // cmpgtb sequence.
883     { ISD::SHL,  MVT::v8i16,      32 }, // cmpgtb sequence.
884     { ISD::SHL,  MVT::v4i32,     2*5 }, // We optimized this using mul.
885     { ISD::SHL,  MVT::v2i64,       4 }, // splat+shuffle sequence.
886     { ISD::SHL,  MVT::v4i64,   2*4+2 }, // splat+shuffle sequence + split.
887 
888     { ISD::SRL,  MVT::v16i8,      26 }, // cmpgtb sequence.
889     { ISD::SRL,  MVT::v8i16,      32 }, // cmpgtb sequence.
890     { ISD::SRL,  MVT::v4i32,      16 }, // Shift each lane + blend.
891     { ISD::SRL,  MVT::v2i64,       4 }, // splat+shuffle sequence.
892     { ISD::SRL,  MVT::v4i64,   2*4+2 }, // splat+shuffle sequence + split.
893 
894     { ISD::SRA,  MVT::v16i8,      54 }, // unpacked cmpgtb sequence.
895     { ISD::SRA,  MVT::v8i16,      32 }, // cmpgtb sequence.
896     { ISD::SRA,  MVT::v4i32,      16 }, // Shift each lane + blend.
897     { ISD::SRA,  MVT::v2i64,      12 }, // srl/xor/sub sequence.
898     { ISD::SRA,  MVT::v4i64,  2*12+2 }, // srl/xor/sub sequence+split.
899 
900     { ISD::MUL,  MVT::v16i8,      12 }, // extend/pmullw/trunc sequence.
901     { ISD::MUL,  MVT::v8i16,       1 }, // pmullw
902     { ISD::MUL,  MVT::v4i32,       6 }, // 3*pmuludq/4*shuffle
903     { ISD::MUL,  MVT::v2i64,       8 }, // 3*pmuludq/3*shift/2*add
904 
905     { ISD::FDIV, MVT::f32,        23 }, // Pentium IV from http://www.agner.org/
906     { ISD::FDIV, MVT::v4f32,      39 }, // Pentium IV from http://www.agner.org/
907     { ISD::FDIV, MVT::f64,        38 }, // Pentium IV from http://www.agner.org/
908     { ISD::FDIV, MVT::v2f64,      69 }, // Pentium IV from http://www.agner.org/
909 
910     { ISD::FADD, MVT::f32,         2 }, // Pentium IV from http://www.agner.org/
911     { ISD::FADD, MVT::f64,         2 }, // Pentium IV from http://www.agner.org/
912 
913     { ISD::FSUB, MVT::f32,         2 }, // Pentium IV from http://www.agner.org/
914     { ISD::FSUB, MVT::f64,         2 }, // Pentium IV from http://www.agner.org/
915   };
916 
917   if (ST->hasSSE2())
918     if (const auto *Entry = CostTableLookup(SSE2CostTable, ISD, LT.second))
919       return LT.first * Entry->Cost;
920 
921   static const CostTblEntry SSE1CostTable[] = {
922     { ISD::FDIV, MVT::f32,   17 }, // Pentium III from http://www.agner.org/
923     { ISD::FDIV, MVT::v4f32, 34 }, // Pentium III from http://www.agner.org/
924 
925     { ISD::FADD, MVT::f32,    1 }, // Pentium III from http://www.agner.org/
926     { ISD::FADD, MVT::v4f32,  2 }, // Pentium III from http://www.agner.org/
927 
928     { ISD::FSUB, MVT::f32,    1 }, // Pentium III from http://www.agner.org/
929     { ISD::FSUB, MVT::v4f32,  2 }, // Pentium III from http://www.agner.org/
930 
931     { ISD::ADD, MVT::i8,      1 }, // Pentium III from http://www.agner.org/
932     { ISD::ADD, MVT::i16,     1 }, // Pentium III from http://www.agner.org/
933     { ISD::ADD, MVT::i32,     1 }, // Pentium III from http://www.agner.org/
934 
935     { ISD::SUB, MVT::i8,      1 }, // Pentium III from http://www.agner.org/
936     { ISD::SUB, MVT::i16,     1 }, // Pentium III from http://www.agner.org/
937     { ISD::SUB, MVT::i32,     1 }, // Pentium III from http://www.agner.org/
938   };
939 
940   if (ST->hasSSE1())
941     if (const auto *Entry = CostTableLookup(SSE1CostTable, ISD, LT.second))
942       return LT.first * Entry->Cost;
943 
944   // It is not a good idea to vectorize division. We have to scalarize it and
945   // in the process we will often end up having to spilling regular
946   // registers. The overhead of division is going to dominate most kernels
947   // anyways so try hard to prevent vectorization of division - it is
948   // generally a bad idea. Assume somewhat arbitrarily that we have to be able
949   // to hide "20 cycles" for each lane.
950   if (LT.second.isVector() && (ISD == ISD::SDIV || ISD == ISD::SREM ||
951                                ISD == ISD::UDIV || ISD == ISD::UREM)) {
952     int ScalarCost = getArithmeticInstrCost(
953         Opcode, Ty->getScalarType(), CostKind, Op1Info, Op2Info,
954         TargetTransformInfo::OP_None, TargetTransformInfo::OP_None);
955     return 20 * LT.first * LT.second.getVectorNumElements() * ScalarCost;
956   }
957 
958   // Fallback to the default implementation.
959   return BaseT::getArithmeticInstrCost(Opcode, Ty, CostKind, Op1Info, Op2Info);
960 }
961 
962 int X86TTIImpl::getShuffleCost(TTI::ShuffleKind Kind, VectorType *BaseTp,
963                                ArrayRef<int> Mask, int Index,
964                                VectorType *SubTp) {
965   // 64-bit packed float vectors (v2f32) are widened to type v4f32.
966   // 64-bit packed integer vectors (v2i32) are widened to type v4i32.
967   std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, BaseTp);
968 
969   // Treat Transpose as 2-op shuffles - there's no difference in lowering.
970   if (Kind == TTI::SK_Transpose)
971     Kind = TTI::SK_PermuteTwoSrc;
972 
973   // For Broadcasts we are splatting the first element from the first input
974   // register, so only need to reference that input and all the output
975   // registers are the same.
976   if (Kind == TTI::SK_Broadcast)
977     LT.first = 1;
978 
979   // Subvector extractions are free if they start at the beginning of a
980   // vector and cheap if the subvectors are aligned.
981   if (Kind == TTI::SK_ExtractSubvector && LT.second.isVector()) {
982     int NumElts = LT.second.getVectorNumElements();
983     if ((Index % NumElts) == 0)
984       return 0;
985     std::pair<int, MVT> SubLT = TLI->getTypeLegalizationCost(DL, SubTp);
986     if (SubLT.second.isVector()) {
987       int NumSubElts = SubLT.second.getVectorNumElements();
988       if ((Index % NumSubElts) == 0 && (NumElts % NumSubElts) == 0)
989         return SubLT.first;
990       // Handle some cases for widening legalization. For now we only handle
991       // cases where the original subvector was naturally aligned and evenly
992       // fit in its legalized subvector type.
993       // FIXME: Remove some of the alignment restrictions.
994       // FIXME: We can use permq for 64-bit or larger extracts from 256-bit
995       // vectors.
996       int OrigSubElts = cast<FixedVectorType>(SubTp)->getNumElements();
997       if (NumSubElts > OrigSubElts && (Index % OrigSubElts) == 0 &&
998           (NumSubElts % OrigSubElts) == 0 &&
999           LT.second.getVectorElementType() ==
1000               SubLT.second.getVectorElementType() &&
1001           LT.second.getVectorElementType().getSizeInBits() ==
1002               BaseTp->getElementType()->getPrimitiveSizeInBits()) {
1003         assert(NumElts >= NumSubElts && NumElts > OrigSubElts &&
1004                "Unexpected number of elements!");
1005         auto *VecTy = FixedVectorType::get(BaseTp->getElementType(),
1006                                            LT.second.getVectorNumElements());
1007         auto *SubTy = FixedVectorType::get(BaseTp->getElementType(),
1008                                            SubLT.second.getVectorNumElements());
1009         int ExtractIndex = alignDown((Index % NumElts), NumSubElts);
1010         int ExtractCost = getShuffleCost(TTI::SK_ExtractSubvector, VecTy, None,
1011                                          ExtractIndex, SubTy);
1012 
1013         // If the original size is 32-bits or more, we can use pshufd. Otherwise
1014         // if we have SSSE3 we can use pshufb.
1015         if (SubTp->getPrimitiveSizeInBits() >= 32 || ST->hasSSSE3())
1016           return ExtractCost + 1; // pshufd or pshufb
1017 
1018         assert(SubTp->getPrimitiveSizeInBits() == 16 &&
1019                "Unexpected vector size");
1020 
1021         return ExtractCost + 2; // worst case pshufhw + pshufd
1022       }
1023     }
1024   }
1025 
1026   // Handle some common (illegal) sub-vector types as they are often very cheap
1027   // to shuffle even on targets without PSHUFB.
1028   EVT VT = TLI->getValueType(DL, BaseTp);
1029   if (VT.isSimple() && VT.isVector() && VT.getSizeInBits() < 128 &&
1030       !ST->hasSSSE3()) {
1031      static const CostTblEntry SSE2SubVectorShuffleTbl[] = {
1032       {TTI::SK_Broadcast,        MVT::v4i16, 1}, // pshuflw
1033       {TTI::SK_Broadcast,        MVT::v2i16, 1}, // pshuflw
1034       {TTI::SK_Broadcast,        MVT::v8i8,  2}, // punpck/pshuflw
1035       {TTI::SK_Broadcast,        MVT::v4i8,  2}, // punpck/pshuflw
1036       {TTI::SK_Broadcast,        MVT::v2i8,  1}, // punpck
1037 
1038       {TTI::SK_Reverse,          MVT::v4i16, 1}, // pshuflw
1039       {TTI::SK_Reverse,          MVT::v2i16, 1}, // pshuflw
1040       {TTI::SK_Reverse,          MVT::v4i8,  3}, // punpck/pshuflw/packus
1041       {TTI::SK_Reverse,          MVT::v2i8,  1}, // punpck
1042 
1043       {TTI::SK_PermuteTwoSrc,    MVT::v4i16, 2}, // punpck/pshuflw
1044       {TTI::SK_PermuteTwoSrc,    MVT::v2i16, 2}, // punpck/pshuflw
1045       {TTI::SK_PermuteTwoSrc,    MVT::v8i8,  7}, // punpck/pshuflw
1046       {TTI::SK_PermuteTwoSrc,    MVT::v4i8,  4}, // punpck/pshuflw
1047       {TTI::SK_PermuteTwoSrc,    MVT::v2i8,  2}, // punpck
1048 
1049       {TTI::SK_PermuteSingleSrc, MVT::v4i16, 1}, // pshuflw
1050       {TTI::SK_PermuteSingleSrc, MVT::v2i16, 1}, // pshuflw
1051       {TTI::SK_PermuteSingleSrc, MVT::v8i8,  5}, // punpck/pshuflw
1052       {TTI::SK_PermuteSingleSrc, MVT::v4i8,  3}, // punpck/pshuflw
1053       {TTI::SK_PermuteSingleSrc, MVT::v2i8,  1}, // punpck
1054     };
1055 
1056     if (ST->hasSSE2())
1057       if (const auto *Entry =
1058               CostTableLookup(SSE2SubVectorShuffleTbl, Kind, VT.getSimpleVT()))
1059         return Entry->Cost;
1060   }
1061 
1062   // We are going to permute multiple sources and the result will be in multiple
1063   // destinations. Providing an accurate cost only for splits where the element
1064   // type remains the same.
1065   if (Kind == TTI::SK_PermuteSingleSrc && LT.first != 1) {
1066     MVT LegalVT = LT.second;
1067     if (LegalVT.isVector() &&
1068         LegalVT.getVectorElementType().getSizeInBits() ==
1069             BaseTp->getElementType()->getPrimitiveSizeInBits() &&
1070         LegalVT.getVectorNumElements() <
1071             cast<FixedVectorType>(BaseTp)->getNumElements()) {
1072 
1073       unsigned VecTySize = DL.getTypeStoreSize(BaseTp);
1074       unsigned LegalVTSize = LegalVT.getStoreSize();
1075       // Number of source vectors after legalization:
1076       unsigned NumOfSrcs = (VecTySize + LegalVTSize - 1) / LegalVTSize;
1077       // Number of destination vectors after legalization:
1078       unsigned NumOfDests = LT.first;
1079 
1080       auto *SingleOpTy = FixedVectorType::get(BaseTp->getElementType(),
1081                                               LegalVT.getVectorNumElements());
1082 
1083       unsigned NumOfShuffles = (NumOfSrcs - 1) * NumOfDests;
1084       return NumOfShuffles * getShuffleCost(TTI::SK_PermuteTwoSrc, SingleOpTy,
1085                                             None, 0, nullptr);
1086     }
1087 
1088     return BaseT::getShuffleCost(Kind, BaseTp, Mask, Index, SubTp);
1089   }
1090 
1091   // For 2-input shuffles, we must account for splitting the 2 inputs into many.
1092   if (Kind == TTI::SK_PermuteTwoSrc && LT.first != 1) {
1093     // We assume that source and destination have the same vector type.
1094     int NumOfDests = LT.first;
1095     int NumOfShufflesPerDest = LT.first * 2 - 1;
1096     LT.first = NumOfDests * NumOfShufflesPerDest;
1097   }
1098 
1099   static const CostTblEntry AVX512VBMIShuffleTbl[] = {
1100       {TTI::SK_Reverse, MVT::v64i8, 1}, // vpermb
1101       {TTI::SK_Reverse, MVT::v32i8, 1}, // vpermb
1102 
1103       {TTI::SK_PermuteSingleSrc, MVT::v64i8, 1}, // vpermb
1104       {TTI::SK_PermuteSingleSrc, MVT::v32i8, 1}, // vpermb
1105 
1106       {TTI::SK_PermuteTwoSrc, MVT::v64i8, 2}, // vpermt2b
1107       {TTI::SK_PermuteTwoSrc, MVT::v32i8, 2}, // vpermt2b
1108       {TTI::SK_PermuteTwoSrc, MVT::v16i8, 2}  // vpermt2b
1109   };
1110 
1111   if (ST->hasVBMI())
1112     if (const auto *Entry =
1113             CostTableLookup(AVX512VBMIShuffleTbl, Kind, LT.second))
1114       return LT.first * Entry->Cost;
1115 
1116   static const CostTblEntry AVX512BWShuffleTbl[] = {
1117       {TTI::SK_Broadcast, MVT::v32i16, 1}, // vpbroadcastw
1118       {TTI::SK_Broadcast, MVT::v64i8, 1},  // vpbroadcastb
1119 
1120       {TTI::SK_Reverse, MVT::v32i16, 2}, // vpermw
1121       {TTI::SK_Reverse, MVT::v16i16, 2}, // vpermw
1122       {TTI::SK_Reverse, MVT::v64i8, 2},  // pshufb + vshufi64x2
1123 
1124       {TTI::SK_PermuteSingleSrc, MVT::v32i16, 2}, // vpermw
1125       {TTI::SK_PermuteSingleSrc, MVT::v16i16, 2}, // vpermw
1126       {TTI::SK_PermuteSingleSrc, MVT::v64i8, 8},  // extend to v32i16
1127 
1128       {TTI::SK_PermuteTwoSrc, MVT::v32i16, 2}, // vpermt2w
1129       {TTI::SK_PermuteTwoSrc, MVT::v16i16, 2}, // vpermt2w
1130       {TTI::SK_PermuteTwoSrc, MVT::v8i16, 2},  // vpermt2w
1131       {TTI::SK_PermuteTwoSrc, MVT::v64i8, 19}, // 6 * v32i8 + 1
1132 
1133       {TTI::SK_Select, MVT::v32i16, 1}, // vblendmw
1134       {TTI::SK_Select, MVT::v64i8,  1}, // vblendmb
1135   };
1136 
1137   if (ST->hasBWI())
1138     if (const auto *Entry =
1139             CostTableLookup(AVX512BWShuffleTbl, Kind, LT.second))
1140       return LT.first * Entry->Cost;
1141 
1142   static const CostTblEntry AVX512ShuffleTbl[] = {
1143       {TTI::SK_Broadcast, MVT::v8f64, 1},  // vbroadcastpd
1144       {TTI::SK_Broadcast, MVT::v16f32, 1}, // vbroadcastps
1145       {TTI::SK_Broadcast, MVT::v8i64, 1},  // vpbroadcastq
1146       {TTI::SK_Broadcast, MVT::v16i32, 1}, // vpbroadcastd
1147       {TTI::SK_Broadcast, MVT::v32i16, 1}, // vpbroadcastw
1148       {TTI::SK_Broadcast, MVT::v64i8, 1},  // vpbroadcastb
1149 
1150       {TTI::SK_Reverse, MVT::v8f64, 1},  // vpermpd
1151       {TTI::SK_Reverse, MVT::v16f32, 1}, // vpermps
1152       {TTI::SK_Reverse, MVT::v8i64, 1},  // vpermq
1153       {TTI::SK_Reverse, MVT::v16i32, 1}, // vpermd
1154 
1155       {TTI::SK_PermuteSingleSrc, MVT::v8f64, 1},  // vpermpd
1156       {TTI::SK_PermuteSingleSrc, MVT::v4f64, 1},  // vpermpd
1157       {TTI::SK_PermuteSingleSrc, MVT::v2f64, 1},  // vpermpd
1158       {TTI::SK_PermuteSingleSrc, MVT::v16f32, 1}, // vpermps
1159       {TTI::SK_PermuteSingleSrc, MVT::v8f32, 1},  // vpermps
1160       {TTI::SK_PermuteSingleSrc, MVT::v4f32, 1},  // vpermps
1161       {TTI::SK_PermuteSingleSrc, MVT::v8i64, 1},  // vpermq
1162       {TTI::SK_PermuteSingleSrc, MVT::v4i64, 1},  // vpermq
1163       {TTI::SK_PermuteSingleSrc, MVT::v2i64, 1},  // vpermq
1164       {TTI::SK_PermuteSingleSrc, MVT::v16i32, 1}, // vpermd
1165       {TTI::SK_PermuteSingleSrc, MVT::v8i32, 1},  // vpermd
1166       {TTI::SK_PermuteSingleSrc, MVT::v4i32, 1},  // vpermd
1167       {TTI::SK_PermuteSingleSrc, MVT::v16i8, 1},  // pshufb
1168 
1169       {TTI::SK_PermuteTwoSrc, MVT::v8f64, 1},  // vpermt2pd
1170       {TTI::SK_PermuteTwoSrc, MVT::v16f32, 1}, // vpermt2ps
1171       {TTI::SK_PermuteTwoSrc, MVT::v8i64, 1},  // vpermt2q
1172       {TTI::SK_PermuteTwoSrc, MVT::v16i32, 1}, // vpermt2d
1173       {TTI::SK_PermuteTwoSrc, MVT::v4f64, 1},  // vpermt2pd
1174       {TTI::SK_PermuteTwoSrc, MVT::v8f32, 1},  // vpermt2ps
1175       {TTI::SK_PermuteTwoSrc, MVT::v4i64, 1},  // vpermt2q
1176       {TTI::SK_PermuteTwoSrc, MVT::v8i32, 1},  // vpermt2d
1177       {TTI::SK_PermuteTwoSrc, MVT::v2f64, 1},  // vpermt2pd
1178       {TTI::SK_PermuteTwoSrc, MVT::v4f32, 1},  // vpermt2ps
1179       {TTI::SK_PermuteTwoSrc, MVT::v2i64, 1},  // vpermt2q
1180       {TTI::SK_PermuteTwoSrc, MVT::v4i32, 1},  // vpermt2d
1181 
1182       // FIXME: This just applies the type legalization cost rules above
1183       // assuming these completely split.
1184       {TTI::SK_PermuteSingleSrc, MVT::v32i16, 14},
1185       {TTI::SK_PermuteSingleSrc, MVT::v64i8,  14},
1186       {TTI::SK_PermuteTwoSrc,    MVT::v32i16, 42},
1187       {TTI::SK_PermuteTwoSrc,    MVT::v64i8,  42},
1188 
1189       {TTI::SK_Select, MVT::v32i16, 1}, // vpternlogq
1190       {TTI::SK_Select, MVT::v64i8,  1}, // vpternlogq
1191       {TTI::SK_Select, MVT::v8f64,  1}, // vblendmpd
1192       {TTI::SK_Select, MVT::v16f32, 1}, // vblendmps
1193       {TTI::SK_Select, MVT::v8i64,  1}, // vblendmq
1194       {TTI::SK_Select, MVT::v16i32, 1}, // vblendmd
1195   };
1196 
1197   if (ST->hasAVX512())
1198     if (const auto *Entry = CostTableLookup(AVX512ShuffleTbl, Kind, LT.second))
1199       return LT.first * Entry->Cost;
1200 
1201   static const CostTblEntry AVX2ShuffleTbl[] = {
1202       {TTI::SK_Broadcast, MVT::v4f64, 1},  // vbroadcastpd
1203       {TTI::SK_Broadcast, MVT::v8f32, 1},  // vbroadcastps
1204       {TTI::SK_Broadcast, MVT::v4i64, 1},  // vpbroadcastq
1205       {TTI::SK_Broadcast, MVT::v8i32, 1},  // vpbroadcastd
1206       {TTI::SK_Broadcast, MVT::v16i16, 1}, // vpbroadcastw
1207       {TTI::SK_Broadcast, MVT::v32i8, 1},  // vpbroadcastb
1208 
1209       {TTI::SK_Reverse, MVT::v4f64, 1},  // vpermpd
1210       {TTI::SK_Reverse, MVT::v8f32, 1},  // vpermps
1211       {TTI::SK_Reverse, MVT::v4i64, 1},  // vpermq
1212       {TTI::SK_Reverse, MVT::v8i32, 1},  // vpermd
1213       {TTI::SK_Reverse, MVT::v16i16, 2}, // vperm2i128 + pshufb
1214       {TTI::SK_Reverse, MVT::v32i8, 2},  // vperm2i128 + pshufb
1215 
1216       {TTI::SK_Select, MVT::v16i16, 1}, // vpblendvb
1217       {TTI::SK_Select, MVT::v32i8, 1},  // vpblendvb
1218 
1219       {TTI::SK_PermuteSingleSrc, MVT::v4f64, 1},  // vpermpd
1220       {TTI::SK_PermuteSingleSrc, MVT::v8f32, 1},  // vpermps
1221       {TTI::SK_PermuteSingleSrc, MVT::v4i64, 1},  // vpermq
1222       {TTI::SK_PermuteSingleSrc, MVT::v8i32, 1},  // vpermd
1223       {TTI::SK_PermuteSingleSrc, MVT::v16i16, 4}, // vperm2i128 + 2*vpshufb
1224                                                   // + vpblendvb
1225       {TTI::SK_PermuteSingleSrc, MVT::v32i8, 4},  // vperm2i128 + 2*vpshufb
1226                                                   // + vpblendvb
1227 
1228       {TTI::SK_PermuteTwoSrc, MVT::v4f64, 3},  // 2*vpermpd + vblendpd
1229       {TTI::SK_PermuteTwoSrc, MVT::v8f32, 3},  // 2*vpermps + vblendps
1230       {TTI::SK_PermuteTwoSrc, MVT::v4i64, 3},  // 2*vpermq + vpblendd
1231       {TTI::SK_PermuteTwoSrc, MVT::v8i32, 3},  // 2*vpermd + vpblendd
1232       {TTI::SK_PermuteTwoSrc, MVT::v16i16, 7}, // 2*vperm2i128 + 4*vpshufb
1233                                                // + vpblendvb
1234       {TTI::SK_PermuteTwoSrc, MVT::v32i8, 7},  // 2*vperm2i128 + 4*vpshufb
1235                                                // + vpblendvb
1236   };
1237 
1238   if (ST->hasAVX2())
1239     if (const auto *Entry = CostTableLookup(AVX2ShuffleTbl, Kind, LT.second))
1240       return LT.first * Entry->Cost;
1241 
1242   static const CostTblEntry XOPShuffleTbl[] = {
1243       {TTI::SK_PermuteSingleSrc, MVT::v4f64, 2},  // vperm2f128 + vpermil2pd
1244       {TTI::SK_PermuteSingleSrc, MVT::v8f32, 2},  // vperm2f128 + vpermil2ps
1245       {TTI::SK_PermuteSingleSrc, MVT::v4i64, 2},  // vperm2f128 + vpermil2pd
1246       {TTI::SK_PermuteSingleSrc, MVT::v8i32, 2},  // vperm2f128 + vpermil2ps
1247       {TTI::SK_PermuteSingleSrc, MVT::v16i16, 4}, // vextractf128 + 2*vpperm
1248                                                   // + vinsertf128
1249       {TTI::SK_PermuteSingleSrc, MVT::v32i8, 4},  // vextractf128 + 2*vpperm
1250                                                   // + vinsertf128
1251 
1252       {TTI::SK_PermuteTwoSrc, MVT::v16i16, 9}, // 2*vextractf128 + 6*vpperm
1253                                                // + vinsertf128
1254       {TTI::SK_PermuteTwoSrc, MVT::v8i16, 1},  // vpperm
1255       {TTI::SK_PermuteTwoSrc, MVT::v32i8, 9},  // 2*vextractf128 + 6*vpperm
1256                                                // + vinsertf128
1257       {TTI::SK_PermuteTwoSrc, MVT::v16i8, 1},  // vpperm
1258   };
1259 
1260   if (ST->hasXOP())
1261     if (const auto *Entry = CostTableLookup(XOPShuffleTbl, Kind, LT.second))
1262       return LT.first * Entry->Cost;
1263 
1264   static const CostTblEntry AVX1ShuffleTbl[] = {
1265       {TTI::SK_Broadcast, MVT::v4f64, 2},  // vperm2f128 + vpermilpd
1266       {TTI::SK_Broadcast, MVT::v8f32, 2},  // vperm2f128 + vpermilps
1267       {TTI::SK_Broadcast, MVT::v4i64, 2},  // vperm2f128 + vpermilpd
1268       {TTI::SK_Broadcast, MVT::v8i32, 2},  // vperm2f128 + vpermilps
1269       {TTI::SK_Broadcast, MVT::v16i16, 3}, // vpshuflw + vpshufd + vinsertf128
1270       {TTI::SK_Broadcast, MVT::v32i8, 2},  // vpshufb + vinsertf128
1271 
1272       {TTI::SK_Reverse, MVT::v4f64, 2},  // vperm2f128 + vpermilpd
1273       {TTI::SK_Reverse, MVT::v8f32, 2},  // vperm2f128 + vpermilps
1274       {TTI::SK_Reverse, MVT::v4i64, 2},  // vperm2f128 + vpermilpd
1275       {TTI::SK_Reverse, MVT::v8i32, 2},  // vperm2f128 + vpermilps
1276       {TTI::SK_Reverse, MVT::v16i16, 4}, // vextractf128 + 2*pshufb
1277                                          // + vinsertf128
1278       {TTI::SK_Reverse, MVT::v32i8, 4},  // vextractf128 + 2*pshufb
1279                                          // + vinsertf128
1280 
1281       {TTI::SK_Select, MVT::v4i64, 1},  // vblendpd
1282       {TTI::SK_Select, MVT::v4f64, 1},  // vblendpd
1283       {TTI::SK_Select, MVT::v8i32, 1},  // vblendps
1284       {TTI::SK_Select, MVT::v8f32, 1},  // vblendps
1285       {TTI::SK_Select, MVT::v16i16, 3}, // vpand + vpandn + vpor
1286       {TTI::SK_Select, MVT::v32i8, 3},  // vpand + vpandn + vpor
1287 
1288       {TTI::SK_PermuteSingleSrc, MVT::v4f64, 2},  // vperm2f128 + vshufpd
1289       {TTI::SK_PermuteSingleSrc, MVT::v4i64, 2},  // vperm2f128 + vshufpd
1290       {TTI::SK_PermuteSingleSrc, MVT::v8f32, 4},  // 2*vperm2f128 + 2*vshufps
1291       {TTI::SK_PermuteSingleSrc, MVT::v8i32, 4},  // 2*vperm2f128 + 2*vshufps
1292       {TTI::SK_PermuteSingleSrc, MVT::v16i16, 8}, // vextractf128 + 4*pshufb
1293                                                   // + 2*por + vinsertf128
1294       {TTI::SK_PermuteSingleSrc, MVT::v32i8, 8},  // vextractf128 + 4*pshufb
1295                                                   // + 2*por + vinsertf128
1296 
1297       {TTI::SK_PermuteTwoSrc, MVT::v4f64, 3},   // 2*vperm2f128 + vshufpd
1298       {TTI::SK_PermuteTwoSrc, MVT::v4i64, 3},   // 2*vperm2f128 + vshufpd
1299       {TTI::SK_PermuteTwoSrc, MVT::v8f32, 4},   // 2*vperm2f128 + 2*vshufps
1300       {TTI::SK_PermuteTwoSrc, MVT::v8i32, 4},   // 2*vperm2f128 + 2*vshufps
1301       {TTI::SK_PermuteTwoSrc, MVT::v16i16, 15}, // 2*vextractf128 + 8*pshufb
1302                                                 // + 4*por + vinsertf128
1303       {TTI::SK_PermuteTwoSrc, MVT::v32i8, 15},  // 2*vextractf128 + 8*pshufb
1304                                                 // + 4*por + vinsertf128
1305   };
1306 
1307   if (ST->hasAVX())
1308     if (const auto *Entry = CostTableLookup(AVX1ShuffleTbl, Kind, LT.second))
1309       return LT.first * Entry->Cost;
1310 
1311   static const CostTblEntry SSE41ShuffleTbl[] = {
1312       {TTI::SK_Select, MVT::v2i64, 1}, // pblendw
1313       {TTI::SK_Select, MVT::v2f64, 1}, // movsd
1314       {TTI::SK_Select, MVT::v4i32, 1}, // pblendw
1315       {TTI::SK_Select, MVT::v4f32, 1}, // blendps
1316       {TTI::SK_Select, MVT::v8i16, 1}, // pblendw
1317       {TTI::SK_Select, MVT::v16i8, 1}  // pblendvb
1318   };
1319 
1320   if (ST->hasSSE41())
1321     if (const auto *Entry = CostTableLookup(SSE41ShuffleTbl, Kind, LT.second))
1322       return LT.first * Entry->Cost;
1323 
1324   static const CostTblEntry SSSE3ShuffleTbl[] = {
1325       {TTI::SK_Broadcast, MVT::v8i16, 1}, // pshufb
1326       {TTI::SK_Broadcast, MVT::v16i8, 1}, // pshufb
1327 
1328       {TTI::SK_Reverse, MVT::v8i16, 1}, // pshufb
1329       {TTI::SK_Reverse, MVT::v16i8, 1}, // pshufb
1330 
1331       {TTI::SK_Select, MVT::v8i16, 3}, // 2*pshufb + por
1332       {TTI::SK_Select, MVT::v16i8, 3}, // 2*pshufb + por
1333 
1334       {TTI::SK_PermuteSingleSrc, MVT::v8i16, 1}, // pshufb
1335       {TTI::SK_PermuteSingleSrc, MVT::v16i8, 1}, // pshufb
1336 
1337       {TTI::SK_PermuteTwoSrc, MVT::v8i16, 3}, // 2*pshufb + por
1338       {TTI::SK_PermuteTwoSrc, MVT::v16i8, 3}, // 2*pshufb + por
1339   };
1340 
1341   if (ST->hasSSSE3())
1342     if (const auto *Entry = CostTableLookup(SSSE3ShuffleTbl, Kind, LT.second))
1343       return LT.first * Entry->Cost;
1344 
1345   static const CostTblEntry SSE2ShuffleTbl[] = {
1346       {TTI::SK_Broadcast, MVT::v2f64, 1}, // shufpd
1347       {TTI::SK_Broadcast, MVT::v2i64, 1}, // pshufd
1348       {TTI::SK_Broadcast, MVT::v4i32, 1}, // pshufd
1349       {TTI::SK_Broadcast, MVT::v8i16, 2}, // pshuflw + pshufd
1350       {TTI::SK_Broadcast, MVT::v16i8, 3}, // unpck + pshuflw + pshufd
1351 
1352       {TTI::SK_Reverse, MVT::v2f64, 1}, // shufpd
1353       {TTI::SK_Reverse, MVT::v2i64, 1}, // pshufd
1354       {TTI::SK_Reverse, MVT::v4i32, 1}, // pshufd
1355       {TTI::SK_Reverse, MVT::v8i16, 3}, // pshuflw + pshufhw + pshufd
1356       {TTI::SK_Reverse, MVT::v16i8, 9}, // 2*pshuflw + 2*pshufhw
1357                                         // + 2*pshufd + 2*unpck + packus
1358 
1359       {TTI::SK_Select, MVT::v2i64, 1}, // movsd
1360       {TTI::SK_Select, MVT::v2f64, 1}, // movsd
1361       {TTI::SK_Select, MVT::v4i32, 2}, // 2*shufps
1362       {TTI::SK_Select, MVT::v8i16, 3}, // pand + pandn + por
1363       {TTI::SK_Select, MVT::v16i8, 3}, // pand + pandn + por
1364 
1365       {TTI::SK_PermuteSingleSrc, MVT::v2f64, 1}, // shufpd
1366       {TTI::SK_PermuteSingleSrc, MVT::v2i64, 1}, // pshufd
1367       {TTI::SK_PermuteSingleSrc, MVT::v4i32, 1}, // pshufd
1368       {TTI::SK_PermuteSingleSrc, MVT::v8i16, 5}, // 2*pshuflw + 2*pshufhw
1369                                                   // + pshufd/unpck
1370     { TTI::SK_PermuteSingleSrc, MVT::v16i8, 10 }, // 2*pshuflw + 2*pshufhw
1371                                                   // + 2*pshufd + 2*unpck + 2*packus
1372 
1373     { TTI::SK_PermuteTwoSrc,    MVT::v2f64,  1 }, // shufpd
1374     { TTI::SK_PermuteTwoSrc,    MVT::v2i64,  1 }, // shufpd
1375     { TTI::SK_PermuteTwoSrc,    MVT::v4i32,  2 }, // 2*{unpck,movsd,pshufd}
1376     { TTI::SK_PermuteTwoSrc,    MVT::v8i16,  8 }, // blend+permute
1377     { TTI::SK_PermuteTwoSrc,    MVT::v16i8, 13 }, // blend+permute
1378   };
1379 
1380   if (ST->hasSSE2())
1381     if (const auto *Entry = CostTableLookup(SSE2ShuffleTbl, Kind, LT.second))
1382       return LT.first * Entry->Cost;
1383 
1384   static const CostTblEntry SSE1ShuffleTbl[] = {
1385     { TTI::SK_Broadcast,        MVT::v4f32, 1 }, // shufps
1386     { TTI::SK_Reverse,          MVT::v4f32, 1 }, // shufps
1387     { TTI::SK_Select,           MVT::v4f32, 2 }, // 2*shufps
1388     { TTI::SK_PermuteSingleSrc, MVT::v4f32, 1 }, // shufps
1389     { TTI::SK_PermuteTwoSrc,    MVT::v4f32, 2 }, // 2*shufps
1390   };
1391 
1392   if (ST->hasSSE1())
1393     if (const auto *Entry = CostTableLookup(SSE1ShuffleTbl, Kind, LT.second))
1394       return LT.first * Entry->Cost;
1395 
1396   return BaseT::getShuffleCost(Kind, BaseTp, Mask, Index, SubTp);
1397 }
1398 
1399 int X86TTIImpl::getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src,
1400                                  TTI::CastContextHint CCH,
1401                                  TTI::TargetCostKind CostKind,
1402                                  const Instruction *I) {
1403   int ISD = TLI->InstructionOpcodeToISD(Opcode);
1404   assert(ISD && "Invalid opcode");
1405 
1406   // TODO: Allow non-throughput costs that aren't binary.
1407   auto AdjustCost = [&CostKind](int Cost) {
1408     if (CostKind != TTI::TCK_RecipThroughput)
1409       return Cost == 0 ? 0 : 1;
1410     return Cost;
1411   };
1412 
1413   // FIXME: Need a better design of the cost table to handle non-simple types of
1414   // potential massive combinations (elem_num x src_type x dst_type).
1415 
1416   static const TypeConversionCostTblEntry AVX512BWConversionTbl[] {
1417     { ISD::SIGN_EXTEND, MVT::v32i16, MVT::v32i8, 1 },
1418     { ISD::ZERO_EXTEND, MVT::v32i16, MVT::v32i8, 1 },
1419 
1420     // Mask sign extend has an instruction.
1421     { ISD::SIGN_EXTEND, MVT::v2i8,   MVT::v2i1,  1 },
1422     { ISD::SIGN_EXTEND, MVT::v2i16,  MVT::v2i1,  1 },
1423     { ISD::SIGN_EXTEND, MVT::v4i8,   MVT::v4i1,  1 },
1424     { ISD::SIGN_EXTEND, MVT::v4i16,  MVT::v4i1,  1 },
1425     { ISD::SIGN_EXTEND, MVT::v8i8,   MVT::v8i1,  1 },
1426     { ISD::SIGN_EXTEND, MVT::v8i16,  MVT::v8i1,  1 },
1427     { ISD::SIGN_EXTEND, MVT::v16i8,  MVT::v16i1, 1 },
1428     { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i1, 1 },
1429     { ISD::SIGN_EXTEND, MVT::v32i8,  MVT::v32i1, 1 },
1430     { ISD::SIGN_EXTEND, MVT::v32i16, MVT::v32i1, 1 },
1431     { ISD::SIGN_EXTEND, MVT::v64i8,  MVT::v64i1, 1 },
1432 
1433     // Mask zero extend is a sext + shift.
1434     { ISD::ZERO_EXTEND, MVT::v2i8,   MVT::v2i1,  2 },
1435     { ISD::ZERO_EXTEND, MVT::v2i16,  MVT::v2i1,  2 },
1436     { ISD::ZERO_EXTEND, MVT::v4i8,   MVT::v4i1,  2 },
1437     { ISD::ZERO_EXTEND, MVT::v4i16,  MVT::v4i1,  2 },
1438     { ISD::ZERO_EXTEND, MVT::v8i8,   MVT::v8i1,  2 },
1439     { ISD::ZERO_EXTEND, MVT::v8i16,  MVT::v8i1,  2 },
1440     { ISD::ZERO_EXTEND, MVT::v16i8,  MVT::v16i1, 2 },
1441     { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i1, 2 },
1442     { ISD::ZERO_EXTEND, MVT::v32i8,  MVT::v32i1, 2 },
1443     { ISD::ZERO_EXTEND, MVT::v32i16, MVT::v32i1, 2 },
1444     { ISD::ZERO_EXTEND, MVT::v64i8,  MVT::v64i1, 2 },
1445 
1446     { ISD::TRUNCATE,    MVT::v32i8,  MVT::v32i16, 2 },
1447     { ISD::TRUNCATE,    MVT::v16i8,  MVT::v16i16, 2 }, // widen to zmm
1448     { ISD::TRUNCATE,    MVT::v2i1,   MVT::v2i8,   2 }, // widen to zmm
1449     { ISD::TRUNCATE,    MVT::v2i1,   MVT::v2i16,  2 }, // widen to zmm
1450     { ISD::TRUNCATE,    MVT::v4i1,   MVT::v4i8,   2 }, // widen to zmm
1451     { ISD::TRUNCATE,    MVT::v4i1,   MVT::v4i16,  2 }, // widen to zmm
1452     { ISD::TRUNCATE,    MVT::v8i1,   MVT::v8i8,   2 }, // widen to zmm
1453     { ISD::TRUNCATE,    MVT::v8i1,   MVT::v8i16,  2 }, // widen to zmm
1454     { ISD::TRUNCATE,    MVT::v16i1,  MVT::v16i8,  2 }, // widen to zmm
1455     { ISD::TRUNCATE,    MVT::v16i1,  MVT::v16i16, 2 }, // widen to zmm
1456     { ISD::TRUNCATE,    MVT::v32i1,  MVT::v32i8,  2 }, // widen to zmm
1457     { ISD::TRUNCATE,    MVT::v32i1,  MVT::v32i16, 2 },
1458     { ISD::TRUNCATE,    MVT::v64i1,  MVT::v64i8,  2 },
1459   };
1460 
1461   static const TypeConversionCostTblEntry AVX512DQConversionTbl[] = {
1462     { ISD::SINT_TO_FP,  MVT::v8f32,  MVT::v8i64,  1 },
1463     { ISD::SINT_TO_FP,  MVT::v8f64,  MVT::v8i64,  1 },
1464 
1465     { ISD::UINT_TO_FP,  MVT::v8f32,  MVT::v8i64,  1 },
1466     { ISD::UINT_TO_FP,  MVT::v8f64,  MVT::v8i64,  1 },
1467 
1468     { ISD::FP_TO_SINT,  MVT::v8i64,  MVT::v8f32,  1 },
1469     { ISD::FP_TO_SINT,  MVT::v8i64,  MVT::v8f64,  1 },
1470 
1471     { ISD::FP_TO_UINT,  MVT::v8i64,  MVT::v8f32,  1 },
1472     { ISD::FP_TO_UINT,  MVT::v8i64,  MVT::v8f64,  1 },
1473   };
1474 
1475   // TODO: For AVX512DQ + AVX512VL, we also have cheap casts for 128-bit and
1476   // 256-bit wide vectors.
1477 
1478   static const TypeConversionCostTblEntry AVX512FConversionTbl[] = {
1479     { ISD::FP_EXTEND, MVT::v8f64,   MVT::v8f32,  1 },
1480     { ISD::FP_EXTEND, MVT::v8f64,   MVT::v16f32, 3 },
1481     { ISD::FP_ROUND,  MVT::v8f32,   MVT::v8f64,  1 },
1482 
1483     { ISD::TRUNCATE,  MVT::v2i1,    MVT::v2i8,   3 }, // sext+vpslld+vptestmd
1484     { ISD::TRUNCATE,  MVT::v4i1,    MVT::v4i8,   3 }, // sext+vpslld+vptestmd
1485     { ISD::TRUNCATE,  MVT::v8i1,    MVT::v8i8,   3 }, // sext+vpslld+vptestmd
1486     { ISD::TRUNCATE,  MVT::v16i1,   MVT::v16i8,  3 }, // sext+vpslld+vptestmd
1487     { ISD::TRUNCATE,  MVT::v2i1,    MVT::v2i16,  3 }, // sext+vpsllq+vptestmq
1488     { ISD::TRUNCATE,  MVT::v4i1,    MVT::v4i16,  3 }, // sext+vpsllq+vptestmq
1489     { ISD::TRUNCATE,  MVT::v8i1,    MVT::v8i16,  3 }, // sext+vpsllq+vptestmq
1490     { ISD::TRUNCATE,  MVT::v16i1,   MVT::v16i16, 3 }, // sext+vpslld+vptestmd
1491     { ISD::TRUNCATE,  MVT::v2i1,    MVT::v2i32,  2 }, // zmm vpslld+vptestmd
1492     { ISD::TRUNCATE,  MVT::v4i1,    MVT::v4i32,  2 }, // zmm vpslld+vptestmd
1493     { ISD::TRUNCATE,  MVT::v8i1,    MVT::v8i32,  2 }, // zmm vpslld+vptestmd
1494     { ISD::TRUNCATE,  MVT::v16i1,   MVT::v16i32, 2 }, // vpslld+vptestmd
1495     { ISD::TRUNCATE,  MVT::v2i1,    MVT::v2i64,  2 }, // zmm vpsllq+vptestmq
1496     { ISD::TRUNCATE,  MVT::v4i1,    MVT::v4i64,  2 }, // zmm vpsllq+vptestmq
1497     { ISD::TRUNCATE,  MVT::v8i1,    MVT::v8i64,  2 }, // vpsllq+vptestmq
1498     { ISD::TRUNCATE,  MVT::v16i8,   MVT::v16i32, 2 },
1499     { ISD::TRUNCATE,  MVT::v16i16,  MVT::v16i32, 2 },
1500     { ISD::TRUNCATE,  MVT::v8i8,    MVT::v8i64,  2 },
1501     { ISD::TRUNCATE,  MVT::v8i16,   MVT::v8i64,  2 },
1502     { ISD::TRUNCATE,  MVT::v8i32,   MVT::v8i64,  1 },
1503     { ISD::TRUNCATE,  MVT::v4i32,   MVT::v4i64,  1 }, // zmm vpmovqd
1504     { ISD::TRUNCATE,  MVT::v16i8,   MVT::v16i64, 5 },// 2*vpmovqd+concat+vpmovdb
1505 
1506     { ISD::TRUNCATE,  MVT::v16i8,  MVT::v16i16,  3 }, // extend to v16i32
1507     { ISD::TRUNCATE,  MVT::v32i8,  MVT::v32i16,  8 },
1508 
1509     // Sign extend is zmm vpternlogd+vptruncdb.
1510     // Zero extend is zmm broadcast load+vptruncdw.
1511     { ISD::SIGN_EXTEND, MVT::v2i8,   MVT::v2i1,   3 },
1512     { ISD::ZERO_EXTEND, MVT::v2i8,   MVT::v2i1,   4 },
1513     { ISD::SIGN_EXTEND, MVT::v4i8,   MVT::v4i1,   3 },
1514     { ISD::ZERO_EXTEND, MVT::v4i8,   MVT::v4i1,   4 },
1515     { ISD::SIGN_EXTEND, MVT::v8i8,   MVT::v8i1,   3 },
1516     { ISD::ZERO_EXTEND, MVT::v8i8,   MVT::v8i1,   4 },
1517     { ISD::SIGN_EXTEND, MVT::v16i8,  MVT::v16i1,  3 },
1518     { ISD::ZERO_EXTEND, MVT::v16i8,  MVT::v16i1,  4 },
1519 
1520     // Sign extend is zmm vpternlogd+vptruncdw.
1521     // Zero extend is zmm vpternlogd+vptruncdw+vpsrlw.
1522     { ISD::SIGN_EXTEND, MVT::v2i16,  MVT::v2i1,   3 },
1523     { ISD::ZERO_EXTEND, MVT::v2i16,  MVT::v2i1,   4 },
1524     { ISD::SIGN_EXTEND, MVT::v4i16,  MVT::v4i1,   3 },
1525     { ISD::ZERO_EXTEND, MVT::v4i16,  MVT::v4i1,   4 },
1526     { ISD::SIGN_EXTEND, MVT::v8i16,  MVT::v8i1,   3 },
1527     { ISD::ZERO_EXTEND, MVT::v8i16,  MVT::v8i1,   4 },
1528     { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i1,  3 },
1529     { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i1,  4 },
1530 
1531     { ISD::SIGN_EXTEND, MVT::v2i32,  MVT::v2i1,   1 }, // zmm vpternlogd
1532     { ISD::ZERO_EXTEND, MVT::v2i32,  MVT::v2i1,   2 }, // zmm vpternlogd+psrld
1533     { ISD::SIGN_EXTEND, MVT::v4i32,  MVT::v4i1,   1 }, // zmm vpternlogd
1534     { ISD::ZERO_EXTEND, MVT::v4i32,  MVT::v4i1,   2 }, // zmm vpternlogd+psrld
1535     { ISD::SIGN_EXTEND, MVT::v8i32,  MVT::v8i1,   1 }, // zmm vpternlogd
1536     { ISD::ZERO_EXTEND, MVT::v8i32,  MVT::v8i1,   2 }, // zmm vpternlogd+psrld
1537     { ISD::SIGN_EXTEND, MVT::v2i64,  MVT::v2i1,   1 }, // zmm vpternlogq
1538     { ISD::ZERO_EXTEND, MVT::v2i64,  MVT::v2i1,   2 }, // zmm vpternlogq+psrlq
1539     { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v4i1,   1 }, // zmm vpternlogq
1540     { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v4i1,   2 }, // zmm vpternlogq+psrlq
1541 
1542     { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i1,  1 }, // vpternlogd
1543     { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i1,  2 }, // vpternlogd+psrld
1544     { ISD::SIGN_EXTEND, MVT::v8i64,  MVT::v8i1,   1 }, // vpternlogq
1545     { ISD::ZERO_EXTEND, MVT::v8i64,  MVT::v8i1,   2 }, // vpternlogq+psrlq
1546 
1547     { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i8,  1 },
1548     { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i8,  1 },
1549     { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i16, 1 },
1550     { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i16, 1 },
1551     { ISD::SIGN_EXTEND, MVT::v8i64,  MVT::v8i8,   1 },
1552     { ISD::ZERO_EXTEND, MVT::v8i64,  MVT::v8i8,   1 },
1553     { ISD::SIGN_EXTEND, MVT::v8i64,  MVT::v8i16,  1 },
1554     { ISD::ZERO_EXTEND, MVT::v8i64,  MVT::v8i16,  1 },
1555     { ISD::SIGN_EXTEND, MVT::v8i64,  MVT::v8i32,  1 },
1556     { ISD::ZERO_EXTEND, MVT::v8i64,  MVT::v8i32,  1 },
1557 
1558     { ISD::SIGN_EXTEND, MVT::v32i16, MVT::v32i8, 3 }, // FIXME: May not be right
1559     { ISD::ZERO_EXTEND, MVT::v32i16, MVT::v32i8, 3 }, // FIXME: May not be right
1560 
1561     { ISD::SINT_TO_FP,  MVT::v8f64,  MVT::v8i1,   4 },
1562     { ISD::SINT_TO_FP,  MVT::v16f32, MVT::v16i1,  3 },
1563     { ISD::SINT_TO_FP,  MVT::v8f64,  MVT::v8i8,   2 },
1564     { ISD::SINT_TO_FP,  MVT::v16f32, MVT::v16i8,  2 },
1565     { ISD::SINT_TO_FP,  MVT::v8f64,  MVT::v8i16,  2 },
1566     { ISD::SINT_TO_FP,  MVT::v16f32, MVT::v16i16, 2 },
1567     { ISD::SINT_TO_FP,  MVT::v16f32, MVT::v16i32, 1 },
1568     { ISD::SINT_TO_FP,  MVT::v8f64,  MVT::v8i32,  1 },
1569 
1570     { ISD::UINT_TO_FP,  MVT::v8f64,  MVT::v8i1,   4 },
1571     { ISD::UINT_TO_FP,  MVT::v16f32, MVT::v16i1,  3 },
1572     { ISD::UINT_TO_FP,  MVT::v8f64,  MVT::v8i8,   2 },
1573     { ISD::UINT_TO_FP,  MVT::v16f32, MVT::v16i8,  2 },
1574     { ISD::UINT_TO_FP,  MVT::v8f64,  MVT::v8i16,  2 },
1575     { ISD::UINT_TO_FP,  MVT::v16f32, MVT::v16i16, 2 },
1576     { ISD::UINT_TO_FP,  MVT::v8f64,  MVT::v8i32,  1 },
1577     { ISD::UINT_TO_FP,  MVT::v16f32, MVT::v16i32, 1 },
1578     { ISD::UINT_TO_FP,  MVT::v8f32,  MVT::v8i64, 26 },
1579     { ISD::UINT_TO_FP,  MVT::v8f64,  MVT::v8i64,  5 },
1580 
1581     { ISD::FP_TO_SINT,  MVT::v8i8,   MVT::v8f64,  3 },
1582     { ISD::FP_TO_SINT,  MVT::v8i16,  MVT::v8f64,  3 },
1583     { ISD::FP_TO_SINT,  MVT::v16i8,  MVT::v16f32, 3 },
1584     { ISD::FP_TO_SINT,  MVT::v16i16, MVT::v16f32, 3 },
1585 
1586     { ISD::FP_TO_UINT,  MVT::v8i32,  MVT::v8f64,  1 },
1587     { ISD::FP_TO_UINT,  MVT::v8i16,  MVT::v8f64,  3 },
1588     { ISD::FP_TO_UINT,  MVT::v8i8,   MVT::v8f64,  3 },
1589     { ISD::FP_TO_UINT,  MVT::v16i32, MVT::v16f32, 1 },
1590     { ISD::FP_TO_UINT,  MVT::v16i16, MVT::v16f32, 3 },
1591     { ISD::FP_TO_UINT,  MVT::v16i8,  MVT::v16f32, 3 },
1592   };
1593 
1594   static const TypeConversionCostTblEntry AVX512BWVLConversionTbl[] {
1595     // Mask sign extend has an instruction.
1596     { ISD::SIGN_EXTEND, MVT::v2i8,   MVT::v2i1,  1 },
1597     { ISD::SIGN_EXTEND, MVT::v2i16,  MVT::v2i1,  1 },
1598     { ISD::SIGN_EXTEND, MVT::v4i8,   MVT::v4i1,  1 },
1599     { ISD::SIGN_EXTEND, MVT::v4i16,  MVT::v4i1,  1 },
1600     { ISD::SIGN_EXTEND, MVT::v8i8,   MVT::v8i1,  1 },
1601     { ISD::SIGN_EXTEND, MVT::v8i16,  MVT::v8i1,  1 },
1602     { ISD::SIGN_EXTEND, MVT::v16i8,  MVT::v16i1, 1 },
1603     { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i1, 1 },
1604     { ISD::SIGN_EXTEND, MVT::v32i8,  MVT::v32i1, 1 },
1605 
1606     // Mask zero extend is a sext + shift.
1607     { ISD::ZERO_EXTEND, MVT::v2i8,   MVT::v2i1,  2 },
1608     { ISD::ZERO_EXTEND, MVT::v2i16,  MVT::v2i1,  2 },
1609     { ISD::ZERO_EXTEND, MVT::v4i8,   MVT::v4i1,  2 },
1610     { ISD::ZERO_EXTEND, MVT::v4i16,  MVT::v4i1,  2 },
1611     { ISD::ZERO_EXTEND, MVT::v8i8,   MVT::v8i1,  2 },
1612     { ISD::ZERO_EXTEND, MVT::v8i16,  MVT::v8i1,  2 },
1613     { ISD::ZERO_EXTEND, MVT::v16i8,  MVT::v16i1, 2 },
1614     { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i1, 2 },
1615     { ISD::ZERO_EXTEND, MVT::v32i8,  MVT::v32i1, 2 },
1616 
1617     { ISD::TRUNCATE,    MVT::v16i8,  MVT::v16i16, 2 },
1618     { ISD::TRUNCATE,    MVT::v2i1,   MVT::v2i8,   2 }, // vpsllw+vptestmb
1619     { ISD::TRUNCATE,    MVT::v2i1,   MVT::v2i16,  2 }, // vpsllw+vptestmw
1620     { ISD::TRUNCATE,    MVT::v4i1,   MVT::v4i8,   2 }, // vpsllw+vptestmb
1621     { ISD::TRUNCATE,    MVT::v4i1,   MVT::v4i16,  2 }, // vpsllw+vptestmw
1622     { ISD::TRUNCATE,    MVT::v8i1,   MVT::v8i8,   2 }, // vpsllw+vptestmb
1623     { ISD::TRUNCATE,    MVT::v8i1,   MVT::v8i16,  2 }, // vpsllw+vptestmw
1624     { ISD::TRUNCATE,    MVT::v16i1,  MVT::v16i8,  2 }, // vpsllw+vptestmb
1625     { ISD::TRUNCATE,    MVT::v16i1,  MVT::v16i16, 2 }, // vpsllw+vptestmw
1626     { ISD::TRUNCATE,    MVT::v32i1,  MVT::v32i8,  2 }, // vpsllw+vptestmb
1627   };
1628 
1629   static const TypeConversionCostTblEntry AVX512DQVLConversionTbl[] = {
1630     { ISD::SINT_TO_FP,  MVT::v2f32,  MVT::v2i64,  1 },
1631     { ISD::SINT_TO_FP,  MVT::v2f64,  MVT::v2i64,  1 },
1632     { ISD::SINT_TO_FP,  MVT::v4f32,  MVT::v4i64,  1 },
1633     { ISD::SINT_TO_FP,  MVT::v4f64,  MVT::v4i64,  1 },
1634 
1635     { ISD::UINT_TO_FP,  MVT::v2f32,  MVT::v2i64,  1 },
1636     { ISD::UINT_TO_FP,  MVT::v2f64,  MVT::v2i64,  1 },
1637     { ISD::UINT_TO_FP,  MVT::v4f32,  MVT::v4i64,  1 },
1638     { ISD::UINT_TO_FP,  MVT::v4f64,  MVT::v4i64,  1 },
1639 
1640     { ISD::FP_TO_SINT,  MVT::v2i64,  MVT::v2f32,  1 },
1641     { ISD::FP_TO_SINT,  MVT::v4i64,  MVT::v4f32,  1 },
1642     { ISD::FP_TO_SINT,  MVT::v2i64,  MVT::v2f64,  1 },
1643     { ISD::FP_TO_SINT,  MVT::v4i64,  MVT::v4f64,  1 },
1644 
1645     { ISD::FP_TO_UINT,  MVT::v2i64,  MVT::v2f32,  1 },
1646     { ISD::FP_TO_UINT,  MVT::v4i64,  MVT::v4f32,  1 },
1647     { ISD::FP_TO_UINT,  MVT::v2i64,  MVT::v2f64,  1 },
1648     { ISD::FP_TO_UINT,  MVT::v4i64,  MVT::v4f64,  1 },
1649   };
1650 
1651   static const TypeConversionCostTblEntry AVX512VLConversionTbl[] = {
1652     { ISD::TRUNCATE,  MVT::v2i1,    MVT::v2i8,   3 }, // sext+vpslld+vptestmd
1653     { ISD::TRUNCATE,  MVT::v4i1,    MVT::v4i8,   3 }, // sext+vpslld+vptestmd
1654     { ISD::TRUNCATE,  MVT::v8i1,    MVT::v8i8,   3 }, // sext+vpslld+vptestmd
1655     { ISD::TRUNCATE,  MVT::v16i1,   MVT::v16i8,  8 }, // split+2*v8i8
1656     { ISD::TRUNCATE,  MVT::v2i1,    MVT::v2i16,  3 }, // sext+vpsllq+vptestmq
1657     { ISD::TRUNCATE,  MVT::v4i1,    MVT::v4i16,  3 }, // sext+vpsllq+vptestmq
1658     { ISD::TRUNCATE,  MVT::v8i1,    MVT::v8i16,  3 }, // sext+vpsllq+vptestmq
1659     { ISD::TRUNCATE,  MVT::v16i1,   MVT::v16i16, 8 }, // split+2*v8i16
1660     { ISD::TRUNCATE,  MVT::v2i1,    MVT::v2i32,  2 }, // vpslld+vptestmd
1661     { ISD::TRUNCATE,  MVT::v4i1,    MVT::v4i32,  2 }, // vpslld+vptestmd
1662     { ISD::TRUNCATE,  MVT::v8i1,    MVT::v8i32,  2 }, // vpslld+vptestmd
1663     { ISD::TRUNCATE,  MVT::v2i1,    MVT::v2i64,  2 }, // vpsllq+vptestmq
1664     { ISD::TRUNCATE,  MVT::v4i1,    MVT::v4i64,  2 }, // vpsllq+vptestmq
1665     { ISD::TRUNCATE,  MVT::v4i32,   MVT::v4i64,  1 }, // vpmovqd
1666 
1667     // sign extend is vpcmpeq+maskedmove+vpmovdw+vpacksswb
1668     // zero extend is vpcmpeq+maskedmove+vpmovdw+vpsrlw+vpackuswb
1669     { ISD::SIGN_EXTEND, MVT::v2i8,   MVT::v2i1,   5 },
1670     { ISD::ZERO_EXTEND, MVT::v2i8,   MVT::v2i1,   6 },
1671     { ISD::SIGN_EXTEND, MVT::v4i8,   MVT::v4i1,   5 },
1672     { ISD::ZERO_EXTEND, MVT::v4i8,   MVT::v4i1,   6 },
1673     { ISD::SIGN_EXTEND, MVT::v8i8,   MVT::v8i1,   5 },
1674     { ISD::ZERO_EXTEND, MVT::v8i8,   MVT::v8i1,   6 },
1675     { ISD::SIGN_EXTEND, MVT::v16i8,  MVT::v16i1, 10 },
1676     { ISD::ZERO_EXTEND, MVT::v16i8,  MVT::v16i1, 12 },
1677 
1678     // sign extend is vpcmpeq+maskedmove+vpmovdw
1679     // zero extend is vpcmpeq+maskedmove+vpmovdw+vpsrlw
1680     { ISD::SIGN_EXTEND, MVT::v2i16,  MVT::v2i1,   4 },
1681     { ISD::ZERO_EXTEND, MVT::v2i16,  MVT::v2i1,   5 },
1682     { ISD::SIGN_EXTEND, MVT::v4i16,  MVT::v4i1,   4 },
1683     { ISD::ZERO_EXTEND, MVT::v4i16,  MVT::v4i1,   5 },
1684     { ISD::SIGN_EXTEND, MVT::v8i16,  MVT::v8i1,   4 },
1685     { ISD::ZERO_EXTEND, MVT::v8i16,  MVT::v8i1,   5 },
1686     { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i1, 10 },
1687     { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i1, 12 },
1688 
1689     { ISD::SIGN_EXTEND, MVT::v2i32,  MVT::v2i1,   1 }, // vpternlogd
1690     { ISD::ZERO_EXTEND, MVT::v2i32,  MVT::v2i1,   2 }, // vpternlogd+psrld
1691     { ISD::SIGN_EXTEND, MVT::v4i32,  MVT::v4i1,   1 }, // vpternlogd
1692     { ISD::ZERO_EXTEND, MVT::v4i32,  MVT::v4i1,   2 }, // vpternlogd+psrld
1693     { ISD::SIGN_EXTEND, MVT::v8i32,  MVT::v8i1,   1 }, // vpternlogd
1694     { ISD::ZERO_EXTEND, MVT::v8i32,  MVT::v8i1,   2 }, // vpternlogd+psrld
1695     { ISD::SIGN_EXTEND, MVT::v2i64,  MVT::v2i1,   1 }, // vpternlogq
1696     { ISD::ZERO_EXTEND, MVT::v2i64,  MVT::v2i1,   2 }, // vpternlogq+psrlq
1697     { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v4i1,   1 }, // vpternlogq
1698     { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v4i1,   2 }, // vpternlogq+psrlq
1699 
1700     { ISD::UINT_TO_FP,  MVT::v2f64,  MVT::v2i8,   2 },
1701     { ISD::UINT_TO_FP,  MVT::v4f64,  MVT::v4i8,   2 },
1702     { ISD::UINT_TO_FP,  MVT::v8f32,  MVT::v8i8,   2 },
1703     { ISD::UINT_TO_FP,  MVT::v2f64,  MVT::v2i16,  5 },
1704     { ISD::UINT_TO_FP,  MVT::v4f64,  MVT::v4i16,  2 },
1705     { ISD::UINT_TO_FP,  MVT::v8f32,  MVT::v8i16,  2 },
1706     { ISD::UINT_TO_FP,  MVT::v2f32,  MVT::v2i32,  2 },
1707     { ISD::UINT_TO_FP,  MVT::v2f64,  MVT::v2i32,  1 },
1708     { ISD::UINT_TO_FP,  MVT::v4f32,  MVT::v4i32,  1 },
1709     { ISD::UINT_TO_FP,  MVT::v4f64,  MVT::v4i32,  1 },
1710     { ISD::UINT_TO_FP,  MVT::v8f32,  MVT::v8i32,  1 },
1711     { ISD::UINT_TO_FP,  MVT::v2f32,  MVT::v2i64,  5 },
1712     { ISD::UINT_TO_FP,  MVT::v2f64,  MVT::v2i64,  5 },
1713     { ISD::UINT_TO_FP,  MVT::v4f64,  MVT::v4i64,  5 },
1714 
1715     { ISD::UINT_TO_FP,  MVT::f32,    MVT::i64,    1 },
1716     { ISD::UINT_TO_FP,  MVT::f64,    MVT::i64,    1 },
1717 
1718     { ISD::FP_TO_SINT,  MVT::v8i8,   MVT::v8f32,  3 },
1719     { ISD::FP_TO_UINT,  MVT::v8i8,   MVT::v8f32,  3 },
1720 
1721     { ISD::FP_TO_UINT,  MVT::i64,    MVT::f32,    1 },
1722     { ISD::FP_TO_UINT,  MVT::i64,    MVT::f64,    1 },
1723 
1724     { ISD::FP_TO_UINT,  MVT::v2i32,  MVT::v2f32,  1 },
1725     { ISD::FP_TO_UINT,  MVT::v4i32,  MVT::v4f32,  1 },
1726     { ISD::FP_TO_UINT,  MVT::v2i32,  MVT::v2f64,  1 },
1727     { ISD::FP_TO_UINT,  MVT::v4i32,  MVT::v4f64,  1 },
1728     { ISD::FP_TO_UINT,  MVT::v8i32,  MVT::v8f32,  1 },
1729   };
1730 
1731   static const TypeConversionCostTblEntry AVX2ConversionTbl[] = {
1732     { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v4i1,   3 },
1733     { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v4i1,   3 },
1734     { ISD::SIGN_EXTEND, MVT::v8i32,  MVT::v8i1,   3 },
1735     { ISD::ZERO_EXTEND, MVT::v8i32,  MVT::v8i1,   3 },
1736     { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v4i8,   1 },
1737     { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v4i8,   1 },
1738     { ISD::SIGN_EXTEND, MVT::v8i32,  MVT::v8i8,   1 },
1739     { ISD::ZERO_EXTEND, MVT::v8i32,  MVT::v8i8,   1 },
1740     { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i1,  1 },
1741     { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i1,  1 },
1742     { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i8,  1 },
1743     { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i8,  1 },
1744     { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v4i16,  1 },
1745     { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v4i16,  1 },
1746     { ISD::SIGN_EXTEND, MVT::v8i32,  MVT::v8i16,  1 },
1747     { ISD::ZERO_EXTEND, MVT::v8i32,  MVT::v8i16,  1 },
1748     { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v4i32,  1 },
1749     { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v4i32,  1 },
1750     { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i16, 3 },
1751     { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i16, 3 },
1752 
1753     { ISD::TRUNCATE,    MVT::v4i32,  MVT::v4i64,  2 },
1754     { ISD::TRUNCATE,    MVT::v8i1,   MVT::v8i32,  2 },
1755 
1756     { ISD::TRUNCATE,    MVT::v4i8,   MVT::v4i64,  2 },
1757     { ISD::TRUNCATE,    MVT::v4i16,  MVT::v4i64,  2 },
1758     { ISD::TRUNCATE,    MVT::v8i8,   MVT::v8i32,  2 },
1759     { ISD::TRUNCATE,    MVT::v8i16,  MVT::v8i32,  2 },
1760 
1761     { ISD::FP_EXTEND,   MVT::v8f64,  MVT::v8f32,  3 },
1762     { ISD::FP_ROUND,    MVT::v8f32,  MVT::v8f64,  3 },
1763 
1764     { ISD::UINT_TO_FP,  MVT::v8f32,  MVT::v8i32,  8 },
1765   };
1766 
1767   static const TypeConversionCostTblEntry AVXConversionTbl[] = {
1768     { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v4i1,  6 },
1769     { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v4i1,  4 },
1770     { ISD::SIGN_EXTEND, MVT::v8i32,  MVT::v8i1,  7 },
1771     { ISD::ZERO_EXTEND, MVT::v8i32,  MVT::v8i1,  4 },
1772     { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v4i8,  4 },
1773     { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v4i8,  4 },
1774     { ISD::SIGN_EXTEND, MVT::v8i32,  MVT::v8i8,  4 },
1775     { ISD::ZERO_EXTEND, MVT::v8i32,  MVT::v8i8,  4 },
1776     { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i1, 4 },
1777     { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i1, 4 },
1778     { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i8, 4 },
1779     { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i8, 4 },
1780     { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v4i16, 4 },
1781     { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v4i16, 3 },
1782     { ISD::SIGN_EXTEND, MVT::v8i32,  MVT::v8i16, 4 },
1783     { ISD::ZERO_EXTEND, MVT::v8i32,  MVT::v8i16, 4 },
1784     { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v4i32, 4 },
1785     { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v4i32, 4 },
1786 
1787     { ISD::TRUNCATE,    MVT::v4i1,  MVT::v4i64,  4 },
1788     { ISD::TRUNCATE,    MVT::v8i1,  MVT::v8i32,  5 },
1789     { ISD::TRUNCATE,    MVT::v16i1, MVT::v16i16, 4 },
1790     { ISD::TRUNCATE,    MVT::v8i1,  MVT::v8i64,  9 },
1791     { ISD::TRUNCATE,    MVT::v16i1, MVT::v16i64, 11 },
1792 
1793     { ISD::TRUNCATE,    MVT::v16i8, MVT::v16i16, 4 },
1794     { ISD::TRUNCATE,    MVT::v8i8,  MVT::v8i32,  4 },
1795     { ISD::TRUNCATE,    MVT::v8i16, MVT::v8i32,  5 },
1796     { ISD::TRUNCATE,    MVT::v4i8,  MVT::v4i64,  4 },
1797     { ISD::TRUNCATE,    MVT::v4i16, MVT::v4i64,  4 },
1798     { ISD::TRUNCATE,    MVT::v4i32, MVT::v4i64,  2 },
1799     { ISD::TRUNCATE,    MVT::v8i8,  MVT::v8i64, 11 },
1800     { ISD::TRUNCATE,    MVT::v8i16, MVT::v8i64,  9 },
1801     { ISD::TRUNCATE,    MVT::v8i32, MVT::v8i64,  3 },
1802     { ISD::TRUNCATE,    MVT::v16i8, MVT::v16i64, 11 },
1803 
1804     { ISD::SINT_TO_FP,  MVT::v4f32, MVT::v4i1,  3 },
1805     { ISD::SINT_TO_FP,  MVT::v4f64, MVT::v4i1,  3 },
1806     { ISD::SINT_TO_FP,  MVT::v8f32, MVT::v8i1,  8 },
1807     { ISD::SINT_TO_FP,  MVT::v4f32, MVT::v4i8,  3 },
1808     { ISD::SINT_TO_FP,  MVT::v4f64, MVT::v4i8,  3 },
1809     { ISD::SINT_TO_FP,  MVT::v8f32, MVT::v8i8,  8 },
1810     { ISD::SINT_TO_FP,  MVT::v4f32, MVT::v4i16, 3 },
1811     { ISD::SINT_TO_FP,  MVT::v4f64, MVT::v4i16, 3 },
1812     { ISD::SINT_TO_FP,  MVT::v8f32, MVT::v8i16, 5 },
1813     { ISD::SINT_TO_FP,  MVT::v4f32, MVT::v4i32, 1 },
1814     { ISD::SINT_TO_FP,  MVT::v4f64, MVT::v4i32, 1 },
1815     { ISD::SINT_TO_FP,  MVT::v8f32, MVT::v8i32, 1 },
1816 
1817     { ISD::UINT_TO_FP,  MVT::v4f32, MVT::v4i1,  7 },
1818     { ISD::UINT_TO_FP,  MVT::v4f64, MVT::v4i1,  7 },
1819     { ISD::UINT_TO_FP,  MVT::v8f32, MVT::v8i1,  6 },
1820     { ISD::UINT_TO_FP,  MVT::v4f32, MVT::v4i8,  2 },
1821     { ISD::UINT_TO_FP,  MVT::v4f64, MVT::v4i8,  2 },
1822     { ISD::UINT_TO_FP,  MVT::v8f32, MVT::v8i8,  5 },
1823     { ISD::UINT_TO_FP,  MVT::v4f32, MVT::v4i16, 2 },
1824     { ISD::UINT_TO_FP,  MVT::v4f64, MVT::v4i16, 2 },
1825     { ISD::UINT_TO_FP,  MVT::v8f32, MVT::v8i16, 5 },
1826     { ISD::UINT_TO_FP,  MVT::v2f64, MVT::v2i32, 6 },
1827     { ISD::UINT_TO_FP,  MVT::v4f32, MVT::v4i32, 6 },
1828     { ISD::UINT_TO_FP,  MVT::v4f64, MVT::v4i32, 6 },
1829     { ISD::UINT_TO_FP,  MVT::v8f32, MVT::v8i32, 9 },
1830     { ISD::UINT_TO_FP,  MVT::v2f64, MVT::v2i64, 5 },
1831     { ISD::UINT_TO_FP,  MVT::v4f64, MVT::v4i64, 6 },
1832     // The generic code to compute the scalar overhead is currently broken.
1833     // Workaround this limitation by estimating the scalarization overhead
1834     // here. We have roughly 10 instructions per scalar element.
1835     // Multiply that by the vector width.
1836     // FIXME: remove that when PR19268 is fixed.
1837     { ISD::SINT_TO_FP,  MVT::v4f64, MVT::v4i64, 13 },
1838     { ISD::SINT_TO_FP,  MVT::v4f64, MVT::v4i64, 13 },
1839 
1840     { ISD::FP_TO_SINT,  MVT::v8i8,  MVT::v8f32, 4 },
1841     { ISD::FP_TO_SINT,  MVT::v4i8,  MVT::v4f64, 3 },
1842     { ISD::FP_TO_SINT,  MVT::v4i16, MVT::v4f64, 2 },
1843     { ISD::FP_TO_SINT,  MVT::v8i16, MVT::v8f32, 3 },
1844 
1845     { ISD::FP_TO_UINT,  MVT::v4i8,  MVT::v4f64, 3 },
1846     { ISD::FP_TO_UINT,  MVT::v4i16, MVT::v4f64, 2 },
1847     { ISD::FP_TO_UINT,  MVT::v8i8,  MVT::v8f32, 4 },
1848     { ISD::FP_TO_UINT,  MVT::v8i16, MVT::v8f32, 3 },
1849     // This node is expanded into scalarized operations but BasicTTI is overly
1850     // optimistic estimating its cost.  It computes 3 per element (one
1851     // vector-extract, one scalar conversion and one vector-insert).  The
1852     // problem is that the inserts form a read-modify-write chain so latency
1853     // should be factored in too.  Inflating the cost per element by 1.
1854     { ISD::FP_TO_UINT,  MVT::v8i32, MVT::v8f32, 8*4 },
1855     { ISD::FP_TO_UINT,  MVT::v4i32, MVT::v4f64, 4*4 },
1856 
1857     { ISD::FP_EXTEND,   MVT::v4f64,  MVT::v4f32,  1 },
1858     { ISD::FP_ROUND,    MVT::v4f32,  MVT::v4f64,  1 },
1859   };
1860 
1861   static const TypeConversionCostTblEntry SSE41ConversionTbl[] = {
1862     { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i8,    2 },
1863     { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i8,    2 },
1864     { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i16,   2 },
1865     { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i16,   2 },
1866     { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i32,   2 },
1867     { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i32,   2 },
1868 
1869     { ISD::ZERO_EXTEND, MVT::v4i16,  MVT::v4i8,   1 },
1870     { ISD::SIGN_EXTEND, MVT::v4i16,  MVT::v4i8,   2 },
1871     { ISD::ZERO_EXTEND, MVT::v4i32,  MVT::v4i8,   1 },
1872     { ISD::SIGN_EXTEND, MVT::v4i32,  MVT::v4i8,   1 },
1873     { ISD::ZERO_EXTEND, MVT::v8i16,  MVT::v8i8,   1 },
1874     { ISD::SIGN_EXTEND, MVT::v8i16,  MVT::v8i8,   1 },
1875     { ISD::ZERO_EXTEND, MVT::v8i32,  MVT::v8i8,   2 },
1876     { ISD::SIGN_EXTEND, MVT::v8i32,  MVT::v8i8,   2 },
1877     { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i8,  2 },
1878     { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i8,  2 },
1879     { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i8,  4 },
1880     { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i8,  4 },
1881     { ISD::ZERO_EXTEND, MVT::v4i32,  MVT::v4i16,  1 },
1882     { ISD::SIGN_EXTEND, MVT::v4i32,  MVT::v4i16,  1 },
1883     { ISD::ZERO_EXTEND, MVT::v8i32,  MVT::v8i16,  2 },
1884     { ISD::SIGN_EXTEND, MVT::v8i32,  MVT::v8i16,  2 },
1885     { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i16, 4 },
1886     { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i16, 4 },
1887 
1888     // These truncates end up widening elements.
1889     { ISD::TRUNCATE,    MVT::v2i1,   MVT::v2i8,   1 }, // PMOVXZBQ
1890     { ISD::TRUNCATE,    MVT::v2i1,   MVT::v2i16,  1 }, // PMOVXZWQ
1891     { ISD::TRUNCATE,    MVT::v4i1,   MVT::v4i8,   1 }, // PMOVXZBD
1892 
1893     { ISD::TRUNCATE,    MVT::v2i8,   MVT::v2i16,  1 },
1894     { ISD::TRUNCATE,    MVT::v4i8,   MVT::v4i16,  1 },
1895     { ISD::TRUNCATE,    MVT::v8i8,   MVT::v8i16,  1 },
1896     { ISD::TRUNCATE,    MVT::v4i8,   MVT::v4i32,  1 },
1897     { ISD::TRUNCATE,    MVT::v4i16,  MVT::v4i32,  1 },
1898     { ISD::TRUNCATE,    MVT::v8i8,   MVT::v8i32,  3 },
1899     { ISD::TRUNCATE,    MVT::v8i16,  MVT::v8i32,  3 },
1900     { ISD::TRUNCATE,    MVT::v16i16, MVT::v16i32, 6 },
1901     { ISD::TRUNCATE,    MVT::v2i8,   MVT::v2i64,  1 }, // PSHUFB
1902 
1903     { ISD::UINT_TO_FP,  MVT::f32,    MVT::i64,    4 },
1904     { ISD::UINT_TO_FP,  MVT::f64,    MVT::i64,    4 },
1905 
1906     { ISD::FP_TO_SINT,  MVT::v2i8,   MVT::v2f32,  3 },
1907     { ISD::FP_TO_SINT,  MVT::v2i8,   MVT::v2f64,  3 },
1908 
1909     { ISD::FP_TO_UINT,  MVT::v2i8,   MVT::v2f32,  3 },
1910     { ISD::FP_TO_UINT,  MVT::v2i8,   MVT::v2f64,  3 },
1911     { ISD::FP_TO_UINT,  MVT::v4i16,  MVT::v4f32,  2 },
1912   };
1913 
1914   static const TypeConversionCostTblEntry SSE2ConversionTbl[] = {
1915     // These are somewhat magic numbers justified by looking at the output of
1916     // Intel's IACA, running some kernels and making sure when we take
1917     // legalization into account the throughput will be overestimated.
1918     { ISD::SINT_TO_FP, MVT::v4f32, MVT::v16i8, 8 },
1919     { ISD::SINT_TO_FP, MVT::v2f64, MVT::v16i8, 16*10 },
1920     { ISD::SINT_TO_FP, MVT::v4f32, MVT::v8i16, 15 },
1921     { ISD::SINT_TO_FP, MVT::v2f64, MVT::v8i16, 8*10 },
1922     { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i32, 5 },
1923     { ISD::SINT_TO_FP, MVT::v2f64, MVT::v4i32, 2*10 },
1924     { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i32, 2*10 },
1925     { ISD::SINT_TO_FP, MVT::v4f32, MVT::v2i64, 15 },
1926     { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i64, 2*10 },
1927 
1928     { ISD::UINT_TO_FP, MVT::v2f64, MVT::v16i8, 16*10 },
1929     { ISD::UINT_TO_FP, MVT::v4f32, MVT::v16i8, 8 },
1930     { ISD::UINT_TO_FP, MVT::v4f32, MVT::v8i16, 15 },
1931     { ISD::UINT_TO_FP, MVT::v2f64, MVT::v8i16, 8*10 },
1932     { ISD::UINT_TO_FP, MVT::v2f64, MVT::v4i32, 4*10 },
1933     { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i32, 8 },
1934     { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i64, 6 },
1935     { ISD::UINT_TO_FP, MVT::v4f32, MVT::v2i64, 15 },
1936 
1937     { ISD::FP_TO_SINT,  MVT::v2i8,   MVT::v2f32,  4 },
1938     { ISD::FP_TO_SINT,  MVT::v2i16,  MVT::v2f32,  2 },
1939     { ISD::FP_TO_SINT,  MVT::v4i8,   MVT::v4f32,  3 },
1940     { ISD::FP_TO_SINT,  MVT::v4i16,  MVT::v4f32,  2 },
1941     { ISD::FP_TO_SINT,  MVT::v2i16,  MVT::v2f64,  2 },
1942     { ISD::FP_TO_SINT,  MVT::v2i8,   MVT::v2f64,  4 },
1943 
1944     { ISD::FP_TO_SINT,  MVT::v2i32,  MVT::v2f64,  1 },
1945 
1946     { ISD::UINT_TO_FP,  MVT::f32,    MVT::i64,    6 },
1947     { ISD::UINT_TO_FP,  MVT::f64,    MVT::i64,    6 },
1948 
1949     { ISD::FP_TO_UINT,  MVT::i64,    MVT::f32,    4 },
1950     { ISD::FP_TO_UINT,  MVT::i64,    MVT::f64,    4 },
1951     { ISD::FP_TO_UINT,  MVT::v2i8,   MVT::v2f32,  4 },
1952     { ISD::FP_TO_UINT,  MVT::v2i8,   MVT::v2f64,  4 },
1953     { ISD::FP_TO_UINT,  MVT::v4i8,   MVT::v4f32,  3 },
1954     { ISD::FP_TO_UINT,  MVT::v2i16,  MVT::v2f32,  2 },
1955     { ISD::FP_TO_UINT,  MVT::v2i16,  MVT::v2f64,  2 },
1956     { ISD::FP_TO_UINT,  MVT::v4i16,  MVT::v4f32,  4 },
1957 
1958     { ISD::ZERO_EXTEND, MVT::v4i16,  MVT::v4i8,   1 },
1959     { ISD::SIGN_EXTEND, MVT::v4i16,  MVT::v4i8,   6 },
1960     { ISD::ZERO_EXTEND, MVT::v4i32,  MVT::v4i8,   2 },
1961     { ISD::SIGN_EXTEND, MVT::v4i32,  MVT::v4i8,   3 },
1962     { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v4i8,   4 },
1963     { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v4i8,   8 },
1964     { ISD::ZERO_EXTEND, MVT::v8i16,  MVT::v8i8,   1 },
1965     { ISD::SIGN_EXTEND, MVT::v8i16,  MVT::v8i8,   2 },
1966     { ISD::ZERO_EXTEND, MVT::v8i32,  MVT::v8i8,   6 },
1967     { ISD::SIGN_EXTEND, MVT::v8i32,  MVT::v8i8,   6 },
1968     { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i8,  3 },
1969     { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i8,  4 },
1970     { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i8,  9 },
1971     { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i8,  12 },
1972     { ISD::ZERO_EXTEND, MVT::v4i32,  MVT::v4i16,  1 },
1973     { ISD::SIGN_EXTEND, MVT::v4i32,  MVT::v4i16,  2 },
1974     { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v4i16,  3 },
1975     { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v4i16,  10 },
1976     { ISD::ZERO_EXTEND, MVT::v8i32,  MVT::v8i16,  3 },
1977     { ISD::SIGN_EXTEND, MVT::v8i32,  MVT::v8i16,  4 },
1978     { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i16, 6 },
1979     { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i16, 8 },
1980     { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v4i32,  3 },
1981     { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v4i32,  5 },
1982 
1983     // These truncates are really widening elements.
1984     { ISD::TRUNCATE,    MVT::v2i1,   MVT::v2i32,  1 }, // PSHUFD
1985     { ISD::TRUNCATE,    MVT::v2i1,   MVT::v2i16,  2 }, // PUNPCKLWD+DQ
1986     { ISD::TRUNCATE,    MVT::v2i1,   MVT::v2i8,   3 }, // PUNPCKLBW+WD+PSHUFD
1987     { ISD::TRUNCATE,    MVT::v4i1,   MVT::v4i16,  1 }, // PUNPCKLWD
1988     { ISD::TRUNCATE,    MVT::v4i1,   MVT::v4i8,   2 }, // PUNPCKLBW+WD
1989     { ISD::TRUNCATE,    MVT::v8i1,   MVT::v8i8,   1 }, // PUNPCKLBW
1990 
1991     { ISD::TRUNCATE,    MVT::v2i8,   MVT::v2i16,  2 }, // PAND+PACKUSWB
1992     { ISD::TRUNCATE,    MVT::v4i8,   MVT::v4i16,  2 }, // PAND+PACKUSWB
1993     { ISD::TRUNCATE,    MVT::v8i8,   MVT::v8i16,  2 }, // PAND+PACKUSWB
1994     { ISD::TRUNCATE,    MVT::v16i8,  MVT::v16i16, 3 },
1995     { ISD::TRUNCATE,    MVT::v2i8,   MVT::v2i32,  3 }, // PAND+2*PACKUSWB
1996     { ISD::TRUNCATE,    MVT::v2i16,  MVT::v2i32,  1 },
1997     { ISD::TRUNCATE,    MVT::v4i8,   MVT::v4i32,  3 },
1998     { ISD::TRUNCATE,    MVT::v4i16,  MVT::v4i32,  3 },
1999     { ISD::TRUNCATE,    MVT::v8i8,   MVT::v8i32,  4 },
2000     { ISD::TRUNCATE,    MVT::v16i8,  MVT::v16i32, 7 },
2001     { ISD::TRUNCATE,    MVT::v8i16,  MVT::v8i32,  5 },
2002     { ISD::TRUNCATE,    MVT::v16i16, MVT::v16i32, 10 },
2003     { ISD::TRUNCATE,    MVT::v2i8,   MVT::v2i64,  4 }, // PAND+3*PACKUSWB
2004     { ISD::TRUNCATE,    MVT::v2i16,  MVT::v2i64,  2 }, // PSHUFD+PSHUFLW
2005     { ISD::TRUNCATE,    MVT::v2i32,  MVT::v2i64,  1 }, // PSHUFD
2006   };
2007 
2008   std::pair<int, MVT> LTSrc = TLI->getTypeLegalizationCost(DL, Src);
2009   std::pair<int, MVT> LTDest = TLI->getTypeLegalizationCost(DL, Dst);
2010 
2011   if (ST->hasSSE2() && !ST->hasAVX()) {
2012     if (const auto *Entry = ConvertCostTableLookup(SSE2ConversionTbl, ISD,
2013                                                    LTDest.second, LTSrc.second))
2014       return AdjustCost(LTSrc.first * Entry->Cost);
2015   }
2016 
2017   EVT SrcTy = TLI->getValueType(DL, Src);
2018   EVT DstTy = TLI->getValueType(DL, Dst);
2019 
2020   // The function getSimpleVT only handles simple value types.
2021   if (!SrcTy.isSimple() || !DstTy.isSimple())
2022     return AdjustCost(BaseT::getCastInstrCost(Opcode, Dst, Src, CCH, CostKind));
2023 
2024   MVT SimpleSrcTy = SrcTy.getSimpleVT();
2025   MVT SimpleDstTy = DstTy.getSimpleVT();
2026 
2027   if (ST->useAVX512Regs()) {
2028     if (ST->hasBWI())
2029       if (const auto *Entry = ConvertCostTableLookup(AVX512BWConversionTbl, ISD,
2030                                                      SimpleDstTy, SimpleSrcTy))
2031         return AdjustCost(Entry->Cost);
2032 
2033     if (ST->hasDQI())
2034       if (const auto *Entry = ConvertCostTableLookup(AVX512DQConversionTbl, ISD,
2035                                                      SimpleDstTy, SimpleSrcTy))
2036         return AdjustCost(Entry->Cost);
2037 
2038     if (ST->hasAVX512())
2039       if (const auto *Entry = ConvertCostTableLookup(AVX512FConversionTbl, ISD,
2040                                                      SimpleDstTy, SimpleSrcTy))
2041         return AdjustCost(Entry->Cost);
2042   }
2043 
2044   if (ST->hasBWI())
2045     if (const auto *Entry = ConvertCostTableLookup(AVX512BWVLConversionTbl, ISD,
2046                                                    SimpleDstTy, SimpleSrcTy))
2047       return AdjustCost(Entry->Cost);
2048 
2049   if (ST->hasDQI())
2050     if (const auto *Entry = ConvertCostTableLookup(AVX512DQVLConversionTbl, ISD,
2051                                                    SimpleDstTy, SimpleSrcTy))
2052       return AdjustCost(Entry->Cost);
2053 
2054   if (ST->hasAVX512())
2055     if (const auto *Entry = ConvertCostTableLookup(AVX512VLConversionTbl, ISD,
2056                                                    SimpleDstTy, SimpleSrcTy))
2057       return AdjustCost(Entry->Cost);
2058 
2059   if (ST->hasAVX2()) {
2060     if (const auto *Entry = ConvertCostTableLookup(AVX2ConversionTbl, ISD,
2061                                                    SimpleDstTy, SimpleSrcTy))
2062       return AdjustCost(Entry->Cost);
2063   }
2064 
2065   if (ST->hasAVX()) {
2066     if (const auto *Entry = ConvertCostTableLookup(AVXConversionTbl, ISD,
2067                                                    SimpleDstTy, SimpleSrcTy))
2068       return AdjustCost(Entry->Cost);
2069   }
2070 
2071   if (ST->hasSSE41()) {
2072     if (const auto *Entry = ConvertCostTableLookup(SSE41ConversionTbl, ISD,
2073                                                    SimpleDstTy, SimpleSrcTy))
2074       return AdjustCost(Entry->Cost);
2075   }
2076 
2077   if (ST->hasSSE2()) {
2078     if (const auto *Entry = ConvertCostTableLookup(SSE2ConversionTbl, ISD,
2079                                                    SimpleDstTy, SimpleSrcTy))
2080       return AdjustCost(Entry->Cost);
2081   }
2082 
2083   return AdjustCost(
2084       BaseT::getCastInstrCost(Opcode, Dst, Src, CCH, CostKind, I));
2085 }
2086 
2087 int X86TTIImpl::getCmpSelInstrCost(unsigned Opcode, Type *ValTy, Type *CondTy,
2088                                    CmpInst::Predicate VecPred,
2089                                    TTI::TargetCostKind CostKind,
2090                                    const Instruction *I) {
2091   // TODO: Handle other cost kinds.
2092   if (CostKind != TTI::TCK_RecipThroughput)
2093     return BaseT::getCmpSelInstrCost(Opcode, ValTy, CondTy, VecPred, CostKind,
2094                                      I);
2095 
2096   // Legalize the type.
2097   std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, ValTy);
2098 
2099   MVT MTy = LT.second;
2100 
2101   int ISD = TLI->InstructionOpcodeToISD(Opcode);
2102   assert(ISD && "Invalid opcode");
2103 
2104   unsigned ExtraCost = 0;
2105   if (I && (Opcode == Instruction::ICmp || Opcode == Instruction::FCmp)) {
2106     // Some vector comparison predicates cost extra instructions.
2107     if (MTy.isVector() &&
2108         !((ST->hasXOP() && (!ST->hasAVX2() || MTy.is128BitVector())) ||
2109           (ST->hasAVX512() && 32 <= MTy.getScalarSizeInBits()) ||
2110           ST->hasBWI())) {
2111       switch (cast<CmpInst>(I)->getPredicate()) {
2112       case CmpInst::Predicate::ICMP_NE:
2113         // xor(cmpeq(x,y),-1)
2114         ExtraCost = 1;
2115         break;
2116       case CmpInst::Predicate::ICMP_SGE:
2117       case CmpInst::Predicate::ICMP_SLE:
2118         // xor(cmpgt(x,y),-1)
2119         ExtraCost = 1;
2120         break;
2121       case CmpInst::Predicate::ICMP_ULT:
2122       case CmpInst::Predicate::ICMP_UGT:
2123         // cmpgt(xor(x,signbit),xor(y,signbit))
2124         // xor(cmpeq(pmaxu(x,y),x),-1)
2125         ExtraCost = 2;
2126         break;
2127       case CmpInst::Predicate::ICMP_ULE:
2128       case CmpInst::Predicate::ICMP_UGE:
2129         if ((ST->hasSSE41() && MTy.getScalarSizeInBits() == 32) ||
2130             (ST->hasSSE2() && MTy.getScalarSizeInBits() < 32)) {
2131           // cmpeq(psubus(x,y),0)
2132           // cmpeq(pminu(x,y),x)
2133           ExtraCost = 1;
2134         } else {
2135           // xor(cmpgt(xor(x,signbit),xor(y,signbit)),-1)
2136           ExtraCost = 3;
2137         }
2138         break;
2139       default:
2140         break;
2141       }
2142     }
2143   }
2144 
2145   static const CostTblEntry SLMCostTbl[] = {
2146     // slm pcmpeq/pcmpgt throughput is 2
2147     { ISD::SETCC,   MVT::v2i64,   2 },
2148   };
2149 
2150   static const CostTblEntry AVX512BWCostTbl[] = {
2151     { ISD::SETCC,   MVT::v32i16,  1 },
2152     { ISD::SETCC,   MVT::v64i8,   1 },
2153 
2154     { ISD::SELECT,  MVT::v32i16,  1 },
2155     { ISD::SELECT,  MVT::v64i8,   1 },
2156   };
2157 
2158   static const CostTblEntry AVX512CostTbl[] = {
2159     { ISD::SETCC,   MVT::v8i64,   1 },
2160     { ISD::SETCC,   MVT::v16i32,  1 },
2161     { ISD::SETCC,   MVT::v8f64,   1 },
2162     { ISD::SETCC,   MVT::v16f32,  1 },
2163 
2164     { ISD::SELECT,  MVT::v8i64,   1 },
2165     { ISD::SELECT,  MVT::v16i32,  1 },
2166     { ISD::SELECT,  MVT::v8f64,   1 },
2167     { ISD::SELECT,  MVT::v16f32,  1 },
2168 
2169     { ISD::SETCC,   MVT::v32i16,  2 }, // FIXME: should probably be 4
2170     { ISD::SETCC,   MVT::v64i8,   2 }, // FIXME: should probably be 4
2171 
2172     { ISD::SELECT,  MVT::v32i16,  2 }, // FIXME: should be 3
2173     { ISD::SELECT,  MVT::v64i8,   2 }, // FIXME: should be 3
2174   };
2175 
2176   static const CostTblEntry AVX2CostTbl[] = {
2177     { ISD::SETCC,   MVT::v4i64,   1 },
2178     { ISD::SETCC,   MVT::v8i32,   1 },
2179     { ISD::SETCC,   MVT::v16i16,  1 },
2180     { ISD::SETCC,   MVT::v32i8,   1 },
2181 
2182     { ISD::SELECT,  MVT::v4i64,   1 }, // pblendvb
2183     { ISD::SELECT,  MVT::v8i32,   1 }, // pblendvb
2184     { ISD::SELECT,  MVT::v16i16,  1 }, // pblendvb
2185     { ISD::SELECT,  MVT::v32i8,   1 }, // pblendvb
2186   };
2187 
2188   static const CostTblEntry AVX1CostTbl[] = {
2189     { ISD::SETCC,   MVT::v4f64,   1 },
2190     { ISD::SETCC,   MVT::v8f32,   1 },
2191     // AVX1 does not support 8-wide integer compare.
2192     { ISD::SETCC,   MVT::v4i64,   4 },
2193     { ISD::SETCC,   MVT::v8i32,   4 },
2194     { ISD::SETCC,   MVT::v16i16,  4 },
2195     { ISD::SETCC,   MVT::v32i8,   4 },
2196 
2197     { ISD::SELECT,  MVT::v4f64,   1 }, // vblendvpd
2198     { ISD::SELECT,  MVT::v8f32,   1 }, // vblendvps
2199     { ISD::SELECT,  MVT::v4i64,   1 }, // vblendvpd
2200     { ISD::SELECT,  MVT::v8i32,   1 }, // vblendvps
2201     { ISD::SELECT,  MVT::v16i16,  3 }, // vandps + vandnps + vorps
2202     { ISD::SELECT,  MVT::v32i8,   3 }, // vandps + vandnps + vorps
2203   };
2204 
2205   static const CostTblEntry SSE42CostTbl[] = {
2206     { ISD::SETCC,   MVT::v2f64,   1 },
2207     { ISD::SETCC,   MVT::v4f32,   1 },
2208     { ISD::SETCC,   MVT::v2i64,   1 },
2209   };
2210 
2211   static const CostTblEntry SSE41CostTbl[] = {
2212     { ISD::SELECT,  MVT::v2f64,   1 }, // blendvpd
2213     { ISD::SELECT,  MVT::v4f32,   1 }, // blendvps
2214     { ISD::SELECT,  MVT::v2i64,   1 }, // pblendvb
2215     { ISD::SELECT,  MVT::v4i32,   1 }, // pblendvb
2216     { ISD::SELECT,  MVT::v8i16,   1 }, // pblendvb
2217     { ISD::SELECT,  MVT::v16i8,   1 }, // pblendvb
2218   };
2219 
2220   static const CostTblEntry SSE2CostTbl[] = {
2221     { ISD::SETCC,   MVT::v2f64,   2 },
2222     { ISD::SETCC,   MVT::f64,     1 },
2223     { ISD::SETCC,   MVT::v2i64,   8 },
2224     { ISD::SETCC,   MVT::v4i32,   1 },
2225     { ISD::SETCC,   MVT::v8i16,   1 },
2226     { ISD::SETCC,   MVT::v16i8,   1 },
2227 
2228     { ISD::SELECT,  MVT::v2f64,   3 }, // andpd + andnpd + orpd
2229     { ISD::SELECT,  MVT::v2i64,   3 }, // pand + pandn + por
2230     { ISD::SELECT,  MVT::v4i32,   3 }, // pand + pandn + por
2231     { ISD::SELECT,  MVT::v8i16,   3 }, // pand + pandn + por
2232     { ISD::SELECT,  MVT::v16i8,   3 }, // pand + pandn + por
2233   };
2234 
2235   static const CostTblEntry SSE1CostTbl[] = {
2236     { ISD::SETCC,   MVT::v4f32,   2 },
2237     { ISD::SETCC,   MVT::f32,     1 },
2238 
2239     { ISD::SELECT,  MVT::v4f32,   3 }, // andps + andnps + orps
2240   };
2241 
2242   if (ST->isSLM())
2243     if (const auto *Entry = CostTableLookup(SLMCostTbl, ISD, MTy))
2244       return LT.first * (ExtraCost + Entry->Cost);
2245 
2246   if (ST->hasBWI())
2247     if (const auto *Entry = CostTableLookup(AVX512BWCostTbl, ISD, MTy))
2248       return LT.first * (ExtraCost + Entry->Cost);
2249 
2250   if (ST->hasAVX512())
2251     if (const auto *Entry = CostTableLookup(AVX512CostTbl, ISD, MTy))
2252       return LT.first * (ExtraCost + Entry->Cost);
2253 
2254   if (ST->hasAVX2())
2255     if (const auto *Entry = CostTableLookup(AVX2CostTbl, ISD, MTy))
2256       return LT.first * (ExtraCost + Entry->Cost);
2257 
2258   if (ST->hasAVX())
2259     if (const auto *Entry = CostTableLookup(AVX1CostTbl, ISD, MTy))
2260       return LT.first * (ExtraCost + Entry->Cost);
2261 
2262   if (ST->hasSSE42())
2263     if (const auto *Entry = CostTableLookup(SSE42CostTbl, ISD, MTy))
2264       return LT.first * (ExtraCost + Entry->Cost);
2265 
2266   if (ST->hasSSE41())
2267     if (const auto *Entry = CostTableLookup(SSE41CostTbl, ISD, MTy))
2268       return LT.first * (ExtraCost + Entry->Cost);
2269 
2270   if (ST->hasSSE2())
2271     if (const auto *Entry = CostTableLookup(SSE2CostTbl, ISD, MTy))
2272       return LT.first * (ExtraCost + Entry->Cost);
2273 
2274   if (ST->hasSSE1())
2275     if (const auto *Entry = CostTableLookup(SSE1CostTbl, ISD, MTy))
2276       return LT.first * (ExtraCost + Entry->Cost);
2277 
2278   return BaseT::getCmpSelInstrCost(Opcode, ValTy, CondTy, VecPred, CostKind, I);
2279 }
2280 
2281 unsigned X86TTIImpl::getAtomicMemIntrinsicMaxElementSize() const { return 16; }
2282 
2283 int X86TTIImpl::getTypeBasedIntrinsicInstrCost(
2284   const IntrinsicCostAttributes &ICA, TTI::TargetCostKind CostKind) {
2285 
2286   // Costs should match the codegen from:
2287   // BITREVERSE: llvm\test\CodeGen\X86\vector-bitreverse.ll
2288   // BSWAP: llvm\test\CodeGen\X86\bswap-vector.ll
2289   // CTLZ: llvm\test\CodeGen\X86\vector-lzcnt-*.ll
2290   // CTPOP: llvm\test\CodeGen\X86\vector-popcnt-*.ll
2291   // CTTZ: llvm\test\CodeGen\X86\vector-tzcnt-*.ll
2292 
2293   // TODO: Overflow intrinsics (*ADDO, *SUBO, *MULO) with vector types are not
2294   //       specialized in these tables yet.
2295   static const CostTblEntry AVX512CDCostTbl[] = {
2296     { ISD::CTLZ,       MVT::v8i64,   1 },
2297     { ISD::CTLZ,       MVT::v16i32,  1 },
2298     { ISD::CTLZ,       MVT::v32i16,  8 },
2299     { ISD::CTLZ,       MVT::v64i8,  20 },
2300     { ISD::CTLZ,       MVT::v4i64,   1 },
2301     { ISD::CTLZ,       MVT::v8i32,   1 },
2302     { ISD::CTLZ,       MVT::v16i16,  4 },
2303     { ISD::CTLZ,       MVT::v32i8,  10 },
2304     { ISD::CTLZ,       MVT::v2i64,   1 },
2305     { ISD::CTLZ,       MVT::v4i32,   1 },
2306     { ISD::CTLZ,       MVT::v8i16,   4 },
2307     { ISD::CTLZ,       MVT::v16i8,   4 },
2308   };
2309   static const CostTblEntry AVX512BWCostTbl[] = {
2310     { ISD::ABS,        MVT::v32i16,  1 },
2311     { ISD::ABS,        MVT::v64i8,   1 },
2312     { ISD::BITREVERSE, MVT::v8i64,   5 },
2313     { ISD::BITREVERSE, MVT::v16i32,  5 },
2314     { ISD::BITREVERSE, MVT::v32i16,  5 },
2315     { ISD::BITREVERSE, MVT::v64i8,   5 },
2316     { ISD::CTLZ,       MVT::v8i64,  23 },
2317     { ISD::CTLZ,       MVT::v16i32, 22 },
2318     { ISD::CTLZ,       MVT::v32i16, 18 },
2319     { ISD::CTLZ,       MVT::v64i8,  17 },
2320     { ISD::CTPOP,      MVT::v8i64,   7 },
2321     { ISD::CTPOP,      MVT::v16i32, 11 },
2322     { ISD::CTPOP,      MVT::v32i16,  9 },
2323     { ISD::CTPOP,      MVT::v64i8,   6 },
2324     { ISD::CTTZ,       MVT::v8i64,  10 },
2325     { ISD::CTTZ,       MVT::v16i32, 14 },
2326     { ISD::CTTZ,       MVT::v32i16, 12 },
2327     { ISD::CTTZ,       MVT::v64i8,   9 },
2328     { ISD::SADDSAT,    MVT::v32i16,  1 },
2329     { ISD::SADDSAT,    MVT::v64i8,   1 },
2330     { ISD::SMAX,       MVT::v32i16,  1 },
2331     { ISD::SMAX,       MVT::v64i8,   1 },
2332     { ISD::SMIN,       MVT::v32i16,  1 },
2333     { ISD::SMIN,       MVT::v64i8,   1 },
2334     { ISD::SSUBSAT,    MVT::v32i16,  1 },
2335     { ISD::SSUBSAT,    MVT::v64i8,   1 },
2336     { ISD::UADDSAT,    MVT::v32i16,  1 },
2337     { ISD::UADDSAT,    MVT::v64i8,   1 },
2338     { ISD::UMAX,       MVT::v32i16,  1 },
2339     { ISD::UMAX,       MVT::v64i8,   1 },
2340     { ISD::UMIN,       MVT::v32i16,  1 },
2341     { ISD::UMIN,       MVT::v64i8,   1 },
2342     { ISD::USUBSAT,    MVT::v32i16,  1 },
2343     { ISD::USUBSAT,    MVT::v64i8,   1 },
2344   };
2345   static const CostTblEntry AVX512CostTbl[] = {
2346     { ISD::ABS,        MVT::v8i64,   1 },
2347     { ISD::ABS,        MVT::v16i32,  1 },
2348     { ISD::ABS,        MVT::v32i16,  2 }, // FIXME: include split
2349     { ISD::ABS,        MVT::v64i8,   2 }, // FIXME: include split
2350     { ISD::ABS,        MVT::v4i64,   1 },
2351     { ISD::ABS,        MVT::v2i64,   1 },
2352     { ISD::BITREVERSE, MVT::v8i64,  36 },
2353     { ISD::BITREVERSE, MVT::v16i32, 24 },
2354     { ISD::BITREVERSE, MVT::v32i16, 10 },
2355     { ISD::BITREVERSE, MVT::v64i8,  10 },
2356     { ISD::CTLZ,       MVT::v8i64,  29 },
2357     { ISD::CTLZ,       MVT::v16i32, 35 },
2358     { ISD::CTLZ,       MVT::v32i16, 28 },
2359     { ISD::CTLZ,       MVT::v64i8,  18 },
2360     { ISD::CTPOP,      MVT::v8i64,  16 },
2361     { ISD::CTPOP,      MVT::v16i32, 24 },
2362     { ISD::CTPOP,      MVT::v32i16, 18 },
2363     { ISD::CTPOP,      MVT::v64i8,  12 },
2364     { ISD::CTTZ,       MVT::v8i64,  20 },
2365     { ISD::CTTZ,       MVT::v16i32, 28 },
2366     { ISD::CTTZ,       MVT::v32i16, 24 },
2367     { ISD::CTTZ,       MVT::v64i8,  18 },
2368     { ISD::SMAX,       MVT::v8i64,   1 },
2369     { ISD::SMAX,       MVT::v16i32,  1 },
2370     { ISD::SMAX,       MVT::v32i16,  2 }, // FIXME: include split
2371     { ISD::SMAX,       MVT::v64i8,   2 }, // FIXME: include split
2372     { ISD::SMAX,       MVT::v4i64,   1 },
2373     { ISD::SMAX,       MVT::v2i64,   1 },
2374     { ISD::SMIN,       MVT::v8i64,   1 },
2375     { ISD::SMIN,       MVT::v16i32,  1 },
2376     { ISD::SMIN,       MVT::v32i16,  2 }, // FIXME: include split
2377     { ISD::SMIN,       MVT::v64i8,   2 }, // FIXME: include split
2378     { ISD::SMIN,       MVT::v4i64,   1 },
2379     { ISD::SMIN,       MVT::v2i64,   1 },
2380     { ISD::UMAX,       MVT::v8i64,   1 },
2381     { ISD::UMAX,       MVT::v16i32,  1 },
2382     { ISD::UMAX,       MVT::v32i16,  2 }, // FIXME: include split
2383     { ISD::UMAX,       MVT::v64i8,   2 }, // FIXME: include split
2384     { ISD::UMAX,       MVT::v4i64,   1 },
2385     { ISD::UMAX,       MVT::v2i64,   1 },
2386     { ISD::UMIN,       MVT::v8i64,   1 },
2387     { ISD::UMIN,       MVT::v16i32,  1 },
2388     { ISD::UMIN,       MVT::v32i16,  2 }, // FIXME: include split
2389     { ISD::UMIN,       MVT::v64i8,   2 }, // FIXME: include split
2390     { ISD::UMIN,       MVT::v4i64,   1 },
2391     { ISD::UMIN,       MVT::v2i64,   1 },
2392     { ISD::USUBSAT,    MVT::v16i32,  2 }, // pmaxud + psubd
2393     { ISD::USUBSAT,    MVT::v2i64,   2 }, // pmaxuq + psubq
2394     { ISD::USUBSAT,    MVT::v4i64,   2 }, // pmaxuq + psubq
2395     { ISD::USUBSAT,    MVT::v8i64,   2 }, // pmaxuq + psubq
2396     { ISD::UADDSAT,    MVT::v16i32,  3 }, // not + pminud + paddd
2397     { ISD::UADDSAT,    MVT::v2i64,   3 }, // not + pminuq + paddq
2398     { ISD::UADDSAT,    MVT::v4i64,   3 }, // not + pminuq + paddq
2399     { ISD::UADDSAT,    MVT::v8i64,   3 }, // not + pminuq + paddq
2400     { ISD::SADDSAT,    MVT::v32i16,  2 }, // FIXME: include split
2401     { ISD::SADDSAT,    MVT::v64i8,   2 }, // FIXME: include split
2402     { ISD::SSUBSAT,    MVT::v32i16,  2 }, // FIXME: include split
2403     { ISD::SSUBSAT,    MVT::v64i8,   2 }, // FIXME: include split
2404     { ISD::UADDSAT,    MVT::v32i16,  2 }, // FIXME: include split
2405     { ISD::UADDSAT,    MVT::v64i8,   2 }, // FIXME: include split
2406     { ISD::USUBSAT,    MVT::v32i16,  2 }, // FIXME: include split
2407     { ISD::USUBSAT,    MVT::v64i8,   2 }, // FIXME: include split
2408     { ISD::FMAXNUM,    MVT::f32,     2 },
2409     { ISD::FMAXNUM,    MVT::v4f32,   2 },
2410     { ISD::FMAXNUM,    MVT::v8f32,   2 },
2411     { ISD::FMAXNUM,    MVT::v16f32,  2 },
2412     { ISD::FMAXNUM,    MVT::f64,     2 },
2413     { ISD::FMAXNUM,    MVT::v2f64,   2 },
2414     { ISD::FMAXNUM,    MVT::v4f64,   2 },
2415     { ISD::FMAXNUM,    MVT::v8f64,   2 },
2416   };
2417   static const CostTblEntry XOPCostTbl[] = {
2418     { ISD::BITREVERSE, MVT::v4i64,   4 },
2419     { ISD::BITREVERSE, MVT::v8i32,   4 },
2420     { ISD::BITREVERSE, MVT::v16i16,  4 },
2421     { ISD::BITREVERSE, MVT::v32i8,   4 },
2422     { ISD::BITREVERSE, MVT::v2i64,   1 },
2423     { ISD::BITREVERSE, MVT::v4i32,   1 },
2424     { ISD::BITREVERSE, MVT::v8i16,   1 },
2425     { ISD::BITREVERSE, MVT::v16i8,   1 },
2426     { ISD::BITREVERSE, MVT::i64,     3 },
2427     { ISD::BITREVERSE, MVT::i32,     3 },
2428     { ISD::BITREVERSE, MVT::i16,     3 },
2429     { ISD::BITREVERSE, MVT::i8,      3 }
2430   };
2431   static const CostTblEntry AVX2CostTbl[] = {
2432     { ISD::ABS,        MVT::v4i64,   2 }, // VBLENDVPD(X,VPSUBQ(0,X),X)
2433     { ISD::ABS,        MVT::v8i32,   1 },
2434     { ISD::ABS,        MVT::v16i16,  1 },
2435     { ISD::ABS,        MVT::v32i8,   1 },
2436     { ISD::BITREVERSE, MVT::v4i64,   5 },
2437     { ISD::BITREVERSE, MVT::v8i32,   5 },
2438     { ISD::BITREVERSE, MVT::v16i16,  5 },
2439     { ISD::BITREVERSE, MVT::v32i8,   5 },
2440     { ISD::BSWAP,      MVT::v4i64,   1 },
2441     { ISD::BSWAP,      MVT::v8i32,   1 },
2442     { ISD::BSWAP,      MVT::v16i16,  1 },
2443     { ISD::CTLZ,       MVT::v4i64,  23 },
2444     { ISD::CTLZ,       MVT::v8i32,  18 },
2445     { ISD::CTLZ,       MVT::v16i16, 14 },
2446     { ISD::CTLZ,       MVT::v32i8,   9 },
2447     { ISD::CTPOP,      MVT::v4i64,   7 },
2448     { ISD::CTPOP,      MVT::v8i32,  11 },
2449     { ISD::CTPOP,      MVT::v16i16,  9 },
2450     { ISD::CTPOP,      MVT::v32i8,   6 },
2451     { ISD::CTTZ,       MVT::v4i64,  10 },
2452     { ISD::CTTZ,       MVT::v8i32,  14 },
2453     { ISD::CTTZ,       MVT::v16i16, 12 },
2454     { ISD::CTTZ,       MVT::v32i8,   9 },
2455     { ISD::SADDSAT,    MVT::v16i16,  1 },
2456     { ISD::SADDSAT,    MVT::v32i8,   1 },
2457     { ISD::SMAX,       MVT::v8i32,   1 },
2458     { ISD::SMAX,       MVT::v16i16,  1 },
2459     { ISD::SMAX,       MVT::v32i8,   1 },
2460     { ISD::SMIN,       MVT::v8i32,   1 },
2461     { ISD::SMIN,       MVT::v16i16,  1 },
2462     { ISD::SMIN,       MVT::v32i8,   1 },
2463     { ISD::SSUBSAT,    MVT::v16i16,  1 },
2464     { ISD::SSUBSAT,    MVT::v32i8,   1 },
2465     { ISD::UADDSAT,    MVT::v16i16,  1 },
2466     { ISD::UADDSAT,    MVT::v32i8,   1 },
2467     { ISD::UADDSAT,    MVT::v8i32,   3 }, // not + pminud + paddd
2468     { ISD::UMAX,       MVT::v8i32,   1 },
2469     { ISD::UMAX,       MVT::v16i16,  1 },
2470     { ISD::UMAX,       MVT::v32i8,   1 },
2471     { ISD::UMIN,       MVT::v8i32,   1 },
2472     { ISD::UMIN,       MVT::v16i16,  1 },
2473     { ISD::UMIN,       MVT::v32i8,   1 },
2474     { ISD::USUBSAT,    MVT::v16i16,  1 },
2475     { ISD::USUBSAT,    MVT::v32i8,   1 },
2476     { ISD::USUBSAT,    MVT::v8i32,   2 }, // pmaxud + psubd
2477     { ISD::FMAXNUM,    MVT::v8f32,   3 }, // MAXPS + CMPUNORDPS + BLENDVPS
2478     { ISD::FMAXNUM,    MVT::v4f64,   3 }, // MAXPD + CMPUNORDPD + BLENDVPD
2479     { ISD::FSQRT,      MVT::f32,     7 }, // Haswell from http://www.agner.org/
2480     { ISD::FSQRT,      MVT::v4f32,   7 }, // Haswell from http://www.agner.org/
2481     { ISD::FSQRT,      MVT::v8f32,  14 }, // Haswell from http://www.agner.org/
2482     { ISD::FSQRT,      MVT::f64,    14 }, // Haswell from http://www.agner.org/
2483     { ISD::FSQRT,      MVT::v2f64,  14 }, // Haswell from http://www.agner.org/
2484     { ISD::FSQRT,      MVT::v4f64,  28 }, // Haswell from http://www.agner.org/
2485   };
2486   static const CostTblEntry AVX1CostTbl[] = {
2487     { ISD::ABS,        MVT::v4i64,   5 }, // VBLENDVPD(X,VPSUBQ(0,X),X)
2488     { ISD::ABS,        MVT::v8i32,   3 },
2489     { ISD::ABS,        MVT::v16i16,  3 },
2490     { ISD::ABS,        MVT::v32i8,   3 },
2491     { ISD::BITREVERSE, MVT::v4i64,  12 }, // 2 x 128-bit Op + extract/insert
2492     { ISD::BITREVERSE, MVT::v8i32,  12 }, // 2 x 128-bit Op + extract/insert
2493     { ISD::BITREVERSE, MVT::v16i16, 12 }, // 2 x 128-bit Op + extract/insert
2494     { ISD::BITREVERSE, MVT::v32i8,  12 }, // 2 x 128-bit Op + extract/insert
2495     { ISD::BSWAP,      MVT::v4i64,   4 },
2496     { ISD::BSWAP,      MVT::v8i32,   4 },
2497     { ISD::BSWAP,      MVT::v16i16,  4 },
2498     { ISD::CTLZ,       MVT::v4i64,  48 }, // 2 x 128-bit Op + extract/insert
2499     { ISD::CTLZ,       MVT::v8i32,  38 }, // 2 x 128-bit Op + extract/insert
2500     { ISD::CTLZ,       MVT::v16i16, 30 }, // 2 x 128-bit Op + extract/insert
2501     { ISD::CTLZ,       MVT::v32i8,  20 }, // 2 x 128-bit Op + extract/insert
2502     { ISD::CTPOP,      MVT::v4i64,  16 }, // 2 x 128-bit Op + extract/insert
2503     { ISD::CTPOP,      MVT::v8i32,  24 }, // 2 x 128-bit Op + extract/insert
2504     { ISD::CTPOP,      MVT::v16i16, 20 }, // 2 x 128-bit Op + extract/insert
2505     { ISD::CTPOP,      MVT::v32i8,  14 }, // 2 x 128-bit Op + extract/insert
2506     { ISD::CTTZ,       MVT::v4i64,  22 }, // 2 x 128-bit Op + extract/insert
2507     { ISD::CTTZ,       MVT::v8i32,  30 }, // 2 x 128-bit Op + extract/insert
2508     { ISD::CTTZ,       MVT::v16i16, 26 }, // 2 x 128-bit Op + extract/insert
2509     { ISD::CTTZ,       MVT::v32i8,  20 }, // 2 x 128-bit Op + extract/insert
2510     { ISD::SADDSAT,    MVT::v16i16,  4 }, // 2 x 128-bit Op + extract/insert
2511     { ISD::SADDSAT,    MVT::v32i8,   4 }, // 2 x 128-bit Op + extract/insert
2512     { ISD::SMAX,       MVT::v8i32,   4 }, // 2 x 128-bit Op + extract/insert
2513     { ISD::SMAX,       MVT::v16i16,  4 }, // 2 x 128-bit Op + extract/insert
2514     { ISD::SMAX,       MVT::v32i8,   4 }, // 2 x 128-bit Op + extract/insert
2515     { ISD::SMIN,       MVT::v8i32,   4 }, // 2 x 128-bit Op + extract/insert
2516     { ISD::SMIN,       MVT::v16i16,  4 }, // 2 x 128-bit Op + extract/insert
2517     { ISD::SMIN,       MVT::v32i8,   4 }, // 2 x 128-bit Op + extract/insert
2518     { ISD::SSUBSAT,    MVT::v16i16,  4 }, // 2 x 128-bit Op + extract/insert
2519     { ISD::SSUBSAT,    MVT::v32i8,   4 }, // 2 x 128-bit Op + extract/insert
2520     { ISD::UADDSAT,    MVT::v16i16,  4 }, // 2 x 128-bit Op + extract/insert
2521     { ISD::UADDSAT,    MVT::v32i8,   4 }, // 2 x 128-bit Op + extract/insert
2522     { ISD::UADDSAT,    MVT::v8i32,   8 }, // 2 x 128-bit Op + extract/insert
2523     { ISD::UMAX,       MVT::v8i32,   4 }, // 2 x 128-bit Op + extract/insert
2524     { ISD::UMAX,       MVT::v16i16,  4 }, // 2 x 128-bit Op + extract/insert
2525     { ISD::UMAX,       MVT::v32i8,   4 }, // 2 x 128-bit Op + extract/insert
2526     { ISD::UMIN,       MVT::v8i32,   4 }, // 2 x 128-bit Op + extract/insert
2527     { ISD::UMIN,       MVT::v16i16,  4 }, // 2 x 128-bit Op + extract/insert
2528     { ISD::UMIN,       MVT::v32i8,   4 }, // 2 x 128-bit Op + extract/insert
2529     { ISD::USUBSAT,    MVT::v16i16,  4 }, // 2 x 128-bit Op + extract/insert
2530     { ISD::USUBSAT,    MVT::v32i8,   4 }, // 2 x 128-bit Op + extract/insert
2531     { ISD::USUBSAT,    MVT::v8i32,   6 }, // 2 x 128-bit Op + extract/insert
2532     { ISD::FMAXNUM,    MVT::f32,     3 }, // MAXSS + CMPUNORDSS + BLENDVPS
2533     { ISD::FMAXNUM,    MVT::v4f32,   3 }, // MAXPS + CMPUNORDPS + BLENDVPS
2534     { ISD::FMAXNUM,    MVT::v8f32,   5 }, // MAXPS + CMPUNORDPS + BLENDVPS + ?
2535     { ISD::FMAXNUM,    MVT::f64,     3 }, // MAXSD + CMPUNORDSD + BLENDVPD
2536     { ISD::FMAXNUM,    MVT::v2f64,   3 }, // MAXPD + CMPUNORDPD + BLENDVPD
2537     { ISD::FMAXNUM,    MVT::v4f64,   5 }, // MAXPD + CMPUNORDPD + BLENDVPD + ?
2538     { ISD::FSQRT,      MVT::f32,    14 }, // SNB from http://www.agner.org/
2539     { ISD::FSQRT,      MVT::v4f32,  14 }, // SNB from http://www.agner.org/
2540     { ISD::FSQRT,      MVT::v8f32,  28 }, // SNB from http://www.agner.org/
2541     { ISD::FSQRT,      MVT::f64,    21 }, // SNB from http://www.agner.org/
2542     { ISD::FSQRT,      MVT::v2f64,  21 }, // SNB from http://www.agner.org/
2543     { ISD::FSQRT,      MVT::v4f64,  43 }, // SNB from http://www.agner.org/
2544   };
2545   static const CostTblEntry GLMCostTbl[] = {
2546     { ISD::FSQRT, MVT::f32,   19 }, // sqrtss
2547     { ISD::FSQRT, MVT::v4f32, 37 }, // sqrtps
2548     { ISD::FSQRT, MVT::f64,   34 }, // sqrtsd
2549     { ISD::FSQRT, MVT::v2f64, 67 }, // sqrtpd
2550   };
2551   static const CostTblEntry SLMCostTbl[] = {
2552     { ISD::FSQRT, MVT::f32,   20 }, // sqrtss
2553     { ISD::FSQRT, MVT::v4f32, 40 }, // sqrtps
2554     { ISD::FSQRT, MVT::f64,   35 }, // sqrtsd
2555     { ISD::FSQRT, MVT::v2f64, 70 }, // sqrtpd
2556   };
2557   static const CostTblEntry SSE42CostTbl[] = {
2558     { ISD::USUBSAT,    MVT::v4i32,   2 }, // pmaxud + psubd
2559     { ISD::UADDSAT,    MVT::v4i32,   3 }, // not + pminud + paddd
2560     { ISD::FSQRT,      MVT::f32,    18 }, // Nehalem from http://www.agner.org/
2561     { ISD::FSQRT,      MVT::v4f32,  18 }, // Nehalem from http://www.agner.org/
2562   };
2563   static const CostTblEntry SSE41CostTbl[] = {
2564     { ISD::ABS,        MVT::v2i64,   2 }, // BLENDVPD(X,PSUBQ(0,X),X)
2565     { ISD::SMAX,       MVT::v4i32,   1 },
2566     { ISD::SMAX,       MVT::v16i8,   1 },
2567     { ISD::SMIN,       MVT::v4i32,   1 },
2568     { ISD::SMIN,       MVT::v16i8,   1 },
2569     { ISD::UMAX,       MVT::v4i32,   1 },
2570     { ISD::UMAX,       MVT::v8i16,   1 },
2571     { ISD::UMIN,       MVT::v4i32,   1 },
2572     { ISD::UMIN,       MVT::v8i16,   1 },
2573   };
2574   static const CostTblEntry SSSE3CostTbl[] = {
2575     { ISD::ABS,        MVT::v4i32,   1 },
2576     { ISD::ABS,        MVT::v8i16,   1 },
2577     { ISD::ABS,        MVT::v16i8,   1 },
2578     { ISD::BITREVERSE, MVT::v2i64,   5 },
2579     { ISD::BITREVERSE, MVT::v4i32,   5 },
2580     { ISD::BITREVERSE, MVT::v8i16,   5 },
2581     { ISD::BITREVERSE, MVT::v16i8,   5 },
2582     { ISD::BSWAP,      MVT::v2i64,   1 },
2583     { ISD::BSWAP,      MVT::v4i32,   1 },
2584     { ISD::BSWAP,      MVT::v8i16,   1 },
2585     { ISD::CTLZ,       MVT::v2i64,  23 },
2586     { ISD::CTLZ,       MVT::v4i32,  18 },
2587     { ISD::CTLZ,       MVT::v8i16,  14 },
2588     { ISD::CTLZ,       MVT::v16i8,   9 },
2589     { ISD::CTPOP,      MVT::v2i64,   7 },
2590     { ISD::CTPOP,      MVT::v4i32,  11 },
2591     { ISD::CTPOP,      MVT::v8i16,   9 },
2592     { ISD::CTPOP,      MVT::v16i8,   6 },
2593     { ISD::CTTZ,       MVT::v2i64,  10 },
2594     { ISD::CTTZ,       MVT::v4i32,  14 },
2595     { ISD::CTTZ,       MVT::v8i16,  12 },
2596     { ISD::CTTZ,       MVT::v16i8,   9 }
2597   };
2598   static const CostTblEntry SSE2CostTbl[] = {
2599     { ISD::ABS,        MVT::v2i64,   4 },
2600     { ISD::ABS,        MVT::v4i32,   3 },
2601     { ISD::ABS,        MVT::v8i16,   2 },
2602     { ISD::ABS,        MVT::v16i8,   2 },
2603     { ISD::BITREVERSE, MVT::v2i64,  29 },
2604     { ISD::BITREVERSE, MVT::v4i32,  27 },
2605     { ISD::BITREVERSE, MVT::v8i16,  27 },
2606     { ISD::BITREVERSE, MVT::v16i8,  20 },
2607     { ISD::BSWAP,      MVT::v2i64,   7 },
2608     { ISD::BSWAP,      MVT::v4i32,   7 },
2609     { ISD::BSWAP,      MVT::v8i16,   7 },
2610     { ISD::CTLZ,       MVT::v2i64,  25 },
2611     { ISD::CTLZ,       MVT::v4i32,  26 },
2612     { ISD::CTLZ,       MVT::v8i16,  20 },
2613     { ISD::CTLZ,       MVT::v16i8,  17 },
2614     { ISD::CTPOP,      MVT::v2i64,  12 },
2615     { ISD::CTPOP,      MVT::v4i32,  15 },
2616     { ISD::CTPOP,      MVT::v8i16,  13 },
2617     { ISD::CTPOP,      MVT::v16i8,  10 },
2618     { ISD::CTTZ,       MVT::v2i64,  14 },
2619     { ISD::CTTZ,       MVT::v4i32,  18 },
2620     { ISD::CTTZ,       MVT::v8i16,  16 },
2621     { ISD::CTTZ,       MVT::v16i8,  13 },
2622     { ISD::SADDSAT,    MVT::v8i16,   1 },
2623     { ISD::SADDSAT,    MVT::v16i8,   1 },
2624     { ISD::SMAX,       MVT::v8i16,   1 },
2625     { ISD::SMIN,       MVT::v8i16,   1 },
2626     { ISD::SSUBSAT,    MVT::v8i16,   1 },
2627     { ISD::SSUBSAT,    MVT::v16i8,   1 },
2628     { ISD::UADDSAT,    MVT::v8i16,   1 },
2629     { ISD::UADDSAT,    MVT::v16i8,   1 },
2630     { ISD::UMAX,       MVT::v8i16,   2 },
2631     { ISD::UMAX,       MVT::v16i8,   1 },
2632     { ISD::UMIN,       MVT::v8i16,   2 },
2633     { ISD::UMIN,       MVT::v16i8,   1 },
2634     { ISD::USUBSAT,    MVT::v8i16,   1 },
2635     { ISD::USUBSAT,    MVT::v16i8,   1 },
2636     { ISD::FMAXNUM,    MVT::f64,     4 },
2637     { ISD::FMAXNUM,    MVT::v2f64,   4 },
2638     { ISD::FSQRT,      MVT::f64,    32 }, // Nehalem from http://www.agner.org/
2639     { ISD::FSQRT,      MVT::v2f64,  32 }, // Nehalem from http://www.agner.org/
2640   };
2641   static const CostTblEntry SSE1CostTbl[] = {
2642     { ISD::FMAXNUM,    MVT::f32,     4 },
2643     { ISD::FMAXNUM,    MVT::v4f32,   4 },
2644     { ISD::FSQRT,      MVT::f32,    28 }, // Pentium III from http://www.agner.org/
2645     { ISD::FSQRT,      MVT::v4f32,  56 }, // Pentium III from http://www.agner.org/
2646   };
2647   static const CostTblEntry BMI64CostTbl[] = { // 64-bit targets
2648     { ISD::CTTZ,       MVT::i64,     1 },
2649   };
2650   static const CostTblEntry BMI32CostTbl[] = { // 32 or 64-bit targets
2651     { ISD::CTTZ,       MVT::i32,     1 },
2652     { ISD::CTTZ,       MVT::i16,     1 },
2653     { ISD::CTTZ,       MVT::i8,      1 },
2654   };
2655   static const CostTblEntry LZCNT64CostTbl[] = { // 64-bit targets
2656     { ISD::CTLZ,       MVT::i64,     1 },
2657   };
2658   static const CostTblEntry LZCNT32CostTbl[] = { // 32 or 64-bit targets
2659     { ISD::CTLZ,       MVT::i32,     1 },
2660     { ISD::CTLZ,       MVT::i16,     1 },
2661     { ISD::CTLZ,       MVT::i8,      1 },
2662   };
2663   static const CostTblEntry POPCNT64CostTbl[] = { // 64-bit targets
2664     { ISD::CTPOP,      MVT::i64,     1 },
2665   };
2666   static const CostTblEntry POPCNT32CostTbl[] = { // 32 or 64-bit targets
2667     { ISD::CTPOP,      MVT::i32,     1 },
2668     { ISD::CTPOP,      MVT::i16,     1 },
2669     { ISD::CTPOP,      MVT::i8,      1 },
2670   };
2671   static const CostTblEntry X64CostTbl[] = { // 64-bit targets
2672     { ISD::ABS,        MVT::i64,     2 }, // SUB+CMOV
2673     { ISD::BITREVERSE, MVT::i64,    14 },
2674     { ISD::CTLZ,       MVT::i64,     4 }, // BSR+XOR or BSR+XOR+CMOV
2675     { ISD::CTTZ,       MVT::i64,     3 }, // TEST+BSF+CMOV/BRANCH
2676     { ISD::CTPOP,      MVT::i64,    10 },
2677     { ISD::SADDO,      MVT::i64,     1 },
2678     { ISD::UADDO,      MVT::i64,     1 },
2679     { ISD::UMULO,      MVT::i64,     2 }, // mulq + seto
2680   };
2681   static const CostTblEntry X86CostTbl[] = { // 32 or 64-bit targets
2682     { ISD::ABS,        MVT::i32,     2 }, // SUB+CMOV
2683     { ISD::ABS,        MVT::i16,     2 }, // SUB+CMOV
2684     { ISD::BITREVERSE, MVT::i32,    14 },
2685     { ISD::BITREVERSE, MVT::i16,    14 },
2686     { ISD::BITREVERSE, MVT::i8,     11 },
2687     { ISD::CTLZ,       MVT::i32,     4 }, // BSR+XOR or BSR+XOR+CMOV
2688     { ISD::CTLZ,       MVT::i16,     4 }, // BSR+XOR or BSR+XOR+CMOV
2689     { ISD::CTLZ,       MVT::i8,      4 }, // BSR+XOR or BSR+XOR+CMOV
2690     { ISD::CTTZ,       MVT::i32,     3 }, // TEST+BSF+CMOV/BRANCH
2691     { ISD::CTTZ,       MVT::i16,     3 }, // TEST+BSF+CMOV/BRANCH
2692     { ISD::CTTZ,       MVT::i8,      3 }, // TEST+BSF+CMOV/BRANCH
2693     { ISD::CTPOP,      MVT::i32,     8 },
2694     { ISD::CTPOP,      MVT::i16,     9 },
2695     { ISD::CTPOP,      MVT::i8,      7 },
2696     { ISD::SADDO,      MVT::i32,     1 },
2697     { ISD::SADDO,      MVT::i16,     1 },
2698     { ISD::SADDO,      MVT::i8,      1 },
2699     { ISD::UADDO,      MVT::i32,     1 },
2700     { ISD::UADDO,      MVT::i16,     1 },
2701     { ISD::UADDO,      MVT::i8,      1 },
2702     { ISD::UMULO,      MVT::i32,     2 }, // mul + seto
2703     { ISD::UMULO,      MVT::i16,     2 },
2704     { ISD::UMULO,      MVT::i8,      2 },
2705   };
2706 
2707   Type *RetTy = ICA.getReturnType();
2708   Type *OpTy = RetTy;
2709   Intrinsic::ID IID = ICA.getID();
2710   unsigned ISD = ISD::DELETED_NODE;
2711   switch (IID) {
2712   default:
2713     break;
2714   case Intrinsic::abs:
2715     ISD = ISD::ABS;
2716     break;
2717   case Intrinsic::bitreverse:
2718     ISD = ISD::BITREVERSE;
2719     break;
2720   case Intrinsic::bswap:
2721     ISD = ISD::BSWAP;
2722     break;
2723   case Intrinsic::ctlz:
2724     ISD = ISD::CTLZ;
2725     break;
2726   case Intrinsic::ctpop:
2727     ISD = ISD::CTPOP;
2728     break;
2729   case Intrinsic::cttz:
2730     ISD = ISD::CTTZ;
2731     break;
2732   case Intrinsic::maxnum:
2733   case Intrinsic::minnum:
2734     // FMINNUM has same costs so don't duplicate.
2735     ISD = ISD::FMAXNUM;
2736     break;
2737   case Intrinsic::sadd_sat:
2738     ISD = ISD::SADDSAT;
2739     break;
2740   case Intrinsic::smax:
2741     ISD = ISD::SMAX;
2742     break;
2743   case Intrinsic::smin:
2744     ISD = ISD::SMIN;
2745     break;
2746   case Intrinsic::ssub_sat:
2747     ISD = ISD::SSUBSAT;
2748     break;
2749   case Intrinsic::uadd_sat:
2750     ISD = ISD::UADDSAT;
2751     break;
2752   case Intrinsic::umax:
2753     ISD = ISD::UMAX;
2754     break;
2755   case Intrinsic::umin:
2756     ISD = ISD::UMIN;
2757     break;
2758   case Intrinsic::usub_sat:
2759     ISD = ISD::USUBSAT;
2760     break;
2761   case Intrinsic::sqrt:
2762     ISD = ISD::FSQRT;
2763     break;
2764   case Intrinsic::sadd_with_overflow:
2765   case Intrinsic::ssub_with_overflow:
2766     // SSUBO has same costs so don't duplicate.
2767     ISD = ISD::SADDO;
2768     OpTy = RetTy->getContainedType(0);
2769     break;
2770   case Intrinsic::uadd_with_overflow:
2771   case Intrinsic::usub_with_overflow:
2772     // USUBO has same costs so don't duplicate.
2773     ISD = ISD::UADDO;
2774     OpTy = RetTy->getContainedType(0);
2775     break;
2776   case Intrinsic::umul_with_overflow:
2777   case Intrinsic::smul_with_overflow:
2778     // SMULO has same costs so don't duplicate.
2779     ISD = ISD::UMULO;
2780     OpTy = RetTy->getContainedType(0);
2781     break;
2782   }
2783 
2784   if (ISD != ISD::DELETED_NODE) {
2785     // Legalize the type.
2786     std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, OpTy);
2787     MVT MTy = LT.second;
2788 
2789     // Attempt to lookup cost.
2790     if (ISD == ISD::BITREVERSE && ST->hasGFNI() && ST->hasSSSE3() &&
2791         MTy.isVector()) {
2792       // With PSHUFB the code is very similar for all types. If we have integer
2793       // byte operations, we just need a GF2P8AFFINEQB for vXi8. For other types
2794       // we also need a PSHUFB.
2795       unsigned Cost = MTy.getVectorElementType() == MVT::i8 ? 1 : 2;
2796 
2797       // Without byte operations, we need twice as many GF2P8AFFINEQB and PSHUFB
2798       // instructions. We also need an extract and an insert.
2799       if (!(MTy.is128BitVector() || (ST->hasAVX2() && MTy.is256BitVector()) ||
2800             (ST->hasBWI() && MTy.is512BitVector())))
2801         Cost = Cost * 2 + 2;
2802 
2803       return LT.first * Cost;
2804     }
2805 
2806     auto adjustTableCost = [](const CostTblEntry &Entry, int LegalizationCost,
2807                               FastMathFlags FMF) {
2808       // If there are no NANs to deal with, then these are reduced to a
2809       // single MIN** or MAX** instruction instead of the MIN/CMP/SELECT that we
2810       // assume is used in the non-fast case.
2811       if (Entry.ISD == ISD::FMAXNUM || Entry.ISD == ISD::FMINNUM) {
2812         if (FMF.noNaNs())
2813           return LegalizationCost * 1;
2814       }
2815       return LegalizationCost * (int)Entry.Cost;
2816     };
2817 
2818     if (ST->useGLMDivSqrtCosts())
2819       if (const auto *Entry = CostTableLookup(GLMCostTbl, ISD, MTy))
2820         return adjustTableCost(*Entry, LT.first, ICA.getFlags());
2821 
2822     if (ST->isSLM())
2823       if (const auto *Entry = CostTableLookup(SLMCostTbl, ISD, MTy))
2824         return adjustTableCost(*Entry, LT.first, ICA.getFlags());
2825 
2826     if (ST->hasCDI())
2827       if (const auto *Entry = CostTableLookup(AVX512CDCostTbl, ISD, MTy))
2828         return adjustTableCost(*Entry, LT.first, ICA.getFlags());
2829 
2830     if (ST->hasBWI())
2831       if (const auto *Entry = CostTableLookup(AVX512BWCostTbl, ISD, MTy))
2832         return adjustTableCost(*Entry, LT.first, ICA.getFlags());
2833 
2834     if (ST->hasAVX512())
2835       if (const auto *Entry = CostTableLookup(AVX512CostTbl, ISD, MTy))
2836         return adjustTableCost(*Entry, LT.first, ICA.getFlags());
2837 
2838     if (ST->hasXOP())
2839       if (const auto *Entry = CostTableLookup(XOPCostTbl, ISD, MTy))
2840         return adjustTableCost(*Entry, LT.first, ICA.getFlags());
2841 
2842     if (ST->hasAVX2())
2843       if (const auto *Entry = CostTableLookup(AVX2CostTbl, ISD, MTy))
2844         return adjustTableCost(*Entry, LT.first, ICA.getFlags());
2845 
2846     if (ST->hasAVX())
2847       if (const auto *Entry = CostTableLookup(AVX1CostTbl, ISD, MTy))
2848         return adjustTableCost(*Entry, LT.first, ICA.getFlags());
2849 
2850     if (ST->hasSSE42())
2851       if (const auto *Entry = CostTableLookup(SSE42CostTbl, ISD, MTy))
2852         return adjustTableCost(*Entry, LT.first, ICA.getFlags());
2853 
2854     if (ST->hasSSE41())
2855       if (const auto *Entry = CostTableLookup(SSE41CostTbl, ISD, MTy))
2856         return adjustTableCost(*Entry, LT.first, ICA.getFlags());
2857 
2858     if (ST->hasSSSE3())
2859       if (const auto *Entry = CostTableLookup(SSSE3CostTbl, ISD, MTy))
2860         return adjustTableCost(*Entry, LT.first, ICA.getFlags());
2861 
2862     if (ST->hasSSE2())
2863       if (const auto *Entry = CostTableLookup(SSE2CostTbl, ISD, MTy))
2864         return adjustTableCost(*Entry, LT.first, ICA.getFlags());
2865 
2866     if (ST->hasSSE1())
2867       if (const auto *Entry = CostTableLookup(SSE1CostTbl, ISD, MTy))
2868         return adjustTableCost(*Entry, LT.first, ICA.getFlags());
2869 
2870     if (ST->hasBMI()) {
2871       if (ST->is64Bit())
2872         if (const auto *Entry = CostTableLookup(BMI64CostTbl, ISD, MTy))
2873           return adjustTableCost(*Entry, LT.first, ICA.getFlags());
2874 
2875       if (const auto *Entry = CostTableLookup(BMI32CostTbl, ISD, MTy))
2876         return adjustTableCost(*Entry, LT.first, ICA.getFlags());
2877     }
2878 
2879     if (ST->hasLZCNT()) {
2880       if (ST->is64Bit())
2881         if (const auto *Entry = CostTableLookup(LZCNT64CostTbl, ISD, MTy))
2882           return adjustTableCost(*Entry, LT.first, ICA.getFlags());
2883 
2884       if (const auto *Entry = CostTableLookup(LZCNT32CostTbl, ISD, MTy))
2885         return adjustTableCost(*Entry, LT.first, ICA.getFlags());
2886     }
2887 
2888     if (ST->hasPOPCNT()) {
2889       if (ST->is64Bit())
2890         if (const auto *Entry = CostTableLookup(POPCNT64CostTbl, ISD, MTy))
2891           return adjustTableCost(*Entry, LT.first, ICA.getFlags());
2892 
2893       if (const auto *Entry = CostTableLookup(POPCNT32CostTbl, ISD, MTy))
2894         return adjustTableCost(*Entry, LT.first, ICA.getFlags());
2895     }
2896 
2897     // TODO - add BMI (TZCNT) scalar handling
2898 
2899     if (ST->is64Bit())
2900       if (const auto *Entry = CostTableLookup(X64CostTbl, ISD, MTy))
2901         return adjustTableCost(*Entry, LT.first, ICA.getFlags());
2902 
2903     if (const auto *Entry = CostTableLookup(X86CostTbl, ISD, MTy))
2904       return adjustTableCost(*Entry, LT.first, ICA.getFlags());
2905   }
2906 
2907   return BaseT::getIntrinsicInstrCost(ICA, CostKind);
2908 }
2909 
2910 int X86TTIImpl::getIntrinsicInstrCost(const IntrinsicCostAttributes &ICA,
2911                                       TTI::TargetCostKind CostKind) {
2912   if (ICA.isTypeBasedOnly())
2913     return getTypeBasedIntrinsicInstrCost(ICA, CostKind);
2914 
2915   static const CostTblEntry AVX512CostTbl[] = {
2916     { ISD::ROTL,       MVT::v8i64,   1 },
2917     { ISD::ROTL,       MVT::v4i64,   1 },
2918     { ISD::ROTL,       MVT::v2i64,   1 },
2919     { ISD::ROTL,       MVT::v16i32,  1 },
2920     { ISD::ROTL,       MVT::v8i32,   1 },
2921     { ISD::ROTL,       MVT::v4i32,   1 },
2922     { ISD::ROTR,       MVT::v8i64,   1 },
2923     { ISD::ROTR,       MVT::v4i64,   1 },
2924     { ISD::ROTR,       MVT::v2i64,   1 },
2925     { ISD::ROTR,       MVT::v16i32,  1 },
2926     { ISD::ROTR,       MVT::v8i32,   1 },
2927     { ISD::ROTR,       MVT::v4i32,   1 }
2928   };
2929   // XOP: ROTL = VPROT(X,Y), ROTR = VPROT(X,SUB(0,Y))
2930   static const CostTblEntry XOPCostTbl[] = {
2931     { ISD::ROTL,       MVT::v4i64,   4 },
2932     { ISD::ROTL,       MVT::v8i32,   4 },
2933     { ISD::ROTL,       MVT::v16i16,  4 },
2934     { ISD::ROTL,       MVT::v32i8,   4 },
2935     { ISD::ROTL,       MVT::v2i64,   1 },
2936     { ISD::ROTL,       MVT::v4i32,   1 },
2937     { ISD::ROTL,       MVT::v8i16,   1 },
2938     { ISD::ROTL,       MVT::v16i8,   1 },
2939     { ISD::ROTR,       MVT::v4i64,   6 },
2940     { ISD::ROTR,       MVT::v8i32,   6 },
2941     { ISD::ROTR,       MVT::v16i16,  6 },
2942     { ISD::ROTR,       MVT::v32i8,   6 },
2943     { ISD::ROTR,       MVT::v2i64,   2 },
2944     { ISD::ROTR,       MVT::v4i32,   2 },
2945     { ISD::ROTR,       MVT::v8i16,   2 },
2946     { ISD::ROTR,       MVT::v16i8,   2 }
2947   };
2948   static const CostTblEntry X64CostTbl[] = { // 64-bit targets
2949     { ISD::ROTL,       MVT::i64,     1 },
2950     { ISD::ROTR,       MVT::i64,     1 },
2951     { ISD::FSHL,       MVT::i64,     4 }
2952   };
2953   static const CostTblEntry X86CostTbl[] = { // 32 or 64-bit targets
2954     { ISD::ROTL,       MVT::i32,     1 },
2955     { ISD::ROTL,       MVT::i16,     1 },
2956     { ISD::ROTL,       MVT::i8,      1 },
2957     { ISD::ROTR,       MVT::i32,     1 },
2958     { ISD::ROTR,       MVT::i16,     1 },
2959     { ISD::ROTR,       MVT::i8,      1 },
2960     { ISD::FSHL,       MVT::i32,     4 },
2961     { ISD::FSHL,       MVT::i16,     4 },
2962     { ISD::FSHL,       MVT::i8,      4 }
2963   };
2964 
2965   Intrinsic::ID IID = ICA.getID();
2966   Type *RetTy = ICA.getReturnType();
2967   const SmallVectorImpl<const Value *> &Args = ICA.getArgs();
2968   unsigned ISD = ISD::DELETED_NODE;
2969   switch (IID) {
2970   default:
2971     break;
2972   case Intrinsic::fshl:
2973     ISD = ISD::FSHL;
2974     if (Args[0] == Args[1])
2975       ISD = ISD::ROTL;
2976     break;
2977   case Intrinsic::fshr:
2978     // FSHR has same costs so don't duplicate.
2979     ISD = ISD::FSHL;
2980     if (Args[0] == Args[1])
2981       ISD = ISD::ROTR;
2982     break;
2983   }
2984 
2985   if (ISD != ISD::DELETED_NODE) {
2986     // Legalize the type.
2987     std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, RetTy);
2988     MVT MTy = LT.second;
2989 
2990     // Attempt to lookup cost.
2991     if (ST->hasAVX512())
2992       if (const auto *Entry = CostTableLookup(AVX512CostTbl, ISD, MTy))
2993         return LT.first * Entry->Cost;
2994 
2995     if (ST->hasXOP())
2996       if (const auto *Entry = CostTableLookup(XOPCostTbl, ISD, MTy))
2997         return LT.first * Entry->Cost;
2998 
2999     if (ST->is64Bit())
3000       if (const auto *Entry = CostTableLookup(X64CostTbl, ISD, MTy))
3001         return LT.first * Entry->Cost;
3002 
3003     if (const auto *Entry = CostTableLookup(X86CostTbl, ISD, MTy))
3004       return LT.first * Entry->Cost;
3005   }
3006 
3007   return BaseT::getIntrinsicInstrCost(ICA, CostKind);
3008 }
3009 
3010 int X86TTIImpl::getVectorInstrCost(unsigned Opcode, Type *Val, unsigned Index) {
3011   static const CostTblEntry SLMCostTbl[] = {
3012      { ISD::EXTRACT_VECTOR_ELT,       MVT::i8,      4 },
3013      { ISD::EXTRACT_VECTOR_ELT,       MVT::i16,     4 },
3014      { ISD::EXTRACT_VECTOR_ELT,       MVT::i32,     4 },
3015      { ISD::EXTRACT_VECTOR_ELT,       MVT::i64,     7 }
3016    };
3017 
3018   assert(Val->isVectorTy() && "This must be a vector type");
3019   Type *ScalarType = Val->getScalarType();
3020   int RegisterFileMoveCost = 0;
3021 
3022   if (Index != -1U && (Opcode == Instruction::ExtractElement ||
3023                        Opcode == Instruction::InsertElement)) {
3024     // Legalize the type.
3025     std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Val);
3026 
3027     // This type is legalized to a scalar type.
3028     if (!LT.second.isVector())
3029       return 0;
3030 
3031     // The type may be split. Normalize the index to the new type.
3032     unsigned NumElts = LT.second.getVectorNumElements();
3033     unsigned SubNumElts = NumElts;
3034     Index = Index % NumElts;
3035 
3036     // For >128-bit vectors, we need to extract higher 128-bit subvectors.
3037     // For inserts, we also need to insert the subvector back.
3038     if (LT.second.getSizeInBits() > 128) {
3039       assert((LT.second.getSizeInBits() % 128) == 0 && "Illegal vector");
3040       unsigned NumSubVecs = LT.second.getSizeInBits() / 128;
3041       SubNumElts = NumElts / NumSubVecs;
3042       if (SubNumElts <= Index) {
3043         RegisterFileMoveCost += (Opcode == Instruction::InsertElement ? 2 : 1);
3044         Index %= SubNumElts;
3045       }
3046     }
3047 
3048     if (Index == 0) {
3049       // Floating point scalars are already located in index #0.
3050       // Many insertions to #0 can fold away for scalar fp-ops, so let's assume
3051       // true for all.
3052       if (ScalarType->isFloatingPointTy())
3053         return RegisterFileMoveCost;
3054 
3055       // Assume movd/movq XMM -> GPR is relatively cheap on all targets.
3056       if (ScalarType->isIntegerTy() && Opcode == Instruction::ExtractElement)
3057         return 1 + RegisterFileMoveCost;
3058     }
3059 
3060     int ISD = TLI->InstructionOpcodeToISD(Opcode);
3061     assert(ISD && "Unexpected vector opcode");
3062     MVT MScalarTy = LT.second.getScalarType();
3063     if (ST->isSLM())
3064       if (auto *Entry = CostTableLookup(SLMCostTbl, ISD, MScalarTy))
3065         return Entry->Cost + RegisterFileMoveCost;
3066 
3067     // Assume pinsr/pextr XMM <-> GPR is relatively cheap on all targets.
3068     if ((MScalarTy == MVT::i16 && ST->hasSSE2()) ||
3069         (MScalarTy.isInteger() && ST->hasSSE41()))
3070       return 1 + RegisterFileMoveCost;
3071 
3072     // Assume insertps is relatively cheap on all targets.
3073     if (MScalarTy == MVT::f32 && ST->hasSSE41() &&
3074         Opcode == Instruction::InsertElement)
3075       return 1 + RegisterFileMoveCost;
3076 
3077     // For extractions we just need to shuffle the element to index 0, which
3078     // should be very cheap (assume cost = 1). For insertions we need to shuffle
3079     // the elements to its destination. In both cases we must handle the
3080     // subvector move(s).
3081     // If the vector type is already less than 128-bits then don't reduce it.
3082     // TODO: Under what circumstances should we shuffle using the full width?
3083     int ShuffleCost = 1;
3084     if (Opcode == Instruction::InsertElement) {
3085       auto *SubTy = cast<VectorType>(Val);
3086       EVT VT = TLI->getValueType(DL, Val);
3087       if (VT.getScalarType() != MScalarTy || VT.getSizeInBits() >= 128)
3088         SubTy = FixedVectorType::get(ScalarType, SubNumElts);
3089       ShuffleCost =
3090           getShuffleCost(TTI::SK_PermuteTwoSrc, SubTy, None, 0, SubTy);
3091     }
3092     int IntOrFpCost = ScalarType->isFloatingPointTy() ? 0 : 1;
3093     return ShuffleCost + IntOrFpCost + RegisterFileMoveCost;
3094   }
3095 
3096   // Add to the base cost if we know that the extracted element of a vector is
3097   // destined to be moved to and used in the integer register file.
3098   if (Opcode == Instruction::ExtractElement && ScalarType->isPointerTy())
3099     RegisterFileMoveCost += 1;
3100 
3101   return BaseT::getVectorInstrCost(Opcode, Val, Index) + RegisterFileMoveCost;
3102 }
3103 
3104 unsigned X86TTIImpl::getScalarizationOverhead(VectorType *Ty,
3105                                               const APInt &DemandedElts,
3106                                               bool Insert, bool Extract) {
3107   unsigned Cost = 0;
3108 
3109   // For insertions, a ISD::BUILD_VECTOR style vector initialization can be much
3110   // cheaper than an accumulation of ISD::INSERT_VECTOR_ELT.
3111   if (Insert) {
3112     std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Ty);
3113     MVT MScalarTy = LT.second.getScalarType();
3114 
3115     if ((MScalarTy == MVT::i16 && ST->hasSSE2()) ||
3116         (MScalarTy.isInteger() && ST->hasSSE41()) ||
3117         (MScalarTy == MVT::f32 && ST->hasSSE41())) {
3118       // For types we can insert directly, insertion into 128-bit sub vectors is
3119       // cheap, followed by a cheap chain of concatenations.
3120       if (LT.second.getSizeInBits() <= 128) {
3121         Cost +=
3122             BaseT::getScalarizationOverhead(Ty, DemandedElts, Insert, false);
3123       } else {
3124         // In each 128-lane, if at least one index is demanded but not all
3125         // indices are demanded and this 128-lane is not the first 128-lane of
3126         // the legalized-vector, then this 128-lane needs a extracti128; If in
3127         // each 128-lane, there is at least one demanded index, this 128-lane
3128         // needs a inserti128.
3129 
3130         // The following cases will help you build a better understanding:
3131         // Assume we insert several elements into a v8i32 vector in avx2,
3132         // Case#1: inserting into 1th index needs vpinsrd + inserti128.
3133         // Case#2: inserting into 5th index needs extracti128 + vpinsrd +
3134         // inserti128.
3135         // Case#3: inserting into 4,5,6,7 index needs 4*vpinsrd + inserti128.
3136         unsigned Num128Lanes = LT.second.getSizeInBits() / 128 * LT.first;
3137         unsigned NumElts = LT.second.getVectorNumElements() * LT.first;
3138         APInt WidenedDemandedElts = DemandedElts.zextOrSelf(NumElts);
3139         unsigned Scale = NumElts / Num128Lanes;
3140         // We iterate each 128-lane, and check if we need a
3141         // extracti128/inserti128 for this 128-lane.
3142         for (unsigned I = 0; I < NumElts; I += Scale) {
3143           APInt Mask = WidenedDemandedElts.getBitsSet(NumElts, I, I + Scale);
3144           APInt MaskedDE = Mask & WidenedDemandedElts;
3145           unsigned Population = MaskedDE.countPopulation();
3146           Cost += (Population > 0 && Population != Scale &&
3147                    I % LT.second.getVectorNumElements() != 0);
3148           Cost += Population > 0;
3149         }
3150         Cost += DemandedElts.countPopulation();
3151 
3152         // For vXf32 cases, insertion into the 0'th index in each v4f32
3153         // 128-bit vector is free.
3154         // NOTE: This assumes legalization widens vXf32 vectors.
3155         if (MScalarTy == MVT::f32)
3156           for (unsigned i = 0, e = cast<FixedVectorType>(Ty)->getNumElements();
3157                i < e; i += 4)
3158             if (DemandedElts[i])
3159               Cost--;
3160       }
3161     } else if (LT.second.isVector()) {
3162       // Without fast insertion, we need to use MOVD/MOVQ to pass each demanded
3163       // integer element as a SCALAR_TO_VECTOR, then we build the vector as a
3164       // series of UNPCK followed by CONCAT_VECTORS - all of these can be
3165       // considered cheap.
3166       if (Ty->isIntOrIntVectorTy())
3167         Cost += DemandedElts.countPopulation();
3168 
3169       // Get the smaller of the legalized or original pow2-extended number of
3170       // vector elements, which represents the number of unpacks we'll end up
3171       // performing.
3172       unsigned NumElts = LT.second.getVectorNumElements();
3173       unsigned Pow2Elts =
3174           PowerOf2Ceil(cast<FixedVectorType>(Ty)->getNumElements());
3175       Cost += (std::min<unsigned>(NumElts, Pow2Elts) - 1) * LT.first;
3176     }
3177   }
3178 
3179   // TODO: Use default extraction for now, but we should investigate extending this
3180   // to handle repeated subvector extraction.
3181   if (Extract)
3182     Cost += BaseT::getScalarizationOverhead(Ty, DemandedElts, false, Extract);
3183 
3184   return Cost;
3185 }
3186 
3187 int X86TTIImpl::getMemoryOpCost(unsigned Opcode, Type *Src,
3188                                 MaybeAlign Alignment, unsigned AddressSpace,
3189                                 TTI::TargetCostKind CostKind,
3190                                 const Instruction *I) {
3191   // TODO: Handle other cost kinds.
3192   if (CostKind != TTI::TCK_RecipThroughput) {
3193     if (auto *SI = dyn_cast_or_null<StoreInst>(I)) {
3194       // Store instruction with index and scale costs 2 Uops.
3195       // Check the preceding GEP to identify non-const indices.
3196       if (auto *GEP = dyn_cast<GetElementPtrInst>(SI->getPointerOperand())) {
3197         if (!all_of(GEP->indices(), [](Value *V) { return isa<Constant>(V); }))
3198           return TTI::TCC_Basic * 2;
3199       }
3200     }
3201     return TTI::TCC_Basic;
3202   }
3203 
3204   // Handle non-power-of-two vectors such as <3 x float>
3205   if (auto *VTy = dyn_cast<FixedVectorType>(Src)) {
3206     unsigned NumElem = VTy->getNumElements();
3207 
3208     // Handle a few common cases:
3209     // <3 x float>
3210     if (NumElem == 3 && VTy->getScalarSizeInBits() == 32)
3211       // Cost = 64 bit store + extract + 32 bit store.
3212       return 3;
3213 
3214     // <3 x double>
3215     if (NumElem == 3 && VTy->getScalarSizeInBits() == 64)
3216       // Cost = 128 bit store + unpack + 64 bit store.
3217       return 3;
3218 
3219     // Assume that all other non-power-of-two numbers are scalarized.
3220     if (!isPowerOf2_32(NumElem)) {
3221       APInt DemandedElts = APInt::getAllOnesValue(NumElem);
3222       int Cost = BaseT::getMemoryOpCost(Opcode, VTy->getScalarType(), Alignment,
3223                                         AddressSpace, CostKind);
3224       int SplitCost = getScalarizationOverhead(VTy, DemandedElts,
3225                                                Opcode == Instruction::Load,
3226                                                Opcode == Instruction::Store);
3227       return NumElem * Cost + SplitCost;
3228     }
3229   }
3230 
3231   // Type legalization can't handle structs
3232   if (TLI->getValueType(DL, Src,  true) == MVT::Other)
3233     return BaseT::getMemoryOpCost(Opcode, Src, Alignment, AddressSpace,
3234                                   CostKind);
3235 
3236   // Legalize the type.
3237   std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Src);
3238   assert((Opcode == Instruction::Load || Opcode == Instruction::Store) &&
3239          "Invalid Opcode");
3240 
3241   // Each load/store unit costs 1.
3242   int Cost = LT.first * 1;
3243 
3244   // This isn't exactly right. We're using slow unaligned 32-byte accesses as a
3245   // proxy for a double-pumped AVX memory interface such as on Sandybridge.
3246   if (LT.second.getStoreSize() == 32 && ST->isUnalignedMem32Slow())
3247     Cost *= 2;
3248 
3249   return Cost;
3250 }
3251 
3252 int X86TTIImpl::getMaskedMemoryOpCost(unsigned Opcode, Type *SrcTy,
3253                                       Align Alignment, unsigned AddressSpace,
3254                                       TTI::TargetCostKind CostKind) {
3255   bool IsLoad = (Instruction::Load == Opcode);
3256   bool IsStore = (Instruction::Store == Opcode);
3257 
3258   auto *SrcVTy = dyn_cast<FixedVectorType>(SrcTy);
3259   if (!SrcVTy)
3260     // To calculate scalar take the regular cost, without mask
3261     return getMemoryOpCost(Opcode, SrcTy, Alignment, AddressSpace, CostKind);
3262 
3263   unsigned NumElem = SrcVTy->getNumElements();
3264   auto *MaskTy =
3265       FixedVectorType::get(Type::getInt8Ty(SrcVTy->getContext()), NumElem);
3266   if ((IsLoad && !isLegalMaskedLoad(SrcVTy, Alignment)) ||
3267       (IsStore && !isLegalMaskedStore(SrcVTy, Alignment)) ||
3268       !isPowerOf2_32(NumElem)) {
3269     // Scalarization
3270     APInt DemandedElts = APInt::getAllOnesValue(NumElem);
3271     int MaskSplitCost =
3272         getScalarizationOverhead(MaskTy, DemandedElts, false, true);
3273     int ScalarCompareCost = getCmpSelInstrCost(
3274         Instruction::ICmp, Type::getInt8Ty(SrcVTy->getContext()), nullptr,
3275         CmpInst::BAD_ICMP_PREDICATE, CostKind);
3276     int BranchCost = getCFInstrCost(Instruction::Br, CostKind);
3277     int MaskCmpCost = NumElem * (BranchCost + ScalarCompareCost);
3278     int ValueSplitCost =
3279         getScalarizationOverhead(SrcVTy, DemandedElts, IsLoad, IsStore);
3280     int MemopCost =
3281         NumElem * BaseT::getMemoryOpCost(Opcode, SrcVTy->getScalarType(),
3282                                          Alignment, AddressSpace, CostKind);
3283     return MemopCost + ValueSplitCost + MaskSplitCost + MaskCmpCost;
3284   }
3285 
3286   // Legalize the type.
3287   std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, SrcVTy);
3288   auto VT = TLI->getValueType(DL, SrcVTy);
3289   int Cost = 0;
3290   if (VT.isSimple() && LT.second != VT.getSimpleVT() &&
3291       LT.second.getVectorNumElements() == NumElem)
3292     // Promotion requires expand/truncate for data and a shuffle for mask.
3293     Cost += getShuffleCost(TTI::SK_PermuteTwoSrc, SrcVTy, None, 0, nullptr) +
3294             getShuffleCost(TTI::SK_PermuteTwoSrc, MaskTy, None, 0, nullptr);
3295 
3296   else if (LT.second.getVectorNumElements() > NumElem) {
3297     auto *NewMaskTy = FixedVectorType::get(MaskTy->getElementType(),
3298                                            LT.second.getVectorNumElements());
3299     // Expanding requires fill mask with zeroes
3300     Cost += getShuffleCost(TTI::SK_InsertSubvector, NewMaskTy, None, 0, MaskTy);
3301   }
3302 
3303   // Pre-AVX512 - each maskmov load costs 2 + store costs ~8.
3304   if (!ST->hasAVX512())
3305     return Cost + LT.first * (IsLoad ? 2 : 8);
3306 
3307   // AVX-512 masked load/store is cheapper
3308   return Cost + LT.first;
3309 }
3310 
3311 int X86TTIImpl::getAddressComputationCost(Type *Ty, ScalarEvolution *SE,
3312                                           const SCEV *Ptr) {
3313   // Address computations in vectorized code with non-consecutive addresses will
3314   // likely result in more instructions compared to scalar code where the
3315   // computation can more often be merged into the index mode. The resulting
3316   // extra micro-ops can significantly decrease throughput.
3317   const unsigned NumVectorInstToHideOverhead = 10;
3318 
3319   // Cost modeling of Strided Access Computation is hidden by the indexing
3320   // modes of X86 regardless of the stride value. We dont believe that there
3321   // is a difference between constant strided access in gerenal and constant
3322   // strided value which is less than or equal to 64.
3323   // Even in the case of (loop invariant) stride whose value is not known at
3324   // compile time, the address computation will not incur more than one extra
3325   // ADD instruction.
3326   if (Ty->isVectorTy() && SE) {
3327     if (!BaseT::isStridedAccess(Ptr))
3328       return NumVectorInstToHideOverhead;
3329     if (!BaseT::getConstantStrideStep(SE, Ptr))
3330       return 1;
3331   }
3332 
3333   return BaseT::getAddressComputationCost(Ty, SE, Ptr);
3334 }
3335 
3336 int X86TTIImpl::getArithmeticReductionCost(unsigned Opcode, VectorType *ValTy,
3337                                            bool IsPairwise,
3338                                            TTI::TargetCostKind CostKind) {
3339   // Just use the default implementation for pair reductions.
3340   if (IsPairwise)
3341     return BaseT::getArithmeticReductionCost(Opcode, ValTy, IsPairwise, CostKind);
3342 
3343   // We use the Intel Architecture Code Analyzer(IACA) to measure the throughput
3344   // and make it as the cost.
3345 
3346   static const CostTblEntry SLMCostTblNoPairWise[] = {
3347     { ISD::FADD,  MVT::v2f64,   3 },
3348     { ISD::ADD,   MVT::v2i64,   5 },
3349   };
3350 
3351   static const CostTblEntry SSE2CostTblNoPairWise[] = {
3352     { ISD::FADD,  MVT::v2f64,   2 },
3353     { ISD::FADD,  MVT::v4f32,   4 },
3354     { ISD::ADD,   MVT::v2i64,   2 },      // The data reported by the IACA tool is "1.6".
3355     { ISD::ADD,   MVT::v2i32,   2 }, // FIXME: chosen to be less than v4i32
3356     { ISD::ADD,   MVT::v4i32,   3 },      // The data reported by the IACA tool is "3.3".
3357     { ISD::ADD,   MVT::v2i16,   2 },      // The data reported by the IACA tool is "4.3".
3358     { ISD::ADD,   MVT::v4i16,   3 },      // The data reported by the IACA tool is "4.3".
3359     { ISD::ADD,   MVT::v8i16,   4 },      // The data reported by the IACA tool is "4.3".
3360     { ISD::ADD,   MVT::v2i8,    2 },
3361     { ISD::ADD,   MVT::v4i8,    2 },
3362     { ISD::ADD,   MVT::v8i8,    2 },
3363     { ISD::ADD,   MVT::v16i8,   3 },
3364   };
3365 
3366   static const CostTblEntry AVX1CostTblNoPairWise[] = {
3367     { ISD::FADD,  MVT::v4f64,   3 },
3368     { ISD::FADD,  MVT::v4f32,   3 },
3369     { ISD::FADD,  MVT::v8f32,   4 },
3370     { ISD::ADD,   MVT::v2i64,   1 },      // The data reported by the IACA tool is "1.5".
3371     { ISD::ADD,   MVT::v4i64,   3 },
3372     { ISD::ADD,   MVT::v8i32,   5 },
3373     { ISD::ADD,   MVT::v16i16,  5 },
3374     { ISD::ADD,   MVT::v32i8,   4 },
3375   };
3376 
3377   int ISD = TLI->InstructionOpcodeToISD(Opcode);
3378   assert(ISD && "Invalid opcode");
3379 
3380   // Before legalizing the type, give a chance to look up illegal narrow types
3381   // in the table.
3382   // FIXME: Is there a better way to do this?
3383   EVT VT = TLI->getValueType(DL, ValTy);
3384   if (VT.isSimple()) {
3385     MVT MTy = VT.getSimpleVT();
3386     if (ST->isSLM())
3387       if (const auto *Entry = CostTableLookup(SLMCostTblNoPairWise, ISD, MTy))
3388         return Entry->Cost;
3389 
3390     if (ST->hasAVX())
3391       if (const auto *Entry = CostTableLookup(AVX1CostTblNoPairWise, ISD, MTy))
3392         return Entry->Cost;
3393 
3394     if (ST->hasSSE2())
3395       if (const auto *Entry = CostTableLookup(SSE2CostTblNoPairWise, ISD, MTy))
3396         return Entry->Cost;
3397   }
3398 
3399   std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, ValTy);
3400 
3401   MVT MTy = LT.second;
3402 
3403   auto *ValVTy = cast<FixedVectorType>(ValTy);
3404 
3405   unsigned ArithmeticCost = 0;
3406   if (LT.first != 1 && MTy.isVector() &&
3407       MTy.getVectorNumElements() < ValVTy->getNumElements()) {
3408     // Type needs to be split. We need LT.first - 1 arithmetic ops.
3409     auto *SingleOpTy = FixedVectorType::get(ValVTy->getElementType(),
3410                                             MTy.getVectorNumElements());
3411     ArithmeticCost = getArithmeticInstrCost(Opcode, SingleOpTy, CostKind);
3412     ArithmeticCost *= LT.first - 1;
3413   }
3414 
3415   if (ST->isSLM())
3416     if (const auto *Entry = CostTableLookup(SLMCostTblNoPairWise, ISD, MTy))
3417       return ArithmeticCost + Entry->Cost;
3418 
3419   if (ST->hasAVX())
3420     if (const auto *Entry = CostTableLookup(AVX1CostTblNoPairWise, ISD, MTy))
3421       return ArithmeticCost + Entry->Cost;
3422 
3423   if (ST->hasSSE2())
3424     if (const auto *Entry = CostTableLookup(SSE2CostTblNoPairWise, ISD, MTy))
3425       return ArithmeticCost + Entry->Cost;
3426 
3427   // FIXME: These assume a naive kshift+binop lowering, which is probably
3428   // conservative in most cases.
3429   static const CostTblEntry AVX512BoolReduction[] = {
3430     { ISD::AND,  MVT::v2i1,   3 },
3431     { ISD::AND,  MVT::v4i1,   5 },
3432     { ISD::AND,  MVT::v8i1,   7 },
3433     { ISD::AND,  MVT::v16i1,  9 },
3434     { ISD::AND,  MVT::v32i1, 11 },
3435     { ISD::AND,  MVT::v64i1, 13 },
3436     { ISD::OR,   MVT::v2i1,   3 },
3437     { ISD::OR,   MVT::v4i1,   5 },
3438     { ISD::OR,   MVT::v8i1,   7 },
3439     { ISD::OR,   MVT::v16i1,  9 },
3440     { ISD::OR,   MVT::v32i1, 11 },
3441     { ISD::OR,   MVT::v64i1, 13 },
3442   };
3443 
3444   static const CostTblEntry AVX2BoolReduction[] = {
3445     { ISD::AND,  MVT::v16i16,  2 }, // vpmovmskb + cmp
3446     { ISD::AND,  MVT::v32i8,   2 }, // vpmovmskb + cmp
3447     { ISD::OR,   MVT::v16i16,  2 }, // vpmovmskb + cmp
3448     { ISD::OR,   MVT::v32i8,   2 }, // vpmovmskb + cmp
3449   };
3450 
3451   static const CostTblEntry AVX1BoolReduction[] = {
3452     { ISD::AND,  MVT::v4i64,   2 }, // vmovmskpd + cmp
3453     { ISD::AND,  MVT::v8i32,   2 }, // vmovmskps + cmp
3454     { ISD::AND,  MVT::v16i16,  4 }, // vextractf128 + vpand + vpmovmskb + cmp
3455     { ISD::AND,  MVT::v32i8,   4 }, // vextractf128 + vpand + vpmovmskb + cmp
3456     { ISD::OR,   MVT::v4i64,   2 }, // vmovmskpd + cmp
3457     { ISD::OR,   MVT::v8i32,   2 }, // vmovmskps + cmp
3458     { ISD::OR,   MVT::v16i16,  4 }, // vextractf128 + vpor + vpmovmskb + cmp
3459     { ISD::OR,   MVT::v32i8,   4 }, // vextractf128 + vpor + vpmovmskb + cmp
3460   };
3461 
3462   static const CostTblEntry SSE2BoolReduction[] = {
3463     { ISD::AND,  MVT::v2i64,   2 }, // movmskpd + cmp
3464     { ISD::AND,  MVT::v4i32,   2 }, // movmskps + cmp
3465     { ISD::AND,  MVT::v8i16,   2 }, // pmovmskb + cmp
3466     { ISD::AND,  MVT::v16i8,   2 }, // pmovmskb + cmp
3467     { ISD::OR,   MVT::v2i64,   2 }, // movmskpd + cmp
3468     { ISD::OR,   MVT::v4i32,   2 }, // movmskps + cmp
3469     { ISD::OR,   MVT::v8i16,   2 }, // pmovmskb + cmp
3470     { ISD::OR,   MVT::v16i8,   2 }, // pmovmskb + cmp
3471   };
3472 
3473   // Handle bool allof/anyof patterns.
3474   if (ValVTy->getElementType()->isIntegerTy(1)) {
3475     unsigned ArithmeticCost = 0;
3476     if (LT.first != 1 && MTy.isVector() &&
3477         MTy.getVectorNumElements() < ValVTy->getNumElements()) {
3478       // Type needs to be split. We need LT.first - 1 arithmetic ops.
3479       auto *SingleOpTy = FixedVectorType::get(ValVTy->getElementType(),
3480                                               MTy.getVectorNumElements());
3481       ArithmeticCost = getArithmeticInstrCost(Opcode, SingleOpTy, CostKind);
3482       ArithmeticCost *= LT.first - 1;
3483     }
3484 
3485     if (ST->hasAVX512())
3486       if (const auto *Entry = CostTableLookup(AVX512BoolReduction, ISD, MTy))
3487         return ArithmeticCost + Entry->Cost;
3488     if (ST->hasAVX2())
3489       if (const auto *Entry = CostTableLookup(AVX2BoolReduction, ISD, MTy))
3490         return ArithmeticCost + Entry->Cost;
3491     if (ST->hasAVX())
3492       if (const auto *Entry = CostTableLookup(AVX1BoolReduction, ISD, MTy))
3493         return ArithmeticCost + Entry->Cost;
3494     if (ST->hasSSE2())
3495       if (const auto *Entry = CostTableLookup(SSE2BoolReduction, ISD, MTy))
3496         return ArithmeticCost + Entry->Cost;
3497 
3498     return BaseT::getArithmeticReductionCost(Opcode, ValVTy, IsPairwise,
3499                                              CostKind);
3500   }
3501 
3502   unsigned NumVecElts = ValVTy->getNumElements();
3503   unsigned ScalarSize = ValVTy->getScalarSizeInBits();
3504 
3505   // Special case power of 2 reductions where the scalar type isn't changed
3506   // by type legalization.
3507   if (!isPowerOf2_32(NumVecElts) || ScalarSize != MTy.getScalarSizeInBits())
3508     return BaseT::getArithmeticReductionCost(Opcode, ValVTy, IsPairwise,
3509                                              CostKind);
3510 
3511   unsigned ReductionCost = 0;
3512 
3513   auto *Ty = ValVTy;
3514   if (LT.first != 1 && MTy.isVector() &&
3515       MTy.getVectorNumElements() < ValVTy->getNumElements()) {
3516     // Type needs to be split. We need LT.first - 1 arithmetic ops.
3517     Ty = FixedVectorType::get(ValVTy->getElementType(),
3518                               MTy.getVectorNumElements());
3519     ReductionCost = getArithmeticInstrCost(Opcode, Ty, CostKind);
3520     ReductionCost *= LT.first - 1;
3521     NumVecElts = MTy.getVectorNumElements();
3522   }
3523 
3524   // Now handle reduction with the legal type, taking into account size changes
3525   // at each level.
3526   while (NumVecElts > 1) {
3527     // Determine the size of the remaining vector we need to reduce.
3528     unsigned Size = NumVecElts * ScalarSize;
3529     NumVecElts /= 2;
3530     // If we're reducing from 256/512 bits, use an extract_subvector.
3531     if (Size > 128) {
3532       auto *SubTy = FixedVectorType::get(ValVTy->getElementType(), NumVecElts);
3533       ReductionCost +=
3534           getShuffleCost(TTI::SK_ExtractSubvector, Ty, None, NumVecElts, SubTy);
3535       Ty = SubTy;
3536     } else if (Size == 128) {
3537       // Reducing from 128 bits is a permute of v2f64/v2i64.
3538       FixedVectorType *ShufTy;
3539       if (ValVTy->isFloatingPointTy())
3540         ShufTy =
3541             FixedVectorType::get(Type::getDoubleTy(ValVTy->getContext()), 2);
3542       else
3543         ShufTy =
3544             FixedVectorType::get(Type::getInt64Ty(ValVTy->getContext()), 2);
3545       ReductionCost +=
3546           getShuffleCost(TTI::SK_PermuteSingleSrc, ShufTy, None, 0, nullptr);
3547     } else if (Size == 64) {
3548       // Reducing from 64 bits is a shuffle of v4f32/v4i32.
3549       FixedVectorType *ShufTy;
3550       if (ValVTy->isFloatingPointTy())
3551         ShufTy =
3552             FixedVectorType::get(Type::getFloatTy(ValVTy->getContext()), 4);
3553       else
3554         ShufTy =
3555             FixedVectorType::get(Type::getInt32Ty(ValVTy->getContext()), 4);
3556       ReductionCost +=
3557           getShuffleCost(TTI::SK_PermuteSingleSrc, ShufTy, None, 0, nullptr);
3558     } else {
3559       // Reducing from smaller size is a shift by immediate.
3560       auto *ShiftTy = FixedVectorType::get(
3561           Type::getIntNTy(ValVTy->getContext(), Size), 128 / Size);
3562       ReductionCost += getArithmeticInstrCost(
3563           Instruction::LShr, ShiftTy, CostKind,
3564           TargetTransformInfo::OK_AnyValue,
3565           TargetTransformInfo::OK_UniformConstantValue,
3566           TargetTransformInfo::OP_None, TargetTransformInfo::OP_None);
3567     }
3568 
3569     // Add the arithmetic op for this level.
3570     ReductionCost += getArithmeticInstrCost(Opcode, Ty, CostKind);
3571   }
3572 
3573   // Add the final extract element to the cost.
3574   return ReductionCost + getVectorInstrCost(Instruction::ExtractElement, Ty, 0);
3575 }
3576 
3577 int X86TTIImpl::getMinMaxCost(Type *Ty, Type *CondTy, bool IsUnsigned) {
3578   std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Ty);
3579 
3580   MVT MTy = LT.second;
3581 
3582   int ISD;
3583   if (Ty->isIntOrIntVectorTy()) {
3584     ISD = IsUnsigned ? ISD::UMIN : ISD::SMIN;
3585   } else {
3586     assert(Ty->isFPOrFPVectorTy() &&
3587            "Expected float point or integer vector type.");
3588     ISD = ISD::FMINNUM;
3589   }
3590 
3591   static const CostTblEntry SSE1CostTbl[] = {
3592     {ISD::FMINNUM, MVT::v4f32, 1},
3593   };
3594 
3595   static const CostTblEntry SSE2CostTbl[] = {
3596     {ISD::FMINNUM, MVT::v2f64, 1},
3597     {ISD::SMIN,    MVT::v8i16, 1},
3598     {ISD::UMIN,    MVT::v16i8, 1},
3599   };
3600 
3601   static const CostTblEntry SSE41CostTbl[] = {
3602     {ISD::SMIN,    MVT::v4i32, 1},
3603     {ISD::UMIN,    MVT::v4i32, 1},
3604     {ISD::UMIN,    MVT::v8i16, 1},
3605     {ISD::SMIN,    MVT::v16i8, 1},
3606   };
3607 
3608   static const CostTblEntry SSE42CostTbl[] = {
3609     {ISD::UMIN,    MVT::v2i64, 3}, // xor+pcmpgtq+blendvpd
3610   };
3611 
3612   static const CostTblEntry AVX1CostTbl[] = {
3613     {ISD::FMINNUM, MVT::v8f32,  1},
3614     {ISD::FMINNUM, MVT::v4f64,  1},
3615     {ISD::SMIN,    MVT::v8i32,  3},
3616     {ISD::UMIN,    MVT::v8i32,  3},
3617     {ISD::SMIN,    MVT::v16i16, 3},
3618     {ISD::UMIN,    MVT::v16i16, 3},
3619     {ISD::SMIN,    MVT::v32i8,  3},
3620     {ISD::UMIN,    MVT::v32i8,  3},
3621   };
3622 
3623   static const CostTblEntry AVX2CostTbl[] = {
3624     {ISD::SMIN,    MVT::v8i32,  1},
3625     {ISD::UMIN,    MVT::v8i32,  1},
3626     {ISD::SMIN,    MVT::v16i16, 1},
3627     {ISD::UMIN,    MVT::v16i16, 1},
3628     {ISD::SMIN,    MVT::v32i8,  1},
3629     {ISD::UMIN,    MVT::v32i8,  1},
3630   };
3631 
3632   static const CostTblEntry AVX512CostTbl[] = {
3633     {ISD::FMINNUM, MVT::v16f32, 1},
3634     {ISD::FMINNUM, MVT::v8f64,  1},
3635     {ISD::SMIN,    MVT::v2i64,  1},
3636     {ISD::UMIN,    MVT::v2i64,  1},
3637     {ISD::SMIN,    MVT::v4i64,  1},
3638     {ISD::UMIN,    MVT::v4i64,  1},
3639     {ISD::SMIN,    MVT::v8i64,  1},
3640     {ISD::UMIN,    MVT::v8i64,  1},
3641     {ISD::SMIN,    MVT::v16i32, 1},
3642     {ISD::UMIN,    MVT::v16i32, 1},
3643   };
3644 
3645   static const CostTblEntry AVX512BWCostTbl[] = {
3646     {ISD::SMIN,    MVT::v32i16, 1},
3647     {ISD::UMIN,    MVT::v32i16, 1},
3648     {ISD::SMIN,    MVT::v64i8,  1},
3649     {ISD::UMIN,    MVT::v64i8,  1},
3650   };
3651 
3652   // If we have a native MIN/MAX instruction for this type, use it.
3653   if (ST->hasBWI())
3654     if (const auto *Entry = CostTableLookup(AVX512BWCostTbl, ISD, MTy))
3655       return LT.first * Entry->Cost;
3656 
3657   if (ST->hasAVX512())
3658     if (const auto *Entry = CostTableLookup(AVX512CostTbl, ISD, MTy))
3659       return LT.first * Entry->Cost;
3660 
3661   if (ST->hasAVX2())
3662     if (const auto *Entry = CostTableLookup(AVX2CostTbl, ISD, MTy))
3663       return LT.first * Entry->Cost;
3664 
3665   if (ST->hasAVX())
3666     if (const auto *Entry = CostTableLookup(AVX1CostTbl, ISD, MTy))
3667       return LT.first * Entry->Cost;
3668 
3669   if (ST->hasSSE42())
3670     if (const auto *Entry = CostTableLookup(SSE42CostTbl, ISD, MTy))
3671       return LT.first * Entry->Cost;
3672 
3673   if (ST->hasSSE41())
3674     if (const auto *Entry = CostTableLookup(SSE41CostTbl, ISD, MTy))
3675       return LT.first * Entry->Cost;
3676 
3677   if (ST->hasSSE2())
3678     if (const auto *Entry = CostTableLookup(SSE2CostTbl, ISD, MTy))
3679       return LT.first * Entry->Cost;
3680 
3681   if (ST->hasSSE1())
3682     if (const auto *Entry = CostTableLookup(SSE1CostTbl, ISD, MTy))
3683       return LT.first * Entry->Cost;
3684 
3685   unsigned CmpOpcode;
3686   if (Ty->isFPOrFPVectorTy()) {
3687     CmpOpcode = Instruction::FCmp;
3688   } else {
3689     assert(Ty->isIntOrIntVectorTy() &&
3690            "expecting floating point or integer type for min/max reduction");
3691     CmpOpcode = Instruction::ICmp;
3692   }
3693 
3694   TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
3695   // Otherwise fall back to cmp+select.
3696   return getCmpSelInstrCost(CmpOpcode, Ty, CondTy, CmpInst::BAD_ICMP_PREDICATE,
3697                             CostKind) +
3698          getCmpSelInstrCost(Instruction::Select, Ty, CondTy,
3699                             CmpInst::BAD_ICMP_PREDICATE, CostKind);
3700 }
3701 
3702 int X86TTIImpl::getMinMaxReductionCost(VectorType *ValTy, VectorType *CondTy,
3703                                        bool IsPairwise, bool IsUnsigned,
3704                                        TTI::TargetCostKind CostKind) {
3705   // Just use the default implementation for pair reductions.
3706   if (IsPairwise)
3707     return BaseT::getMinMaxReductionCost(ValTy, CondTy, IsPairwise, IsUnsigned,
3708                                          CostKind);
3709 
3710   std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, ValTy);
3711 
3712   MVT MTy = LT.second;
3713 
3714   int ISD;
3715   if (ValTy->isIntOrIntVectorTy()) {
3716     ISD = IsUnsigned ? ISD::UMIN : ISD::SMIN;
3717   } else {
3718     assert(ValTy->isFPOrFPVectorTy() &&
3719            "Expected float point or integer vector type.");
3720     ISD = ISD::FMINNUM;
3721   }
3722 
3723   // We use the Intel Architecture Code Analyzer(IACA) to measure the throughput
3724   // and make it as the cost.
3725 
3726   static const CostTblEntry SSE2CostTblNoPairWise[] = {
3727       {ISD::UMIN, MVT::v2i16, 5}, // need pxors to use pminsw/pmaxsw
3728       {ISD::UMIN, MVT::v4i16, 7}, // need pxors to use pminsw/pmaxsw
3729       {ISD::UMIN, MVT::v8i16, 9}, // need pxors to use pminsw/pmaxsw
3730   };
3731 
3732   static const CostTblEntry SSE41CostTblNoPairWise[] = {
3733       {ISD::SMIN, MVT::v2i16, 3}, // same as sse2
3734       {ISD::SMIN, MVT::v4i16, 5}, // same as sse2
3735       {ISD::UMIN, MVT::v2i16, 5}, // same as sse2
3736       {ISD::UMIN, MVT::v4i16, 7}, // same as sse2
3737       {ISD::SMIN, MVT::v8i16, 4}, // phminposuw+xor
3738       {ISD::UMIN, MVT::v8i16, 4}, // FIXME: umin is cheaper than umax
3739       {ISD::SMIN, MVT::v2i8,  3}, // pminsb
3740       {ISD::SMIN, MVT::v4i8,  5}, // pminsb
3741       {ISD::SMIN, MVT::v8i8,  7}, // pminsb
3742       {ISD::SMIN, MVT::v16i8, 6},
3743       {ISD::UMIN, MVT::v2i8,  3}, // same as sse2
3744       {ISD::UMIN, MVT::v4i8,  5}, // same as sse2
3745       {ISD::UMIN, MVT::v8i8,  7}, // same as sse2
3746       {ISD::UMIN, MVT::v16i8, 6}, // FIXME: umin is cheaper than umax
3747   };
3748 
3749   static const CostTblEntry AVX1CostTblNoPairWise[] = {
3750       {ISD::SMIN, MVT::v16i16, 6},
3751       {ISD::UMIN, MVT::v16i16, 6}, // FIXME: umin is cheaper than umax
3752       {ISD::SMIN, MVT::v32i8, 8},
3753       {ISD::UMIN, MVT::v32i8, 8},
3754   };
3755 
3756   static const CostTblEntry AVX512BWCostTblNoPairWise[] = {
3757       {ISD::SMIN, MVT::v32i16, 8},
3758       {ISD::UMIN, MVT::v32i16, 8}, // FIXME: umin is cheaper than umax
3759       {ISD::SMIN, MVT::v64i8, 10},
3760       {ISD::UMIN, MVT::v64i8, 10},
3761   };
3762 
3763   // Before legalizing the type, give a chance to look up illegal narrow types
3764   // in the table.
3765   // FIXME: Is there a better way to do this?
3766   EVT VT = TLI->getValueType(DL, ValTy);
3767   if (VT.isSimple()) {
3768     MVT MTy = VT.getSimpleVT();
3769     if (ST->hasBWI())
3770       if (const auto *Entry = CostTableLookup(AVX512BWCostTblNoPairWise, ISD, MTy))
3771         return Entry->Cost;
3772 
3773     if (ST->hasAVX())
3774       if (const auto *Entry = CostTableLookup(AVX1CostTblNoPairWise, ISD, MTy))
3775         return Entry->Cost;
3776 
3777     if (ST->hasSSE41())
3778       if (const auto *Entry = CostTableLookup(SSE41CostTblNoPairWise, ISD, MTy))
3779         return Entry->Cost;
3780 
3781     if (ST->hasSSE2())
3782       if (const auto *Entry = CostTableLookup(SSE2CostTblNoPairWise, ISD, MTy))
3783         return Entry->Cost;
3784   }
3785 
3786   auto *ValVTy = cast<FixedVectorType>(ValTy);
3787   unsigned NumVecElts = ValVTy->getNumElements();
3788 
3789   auto *Ty = ValVTy;
3790   unsigned MinMaxCost = 0;
3791   if (LT.first != 1 && MTy.isVector() &&
3792       MTy.getVectorNumElements() < ValVTy->getNumElements()) {
3793     // Type needs to be split. We need LT.first - 1 operations ops.
3794     Ty = FixedVectorType::get(ValVTy->getElementType(),
3795                               MTy.getVectorNumElements());
3796     auto *SubCondTy = FixedVectorType::get(CondTy->getElementType(),
3797                                            MTy.getVectorNumElements());
3798     MinMaxCost = getMinMaxCost(Ty, SubCondTy, IsUnsigned);
3799     MinMaxCost *= LT.first - 1;
3800     NumVecElts = MTy.getVectorNumElements();
3801   }
3802 
3803   if (ST->hasBWI())
3804     if (const auto *Entry = CostTableLookup(AVX512BWCostTblNoPairWise, ISD, MTy))
3805       return MinMaxCost + Entry->Cost;
3806 
3807   if (ST->hasAVX())
3808     if (const auto *Entry = CostTableLookup(AVX1CostTblNoPairWise, ISD, MTy))
3809       return MinMaxCost + Entry->Cost;
3810 
3811   if (ST->hasSSE41())
3812     if (const auto *Entry = CostTableLookup(SSE41CostTblNoPairWise, ISD, MTy))
3813       return MinMaxCost + Entry->Cost;
3814 
3815   if (ST->hasSSE2())
3816     if (const auto *Entry = CostTableLookup(SSE2CostTblNoPairWise, ISD, MTy))
3817       return MinMaxCost + Entry->Cost;
3818 
3819   unsigned ScalarSize = ValTy->getScalarSizeInBits();
3820 
3821   // Special case power of 2 reductions where the scalar type isn't changed
3822   // by type legalization.
3823   if (!isPowerOf2_32(ValVTy->getNumElements()) ||
3824       ScalarSize != MTy.getScalarSizeInBits())
3825     return BaseT::getMinMaxReductionCost(ValTy, CondTy, IsPairwise, IsUnsigned,
3826                                          CostKind);
3827 
3828   // Now handle reduction with the legal type, taking into account size changes
3829   // at each level.
3830   while (NumVecElts > 1) {
3831     // Determine the size of the remaining vector we need to reduce.
3832     unsigned Size = NumVecElts * ScalarSize;
3833     NumVecElts /= 2;
3834     // If we're reducing from 256/512 bits, use an extract_subvector.
3835     if (Size > 128) {
3836       auto *SubTy = FixedVectorType::get(ValVTy->getElementType(), NumVecElts);
3837       MinMaxCost +=
3838           getShuffleCost(TTI::SK_ExtractSubvector, Ty, None, NumVecElts, SubTy);
3839       Ty = SubTy;
3840     } else if (Size == 128) {
3841       // Reducing from 128 bits is a permute of v2f64/v2i64.
3842       VectorType *ShufTy;
3843       if (ValTy->isFloatingPointTy())
3844         ShufTy =
3845             FixedVectorType::get(Type::getDoubleTy(ValTy->getContext()), 2);
3846       else
3847         ShufTy = FixedVectorType::get(Type::getInt64Ty(ValTy->getContext()), 2);
3848       MinMaxCost +=
3849           getShuffleCost(TTI::SK_PermuteSingleSrc, ShufTy, None, 0, nullptr);
3850     } else if (Size == 64) {
3851       // Reducing from 64 bits is a shuffle of v4f32/v4i32.
3852       FixedVectorType *ShufTy;
3853       if (ValTy->isFloatingPointTy())
3854         ShufTy = FixedVectorType::get(Type::getFloatTy(ValTy->getContext()), 4);
3855       else
3856         ShufTy = FixedVectorType::get(Type::getInt32Ty(ValTy->getContext()), 4);
3857       MinMaxCost +=
3858           getShuffleCost(TTI::SK_PermuteSingleSrc, ShufTy, None, 0, nullptr);
3859     } else {
3860       // Reducing from smaller size is a shift by immediate.
3861       auto *ShiftTy = FixedVectorType::get(
3862           Type::getIntNTy(ValTy->getContext(), Size), 128 / Size);
3863       MinMaxCost += getArithmeticInstrCost(
3864           Instruction::LShr, ShiftTy, TTI::TCK_RecipThroughput,
3865           TargetTransformInfo::OK_AnyValue,
3866           TargetTransformInfo::OK_UniformConstantValue,
3867           TargetTransformInfo::OP_None, TargetTransformInfo::OP_None);
3868     }
3869 
3870     // Add the arithmetic op for this level.
3871     auto *SubCondTy =
3872         FixedVectorType::get(CondTy->getElementType(), Ty->getNumElements());
3873     MinMaxCost += getMinMaxCost(Ty, SubCondTy, IsUnsigned);
3874   }
3875 
3876   // Add the final extract element to the cost.
3877   return MinMaxCost + getVectorInstrCost(Instruction::ExtractElement, Ty, 0);
3878 }
3879 
3880 /// Calculate the cost of materializing a 64-bit value. This helper
3881 /// method might only calculate a fraction of a larger immediate. Therefore it
3882 /// is valid to return a cost of ZERO.
3883 int X86TTIImpl::getIntImmCost(int64_t Val) {
3884   if (Val == 0)
3885     return TTI::TCC_Free;
3886 
3887   if (isInt<32>(Val))
3888     return TTI::TCC_Basic;
3889 
3890   return 2 * TTI::TCC_Basic;
3891 }
3892 
3893 int X86TTIImpl::getIntImmCost(const APInt &Imm, Type *Ty,
3894                               TTI::TargetCostKind CostKind) {
3895   assert(Ty->isIntegerTy());
3896 
3897   unsigned BitSize = Ty->getPrimitiveSizeInBits();
3898   if (BitSize == 0)
3899     return ~0U;
3900 
3901   // Never hoist constants larger than 128bit, because this might lead to
3902   // incorrect code generation or assertions in codegen.
3903   // Fixme: Create a cost model for types larger than i128 once the codegen
3904   // issues have been fixed.
3905   if (BitSize > 128)
3906     return TTI::TCC_Free;
3907 
3908   if (Imm == 0)
3909     return TTI::TCC_Free;
3910 
3911   // Sign-extend all constants to a multiple of 64-bit.
3912   APInt ImmVal = Imm;
3913   if (BitSize % 64 != 0)
3914     ImmVal = Imm.sext(alignTo(BitSize, 64));
3915 
3916   // Split the constant into 64-bit chunks and calculate the cost for each
3917   // chunk.
3918   int Cost = 0;
3919   for (unsigned ShiftVal = 0; ShiftVal < BitSize; ShiftVal += 64) {
3920     APInt Tmp = ImmVal.ashr(ShiftVal).sextOrTrunc(64);
3921     int64_t Val = Tmp.getSExtValue();
3922     Cost += getIntImmCost(Val);
3923   }
3924   // We need at least one instruction to materialize the constant.
3925   return std::max(1, Cost);
3926 }
3927 
3928 int X86TTIImpl::getIntImmCostInst(unsigned Opcode, unsigned Idx,
3929                                   const APInt &Imm, Type *Ty,
3930                                   TTI::TargetCostKind CostKind,
3931                                   Instruction *Inst) {
3932   assert(Ty->isIntegerTy());
3933 
3934   unsigned BitSize = Ty->getPrimitiveSizeInBits();
3935   // There is no cost model for constants with a bit size of 0. Return TCC_Free
3936   // here, so that constant hoisting will ignore this constant.
3937   if (BitSize == 0)
3938     return TTI::TCC_Free;
3939 
3940   unsigned ImmIdx = ~0U;
3941   switch (Opcode) {
3942   default:
3943     return TTI::TCC_Free;
3944   case Instruction::GetElementPtr:
3945     // Always hoist the base address of a GetElementPtr. This prevents the
3946     // creation of new constants for every base constant that gets constant
3947     // folded with the offset.
3948     if (Idx == 0)
3949       return 2 * TTI::TCC_Basic;
3950     return TTI::TCC_Free;
3951   case Instruction::Store:
3952     ImmIdx = 0;
3953     break;
3954   case Instruction::ICmp:
3955     // This is an imperfect hack to prevent constant hoisting of
3956     // compares that might be trying to check if a 64-bit value fits in
3957     // 32-bits. The backend can optimize these cases using a right shift by 32.
3958     // Ideally we would check the compare predicate here. There also other
3959     // similar immediates the backend can use shifts for.
3960     if (Idx == 1 && Imm.getBitWidth() == 64) {
3961       uint64_t ImmVal = Imm.getZExtValue();
3962       if (ImmVal == 0x100000000ULL || ImmVal == 0xffffffff)
3963         return TTI::TCC_Free;
3964     }
3965     ImmIdx = 1;
3966     break;
3967   case Instruction::And:
3968     // We support 64-bit ANDs with immediates with 32-bits of leading zeroes
3969     // by using a 32-bit operation with implicit zero extension. Detect such
3970     // immediates here as the normal path expects bit 31 to be sign extended.
3971     if (Idx == 1 && Imm.getBitWidth() == 64 && isUInt<32>(Imm.getZExtValue()))
3972       return TTI::TCC_Free;
3973     ImmIdx = 1;
3974     break;
3975   case Instruction::Add:
3976   case Instruction::Sub:
3977     // For add/sub, we can use the opposite instruction for INT32_MIN.
3978     if (Idx == 1 && Imm.getBitWidth() == 64 && Imm.getZExtValue() == 0x80000000)
3979       return TTI::TCC_Free;
3980     ImmIdx = 1;
3981     break;
3982   case Instruction::UDiv:
3983   case Instruction::SDiv:
3984   case Instruction::URem:
3985   case Instruction::SRem:
3986     // Division by constant is typically expanded later into a different
3987     // instruction sequence. This completely changes the constants.
3988     // Report them as "free" to stop ConstantHoist from marking them as opaque.
3989     return TTI::TCC_Free;
3990   case Instruction::Mul:
3991   case Instruction::Or:
3992   case Instruction::Xor:
3993     ImmIdx = 1;
3994     break;
3995   // Always return TCC_Free for the shift value of a shift instruction.
3996   case Instruction::Shl:
3997   case Instruction::LShr:
3998   case Instruction::AShr:
3999     if (Idx == 1)
4000       return TTI::TCC_Free;
4001     break;
4002   case Instruction::Trunc:
4003   case Instruction::ZExt:
4004   case Instruction::SExt:
4005   case Instruction::IntToPtr:
4006   case Instruction::PtrToInt:
4007   case Instruction::BitCast:
4008   case Instruction::PHI:
4009   case Instruction::Call:
4010   case Instruction::Select:
4011   case Instruction::Ret:
4012   case Instruction::Load:
4013     break;
4014   }
4015 
4016   if (Idx == ImmIdx) {
4017     int NumConstants = divideCeil(BitSize, 64);
4018     int Cost = X86TTIImpl::getIntImmCost(Imm, Ty, CostKind);
4019     return (Cost <= NumConstants * TTI::TCC_Basic)
4020                ? static_cast<int>(TTI::TCC_Free)
4021                : Cost;
4022   }
4023 
4024   return X86TTIImpl::getIntImmCost(Imm, Ty, CostKind);
4025 }
4026 
4027 int X86TTIImpl::getIntImmCostIntrin(Intrinsic::ID IID, unsigned Idx,
4028                                     const APInt &Imm, Type *Ty,
4029                                     TTI::TargetCostKind CostKind) {
4030   assert(Ty->isIntegerTy());
4031 
4032   unsigned BitSize = Ty->getPrimitiveSizeInBits();
4033   // There is no cost model for constants with a bit size of 0. Return TCC_Free
4034   // here, so that constant hoisting will ignore this constant.
4035   if (BitSize == 0)
4036     return TTI::TCC_Free;
4037 
4038   switch (IID) {
4039   default:
4040     return TTI::TCC_Free;
4041   case Intrinsic::sadd_with_overflow:
4042   case Intrinsic::uadd_with_overflow:
4043   case Intrinsic::ssub_with_overflow:
4044   case Intrinsic::usub_with_overflow:
4045   case Intrinsic::smul_with_overflow:
4046   case Intrinsic::umul_with_overflow:
4047     if ((Idx == 1) && Imm.getBitWidth() <= 64 && isInt<32>(Imm.getSExtValue()))
4048       return TTI::TCC_Free;
4049     break;
4050   case Intrinsic::experimental_stackmap:
4051     if ((Idx < 2) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue())))
4052       return TTI::TCC_Free;
4053     break;
4054   case Intrinsic::experimental_patchpoint_void:
4055   case Intrinsic::experimental_patchpoint_i64:
4056     if ((Idx < 4) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue())))
4057       return TTI::TCC_Free;
4058     break;
4059   }
4060   return X86TTIImpl::getIntImmCost(Imm, Ty, CostKind);
4061 }
4062 
4063 unsigned
4064 X86TTIImpl::getCFInstrCost(unsigned Opcode, TTI::TargetCostKind CostKind) {
4065   if (CostKind != TTI::TCK_RecipThroughput)
4066     return Opcode == Instruction::PHI ? 0 : 1;
4067   // Branches are assumed to be predicted.
4068   return CostKind == TTI::TCK_RecipThroughput ? 0 : 1;
4069 }
4070 
4071 int X86TTIImpl::getGatherOverhead() const {
4072   // Some CPUs have more overhead for gather. The specified overhead is relative
4073   // to the Load operation. "2" is the number provided by Intel architects. This
4074   // parameter is used for cost estimation of Gather Op and comparison with
4075   // other alternatives.
4076   // TODO: Remove the explicit hasAVX512()?, That would mean we would only
4077   // enable gather with a -march.
4078   if (ST->hasAVX512() || (ST->hasAVX2() && ST->hasFastGather()))
4079     return 2;
4080 
4081   return 1024;
4082 }
4083 
4084 int X86TTIImpl::getScatterOverhead() const {
4085   if (ST->hasAVX512())
4086     return 2;
4087 
4088   return 1024;
4089 }
4090 
4091 // Return an average cost of Gather / Scatter instruction, maybe improved later.
4092 // FIXME: Add TargetCostKind support.
4093 int X86TTIImpl::getGSVectorCost(unsigned Opcode, Type *SrcVTy, const Value *Ptr,
4094                                 Align Alignment, unsigned AddressSpace) {
4095 
4096   assert(isa<VectorType>(SrcVTy) && "Unexpected type in getGSVectorCost");
4097   unsigned VF = cast<FixedVectorType>(SrcVTy)->getNumElements();
4098 
4099   // Try to reduce index size from 64 bit (default for GEP)
4100   // to 32. It is essential for VF 16. If the index can't be reduced to 32, the
4101   // operation will use 16 x 64 indices which do not fit in a zmm and needs
4102   // to split. Also check that the base pointer is the same for all lanes,
4103   // and that there's at most one variable index.
4104   auto getIndexSizeInBits = [](const Value *Ptr, const DataLayout &DL) {
4105     unsigned IndexSize = DL.getPointerSizeInBits();
4106     const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr);
4107     if (IndexSize < 64 || !GEP)
4108       return IndexSize;
4109 
4110     unsigned NumOfVarIndices = 0;
4111     const Value *Ptrs = GEP->getPointerOperand();
4112     if (Ptrs->getType()->isVectorTy() && !getSplatValue(Ptrs))
4113       return IndexSize;
4114     for (unsigned i = 1; i < GEP->getNumOperands(); ++i) {
4115       if (isa<Constant>(GEP->getOperand(i)))
4116         continue;
4117       Type *IndxTy = GEP->getOperand(i)->getType();
4118       if (auto *IndexVTy = dyn_cast<VectorType>(IndxTy))
4119         IndxTy = IndexVTy->getElementType();
4120       if ((IndxTy->getPrimitiveSizeInBits() == 64 &&
4121           !isa<SExtInst>(GEP->getOperand(i))) ||
4122          ++NumOfVarIndices > 1)
4123         return IndexSize; // 64
4124     }
4125     return (unsigned)32;
4126   };
4127 
4128   // Trying to reduce IndexSize to 32 bits for vector 16.
4129   // By default the IndexSize is equal to pointer size.
4130   unsigned IndexSize = (ST->hasAVX512() && VF >= 16)
4131                            ? getIndexSizeInBits(Ptr, DL)
4132                            : DL.getPointerSizeInBits();
4133 
4134   auto *IndexVTy = FixedVectorType::get(
4135       IntegerType::get(SrcVTy->getContext(), IndexSize), VF);
4136   std::pair<int, MVT> IdxsLT = TLI->getTypeLegalizationCost(DL, IndexVTy);
4137   std::pair<int, MVT> SrcLT = TLI->getTypeLegalizationCost(DL, SrcVTy);
4138   int SplitFactor = std::max(IdxsLT.first, SrcLT.first);
4139   if (SplitFactor > 1) {
4140     // Handle splitting of vector of pointers
4141     auto *SplitSrcTy =
4142         FixedVectorType::get(SrcVTy->getScalarType(), VF / SplitFactor);
4143     return SplitFactor * getGSVectorCost(Opcode, SplitSrcTy, Ptr, Alignment,
4144                                          AddressSpace);
4145   }
4146 
4147   // The gather / scatter cost is given by Intel architects. It is a rough
4148   // number since we are looking at one instruction in a time.
4149   const int GSOverhead = (Opcode == Instruction::Load)
4150                              ? getGatherOverhead()
4151                              : getScatterOverhead();
4152   return GSOverhead + VF * getMemoryOpCost(Opcode, SrcVTy->getScalarType(),
4153                                            MaybeAlign(Alignment), AddressSpace,
4154                                            TTI::TCK_RecipThroughput);
4155 }
4156 
4157 /// Return the cost of full scalarization of gather / scatter operation.
4158 ///
4159 /// Opcode - Load or Store instruction.
4160 /// SrcVTy - The type of the data vector that should be gathered or scattered.
4161 /// VariableMask - The mask is non-constant at compile time.
4162 /// Alignment - Alignment for one element.
4163 /// AddressSpace - pointer[s] address space.
4164 ///
4165 /// FIXME: Add TargetCostKind support.
4166 int X86TTIImpl::getGSScalarCost(unsigned Opcode, Type *SrcVTy,
4167                                 bool VariableMask, Align Alignment,
4168                                 unsigned AddressSpace) {
4169   unsigned VF = cast<FixedVectorType>(SrcVTy)->getNumElements();
4170   APInt DemandedElts = APInt::getAllOnesValue(VF);
4171   TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
4172 
4173   int MaskUnpackCost = 0;
4174   if (VariableMask) {
4175     auto *MaskTy =
4176         FixedVectorType::get(Type::getInt1Ty(SrcVTy->getContext()), VF);
4177     MaskUnpackCost =
4178         getScalarizationOverhead(MaskTy, DemandedElts, false, true);
4179     int ScalarCompareCost = getCmpSelInstrCost(
4180         Instruction::ICmp, Type::getInt1Ty(SrcVTy->getContext()), nullptr,
4181         CmpInst::BAD_ICMP_PREDICATE, CostKind);
4182     int BranchCost = getCFInstrCost(Instruction::Br, CostKind);
4183     MaskUnpackCost += VF * (BranchCost + ScalarCompareCost);
4184   }
4185 
4186   // The cost of the scalar loads/stores.
4187   int MemoryOpCost = VF * getMemoryOpCost(Opcode, SrcVTy->getScalarType(),
4188                                           MaybeAlign(Alignment), AddressSpace,
4189                                           CostKind);
4190 
4191   int InsertExtractCost = 0;
4192   if (Opcode == Instruction::Load)
4193     for (unsigned i = 0; i < VF; ++i)
4194       // Add the cost of inserting each scalar load into the vector
4195       InsertExtractCost +=
4196         getVectorInstrCost(Instruction::InsertElement, SrcVTy, i);
4197   else
4198     for (unsigned i = 0; i < VF; ++i)
4199       // Add the cost of extracting each element out of the data vector
4200       InsertExtractCost +=
4201         getVectorInstrCost(Instruction::ExtractElement, SrcVTy, i);
4202 
4203   return MemoryOpCost + MaskUnpackCost + InsertExtractCost;
4204 }
4205 
4206 /// Calculate the cost of Gather / Scatter operation
4207 int X86TTIImpl::getGatherScatterOpCost(unsigned Opcode, Type *SrcVTy,
4208                                        const Value *Ptr, bool VariableMask,
4209                                        Align Alignment,
4210                                        TTI::TargetCostKind CostKind,
4211                                        const Instruction *I = nullptr) {
4212   if (CostKind != TTI::TCK_RecipThroughput) {
4213     if ((Opcode == Instruction::Load &&
4214          isLegalMaskedGather(SrcVTy, Align(Alignment))) ||
4215         (Opcode == Instruction::Store &&
4216          isLegalMaskedScatter(SrcVTy, Align(Alignment))))
4217       return 1;
4218     return BaseT::getGatherScatterOpCost(Opcode, SrcVTy, Ptr, VariableMask,
4219                                          Alignment, CostKind, I);
4220   }
4221 
4222   assert(SrcVTy->isVectorTy() && "Unexpected data type for Gather/Scatter");
4223   unsigned VF = cast<FixedVectorType>(SrcVTy)->getNumElements();
4224   PointerType *PtrTy = dyn_cast<PointerType>(Ptr->getType());
4225   if (!PtrTy && Ptr->getType()->isVectorTy())
4226     PtrTy = dyn_cast<PointerType>(
4227         cast<VectorType>(Ptr->getType())->getElementType());
4228   assert(PtrTy && "Unexpected type for Ptr argument");
4229   unsigned AddressSpace = PtrTy->getAddressSpace();
4230 
4231   bool Scalarize = false;
4232   if ((Opcode == Instruction::Load &&
4233        !isLegalMaskedGather(SrcVTy, Align(Alignment))) ||
4234       (Opcode == Instruction::Store &&
4235        !isLegalMaskedScatter(SrcVTy, Align(Alignment))))
4236     Scalarize = true;
4237   // Gather / Scatter for vector 2 is not profitable on KNL / SKX
4238   // Vector-4 of gather/scatter instruction does not exist on KNL.
4239   // We can extend it to 8 elements, but zeroing upper bits of
4240   // the mask vector will add more instructions. Right now we give the scalar
4241   // cost of vector-4 for KNL. TODO: Check, maybe the gather/scatter instruction
4242   // is better in the VariableMask case.
4243   if (ST->hasAVX512() && (VF == 2 || (VF == 4 && !ST->hasVLX())))
4244     Scalarize = true;
4245 
4246   if (Scalarize)
4247     return getGSScalarCost(Opcode, SrcVTy, VariableMask, Alignment,
4248                            AddressSpace);
4249 
4250   return getGSVectorCost(Opcode, SrcVTy, Ptr, Alignment, AddressSpace);
4251 }
4252 
4253 bool X86TTIImpl::isLSRCostLess(TargetTransformInfo::LSRCost &C1,
4254                                TargetTransformInfo::LSRCost &C2) {
4255     // X86 specific here are "instruction number 1st priority".
4256     return std::tie(C1.Insns, C1.NumRegs, C1.AddRecCost,
4257                     C1.NumIVMuls, C1.NumBaseAdds,
4258                     C1.ScaleCost, C1.ImmCost, C1.SetupCost) <
4259            std::tie(C2.Insns, C2.NumRegs, C2.AddRecCost,
4260                     C2.NumIVMuls, C2.NumBaseAdds,
4261                     C2.ScaleCost, C2.ImmCost, C2.SetupCost);
4262 }
4263 
4264 bool X86TTIImpl::canMacroFuseCmp() {
4265   return ST->hasMacroFusion() || ST->hasBranchFusion();
4266 }
4267 
4268 bool X86TTIImpl::isLegalMaskedLoad(Type *DataTy, Align Alignment) {
4269   if (!ST->hasAVX())
4270     return false;
4271 
4272   // The backend can't handle a single element vector.
4273   if (isa<VectorType>(DataTy) &&
4274       cast<FixedVectorType>(DataTy)->getNumElements() == 1)
4275     return false;
4276   Type *ScalarTy = DataTy->getScalarType();
4277 
4278   if (ScalarTy->isPointerTy())
4279     return true;
4280 
4281   if (ScalarTy->isFloatTy() || ScalarTy->isDoubleTy())
4282     return true;
4283 
4284   if (!ScalarTy->isIntegerTy())
4285     return false;
4286 
4287   unsigned IntWidth = ScalarTy->getIntegerBitWidth();
4288   return IntWidth == 32 || IntWidth == 64 ||
4289          ((IntWidth == 8 || IntWidth == 16) && ST->hasBWI());
4290 }
4291 
4292 bool X86TTIImpl::isLegalMaskedStore(Type *DataType, Align Alignment) {
4293   return isLegalMaskedLoad(DataType, Alignment);
4294 }
4295 
4296 bool X86TTIImpl::isLegalNTLoad(Type *DataType, Align Alignment) {
4297   unsigned DataSize = DL.getTypeStoreSize(DataType);
4298   // The only supported nontemporal loads are for aligned vectors of 16 or 32
4299   // bytes.  Note that 32-byte nontemporal vector loads are supported by AVX2
4300   // (the equivalent stores only require AVX).
4301   if (Alignment >= DataSize && (DataSize == 16 || DataSize == 32))
4302     return DataSize == 16 ?  ST->hasSSE1() : ST->hasAVX2();
4303 
4304   return false;
4305 }
4306 
4307 bool X86TTIImpl::isLegalNTStore(Type *DataType, Align Alignment) {
4308   unsigned DataSize = DL.getTypeStoreSize(DataType);
4309 
4310   // SSE4A supports nontemporal stores of float and double at arbitrary
4311   // alignment.
4312   if (ST->hasSSE4A() && (DataType->isFloatTy() || DataType->isDoubleTy()))
4313     return true;
4314 
4315   // Besides the SSE4A subtarget exception above, only aligned stores are
4316   // available nontemporaly on any other subtarget.  And only stores with a size
4317   // of 4..32 bytes (powers of 2, only) are permitted.
4318   if (Alignment < DataSize || DataSize < 4 || DataSize > 32 ||
4319       !isPowerOf2_32(DataSize))
4320     return false;
4321 
4322   // 32-byte vector nontemporal stores are supported by AVX (the equivalent
4323   // loads require AVX2).
4324   if (DataSize == 32)
4325     return ST->hasAVX();
4326   else if (DataSize == 16)
4327     return ST->hasSSE1();
4328   return true;
4329 }
4330 
4331 bool X86TTIImpl::isLegalMaskedExpandLoad(Type *DataTy) {
4332   if (!isa<VectorType>(DataTy))
4333     return false;
4334 
4335   if (!ST->hasAVX512())
4336     return false;
4337 
4338   // The backend can't handle a single element vector.
4339   if (cast<FixedVectorType>(DataTy)->getNumElements() == 1)
4340     return false;
4341 
4342   Type *ScalarTy = cast<VectorType>(DataTy)->getElementType();
4343 
4344   if (ScalarTy->isFloatTy() || ScalarTy->isDoubleTy())
4345     return true;
4346 
4347   if (!ScalarTy->isIntegerTy())
4348     return false;
4349 
4350   unsigned IntWidth = ScalarTy->getIntegerBitWidth();
4351   return IntWidth == 32 || IntWidth == 64 ||
4352          ((IntWidth == 8 || IntWidth == 16) && ST->hasVBMI2());
4353 }
4354 
4355 bool X86TTIImpl::isLegalMaskedCompressStore(Type *DataTy) {
4356   return isLegalMaskedExpandLoad(DataTy);
4357 }
4358 
4359 bool X86TTIImpl::isLegalMaskedGather(Type *DataTy, Align Alignment) {
4360   // Some CPUs have better gather performance than others.
4361   // TODO: Remove the explicit ST->hasAVX512()?, That would mean we would only
4362   // enable gather with a -march.
4363   if (!(ST->hasAVX512() || (ST->hasFastGather() && ST->hasAVX2())))
4364     return false;
4365 
4366   // This function is called now in two cases: from the Loop Vectorizer
4367   // and from the Scalarizer.
4368   // When the Loop Vectorizer asks about legality of the feature,
4369   // the vectorization factor is not calculated yet. The Loop Vectorizer
4370   // sends a scalar type and the decision is based on the width of the
4371   // scalar element.
4372   // Later on, the cost model will estimate usage this intrinsic based on
4373   // the vector type.
4374   // The Scalarizer asks again about legality. It sends a vector type.
4375   // In this case we can reject non-power-of-2 vectors.
4376   // We also reject single element vectors as the type legalizer can't
4377   // scalarize it.
4378   if (auto *DataVTy = dyn_cast<FixedVectorType>(DataTy)) {
4379     unsigned NumElts = DataVTy->getNumElements();
4380     if (NumElts == 1)
4381       return false;
4382   }
4383   Type *ScalarTy = DataTy->getScalarType();
4384   if (ScalarTy->isPointerTy())
4385     return true;
4386 
4387   if (ScalarTy->isFloatTy() || ScalarTy->isDoubleTy())
4388     return true;
4389 
4390   if (!ScalarTy->isIntegerTy())
4391     return false;
4392 
4393   unsigned IntWidth = ScalarTy->getIntegerBitWidth();
4394   return IntWidth == 32 || IntWidth == 64;
4395 }
4396 
4397 bool X86TTIImpl::isLegalMaskedScatter(Type *DataType, Align Alignment) {
4398   // AVX2 doesn't support scatter
4399   if (!ST->hasAVX512())
4400     return false;
4401   return isLegalMaskedGather(DataType, Alignment);
4402 }
4403 
4404 bool X86TTIImpl::hasDivRemOp(Type *DataType, bool IsSigned) {
4405   EVT VT = TLI->getValueType(DL, DataType);
4406   return TLI->isOperationLegal(IsSigned ? ISD::SDIVREM : ISD::UDIVREM, VT);
4407 }
4408 
4409 bool X86TTIImpl::isFCmpOrdCheaperThanFCmpZero(Type *Ty) {
4410   return false;
4411 }
4412 
4413 bool X86TTIImpl::areInlineCompatible(const Function *Caller,
4414                                      const Function *Callee) const {
4415   const TargetMachine &TM = getTLI()->getTargetMachine();
4416 
4417   // Work this as a subsetting of subtarget features.
4418   const FeatureBitset &CallerBits =
4419       TM.getSubtargetImpl(*Caller)->getFeatureBits();
4420   const FeatureBitset &CalleeBits =
4421       TM.getSubtargetImpl(*Callee)->getFeatureBits();
4422 
4423   FeatureBitset RealCallerBits = CallerBits & ~InlineFeatureIgnoreList;
4424   FeatureBitset RealCalleeBits = CalleeBits & ~InlineFeatureIgnoreList;
4425   return (RealCallerBits & RealCalleeBits) == RealCalleeBits;
4426 }
4427 
4428 bool X86TTIImpl::areFunctionArgsABICompatible(
4429     const Function *Caller, const Function *Callee,
4430     SmallPtrSetImpl<Argument *> &Args) const {
4431   if (!BaseT::areFunctionArgsABICompatible(Caller, Callee, Args))
4432     return false;
4433 
4434   // If we get here, we know the target features match. If one function
4435   // considers 512-bit vectors legal and the other does not, consider them
4436   // incompatible.
4437   const TargetMachine &TM = getTLI()->getTargetMachine();
4438 
4439   if (TM.getSubtarget<X86Subtarget>(*Caller).useAVX512Regs() ==
4440       TM.getSubtarget<X86Subtarget>(*Callee).useAVX512Regs())
4441     return true;
4442 
4443   // Consider the arguments compatible if they aren't vectors or aggregates.
4444   // FIXME: Look at the size of vectors.
4445   // FIXME: Look at the element types of aggregates to see if there are vectors.
4446   // FIXME: The API of this function seems intended to allow arguments
4447   // to be removed from the set, but the caller doesn't check if the set
4448   // becomes empty so that may not work in practice.
4449   return llvm::none_of(Args, [](Argument *A) {
4450     auto *EltTy = cast<PointerType>(A->getType())->getElementType();
4451     return EltTy->isVectorTy() || EltTy->isAggregateType();
4452   });
4453 }
4454 
4455 X86TTIImpl::TTI::MemCmpExpansionOptions
4456 X86TTIImpl::enableMemCmpExpansion(bool OptSize, bool IsZeroCmp) const {
4457   TTI::MemCmpExpansionOptions Options;
4458   Options.MaxNumLoads = TLI->getMaxExpandSizeMemcmp(OptSize);
4459   Options.NumLoadsPerBlock = 2;
4460   // All GPR and vector loads can be unaligned.
4461   Options.AllowOverlappingLoads = true;
4462   if (IsZeroCmp) {
4463     // Only enable vector loads for equality comparison. Right now the vector
4464     // version is not as fast for three way compare (see #33329).
4465     const unsigned PreferredWidth = ST->getPreferVectorWidth();
4466     if (PreferredWidth >= 512 && ST->hasAVX512()) Options.LoadSizes.push_back(64);
4467     if (PreferredWidth >= 256 && ST->hasAVX()) Options.LoadSizes.push_back(32);
4468     if (PreferredWidth >= 128 && ST->hasSSE2()) Options.LoadSizes.push_back(16);
4469   }
4470   if (ST->is64Bit()) {
4471     Options.LoadSizes.push_back(8);
4472   }
4473   Options.LoadSizes.push_back(4);
4474   Options.LoadSizes.push_back(2);
4475   Options.LoadSizes.push_back(1);
4476   return Options;
4477 }
4478 
4479 bool X86TTIImpl::enableInterleavedAccessVectorization() {
4480   // TODO: We expect this to be beneficial regardless of arch,
4481   // but there are currently some unexplained performance artifacts on Atom.
4482   // As a temporary solution, disable on Atom.
4483   return !(ST->isAtom());
4484 }
4485 
4486 // Get estimation for interleaved load/store operations for AVX2.
4487 // \p Factor is the interleaved-access factor (stride) - number of
4488 // (interleaved) elements in the group.
4489 // \p Indices contains the indices for a strided load: when the
4490 // interleaved load has gaps they indicate which elements are used.
4491 // If Indices is empty (or if the number of indices is equal to the size
4492 // of the interleaved-access as given in \p Factor) the access has no gaps.
4493 //
4494 // As opposed to AVX-512, AVX2 does not have generic shuffles that allow
4495 // computing the cost using a generic formula as a function of generic
4496 // shuffles. We therefore use a lookup table instead, filled according to
4497 // the instruction sequences that codegen currently generates.
4498 int X86TTIImpl::getInterleavedMemoryOpCostAVX2(
4499     unsigned Opcode, FixedVectorType *VecTy, unsigned Factor,
4500     ArrayRef<unsigned> Indices, Align Alignment, unsigned AddressSpace,
4501     TTI::TargetCostKind CostKind, bool UseMaskForCond, bool UseMaskForGaps) {
4502 
4503   if (UseMaskForCond || UseMaskForGaps)
4504     return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices,
4505                                              Alignment, AddressSpace, CostKind,
4506                                              UseMaskForCond, UseMaskForGaps);
4507 
4508   // We currently Support only fully-interleaved groups, with no gaps.
4509   // TODO: Support also strided loads (interleaved-groups with gaps).
4510   if (Indices.size() && Indices.size() != Factor)
4511     return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices,
4512                                              Alignment, AddressSpace,
4513                                              CostKind);
4514 
4515   // VecTy for interleave memop is <VF*Factor x Elt>.
4516   // So, for VF=4, Interleave Factor = 3, Element type = i32 we have
4517   // VecTy = <12 x i32>.
4518   MVT LegalVT = getTLI()->getTypeLegalizationCost(DL, VecTy).second;
4519 
4520   // This function can be called with VecTy=<6xi128>, Factor=3, in which case
4521   // the VF=2, while v2i128 is an unsupported MVT vector type
4522   // (see MachineValueType.h::getVectorVT()).
4523   if (!LegalVT.isVector())
4524     return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices,
4525                                              Alignment, AddressSpace,
4526                                              CostKind);
4527 
4528   unsigned VF = VecTy->getNumElements() / Factor;
4529   Type *ScalarTy = VecTy->getElementType();
4530 
4531   // Calculate the number of memory operations (NumOfMemOps), required
4532   // for load/store the VecTy.
4533   unsigned VecTySize = DL.getTypeStoreSize(VecTy);
4534   unsigned LegalVTSize = LegalVT.getStoreSize();
4535   unsigned NumOfMemOps = (VecTySize + LegalVTSize - 1) / LegalVTSize;
4536 
4537   // Get the cost of one memory operation.
4538   auto *SingleMemOpTy = FixedVectorType::get(VecTy->getElementType(),
4539                                              LegalVT.getVectorNumElements());
4540   unsigned MemOpCost = getMemoryOpCost(Opcode, SingleMemOpTy,
4541                                        MaybeAlign(Alignment), AddressSpace,
4542                                        CostKind);
4543 
4544   auto *VT = FixedVectorType::get(ScalarTy, VF);
4545   EVT ETy = TLI->getValueType(DL, VT);
4546   if (!ETy.isSimple())
4547     return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices,
4548                                              Alignment, AddressSpace,
4549                                              CostKind);
4550 
4551   // TODO: Complete for other data-types and strides.
4552   // Each combination of Stride, ElementTy and VF results in a different
4553   // sequence; The cost tables are therefore accessed with:
4554   // Factor (stride) and VectorType=VFxElemType.
4555   // The Cost accounts only for the shuffle sequence;
4556   // The cost of the loads/stores is accounted for separately.
4557   //
4558   static const CostTblEntry AVX2InterleavedLoadTbl[] = {
4559     { 2, MVT::v4i64, 6 }, //(load 8i64 and) deinterleave into 2 x 4i64
4560     { 2, MVT::v4f64, 6 }, //(load 8f64 and) deinterleave into 2 x 4f64
4561 
4562     { 3, MVT::v2i8,  10 }, //(load 6i8 and)  deinterleave into 3 x 2i8
4563     { 3, MVT::v4i8,  4 },  //(load 12i8 and) deinterleave into 3 x 4i8
4564     { 3, MVT::v8i8,  9 },  //(load 24i8 and) deinterleave into 3 x 8i8
4565     { 3, MVT::v16i8, 11},  //(load 48i8 and) deinterleave into 3 x 16i8
4566     { 3, MVT::v32i8, 13},  //(load 96i8 and) deinterleave into 3 x 32i8
4567     { 3, MVT::v8f32, 17 }, //(load 24f32 and)deinterleave into 3 x 8f32
4568 
4569     { 4, MVT::v2i8,  12 }, //(load 8i8 and)   deinterleave into 4 x 2i8
4570     { 4, MVT::v4i8,  4 },  //(load 16i8 and)  deinterleave into 4 x 4i8
4571     { 4, MVT::v8i8,  20 }, //(load 32i8 and)  deinterleave into 4 x 8i8
4572     { 4, MVT::v16i8, 39 }, //(load 64i8 and)  deinterleave into 4 x 16i8
4573     { 4, MVT::v32i8, 80 }, //(load 128i8 and) deinterleave into 4 x 32i8
4574 
4575     { 8, MVT::v8f32, 40 }  //(load 64f32 and)deinterleave into 8 x 8f32
4576   };
4577 
4578   static const CostTblEntry AVX2InterleavedStoreTbl[] = {
4579     { 2, MVT::v4i64, 6 }, //interleave into 2 x 4i64 into 8i64 (and store)
4580     { 2, MVT::v4f64, 6 }, //interleave into 2 x 4f64 into 8f64 (and store)
4581 
4582     { 3, MVT::v2i8,  7 },  //interleave 3 x 2i8  into 6i8 (and store)
4583     { 3, MVT::v4i8,  8 },  //interleave 3 x 4i8  into 12i8 (and store)
4584     { 3, MVT::v8i8,  11 }, //interleave 3 x 8i8  into 24i8 (and store)
4585     { 3, MVT::v16i8, 11 }, //interleave 3 x 16i8 into 48i8 (and store)
4586     { 3, MVT::v32i8, 13 }, //interleave 3 x 32i8 into 96i8 (and store)
4587 
4588     { 4, MVT::v2i8,  12 }, //interleave 4 x 2i8  into 8i8 (and store)
4589     { 4, MVT::v4i8,  9 },  //interleave 4 x 4i8  into 16i8 (and store)
4590     { 4, MVT::v8i8,  10 }, //interleave 4 x 8i8  into 32i8 (and store)
4591     { 4, MVT::v16i8, 10 }, //interleave 4 x 16i8 into 64i8 (and store)
4592     { 4, MVT::v32i8, 12 }  //interleave 4 x 32i8 into 128i8 (and store)
4593   };
4594 
4595   if (Opcode == Instruction::Load) {
4596     if (const auto *Entry =
4597             CostTableLookup(AVX2InterleavedLoadTbl, Factor, ETy.getSimpleVT()))
4598       return NumOfMemOps * MemOpCost + Entry->Cost;
4599   } else {
4600     assert(Opcode == Instruction::Store &&
4601            "Expected Store Instruction at this  point");
4602     if (const auto *Entry =
4603             CostTableLookup(AVX2InterleavedStoreTbl, Factor, ETy.getSimpleVT()))
4604       return NumOfMemOps * MemOpCost + Entry->Cost;
4605   }
4606 
4607   return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices,
4608                                            Alignment, AddressSpace, CostKind);
4609 }
4610 
4611 // Get estimation for interleaved load/store operations and strided load.
4612 // \p Indices contains indices for strided load.
4613 // \p Factor - the factor of interleaving.
4614 // AVX-512 provides 3-src shuffles that significantly reduces the cost.
4615 int X86TTIImpl::getInterleavedMemoryOpCostAVX512(
4616     unsigned Opcode, FixedVectorType *VecTy, unsigned Factor,
4617     ArrayRef<unsigned> Indices, Align Alignment, unsigned AddressSpace,
4618     TTI::TargetCostKind CostKind, bool UseMaskForCond, bool UseMaskForGaps) {
4619 
4620   if (UseMaskForCond || UseMaskForGaps)
4621     return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices,
4622                                              Alignment, AddressSpace, CostKind,
4623                                              UseMaskForCond, UseMaskForGaps);
4624 
4625   // VecTy for interleave memop is <VF*Factor x Elt>.
4626   // So, for VF=4, Interleave Factor = 3, Element type = i32 we have
4627   // VecTy = <12 x i32>.
4628 
4629   // Calculate the number of memory operations (NumOfMemOps), required
4630   // for load/store the VecTy.
4631   MVT LegalVT = getTLI()->getTypeLegalizationCost(DL, VecTy).second;
4632   unsigned VecTySize = DL.getTypeStoreSize(VecTy);
4633   unsigned LegalVTSize = LegalVT.getStoreSize();
4634   unsigned NumOfMemOps = (VecTySize + LegalVTSize - 1) / LegalVTSize;
4635 
4636   // Get the cost of one memory operation.
4637   auto *SingleMemOpTy = FixedVectorType::get(VecTy->getElementType(),
4638                                              LegalVT.getVectorNumElements());
4639   unsigned MemOpCost = getMemoryOpCost(Opcode, SingleMemOpTy,
4640                                        MaybeAlign(Alignment), AddressSpace,
4641                                        CostKind);
4642 
4643   unsigned VF = VecTy->getNumElements() / Factor;
4644   MVT VT = MVT::getVectorVT(MVT::getVT(VecTy->getScalarType()), VF);
4645 
4646   if (Opcode == Instruction::Load) {
4647     // The tables (AVX512InterleavedLoadTbl and AVX512InterleavedStoreTbl)
4648     // contain the cost of the optimized shuffle sequence that the
4649     // X86InterleavedAccess pass will generate.
4650     // The cost of loads and stores are computed separately from the table.
4651 
4652     // X86InterleavedAccess support only the following interleaved-access group.
4653     static const CostTblEntry AVX512InterleavedLoadTbl[] = {
4654         {3, MVT::v16i8, 12}, //(load 48i8 and) deinterleave into 3 x 16i8
4655         {3, MVT::v32i8, 14}, //(load 96i8 and) deinterleave into 3 x 32i8
4656         {3, MVT::v64i8, 22}, //(load 96i8 and) deinterleave into 3 x 32i8
4657     };
4658 
4659     if (const auto *Entry =
4660             CostTableLookup(AVX512InterleavedLoadTbl, Factor, VT))
4661       return NumOfMemOps * MemOpCost + Entry->Cost;
4662     //If an entry does not exist, fallback to the default implementation.
4663 
4664     // Kind of shuffle depends on number of loaded values.
4665     // If we load the entire data in one register, we can use a 1-src shuffle.
4666     // Otherwise, we'll merge 2 sources in each operation.
4667     TTI::ShuffleKind ShuffleKind =
4668         (NumOfMemOps > 1) ? TTI::SK_PermuteTwoSrc : TTI::SK_PermuteSingleSrc;
4669 
4670     unsigned ShuffleCost =
4671         getShuffleCost(ShuffleKind, SingleMemOpTy, None, 0, nullptr);
4672 
4673     unsigned NumOfLoadsInInterleaveGrp =
4674         Indices.size() ? Indices.size() : Factor;
4675     auto *ResultTy = FixedVectorType::get(VecTy->getElementType(),
4676                                           VecTy->getNumElements() / Factor);
4677     unsigned NumOfResults =
4678         getTLI()->getTypeLegalizationCost(DL, ResultTy).first *
4679         NumOfLoadsInInterleaveGrp;
4680 
4681     // About a half of the loads may be folded in shuffles when we have only
4682     // one result. If we have more than one result, we do not fold loads at all.
4683     unsigned NumOfUnfoldedLoads =
4684         NumOfResults > 1 ? NumOfMemOps : NumOfMemOps / 2;
4685 
4686     // Get a number of shuffle operations per result.
4687     unsigned NumOfShufflesPerResult =
4688         std::max((unsigned)1, (unsigned)(NumOfMemOps - 1));
4689 
4690     // The SK_MergeTwoSrc shuffle clobbers one of src operands.
4691     // When we have more than one destination, we need additional instructions
4692     // to keep sources.
4693     unsigned NumOfMoves = 0;
4694     if (NumOfResults > 1 && ShuffleKind == TTI::SK_PermuteTwoSrc)
4695       NumOfMoves = NumOfResults * NumOfShufflesPerResult / 2;
4696 
4697     int Cost = NumOfResults * NumOfShufflesPerResult * ShuffleCost +
4698                NumOfUnfoldedLoads * MemOpCost + NumOfMoves;
4699 
4700     return Cost;
4701   }
4702 
4703   // Store.
4704   assert(Opcode == Instruction::Store &&
4705          "Expected Store Instruction at this  point");
4706   // X86InterleavedAccess support only the following interleaved-access group.
4707   static const CostTblEntry AVX512InterleavedStoreTbl[] = {
4708       {3, MVT::v16i8, 12}, // interleave 3 x 16i8 into 48i8 (and store)
4709       {3, MVT::v32i8, 14}, // interleave 3 x 32i8 into 96i8 (and store)
4710       {3, MVT::v64i8, 26}, // interleave 3 x 64i8 into 96i8 (and store)
4711 
4712       {4, MVT::v8i8, 10},  // interleave 4 x 8i8  into 32i8  (and store)
4713       {4, MVT::v16i8, 11}, // interleave 4 x 16i8 into 64i8  (and store)
4714       {4, MVT::v32i8, 14}, // interleave 4 x 32i8 into 128i8 (and store)
4715       {4, MVT::v64i8, 24}  // interleave 4 x 32i8 into 256i8 (and store)
4716   };
4717 
4718   if (const auto *Entry =
4719           CostTableLookup(AVX512InterleavedStoreTbl, Factor, VT))
4720     return NumOfMemOps * MemOpCost + Entry->Cost;
4721   //If an entry does not exist, fallback to the default implementation.
4722 
4723   // There is no strided stores meanwhile. And store can't be folded in
4724   // shuffle.
4725   unsigned NumOfSources = Factor; // The number of values to be merged.
4726   unsigned ShuffleCost =
4727       getShuffleCost(TTI::SK_PermuteTwoSrc, SingleMemOpTy, None, 0, nullptr);
4728   unsigned NumOfShufflesPerStore = NumOfSources - 1;
4729 
4730   // The SK_MergeTwoSrc shuffle clobbers one of src operands.
4731   // We need additional instructions to keep sources.
4732   unsigned NumOfMoves = NumOfMemOps * NumOfShufflesPerStore / 2;
4733   int Cost = NumOfMemOps * (MemOpCost + NumOfShufflesPerStore * ShuffleCost) +
4734              NumOfMoves;
4735   return Cost;
4736 }
4737 
4738 int X86TTIImpl::getInterleavedMemoryOpCost(
4739     unsigned Opcode, Type *VecTy, unsigned Factor, ArrayRef<unsigned> Indices,
4740     Align Alignment, unsigned AddressSpace, TTI::TargetCostKind CostKind,
4741     bool UseMaskForCond, bool UseMaskForGaps) {
4742   auto isSupportedOnAVX512 = [](Type *VecTy, bool HasBW) {
4743     Type *EltTy = cast<VectorType>(VecTy)->getElementType();
4744     if (EltTy->isFloatTy() || EltTy->isDoubleTy() || EltTy->isIntegerTy(64) ||
4745         EltTy->isIntegerTy(32) || EltTy->isPointerTy())
4746       return true;
4747     if (EltTy->isIntegerTy(16) || EltTy->isIntegerTy(8))
4748       return HasBW;
4749     return false;
4750   };
4751   if (ST->hasAVX512() && isSupportedOnAVX512(VecTy, ST->hasBWI()))
4752     return getInterleavedMemoryOpCostAVX512(
4753         Opcode, cast<FixedVectorType>(VecTy), Factor, Indices, Alignment,
4754         AddressSpace, CostKind, UseMaskForCond, UseMaskForGaps);
4755   if (ST->hasAVX2())
4756     return getInterleavedMemoryOpCostAVX2(
4757         Opcode, cast<FixedVectorType>(VecTy), Factor, Indices, Alignment,
4758         AddressSpace, CostKind, UseMaskForCond, UseMaskForGaps);
4759 
4760   return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices,
4761                                            Alignment, AddressSpace, CostKind,
4762                                            UseMaskForCond, UseMaskForGaps);
4763 }
4764