1 //===-- X86TargetTransformInfo.cpp - X86 specific TTI pass ----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 /// \file
9 /// This file implements a TargetTransformInfo analysis pass specific to the
10 /// X86 target machine. It uses the target's detailed information to provide
11 /// more precise answers to certain TTI queries, while letting the target
12 /// independent and default TTI implementations handle the rest.
13 ///
14 //===----------------------------------------------------------------------===//
15 /// About Cost Model numbers used below it's necessary to say the following:
16 /// the numbers correspond to some "generic" X86 CPU instead of usage of
17 /// concrete CPU model. Usually the numbers correspond to CPU where the feature
18 /// apeared at the first time. For example, if we do Subtarget.hasSSE42() in
19 /// the lookups below the cost is based on Nehalem as that was the first CPU
20 /// to support that feature level and thus has most likely the worst case cost.
21 /// Some examples of other technologies/CPUs:
22 ///   SSE 3   - Pentium4 / Athlon64
23 ///   SSE 4.1 - Penryn
24 ///   SSE 4.2 - Nehalem
25 ///   AVX     - Sandy Bridge
26 ///   AVX2    - Haswell
27 ///   AVX-512 - Xeon Phi / Skylake
28 /// And some examples of instruction target dependent costs (latency)
29 ///                   divss     sqrtss          rsqrtss
30 ///   AMD K7            11-16     19              3
31 ///   Piledriver        9-24      13-15           5
32 ///   Jaguar            14        16              2
33 ///   Pentium II,III    18        30              2
34 ///   Nehalem           7-14      7-18            3
35 ///   Haswell           10-13     11              5
36 /// TODO: Develop and implement  the target dependent cost model and
37 /// specialize cost numbers for different Cost Model Targets such as throughput,
38 /// code size, latency and uop count.
39 //===----------------------------------------------------------------------===//
40 
41 #include "X86TargetTransformInfo.h"
42 #include "llvm/Analysis/TargetTransformInfo.h"
43 #include "llvm/CodeGen/BasicTTIImpl.h"
44 #include "llvm/CodeGen/CostTable.h"
45 #include "llvm/CodeGen/TargetLowering.h"
46 #include "llvm/IR/IntrinsicInst.h"
47 #include "llvm/Support/Debug.h"
48 
49 using namespace llvm;
50 
51 #define DEBUG_TYPE "x86tti"
52 
53 //===----------------------------------------------------------------------===//
54 //
55 // X86 cost model.
56 //
57 //===----------------------------------------------------------------------===//
58 
59 TargetTransformInfo::PopcntSupportKind
60 X86TTIImpl::getPopcntSupport(unsigned TyWidth) {
61   assert(isPowerOf2_32(TyWidth) && "Ty width must be power of 2");
62   // TODO: Currently the __builtin_popcount() implementation using SSE3
63   //   instructions is inefficient. Once the problem is fixed, we should
64   //   call ST->hasSSE3() instead of ST->hasPOPCNT().
65   return ST->hasPOPCNT() ? TTI::PSK_FastHardware : TTI::PSK_Software;
66 }
67 
68 llvm::Optional<unsigned> X86TTIImpl::getCacheSize(
69   TargetTransformInfo::CacheLevel Level) const {
70   switch (Level) {
71   case TargetTransformInfo::CacheLevel::L1D:
72     //   - Penryn
73     //   - Nehalem
74     //   - Westmere
75     //   - Sandy Bridge
76     //   - Ivy Bridge
77     //   - Haswell
78     //   - Broadwell
79     //   - Skylake
80     //   - Kabylake
81     return 32 * 1024;  //  32 KByte
82   case TargetTransformInfo::CacheLevel::L2D:
83     //   - Penryn
84     //   - Nehalem
85     //   - Westmere
86     //   - Sandy Bridge
87     //   - Ivy Bridge
88     //   - Haswell
89     //   - Broadwell
90     //   - Skylake
91     //   - Kabylake
92     return 256 * 1024; // 256 KByte
93   }
94 
95   llvm_unreachable("Unknown TargetTransformInfo::CacheLevel");
96 }
97 
98 llvm::Optional<unsigned> X86TTIImpl::getCacheAssociativity(
99   TargetTransformInfo::CacheLevel Level) const {
100   //   - Penryn
101   //   - Nehalem
102   //   - Westmere
103   //   - Sandy Bridge
104   //   - Ivy Bridge
105   //   - Haswell
106   //   - Broadwell
107   //   - Skylake
108   //   - Kabylake
109   switch (Level) {
110   case TargetTransformInfo::CacheLevel::L1D:
111     LLVM_FALLTHROUGH;
112   case TargetTransformInfo::CacheLevel::L2D:
113     return 8;
114   }
115 
116   llvm_unreachable("Unknown TargetTransformInfo::CacheLevel");
117 }
118 
119 unsigned X86TTIImpl::getNumberOfRegisters(unsigned ClassID) const {
120   bool Vector = (ClassID == 1);
121   if (Vector && !ST->hasSSE1())
122     return 0;
123 
124   if (ST->is64Bit()) {
125     if (Vector && ST->hasAVX512())
126       return 32;
127     return 16;
128   }
129   return 8;
130 }
131 
132 unsigned X86TTIImpl::getRegisterBitWidth(bool Vector) const {
133   unsigned PreferVectorWidth = ST->getPreferVectorWidth();
134   if (Vector) {
135     if (ST->hasAVX512() && PreferVectorWidth >= 512)
136       return 512;
137     if (ST->hasAVX() && PreferVectorWidth >= 256)
138       return 256;
139     if (ST->hasSSE1() && PreferVectorWidth >= 128)
140       return 128;
141     return 0;
142   }
143 
144   if (ST->is64Bit())
145     return 64;
146 
147   return 32;
148 }
149 
150 unsigned X86TTIImpl::getLoadStoreVecRegBitWidth(unsigned) const {
151   return getRegisterBitWidth(true);
152 }
153 
154 unsigned X86TTIImpl::getMaxInterleaveFactor(unsigned VF) {
155   // If the loop will not be vectorized, don't interleave the loop.
156   // Let regular unroll to unroll the loop, which saves the overflow
157   // check and memory check cost.
158   if (VF == 1)
159     return 1;
160 
161   if (ST->isAtom())
162     return 1;
163 
164   // Sandybridge and Haswell have multiple execution ports and pipelined
165   // vector units.
166   if (ST->hasAVX())
167     return 4;
168 
169   return 2;
170 }
171 
172 int X86TTIImpl::getArithmeticInstrCost(unsigned Opcode, Type *Ty,
173                                        TTI::TargetCostKind CostKind,
174                                        TTI::OperandValueKind Op1Info,
175                                        TTI::OperandValueKind Op2Info,
176                                        TTI::OperandValueProperties Opd1PropInfo,
177                                        TTI::OperandValueProperties Opd2PropInfo,
178                                        ArrayRef<const Value *> Args,
179                                        const Instruction *CxtI) {
180   // TODO: Handle more cost kinds.
181   if (CostKind != TTI::TCK_RecipThroughput)
182     return BaseT::getArithmeticInstrCost(Opcode, Ty, CostKind, Op1Info,
183                                          Op2Info, Opd1PropInfo,
184                                          Opd2PropInfo, Args, CxtI);
185   // Legalize the type.
186   std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Ty);
187 
188   int ISD = TLI->InstructionOpcodeToISD(Opcode);
189   assert(ISD && "Invalid opcode");
190 
191   static const CostTblEntry GLMCostTable[] = {
192     { ISD::FDIV,  MVT::f32,   18 }, // divss
193     { ISD::FDIV,  MVT::v4f32, 35 }, // divps
194     { ISD::FDIV,  MVT::f64,   33 }, // divsd
195     { ISD::FDIV,  MVT::v2f64, 65 }, // divpd
196   };
197 
198   if (ST->useGLMDivSqrtCosts())
199     if (const auto *Entry = CostTableLookup(GLMCostTable, ISD,
200                                             LT.second))
201       return LT.first * Entry->Cost;
202 
203   static const CostTblEntry SLMCostTable[] = {
204     { ISD::MUL,   MVT::v4i32, 11 }, // pmulld
205     { ISD::MUL,   MVT::v8i16, 2  }, // pmullw
206     { ISD::MUL,   MVT::v16i8, 14 }, // extend/pmullw/trunc sequence.
207     { ISD::FMUL,  MVT::f64,   2  }, // mulsd
208     { ISD::FMUL,  MVT::v2f64, 4  }, // mulpd
209     { ISD::FMUL,  MVT::v4f32, 2  }, // mulps
210     { ISD::FDIV,  MVT::f32,   17 }, // divss
211     { ISD::FDIV,  MVT::v4f32, 39 }, // divps
212     { ISD::FDIV,  MVT::f64,   32 }, // divsd
213     { ISD::FDIV,  MVT::v2f64, 69 }, // divpd
214     { ISD::FADD,  MVT::v2f64, 2  }, // addpd
215     { ISD::FSUB,  MVT::v2f64, 2  }, // subpd
216     // v2i64/v4i64 mul is custom lowered as a series of long:
217     // multiplies(3), shifts(3) and adds(2)
218     // slm muldq version throughput is 2 and addq throughput 4
219     // thus: 3X2 (muldq throughput) + 3X1 (shift throughput) +
220     //       3X4 (addq throughput) = 17
221     { ISD::MUL,   MVT::v2i64, 17 },
222     // slm addq\subq throughput is 4
223     { ISD::ADD,   MVT::v2i64, 4  },
224     { ISD::SUB,   MVT::v2i64, 4  },
225   };
226 
227   if (ST->isSLM()) {
228     if (Args.size() == 2 && ISD == ISD::MUL && LT.second == MVT::v4i32) {
229       // Check if the operands can be shrinked into a smaller datatype.
230       bool Op1Signed = false;
231       unsigned Op1MinSize = BaseT::minRequiredElementSize(Args[0], Op1Signed);
232       bool Op2Signed = false;
233       unsigned Op2MinSize = BaseT::minRequiredElementSize(Args[1], Op2Signed);
234 
235       bool signedMode = Op1Signed | Op2Signed;
236       unsigned OpMinSize = std::max(Op1MinSize, Op2MinSize);
237 
238       if (OpMinSize <= 7)
239         return LT.first * 3; // pmullw/sext
240       if (!signedMode && OpMinSize <= 8)
241         return LT.first * 3; // pmullw/zext
242       if (OpMinSize <= 15)
243         return LT.first * 5; // pmullw/pmulhw/pshuf
244       if (!signedMode && OpMinSize <= 16)
245         return LT.first * 5; // pmullw/pmulhw/pshuf
246     }
247 
248     if (const auto *Entry = CostTableLookup(SLMCostTable, ISD,
249                                             LT.second)) {
250       return LT.first * Entry->Cost;
251     }
252   }
253 
254   if ((ISD == ISD::SDIV || ISD == ISD::SREM || ISD == ISD::UDIV ||
255        ISD == ISD::UREM) &&
256       (Op2Info == TargetTransformInfo::OK_UniformConstantValue ||
257        Op2Info == TargetTransformInfo::OK_NonUniformConstantValue) &&
258       Opd2PropInfo == TargetTransformInfo::OP_PowerOf2) {
259     if (ISD == ISD::SDIV || ISD == ISD::SREM) {
260       // On X86, vector signed division by constants power-of-two are
261       // normally expanded to the sequence SRA + SRL + ADD + SRA.
262       // The OperandValue properties may not be the same as that of the previous
263       // operation; conservatively assume OP_None.
264       int Cost =
265           2 * getArithmeticInstrCost(Instruction::AShr, Ty, CostKind, Op1Info,
266                                      Op2Info,
267                                      TargetTransformInfo::OP_None,
268                                      TargetTransformInfo::OP_None);
269       Cost += getArithmeticInstrCost(Instruction::LShr, Ty, CostKind, Op1Info,
270                                      Op2Info,
271                                      TargetTransformInfo::OP_None,
272                                      TargetTransformInfo::OP_None);
273       Cost += getArithmeticInstrCost(Instruction::Add, Ty, CostKind, Op1Info,
274                                      Op2Info,
275                                      TargetTransformInfo::OP_None,
276                                      TargetTransformInfo::OP_None);
277 
278       if (ISD == ISD::SREM) {
279         // For SREM: (X % C) is the equivalent of (X - (X/C)*C)
280         Cost += getArithmeticInstrCost(Instruction::Mul, Ty, CostKind, Op1Info,
281                                        Op2Info);
282         Cost += getArithmeticInstrCost(Instruction::Sub, Ty, CostKind, Op1Info,
283                                        Op2Info);
284       }
285 
286       return Cost;
287     }
288 
289     // Vector unsigned division/remainder will be simplified to shifts/masks.
290     if (ISD == ISD::UDIV)
291       return getArithmeticInstrCost(Instruction::LShr, Ty, CostKind,
292                                     Op1Info, Op2Info,
293                                     TargetTransformInfo::OP_None,
294                                     TargetTransformInfo::OP_None);
295 
296     else // UREM
297       return getArithmeticInstrCost(Instruction::And, Ty, CostKind,
298                                     Op1Info, Op2Info,
299                                     TargetTransformInfo::OP_None,
300                                     TargetTransformInfo::OP_None);
301   }
302 
303   static const CostTblEntry AVX512BWUniformConstCostTable[] = {
304     { ISD::SHL,  MVT::v64i8,   2 }, // psllw + pand.
305     { ISD::SRL,  MVT::v64i8,   2 }, // psrlw + pand.
306     { ISD::SRA,  MVT::v64i8,   4 }, // psrlw, pand, pxor, psubb.
307   };
308 
309   if (Op2Info == TargetTransformInfo::OK_UniformConstantValue &&
310       ST->hasBWI()) {
311     if (const auto *Entry = CostTableLookup(AVX512BWUniformConstCostTable, ISD,
312                                             LT.second))
313       return LT.first * Entry->Cost;
314   }
315 
316   static const CostTblEntry AVX512UniformConstCostTable[] = {
317     { ISD::SRA,  MVT::v2i64,   1 },
318     { ISD::SRA,  MVT::v4i64,   1 },
319     { ISD::SRA,  MVT::v8i64,   1 },
320 
321     { ISD::SHL,  MVT::v64i8,   4 }, // psllw + pand.
322     { ISD::SRL,  MVT::v64i8,   4 }, // psrlw + pand.
323     { ISD::SRA,  MVT::v64i8,   8 }, // psrlw, pand, pxor, psubb.
324   };
325 
326   if (Op2Info == TargetTransformInfo::OK_UniformConstantValue &&
327       ST->hasAVX512()) {
328     if (const auto *Entry = CostTableLookup(AVX512UniformConstCostTable, ISD,
329                                             LT.second))
330       return LT.first * Entry->Cost;
331   }
332 
333   static const CostTblEntry AVX2UniformConstCostTable[] = {
334     { ISD::SHL,  MVT::v32i8,   2 }, // psllw + pand.
335     { ISD::SRL,  MVT::v32i8,   2 }, // psrlw + pand.
336     { ISD::SRA,  MVT::v32i8,   4 }, // psrlw, pand, pxor, psubb.
337 
338     { ISD::SRA,  MVT::v4i64,   4 }, // 2 x psrad + shuffle.
339   };
340 
341   if (Op2Info == TargetTransformInfo::OK_UniformConstantValue &&
342       ST->hasAVX2()) {
343     if (const auto *Entry = CostTableLookup(AVX2UniformConstCostTable, ISD,
344                                             LT.second))
345       return LT.first * Entry->Cost;
346   }
347 
348   static const CostTblEntry SSE2UniformConstCostTable[] = {
349     { ISD::SHL,  MVT::v16i8,     2 }, // psllw + pand.
350     { ISD::SRL,  MVT::v16i8,     2 }, // psrlw + pand.
351     { ISD::SRA,  MVT::v16i8,     4 }, // psrlw, pand, pxor, psubb.
352 
353     { ISD::SHL,  MVT::v32i8,   4+2 }, // 2*(psllw + pand) + split.
354     { ISD::SRL,  MVT::v32i8,   4+2 }, // 2*(psrlw + pand) + split.
355     { ISD::SRA,  MVT::v32i8,   8+2 }, // 2*(psrlw, pand, pxor, psubb) + split.
356   };
357 
358   // XOP has faster vXi8 shifts.
359   if (Op2Info == TargetTransformInfo::OK_UniformConstantValue &&
360       ST->hasSSE2() && !ST->hasXOP()) {
361     if (const auto *Entry =
362             CostTableLookup(SSE2UniformConstCostTable, ISD, LT.second))
363       return LT.first * Entry->Cost;
364   }
365 
366   static const CostTblEntry AVX512BWConstCostTable[] = {
367     { ISD::SDIV, MVT::v64i8,  14 }, // 2*ext+2*pmulhw sequence
368     { ISD::SREM, MVT::v64i8,  16 }, // 2*ext+2*pmulhw+mul+sub sequence
369     { ISD::UDIV, MVT::v64i8,  14 }, // 2*ext+2*pmulhw sequence
370     { ISD::UREM, MVT::v64i8,  16 }, // 2*ext+2*pmulhw+mul+sub sequence
371     { ISD::SDIV, MVT::v32i16,  6 }, // vpmulhw sequence
372     { ISD::SREM, MVT::v32i16,  8 }, // vpmulhw+mul+sub sequence
373     { ISD::UDIV, MVT::v32i16,  6 }, // vpmulhuw sequence
374     { ISD::UREM, MVT::v32i16,  8 }, // vpmulhuw+mul+sub sequence
375   };
376 
377   if ((Op2Info == TargetTransformInfo::OK_UniformConstantValue ||
378        Op2Info == TargetTransformInfo::OK_NonUniformConstantValue) &&
379       ST->hasBWI()) {
380     if (const auto *Entry =
381             CostTableLookup(AVX512BWConstCostTable, ISD, LT.second))
382       return LT.first * Entry->Cost;
383   }
384 
385   static const CostTblEntry AVX512ConstCostTable[] = {
386     { ISD::SDIV, MVT::v16i32, 15 }, // vpmuldq sequence
387     { ISD::SREM, MVT::v16i32, 17 }, // vpmuldq+mul+sub sequence
388     { ISD::UDIV, MVT::v16i32, 15 }, // vpmuludq sequence
389     { ISD::UREM, MVT::v16i32, 17 }, // vpmuludq+mul+sub sequence
390     { ISD::SDIV, MVT::v64i8,  28 }, // 4*ext+4*pmulhw sequence
391     { ISD::SREM, MVT::v64i8,  32 }, // 4*ext+4*pmulhw+mul+sub sequence
392     { ISD::UDIV, MVT::v64i8,  28 }, // 4*ext+4*pmulhw sequence
393     { ISD::UREM, MVT::v64i8,  32 }, // 4*ext+4*pmulhw+mul+sub sequence
394     { ISD::SDIV, MVT::v32i16, 12 }, // 2*vpmulhw sequence
395     { ISD::SREM, MVT::v32i16, 16 }, // 2*vpmulhw+mul+sub sequence
396     { ISD::UDIV, MVT::v32i16, 12 }, // 2*vpmulhuw sequence
397     { ISD::UREM, MVT::v32i16, 16 }, // 2*vpmulhuw+mul+sub sequence
398   };
399 
400   if ((Op2Info == TargetTransformInfo::OK_UniformConstantValue ||
401        Op2Info == TargetTransformInfo::OK_NonUniformConstantValue) &&
402       ST->hasAVX512()) {
403     if (const auto *Entry =
404             CostTableLookup(AVX512ConstCostTable, ISD, LT.second))
405       return LT.first * Entry->Cost;
406   }
407 
408   static const CostTblEntry AVX2ConstCostTable[] = {
409     { ISD::SDIV, MVT::v32i8,  14 }, // 2*ext+2*pmulhw sequence
410     { ISD::SREM, MVT::v32i8,  16 }, // 2*ext+2*pmulhw+mul+sub sequence
411     { ISD::UDIV, MVT::v32i8,  14 }, // 2*ext+2*pmulhw sequence
412     { ISD::UREM, MVT::v32i8,  16 }, // 2*ext+2*pmulhw+mul+sub sequence
413     { ISD::SDIV, MVT::v16i16,  6 }, // vpmulhw sequence
414     { ISD::SREM, MVT::v16i16,  8 }, // vpmulhw+mul+sub sequence
415     { ISD::UDIV, MVT::v16i16,  6 }, // vpmulhuw sequence
416     { ISD::UREM, MVT::v16i16,  8 }, // vpmulhuw+mul+sub sequence
417     { ISD::SDIV, MVT::v8i32,  15 }, // vpmuldq sequence
418     { ISD::SREM, MVT::v8i32,  19 }, // vpmuldq+mul+sub sequence
419     { ISD::UDIV, MVT::v8i32,  15 }, // vpmuludq sequence
420     { ISD::UREM, MVT::v8i32,  19 }, // vpmuludq+mul+sub sequence
421   };
422 
423   if ((Op2Info == TargetTransformInfo::OK_UniformConstantValue ||
424        Op2Info == TargetTransformInfo::OK_NonUniformConstantValue) &&
425       ST->hasAVX2()) {
426     if (const auto *Entry = CostTableLookup(AVX2ConstCostTable, ISD, LT.second))
427       return LT.first * Entry->Cost;
428   }
429 
430   static const CostTblEntry SSE2ConstCostTable[] = {
431     { ISD::SDIV, MVT::v32i8,  28+2 }, // 4*ext+4*pmulhw sequence + split.
432     { ISD::SREM, MVT::v32i8,  32+2 }, // 4*ext+4*pmulhw+mul+sub sequence + split.
433     { ISD::SDIV, MVT::v16i8,    14 }, // 2*ext+2*pmulhw sequence
434     { ISD::SREM, MVT::v16i8,    16 }, // 2*ext+2*pmulhw+mul+sub sequence
435     { ISD::UDIV, MVT::v32i8,  28+2 }, // 4*ext+4*pmulhw sequence + split.
436     { ISD::UREM, MVT::v32i8,  32+2 }, // 4*ext+4*pmulhw+mul+sub sequence + split.
437     { ISD::UDIV, MVT::v16i8,    14 }, // 2*ext+2*pmulhw sequence
438     { ISD::UREM, MVT::v16i8,    16 }, // 2*ext+2*pmulhw+mul+sub sequence
439     { ISD::SDIV, MVT::v16i16, 12+2 }, // 2*pmulhw sequence + split.
440     { ISD::SREM, MVT::v16i16, 16+2 }, // 2*pmulhw+mul+sub sequence + split.
441     { ISD::SDIV, MVT::v8i16,     6 }, // pmulhw sequence
442     { ISD::SREM, MVT::v8i16,     8 }, // pmulhw+mul+sub sequence
443     { ISD::UDIV, MVT::v16i16, 12+2 }, // 2*pmulhuw sequence + split.
444     { ISD::UREM, MVT::v16i16, 16+2 }, // 2*pmulhuw+mul+sub sequence + split.
445     { ISD::UDIV, MVT::v8i16,     6 }, // pmulhuw sequence
446     { ISD::UREM, MVT::v8i16,     8 }, // pmulhuw+mul+sub sequence
447     { ISD::SDIV, MVT::v8i32,  38+2 }, // 2*pmuludq sequence + split.
448     { ISD::SREM, MVT::v8i32,  48+2 }, // 2*pmuludq+mul+sub sequence + split.
449     { ISD::SDIV, MVT::v4i32,    19 }, // pmuludq sequence
450     { ISD::SREM, MVT::v4i32,    24 }, // pmuludq+mul+sub sequence
451     { ISD::UDIV, MVT::v8i32,  30+2 }, // 2*pmuludq sequence + split.
452     { ISD::UREM, MVT::v8i32,  40+2 }, // 2*pmuludq+mul+sub sequence + split.
453     { ISD::UDIV, MVT::v4i32,    15 }, // pmuludq sequence
454     { ISD::UREM, MVT::v4i32,    20 }, // pmuludq+mul+sub sequence
455   };
456 
457   if ((Op2Info == TargetTransformInfo::OK_UniformConstantValue ||
458        Op2Info == TargetTransformInfo::OK_NonUniformConstantValue) &&
459       ST->hasSSE2()) {
460     // pmuldq sequence.
461     if (ISD == ISD::SDIV && LT.second == MVT::v8i32 && ST->hasAVX())
462       return LT.first * 32;
463     if (ISD == ISD::SREM && LT.second == MVT::v8i32 && ST->hasAVX())
464       return LT.first * 38;
465     if (ISD == ISD::SDIV && LT.second == MVT::v4i32 && ST->hasSSE41())
466       return LT.first * 15;
467     if (ISD == ISD::SREM && LT.second == MVT::v4i32 && ST->hasSSE41())
468       return LT.first * 20;
469 
470     if (const auto *Entry = CostTableLookup(SSE2ConstCostTable, ISD, LT.second))
471       return LT.first * Entry->Cost;
472   }
473 
474   static const CostTblEntry AVX512BWShiftCostTable[] = {
475     { ISD::SHL,   MVT::v8i16,      1 }, // vpsllvw
476     { ISD::SRL,   MVT::v8i16,      1 }, // vpsrlvw
477     { ISD::SRA,   MVT::v8i16,      1 }, // vpsravw
478 
479     { ISD::SHL,   MVT::v16i16,     1 }, // vpsllvw
480     { ISD::SRL,   MVT::v16i16,     1 }, // vpsrlvw
481     { ISD::SRA,   MVT::v16i16,     1 }, // vpsravw
482 
483     { ISD::SHL,   MVT::v32i16,     1 }, // vpsllvw
484     { ISD::SRL,   MVT::v32i16,     1 }, // vpsrlvw
485     { ISD::SRA,   MVT::v32i16,     1 }, // vpsravw
486   };
487 
488   if (ST->hasBWI())
489     if (const auto *Entry = CostTableLookup(AVX512BWShiftCostTable, ISD, LT.second))
490       return LT.first * Entry->Cost;
491 
492   static const CostTblEntry AVX2UniformCostTable[] = {
493     // Uniform splats are cheaper for the following instructions.
494     { ISD::SHL,  MVT::v16i16, 1 }, // psllw.
495     { ISD::SRL,  MVT::v16i16, 1 }, // psrlw.
496     { ISD::SRA,  MVT::v16i16, 1 }, // psraw.
497     { ISD::SHL,  MVT::v32i16, 2 }, // 2*psllw.
498     { ISD::SRL,  MVT::v32i16, 2 }, // 2*psrlw.
499     { ISD::SRA,  MVT::v32i16, 2 }, // 2*psraw.
500   };
501 
502   if (ST->hasAVX2() &&
503       ((Op2Info == TargetTransformInfo::OK_UniformConstantValue) ||
504        (Op2Info == TargetTransformInfo::OK_UniformValue))) {
505     if (const auto *Entry =
506             CostTableLookup(AVX2UniformCostTable, ISD, LT.second))
507       return LT.first * Entry->Cost;
508   }
509 
510   static const CostTblEntry SSE2UniformCostTable[] = {
511     // Uniform splats are cheaper for the following instructions.
512     { ISD::SHL,  MVT::v8i16,  1 }, // psllw.
513     { ISD::SHL,  MVT::v4i32,  1 }, // pslld
514     { ISD::SHL,  MVT::v2i64,  1 }, // psllq.
515 
516     { ISD::SRL,  MVT::v8i16,  1 }, // psrlw.
517     { ISD::SRL,  MVT::v4i32,  1 }, // psrld.
518     { ISD::SRL,  MVT::v2i64,  1 }, // psrlq.
519 
520     { ISD::SRA,  MVT::v8i16,  1 }, // psraw.
521     { ISD::SRA,  MVT::v4i32,  1 }, // psrad.
522   };
523 
524   if (ST->hasSSE2() &&
525       ((Op2Info == TargetTransformInfo::OK_UniformConstantValue) ||
526        (Op2Info == TargetTransformInfo::OK_UniformValue))) {
527     if (const auto *Entry =
528             CostTableLookup(SSE2UniformCostTable, ISD, LT.second))
529       return LT.first * Entry->Cost;
530   }
531 
532   static const CostTblEntry AVX512DQCostTable[] = {
533     { ISD::MUL,  MVT::v2i64, 1 },
534     { ISD::MUL,  MVT::v4i64, 1 },
535     { ISD::MUL,  MVT::v8i64, 1 }
536   };
537 
538   // Look for AVX512DQ lowering tricks for custom cases.
539   if (ST->hasDQI())
540     if (const auto *Entry = CostTableLookup(AVX512DQCostTable, ISD, LT.second))
541       return LT.first * Entry->Cost;
542 
543   static const CostTblEntry AVX512BWCostTable[] = {
544     { ISD::SHL,   MVT::v64i8,     11 }, // vpblendvb sequence.
545     { ISD::SRL,   MVT::v64i8,     11 }, // vpblendvb sequence.
546     { ISD::SRA,   MVT::v64i8,     24 }, // vpblendvb sequence.
547 
548     { ISD::MUL,   MVT::v64i8,     11 }, // extend/pmullw/trunc sequence.
549     { ISD::MUL,   MVT::v32i8,      4 }, // extend/pmullw/trunc sequence.
550     { ISD::MUL,   MVT::v16i8,      4 }, // extend/pmullw/trunc sequence.
551   };
552 
553   // Look for AVX512BW lowering tricks for custom cases.
554   if (ST->hasBWI())
555     if (const auto *Entry = CostTableLookup(AVX512BWCostTable, ISD, LT.second))
556       return LT.first * Entry->Cost;
557 
558   static const CostTblEntry AVX512CostTable[] = {
559     { ISD::SHL,     MVT::v16i32,     1 },
560     { ISD::SRL,     MVT::v16i32,     1 },
561     { ISD::SRA,     MVT::v16i32,     1 },
562 
563     { ISD::SHL,     MVT::v8i64,      1 },
564     { ISD::SRL,     MVT::v8i64,      1 },
565 
566     { ISD::SRA,     MVT::v2i64,      1 },
567     { ISD::SRA,     MVT::v4i64,      1 },
568     { ISD::SRA,     MVT::v8i64,      1 },
569 
570     { ISD::MUL,     MVT::v64i8,     26 }, // extend/pmullw/trunc sequence.
571     { ISD::MUL,     MVT::v32i8,     13 }, // extend/pmullw/trunc sequence.
572     { ISD::MUL,     MVT::v16i8,      5 }, // extend/pmullw/trunc sequence.
573     { ISD::MUL,     MVT::v16i32,     1 }, // pmulld (Skylake from agner.org)
574     { ISD::MUL,     MVT::v8i32,      1 }, // pmulld (Skylake from agner.org)
575     { ISD::MUL,     MVT::v4i32,      1 }, // pmulld (Skylake from agner.org)
576     { ISD::MUL,     MVT::v8i64,      8 }, // 3*pmuludq/3*shift/2*add
577 
578     { ISD::FADD,    MVT::v8f64,      1 }, // Skylake from http://www.agner.org/
579     { ISD::FSUB,    MVT::v8f64,      1 }, // Skylake from http://www.agner.org/
580     { ISD::FMUL,    MVT::v8f64,      1 }, // Skylake from http://www.agner.org/
581 
582     { ISD::FADD,    MVT::v16f32,     1 }, // Skylake from http://www.agner.org/
583     { ISD::FSUB,    MVT::v16f32,     1 }, // Skylake from http://www.agner.org/
584     { ISD::FMUL,    MVT::v16f32,     1 }, // Skylake from http://www.agner.org/
585   };
586 
587   if (ST->hasAVX512())
588     if (const auto *Entry = CostTableLookup(AVX512CostTable, ISD, LT.second))
589       return LT.first * Entry->Cost;
590 
591   static const CostTblEntry AVX2ShiftCostTable[] = {
592     // Shifts on v4i64/v8i32 on AVX2 is legal even though we declare to
593     // customize them to detect the cases where shift amount is a scalar one.
594     { ISD::SHL,     MVT::v4i32,    1 },
595     { ISD::SRL,     MVT::v4i32,    1 },
596     { ISD::SRA,     MVT::v4i32,    1 },
597     { ISD::SHL,     MVT::v8i32,    1 },
598     { ISD::SRL,     MVT::v8i32,    1 },
599     { ISD::SRA,     MVT::v8i32,    1 },
600     { ISD::SHL,     MVT::v2i64,    1 },
601     { ISD::SRL,     MVT::v2i64,    1 },
602     { ISD::SHL,     MVT::v4i64,    1 },
603     { ISD::SRL,     MVT::v4i64,    1 },
604   };
605 
606   if (ST->hasAVX512()) {
607     if (ISD == ISD::SHL && LT.second == MVT::v32i16 &&
608         (Op2Info == TargetTransformInfo::OK_UniformConstantValue ||
609          Op2Info == TargetTransformInfo::OK_NonUniformConstantValue))
610       // On AVX512, a packed v32i16 shift left by a constant build_vector
611       // is lowered into a vector multiply (vpmullw).
612       return getArithmeticInstrCost(Instruction::Mul, Ty, CostKind,
613                                     Op1Info, Op2Info,
614                                     TargetTransformInfo::OP_None,
615                                     TargetTransformInfo::OP_None);
616   }
617 
618   // Look for AVX2 lowering tricks.
619   if (ST->hasAVX2()) {
620     if (ISD == ISD::SHL && LT.second == MVT::v16i16 &&
621         (Op2Info == TargetTransformInfo::OK_UniformConstantValue ||
622          Op2Info == TargetTransformInfo::OK_NonUniformConstantValue))
623       // On AVX2, a packed v16i16 shift left by a constant build_vector
624       // is lowered into a vector multiply (vpmullw).
625       return getArithmeticInstrCost(Instruction::Mul, Ty, CostKind,
626                                     Op1Info, Op2Info,
627                                     TargetTransformInfo::OP_None,
628                                     TargetTransformInfo::OP_None);
629 
630     if (const auto *Entry = CostTableLookup(AVX2ShiftCostTable, ISD, LT.second))
631       return LT.first * Entry->Cost;
632   }
633 
634   static const CostTblEntry XOPShiftCostTable[] = {
635     // 128bit shifts take 1cy, but right shifts require negation beforehand.
636     { ISD::SHL,     MVT::v16i8,    1 },
637     { ISD::SRL,     MVT::v16i8,    2 },
638     { ISD::SRA,     MVT::v16i8,    2 },
639     { ISD::SHL,     MVT::v8i16,    1 },
640     { ISD::SRL,     MVT::v8i16,    2 },
641     { ISD::SRA,     MVT::v8i16,    2 },
642     { ISD::SHL,     MVT::v4i32,    1 },
643     { ISD::SRL,     MVT::v4i32,    2 },
644     { ISD::SRA,     MVT::v4i32,    2 },
645     { ISD::SHL,     MVT::v2i64,    1 },
646     { ISD::SRL,     MVT::v2i64,    2 },
647     { ISD::SRA,     MVT::v2i64,    2 },
648     // 256bit shifts require splitting if AVX2 didn't catch them above.
649     { ISD::SHL,     MVT::v32i8,  2+2 },
650     { ISD::SRL,     MVT::v32i8,  4+2 },
651     { ISD::SRA,     MVT::v32i8,  4+2 },
652     { ISD::SHL,     MVT::v16i16, 2+2 },
653     { ISD::SRL,     MVT::v16i16, 4+2 },
654     { ISD::SRA,     MVT::v16i16, 4+2 },
655     { ISD::SHL,     MVT::v8i32,  2+2 },
656     { ISD::SRL,     MVT::v8i32,  4+2 },
657     { ISD::SRA,     MVT::v8i32,  4+2 },
658     { ISD::SHL,     MVT::v4i64,  2+2 },
659     { ISD::SRL,     MVT::v4i64,  4+2 },
660     { ISD::SRA,     MVT::v4i64,  4+2 },
661   };
662 
663   // Look for XOP lowering tricks.
664   if (ST->hasXOP()) {
665     // If the right shift is constant then we'll fold the negation so
666     // it's as cheap as a left shift.
667     int ShiftISD = ISD;
668     if ((ShiftISD == ISD::SRL || ShiftISD == ISD::SRA) &&
669         (Op2Info == TargetTransformInfo::OK_UniformConstantValue ||
670          Op2Info == TargetTransformInfo::OK_NonUniformConstantValue))
671       ShiftISD = ISD::SHL;
672     if (const auto *Entry =
673             CostTableLookup(XOPShiftCostTable, ShiftISD, LT.second))
674       return LT.first * Entry->Cost;
675   }
676 
677   static const CostTblEntry SSE2UniformShiftCostTable[] = {
678     // Uniform splats are cheaper for the following instructions.
679     { ISD::SHL,  MVT::v16i16, 2+2 }, // 2*psllw + split.
680     { ISD::SHL,  MVT::v8i32,  2+2 }, // 2*pslld + split.
681     { ISD::SHL,  MVT::v4i64,  2+2 }, // 2*psllq + split.
682 
683     { ISD::SRL,  MVT::v16i16, 2+2 }, // 2*psrlw + split.
684     { ISD::SRL,  MVT::v8i32,  2+2 }, // 2*psrld + split.
685     { ISD::SRL,  MVT::v4i64,  2+2 }, // 2*psrlq + split.
686 
687     { ISD::SRA,  MVT::v16i16, 2+2 }, // 2*psraw + split.
688     { ISD::SRA,  MVT::v8i32,  2+2 }, // 2*psrad + split.
689     { ISD::SRA,  MVT::v2i64,    4 }, // 2*psrad + shuffle.
690     { ISD::SRA,  MVT::v4i64,  8+2 }, // 2*(2*psrad + shuffle) + split.
691   };
692 
693   if (ST->hasSSE2() &&
694       ((Op2Info == TargetTransformInfo::OK_UniformConstantValue) ||
695        (Op2Info == TargetTransformInfo::OK_UniformValue))) {
696 
697     // Handle AVX2 uniform v4i64 ISD::SRA, it's not worth a table.
698     if (ISD == ISD::SRA && LT.second == MVT::v4i64 && ST->hasAVX2())
699       return LT.first * 4; // 2*psrad + shuffle.
700 
701     if (const auto *Entry =
702             CostTableLookup(SSE2UniformShiftCostTable, ISD, LT.second))
703       return LT.first * Entry->Cost;
704   }
705 
706   if (ISD == ISD::SHL &&
707       Op2Info == TargetTransformInfo::OK_NonUniformConstantValue) {
708     MVT VT = LT.second;
709     // Vector shift left by non uniform constant can be lowered
710     // into vector multiply.
711     if (((VT == MVT::v8i16 || VT == MVT::v4i32) && ST->hasSSE2()) ||
712         ((VT == MVT::v16i16 || VT == MVT::v8i32) && ST->hasAVX()))
713       ISD = ISD::MUL;
714   }
715 
716   static const CostTblEntry AVX2CostTable[] = {
717     { ISD::SHL,  MVT::v32i8,     11 }, // vpblendvb sequence.
718     { ISD::SHL,  MVT::v64i8,     22 }, // 2*vpblendvb sequence.
719     { ISD::SHL,  MVT::v16i16,    10 }, // extend/vpsrlvd/pack sequence.
720     { ISD::SHL,  MVT::v32i16,    20 }, // 2*extend/vpsrlvd/pack sequence.
721 
722     { ISD::SRL,  MVT::v32i8,     11 }, // vpblendvb sequence.
723     { ISD::SRL,  MVT::v64i8,     22 }, // 2*vpblendvb sequence.
724     { ISD::SRL,  MVT::v16i16,    10 }, // extend/vpsrlvd/pack sequence.
725     { ISD::SRL,  MVT::v32i16,    20 }, // 2*extend/vpsrlvd/pack sequence.
726 
727     { ISD::SRA,  MVT::v32i8,     24 }, // vpblendvb sequence.
728     { ISD::SRA,  MVT::v64i8,     48 }, // 2*vpblendvb sequence.
729     { ISD::SRA,  MVT::v16i16,    10 }, // extend/vpsravd/pack sequence.
730     { ISD::SRA,  MVT::v32i16,    20 }, // 2*extend/vpsravd/pack sequence.
731     { ISD::SRA,  MVT::v2i64,      4 }, // srl/xor/sub sequence.
732     { ISD::SRA,  MVT::v4i64,      4 }, // srl/xor/sub sequence.
733 
734     { ISD::SUB,  MVT::v32i8,      1 }, // psubb
735     { ISD::ADD,  MVT::v32i8,      1 }, // paddb
736     { ISD::SUB,  MVT::v16i16,     1 }, // psubw
737     { ISD::ADD,  MVT::v16i16,     1 }, // paddw
738     { ISD::SUB,  MVT::v8i32,      1 }, // psubd
739     { ISD::ADD,  MVT::v8i32,      1 }, // paddd
740     { ISD::SUB,  MVT::v4i64,      1 }, // psubq
741     { ISD::ADD,  MVT::v4i64,      1 }, // paddq
742 
743     { ISD::MUL,  MVT::v32i8,     17 }, // extend/pmullw/trunc sequence.
744     { ISD::MUL,  MVT::v16i8,      7 }, // extend/pmullw/trunc sequence.
745     { ISD::MUL,  MVT::v16i16,     1 }, // pmullw
746     { ISD::MUL,  MVT::v8i32,      2 }, // pmulld (Haswell from agner.org)
747     { ISD::MUL,  MVT::v4i64,      8 }, // 3*pmuludq/3*shift/2*add
748 
749     { ISD::FADD, MVT::v4f64,      1 }, // Haswell from http://www.agner.org/
750     { ISD::FADD, MVT::v8f32,      1 }, // Haswell from http://www.agner.org/
751     { ISD::FSUB, MVT::v4f64,      1 }, // Haswell from http://www.agner.org/
752     { ISD::FSUB, MVT::v8f32,      1 }, // Haswell from http://www.agner.org/
753     { ISD::FMUL, MVT::v4f64,      1 }, // Haswell from http://www.agner.org/
754     { ISD::FMUL, MVT::v8f32,      1 }, // Haswell from http://www.agner.org/
755 
756     { ISD::FDIV, MVT::f32,        7 }, // Haswell from http://www.agner.org/
757     { ISD::FDIV, MVT::v4f32,      7 }, // Haswell from http://www.agner.org/
758     { ISD::FDIV, MVT::v8f32,     14 }, // Haswell from http://www.agner.org/
759     { ISD::FDIV, MVT::f64,       14 }, // Haswell from http://www.agner.org/
760     { ISD::FDIV, MVT::v2f64,     14 }, // Haswell from http://www.agner.org/
761     { ISD::FDIV, MVT::v4f64,     28 }, // Haswell from http://www.agner.org/
762   };
763 
764   // Look for AVX2 lowering tricks for custom cases.
765   if (ST->hasAVX2())
766     if (const auto *Entry = CostTableLookup(AVX2CostTable, ISD, LT.second))
767       return LT.first * Entry->Cost;
768 
769   static const CostTblEntry AVX1CostTable[] = {
770     // We don't have to scalarize unsupported ops. We can issue two half-sized
771     // operations and we only need to extract the upper YMM half.
772     // Two ops + 1 extract + 1 insert = 4.
773     { ISD::MUL,     MVT::v16i16,     4 },
774     { ISD::MUL,     MVT::v8i32,      4 },
775     { ISD::SUB,     MVT::v32i8,      4 },
776     { ISD::ADD,     MVT::v32i8,      4 },
777     { ISD::SUB,     MVT::v16i16,     4 },
778     { ISD::ADD,     MVT::v16i16,     4 },
779     { ISD::SUB,     MVT::v8i32,      4 },
780     { ISD::ADD,     MVT::v8i32,      4 },
781     { ISD::SUB,     MVT::v4i64,      4 },
782     { ISD::ADD,     MVT::v4i64,      4 },
783 
784     // A v4i64 multiply is custom lowered as two split v2i64 vectors that then
785     // are lowered as a series of long multiplies(3), shifts(3) and adds(2)
786     // Because we believe v4i64 to be a legal type, we must also include the
787     // extract+insert in the cost table. Therefore, the cost here is 18
788     // instead of 8.
789     { ISD::MUL,     MVT::v4i64,     18 },
790 
791     { ISD::MUL,     MVT::v32i8,     26 }, // extend/pmullw/trunc sequence.
792 
793     { ISD::FDIV,    MVT::f32,       14 }, // SNB from http://www.agner.org/
794     { ISD::FDIV,    MVT::v4f32,     14 }, // SNB from http://www.agner.org/
795     { ISD::FDIV,    MVT::v8f32,     28 }, // SNB from http://www.agner.org/
796     { ISD::FDIV,    MVT::f64,       22 }, // SNB from http://www.agner.org/
797     { ISD::FDIV,    MVT::v2f64,     22 }, // SNB from http://www.agner.org/
798     { ISD::FDIV,    MVT::v4f64,     44 }, // SNB from http://www.agner.org/
799   };
800 
801   if (ST->hasAVX())
802     if (const auto *Entry = CostTableLookup(AVX1CostTable, ISD, LT.second))
803       return LT.first * Entry->Cost;
804 
805   static const CostTblEntry SSE42CostTable[] = {
806     { ISD::FADD, MVT::f64,     1 }, // Nehalem from http://www.agner.org/
807     { ISD::FADD, MVT::f32,     1 }, // Nehalem from http://www.agner.org/
808     { ISD::FADD, MVT::v2f64,   1 }, // Nehalem from http://www.agner.org/
809     { ISD::FADD, MVT::v4f32,   1 }, // Nehalem from http://www.agner.org/
810 
811     { ISD::FSUB, MVT::f64,     1 }, // Nehalem from http://www.agner.org/
812     { ISD::FSUB, MVT::f32 ,    1 }, // Nehalem from http://www.agner.org/
813     { ISD::FSUB, MVT::v2f64,   1 }, // Nehalem from http://www.agner.org/
814     { ISD::FSUB, MVT::v4f32,   1 }, // Nehalem from http://www.agner.org/
815 
816     { ISD::FMUL, MVT::f64,     1 }, // Nehalem from http://www.agner.org/
817     { ISD::FMUL, MVT::f32,     1 }, // Nehalem from http://www.agner.org/
818     { ISD::FMUL, MVT::v2f64,   1 }, // Nehalem from http://www.agner.org/
819     { ISD::FMUL, MVT::v4f32,   1 }, // Nehalem from http://www.agner.org/
820 
821     { ISD::FDIV,  MVT::f32,   14 }, // Nehalem from http://www.agner.org/
822     { ISD::FDIV,  MVT::v4f32, 14 }, // Nehalem from http://www.agner.org/
823     { ISD::FDIV,  MVT::f64,   22 }, // Nehalem from http://www.agner.org/
824     { ISD::FDIV,  MVT::v2f64, 22 }, // Nehalem from http://www.agner.org/
825   };
826 
827   if (ST->hasSSE42())
828     if (const auto *Entry = CostTableLookup(SSE42CostTable, ISD, LT.second))
829       return LT.first * Entry->Cost;
830 
831   static const CostTblEntry SSE41CostTable[] = {
832     { ISD::SHL,  MVT::v16i8,      11 }, // pblendvb sequence.
833     { ISD::SHL,  MVT::v32i8,  2*11+2 }, // pblendvb sequence + split.
834     { ISD::SHL,  MVT::v8i16,      14 }, // pblendvb sequence.
835     { ISD::SHL,  MVT::v16i16, 2*14+2 }, // pblendvb sequence + split.
836     { ISD::SHL,  MVT::v4i32,       4 }, // pslld/paddd/cvttps2dq/pmulld
837     { ISD::SHL,  MVT::v8i32,   2*4+2 }, // pslld/paddd/cvttps2dq/pmulld + split
838 
839     { ISD::SRL,  MVT::v16i8,      12 }, // pblendvb sequence.
840     { ISD::SRL,  MVT::v32i8,  2*12+2 }, // pblendvb sequence + split.
841     { ISD::SRL,  MVT::v8i16,      14 }, // pblendvb sequence.
842     { ISD::SRL,  MVT::v16i16, 2*14+2 }, // pblendvb sequence + split.
843     { ISD::SRL,  MVT::v4i32,      11 }, // Shift each lane + blend.
844     { ISD::SRL,  MVT::v8i32,  2*11+2 }, // Shift each lane + blend + split.
845 
846     { ISD::SRA,  MVT::v16i8,      24 }, // pblendvb sequence.
847     { ISD::SRA,  MVT::v32i8,  2*24+2 }, // pblendvb sequence + split.
848     { ISD::SRA,  MVT::v8i16,      14 }, // pblendvb sequence.
849     { ISD::SRA,  MVT::v16i16, 2*14+2 }, // pblendvb sequence + split.
850     { ISD::SRA,  MVT::v4i32,      12 }, // Shift each lane + blend.
851     { ISD::SRA,  MVT::v8i32,  2*12+2 }, // Shift each lane + blend + split.
852 
853     { ISD::MUL,  MVT::v4i32,       2 }  // pmulld (Nehalem from agner.org)
854   };
855 
856   if (ST->hasSSE41())
857     if (const auto *Entry = CostTableLookup(SSE41CostTable, ISD, LT.second))
858       return LT.first * Entry->Cost;
859 
860   static const CostTblEntry SSE2CostTable[] = {
861     // We don't correctly identify costs of casts because they are marked as
862     // custom.
863     { ISD::SHL,  MVT::v16i8,      26 }, // cmpgtb sequence.
864     { ISD::SHL,  MVT::v8i16,      32 }, // cmpgtb sequence.
865     { ISD::SHL,  MVT::v4i32,     2*5 }, // We optimized this using mul.
866     { ISD::SHL,  MVT::v2i64,       4 }, // splat+shuffle sequence.
867     { ISD::SHL,  MVT::v4i64,   2*4+2 }, // splat+shuffle sequence + split.
868 
869     { ISD::SRL,  MVT::v16i8,      26 }, // cmpgtb sequence.
870     { ISD::SRL,  MVT::v8i16,      32 }, // cmpgtb sequence.
871     { ISD::SRL,  MVT::v4i32,      16 }, // Shift each lane + blend.
872     { ISD::SRL,  MVT::v2i64,       4 }, // splat+shuffle sequence.
873     { ISD::SRL,  MVT::v4i64,   2*4+2 }, // splat+shuffle sequence + split.
874 
875     { ISD::SRA,  MVT::v16i8,      54 }, // unpacked cmpgtb sequence.
876     { ISD::SRA,  MVT::v8i16,      32 }, // cmpgtb sequence.
877     { ISD::SRA,  MVT::v4i32,      16 }, // Shift each lane + blend.
878     { ISD::SRA,  MVT::v2i64,      12 }, // srl/xor/sub sequence.
879     { ISD::SRA,  MVT::v4i64,  2*12+2 }, // srl/xor/sub sequence+split.
880 
881     { ISD::MUL,  MVT::v16i8,      12 }, // extend/pmullw/trunc sequence.
882     { ISD::MUL,  MVT::v8i16,       1 }, // pmullw
883     { ISD::MUL,  MVT::v4i32,       6 }, // 3*pmuludq/4*shuffle
884     { ISD::MUL,  MVT::v2i64,       8 }, // 3*pmuludq/3*shift/2*add
885 
886     { ISD::FDIV, MVT::f32,        23 }, // Pentium IV from http://www.agner.org/
887     { ISD::FDIV, MVT::v4f32,      39 }, // Pentium IV from http://www.agner.org/
888     { ISD::FDIV, MVT::f64,        38 }, // Pentium IV from http://www.agner.org/
889     { ISD::FDIV, MVT::v2f64,      69 }, // Pentium IV from http://www.agner.org/
890 
891     { ISD::FADD, MVT::f32,         2 }, // Pentium IV from http://www.agner.org/
892     { ISD::FADD, MVT::f64,         2 }, // Pentium IV from http://www.agner.org/
893 
894     { ISD::FSUB, MVT::f32,         2 }, // Pentium IV from http://www.agner.org/
895     { ISD::FSUB, MVT::f64,         2 }, // Pentium IV from http://www.agner.org/
896   };
897 
898   if (ST->hasSSE2())
899     if (const auto *Entry = CostTableLookup(SSE2CostTable, ISD, LT.second))
900       return LT.first * Entry->Cost;
901 
902   static const CostTblEntry SSE1CostTable[] = {
903     { ISD::FDIV, MVT::f32,   17 }, // Pentium III from http://www.agner.org/
904     { ISD::FDIV, MVT::v4f32, 34 }, // Pentium III from http://www.agner.org/
905 
906     { ISD::FADD, MVT::f32,    1 }, // Pentium III from http://www.agner.org/
907     { ISD::FADD, MVT::v4f32,  2 }, // Pentium III from http://www.agner.org/
908 
909     { ISD::FSUB, MVT::f32,    1 }, // Pentium III from http://www.agner.org/
910     { ISD::FSUB, MVT::v4f32,  2 }, // Pentium III from http://www.agner.org/
911 
912     { ISD::ADD, MVT::i8,      1 }, // Pentium III from http://www.agner.org/
913     { ISD::ADD, MVT::i16,     1 }, // Pentium III from http://www.agner.org/
914     { ISD::ADD, MVT::i32,     1 }, // Pentium III from http://www.agner.org/
915 
916     { ISD::SUB, MVT::i8,      1 }, // Pentium III from http://www.agner.org/
917     { ISD::SUB, MVT::i16,     1 }, // Pentium III from http://www.agner.org/
918     { ISD::SUB, MVT::i32,     1 }, // Pentium III from http://www.agner.org/
919   };
920 
921   if (ST->hasSSE1())
922     if (const auto *Entry = CostTableLookup(SSE1CostTable, ISD, LT.second))
923       return LT.first * Entry->Cost;
924 
925   // It is not a good idea to vectorize division. We have to scalarize it and
926   // in the process we will often end up having to spilling regular
927   // registers. The overhead of division is going to dominate most kernels
928   // anyways so try hard to prevent vectorization of division - it is
929   // generally a bad idea. Assume somewhat arbitrarily that we have to be able
930   // to hide "20 cycles" for each lane.
931   if (LT.second.isVector() && (ISD == ISD::SDIV || ISD == ISD::SREM ||
932                                ISD == ISD::UDIV || ISD == ISD::UREM)) {
933     int ScalarCost = getArithmeticInstrCost(
934         Opcode, Ty->getScalarType(), CostKind, Op1Info, Op2Info,
935         TargetTransformInfo::OP_None, TargetTransformInfo::OP_None);
936     return 20 * LT.first * LT.second.getVectorNumElements() * ScalarCost;
937   }
938 
939   // Fallback to the default implementation.
940   return BaseT::getArithmeticInstrCost(Opcode, Ty, CostKind, Op1Info, Op2Info);
941 }
942 
943 int X86TTIImpl::getShuffleCost(TTI::ShuffleKind Kind, VectorType *BaseTp,
944                                int Index, VectorType *SubTp) {
945   // 64-bit packed float vectors (v2f32) are widened to type v4f32.
946   // 64-bit packed integer vectors (v2i32) are widened to type v4i32.
947   std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, BaseTp);
948 
949   // Treat Transpose as 2-op shuffles - there's no difference in lowering.
950   if (Kind == TTI::SK_Transpose)
951     Kind = TTI::SK_PermuteTwoSrc;
952 
953   // For Broadcasts we are splatting the first element from the first input
954   // register, so only need to reference that input and all the output
955   // registers are the same.
956   if (Kind == TTI::SK_Broadcast)
957     LT.first = 1;
958 
959   // Subvector extractions are free if they start at the beginning of a
960   // vector and cheap if the subvectors are aligned.
961   if (Kind == TTI::SK_ExtractSubvector && LT.second.isVector()) {
962     int NumElts = LT.second.getVectorNumElements();
963     if ((Index % NumElts) == 0)
964       return 0;
965     std::pair<int, MVT> SubLT = TLI->getTypeLegalizationCost(DL, SubTp);
966     if (SubLT.second.isVector()) {
967       int NumSubElts = SubLT.second.getVectorNumElements();
968       if ((Index % NumSubElts) == 0 && (NumElts % NumSubElts) == 0)
969         return SubLT.first;
970       // Handle some cases for widening legalization. For now we only handle
971       // cases where the original subvector was naturally aligned and evenly
972       // fit in its legalized subvector type.
973       // FIXME: Remove some of the alignment restrictions.
974       // FIXME: We can use permq for 64-bit or larger extracts from 256-bit
975       // vectors.
976       int OrigSubElts = cast<FixedVectorType>(SubTp)->getNumElements();
977       if (NumSubElts > OrigSubElts && (Index % OrigSubElts) == 0 &&
978           (NumSubElts % OrigSubElts) == 0 &&
979           LT.second.getVectorElementType() ==
980               SubLT.second.getVectorElementType() &&
981           LT.second.getVectorElementType().getSizeInBits() ==
982               BaseTp->getElementType()->getPrimitiveSizeInBits()) {
983         assert(NumElts >= NumSubElts && NumElts > OrigSubElts &&
984                "Unexpected number of elements!");
985         auto *VecTy = FixedVectorType::get(BaseTp->getElementType(),
986                                            LT.second.getVectorNumElements());
987         auto *SubTy = FixedVectorType::get(BaseTp->getElementType(),
988                                            SubLT.second.getVectorNumElements());
989         int ExtractIndex = alignDown((Index % NumElts), NumSubElts);
990         int ExtractCost = getShuffleCost(TTI::SK_ExtractSubvector, VecTy,
991                                          ExtractIndex, SubTy);
992 
993         // If the original size is 32-bits or more, we can use pshufd. Otherwise
994         // if we have SSSE3 we can use pshufb.
995         if (SubTp->getPrimitiveSizeInBits() >= 32 || ST->hasSSSE3())
996           return ExtractCost + 1; // pshufd or pshufb
997 
998         assert(SubTp->getPrimitiveSizeInBits() == 16 &&
999                "Unexpected vector size");
1000 
1001         return ExtractCost + 2; // worst case pshufhw + pshufd
1002       }
1003     }
1004   }
1005 
1006   // Handle some common (illegal) sub-vector types as they are often very cheap
1007   // to shuffle even on targets without PSHUFB.
1008   EVT VT = TLI->getValueType(DL, BaseTp);
1009   if (VT.isSimple() && VT.isVector() && VT.getSizeInBits() < 128 &&
1010       !ST->hasSSSE3()) {
1011      static const CostTblEntry SSE2SubVectorShuffleTbl[] = {
1012       {TTI::SK_Broadcast,        MVT::v4i16, 1}, // pshuflw
1013       {TTI::SK_Broadcast,        MVT::v2i16, 1}, // pshuflw
1014       {TTI::SK_Broadcast,        MVT::v8i8,  2}, // punpck/pshuflw
1015       {TTI::SK_Broadcast,        MVT::v4i8,  2}, // punpck/pshuflw
1016       {TTI::SK_Broadcast,        MVT::v2i8,  1}, // punpck
1017 
1018       {TTI::SK_Reverse,          MVT::v4i16, 1}, // pshuflw
1019       {TTI::SK_Reverse,          MVT::v2i16, 1}, // pshuflw
1020       {TTI::SK_Reverse,          MVT::v4i8,  3}, // punpck/pshuflw/packus
1021       {TTI::SK_Reverse,          MVT::v2i8,  1}, // punpck
1022 
1023       {TTI::SK_PermuteTwoSrc,    MVT::v4i16, 2}, // punpck/pshuflw
1024       {TTI::SK_PermuteTwoSrc,    MVT::v2i16, 2}, // punpck/pshuflw
1025       {TTI::SK_PermuteTwoSrc,    MVT::v8i8,  7}, // punpck/pshuflw
1026       {TTI::SK_PermuteTwoSrc,    MVT::v4i8,  4}, // punpck/pshuflw
1027       {TTI::SK_PermuteTwoSrc,    MVT::v2i8,  2}, // punpck
1028 
1029       {TTI::SK_PermuteSingleSrc, MVT::v4i16, 1}, // pshuflw
1030       {TTI::SK_PermuteSingleSrc, MVT::v2i16, 1}, // pshuflw
1031       {TTI::SK_PermuteSingleSrc, MVT::v8i8,  5}, // punpck/pshuflw
1032       {TTI::SK_PermuteSingleSrc, MVT::v4i8,  3}, // punpck/pshuflw
1033       {TTI::SK_PermuteSingleSrc, MVT::v2i8,  1}, // punpck
1034     };
1035 
1036     if (ST->hasSSE2())
1037       if (const auto *Entry =
1038               CostTableLookup(SSE2SubVectorShuffleTbl, Kind, VT.getSimpleVT()))
1039         return Entry->Cost;
1040   }
1041 
1042   // We are going to permute multiple sources and the result will be in multiple
1043   // destinations. Providing an accurate cost only for splits where the element
1044   // type remains the same.
1045   if (Kind == TTI::SK_PermuteSingleSrc && LT.first != 1) {
1046     MVT LegalVT = LT.second;
1047     if (LegalVT.isVector() &&
1048         LegalVT.getVectorElementType().getSizeInBits() ==
1049             BaseTp->getElementType()->getPrimitiveSizeInBits() &&
1050         LegalVT.getVectorNumElements() <
1051             cast<FixedVectorType>(BaseTp)->getNumElements()) {
1052 
1053       unsigned VecTySize = DL.getTypeStoreSize(BaseTp);
1054       unsigned LegalVTSize = LegalVT.getStoreSize();
1055       // Number of source vectors after legalization:
1056       unsigned NumOfSrcs = (VecTySize + LegalVTSize - 1) / LegalVTSize;
1057       // Number of destination vectors after legalization:
1058       unsigned NumOfDests = LT.first;
1059 
1060       auto *SingleOpTy = FixedVectorType::get(BaseTp->getElementType(),
1061                                               LegalVT.getVectorNumElements());
1062 
1063       unsigned NumOfShuffles = (NumOfSrcs - 1) * NumOfDests;
1064       return NumOfShuffles *
1065              getShuffleCost(TTI::SK_PermuteTwoSrc, SingleOpTy, 0, nullptr);
1066     }
1067 
1068     return BaseT::getShuffleCost(Kind, BaseTp, Index, SubTp);
1069   }
1070 
1071   // For 2-input shuffles, we must account for splitting the 2 inputs into many.
1072   if (Kind == TTI::SK_PermuteTwoSrc && LT.first != 1) {
1073     // We assume that source and destination have the same vector type.
1074     int NumOfDests = LT.first;
1075     int NumOfShufflesPerDest = LT.first * 2 - 1;
1076     LT.first = NumOfDests * NumOfShufflesPerDest;
1077   }
1078 
1079   static const CostTblEntry AVX512VBMIShuffleTbl[] = {
1080       {TTI::SK_Reverse, MVT::v64i8, 1}, // vpermb
1081       {TTI::SK_Reverse, MVT::v32i8, 1}, // vpermb
1082 
1083       {TTI::SK_PermuteSingleSrc, MVT::v64i8, 1}, // vpermb
1084       {TTI::SK_PermuteSingleSrc, MVT::v32i8, 1}, // vpermb
1085 
1086       {TTI::SK_PermuteTwoSrc, MVT::v64i8, 2}, // vpermt2b
1087       {TTI::SK_PermuteTwoSrc, MVT::v32i8, 2}, // vpermt2b
1088       {TTI::SK_PermuteTwoSrc, MVT::v16i8, 2}  // vpermt2b
1089   };
1090 
1091   if (ST->hasVBMI())
1092     if (const auto *Entry =
1093             CostTableLookup(AVX512VBMIShuffleTbl, Kind, LT.second))
1094       return LT.first * Entry->Cost;
1095 
1096   static const CostTblEntry AVX512BWShuffleTbl[] = {
1097       {TTI::SK_Broadcast, MVT::v32i16, 1}, // vpbroadcastw
1098       {TTI::SK_Broadcast, MVT::v64i8, 1},  // vpbroadcastb
1099 
1100       {TTI::SK_Reverse, MVT::v32i16, 2}, // vpermw
1101       {TTI::SK_Reverse, MVT::v16i16, 2}, // vpermw
1102       {TTI::SK_Reverse, MVT::v64i8, 2},  // pshufb + vshufi64x2
1103 
1104       {TTI::SK_PermuteSingleSrc, MVT::v32i16, 2}, // vpermw
1105       {TTI::SK_PermuteSingleSrc, MVT::v16i16, 2}, // vpermw
1106       {TTI::SK_PermuteSingleSrc, MVT::v64i8, 8},  // extend to v32i16
1107 
1108       {TTI::SK_PermuteTwoSrc, MVT::v32i16, 2}, // vpermt2w
1109       {TTI::SK_PermuteTwoSrc, MVT::v16i16, 2}, // vpermt2w
1110       {TTI::SK_PermuteTwoSrc, MVT::v8i16, 2},  // vpermt2w
1111       {TTI::SK_PermuteTwoSrc, MVT::v64i8, 19}, // 6 * v32i8 + 1
1112   };
1113 
1114   if (ST->hasBWI())
1115     if (const auto *Entry =
1116             CostTableLookup(AVX512BWShuffleTbl, Kind, LT.second))
1117       return LT.first * Entry->Cost;
1118 
1119   static const CostTblEntry AVX512ShuffleTbl[] = {
1120       {TTI::SK_Broadcast, MVT::v8f64, 1},  // vbroadcastpd
1121       {TTI::SK_Broadcast, MVT::v16f32, 1}, // vbroadcastps
1122       {TTI::SK_Broadcast, MVT::v8i64, 1},  // vpbroadcastq
1123       {TTI::SK_Broadcast, MVT::v16i32, 1}, // vpbroadcastd
1124       {TTI::SK_Broadcast, MVT::v32i16, 1}, // vpbroadcastw
1125       {TTI::SK_Broadcast, MVT::v64i8, 1},  // vpbroadcastb
1126 
1127       {TTI::SK_Reverse, MVT::v8f64, 1},  // vpermpd
1128       {TTI::SK_Reverse, MVT::v16f32, 1}, // vpermps
1129       {TTI::SK_Reverse, MVT::v8i64, 1},  // vpermq
1130       {TTI::SK_Reverse, MVT::v16i32, 1}, // vpermd
1131 
1132       {TTI::SK_PermuteSingleSrc, MVT::v8f64, 1},  // vpermpd
1133       {TTI::SK_PermuteSingleSrc, MVT::v4f64, 1},  // vpermpd
1134       {TTI::SK_PermuteSingleSrc, MVT::v2f64, 1},  // vpermpd
1135       {TTI::SK_PermuteSingleSrc, MVT::v16f32, 1}, // vpermps
1136       {TTI::SK_PermuteSingleSrc, MVT::v8f32, 1},  // vpermps
1137       {TTI::SK_PermuteSingleSrc, MVT::v4f32, 1},  // vpermps
1138       {TTI::SK_PermuteSingleSrc, MVT::v8i64, 1},  // vpermq
1139       {TTI::SK_PermuteSingleSrc, MVT::v4i64, 1},  // vpermq
1140       {TTI::SK_PermuteSingleSrc, MVT::v2i64, 1},  // vpermq
1141       {TTI::SK_PermuteSingleSrc, MVT::v16i32, 1}, // vpermd
1142       {TTI::SK_PermuteSingleSrc, MVT::v8i32, 1},  // vpermd
1143       {TTI::SK_PermuteSingleSrc, MVT::v4i32, 1},  // vpermd
1144       {TTI::SK_PermuteSingleSrc, MVT::v16i8, 1},  // pshufb
1145 
1146       {TTI::SK_PermuteTwoSrc, MVT::v8f64, 1},  // vpermt2pd
1147       {TTI::SK_PermuteTwoSrc, MVT::v16f32, 1}, // vpermt2ps
1148       {TTI::SK_PermuteTwoSrc, MVT::v8i64, 1},  // vpermt2q
1149       {TTI::SK_PermuteTwoSrc, MVT::v16i32, 1}, // vpermt2d
1150       {TTI::SK_PermuteTwoSrc, MVT::v4f64, 1},  // vpermt2pd
1151       {TTI::SK_PermuteTwoSrc, MVT::v8f32, 1},  // vpermt2ps
1152       {TTI::SK_PermuteTwoSrc, MVT::v4i64, 1},  // vpermt2q
1153       {TTI::SK_PermuteTwoSrc, MVT::v8i32, 1},  // vpermt2d
1154       {TTI::SK_PermuteTwoSrc, MVT::v2f64, 1},  // vpermt2pd
1155       {TTI::SK_PermuteTwoSrc, MVT::v4f32, 1},  // vpermt2ps
1156       {TTI::SK_PermuteTwoSrc, MVT::v2i64, 1},  // vpermt2q
1157       {TTI::SK_PermuteTwoSrc, MVT::v4i32, 1},  // vpermt2d
1158 
1159       // FIXME: This just applies the type legalization cost rules above
1160       // assuming these completely split.
1161       {TTI::SK_PermuteSingleSrc, MVT::v32i16, 14},
1162       {TTI::SK_PermuteSingleSrc, MVT::v64i8,  14},
1163       {TTI::SK_PermuteTwoSrc,    MVT::v32i16, 42},
1164       {TTI::SK_PermuteTwoSrc,    MVT::v64i8,  42},
1165   };
1166 
1167   if (ST->hasAVX512())
1168     if (const auto *Entry = CostTableLookup(AVX512ShuffleTbl, Kind, LT.second))
1169       return LT.first * Entry->Cost;
1170 
1171   static const CostTblEntry AVX2ShuffleTbl[] = {
1172       {TTI::SK_Broadcast, MVT::v4f64, 1},  // vbroadcastpd
1173       {TTI::SK_Broadcast, MVT::v8f32, 1},  // vbroadcastps
1174       {TTI::SK_Broadcast, MVT::v4i64, 1},  // vpbroadcastq
1175       {TTI::SK_Broadcast, MVT::v8i32, 1},  // vpbroadcastd
1176       {TTI::SK_Broadcast, MVT::v16i16, 1}, // vpbroadcastw
1177       {TTI::SK_Broadcast, MVT::v32i8, 1},  // vpbroadcastb
1178 
1179       {TTI::SK_Reverse, MVT::v4f64, 1},  // vpermpd
1180       {TTI::SK_Reverse, MVT::v8f32, 1},  // vpermps
1181       {TTI::SK_Reverse, MVT::v4i64, 1},  // vpermq
1182       {TTI::SK_Reverse, MVT::v8i32, 1},  // vpermd
1183       {TTI::SK_Reverse, MVT::v16i16, 2}, // vperm2i128 + pshufb
1184       {TTI::SK_Reverse, MVT::v32i8, 2},  // vperm2i128 + pshufb
1185 
1186       {TTI::SK_Select, MVT::v16i16, 1}, // vpblendvb
1187       {TTI::SK_Select, MVT::v32i8, 1},  // vpblendvb
1188 
1189       {TTI::SK_PermuteSingleSrc, MVT::v4f64, 1},  // vpermpd
1190       {TTI::SK_PermuteSingleSrc, MVT::v8f32, 1},  // vpermps
1191       {TTI::SK_PermuteSingleSrc, MVT::v4i64, 1},  // vpermq
1192       {TTI::SK_PermuteSingleSrc, MVT::v8i32, 1},  // vpermd
1193       {TTI::SK_PermuteSingleSrc, MVT::v16i16, 4}, // vperm2i128 + 2*vpshufb
1194                                                   // + vpblendvb
1195       {TTI::SK_PermuteSingleSrc, MVT::v32i8, 4},  // vperm2i128 + 2*vpshufb
1196                                                   // + vpblendvb
1197 
1198       {TTI::SK_PermuteTwoSrc, MVT::v4f64, 3},  // 2*vpermpd + vblendpd
1199       {TTI::SK_PermuteTwoSrc, MVT::v8f32, 3},  // 2*vpermps + vblendps
1200       {TTI::SK_PermuteTwoSrc, MVT::v4i64, 3},  // 2*vpermq + vpblendd
1201       {TTI::SK_PermuteTwoSrc, MVT::v8i32, 3},  // 2*vpermd + vpblendd
1202       {TTI::SK_PermuteTwoSrc, MVT::v16i16, 7}, // 2*vperm2i128 + 4*vpshufb
1203                                                // + vpblendvb
1204       {TTI::SK_PermuteTwoSrc, MVT::v32i8, 7},  // 2*vperm2i128 + 4*vpshufb
1205                                                // + vpblendvb
1206   };
1207 
1208   if (ST->hasAVX2())
1209     if (const auto *Entry = CostTableLookup(AVX2ShuffleTbl, Kind, LT.second))
1210       return LT.first * Entry->Cost;
1211 
1212   static const CostTblEntry XOPShuffleTbl[] = {
1213       {TTI::SK_PermuteSingleSrc, MVT::v4f64, 2},  // vperm2f128 + vpermil2pd
1214       {TTI::SK_PermuteSingleSrc, MVT::v8f32, 2},  // vperm2f128 + vpermil2ps
1215       {TTI::SK_PermuteSingleSrc, MVT::v4i64, 2},  // vperm2f128 + vpermil2pd
1216       {TTI::SK_PermuteSingleSrc, MVT::v8i32, 2},  // vperm2f128 + vpermil2ps
1217       {TTI::SK_PermuteSingleSrc, MVT::v16i16, 4}, // vextractf128 + 2*vpperm
1218                                                   // + vinsertf128
1219       {TTI::SK_PermuteSingleSrc, MVT::v32i8, 4},  // vextractf128 + 2*vpperm
1220                                                   // + vinsertf128
1221 
1222       {TTI::SK_PermuteTwoSrc, MVT::v16i16, 9}, // 2*vextractf128 + 6*vpperm
1223                                                // + vinsertf128
1224       {TTI::SK_PermuteTwoSrc, MVT::v8i16, 1},  // vpperm
1225       {TTI::SK_PermuteTwoSrc, MVT::v32i8, 9},  // 2*vextractf128 + 6*vpperm
1226                                                // + vinsertf128
1227       {TTI::SK_PermuteTwoSrc, MVT::v16i8, 1},  // vpperm
1228   };
1229 
1230   if (ST->hasXOP())
1231     if (const auto *Entry = CostTableLookup(XOPShuffleTbl, Kind, LT.second))
1232       return LT.first * Entry->Cost;
1233 
1234   static const CostTblEntry AVX1ShuffleTbl[] = {
1235       {TTI::SK_Broadcast, MVT::v4f64, 2},  // vperm2f128 + vpermilpd
1236       {TTI::SK_Broadcast, MVT::v8f32, 2},  // vperm2f128 + vpermilps
1237       {TTI::SK_Broadcast, MVT::v4i64, 2},  // vperm2f128 + vpermilpd
1238       {TTI::SK_Broadcast, MVT::v8i32, 2},  // vperm2f128 + vpermilps
1239       {TTI::SK_Broadcast, MVT::v16i16, 3}, // vpshuflw + vpshufd + vinsertf128
1240       {TTI::SK_Broadcast, MVT::v32i8, 2},  // vpshufb + vinsertf128
1241 
1242       {TTI::SK_Reverse, MVT::v4f64, 2},  // vperm2f128 + vpermilpd
1243       {TTI::SK_Reverse, MVT::v8f32, 2},  // vperm2f128 + vpermilps
1244       {TTI::SK_Reverse, MVT::v4i64, 2},  // vperm2f128 + vpermilpd
1245       {TTI::SK_Reverse, MVT::v8i32, 2},  // vperm2f128 + vpermilps
1246       {TTI::SK_Reverse, MVT::v16i16, 4}, // vextractf128 + 2*pshufb
1247                                          // + vinsertf128
1248       {TTI::SK_Reverse, MVT::v32i8, 4},  // vextractf128 + 2*pshufb
1249                                          // + vinsertf128
1250 
1251       {TTI::SK_Select, MVT::v4i64, 1},  // vblendpd
1252       {TTI::SK_Select, MVT::v4f64, 1},  // vblendpd
1253       {TTI::SK_Select, MVT::v8i32, 1},  // vblendps
1254       {TTI::SK_Select, MVT::v8f32, 1},  // vblendps
1255       {TTI::SK_Select, MVT::v16i16, 3}, // vpand + vpandn + vpor
1256       {TTI::SK_Select, MVT::v32i8, 3},  // vpand + vpandn + vpor
1257 
1258       {TTI::SK_PermuteSingleSrc, MVT::v4f64, 2},  // vperm2f128 + vshufpd
1259       {TTI::SK_PermuteSingleSrc, MVT::v4i64, 2},  // vperm2f128 + vshufpd
1260       {TTI::SK_PermuteSingleSrc, MVT::v8f32, 4},  // 2*vperm2f128 + 2*vshufps
1261       {TTI::SK_PermuteSingleSrc, MVT::v8i32, 4},  // 2*vperm2f128 + 2*vshufps
1262       {TTI::SK_PermuteSingleSrc, MVT::v16i16, 8}, // vextractf128 + 4*pshufb
1263                                                   // + 2*por + vinsertf128
1264       {TTI::SK_PermuteSingleSrc, MVT::v32i8, 8},  // vextractf128 + 4*pshufb
1265                                                   // + 2*por + vinsertf128
1266 
1267       {TTI::SK_PermuteTwoSrc, MVT::v4f64, 3},   // 2*vperm2f128 + vshufpd
1268       {TTI::SK_PermuteTwoSrc, MVT::v4i64, 3},   // 2*vperm2f128 + vshufpd
1269       {TTI::SK_PermuteTwoSrc, MVT::v8f32, 4},   // 2*vperm2f128 + 2*vshufps
1270       {TTI::SK_PermuteTwoSrc, MVT::v8i32, 4},   // 2*vperm2f128 + 2*vshufps
1271       {TTI::SK_PermuteTwoSrc, MVT::v16i16, 15}, // 2*vextractf128 + 8*pshufb
1272                                                 // + 4*por + vinsertf128
1273       {TTI::SK_PermuteTwoSrc, MVT::v32i8, 15},  // 2*vextractf128 + 8*pshufb
1274                                                 // + 4*por + vinsertf128
1275   };
1276 
1277   if (ST->hasAVX())
1278     if (const auto *Entry = CostTableLookup(AVX1ShuffleTbl, Kind, LT.second))
1279       return LT.first * Entry->Cost;
1280 
1281   static const CostTblEntry SSE41ShuffleTbl[] = {
1282       {TTI::SK_Select, MVT::v2i64, 1}, // pblendw
1283       {TTI::SK_Select, MVT::v2f64, 1}, // movsd
1284       {TTI::SK_Select, MVT::v4i32, 1}, // pblendw
1285       {TTI::SK_Select, MVT::v4f32, 1}, // blendps
1286       {TTI::SK_Select, MVT::v8i16, 1}, // pblendw
1287       {TTI::SK_Select, MVT::v16i8, 1}  // pblendvb
1288   };
1289 
1290   if (ST->hasSSE41())
1291     if (const auto *Entry = CostTableLookup(SSE41ShuffleTbl, Kind, LT.second))
1292       return LT.first * Entry->Cost;
1293 
1294   static const CostTblEntry SSSE3ShuffleTbl[] = {
1295       {TTI::SK_Broadcast, MVT::v8i16, 1}, // pshufb
1296       {TTI::SK_Broadcast, MVT::v16i8, 1}, // pshufb
1297 
1298       {TTI::SK_Reverse, MVT::v8i16, 1}, // pshufb
1299       {TTI::SK_Reverse, MVT::v16i8, 1}, // pshufb
1300 
1301       {TTI::SK_Select, MVT::v8i16, 3}, // 2*pshufb + por
1302       {TTI::SK_Select, MVT::v16i8, 3}, // 2*pshufb + por
1303 
1304       {TTI::SK_PermuteSingleSrc, MVT::v8i16, 1}, // pshufb
1305       {TTI::SK_PermuteSingleSrc, MVT::v16i8, 1}, // pshufb
1306 
1307       {TTI::SK_PermuteTwoSrc, MVT::v8i16, 3}, // 2*pshufb + por
1308       {TTI::SK_PermuteTwoSrc, MVT::v16i8, 3}, // 2*pshufb + por
1309   };
1310 
1311   if (ST->hasSSSE3())
1312     if (const auto *Entry = CostTableLookup(SSSE3ShuffleTbl, Kind, LT.second))
1313       return LT.first * Entry->Cost;
1314 
1315   static const CostTblEntry SSE2ShuffleTbl[] = {
1316       {TTI::SK_Broadcast, MVT::v2f64, 1}, // shufpd
1317       {TTI::SK_Broadcast, MVT::v2i64, 1}, // pshufd
1318       {TTI::SK_Broadcast, MVT::v4i32, 1}, // pshufd
1319       {TTI::SK_Broadcast, MVT::v8i16, 2}, // pshuflw + pshufd
1320       {TTI::SK_Broadcast, MVT::v16i8, 3}, // unpck + pshuflw + pshufd
1321 
1322       {TTI::SK_Reverse, MVT::v2f64, 1}, // shufpd
1323       {TTI::SK_Reverse, MVT::v2i64, 1}, // pshufd
1324       {TTI::SK_Reverse, MVT::v4i32, 1}, // pshufd
1325       {TTI::SK_Reverse, MVT::v8i16, 3}, // pshuflw + pshufhw + pshufd
1326       {TTI::SK_Reverse, MVT::v16i8, 9}, // 2*pshuflw + 2*pshufhw
1327                                         // + 2*pshufd + 2*unpck + packus
1328 
1329       {TTI::SK_Select, MVT::v2i64, 1}, // movsd
1330       {TTI::SK_Select, MVT::v2f64, 1}, // movsd
1331       {TTI::SK_Select, MVT::v4i32, 2}, // 2*shufps
1332       {TTI::SK_Select, MVT::v8i16, 3}, // pand + pandn + por
1333       {TTI::SK_Select, MVT::v16i8, 3}, // pand + pandn + por
1334 
1335       {TTI::SK_PermuteSingleSrc, MVT::v2f64, 1}, // shufpd
1336       {TTI::SK_PermuteSingleSrc, MVT::v2i64, 1}, // pshufd
1337       {TTI::SK_PermuteSingleSrc, MVT::v4i32, 1}, // pshufd
1338       {TTI::SK_PermuteSingleSrc, MVT::v8i16, 5}, // 2*pshuflw + 2*pshufhw
1339                                                   // + pshufd/unpck
1340     { TTI::SK_PermuteSingleSrc, MVT::v16i8, 10 }, // 2*pshuflw + 2*pshufhw
1341                                                   // + 2*pshufd + 2*unpck + 2*packus
1342 
1343     { TTI::SK_PermuteTwoSrc,    MVT::v2f64,  1 }, // shufpd
1344     { TTI::SK_PermuteTwoSrc,    MVT::v2i64,  1 }, // shufpd
1345     { TTI::SK_PermuteTwoSrc,    MVT::v4i32,  2 }, // 2*{unpck,movsd,pshufd}
1346     { TTI::SK_PermuteTwoSrc,    MVT::v8i16,  8 }, // blend+permute
1347     { TTI::SK_PermuteTwoSrc,    MVT::v16i8, 13 }, // blend+permute
1348   };
1349 
1350   if (ST->hasSSE2())
1351     if (const auto *Entry = CostTableLookup(SSE2ShuffleTbl, Kind, LT.second))
1352       return LT.first * Entry->Cost;
1353 
1354   static const CostTblEntry SSE1ShuffleTbl[] = {
1355     { TTI::SK_Broadcast,        MVT::v4f32, 1 }, // shufps
1356     { TTI::SK_Reverse,          MVT::v4f32, 1 }, // shufps
1357     { TTI::SK_Select,           MVT::v4f32, 2 }, // 2*shufps
1358     { TTI::SK_PermuteSingleSrc, MVT::v4f32, 1 }, // shufps
1359     { TTI::SK_PermuteTwoSrc,    MVT::v4f32, 2 }, // 2*shufps
1360   };
1361 
1362   if (ST->hasSSE1())
1363     if (const auto *Entry = CostTableLookup(SSE1ShuffleTbl, Kind, LT.second))
1364       return LT.first * Entry->Cost;
1365 
1366   return BaseT::getShuffleCost(Kind, BaseTp, Index, SubTp);
1367 }
1368 
1369 int X86TTIImpl::getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src,
1370                                  TTI::CastContextHint CCH,
1371                                  TTI::TargetCostKind CostKind,
1372                                  const Instruction *I) {
1373   int ISD = TLI->InstructionOpcodeToISD(Opcode);
1374   assert(ISD && "Invalid opcode");
1375 
1376   // TODO: Allow non-throughput costs that aren't binary.
1377   auto AdjustCost = [&CostKind](int Cost) {
1378     if (CostKind != TTI::TCK_RecipThroughput)
1379       return Cost == 0 ? 0 : 1;
1380     return Cost;
1381   };
1382 
1383   // FIXME: Need a better design of the cost table to handle non-simple types of
1384   // potential massive combinations (elem_num x src_type x dst_type).
1385 
1386   static const TypeConversionCostTblEntry AVX512BWConversionTbl[] {
1387     { ISD::SIGN_EXTEND, MVT::v32i16, MVT::v32i8, 1 },
1388     { ISD::ZERO_EXTEND, MVT::v32i16, MVT::v32i8, 1 },
1389 
1390     // Mask sign extend has an instruction.
1391     { ISD::SIGN_EXTEND, MVT::v2i8,   MVT::v2i1,  1 },
1392     { ISD::SIGN_EXTEND, MVT::v2i16,  MVT::v2i1,  1 },
1393     { ISD::SIGN_EXTEND, MVT::v4i8,   MVT::v4i1,  1 },
1394     { ISD::SIGN_EXTEND, MVT::v4i16,  MVT::v4i1,  1 },
1395     { ISD::SIGN_EXTEND, MVT::v8i8,   MVT::v8i1,  1 },
1396     { ISD::SIGN_EXTEND, MVT::v8i16,  MVT::v8i1,  1 },
1397     { ISD::SIGN_EXTEND, MVT::v16i8,  MVT::v16i1, 1 },
1398     { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i1, 1 },
1399     { ISD::SIGN_EXTEND, MVT::v32i8,  MVT::v32i1, 1 },
1400     { ISD::SIGN_EXTEND, MVT::v32i16, MVT::v32i1, 1 },
1401     { ISD::SIGN_EXTEND, MVT::v64i8,  MVT::v64i1, 1 },
1402 
1403     // Mask zero extend is a sext + shift.
1404     { ISD::ZERO_EXTEND, MVT::v2i8,   MVT::v2i1,  2 },
1405     { ISD::ZERO_EXTEND, MVT::v2i16,  MVT::v2i1,  2 },
1406     { ISD::ZERO_EXTEND, MVT::v4i8,   MVT::v4i1,  2 },
1407     { ISD::ZERO_EXTEND, MVT::v4i16,  MVT::v4i1,  2 },
1408     { ISD::ZERO_EXTEND, MVT::v8i8,   MVT::v8i1,  2 },
1409     { ISD::ZERO_EXTEND, MVT::v8i16,  MVT::v8i1,  2 },
1410     { ISD::ZERO_EXTEND, MVT::v16i8,  MVT::v16i1, 2 },
1411     { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i1, 2 },
1412     { ISD::ZERO_EXTEND, MVT::v32i8,  MVT::v32i1, 2 },
1413     { ISD::ZERO_EXTEND, MVT::v32i16, MVT::v32i1, 2 },
1414     { ISD::ZERO_EXTEND, MVT::v64i8,  MVT::v64i1, 2 },
1415 
1416     { ISD::TRUNCATE,    MVT::v32i8,  MVT::v32i16, 2 },
1417     { ISD::TRUNCATE,    MVT::v16i8,  MVT::v16i16, 2 }, // widen to zmm
1418     { ISD::TRUNCATE,    MVT::v2i1,   MVT::v2i8,   2 }, // widen to zmm
1419     { ISD::TRUNCATE,    MVT::v2i1,   MVT::v2i16,  2 }, // widen to zmm
1420     { ISD::TRUNCATE,    MVT::v4i1,   MVT::v4i8,   2 }, // widen to zmm
1421     { ISD::TRUNCATE,    MVT::v4i1,   MVT::v4i16,  2 }, // widen to zmm
1422     { ISD::TRUNCATE,    MVT::v8i1,   MVT::v8i8,   2 }, // widen to zmm
1423     { ISD::TRUNCATE,    MVT::v8i1,   MVT::v8i16,  2 }, // widen to zmm
1424     { ISD::TRUNCATE,    MVT::v16i1,  MVT::v16i8,  2 }, // widen to zmm
1425     { ISD::TRUNCATE,    MVT::v16i1,  MVT::v16i16, 2 }, // widen to zmm
1426     { ISD::TRUNCATE,    MVT::v32i1,  MVT::v32i8,  2 }, // widen to zmm
1427     { ISD::TRUNCATE,    MVT::v32i1,  MVT::v32i16, 2 },
1428     { ISD::TRUNCATE,    MVT::v64i1,  MVT::v64i8,  2 },
1429   };
1430 
1431   static const TypeConversionCostTblEntry AVX512DQConversionTbl[] = {
1432     { ISD::SINT_TO_FP,  MVT::v8f32,  MVT::v8i64,  1 },
1433     { ISD::SINT_TO_FP,  MVT::v8f64,  MVT::v8i64,  1 },
1434 
1435     { ISD::UINT_TO_FP,  MVT::v8f32,  MVT::v8i64,  1 },
1436     { ISD::UINT_TO_FP,  MVT::v8f64,  MVT::v8i64,  1 },
1437 
1438     { ISD::FP_TO_SINT,  MVT::v8i64,  MVT::v8f32,  1 },
1439     { ISD::FP_TO_SINT,  MVT::v8i64,  MVT::v8f64,  1 },
1440 
1441     { ISD::FP_TO_UINT,  MVT::v8i64,  MVT::v8f32,  1 },
1442     { ISD::FP_TO_UINT,  MVT::v8i64,  MVT::v8f64,  1 },
1443   };
1444 
1445   // TODO: For AVX512DQ + AVX512VL, we also have cheap casts for 128-bit and
1446   // 256-bit wide vectors.
1447 
1448   static const TypeConversionCostTblEntry AVX512FConversionTbl[] = {
1449     { ISD::FP_EXTEND, MVT::v8f64,   MVT::v8f32,  1 },
1450     { ISD::FP_EXTEND, MVT::v8f64,   MVT::v16f32, 3 },
1451     { ISD::FP_ROUND,  MVT::v8f32,   MVT::v8f64,  1 },
1452 
1453     { ISD::TRUNCATE,  MVT::v2i1,    MVT::v2i8,   3 }, // sext+vpslld+vptestmd
1454     { ISD::TRUNCATE,  MVT::v4i1,    MVT::v4i8,   3 }, // sext+vpslld+vptestmd
1455     { ISD::TRUNCATE,  MVT::v8i1,    MVT::v8i8,   3 }, // sext+vpslld+vptestmd
1456     { ISD::TRUNCATE,  MVT::v16i1,   MVT::v16i8,  3 }, // sext+vpslld+vptestmd
1457     { ISD::TRUNCATE,  MVT::v2i1,    MVT::v2i16,  3 }, // sext+vpsllq+vptestmq
1458     { ISD::TRUNCATE,  MVT::v4i1,    MVT::v4i16,  3 }, // sext+vpsllq+vptestmq
1459     { ISD::TRUNCATE,  MVT::v8i1,    MVT::v8i16,  3 }, // sext+vpsllq+vptestmq
1460     { ISD::TRUNCATE,  MVT::v16i1,   MVT::v16i16, 3 }, // sext+vpslld+vptestmd
1461     { ISD::TRUNCATE,  MVT::v2i1,    MVT::v2i32,  2 }, // zmm vpslld+vptestmd
1462     { ISD::TRUNCATE,  MVT::v4i1,    MVT::v4i32,  2 }, // zmm vpslld+vptestmd
1463     { ISD::TRUNCATE,  MVT::v8i1,    MVT::v8i32,  2 }, // zmm vpslld+vptestmd
1464     { ISD::TRUNCATE,  MVT::v16i1,   MVT::v16i32, 2 }, // vpslld+vptestmd
1465     { ISD::TRUNCATE,  MVT::v2i1,    MVT::v2i64,  2 }, // zmm vpsllq+vptestmq
1466     { ISD::TRUNCATE,  MVT::v4i1,    MVT::v4i64,  2 }, // zmm vpsllq+vptestmq
1467     { ISD::TRUNCATE,  MVT::v8i1,    MVT::v8i64,  2 }, // vpsllq+vptestmq
1468     { ISD::TRUNCATE,  MVT::v16i8,   MVT::v16i32, 2 },
1469     { ISD::TRUNCATE,  MVT::v16i16,  MVT::v16i32, 2 },
1470     { ISD::TRUNCATE,  MVT::v8i8,    MVT::v8i64,  2 },
1471     { ISD::TRUNCATE,  MVT::v8i16,   MVT::v8i64,  2 },
1472     { ISD::TRUNCATE,  MVT::v8i32,   MVT::v8i64,  1 },
1473     { ISD::TRUNCATE,  MVT::v4i32,   MVT::v4i64,  1 }, // zmm vpmovqd
1474     { ISD::TRUNCATE,  MVT::v16i8,   MVT::v16i64, 5 },// 2*vpmovqd+concat+vpmovdb
1475 
1476     { ISD::TRUNCATE,  MVT::v16i8,  MVT::v16i16,  3 }, // extend to v16i32
1477     { ISD::TRUNCATE,  MVT::v32i8,  MVT::v32i16,  8 },
1478 
1479     // Sign extend is zmm vpternlogd+vptruncdb.
1480     // Zero extend is zmm broadcast load+vptruncdw.
1481     { ISD::SIGN_EXTEND, MVT::v2i8,   MVT::v2i1,   3 },
1482     { ISD::ZERO_EXTEND, MVT::v2i8,   MVT::v2i1,   4 },
1483     { ISD::SIGN_EXTEND, MVT::v4i8,   MVT::v4i1,   3 },
1484     { ISD::ZERO_EXTEND, MVT::v4i8,   MVT::v4i1,   4 },
1485     { ISD::SIGN_EXTEND, MVT::v8i8,   MVT::v8i1,   3 },
1486     { ISD::ZERO_EXTEND, MVT::v8i8,   MVT::v8i1,   4 },
1487     { ISD::SIGN_EXTEND, MVT::v16i8,  MVT::v16i1,  3 },
1488     { ISD::ZERO_EXTEND, MVT::v16i8,  MVT::v16i1,  4 },
1489 
1490     // Sign extend is zmm vpternlogd+vptruncdw.
1491     // Zero extend is zmm vpternlogd+vptruncdw+vpsrlw.
1492     { ISD::SIGN_EXTEND, MVT::v2i16,  MVT::v2i1,   3 },
1493     { ISD::ZERO_EXTEND, MVT::v2i16,  MVT::v2i1,   4 },
1494     { ISD::SIGN_EXTEND, MVT::v4i16,  MVT::v4i1,   3 },
1495     { ISD::ZERO_EXTEND, MVT::v4i16,  MVT::v4i1,   4 },
1496     { ISD::SIGN_EXTEND, MVT::v8i16,  MVT::v8i1,   3 },
1497     { ISD::ZERO_EXTEND, MVT::v8i16,  MVT::v8i1,   4 },
1498     { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i1,  3 },
1499     { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i1,  4 },
1500 
1501     { ISD::SIGN_EXTEND, MVT::v2i32,  MVT::v2i1,   1 }, // zmm vpternlogd
1502     { ISD::ZERO_EXTEND, MVT::v2i32,  MVT::v2i1,   2 }, // zmm vpternlogd+psrld
1503     { ISD::SIGN_EXTEND, MVT::v4i32,  MVT::v4i1,   1 }, // zmm vpternlogd
1504     { ISD::ZERO_EXTEND, MVT::v4i32,  MVT::v4i1,   2 }, // zmm vpternlogd+psrld
1505     { ISD::SIGN_EXTEND, MVT::v8i32,  MVT::v8i1,   1 }, // zmm vpternlogd
1506     { ISD::ZERO_EXTEND, MVT::v8i32,  MVT::v8i1,   2 }, // zmm vpternlogd+psrld
1507     { ISD::SIGN_EXTEND, MVT::v2i64,  MVT::v2i1,   1 }, // zmm vpternlogq
1508     { ISD::ZERO_EXTEND, MVT::v2i64,  MVT::v2i1,   2 }, // zmm vpternlogq+psrlq
1509     { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v4i1,   1 }, // zmm vpternlogq
1510     { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v4i1,   2 }, // zmm vpternlogq+psrlq
1511 
1512     { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i1,  1 }, // vpternlogd
1513     { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i1,  2 }, // vpternlogd+psrld
1514     { ISD::SIGN_EXTEND, MVT::v8i64,  MVT::v8i1,   1 }, // vpternlogq
1515     { ISD::ZERO_EXTEND, MVT::v8i64,  MVT::v8i1,   2 }, // vpternlogq+psrlq
1516 
1517     { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i8,  1 },
1518     { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i8,  1 },
1519     { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i16, 1 },
1520     { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i16, 1 },
1521     { ISD::SIGN_EXTEND, MVT::v8i64,  MVT::v8i8,   1 },
1522     { ISD::ZERO_EXTEND, MVT::v8i64,  MVT::v8i8,   1 },
1523     { ISD::SIGN_EXTEND, MVT::v8i64,  MVT::v8i16,  1 },
1524     { ISD::ZERO_EXTEND, MVT::v8i64,  MVT::v8i16,  1 },
1525     { ISD::SIGN_EXTEND, MVT::v8i64,  MVT::v8i32,  1 },
1526     { ISD::ZERO_EXTEND, MVT::v8i64,  MVT::v8i32,  1 },
1527 
1528     { ISD::SIGN_EXTEND, MVT::v32i16, MVT::v32i8, 3 }, // FIXME: May not be right
1529     { ISD::ZERO_EXTEND, MVT::v32i16, MVT::v32i8, 3 }, // FIXME: May not be right
1530 
1531     { ISD::SINT_TO_FP,  MVT::v8f64,  MVT::v8i1,   4 },
1532     { ISD::SINT_TO_FP,  MVT::v16f32, MVT::v16i1,  3 },
1533     { ISD::SINT_TO_FP,  MVT::v8f64,  MVT::v8i8,   2 },
1534     { ISD::SINT_TO_FP,  MVT::v16f32, MVT::v16i8,  2 },
1535     { ISD::SINT_TO_FP,  MVT::v8f64,  MVT::v8i16,  2 },
1536     { ISD::SINT_TO_FP,  MVT::v16f32, MVT::v16i16, 2 },
1537     { ISD::SINT_TO_FP,  MVT::v16f32, MVT::v16i32, 1 },
1538     { ISD::SINT_TO_FP,  MVT::v8f64,  MVT::v8i32,  1 },
1539 
1540     { ISD::UINT_TO_FP,  MVT::v8f64,  MVT::v8i1,   4 },
1541     { ISD::UINT_TO_FP,  MVT::v16f32, MVT::v16i1,  3 },
1542     { ISD::UINT_TO_FP,  MVT::v8f64,  MVT::v8i8,   2 },
1543     { ISD::UINT_TO_FP,  MVT::v16f32, MVT::v16i8,  2 },
1544     { ISD::UINT_TO_FP,  MVT::v8f64,  MVT::v8i16,  2 },
1545     { ISD::UINT_TO_FP,  MVT::v16f32, MVT::v16i16, 2 },
1546     { ISD::UINT_TO_FP,  MVT::v8f64,  MVT::v8i32,  1 },
1547     { ISD::UINT_TO_FP,  MVT::v16f32, MVT::v16i32, 1 },
1548     { ISD::UINT_TO_FP,  MVT::v8f32,  MVT::v8i64, 26 },
1549     { ISD::UINT_TO_FP,  MVT::v8f64,  MVT::v8i64,  5 },
1550 
1551     { ISD::FP_TO_SINT,  MVT::v8i8,   MVT::v8f64,  3 },
1552     { ISD::FP_TO_SINT,  MVT::v8i16,  MVT::v8f64,  3 },
1553     { ISD::FP_TO_SINT,  MVT::v16i8,  MVT::v16f32, 3 },
1554     { ISD::FP_TO_SINT,  MVT::v16i16, MVT::v16f32, 3 },
1555 
1556     { ISD::FP_TO_UINT,  MVT::v8i32,  MVT::v8f64,  1 },
1557     { ISD::FP_TO_UINT,  MVT::v8i16,  MVT::v8f64,  3 },
1558     { ISD::FP_TO_UINT,  MVT::v8i8,   MVT::v8f64,  3 },
1559     { ISD::FP_TO_UINT,  MVT::v16i32, MVT::v16f32, 1 },
1560     { ISD::FP_TO_UINT,  MVT::v16i16, MVT::v16f32, 3 },
1561     { ISD::FP_TO_UINT,  MVT::v16i8,  MVT::v16f32, 3 },
1562   };
1563 
1564   static const TypeConversionCostTblEntry AVX512BWVLConversionTbl[] {
1565     // Mask sign extend has an instruction.
1566     { ISD::SIGN_EXTEND, MVT::v2i8,   MVT::v2i1,  1 },
1567     { ISD::SIGN_EXTEND, MVT::v2i16,  MVT::v2i1,  1 },
1568     { ISD::SIGN_EXTEND, MVT::v4i8,   MVT::v4i1,  1 },
1569     { ISD::SIGN_EXTEND, MVT::v4i16,  MVT::v4i1,  1 },
1570     { ISD::SIGN_EXTEND, MVT::v8i8,   MVT::v8i1,  1 },
1571     { ISD::SIGN_EXTEND, MVT::v8i16,  MVT::v8i1,  1 },
1572     { ISD::SIGN_EXTEND, MVT::v16i8,  MVT::v16i1, 1 },
1573     { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i1, 1 },
1574     { ISD::SIGN_EXTEND, MVT::v32i8,  MVT::v32i1, 1 },
1575 
1576     // Mask zero extend is a sext + shift.
1577     { ISD::ZERO_EXTEND, MVT::v2i8,   MVT::v2i1,  2 },
1578     { ISD::ZERO_EXTEND, MVT::v2i16,  MVT::v2i1,  2 },
1579     { ISD::ZERO_EXTEND, MVT::v4i8,   MVT::v4i1,  2 },
1580     { ISD::ZERO_EXTEND, MVT::v4i16,  MVT::v4i1,  2 },
1581     { ISD::ZERO_EXTEND, MVT::v8i8,   MVT::v8i1,  2 },
1582     { ISD::ZERO_EXTEND, MVT::v8i16,  MVT::v8i1,  2 },
1583     { ISD::ZERO_EXTEND, MVT::v16i8,  MVT::v16i1, 2 },
1584     { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i1, 2 },
1585     { ISD::ZERO_EXTEND, MVT::v32i8,  MVT::v32i1, 2 },
1586 
1587     { ISD::TRUNCATE,    MVT::v16i8,  MVT::v16i16, 2 },
1588     { ISD::TRUNCATE,    MVT::v2i1,   MVT::v2i8,   2 }, // vpsllw+vptestmb
1589     { ISD::TRUNCATE,    MVT::v2i1,   MVT::v2i16,  2 }, // vpsllw+vptestmw
1590     { ISD::TRUNCATE,    MVT::v4i1,   MVT::v4i8,   2 }, // vpsllw+vptestmb
1591     { ISD::TRUNCATE,    MVT::v4i1,   MVT::v4i16,  2 }, // vpsllw+vptestmw
1592     { ISD::TRUNCATE,    MVT::v8i1,   MVT::v8i8,   2 }, // vpsllw+vptestmb
1593     { ISD::TRUNCATE,    MVT::v8i1,   MVT::v8i16,  2 }, // vpsllw+vptestmw
1594     { ISD::TRUNCATE,    MVT::v16i1,  MVT::v16i8,  2 }, // vpsllw+vptestmb
1595     { ISD::TRUNCATE,    MVT::v16i1,  MVT::v16i16, 2 }, // vpsllw+vptestmw
1596     { ISD::TRUNCATE,    MVT::v32i1,  MVT::v32i8,  2 }, // vpsllw+vptestmb
1597   };
1598 
1599   static const TypeConversionCostTblEntry AVX512DQVLConversionTbl[] = {
1600     { ISD::SINT_TO_FP,  MVT::v2f32,  MVT::v2i64,  1 },
1601     { ISD::SINT_TO_FP,  MVT::v2f64,  MVT::v2i64,  1 },
1602     { ISD::SINT_TO_FP,  MVT::v4f32,  MVT::v4i64,  1 },
1603     { ISD::SINT_TO_FP,  MVT::v4f64,  MVT::v4i64,  1 },
1604 
1605     { ISD::UINT_TO_FP,  MVT::v2f32,  MVT::v2i64,  1 },
1606     { ISD::UINT_TO_FP,  MVT::v2f64,  MVT::v2i64,  1 },
1607     { ISD::UINT_TO_FP,  MVT::v4f32,  MVT::v4i64,  1 },
1608     { ISD::UINT_TO_FP,  MVT::v4f64,  MVT::v4i64,  1 },
1609 
1610     { ISD::FP_TO_SINT,  MVT::v2i64,  MVT::v2f32,  1 },
1611     { ISD::FP_TO_SINT,  MVT::v4i64,  MVT::v4f32,  1 },
1612     { ISD::FP_TO_SINT,  MVT::v2i64,  MVT::v2f64,  1 },
1613     { ISD::FP_TO_SINT,  MVT::v4i64,  MVT::v4f64,  1 },
1614 
1615     { ISD::FP_TO_UINT,  MVT::v2i64,  MVT::v2f32,  1 },
1616     { ISD::FP_TO_UINT,  MVT::v4i64,  MVT::v4f32,  1 },
1617     { ISD::FP_TO_UINT,  MVT::v2i64,  MVT::v2f64,  1 },
1618     { ISD::FP_TO_UINT,  MVT::v4i64,  MVT::v4f64,  1 },
1619   };
1620 
1621   static const TypeConversionCostTblEntry AVX512VLConversionTbl[] = {
1622     { ISD::TRUNCATE,  MVT::v2i1,    MVT::v2i8,   3 }, // sext+vpslld+vptestmd
1623     { ISD::TRUNCATE,  MVT::v4i1,    MVT::v4i8,   3 }, // sext+vpslld+vptestmd
1624     { ISD::TRUNCATE,  MVT::v8i1,    MVT::v8i8,   3 }, // sext+vpslld+vptestmd
1625     { ISD::TRUNCATE,  MVT::v16i1,   MVT::v16i8,  8 }, // split+2*v8i8
1626     { ISD::TRUNCATE,  MVT::v2i1,    MVT::v2i16,  3 }, // sext+vpsllq+vptestmq
1627     { ISD::TRUNCATE,  MVT::v4i1,    MVT::v4i16,  3 }, // sext+vpsllq+vptestmq
1628     { ISD::TRUNCATE,  MVT::v8i1,    MVT::v8i16,  3 }, // sext+vpsllq+vptestmq
1629     { ISD::TRUNCATE,  MVT::v16i1,   MVT::v16i16, 8 }, // split+2*v8i16
1630     { ISD::TRUNCATE,  MVT::v2i1,    MVT::v2i32,  2 }, // vpslld+vptestmd
1631     { ISD::TRUNCATE,  MVT::v4i1,    MVT::v4i32,  2 }, // vpslld+vptestmd
1632     { ISD::TRUNCATE,  MVT::v8i1,    MVT::v8i32,  2 }, // vpslld+vptestmd
1633     { ISD::TRUNCATE,  MVT::v2i1,    MVT::v2i64,  2 }, // vpsllq+vptestmq
1634     { ISD::TRUNCATE,  MVT::v4i1,    MVT::v4i64,  2 }, // vpsllq+vptestmq
1635     { ISD::TRUNCATE,  MVT::v4i32,   MVT::v4i64,  1 }, // vpmovqd
1636 
1637     // sign extend is vpcmpeq+maskedmove+vpmovdw+vpacksswb
1638     // zero extend is vpcmpeq+maskedmove+vpmovdw+vpsrlw+vpackuswb
1639     { ISD::SIGN_EXTEND, MVT::v2i8,   MVT::v2i1,   5 },
1640     { ISD::ZERO_EXTEND, MVT::v2i8,   MVT::v2i1,   6 },
1641     { ISD::SIGN_EXTEND, MVT::v4i8,   MVT::v4i1,   5 },
1642     { ISD::ZERO_EXTEND, MVT::v4i8,   MVT::v4i1,   6 },
1643     { ISD::SIGN_EXTEND, MVT::v8i8,   MVT::v8i1,   5 },
1644     { ISD::ZERO_EXTEND, MVT::v8i8,   MVT::v8i1,   6 },
1645     { ISD::SIGN_EXTEND, MVT::v16i8,  MVT::v16i1, 10 },
1646     { ISD::ZERO_EXTEND, MVT::v16i8,  MVT::v16i1, 12 },
1647 
1648     // sign extend is vpcmpeq+maskedmove+vpmovdw
1649     // zero extend is vpcmpeq+maskedmove+vpmovdw+vpsrlw
1650     { ISD::SIGN_EXTEND, MVT::v2i16,  MVT::v2i1,   4 },
1651     { ISD::ZERO_EXTEND, MVT::v2i16,  MVT::v2i1,   5 },
1652     { ISD::SIGN_EXTEND, MVT::v4i16,  MVT::v4i1,   4 },
1653     { ISD::ZERO_EXTEND, MVT::v4i16,  MVT::v4i1,   5 },
1654     { ISD::SIGN_EXTEND, MVT::v8i16,  MVT::v8i1,   4 },
1655     { ISD::ZERO_EXTEND, MVT::v8i16,  MVT::v8i1,   5 },
1656     { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i1, 10 },
1657     { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i1, 12 },
1658 
1659     { ISD::SIGN_EXTEND, MVT::v2i32,  MVT::v2i1,   1 }, // vpternlogd
1660     { ISD::ZERO_EXTEND, MVT::v2i32,  MVT::v2i1,   2 }, // vpternlogd+psrld
1661     { ISD::SIGN_EXTEND, MVT::v4i32,  MVT::v4i1,   1 }, // vpternlogd
1662     { ISD::ZERO_EXTEND, MVT::v4i32,  MVT::v4i1,   2 }, // vpternlogd+psrld
1663     { ISD::SIGN_EXTEND, MVT::v8i32,  MVT::v8i1,   1 }, // vpternlogd
1664     { ISD::ZERO_EXTEND, MVT::v8i32,  MVT::v8i1,   2 }, // vpternlogd+psrld
1665     { ISD::SIGN_EXTEND, MVT::v2i64,  MVT::v2i1,   1 }, // vpternlogq
1666     { ISD::ZERO_EXTEND, MVT::v2i64,  MVT::v2i1,   2 }, // vpternlogq+psrlq
1667     { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v4i1,   1 }, // vpternlogq
1668     { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v4i1,   2 }, // vpternlogq+psrlq
1669 
1670     { ISD::UINT_TO_FP,  MVT::v2f64,  MVT::v2i8,   2 },
1671     { ISD::UINT_TO_FP,  MVT::v4f64,  MVT::v4i8,   2 },
1672     { ISD::UINT_TO_FP,  MVT::v8f32,  MVT::v8i8,   2 },
1673     { ISD::UINT_TO_FP,  MVT::v2f64,  MVT::v2i16,  5 },
1674     { ISD::UINT_TO_FP,  MVT::v4f64,  MVT::v4i16,  2 },
1675     { ISD::UINT_TO_FP,  MVT::v8f32,  MVT::v8i16,  2 },
1676     { ISD::UINT_TO_FP,  MVT::v2f32,  MVT::v2i32,  2 },
1677     { ISD::UINT_TO_FP,  MVT::v2f64,  MVT::v2i32,  1 },
1678     { ISD::UINT_TO_FP,  MVT::v4f32,  MVT::v4i32,  1 },
1679     { ISD::UINT_TO_FP,  MVT::v4f64,  MVT::v4i32,  1 },
1680     { ISD::UINT_TO_FP,  MVT::v8f32,  MVT::v8i32,  1 },
1681     { ISD::UINT_TO_FP,  MVT::v2f32,  MVT::v2i64,  5 },
1682     { ISD::UINT_TO_FP,  MVT::v2f64,  MVT::v2i64,  5 },
1683     { ISD::UINT_TO_FP,  MVT::v4f64,  MVT::v4i64,  5 },
1684 
1685     { ISD::UINT_TO_FP,  MVT::f32,    MVT::i64,    1 },
1686     { ISD::UINT_TO_FP,  MVT::f64,    MVT::i64,    1 },
1687 
1688     { ISD::FP_TO_SINT,  MVT::v8i8,   MVT::v8f32,  3 },
1689     { ISD::FP_TO_UINT,  MVT::v8i8,   MVT::v8f32,  3 },
1690 
1691     { ISD::FP_TO_UINT,  MVT::i64,    MVT::f32,    1 },
1692     { ISD::FP_TO_UINT,  MVT::i64,    MVT::f64,    1 },
1693 
1694     { ISD::FP_TO_UINT,  MVT::v2i32,  MVT::v2f32,  1 },
1695     { ISD::FP_TO_UINT,  MVT::v4i32,  MVT::v4f32,  1 },
1696     { ISD::FP_TO_UINT,  MVT::v2i32,  MVT::v2f64,  1 },
1697     { ISD::FP_TO_UINT,  MVT::v4i32,  MVT::v4f64,  1 },
1698     { ISD::FP_TO_UINT,  MVT::v8i32,  MVT::v8f32,  1 },
1699   };
1700 
1701   static const TypeConversionCostTblEntry AVX2ConversionTbl[] = {
1702     { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v4i1,   3 },
1703     { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v4i1,   3 },
1704     { ISD::SIGN_EXTEND, MVT::v8i32,  MVT::v8i1,   3 },
1705     { ISD::ZERO_EXTEND, MVT::v8i32,  MVT::v8i1,   3 },
1706     { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v4i8,   1 },
1707     { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v4i8,   1 },
1708     { ISD::SIGN_EXTEND, MVT::v8i32,  MVT::v8i8,   1 },
1709     { ISD::ZERO_EXTEND, MVT::v8i32,  MVT::v8i8,   1 },
1710     { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i1,  1 },
1711     { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i1,  1 },
1712     { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i8,  1 },
1713     { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i8,  1 },
1714     { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v4i16,  1 },
1715     { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v4i16,  1 },
1716     { ISD::SIGN_EXTEND, MVT::v8i32,  MVT::v8i16,  1 },
1717     { ISD::ZERO_EXTEND, MVT::v8i32,  MVT::v8i16,  1 },
1718     { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v4i32,  1 },
1719     { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v4i32,  1 },
1720     { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i16, 3 },
1721     { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i16, 3 },
1722 
1723     { ISD::TRUNCATE,    MVT::v4i32,  MVT::v4i64,  2 },
1724     { ISD::TRUNCATE,    MVT::v8i1,   MVT::v8i32,  2 },
1725 
1726     { ISD::TRUNCATE,    MVT::v4i8,   MVT::v4i64,  2 },
1727     { ISD::TRUNCATE,    MVT::v4i16,  MVT::v4i64,  2 },
1728     { ISD::TRUNCATE,    MVT::v8i8,   MVT::v8i32,  2 },
1729     { ISD::TRUNCATE,    MVT::v8i16,  MVT::v8i32,  2 },
1730 
1731     { ISD::FP_EXTEND,   MVT::v8f64,  MVT::v8f32,  3 },
1732     { ISD::FP_ROUND,    MVT::v8f32,  MVT::v8f64,  3 },
1733 
1734     { ISD::UINT_TO_FP,  MVT::v8f32,  MVT::v8i32,  8 },
1735   };
1736 
1737   static const TypeConversionCostTblEntry AVXConversionTbl[] = {
1738     { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v4i1,  6 },
1739     { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v4i1,  4 },
1740     { ISD::SIGN_EXTEND, MVT::v8i32,  MVT::v8i1,  7 },
1741     { ISD::ZERO_EXTEND, MVT::v8i32,  MVT::v8i1,  4 },
1742     { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v4i8,  4 },
1743     { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v4i8,  4 },
1744     { ISD::SIGN_EXTEND, MVT::v8i32,  MVT::v8i8,  4 },
1745     { ISD::ZERO_EXTEND, MVT::v8i32,  MVT::v8i8,  4 },
1746     { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i1, 4 },
1747     { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i1, 4 },
1748     { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i8, 4 },
1749     { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i8, 4 },
1750     { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v4i16, 4 },
1751     { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v4i16, 3 },
1752     { ISD::SIGN_EXTEND, MVT::v8i32,  MVT::v8i16, 4 },
1753     { ISD::ZERO_EXTEND, MVT::v8i32,  MVT::v8i16, 4 },
1754     { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v4i32, 4 },
1755     { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v4i32, 4 },
1756 
1757     { ISD::TRUNCATE,    MVT::v4i1,  MVT::v4i64,  4 },
1758     { ISD::TRUNCATE,    MVT::v8i1,  MVT::v8i32,  5 },
1759     { ISD::TRUNCATE,    MVT::v16i1, MVT::v16i16, 4 },
1760     { ISD::TRUNCATE,    MVT::v8i1,  MVT::v8i64,  9 },
1761     { ISD::TRUNCATE,    MVT::v16i1, MVT::v16i64, 11 },
1762 
1763     { ISD::TRUNCATE,    MVT::v16i8, MVT::v16i16, 4 },
1764     { ISD::TRUNCATE,    MVT::v8i8,  MVT::v8i32,  4 },
1765     { ISD::TRUNCATE,    MVT::v8i16, MVT::v8i32,  5 },
1766     { ISD::TRUNCATE,    MVT::v4i8,  MVT::v4i64,  4 },
1767     { ISD::TRUNCATE,    MVT::v4i16, MVT::v4i64,  4 },
1768     { ISD::TRUNCATE,    MVT::v4i32, MVT::v4i64,  2 },
1769     { ISD::TRUNCATE,    MVT::v8i8,  MVT::v8i64, 11 },
1770     { ISD::TRUNCATE,    MVT::v8i16, MVT::v8i64,  9 },
1771     { ISD::TRUNCATE,    MVT::v8i32, MVT::v8i64,  3 },
1772     { ISD::TRUNCATE,    MVT::v16i8, MVT::v16i64, 11 },
1773 
1774     { ISD::SINT_TO_FP,  MVT::v4f32, MVT::v4i1,  3 },
1775     { ISD::SINT_TO_FP,  MVT::v4f64, MVT::v4i1,  3 },
1776     { ISD::SINT_TO_FP,  MVT::v8f32, MVT::v8i1,  8 },
1777     { ISD::SINT_TO_FP,  MVT::v4f32, MVT::v4i8,  3 },
1778     { ISD::SINT_TO_FP,  MVT::v4f64, MVT::v4i8,  3 },
1779     { ISD::SINT_TO_FP,  MVT::v8f32, MVT::v8i8,  8 },
1780     { ISD::SINT_TO_FP,  MVT::v4f32, MVT::v4i16, 3 },
1781     { ISD::SINT_TO_FP,  MVT::v4f64, MVT::v4i16, 3 },
1782     { ISD::SINT_TO_FP,  MVT::v8f32, MVT::v8i16, 5 },
1783     { ISD::SINT_TO_FP,  MVT::v4f32, MVT::v4i32, 1 },
1784     { ISD::SINT_TO_FP,  MVT::v4f64, MVT::v4i32, 1 },
1785     { ISD::SINT_TO_FP,  MVT::v8f32, MVT::v8i32, 1 },
1786 
1787     { ISD::UINT_TO_FP,  MVT::v4f32, MVT::v4i1,  7 },
1788     { ISD::UINT_TO_FP,  MVT::v4f64, MVT::v4i1,  7 },
1789     { ISD::UINT_TO_FP,  MVT::v8f32, MVT::v8i1,  6 },
1790     { ISD::UINT_TO_FP,  MVT::v4f32, MVT::v4i8,  2 },
1791     { ISD::UINT_TO_FP,  MVT::v4f64, MVT::v4i8,  2 },
1792     { ISD::UINT_TO_FP,  MVT::v8f32, MVT::v8i8,  5 },
1793     { ISD::UINT_TO_FP,  MVT::v4f32, MVT::v4i16, 2 },
1794     { ISD::UINT_TO_FP,  MVT::v4f64, MVT::v4i16, 2 },
1795     { ISD::UINT_TO_FP,  MVT::v8f32, MVT::v8i16, 5 },
1796     { ISD::UINT_TO_FP,  MVT::v2f64, MVT::v2i32, 6 },
1797     { ISD::UINT_TO_FP,  MVT::v4f32, MVT::v4i32, 6 },
1798     { ISD::UINT_TO_FP,  MVT::v4f64, MVT::v4i32, 6 },
1799     { ISD::UINT_TO_FP,  MVT::v8f32, MVT::v8i32, 9 },
1800     { ISD::UINT_TO_FP,  MVT::v2f64, MVT::v2i64, 5 },
1801     { ISD::UINT_TO_FP,  MVT::v4f64, MVT::v4i64, 6 },
1802     // The generic code to compute the scalar overhead is currently broken.
1803     // Workaround this limitation by estimating the scalarization overhead
1804     // here. We have roughly 10 instructions per scalar element.
1805     // Multiply that by the vector width.
1806     // FIXME: remove that when PR19268 is fixed.
1807     { ISD::SINT_TO_FP,  MVT::v4f64, MVT::v4i64, 13 },
1808     { ISD::SINT_TO_FP,  MVT::v4f64, MVT::v4i64, 13 },
1809 
1810     { ISD::FP_TO_SINT,  MVT::v8i8,  MVT::v8f32, 4 },
1811     { ISD::FP_TO_SINT,  MVT::v4i8,  MVT::v4f64, 3 },
1812     { ISD::FP_TO_SINT,  MVT::v4i16, MVT::v4f64, 2 },
1813     { ISD::FP_TO_SINT,  MVT::v8i16, MVT::v8f32, 3 },
1814 
1815     { ISD::FP_TO_UINT,  MVT::v4i8,  MVT::v4f64, 3 },
1816     { ISD::FP_TO_UINT,  MVT::v4i16, MVT::v4f64, 2 },
1817     { ISD::FP_TO_UINT,  MVT::v8i8,  MVT::v8f32, 4 },
1818     { ISD::FP_TO_UINT,  MVT::v8i16, MVT::v8f32, 3 },
1819     // This node is expanded into scalarized operations but BasicTTI is overly
1820     // optimistic estimating its cost.  It computes 3 per element (one
1821     // vector-extract, one scalar conversion and one vector-insert).  The
1822     // problem is that the inserts form a read-modify-write chain so latency
1823     // should be factored in too.  Inflating the cost per element by 1.
1824     { ISD::FP_TO_UINT,  MVT::v8i32, MVT::v8f32, 8*4 },
1825     { ISD::FP_TO_UINT,  MVT::v4i32, MVT::v4f64, 4*4 },
1826 
1827     { ISD::FP_EXTEND,   MVT::v4f64,  MVT::v4f32,  1 },
1828     { ISD::FP_ROUND,    MVT::v4f32,  MVT::v4f64,  1 },
1829   };
1830 
1831   static const TypeConversionCostTblEntry SSE41ConversionTbl[] = {
1832     { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i8,    2 },
1833     { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i8,    2 },
1834     { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i16,   2 },
1835     { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i16,   2 },
1836     { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i32,   2 },
1837     { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i32,   2 },
1838 
1839     { ISD::ZERO_EXTEND, MVT::v4i16,  MVT::v4i8,   1 },
1840     { ISD::SIGN_EXTEND, MVT::v4i16,  MVT::v4i8,   2 },
1841     { ISD::ZERO_EXTEND, MVT::v4i32,  MVT::v4i8,   1 },
1842     { ISD::SIGN_EXTEND, MVT::v4i32,  MVT::v4i8,   1 },
1843     { ISD::ZERO_EXTEND, MVT::v8i16,  MVT::v8i8,   1 },
1844     { ISD::SIGN_EXTEND, MVT::v8i16,  MVT::v8i8,   1 },
1845     { ISD::ZERO_EXTEND, MVT::v8i32,  MVT::v8i8,   2 },
1846     { ISD::SIGN_EXTEND, MVT::v8i32,  MVT::v8i8,   2 },
1847     { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i8,  2 },
1848     { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i8,  2 },
1849     { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i8,  4 },
1850     { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i8,  4 },
1851     { ISD::ZERO_EXTEND, MVT::v4i32,  MVT::v4i16,  1 },
1852     { ISD::SIGN_EXTEND, MVT::v4i32,  MVT::v4i16,  1 },
1853     { ISD::ZERO_EXTEND, MVT::v8i32,  MVT::v8i16,  2 },
1854     { ISD::SIGN_EXTEND, MVT::v8i32,  MVT::v8i16,  2 },
1855     { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i16, 4 },
1856     { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i16, 4 },
1857 
1858     // These truncates end up widening elements.
1859     { ISD::TRUNCATE,    MVT::v2i1,   MVT::v2i8,   1 }, // PMOVXZBQ
1860     { ISD::TRUNCATE,    MVT::v2i1,   MVT::v2i16,  1 }, // PMOVXZWQ
1861     { ISD::TRUNCATE,    MVT::v4i1,   MVT::v4i8,   1 }, // PMOVXZBD
1862 
1863     { ISD::TRUNCATE,    MVT::v2i8,   MVT::v2i16,  1 },
1864     { ISD::TRUNCATE,    MVT::v4i8,   MVT::v4i16,  1 },
1865     { ISD::TRUNCATE,    MVT::v8i8,   MVT::v8i16,  1 },
1866     { ISD::TRUNCATE,    MVT::v4i8,   MVT::v4i32,  1 },
1867     { ISD::TRUNCATE,    MVT::v4i16,  MVT::v4i32,  1 },
1868     { ISD::TRUNCATE,    MVT::v8i8,   MVT::v8i32,  3 },
1869     { ISD::TRUNCATE,    MVT::v8i16,  MVT::v8i32,  3 },
1870     { ISD::TRUNCATE,    MVT::v16i16, MVT::v16i32, 6 },
1871     { ISD::TRUNCATE,    MVT::v2i8,   MVT::v2i64,  1 }, // PSHUFB
1872 
1873     { ISD::UINT_TO_FP,  MVT::f32,    MVT::i64,    4 },
1874     { ISD::UINT_TO_FP,  MVT::f64,    MVT::i64,    4 },
1875 
1876     { ISD::FP_TO_SINT,  MVT::v2i8,   MVT::v2f32,  3 },
1877     { ISD::FP_TO_SINT,  MVT::v2i8,   MVT::v2f64,  3 },
1878 
1879     { ISD::FP_TO_UINT,  MVT::v2i8,   MVT::v2f32,  3 },
1880     { ISD::FP_TO_UINT,  MVT::v2i8,   MVT::v2f64,  3 },
1881     { ISD::FP_TO_UINT,  MVT::v4i16,  MVT::v4f32,  2 },
1882   };
1883 
1884   static const TypeConversionCostTblEntry SSE2ConversionTbl[] = {
1885     // These are somewhat magic numbers justified by looking at the output of
1886     // Intel's IACA, running some kernels and making sure when we take
1887     // legalization into account the throughput will be overestimated.
1888     { ISD::SINT_TO_FP, MVT::v4f32, MVT::v16i8, 8 },
1889     { ISD::SINT_TO_FP, MVT::v2f64, MVT::v16i8, 16*10 },
1890     { ISD::SINT_TO_FP, MVT::v4f32, MVT::v8i16, 15 },
1891     { ISD::SINT_TO_FP, MVT::v2f64, MVT::v8i16, 8*10 },
1892     { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i32, 5 },
1893     { ISD::SINT_TO_FP, MVT::v2f64, MVT::v4i32, 2*10 },
1894     { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i32, 2*10 },
1895     { ISD::SINT_TO_FP, MVT::v4f32, MVT::v2i64, 15 },
1896     { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i64, 2*10 },
1897 
1898     { ISD::UINT_TO_FP, MVT::v2f64, MVT::v16i8, 16*10 },
1899     { ISD::UINT_TO_FP, MVT::v4f32, MVT::v16i8, 8 },
1900     { ISD::UINT_TO_FP, MVT::v4f32, MVT::v8i16, 15 },
1901     { ISD::UINT_TO_FP, MVT::v2f64, MVT::v8i16, 8*10 },
1902     { ISD::UINT_TO_FP, MVT::v2f64, MVT::v4i32, 4*10 },
1903     { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i32, 8 },
1904     { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i64, 6 },
1905     { ISD::UINT_TO_FP, MVT::v4f32, MVT::v2i64, 15 },
1906 
1907     { ISD::FP_TO_SINT,  MVT::v2i8,   MVT::v2f32,  4 },
1908     { ISD::FP_TO_SINT,  MVT::v2i16,  MVT::v2f32,  2 },
1909     { ISD::FP_TO_SINT,  MVT::v4i8,   MVT::v4f32,  3 },
1910     { ISD::FP_TO_SINT,  MVT::v4i16,  MVT::v4f32,  2 },
1911     { ISD::FP_TO_SINT,  MVT::v2i16,  MVT::v2f64,  2 },
1912     { ISD::FP_TO_SINT,  MVT::v2i8,   MVT::v2f64,  4 },
1913 
1914     { ISD::FP_TO_SINT,  MVT::v2i32,  MVT::v2f64,  1 },
1915 
1916     { ISD::UINT_TO_FP,  MVT::f32,    MVT::i64,    6 },
1917     { ISD::UINT_TO_FP,  MVT::f64,    MVT::i64,    6 },
1918 
1919     { ISD::FP_TO_UINT,  MVT::i64,    MVT::f32,    4 },
1920     { ISD::FP_TO_UINT,  MVT::i64,    MVT::f64,    4 },
1921     { ISD::FP_TO_UINT,  MVT::v2i8,   MVT::v2f32,  4 },
1922     { ISD::FP_TO_UINT,  MVT::v2i8,   MVT::v2f64,  4 },
1923     { ISD::FP_TO_UINT,  MVT::v4i8,   MVT::v4f32,  3 },
1924     { ISD::FP_TO_UINT,  MVT::v2i16,  MVT::v2f32,  2 },
1925     { ISD::FP_TO_UINT,  MVT::v2i16,  MVT::v2f64,  2 },
1926     { ISD::FP_TO_UINT,  MVT::v4i16,  MVT::v4f32,  4 },
1927 
1928     { ISD::ZERO_EXTEND, MVT::v4i16,  MVT::v4i8,   1 },
1929     { ISD::SIGN_EXTEND, MVT::v4i16,  MVT::v4i8,   6 },
1930     { ISD::ZERO_EXTEND, MVT::v4i32,  MVT::v4i8,   2 },
1931     { ISD::SIGN_EXTEND, MVT::v4i32,  MVT::v4i8,   3 },
1932     { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v4i8,   4 },
1933     { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v4i8,   8 },
1934     { ISD::ZERO_EXTEND, MVT::v8i16,  MVT::v8i8,   1 },
1935     { ISD::SIGN_EXTEND, MVT::v8i16,  MVT::v8i8,   2 },
1936     { ISD::ZERO_EXTEND, MVT::v8i32,  MVT::v8i8,   6 },
1937     { ISD::SIGN_EXTEND, MVT::v8i32,  MVT::v8i8,   6 },
1938     { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i8,  3 },
1939     { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i8,  4 },
1940     { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i8,  9 },
1941     { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i8,  12 },
1942     { ISD::ZERO_EXTEND, MVT::v4i32,  MVT::v4i16,  1 },
1943     { ISD::SIGN_EXTEND, MVT::v4i32,  MVT::v4i16,  2 },
1944     { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v4i16,  3 },
1945     { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v4i16,  10 },
1946     { ISD::ZERO_EXTEND, MVT::v8i32,  MVT::v8i16,  3 },
1947     { ISD::SIGN_EXTEND, MVT::v8i32,  MVT::v8i16,  4 },
1948     { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i16, 6 },
1949     { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i16, 8 },
1950     { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v4i32,  3 },
1951     { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v4i32,  5 },
1952 
1953     // These truncates are really widening elements.
1954     { ISD::TRUNCATE,    MVT::v2i1,   MVT::v2i32,  1 }, // PSHUFD
1955     { ISD::TRUNCATE,    MVT::v2i1,   MVT::v2i16,  2 }, // PUNPCKLWD+DQ
1956     { ISD::TRUNCATE,    MVT::v2i1,   MVT::v2i8,   3 }, // PUNPCKLBW+WD+PSHUFD
1957     { ISD::TRUNCATE,    MVT::v4i1,   MVT::v4i16,  1 }, // PUNPCKLWD
1958     { ISD::TRUNCATE,    MVT::v4i1,   MVT::v4i8,   2 }, // PUNPCKLBW+WD
1959     { ISD::TRUNCATE,    MVT::v8i1,   MVT::v8i8,   1 }, // PUNPCKLBW
1960 
1961     { ISD::TRUNCATE,    MVT::v2i8,   MVT::v2i16,  2 }, // PAND+PACKUSWB
1962     { ISD::TRUNCATE,    MVT::v4i8,   MVT::v4i16,  2 }, // PAND+PACKUSWB
1963     { ISD::TRUNCATE,    MVT::v8i8,   MVT::v8i16,  2 }, // PAND+PACKUSWB
1964     { ISD::TRUNCATE,    MVT::v16i8,  MVT::v16i16, 3 },
1965     { ISD::TRUNCATE,    MVT::v2i8,   MVT::v2i32,  3 }, // PAND+2*PACKUSWB
1966     { ISD::TRUNCATE,    MVT::v2i16,  MVT::v2i32,  1 },
1967     { ISD::TRUNCATE,    MVT::v4i8,   MVT::v4i32,  3 },
1968     { ISD::TRUNCATE,    MVT::v4i16,  MVT::v4i32,  3 },
1969     { ISD::TRUNCATE,    MVT::v8i8,   MVT::v8i32,  4 },
1970     { ISD::TRUNCATE,    MVT::v16i8,  MVT::v16i32, 7 },
1971     { ISD::TRUNCATE,    MVT::v8i16,  MVT::v8i32,  5 },
1972     { ISD::TRUNCATE,    MVT::v16i16, MVT::v16i32, 10 },
1973     { ISD::TRUNCATE,    MVT::v2i8,   MVT::v2i64,  4 }, // PAND+3*PACKUSWB
1974     { ISD::TRUNCATE,    MVT::v2i16,  MVT::v2i64,  2 }, // PSHUFD+PSHUFLW
1975     { ISD::TRUNCATE,    MVT::v2i32,  MVT::v2i64,  1 }, // PSHUFD
1976   };
1977 
1978   std::pair<int, MVT> LTSrc = TLI->getTypeLegalizationCost(DL, Src);
1979   std::pair<int, MVT> LTDest = TLI->getTypeLegalizationCost(DL, Dst);
1980 
1981   if (ST->hasSSE2() && !ST->hasAVX()) {
1982     if (const auto *Entry = ConvertCostTableLookup(SSE2ConversionTbl, ISD,
1983                                                    LTDest.second, LTSrc.second))
1984       return AdjustCost(LTSrc.first * Entry->Cost);
1985   }
1986 
1987   EVT SrcTy = TLI->getValueType(DL, Src);
1988   EVT DstTy = TLI->getValueType(DL, Dst);
1989 
1990   // The function getSimpleVT only handles simple value types.
1991   if (!SrcTy.isSimple() || !DstTy.isSimple())
1992     return AdjustCost(BaseT::getCastInstrCost(Opcode, Dst, Src, CCH, CostKind));
1993 
1994   MVT SimpleSrcTy = SrcTy.getSimpleVT();
1995   MVT SimpleDstTy = DstTy.getSimpleVT();
1996 
1997   if (ST->useAVX512Regs()) {
1998     if (ST->hasBWI())
1999       if (const auto *Entry = ConvertCostTableLookup(AVX512BWConversionTbl, ISD,
2000                                                      SimpleDstTy, SimpleSrcTy))
2001         return AdjustCost(Entry->Cost);
2002 
2003     if (ST->hasDQI())
2004       if (const auto *Entry = ConvertCostTableLookup(AVX512DQConversionTbl, ISD,
2005                                                      SimpleDstTy, SimpleSrcTy))
2006         return AdjustCost(Entry->Cost);
2007 
2008     if (ST->hasAVX512())
2009       if (const auto *Entry = ConvertCostTableLookup(AVX512FConversionTbl, ISD,
2010                                                      SimpleDstTy, SimpleSrcTy))
2011         return AdjustCost(Entry->Cost);
2012   }
2013 
2014   if (ST->hasBWI())
2015     if (const auto *Entry = ConvertCostTableLookup(AVX512BWVLConversionTbl, ISD,
2016                                                    SimpleDstTy, SimpleSrcTy))
2017       return AdjustCost(Entry->Cost);
2018 
2019   if (ST->hasDQI())
2020     if (const auto *Entry = ConvertCostTableLookup(AVX512DQVLConversionTbl, ISD,
2021                                                    SimpleDstTy, SimpleSrcTy))
2022       return AdjustCost(Entry->Cost);
2023 
2024   if (ST->hasAVX512())
2025     if (const auto *Entry = ConvertCostTableLookup(AVX512VLConversionTbl, ISD,
2026                                                    SimpleDstTy, SimpleSrcTy))
2027       return AdjustCost(Entry->Cost);
2028 
2029   if (ST->hasAVX2()) {
2030     if (const auto *Entry = ConvertCostTableLookup(AVX2ConversionTbl, ISD,
2031                                                    SimpleDstTy, SimpleSrcTy))
2032       return AdjustCost(Entry->Cost);
2033   }
2034 
2035   if (ST->hasAVX()) {
2036     if (const auto *Entry = ConvertCostTableLookup(AVXConversionTbl, ISD,
2037                                                    SimpleDstTy, SimpleSrcTy))
2038       return AdjustCost(Entry->Cost);
2039   }
2040 
2041   if (ST->hasSSE41()) {
2042     if (const auto *Entry = ConvertCostTableLookup(SSE41ConversionTbl, ISD,
2043                                                    SimpleDstTy, SimpleSrcTy))
2044       return AdjustCost(Entry->Cost);
2045   }
2046 
2047   if (ST->hasSSE2()) {
2048     if (const auto *Entry = ConvertCostTableLookup(SSE2ConversionTbl, ISD,
2049                                                    SimpleDstTy, SimpleSrcTy))
2050       return AdjustCost(Entry->Cost);
2051   }
2052 
2053   return AdjustCost(
2054       BaseT::getCastInstrCost(Opcode, Dst, Src, CCH, CostKind, I));
2055 }
2056 
2057 int X86TTIImpl::getCmpSelInstrCost(unsigned Opcode, Type *ValTy, Type *CondTy,
2058                                    TTI::TargetCostKind CostKind,
2059                                    const Instruction *I) {
2060   // TODO: Handle other cost kinds.
2061   if (CostKind != TTI::TCK_RecipThroughput)
2062     return BaseT::getCmpSelInstrCost(Opcode, ValTy, CondTy, CostKind, I);
2063 
2064   // Legalize the type.
2065   std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, ValTy);
2066 
2067   MVT MTy = LT.second;
2068 
2069   int ISD = TLI->InstructionOpcodeToISD(Opcode);
2070   assert(ISD && "Invalid opcode");
2071 
2072   unsigned ExtraCost = 0;
2073   if (I && (Opcode == Instruction::ICmp || Opcode == Instruction::FCmp)) {
2074     // Some vector comparison predicates cost extra instructions.
2075     if (MTy.isVector() &&
2076         !((ST->hasXOP() && (!ST->hasAVX2() || MTy.is128BitVector())) ||
2077           (ST->hasAVX512() && 32 <= MTy.getScalarSizeInBits()) ||
2078           ST->hasBWI())) {
2079       switch (cast<CmpInst>(I)->getPredicate()) {
2080       case CmpInst::Predicate::ICMP_NE:
2081         // xor(cmpeq(x,y),-1)
2082         ExtraCost = 1;
2083         break;
2084       case CmpInst::Predicate::ICMP_SGE:
2085       case CmpInst::Predicate::ICMP_SLE:
2086         // xor(cmpgt(x,y),-1)
2087         ExtraCost = 1;
2088         break;
2089       case CmpInst::Predicate::ICMP_ULT:
2090       case CmpInst::Predicate::ICMP_UGT:
2091         // cmpgt(xor(x,signbit),xor(y,signbit))
2092         // xor(cmpeq(pmaxu(x,y),x),-1)
2093         ExtraCost = 2;
2094         break;
2095       case CmpInst::Predicate::ICMP_ULE:
2096       case CmpInst::Predicate::ICMP_UGE:
2097         if ((ST->hasSSE41() && MTy.getScalarSizeInBits() == 32) ||
2098             (ST->hasSSE2() && MTy.getScalarSizeInBits() < 32)) {
2099           // cmpeq(psubus(x,y),0)
2100           // cmpeq(pminu(x,y),x)
2101           ExtraCost = 1;
2102         } else {
2103           // xor(cmpgt(xor(x,signbit),xor(y,signbit)),-1)
2104           ExtraCost = 3;
2105         }
2106         break;
2107       default:
2108         break;
2109       }
2110     }
2111   }
2112 
2113   static const CostTblEntry SLMCostTbl[] = {
2114     // slm pcmpeq/pcmpgt throughput is 2
2115     { ISD::SETCC,   MVT::v2i64,   2 },
2116   };
2117 
2118   static const CostTblEntry AVX512BWCostTbl[] = {
2119     { ISD::SETCC,   MVT::v32i16,  1 },
2120     { ISD::SETCC,   MVT::v64i8,   1 },
2121 
2122     { ISD::SELECT,  MVT::v32i16,  1 },
2123     { ISD::SELECT,  MVT::v64i8,   1 },
2124   };
2125 
2126   static const CostTblEntry AVX512CostTbl[] = {
2127     { ISD::SETCC,   MVT::v8i64,   1 },
2128     { ISD::SETCC,   MVT::v16i32,  1 },
2129     { ISD::SETCC,   MVT::v8f64,   1 },
2130     { ISD::SETCC,   MVT::v16f32,  1 },
2131 
2132     { ISD::SELECT,  MVT::v8i64,   1 },
2133     { ISD::SELECT,  MVT::v16i32,  1 },
2134     { ISD::SELECT,  MVT::v8f64,   1 },
2135     { ISD::SELECT,  MVT::v16f32,  1 },
2136 
2137     { ISD::SETCC,   MVT::v32i16,  2 }, // FIXME: should probably be 4
2138     { ISD::SETCC,   MVT::v64i8,   2 }, // FIXME: should probably be 4
2139 
2140     { ISD::SELECT,  MVT::v32i16,  2 }, // FIXME: should be 3
2141     { ISD::SELECT,  MVT::v64i8,   2 }, // FIXME: should be 3
2142   };
2143 
2144   static const CostTblEntry AVX2CostTbl[] = {
2145     { ISD::SETCC,   MVT::v4i64,   1 },
2146     { ISD::SETCC,   MVT::v8i32,   1 },
2147     { ISD::SETCC,   MVT::v16i16,  1 },
2148     { ISD::SETCC,   MVT::v32i8,   1 },
2149 
2150     { ISD::SELECT,  MVT::v4i64,   1 }, // pblendvb
2151     { ISD::SELECT,  MVT::v8i32,   1 }, // pblendvb
2152     { ISD::SELECT,  MVT::v16i16,  1 }, // pblendvb
2153     { ISD::SELECT,  MVT::v32i8,   1 }, // pblendvb
2154   };
2155 
2156   static const CostTblEntry AVX1CostTbl[] = {
2157     { ISD::SETCC,   MVT::v4f64,   1 },
2158     { ISD::SETCC,   MVT::v8f32,   1 },
2159     // AVX1 does not support 8-wide integer compare.
2160     { ISD::SETCC,   MVT::v4i64,   4 },
2161     { ISD::SETCC,   MVT::v8i32,   4 },
2162     { ISD::SETCC,   MVT::v16i16,  4 },
2163     { ISD::SETCC,   MVT::v32i8,   4 },
2164 
2165     { ISD::SELECT,  MVT::v4f64,   1 }, // vblendvpd
2166     { ISD::SELECT,  MVT::v8f32,   1 }, // vblendvps
2167     { ISD::SELECT,  MVT::v4i64,   1 }, // vblendvpd
2168     { ISD::SELECT,  MVT::v8i32,   1 }, // vblendvps
2169     { ISD::SELECT,  MVT::v16i16,  3 }, // vandps + vandnps + vorps
2170     { ISD::SELECT,  MVT::v32i8,   3 }, // vandps + vandnps + vorps
2171   };
2172 
2173   static const CostTblEntry SSE42CostTbl[] = {
2174     { ISD::SETCC,   MVT::v2f64,   1 },
2175     { ISD::SETCC,   MVT::v4f32,   1 },
2176     { ISD::SETCC,   MVT::v2i64,   1 },
2177   };
2178 
2179   static const CostTblEntry SSE41CostTbl[] = {
2180     { ISD::SELECT,  MVT::v2f64,   1 }, // blendvpd
2181     { ISD::SELECT,  MVT::v4f32,   1 }, // blendvps
2182     { ISD::SELECT,  MVT::v2i64,   1 }, // pblendvb
2183     { ISD::SELECT,  MVT::v4i32,   1 }, // pblendvb
2184     { ISD::SELECT,  MVT::v8i16,   1 }, // pblendvb
2185     { ISD::SELECT,  MVT::v16i8,   1 }, // pblendvb
2186   };
2187 
2188   static const CostTblEntry SSE2CostTbl[] = {
2189     { ISD::SETCC,   MVT::v2f64,   2 },
2190     { ISD::SETCC,   MVT::f64,     1 },
2191     { ISD::SETCC,   MVT::v2i64,   8 },
2192     { ISD::SETCC,   MVT::v4i32,   1 },
2193     { ISD::SETCC,   MVT::v8i16,   1 },
2194     { ISD::SETCC,   MVT::v16i8,   1 },
2195 
2196     { ISD::SELECT,  MVT::v2f64,   3 }, // andpd + andnpd + orpd
2197     { ISD::SELECT,  MVT::v2i64,   3 }, // pand + pandn + por
2198     { ISD::SELECT,  MVT::v4i32,   3 }, // pand + pandn + por
2199     { ISD::SELECT,  MVT::v8i16,   3 }, // pand + pandn + por
2200     { ISD::SELECT,  MVT::v16i8,   3 }, // pand + pandn + por
2201   };
2202 
2203   static const CostTblEntry SSE1CostTbl[] = {
2204     { ISD::SETCC,   MVT::v4f32,   2 },
2205     { ISD::SETCC,   MVT::f32,     1 },
2206 
2207     { ISD::SELECT,  MVT::v4f32,   3 }, // andps + andnps + orps
2208   };
2209 
2210   if (ST->isSLM())
2211     if (const auto *Entry = CostTableLookup(SLMCostTbl, ISD, MTy))
2212       return LT.first * (ExtraCost + Entry->Cost);
2213 
2214   if (ST->hasBWI())
2215     if (const auto *Entry = CostTableLookup(AVX512BWCostTbl, ISD, MTy))
2216       return LT.first * (ExtraCost + Entry->Cost);
2217 
2218   if (ST->hasAVX512())
2219     if (const auto *Entry = CostTableLookup(AVX512CostTbl, ISD, MTy))
2220       return LT.first * (ExtraCost + Entry->Cost);
2221 
2222   if (ST->hasAVX2())
2223     if (const auto *Entry = CostTableLookup(AVX2CostTbl, ISD, MTy))
2224       return LT.first * (ExtraCost + Entry->Cost);
2225 
2226   if (ST->hasAVX())
2227     if (const auto *Entry = CostTableLookup(AVX1CostTbl, ISD, MTy))
2228       return LT.first * (ExtraCost + Entry->Cost);
2229 
2230   if (ST->hasSSE42())
2231     if (const auto *Entry = CostTableLookup(SSE42CostTbl, ISD, MTy))
2232       return LT.first * (ExtraCost + Entry->Cost);
2233 
2234   if (ST->hasSSE41())
2235     if (const auto *Entry = CostTableLookup(SSE41CostTbl, ISD, MTy))
2236       return LT.first * (ExtraCost + Entry->Cost);
2237 
2238   if (ST->hasSSE2())
2239     if (const auto *Entry = CostTableLookup(SSE2CostTbl, ISD, MTy))
2240       return LT.first * (ExtraCost + Entry->Cost);
2241 
2242   if (ST->hasSSE1())
2243     if (const auto *Entry = CostTableLookup(SSE1CostTbl, ISD, MTy))
2244       return LT.first * (ExtraCost + Entry->Cost);
2245 
2246   return BaseT::getCmpSelInstrCost(Opcode, ValTy, CondTy, CostKind, I);
2247 }
2248 
2249 unsigned X86TTIImpl::getAtomicMemIntrinsicMaxElementSize() const { return 16; }
2250 
2251 int X86TTIImpl::getTypeBasedIntrinsicInstrCost(
2252   const IntrinsicCostAttributes &ICA, TTI::TargetCostKind CostKind) {
2253 
2254   // Costs should match the codegen from:
2255   // BITREVERSE: llvm\test\CodeGen\X86\vector-bitreverse.ll
2256   // BSWAP: llvm\test\CodeGen\X86\bswap-vector.ll
2257   // CTLZ: llvm\test\CodeGen\X86\vector-lzcnt-*.ll
2258   // CTPOP: llvm\test\CodeGen\X86\vector-popcnt-*.ll
2259   // CTTZ: llvm\test\CodeGen\X86\vector-tzcnt-*.ll
2260   static const CostTblEntry AVX512CDCostTbl[] = {
2261     { ISD::CTLZ,       MVT::v8i64,   1 },
2262     { ISD::CTLZ,       MVT::v16i32,  1 },
2263     { ISD::CTLZ,       MVT::v32i16,  8 },
2264     { ISD::CTLZ,       MVT::v64i8,  20 },
2265     { ISD::CTLZ,       MVT::v4i64,   1 },
2266     { ISD::CTLZ,       MVT::v8i32,   1 },
2267     { ISD::CTLZ,       MVT::v16i16,  4 },
2268     { ISD::CTLZ,       MVT::v32i8,  10 },
2269     { ISD::CTLZ,       MVT::v2i64,   1 },
2270     { ISD::CTLZ,       MVT::v4i32,   1 },
2271     { ISD::CTLZ,       MVT::v8i16,   4 },
2272     { ISD::CTLZ,       MVT::v16i8,   4 },
2273   };
2274   static const CostTblEntry AVX512BWCostTbl[] = {
2275     { ISD::ABS,        MVT::v32i16,  1 },
2276     { ISD::ABS,        MVT::v64i8,   1 },
2277     { ISD::BITREVERSE, MVT::v8i64,   5 },
2278     { ISD::BITREVERSE, MVT::v16i32,  5 },
2279     { ISD::BITREVERSE, MVT::v32i16,  5 },
2280     { ISD::BITREVERSE, MVT::v64i8,   5 },
2281     { ISD::CTLZ,       MVT::v8i64,  23 },
2282     { ISD::CTLZ,       MVT::v16i32, 22 },
2283     { ISD::CTLZ,       MVT::v32i16, 18 },
2284     { ISD::CTLZ,       MVT::v64i8,  17 },
2285     { ISD::CTPOP,      MVT::v8i64,   7 },
2286     { ISD::CTPOP,      MVT::v16i32, 11 },
2287     { ISD::CTPOP,      MVT::v32i16,  9 },
2288     { ISD::CTPOP,      MVT::v64i8,   6 },
2289     { ISD::CTTZ,       MVT::v8i64,  10 },
2290     { ISD::CTTZ,       MVT::v16i32, 14 },
2291     { ISD::CTTZ,       MVT::v32i16, 12 },
2292     { ISD::CTTZ,       MVT::v64i8,   9 },
2293     { ISD::SADDSAT,    MVT::v32i16,  1 },
2294     { ISD::SADDSAT,    MVT::v64i8,   1 },
2295     { ISD::SMAX,       MVT::v32i16,  1 },
2296     { ISD::SMAX,       MVT::v64i8,   1 },
2297     { ISD::SMIN,       MVT::v32i16,  1 },
2298     { ISD::SMIN,       MVT::v64i8,   1 },
2299     { ISD::SSUBSAT,    MVT::v32i16,  1 },
2300     { ISD::SSUBSAT,    MVT::v64i8,   1 },
2301     { ISD::UADDSAT,    MVT::v32i16,  1 },
2302     { ISD::UADDSAT,    MVT::v64i8,   1 },
2303     { ISD::UMAX,       MVT::v32i16,  1 },
2304     { ISD::UMAX,       MVT::v64i8,   1 },
2305     { ISD::UMIN,       MVT::v32i16,  1 },
2306     { ISD::UMIN,       MVT::v64i8,   1 },
2307     { ISD::USUBSAT,    MVT::v32i16,  1 },
2308     { ISD::USUBSAT,    MVT::v64i8,   1 },
2309   };
2310   static const CostTblEntry AVX512CostTbl[] = {
2311     { ISD::ABS,        MVT::v8i64,   1 },
2312     { ISD::ABS,        MVT::v16i32,  1 },
2313     { ISD::ABS,        MVT::v32i16,  2 }, // FIXME: include split
2314     { ISD::ABS,        MVT::v64i8,   2 }, // FIXME: include split
2315     { ISD::ABS,        MVT::v4i64,   1 },
2316     { ISD::ABS,        MVT::v2i64,   1 },
2317     { ISD::BITREVERSE, MVT::v8i64,  36 },
2318     { ISD::BITREVERSE, MVT::v16i32, 24 },
2319     { ISD::BITREVERSE, MVT::v32i16, 10 },
2320     { ISD::BITREVERSE, MVT::v64i8,  10 },
2321     { ISD::CTLZ,       MVT::v8i64,  29 },
2322     { ISD::CTLZ,       MVT::v16i32, 35 },
2323     { ISD::CTLZ,       MVT::v32i16, 28 },
2324     { ISD::CTLZ,       MVT::v64i8,  18 },
2325     { ISD::CTPOP,      MVT::v8i64,  16 },
2326     { ISD::CTPOP,      MVT::v16i32, 24 },
2327     { ISD::CTPOP,      MVT::v32i16, 18 },
2328     { ISD::CTPOP,      MVT::v64i8,  12 },
2329     { ISD::CTTZ,       MVT::v8i64,  20 },
2330     { ISD::CTTZ,       MVT::v16i32, 28 },
2331     { ISD::CTTZ,       MVT::v32i16, 24 },
2332     { ISD::CTTZ,       MVT::v64i8,  18 },
2333     { ISD::SMAX,       MVT::v8i64,   1 },
2334     { ISD::SMAX,       MVT::v16i32,  1 },
2335     { ISD::SMAX,       MVT::v32i16,  2 }, // FIXME: include split
2336     { ISD::SMAX,       MVT::v64i8,   2 }, // FIXME: include split
2337     { ISD::SMAX,       MVT::v4i64,   1 },
2338     { ISD::SMAX,       MVT::v2i64,   1 },
2339     { ISD::SMIN,       MVT::v8i64,   1 },
2340     { ISD::SMIN,       MVT::v16i32,  1 },
2341     { ISD::SMIN,       MVT::v32i16,  2 }, // FIXME: include split
2342     { ISD::SMIN,       MVT::v64i8,   2 }, // FIXME: include split
2343     { ISD::SMIN,       MVT::v4i64,   1 },
2344     { ISD::SMIN,       MVT::v2i64,   1 },
2345     { ISD::UMAX,       MVT::v8i64,   1 },
2346     { ISD::UMAX,       MVT::v16i32,  1 },
2347     { ISD::UMAX,       MVT::v32i16,  2 }, // FIXME: include split
2348     { ISD::UMAX,       MVT::v64i8,   2 }, // FIXME: include split
2349     { ISD::UMAX,       MVT::v4i64,   1 },
2350     { ISD::UMAX,       MVT::v2i64,   1 },
2351     { ISD::UMIN,       MVT::v8i64,   1 },
2352     { ISD::UMIN,       MVT::v16i32,  1 },
2353     { ISD::UMIN,       MVT::v32i16,  2 }, // FIXME: include split
2354     { ISD::UMIN,       MVT::v64i8,   2 }, // FIXME: include split
2355     { ISD::UMIN,       MVT::v4i64,   1 },
2356     { ISD::UMIN,       MVT::v2i64,   1 },
2357     { ISD::USUBSAT,    MVT::v16i32,  2 }, // pmaxud + psubd
2358     { ISD::USUBSAT,    MVT::v2i64,   2 }, // pmaxuq + psubq
2359     { ISD::USUBSAT,    MVT::v4i64,   2 }, // pmaxuq + psubq
2360     { ISD::USUBSAT,    MVT::v8i64,   2 }, // pmaxuq + psubq
2361     { ISD::UADDSAT,    MVT::v16i32,  3 }, // not + pminud + paddd
2362     { ISD::UADDSAT,    MVT::v2i64,   3 }, // not + pminuq + paddq
2363     { ISD::UADDSAT,    MVT::v4i64,   3 }, // not + pminuq + paddq
2364     { ISD::UADDSAT,    MVT::v8i64,   3 }, // not + pminuq + paddq
2365     { ISD::SADDSAT,    MVT::v32i16,  2 }, // FIXME: include split
2366     { ISD::SADDSAT,    MVT::v64i8,   2 }, // FIXME: include split
2367     { ISD::SSUBSAT,    MVT::v32i16,  2 }, // FIXME: include split
2368     { ISD::SSUBSAT,    MVT::v64i8,   2 }, // FIXME: include split
2369     { ISD::UADDSAT,    MVT::v32i16,  2 }, // FIXME: include split
2370     { ISD::UADDSAT,    MVT::v64i8,   2 }, // FIXME: include split
2371     { ISD::USUBSAT,    MVT::v32i16,  2 }, // FIXME: include split
2372     { ISD::USUBSAT,    MVT::v64i8,   2 }, // FIXME: include split
2373     { ISD::FMAXNUM,    MVT::f32,     2 },
2374     { ISD::FMAXNUM,    MVT::v4f32,   2 },
2375     { ISD::FMAXNUM,    MVT::v8f32,   2 },
2376     { ISD::FMAXNUM,    MVT::v16f32,  2 },
2377     { ISD::FMAXNUM,    MVT::f64,     2 },
2378     { ISD::FMAXNUM,    MVT::v2f64,   2 },
2379     { ISD::FMAXNUM,    MVT::v4f64,   2 },
2380     { ISD::FMAXNUM,    MVT::v8f64,   2 },
2381   };
2382   static const CostTblEntry XOPCostTbl[] = {
2383     { ISD::BITREVERSE, MVT::v4i64,   4 },
2384     { ISD::BITREVERSE, MVT::v8i32,   4 },
2385     { ISD::BITREVERSE, MVT::v16i16,  4 },
2386     { ISD::BITREVERSE, MVT::v32i8,   4 },
2387     { ISD::BITREVERSE, MVT::v2i64,   1 },
2388     { ISD::BITREVERSE, MVT::v4i32,   1 },
2389     { ISD::BITREVERSE, MVT::v8i16,   1 },
2390     { ISD::BITREVERSE, MVT::v16i8,   1 },
2391     { ISD::BITREVERSE, MVT::i64,     3 },
2392     { ISD::BITREVERSE, MVT::i32,     3 },
2393     { ISD::BITREVERSE, MVT::i16,     3 },
2394     { ISD::BITREVERSE, MVT::i8,      3 }
2395   };
2396   static const CostTblEntry AVX2CostTbl[] = {
2397     { ISD::ABS,        MVT::v4i64,   2 }, // VBLENDVPD(X,VPSUBQ(0,X),X)
2398     { ISD::ABS,        MVT::v8i32,   1 },
2399     { ISD::ABS,        MVT::v16i16,  1 },
2400     { ISD::ABS,        MVT::v32i8,   1 },
2401     { ISD::BITREVERSE, MVT::v4i64,   5 },
2402     { ISD::BITREVERSE, MVT::v8i32,   5 },
2403     { ISD::BITREVERSE, MVT::v16i16,  5 },
2404     { ISD::BITREVERSE, MVT::v32i8,   5 },
2405     { ISD::BSWAP,      MVT::v4i64,   1 },
2406     { ISD::BSWAP,      MVT::v8i32,   1 },
2407     { ISD::BSWAP,      MVT::v16i16,  1 },
2408     { ISD::CTLZ,       MVT::v4i64,  23 },
2409     { ISD::CTLZ,       MVT::v8i32,  18 },
2410     { ISD::CTLZ,       MVT::v16i16, 14 },
2411     { ISD::CTLZ,       MVT::v32i8,   9 },
2412     { ISD::CTPOP,      MVT::v4i64,   7 },
2413     { ISD::CTPOP,      MVT::v8i32,  11 },
2414     { ISD::CTPOP,      MVT::v16i16,  9 },
2415     { ISD::CTPOP,      MVT::v32i8,   6 },
2416     { ISD::CTTZ,       MVT::v4i64,  10 },
2417     { ISD::CTTZ,       MVT::v8i32,  14 },
2418     { ISD::CTTZ,       MVT::v16i16, 12 },
2419     { ISD::CTTZ,       MVT::v32i8,   9 },
2420     { ISD::SADDSAT,    MVT::v16i16,  1 },
2421     { ISD::SADDSAT,    MVT::v32i8,   1 },
2422     { ISD::SMAX,       MVT::v8i32,   1 },
2423     { ISD::SMAX,       MVT::v16i16,  1 },
2424     { ISD::SMAX,       MVT::v32i8,   1 },
2425     { ISD::SMIN,       MVT::v8i32,   1 },
2426     { ISD::SMIN,       MVT::v16i16,  1 },
2427     { ISD::SMIN,       MVT::v32i8,   1 },
2428     { ISD::SSUBSAT,    MVT::v16i16,  1 },
2429     { ISD::SSUBSAT,    MVT::v32i8,   1 },
2430     { ISD::UADDSAT,    MVT::v16i16,  1 },
2431     { ISD::UADDSAT,    MVT::v32i8,   1 },
2432     { ISD::UADDSAT,    MVT::v8i32,   3 }, // not + pminud + paddd
2433     { ISD::UMAX,       MVT::v8i32,   1 },
2434     { ISD::UMAX,       MVT::v16i16,  1 },
2435     { ISD::UMAX,       MVT::v32i8,   1 },
2436     { ISD::UMIN,       MVT::v8i32,   1 },
2437     { ISD::UMIN,       MVT::v16i16,  1 },
2438     { ISD::UMIN,       MVT::v32i8,   1 },
2439     { ISD::USUBSAT,    MVT::v16i16,  1 },
2440     { ISD::USUBSAT,    MVT::v32i8,   1 },
2441     { ISD::USUBSAT,    MVT::v8i32,   2 }, // pmaxud + psubd
2442     { ISD::FSQRT,      MVT::f32,     7 }, // Haswell from http://www.agner.org/
2443     { ISD::FSQRT,      MVT::v4f32,   7 }, // Haswell from http://www.agner.org/
2444     { ISD::FSQRT,      MVT::v8f32,  14 }, // Haswell from http://www.agner.org/
2445     { ISD::FSQRT,      MVT::f64,    14 }, // Haswell from http://www.agner.org/
2446     { ISD::FSQRT,      MVT::v2f64,  14 }, // Haswell from http://www.agner.org/
2447     { ISD::FSQRT,      MVT::v4f64,  28 }, // Haswell from http://www.agner.org/
2448   };
2449   static const CostTblEntry AVX1CostTbl[] = {
2450     { ISD::ABS,        MVT::v4i64,   6 }, // VBLENDVPD(X,VPSUBQ(0,X),X)
2451     { ISD::ABS,        MVT::v8i32,   3 },
2452     { ISD::ABS,        MVT::v16i16,  3 },
2453     { ISD::ABS,        MVT::v32i8,   3 },
2454     { ISD::BITREVERSE, MVT::v4i64,  12 }, // 2 x 128-bit Op + extract/insert
2455     { ISD::BITREVERSE, MVT::v8i32,  12 }, // 2 x 128-bit Op + extract/insert
2456     { ISD::BITREVERSE, MVT::v16i16, 12 }, // 2 x 128-bit Op + extract/insert
2457     { ISD::BITREVERSE, MVT::v32i8,  12 }, // 2 x 128-bit Op + extract/insert
2458     { ISD::BSWAP,      MVT::v4i64,   4 },
2459     { ISD::BSWAP,      MVT::v8i32,   4 },
2460     { ISD::BSWAP,      MVT::v16i16,  4 },
2461     { ISD::CTLZ,       MVT::v4i64,  48 }, // 2 x 128-bit Op + extract/insert
2462     { ISD::CTLZ,       MVT::v8i32,  38 }, // 2 x 128-bit Op + extract/insert
2463     { ISD::CTLZ,       MVT::v16i16, 30 }, // 2 x 128-bit Op + extract/insert
2464     { ISD::CTLZ,       MVT::v32i8,  20 }, // 2 x 128-bit Op + extract/insert
2465     { ISD::CTPOP,      MVT::v4i64,  16 }, // 2 x 128-bit Op + extract/insert
2466     { ISD::CTPOP,      MVT::v8i32,  24 }, // 2 x 128-bit Op + extract/insert
2467     { ISD::CTPOP,      MVT::v16i16, 20 }, // 2 x 128-bit Op + extract/insert
2468     { ISD::CTPOP,      MVT::v32i8,  14 }, // 2 x 128-bit Op + extract/insert
2469     { ISD::CTTZ,       MVT::v4i64,  22 }, // 2 x 128-bit Op + extract/insert
2470     { ISD::CTTZ,       MVT::v8i32,  30 }, // 2 x 128-bit Op + extract/insert
2471     { ISD::CTTZ,       MVT::v16i16, 26 }, // 2 x 128-bit Op + extract/insert
2472     { ISD::CTTZ,       MVT::v32i8,  20 }, // 2 x 128-bit Op + extract/insert
2473     { ISD::SADDSAT,    MVT::v16i16,  4 }, // 2 x 128-bit Op + extract/insert
2474     { ISD::SADDSAT,    MVT::v32i8,   4 }, // 2 x 128-bit Op + extract/insert
2475     { ISD::SMAX,       MVT::v8i32,   4 }, // 2 x 128-bit Op + extract/insert
2476     { ISD::SMAX,       MVT::v16i16,  4 }, // 2 x 128-bit Op + extract/insert
2477     { ISD::SMAX,       MVT::v32i8,   4 }, // 2 x 128-bit Op + extract/insert
2478     { ISD::SMIN,       MVT::v8i32,   4 }, // 2 x 128-bit Op + extract/insert
2479     { ISD::SMIN,       MVT::v16i16,  4 }, // 2 x 128-bit Op + extract/insert
2480     { ISD::SMIN,       MVT::v32i8,   4 }, // 2 x 128-bit Op + extract/insert
2481     { ISD::SSUBSAT,    MVT::v16i16,  4 }, // 2 x 128-bit Op + extract/insert
2482     { ISD::SSUBSAT,    MVT::v32i8,   4 }, // 2 x 128-bit Op + extract/insert
2483     { ISD::UADDSAT,    MVT::v16i16,  4 }, // 2 x 128-bit Op + extract/insert
2484     { ISD::UADDSAT,    MVT::v32i8,   4 }, // 2 x 128-bit Op + extract/insert
2485     { ISD::UADDSAT,    MVT::v8i32,   8 }, // 2 x 128-bit Op + extract/insert
2486     { ISD::UMAX,       MVT::v8i32,   4 }, // 2 x 128-bit Op + extract/insert
2487     { ISD::UMAX,       MVT::v16i16,  4 }, // 2 x 128-bit Op + extract/insert
2488     { ISD::UMAX,       MVT::v32i8,   4 }, // 2 x 128-bit Op + extract/insert
2489     { ISD::UMIN,       MVT::v8i32,   4 }, // 2 x 128-bit Op + extract/insert
2490     { ISD::UMIN,       MVT::v16i16,  4 }, // 2 x 128-bit Op + extract/insert
2491     { ISD::UMIN,       MVT::v32i8,   4 }, // 2 x 128-bit Op + extract/insert
2492     { ISD::USUBSAT,    MVT::v16i16,  4 }, // 2 x 128-bit Op + extract/insert
2493     { ISD::USUBSAT,    MVT::v32i8,   4 }, // 2 x 128-bit Op + extract/insert
2494     { ISD::USUBSAT,    MVT::v8i32,   6 }, // 2 x 128-bit Op + extract/insert
2495     { ISD::FMAXNUM,    MVT::f32,     3 },
2496     { ISD::FMAXNUM,    MVT::v4f32,   3 },
2497     { ISD::FMAXNUM,    MVT::v8f32,   5 },
2498     { ISD::FMAXNUM,    MVT::f64,     3 },
2499     { ISD::FMAXNUM,    MVT::v2f64,   3 },
2500     { ISD::FMAXNUM,    MVT::v4f64,   5 },
2501     { ISD::FSQRT,      MVT::f32,    14 }, // SNB from http://www.agner.org/
2502     { ISD::FSQRT,      MVT::v4f32,  14 }, // SNB from http://www.agner.org/
2503     { ISD::FSQRT,      MVT::v8f32,  28 }, // SNB from http://www.agner.org/
2504     { ISD::FSQRT,      MVT::f64,    21 }, // SNB from http://www.agner.org/
2505     { ISD::FSQRT,      MVT::v2f64,  21 }, // SNB from http://www.agner.org/
2506     { ISD::FSQRT,      MVT::v4f64,  43 }, // SNB from http://www.agner.org/
2507   };
2508   static const CostTblEntry GLMCostTbl[] = {
2509     { ISD::FSQRT, MVT::f32,   19 }, // sqrtss
2510     { ISD::FSQRT, MVT::v4f32, 37 }, // sqrtps
2511     { ISD::FSQRT, MVT::f64,   34 }, // sqrtsd
2512     { ISD::FSQRT, MVT::v2f64, 67 }, // sqrtpd
2513   };
2514   static const CostTblEntry SLMCostTbl[] = {
2515     { ISD::FSQRT, MVT::f32,   20 }, // sqrtss
2516     { ISD::FSQRT, MVT::v4f32, 40 }, // sqrtps
2517     { ISD::FSQRT, MVT::f64,   35 }, // sqrtsd
2518     { ISD::FSQRT, MVT::v2f64, 70 }, // sqrtpd
2519   };
2520   static const CostTblEntry SSE42CostTbl[] = {
2521     { ISD::ABS,        MVT::v2i64,   3 }, // BLENDVPD(X,PSUBQ(0,X),X)
2522     { ISD::USUBSAT,    MVT::v4i32,   2 }, // pmaxud + psubd
2523     { ISD::UADDSAT,    MVT::v4i32,   3 }, // not + pminud + paddd
2524     { ISD::FSQRT,      MVT::f32,    18 }, // Nehalem from http://www.agner.org/
2525     { ISD::FSQRT,      MVT::v4f32,  18 }, // Nehalem from http://www.agner.org/
2526   };
2527   static const CostTblEntry SSE41CostTbl[] = {
2528     { ISD::SMAX,       MVT::v4i32,   1 },
2529     { ISD::SMAX,       MVT::v16i8,   1 },
2530     { ISD::SMIN,       MVT::v4i32,   1 },
2531     { ISD::SMIN,       MVT::v16i8,   1 },
2532     { ISD::UMAX,       MVT::v4i32,   1 },
2533     { ISD::UMAX,       MVT::v8i16,   1 },
2534     { ISD::UMIN,       MVT::v4i32,   1 },
2535     { ISD::UMIN,       MVT::v8i16,   1 },
2536   };
2537   static const CostTblEntry SSSE3CostTbl[] = {
2538     { ISD::ABS,        MVT::v4i32,   1 },
2539     { ISD::ABS,        MVT::v8i16,   1 },
2540     { ISD::ABS,        MVT::v16i8,   1 },
2541     { ISD::BITREVERSE, MVT::v2i64,   5 },
2542     { ISD::BITREVERSE, MVT::v4i32,   5 },
2543     { ISD::BITREVERSE, MVT::v8i16,   5 },
2544     { ISD::BITREVERSE, MVT::v16i8,   5 },
2545     { ISD::BSWAP,      MVT::v2i64,   1 },
2546     { ISD::BSWAP,      MVT::v4i32,   1 },
2547     { ISD::BSWAP,      MVT::v8i16,   1 },
2548     { ISD::CTLZ,       MVT::v2i64,  23 },
2549     { ISD::CTLZ,       MVT::v4i32,  18 },
2550     { ISD::CTLZ,       MVT::v8i16,  14 },
2551     { ISD::CTLZ,       MVT::v16i8,   9 },
2552     { ISD::CTPOP,      MVT::v2i64,   7 },
2553     { ISD::CTPOP,      MVT::v4i32,  11 },
2554     { ISD::CTPOP,      MVT::v8i16,   9 },
2555     { ISD::CTPOP,      MVT::v16i8,   6 },
2556     { ISD::CTTZ,       MVT::v2i64,  10 },
2557     { ISD::CTTZ,       MVT::v4i32,  14 },
2558     { ISD::CTTZ,       MVT::v8i16,  12 },
2559     { ISD::CTTZ,       MVT::v16i8,   9 }
2560   };
2561   static const CostTblEntry SSE2CostTbl[] = {
2562     { ISD::ABS,        MVT::v2i64,   4 },
2563     { ISD::ABS,        MVT::v4i32,   3 },
2564     { ISD::ABS,        MVT::v8i16,   3 },
2565     { ISD::ABS,        MVT::v16i8,   3 },
2566     { ISD::BITREVERSE, MVT::v2i64,  29 },
2567     { ISD::BITREVERSE, MVT::v4i32,  27 },
2568     { ISD::BITREVERSE, MVT::v8i16,  27 },
2569     { ISD::BITREVERSE, MVT::v16i8,  20 },
2570     { ISD::BSWAP,      MVT::v2i64,   7 },
2571     { ISD::BSWAP,      MVT::v4i32,   7 },
2572     { ISD::BSWAP,      MVT::v8i16,   7 },
2573     { ISD::CTLZ,       MVT::v2i64,  25 },
2574     { ISD::CTLZ,       MVT::v4i32,  26 },
2575     { ISD::CTLZ,       MVT::v8i16,  20 },
2576     { ISD::CTLZ,       MVT::v16i8,  17 },
2577     { ISD::CTPOP,      MVT::v2i64,  12 },
2578     { ISD::CTPOP,      MVT::v4i32,  15 },
2579     { ISD::CTPOP,      MVT::v8i16,  13 },
2580     { ISD::CTPOP,      MVT::v16i8,  10 },
2581     { ISD::CTTZ,       MVT::v2i64,  14 },
2582     { ISD::CTTZ,       MVT::v4i32,  18 },
2583     { ISD::CTTZ,       MVT::v8i16,  16 },
2584     { ISD::CTTZ,       MVT::v16i8,  13 },
2585     { ISD::SADDSAT,    MVT::v8i16,   1 },
2586     { ISD::SADDSAT,    MVT::v16i8,   1 },
2587     { ISD::SMAX,       MVT::v8i16,   1 },
2588     { ISD::SMIN,       MVT::v8i16,   1 },
2589     { ISD::SSUBSAT,    MVT::v8i16,   1 },
2590     { ISD::SSUBSAT,    MVT::v16i8,   1 },
2591     { ISD::UADDSAT,    MVT::v8i16,   1 },
2592     { ISD::UADDSAT,    MVT::v16i8,   1 },
2593     { ISD::UMAX,       MVT::v16i8,   1 },
2594     { ISD::UMIN,       MVT::v16i8,   1 },
2595     { ISD::USUBSAT,    MVT::v8i16,   1 },
2596     { ISD::USUBSAT,    MVT::v16i8,   1 },
2597     { ISD::FMAXNUM,    MVT::f64,     4 },
2598     { ISD::FMAXNUM,    MVT::v2f64,   4 },
2599     { ISD::FSQRT,      MVT::f64,    32 }, // Nehalem from http://www.agner.org/
2600     { ISD::FSQRT,      MVT::v2f64,  32 }, // Nehalem from http://www.agner.org/
2601   };
2602   static const CostTblEntry SSE1CostTbl[] = {
2603     { ISD::FMAXNUM,    MVT::f32,     4 },
2604     { ISD::FMAXNUM,    MVT::v4f32,   4 },
2605     { ISD::FSQRT,      MVT::f32,    28 }, // Pentium III from http://www.agner.org/
2606     { ISD::FSQRT,      MVT::v4f32,  56 }, // Pentium III from http://www.agner.org/
2607   };
2608   static const CostTblEntry BMI64CostTbl[] = { // 64-bit targets
2609     { ISD::CTTZ,       MVT::i64,     1 },
2610   };
2611   static const CostTblEntry BMI32CostTbl[] = { // 32 or 64-bit targets
2612     { ISD::CTTZ,       MVT::i32,     1 },
2613     { ISD::CTTZ,       MVT::i16,     1 },
2614     { ISD::CTTZ,       MVT::i8,      1 },
2615   };
2616   static const CostTblEntry LZCNT64CostTbl[] = { // 64-bit targets
2617     { ISD::CTLZ,       MVT::i64,     1 },
2618   };
2619   static const CostTblEntry LZCNT32CostTbl[] = { // 32 or 64-bit targets
2620     { ISD::CTLZ,       MVT::i32,     1 },
2621     { ISD::CTLZ,       MVT::i16,     1 },
2622     { ISD::CTLZ,       MVT::i8,      1 },
2623   };
2624   static const CostTblEntry POPCNT64CostTbl[] = { // 64-bit targets
2625     { ISD::CTPOP,      MVT::i64,     1 },
2626   };
2627   static const CostTblEntry POPCNT32CostTbl[] = { // 32 or 64-bit targets
2628     { ISD::CTPOP,      MVT::i32,     1 },
2629     { ISD::CTPOP,      MVT::i16,     1 },
2630     { ISD::CTPOP,      MVT::i8,      1 },
2631   };
2632   static const CostTblEntry X64CostTbl[] = { // 64-bit targets
2633     { ISD::BITREVERSE, MVT::i64,    14 },
2634     { ISD::CTLZ,       MVT::i64,     4 }, // BSR+XOR or BSR+XOR+CMOV
2635     { ISD::CTTZ,       MVT::i64,     3 }, // TEST+BSF+CMOV/BRANCH
2636     { ISD::CTPOP,      MVT::i64,    10 },
2637     { ISD::SADDO,      MVT::i64,     1 },
2638     { ISD::UADDO,      MVT::i64,     1 },
2639   };
2640   static const CostTblEntry X86CostTbl[] = { // 32 or 64-bit targets
2641     { ISD::BITREVERSE, MVT::i32,    14 },
2642     { ISD::BITREVERSE, MVT::i16,    14 },
2643     { ISD::BITREVERSE, MVT::i8,     11 },
2644     { ISD::CTLZ,       MVT::i32,     4 }, // BSR+XOR or BSR+XOR+CMOV
2645     { ISD::CTLZ,       MVT::i16,     4 }, // BSR+XOR or BSR+XOR+CMOV
2646     { ISD::CTLZ,       MVT::i8,      4 }, // BSR+XOR or BSR+XOR+CMOV
2647     { ISD::CTTZ,       MVT::i32,     3 }, // TEST+BSF+CMOV/BRANCH
2648     { ISD::CTTZ,       MVT::i16,     3 }, // TEST+BSF+CMOV/BRANCH
2649     { ISD::CTTZ,       MVT::i8,      3 }, // TEST+BSF+CMOV/BRANCH
2650     { ISD::CTPOP,      MVT::i32,     8 },
2651     { ISD::CTPOP,      MVT::i16,     9 },
2652     { ISD::CTPOP,      MVT::i8,      7 },
2653     { ISD::SADDO,      MVT::i32,     1 },
2654     { ISD::SADDO,      MVT::i16,     1 },
2655     { ISD::SADDO,      MVT::i8,      1 },
2656     { ISD::UADDO,      MVT::i32,     1 },
2657     { ISD::UADDO,      MVT::i16,     1 },
2658     { ISD::UADDO,      MVT::i8,      1 },
2659   };
2660 
2661   Type *RetTy = ICA.getReturnType();
2662   Type *OpTy = RetTy;
2663   Intrinsic::ID IID = ICA.getID();
2664   unsigned ISD = ISD::DELETED_NODE;
2665   switch (IID) {
2666   default:
2667     break;
2668   case Intrinsic::abs:
2669     ISD = ISD::ABS;
2670     break;
2671   case Intrinsic::bitreverse:
2672     ISD = ISD::BITREVERSE;
2673     break;
2674   case Intrinsic::bswap:
2675     ISD = ISD::BSWAP;
2676     break;
2677   case Intrinsic::ctlz:
2678     ISD = ISD::CTLZ;
2679     break;
2680   case Intrinsic::ctpop:
2681     ISD = ISD::CTPOP;
2682     break;
2683   case Intrinsic::cttz:
2684     ISD = ISD::CTTZ;
2685     break;
2686   case Intrinsic::maxnum:
2687   case Intrinsic::minnum:
2688     // FMINNUM has same costs so don't duplicate.
2689     ISD = ISD::FMAXNUM;
2690     break;
2691   case Intrinsic::sadd_sat:
2692     ISD = ISD::SADDSAT;
2693     break;
2694   case Intrinsic::smax:
2695     ISD = ISD::SMAX;
2696     break;
2697   case Intrinsic::smin:
2698     ISD = ISD::SMIN;
2699     break;
2700   case Intrinsic::ssub_sat:
2701     ISD = ISD::SSUBSAT;
2702     break;
2703   case Intrinsic::uadd_sat:
2704     ISD = ISD::UADDSAT;
2705     break;
2706   case Intrinsic::umax:
2707     ISD = ISD::UMAX;
2708     break;
2709   case Intrinsic::umin:
2710     ISD = ISD::UMIN;
2711     break;
2712   case Intrinsic::usub_sat:
2713     ISD = ISD::USUBSAT;
2714     break;
2715   case Intrinsic::sqrt:
2716     ISD = ISD::FSQRT;
2717     break;
2718   case Intrinsic::sadd_with_overflow:
2719   case Intrinsic::ssub_with_overflow:
2720     // SSUBO has same costs so don't duplicate.
2721     ISD = ISD::SADDO;
2722     OpTy = RetTy->getContainedType(0);
2723     break;
2724   case Intrinsic::uadd_with_overflow:
2725   case Intrinsic::usub_with_overflow:
2726     // USUBO has same costs so don't duplicate.
2727     ISD = ISD::UADDO;
2728     OpTy = RetTy->getContainedType(0);
2729     break;
2730   }
2731 
2732   if (ISD != ISD::DELETED_NODE) {
2733     // Legalize the type.
2734     std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, OpTy);
2735     MVT MTy = LT.second;
2736 
2737     // Attempt to lookup cost.
2738     if (ST->useGLMDivSqrtCosts())
2739       if (const auto *Entry = CostTableLookup(GLMCostTbl, ISD, MTy))
2740         return LT.first * Entry->Cost;
2741 
2742     if (ST->isSLM())
2743       if (const auto *Entry = CostTableLookup(SLMCostTbl, ISD, MTy))
2744         return LT.first * Entry->Cost;
2745 
2746     if (ST->hasCDI())
2747       if (const auto *Entry = CostTableLookup(AVX512CDCostTbl, ISD, MTy))
2748         return LT.first * Entry->Cost;
2749 
2750     if (ST->hasBWI())
2751       if (const auto *Entry = CostTableLookup(AVX512BWCostTbl, ISD, MTy))
2752         return LT.first * Entry->Cost;
2753 
2754     if (ST->hasAVX512())
2755       if (const auto *Entry = CostTableLookup(AVX512CostTbl, ISD, MTy))
2756         return LT.first * Entry->Cost;
2757 
2758     if (ST->hasXOP())
2759       if (const auto *Entry = CostTableLookup(XOPCostTbl, ISD, MTy))
2760         return LT.first * Entry->Cost;
2761 
2762     if (ST->hasAVX2())
2763       if (const auto *Entry = CostTableLookup(AVX2CostTbl, ISD, MTy))
2764         return LT.first * Entry->Cost;
2765 
2766     if (ST->hasAVX())
2767       if (const auto *Entry = CostTableLookup(AVX1CostTbl, ISD, MTy))
2768         return LT.first * Entry->Cost;
2769 
2770     if (ST->hasSSE42())
2771       if (const auto *Entry = CostTableLookup(SSE42CostTbl, ISD, MTy))
2772         return LT.first * Entry->Cost;
2773 
2774     if (ST->hasSSE41())
2775       if (const auto *Entry = CostTableLookup(SSE41CostTbl, ISD, MTy))
2776         return LT.first * Entry->Cost;
2777 
2778     if (ST->hasSSSE3())
2779       if (const auto *Entry = CostTableLookup(SSSE3CostTbl, ISD, MTy))
2780         return LT.first * Entry->Cost;
2781 
2782     if (ST->hasSSE2())
2783       if (const auto *Entry = CostTableLookup(SSE2CostTbl, ISD, MTy))
2784         return LT.first * Entry->Cost;
2785 
2786     if (ST->hasSSE1())
2787       if (const auto *Entry = CostTableLookup(SSE1CostTbl, ISD, MTy))
2788         return LT.first * Entry->Cost;
2789 
2790     if (ST->hasBMI()) {
2791       if (ST->is64Bit())
2792         if (const auto *Entry = CostTableLookup(BMI64CostTbl, ISD, MTy))
2793           return LT.first * Entry->Cost;
2794 
2795       if (const auto *Entry = CostTableLookup(BMI32CostTbl, ISD, MTy))
2796         return LT.first * Entry->Cost;
2797     }
2798 
2799     if (ST->hasLZCNT()) {
2800       if (ST->is64Bit())
2801         if (const auto *Entry = CostTableLookup(LZCNT64CostTbl, ISD, MTy))
2802           return LT.first * Entry->Cost;
2803 
2804       if (const auto *Entry = CostTableLookup(LZCNT32CostTbl, ISD, MTy))
2805         return LT.first * Entry->Cost;
2806     }
2807 
2808     if (ST->hasPOPCNT()) {
2809       if (ST->is64Bit())
2810         if (const auto *Entry = CostTableLookup(POPCNT64CostTbl, ISD, MTy))
2811           return LT.first * Entry->Cost;
2812 
2813       if (const auto *Entry = CostTableLookup(POPCNT32CostTbl, ISD, MTy))
2814         return LT.first * Entry->Cost;
2815     }
2816 
2817     // TODO - add BMI (TZCNT) scalar handling
2818 
2819     if (ST->is64Bit())
2820       if (const auto *Entry = CostTableLookup(X64CostTbl, ISD, MTy))
2821         return LT.first * Entry->Cost;
2822 
2823     if (const auto *Entry = CostTableLookup(X86CostTbl, ISD, MTy))
2824       return LT.first * Entry->Cost;
2825   }
2826 
2827   return BaseT::getIntrinsicInstrCost(ICA, CostKind);
2828 }
2829 
2830 int X86TTIImpl::getIntrinsicInstrCost(const IntrinsicCostAttributes &ICA,
2831                                       TTI::TargetCostKind CostKind) {
2832   if (CostKind != TTI::TCK_RecipThroughput)
2833     return BaseT::getIntrinsicInstrCost(ICA, CostKind);
2834 
2835   if (ICA.isTypeBasedOnly())
2836     return getTypeBasedIntrinsicInstrCost(ICA, CostKind);
2837 
2838   static const CostTblEntry AVX512CostTbl[] = {
2839     { ISD::ROTL,       MVT::v8i64,   1 },
2840     { ISD::ROTL,       MVT::v4i64,   1 },
2841     { ISD::ROTL,       MVT::v2i64,   1 },
2842     { ISD::ROTL,       MVT::v16i32,  1 },
2843     { ISD::ROTL,       MVT::v8i32,   1 },
2844     { ISD::ROTL,       MVT::v4i32,   1 },
2845     { ISD::ROTR,       MVT::v8i64,   1 },
2846     { ISD::ROTR,       MVT::v4i64,   1 },
2847     { ISD::ROTR,       MVT::v2i64,   1 },
2848     { ISD::ROTR,       MVT::v16i32,  1 },
2849     { ISD::ROTR,       MVT::v8i32,   1 },
2850     { ISD::ROTR,       MVT::v4i32,   1 }
2851   };
2852   // XOP: ROTL = VPROT(X,Y), ROTR = VPROT(X,SUB(0,Y))
2853   static const CostTblEntry XOPCostTbl[] = {
2854     { ISD::ROTL,       MVT::v4i64,   4 },
2855     { ISD::ROTL,       MVT::v8i32,   4 },
2856     { ISD::ROTL,       MVT::v16i16,  4 },
2857     { ISD::ROTL,       MVT::v32i8,   4 },
2858     { ISD::ROTL,       MVT::v2i64,   1 },
2859     { ISD::ROTL,       MVT::v4i32,   1 },
2860     { ISD::ROTL,       MVT::v8i16,   1 },
2861     { ISD::ROTL,       MVT::v16i8,   1 },
2862     { ISD::ROTR,       MVT::v4i64,   6 },
2863     { ISD::ROTR,       MVT::v8i32,   6 },
2864     { ISD::ROTR,       MVT::v16i16,  6 },
2865     { ISD::ROTR,       MVT::v32i8,   6 },
2866     { ISD::ROTR,       MVT::v2i64,   2 },
2867     { ISD::ROTR,       MVT::v4i32,   2 },
2868     { ISD::ROTR,       MVT::v8i16,   2 },
2869     { ISD::ROTR,       MVT::v16i8,   2 }
2870   };
2871   static const CostTblEntry X64CostTbl[] = { // 64-bit targets
2872     { ISD::ROTL,       MVT::i64,     1 },
2873     { ISD::ROTR,       MVT::i64,     1 },
2874     { ISD::FSHL,       MVT::i64,     4 }
2875   };
2876   static const CostTblEntry X86CostTbl[] = { // 32 or 64-bit targets
2877     { ISD::ROTL,       MVT::i32,     1 },
2878     { ISD::ROTL,       MVT::i16,     1 },
2879     { ISD::ROTL,       MVT::i8,      1 },
2880     { ISD::ROTR,       MVT::i32,     1 },
2881     { ISD::ROTR,       MVT::i16,     1 },
2882     { ISD::ROTR,       MVT::i8,      1 },
2883     { ISD::FSHL,       MVT::i32,     4 },
2884     { ISD::FSHL,       MVT::i16,     4 },
2885     { ISD::FSHL,       MVT::i8,      4 }
2886   };
2887 
2888   Intrinsic::ID IID = ICA.getID();
2889   Type *RetTy = ICA.getReturnType();
2890   const SmallVectorImpl<const Value *> &Args = ICA.getArgs();
2891   unsigned ISD = ISD::DELETED_NODE;
2892   switch (IID) {
2893   default:
2894     break;
2895   case Intrinsic::fshl:
2896     ISD = ISD::FSHL;
2897     if (Args[0] == Args[1])
2898       ISD = ISD::ROTL;
2899     break;
2900   case Intrinsic::fshr:
2901     // FSHR has same costs so don't duplicate.
2902     ISD = ISD::FSHL;
2903     if (Args[0] == Args[1])
2904       ISD = ISD::ROTR;
2905     break;
2906   }
2907 
2908   if (ISD != ISD::DELETED_NODE) {
2909     // Legalize the type.
2910     std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, RetTy);
2911     MVT MTy = LT.second;
2912 
2913     // Attempt to lookup cost.
2914     if (ST->hasAVX512())
2915       if (const auto *Entry = CostTableLookup(AVX512CostTbl, ISD, MTy))
2916         return LT.first * Entry->Cost;
2917 
2918     if (ST->hasXOP())
2919       if (const auto *Entry = CostTableLookup(XOPCostTbl, ISD, MTy))
2920         return LT.first * Entry->Cost;
2921 
2922     if (ST->is64Bit())
2923       if (const auto *Entry = CostTableLookup(X64CostTbl, ISD, MTy))
2924         return LT.first * Entry->Cost;
2925 
2926     if (const auto *Entry = CostTableLookup(X86CostTbl, ISD, MTy))
2927       return LT.first * Entry->Cost;
2928   }
2929 
2930   return BaseT::getIntrinsicInstrCost(ICA, CostKind);
2931 }
2932 
2933 int X86TTIImpl::getVectorInstrCost(unsigned Opcode, Type *Val, unsigned Index) {
2934   static const CostTblEntry SLMCostTbl[] = {
2935      { ISD::EXTRACT_VECTOR_ELT,       MVT::i8,      4 },
2936      { ISD::EXTRACT_VECTOR_ELT,       MVT::i16,     4 },
2937      { ISD::EXTRACT_VECTOR_ELT,       MVT::i32,     4 },
2938      { ISD::EXTRACT_VECTOR_ELT,       MVT::i64,     7 }
2939    };
2940 
2941   assert(Val->isVectorTy() && "This must be a vector type");
2942   Type *ScalarType = Val->getScalarType();
2943   int RegisterFileMoveCost = 0;
2944 
2945   if (Index != -1U && (Opcode == Instruction::ExtractElement ||
2946                        Opcode == Instruction::InsertElement)) {
2947     // Legalize the type.
2948     std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Val);
2949 
2950     // This type is legalized to a scalar type.
2951     if (!LT.second.isVector())
2952       return 0;
2953 
2954     // The type may be split. Normalize the index to the new type.
2955     unsigned NumElts = LT.second.getVectorNumElements();
2956     unsigned SubNumElts = NumElts;
2957     Index = Index % NumElts;
2958 
2959     // For >128-bit vectors, we need to extract higher 128-bit subvectors.
2960     // For inserts, we also need to insert the subvector back.
2961     if (LT.second.getSizeInBits() > 128) {
2962       assert((LT.second.getSizeInBits() % 128) == 0 && "Illegal vector");
2963       unsigned NumSubVecs = LT.second.getSizeInBits() / 128;
2964       SubNumElts = NumElts / NumSubVecs;
2965       if (SubNumElts <= Index) {
2966         RegisterFileMoveCost += (Opcode == Instruction::InsertElement ? 2 : 1);
2967         Index %= SubNumElts;
2968       }
2969     }
2970 
2971     if (Index == 0) {
2972       // Floating point scalars are already located in index #0.
2973       // Many insertions to #0 can fold away for scalar fp-ops, so let's assume
2974       // true for all.
2975       if (ScalarType->isFloatingPointTy())
2976         return RegisterFileMoveCost;
2977 
2978       // Assume movd/movq XMM -> GPR is relatively cheap on all targets.
2979       if (ScalarType->isIntegerTy() && Opcode == Instruction::ExtractElement)
2980         return 1 + RegisterFileMoveCost;
2981     }
2982 
2983     int ISD = TLI->InstructionOpcodeToISD(Opcode);
2984     assert(ISD && "Unexpected vector opcode");
2985     MVT MScalarTy = LT.second.getScalarType();
2986     if (ST->isSLM())
2987       if (auto *Entry = CostTableLookup(SLMCostTbl, ISD, MScalarTy))
2988         return Entry->Cost + RegisterFileMoveCost;
2989 
2990     // Assume pinsr/pextr XMM <-> GPR is relatively cheap on all targets.
2991     if ((MScalarTy == MVT::i16 && ST->hasSSE2()) ||
2992         (MScalarTy.isInteger() && ST->hasSSE41()))
2993       return 1 + RegisterFileMoveCost;
2994 
2995     // Assume insertps is relatively cheap on all targets.
2996     if (MScalarTy == MVT::f32 && ST->hasSSE41() &&
2997         Opcode == Instruction::InsertElement)
2998       return 1 + RegisterFileMoveCost;
2999 
3000     // For extractions we just need to shuffle the element to index 0, which
3001     // should be very cheap (assume cost = 1). For insertions we need to shuffle
3002     // the elements to its destination. In both cases we must handle the
3003     // subvector move(s).
3004     // If the vector type is already less than 128-bits then don't reduce it.
3005     // TODO: Under what circumstances should we shuffle using the full width?
3006     int ShuffleCost = 1;
3007     if (Opcode == Instruction::InsertElement) {
3008       auto *SubTy = cast<VectorType>(Val);
3009       EVT VT = TLI->getValueType(DL, Val);
3010       if (VT.getScalarType() != MScalarTy || VT.getSizeInBits() >= 128)
3011         SubTy = FixedVectorType::get(ScalarType, SubNumElts);
3012       ShuffleCost = getShuffleCost(TTI::SK_PermuteTwoSrc, SubTy, 0, SubTy);
3013     }
3014     int IntOrFpCost = ScalarType->isFloatingPointTy() ? 0 : 1;
3015     return ShuffleCost + IntOrFpCost + RegisterFileMoveCost;
3016   }
3017 
3018   // Add to the base cost if we know that the extracted element of a vector is
3019   // destined to be moved to and used in the integer register file.
3020   if (Opcode == Instruction::ExtractElement && ScalarType->isPointerTy())
3021     RegisterFileMoveCost += 1;
3022 
3023   return BaseT::getVectorInstrCost(Opcode, Val, Index) + RegisterFileMoveCost;
3024 }
3025 
3026 unsigned X86TTIImpl::getScalarizationOverhead(VectorType *Ty,
3027                                               const APInt &DemandedElts,
3028                                               bool Insert, bool Extract) {
3029   unsigned Cost = 0;
3030 
3031   // For insertions, a ISD::BUILD_VECTOR style vector initialization can be much
3032   // cheaper than an accumulation of ISD::INSERT_VECTOR_ELT.
3033   if (Insert) {
3034     std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Ty);
3035     MVT MScalarTy = LT.second.getScalarType();
3036 
3037     if ((MScalarTy == MVT::i16 && ST->hasSSE2()) ||
3038         (MScalarTy.isInteger() && ST->hasSSE41()) ||
3039         (MScalarTy == MVT::f32 && ST->hasSSE41())) {
3040       // For types we can insert directly, insertion into 128-bit sub vectors is
3041       // cheap, followed by a cheap chain of concatenations.
3042       if (LT.second.getSizeInBits() <= 128) {
3043         Cost +=
3044             BaseT::getScalarizationOverhead(Ty, DemandedElts, Insert, false);
3045       } else {
3046         unsigned NumSubVecs = LT.second.getSizeInBits() / 128;
3047         Cost += (PowerOf2Ceil(NumSubVecs) - 1) * LT.first;
3048         Cost += DemandedElts.countPopulation();
3049 
3050         // For vXf32 cases, insertion into the 0'th index in each v4f32
3051         // 128-bit vector is free.
3052         // NOTE: This assumes legalization widens vXf32 vectors.
3053         if (MScalarTy == MVT::f32)
3054           for (unsigned i = 0, e = cast<FixedVectorType>(Ty)->getNumElements();
3055                i < e; i += 4)
3056             if (DemandedElts[i])
3057               Cost--;
3058       }
3059     } else if (LT.second.isVector()) {
3060       // Without fast insertion, we need to use MOVD/MOVQ to pass each demanded
3061       // integer element as a SCALAR_TO_VECTOR, then we build the vector as a
3062       // series of UNPCK followed by CONCAT_VECTORS - all of these can be
3063       // considered cheap.
3064       if (Ty->isIntOrIntVectorTy())
3065         Cost += DemandedElts.countPopulation();
3066 
3067       // Get the smaller of the legalized or original pow2-extended number of
3068       // vector elements, which represents the number of unpacks we'll end up
3069       // performing.
3070       unsigned NumElts = LT.second.getVectorNumElements();
3071       unsigned Pow2Elts =
3072           PowerOf2Ceil(cast<FixedVectorType>(Ty)->getNumElements());
3073       Cost += (std::min<unsigned>(NumElts, Pow2Elts) - 1) * LT.first;
3074     }
3075   }
3076 
3077   // TODO: Use default extraction for now, but we should investigate extending this
3078   // to handle repeated subvector extraction.
3079   if (Extract)
3080     Cost += BaseT::getScalarizationOverhead(Ty, DemandedElts, false, Extract);
3081 
3082   return Cost;
3083 }
3084 
3085 int X86TTIImpl::getMemoryOpCost(unsigned Opcode, Type *Src,
3086                                 MaybeAlign Alignment, unsigned AddressSpace,
3087                                 TTI::TargetCostKind CostKind,
3088                                 const Instruction *I) {
3089   // TODO: Handle other cost kinds.
3090   if (CostKind != TTI::TCK_RecipThroughput) {
3091     if (isa_and_nonnull<StoreInst>(I)) {
3092       Value *Ptr = I->getOperand(1);
3093       // Store instruction with index and scale costs 2 Uops.
3094       // Check the preceding GEP to identify non-const indices.
3095       if (auto *GEP = dyn_cast<GetElementPtrInst>(Ptr)) {
3096         if (!all_of(GEP->indices(), [](Value *V) { return isa<Constant>(V); }))
3097           return TTI::TCC_Basic * 2;
3098       }
3099     }
3100     return TTI::TCC_Basic;
3101   }
3102 
3103   // Handle non-power-of-two vectors such as <3 x float>
3104   if (auto *VTy = dyn_cast<FixedVectorType>(Src)) {
3105     unsigned NumElem = VTy->getNumElements();
3106 
3107     // Handle a few common cases:
3108     // <3 x float>
3109     if (NumElem == 3 && VTy->getScalarSizeInBits() == 32)
3110       // Cost = 64 bit store + extract + 32 bit store.
3111       return 3;
3112 
3113     // <3 x double>
3114     if (NumElem == 3 && VTy->getScalarSizeInBits() == 64)
3115       // Cost = 128 bit store + unpack + 64 bit store.
3116       return 3;
3117 
3118     // Assume that all other non-power-of-two numbers are scalarized.
3119     if (!isPowerOf2_32(NumElem)) {
3120       APInt DemandedElts = APInt::getAllOnesValue(NumElem);
3121       int Cost = BaseT::getMemoryOpCost(Opcode, VTy->getScalarType(), Alignment,
3122                                         AddressSpace, CostKind);
3123       int SplitCost = getScalarizationOverhead(VTy, DemandedElts,
3124                                                Opcode == Instruction::Load,
3125                                                Opcode == Instruction::Store);
3126       return NumElem * Cost + SplitCost;
3127     }
3128   }
3129 
3130   // Type legalization can't handle structs
3131   if (TLI->getValueType(DL, Src,  true) == MVT::Other)
3132     return BaseT::getMemoryOpCost(Opcode, Src, Alignment, AddressSpace,
3133                                   CostKind);
3134 
3135   // Legalize the type.
3136   std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Src);
3137   assert((Opcode == Instruction::Load || Opcode == Instruction::Store) &&
3138          "Invalid Opcode");
3139 
3140   // Each load/store unit costs 1.
3141   int Cost = LT.first * 1;
3142 
3143   // This isn't exactly right. We're using slow unaligned 32-byte accesses as a
3144   // proxy for a double-pumped AVX memory interface such as on Sandybridge.
3145   if (LT.second.getStoreSize() == 32 && ST->isUnalignedMem32Slow())
3146     Cost *= 2;
3147 
3148   return Cost;
3149 }
3150 
3151 int X86TTIImpl::getMaskedMemoryOpCost(unsigned Opcode, Type *SrcTy,
3152                                       Align Alignment, unsigned AddressSpace,
3153                                       TTI::TargetCostKind CostKind) {
3154   bool IsLoad = (Instruction::Load == Opcode);
3155   bool IsStore = (Instruction::Store == Opcode);
3156 
3157   auto *SrcVTy = dyn_cast<FixedVectorType>(SrcTy);
3158   if (!SrcVTy)
3159     // To calculate scalar take the regular cost, without mask
3160     return getMemoryOpCost(Opcode, SrcTy, Alignment, AddressSpace, CostKind);
3161 
3162   unsigned NumElem = SrcVTy->getNumElements();
3163   auto *MaskTy =
3164       FixedVectorType::get(Type::getInt8Ty(SrcVTy->getContext()), NumElem);
3165   if ((IsLoad && !isLegalMaskedLoad(SrcVTy, Alignment)) ||
3166       (IsStore && !isLegalMaskedStore(SrcVTy, Alignment)) ||
3167       !isPowerOf2_32(NumElem)) {
3168     // Scalarization
3169     APInt DemandedElts = APInt::getAllOnesValue(NumElem);
3170     int MaskSplitCost =
3171         getScalarizationOverhead(MaskTy, DemandedElts, false, true);
3172     int ScalarCompareCost = getCmpSelInstrCost(
3173         Instruction::ICmp, Type::getInt8Ty(SrcVTy->getContext()), nullptr,
3174         CostKind);
3175     int BranchCost = getCFInstrCost(Instruction::Br, CostKind);
3176     int MaskCmpCost = NumElem * (BranchCost + ScalarCompareCost);
3177     int ValueSplitCost =
3178         getScalarizationOverhead(SrcVTy, DemandedElts, IsLoad, IsStore);
3179     int MemopCost =
3180         NumElem * BaseT::getMemoryOpCost(Opcode, SrcVTy->getScalarType(),
3181                                          Alignment, AddressSpace, CostKind);
3182     return MemopCost + ValueSplitCost + MaskSplitCost + MaskCmpCost;
3183   }
3184 
3185   // Legalize the type.
3186   std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, SrcVTy);
3187   auto VT = TLI->getValueType(DL, SrcVTy);
3188   int Cost = 0;
3189   if (VT.isSimple() && LT.second != VT.getSimpleVT() &&
3190       LT.second.getVectorNumElements() == NumElem)
3191     // Promotion requires expand/truncate for data and a shuffle for mask.
3192     Cost += getShuffleCost(TTI::SK_PermuteTwoSrc, SrcVTy, 0, nullptr) +
3193             getShuffleCost(TTI::SK_PermuteTwoSrc, MaskTy, 0, nullptr);
3194 
3195   else if (LT.second.getVectorNumElements() > NumElem) {
3196     auto *NewMaskTy = FixedVectorType::get(MaskTy->getElementType(),
3197                                            LT.second.getVectorNumElements());
3198     // Expanding requires fill mask with zeroes
3199     Cost += getShuffleCost(TTI::SK_InsertSubvector, NewMaskTy, 0, MaskTy);
3200   }
3201 
3202   // Pre-AVX512 - each maskmov load costs 2 + store costs ~8.
3203   if (!ST->hasAVX512())
3204     return Cost + LT.first * (IsLoad ? 2 : 8);
3205 
3206   // AVX-512 masked load/store is cheapper
3207   return Cost + LT.first;
3208 }
3209 
3210 int X86TTIImpl::getAddressComputationCost(Type *Ty, ScalarEvolution *SE,
3211                                           const SCEV *Ptr) {
3212   // Address computations in vectorized code with non-consecutive addresses will
3213   // likely result in more instructions compared to scalar code where the
3214   // computation can more often be merged into the index mode. The resulting
3215   // extra micro-ops can significantly decrease throughput.
3216   const unsigned NumVectorInstToHideOverhead = 10;
3217 
3218   // Cost modeling of Strided Access Computation is hidden by the indexing
3219   // modes of X86 regardless of the stride value. We dont believe that there
3220   // is a difference between constant strided access in gerenal and constant
3221   // strided value which is less than or equal to 64.
3222   // Even in the case of (loop invariant) stride whose value is not known at
3223   // compile time, the address computation will not incur more than one extra
3224   // ADD instruction.
3225   if (Ty->isVectorTy() && SE) {
3226     if (!BaseT::isStridedAccess(Ptr))
3227       return NumVectorInstToHideOverhead;
3228     if (!BaseT::getConstantStrideStep(SE, Ptr))
3229       return 1;
3230   }
3231 
3232   return BaseT::getAddressComputationCost(Ty, SE, Ptr);
3233 }
3234 
3235 int X86TTIImpl::getArithmeticReductionCost(unsigned Opcode, VectorType *ValTy,
3236                                            bool IsPairwise,
3237                                            TTI::TargetCostKind CostKind) {
3238   // Just use the default implementation for pair reductions.
3239   if (IsPairwise)
3240     return BaseT::getArithmeticReductionCost(Opcode, ValTy, IsPairwise, CostKind);
3241 
3242   // We use the Intel Architecture Code Analyzer(IACA) to measure the throughput
3243   // and make it as the cost.
3244 
3245   static const CostTblEntry SLMCostTblNoPairWise[] = {
3246     { ISD::FADD,  MVT::v2f64,   3 },
3247     { ISD::ADD,   MVT::v2i64,   5 },
3248   };
3249 
3250   static const CostTblEntry SSE2CostTblNoPairWise[] = {
3251     { ISD::FADD,  MVT::v2f64,   2 },
3252     { ISD::FADD,  MVT::v4f32,   4 },
3253     { ISD::ADD,   MVT::v2i64,   2 },      // The data reported by the IACA tool is "1.6".
3254     { ISD::ADD,   MVT::v2i32,   2 }, // FIXME: chosen to be less than v4i32
3255     { ISD::ADD,   MVT::v4i32,   3 },      // The data reported by the IACA tool is "3.3".
3256     { ISD::ADD,   MVT::v2i16,   2 },      // The data reported by the IACA tool is "4.3".
3257     { ISD::ADD,   MVT::v4i16,   3 },      // The data reported by the IACA tool is "4.3".
3258     { ISD::ADD,   MVT::v8i16,   4 },      // The data reported by the IACA tool is "4.3".
3259     { ISD::ADD,   MVT::v2i8,    2 },
3260     { ISD::ADD,   MVT::v4i8,    2 },
3261     { ISD::ADD,   MVT::v8i8,    2 },
3262     { ISD::ADD,   MVT::v16i8,   3 },
3263   };
3264 
3265   static const CostTblEntry AVX1CostTblNoPairWise[] = {
3266     { ISD::FADD,  MVT::v4f64,   3 },
3267     { ISD::FADD,  MVT::v4f32,   3 },
3268     { ISD::FADD,  MVT::v8f32,   4 },
3269     { ISD::ADD,   MVT::v2i64,   1 },      // The data reported by the IACA tool is "1.5".
3270     { ISD::ADD,   MVT::v4i64,   3 },
3271     { ISD::ADD,   MVT::v8i32,   5 },
3272     { ISD::ADD,   MVT::v16i16,  5 },
3273     { ISD::ADD,   MVT::v32i8,   4 },
3274   };
3275 
3276   int ISD = TLI->InstructionOpcodeToISD(Opcode);
3277   assert(ISD && "Invalid opcode");
3278 
3279   // Before legalizing the type, give a chance to look up illegal narrow types
3280   // in the table.
3281   // FIXME: Is there a better way to do this?
3282   EVT VT = TLI->getValueType(DL, ValTy);
3283   if (VT.isSimple()) {
3284     MVT MTy = VT.getSimpleVT();
3285     if (ST->isSLM())
3286       if (const auto *Entry = CostTableLookup(SLMCostTblNoPairWise, ISD, MTy))
3287         return Entry->Cost;
3288 
3289     if (ST->hasAVX())
3290       if (const auto *Entry = CostTableLookup(AVX1CostTblNoPairWise, ISD, MTy))
3291         return Entry->Cost;
3292 
3293     if (ST->hasSSE2())
3294       if (const auto *Entry = CostTableLookup(SSE2CostTblNoPairWise, ISD, MTy))
3295         return Entry->Cost;
3296   }
3297 
3298   std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, ValTy);
3299 
3300   MVT MTy = LT.second;
3301 
3302   auto *ValVTy = cast<FixedVectorType>(ValTy);
3303 
3304   unsigned ArithmeticCost = 0;
3305   if (LT.first != 1 && MTy.isVector() &&
3306       MTy.getVectorNumElements() < ValVTy->getNumElements()) {
3307     // Type needs to be split. We need LT.first - 1 arithmetic ops.
3308     auto *SingleOpTy = FixedVectorType::get(ValVTy->getElementType(),
3309                                             MTy.getVectorNumElements());
3310     ArithmeticCost = getArithmeticInstrCost(Opcode, SingleOpTy, CostKind);
3311     ArithmeticCost *= LT.first - 1;
3312   }
3313 
3314   if (ST->isSLM())
3315     if (const auto *Entry = CostTableLookup(SLMCostTblNoPairWise, ISD, MTy))
3316       return ArithmeticCost + Entry->Cost;
3317 
3318   if (ST->hasAVX())
3319     if (const auto *Entry = CostTableLookup(AVX1CostTblNoPairWise, ISD, MTy))
3320       return ArithmeticCost + Entry->Cost;
3321 
3322   if (ST->hasSSE2())
3323     if (const auto *Entry = CostTableLookup(SSE2CostTblNoPairWise, ISD, MTy))
3324       return ArithmeticCost + Entry->Cost;
3325 
3326   // FIXME: These assume a naive kshift+binop lowering, which is probably
3327   // conservative in most cases.
3328   static const CostTblEntry AVX512BoolReduction[] = {
3329     { ISD::AND,  MVT::v2i1,   3 },
3330     { ISD::AND,  MVT::v4i1,   5 },
3331     { ISD::AND,  MVT::v8i1,   7 },
3332     { ISD::AND,  MVT::v16i1,  9 },
3333     { ISD::AND,  MVT::v32i1, 11 },
3334     { ISD::AND,  MVT::v64i1, 13 },
3335     { ISD::OR,   MVT::v2i1,   3 },
3336     { ISD::OR,   MVT::v4i1,   5 },
3337     { ISD::OR,   MVT::v8i1,   7 },
3338     { ISD::OR,   MVT::v16i1,  9 },
3339     { ISD::OR,   MVT::v32i1, 11 },
3340     { ISD::OR,   MVT::v64i1, 13 },
3341   };
3342 
3343   static const CostTblEntry AVX2BoolReduction[] = {
3344     { ISD::AND,  MVT::v16i16,  2 }, // vpmovmskb + cmp
3345     { ISD::AND,  MVT::v32i8,   2 }, // vpmovmskb + cmp
3346     { ISD::OR,   MVT::v16i16,  2 }, // vpmovmskb + cmp
3347     { ISD::OR,   MVT::v32i8,   2 }, // vpmovmskb + cmp
3348   };
3349 
3350   static const CostTblEntry AVX1BoolReduction[] = {
3351     { ISD::AND,  MVT::v4i64,   2 }, // vmovmskpd + cmp
3352     { ISD::AND,  MVT::v8i32,   2 }, // vmovmskps + cmp
3353     { ISD::AND,  MVT::v16i16,  4 }, // vextractf128 + vpand + vpmovmskb + cmp
3354     { ISD::AND,  MVT::v32i8,   4 }, // vextractf128 + vpand + vpmovmskb + cmp
3355     { ISD::OR,   MVT::v4i64,   2 }, // vmovmskpd + cmp
3356     { ISD::OR,   MVT::v8i32,   2 }, // vmovmskps + cmp
3357     { ISD::OR,   MVT::v16i16,  4 }, // vextractf128 + vpor + vpmovmskb + cmp
3358     { ISD::OR,   MVT::v32i8,   4 }, // vextractf128 + vpor + vpmovmskb + cmp
3359   };
3360 
3361   static const CostTblEntry SSE2BoolReduction[] = {
3362     { ISD::AND,  MVT::v2i64,   2 }, // movmskpd + cmp
3363     { ISD::AND,  MVT::v4i32,   2 }, // movmskps + cmp
3364     { ISD::AND,  MVT::v8i16,   2 }, // pmovmskb + cmp
3365     { ISD::AND,  MVT::v16i8,   2 }, // pmovmskb + cmp
3366     { ISD::OR,   MVT::v2i64,   2 }, // movmskpd + cmp
3367     { ISD::OR,   MVT::v4i32,   2 }, // movmskps + cmp
3368     { ISD::OR,   MVT::v8i16,   2 }, // pmovmskb + cmp
3369     { ISD::OR,   MVT::v16i8,   2 }, // pmovmskb + cmp
3370   };
3371 
3372   // Handle bool allof/anyof patterns.
3373   if (ValVTy->getElementType()->isIntegerTy(1)) {
3374     unsigned ArithmeticCost = 0;
3375     if (LT.first != 1 && MTy.isVector() &&
3376         MTy.getVectorNumElements() < ValVTy->getNumElements()) {
3377       // Type needs to be split. We need LT.first - 1 arithmetic ops.
3378       auto *SingleOpTy = FixedVectorType::get(ValVTy->getElementType(),
3379                                               MTy.getVectorNumElements());
3380       ArithmeticCost = getArithmeticInstrCost(Opcode, SingleOpTy, CostKind);
3381       ArithmeticCost *= LT.first - 1;
3382     }
3383 
3384     if (ST->hasAVX512())
3385       if (const auto *Entry = CostTableLookup(AVX512BoolReduction, ISD, MTy))
3386         return ArithmeticCost + Entry->Cost;
3387     if (ST->hasAVX2())
3388       if (const auto *Entry = CostTableLookup(AVX2BoolReduction, ISD, MTy))
3389         return ArithmeticCost + Entry->Cost;
3390     if (ST->hasAVX())
3391       if (const auto *Entry = CostTableLookup(AVX1BoolReduction, ISD, MTy))
3392         return ArithmeticCost + Entry->Cost;
3393     if (ST->hasSSE2())
3394       if (const auto *Entry = CostTableLookup(SSE2BoolReduction, ISD, MTy))
3395         return ArithmeticCost + Entry->Cost;
3396 
3397     return BaseT::getArithmeticReductionCost(Opcode, ValVTy, IsPairwise,
3398                                              CostKind);
3399   }
3400 
3401   unsigned NumVecElts = ValVTy->getNumElements();
3402   unsigned ScalarSize = ValVTy->getScalarSizeInBits();
3403 
3404   // Special case power of 2 reductions where the scalar type isn't changed
3405   // by type legalization.
3406   if (!isPowerOf2_32(NumVecElts) || ScalarSize != MTy.getScalarSizeInBits())
3407     return BaseT::getArithmeticReductionCost(Opcode, ValVTy, IsPairwise,
3408                                              CostKind);
3409 
3410   unsigned ReductionCost = 0;
3411 
3412   auto *Ty = ValVTy;
3413   if (LT.first != 1 && MTy.isVector() &&
3414       MTy.getVectorNumElements() < ValVTy->getNumElements()) {
3415     // Type needs to be split. We need LT.first - 1 arithmetic ops.
3416     Ty = FixedVectorType::get(ValVTy->getElementType(),
3417                               MTy.getVectorNumElements());
3418     ReductionCost = getArithmeticInstrCost(Opcode, Ty, CostKind);
3419     ReductionCost *= LT.first - 1;
3420     NumVecElts = MTy.getVectorNumElements();
3421   }
3422 
3423   // Now handle reduction with the legal type, taking into account size changes
3424   // at each level.
3425   while (NumVecElts > 1) {
3426     // Determine the size of the remaining vector we need to reduce.
3427     unsigned Size = NumVecElts * ScalarSize;
3428     NumVecElts /= 2;
3429     // If we're reducing from 256/512 bits, use an extract_subvector.
3430     if (Size > 128) {
3431       auto *SubTy = FixedVectorType::get(ValVTy->getElementType(), NumVecElts);
3432       ReductionCost +=
3433           getShuffleCost(TTI::SK_ExtractSubvector, Ty, NumVecElts, SubTy);
3434       Ty = SubTy;
3435     } else if (Size == 128) {
3436       // Reducing from 128 bits is a permute of v2f64/v2i64.
3437       FixedVectorType *ShufTy;
3438       if (ValVTy->isFloatingPointTy())
3439         ShufTy =
3440             FixedVectorType::get(Type::getDoubleTy(ValVTy->getContext()), 2);
3441       else
3442         ShufTy =
3443             FixedVectorType::get(Type::getInt64Ty(ValVTy->getContext()), 2);
3444       ReductionCost +=
3445           getShuffleCost(TTI::SK_PermuteSingleSrc, ShufTy, 0, nullptr);
3446     } else if (Size == 64) {
3447       // Reducing from 64 bits is a shuffle of v4f32/v4i32.
3448       FixedVectorType *ShufTy;
3449       if (ValVTy->isFloatingPointTy())
3450         ShufTy =
3451             FixedVectorType::get(Type::getFloatTy(ValVTy->getContext()), 4);
3452       else
3453         ShufTy =
3454             FixedVectorType::get(Type::getInt32Ty(ValVTy->getContext()), 4);
3455       ReductionCost +=
3456           getShuffleCost(TTI::SK_PermuteSingleSrc, ShufTy, 0, nullptr);
3457     } else {
3458       // Reducing from smaller size is a shift by immediate.
3459       auto *ShiftTy = FixedVectorType::get(
3460           Type::getIntNTy(ValVTy->getContext(), Size), 128 / Size);
3461       ReductionCost += getArithmeticInstrCost(
3462           Instruction::LShr, ShiftTy, CostKind,
3463           TargetTransformInfo::OK_AnyValue,
3464           TargetTransformInfo::OK_UniformConstantValue,
3465           TargetTransformInfo::OP_None, TargetTransformInfo::OP_None);
3466     }
3467 
3468     // Add the arithmetic op for this level.
3469     ReductionCost += getArithmeticInstrCost(Opcode, Ty, CostKind);
3470   }
3471 
3472   // Add the final extract element to the cost.
3473   return ReductionCost + getVectorInstrCost(Instruction::ExtractElement, Ty, 0);
3474 }
3475 
3476 int X86TTIImpl::getMinMaxCost(Type *Ty, Type *CondTy, bool IsUnsigned) {
3477   std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Ty);
3478 
3479   MVT MTy = LT.second;
3480 
3481   int ISD;
3482   if (Ty->isIntOrIntVectorTy()) {
3483     ISD = IsUnsigned ? ISD::UMIN : ISD::SMIN;
3484   } else {
3485     assert(Ty->isFPOrFPVectorTy() &&
3486            "Expected float point or integer vector type.");
3487     ISD = ISD::FMINNUM;
3488   }
3489 
3490   static const CostTblEntry SSE1CostTbl[] = {
3491     {ISD::FMINNUM, MVT::v4f32, 1},
3492   };
3493 
3494   static const CostTblEntry SSE2CostTbl[] = {
3495     {ISD::FMINNUM, MVT::v2f64, 1},
3496     {ISD::SMIN,    MVT::v8i16, 1},
3497     {ISD::UMIN,    MVT::v16i8, 1},
3498   };
3499 
3500   static const CostTblEntry SSE41CostTbl[] = {
3501     {ISD::SMIN,    MVT::v4i32, 1},
3502     {ISD::UMIN,    MVT::v4i32, 1},
3503     {ISD::UMIN,    MVT::v8i16, 1},
3504     {ISD::SMIN,    MVT::v16i8, 1},
3505   };
3506 
3507   static const CostTblEntry SSE42CostTbl[] = {
3508     {ISD::UMIN,    MVT::v2i64, 3}, // xor+pcmpgtq+blendvpd
3509   };
3510 
3511   static const CostTblEntry AVX1CostTbl[] = {
3512     {ISD::FMINNUM, MVT::v8f32,  1},
3513     {ISD::FMINNUM, MVT::v4f64,  1},
3514     {ISD::SMIN,    MVT::v8i32,  3},
3515     {ISD::UMIN,    MVT::v8i32,  3},
3516     {ISD::SMIN,    MVT::v16i16, 3},
3517     {ISD::UMIN,    MVT::v16i16, 3},
3518     {ISD::SMIN,    MVT::v32i8,  3},
3519     {ISD::UMIN,    MVT::v32i8,  3},
3520   };
3521 
3522   static const CostTblEntry AVX2CostTbl[] = {
3523     {ISD::SMIN,    MVT::v8i32,  1},
3524     {ISD::UMIN,    MVT::v8i32,  1},
3525     {ISD::SMIN,    MVT::v16i16, 1},
3526     {ISD::UMIN,    MVT::v16i16, 1},
3527     {ISD::SMIN,    MVT::v32i8,  1},
3528     {ISD::UMIN,    MVT::v32i8,  1},
3529   };
3530 
3531   static const CostTblEntry AVX512CostTbl[] = {
3532     {ISD::FMINNUM, MVT::v16f32, 1},
3533     {ISD::FMINNUM, MVT::v8f64,  1},
3534     {ISD::SMIN,    MVT::v2i64,  1},
3535     {ISD::UMIN,    MVT::v2i64,  1},
3536     {ISD::SMIN,    MVT::v4i64,  1},
3537     {ISD::UMIN,    MVT::v4i64,  1},
3538     {ISD::SMIN,    MVT::v8i64,  1},
3539     {ISD::UMIN,    MVT::v8i64,  1},
3540     {ISD::SMIN,    MVT::v16i32, 1},
3541     {ISD::UMIN,    MVT::v16i32, 1},
3542   };
3543 
3544   static const CostTblEntry AVX512BWCostTbl[] = {
3545     {ISD::SMIN,    MVT::v32i16, 1},
3546     {ISD::UMIN,    MVT::v32i16, 1},
3547     {ISD::SMIN,    MVT::v64i8,  1},
3548     {ISD::UMIN,    MVT::v64i8,  1},
3549   };
3550 
3551   // If we have a native MIN/MAX instruction for this type, use it.
3552   if (ST->hasBWI())
3553     if (const auto *Entry = CostTableLookup(AVX512BWCostTbl, ISD, MTy))
3554       return LT.first * Entry->Cost;
3555 
3556   if (ST->hasAVX512())
3557     if (const auto *Entry = CostTableLookup(AVX512CostTbl, ISD, MTy))
3558       return LT.first * Entry->Cost;
3559 
3560   if (ST->hasAVX2())
3561     if (const auto *Entry = CostTableLookup(AVX2CostTbl, ISD, MTy))
3562       return LT.first * Entry->Cost;
3563 
3564   if (ST->hasAVX())
3565     if (const auto *Entry = CostTableLookup(AVX1CostTbl, ISD, MTy))
3566       return LT.first * Entry->Cost;
3567 
3568   if (ST->hasSSE42())
3569     if (const auto *Entry = CostTableLookup(SSE42CostTbl, ISD, MTy))
3570       return LT.first * Entry->Cost;
3571 
3572   if (ST->hasSSE41())
3573     if (const auto *Entry = CostTableLookup(SSE41CostTbl, ISD, MTy))
3574       return LT.first * Entry->Cost;
3575 
3576   if (ST->hasSSE2())
3577     if (const auto *Entry = CostTableLookup(SSE2CostTbl, ISD, MTy))
3578       return LT.first * Entry->Cost;
3579 
3580   if (ST->hasSSE1())
3581     if (const auto *Entry = CostTableLookup(SSE1CostTbl, ISD, MTy))
3582       return LT.first * Entry->Cost;
3583 
3584   unsigned CmpOpcode;
3585   if (Ty->isFPOrFPVectorTy()) {
3586     CmpOpcode = Instruction::FCmp;
3587   } else {
3588     assert(Ty->isIntOrIntVectorTy() &&
3589            "expecting floating point or integer type for min/max reduction");
3590     CmpOpcode = Instruction::ICmp;
3591   }
3592 
3593   TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
3594   // Otherwise fall back to cmp+select.
3595   return getCmpSelInstrCost(CmpOpcode, Ty, CondTy, CostKind) +
3596          getCmpSelInstrCost(Instruction::Select, Ty, CondTy, CostKind);
3597 }
3598 
3599 int X86TTIImpl::getMinMaxReductionCost(VectorType *ValTy, VectorType *CondTy,
3600                                        bool IsPairwise, bool IsUnsigned,
3601                                        TTI::TargetCostKind CostKind) {
3602   // Just use the default implementation for pair reductions.
3603   if (IsPairwise)
3604     return BaseT::getMinMaxReductionCost(ValTy, CondTy, IsPairwise, IsUnsigned,
3605                                          CostKind);
3606 
3607   std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, ValTy);
3608 
3609   MVT MTy = LT.second;
3610 
3611   int ISD;
3612   if (ValTy->isIntOrIntVectorTy()) {
3613     ISD = IsUnsigned ? ISD::UMIN : ISD::SMIN;
3614   } else {
3615     assert(ValTy->isFPOrFPVectorTy() &&
3616            "Expected float point or integer vector type.");
3617     ISD = ISD::FMINNUM;
3618   }
3619 
3620   // We use the Intel Architecture Code Analyzer(IACA) to measure the throughput
3621   // and make it as the cost.
3622 
3623   static const CostTblEntry SSE2CostTblNoPairWise[] = {
3624       {ISD::UMIN, MVT::v2i16, 5}, // need pxors to use pminsw/pmaxsw
3625       {ISD::UMIN, MVT::v4i16, 7}, // need pxors to use pminsw/pmaxsw
3626       {ISD::UMIN, MVT::v8i16, 9}, // need pxors to use pminsw/pmaxsw
3627   };
3628 
3629   static const CostTblEntry SSE41CostTblNoPairWise[] = {
3630       {ISD::SMIN, MVT::v2i16, 3}, // same as sse2
3631       {ISD::SMIN, MVT::v4i16, 5}, // same as sse2
3632       {ISD::UMIN, MVT::v2i16, 5}, // same as sse2
3633       {ISD::UMIN, MVT::v4i16, 7}, // same as sse2
3634       {ISD::SMIN, MVT::v8i16, 4}, // phminposuw+xor
3635       {ISD::UMIN, MVT::v8i16, 4}, // FIXME: umin is cheaper than umax
3636       {ISD::SMIN, MVT::v2i8,  3}, // pminsb
3637       {ISD::SMIN, MVT::v4i8,  5}, // pminsb
3638       {ISD::SMIN, MVT::v8i8,  7}, // pminsb
3639       {ISD::SMIN, MVT::v16i8, 6},
3640       {ISD::UMIN, MVT::v2i8,  3}, // same as sse2
3641       {ISD::UMIN, MVT::v4i8,  5}, // same as sse2
3642       {ISD::UMIN, MVT::v8i8,  7}, // same as sse2
3643       {ISD::UMIN, MVT::v16i8, 6}, // FIXME: umin is cheaper than umax
3644   };
3645 
3646   static const CostTblEntry AVX1CostTblNoPairWise[] = {
3647       {ISD::SMIN, MVT::v16i16, 6},
3648       {ISD::UMIN, MVT::v16i16, 6}, // FIXME: umin is cheaper than umax
3649       {ISD::SMIN, MVT::v32i8, 8},
3650       {ISD::UMIN, MVT::v32i8, 8},
3651   };
3652 
3653   static const CostTblEntry AVX512BWCostTblNoPairWise[] = {
3654       {ISD::SMIN, MVT::v32i16, 8},
3655       {ISD::UMIN, MVT::v32i16, 8}, // FIXME: umin is cheaper than umax
3656       {ISD::SMIN, MVT::v64i8, 10},
3657       {ISD::UMIN, MVT::v64i8, 10},
3658   };
3659 
3660   // Before legalizing the type, give a chance to look up illegal narrow types
3661   // in the table.
3662   // FIXME: Is there a better way to do this?
3663   EVT VT = TLI->getValueType(DL, ValTy);
3664   if (VT.isSimple()) {
3665     MVT MTy = VT.getSimpleVT();
3666     if (ST->hasBWI())
3667       if (const auto *Entry = CostTableLookup(AVX512BWCostTblNoPairWise, ISD, MTy))
3668         return Entry->Cost;
3669 
3670     if (ST->hasAVX())
3671       if (const auto *Entry = CostTableLookup(AVX1CostTblNoPairWise, ISD, MTy))
3672         return Entry->Cost;
3673 
3674     if (ST->hasSSE41())
3675       if (const auto *Entry = CostTableLookup(SSE41CostTblNoPairWise, ISD, MTy))
3676         return Entry->Cost;
3677 
3678     if (ST->hasSSE2())
3679       if (const auto *Entry = CostTableLookup(SSE2CostTblNoPairWise, ISD, MTy))
3680         return Entry->Cost;
3681   }
3682 
3683   auto *ValVTy = cast<FixedVectorType>(ValTy);
3684   unsigned NumVecElts = ValVTy->getNumElements();
3685 
3686   auto *Ty = ValVTy;
3687   unsigned MinMaxCost = 0;
3688   if (LT.first != 1 && MTy.isVector() &&
3689       MTy.getVectorNumElements() < ValVTy->getNumElements()) {
3690     // Type needs to be split. We need LT.first - 1 operations ops.
3691     Ty = FixedVectorType::get(ValVTy->getElementType(),
3692                               MTy.getVectorNumElements());
3693     auto *SubCondTy = FixedVectorType::get(CondTy->getElementType(),
3694                                            MTy.getVectorNumElements());
3695     MinMaxCost = getMinMaxCost(Ty, SubCondTy, IsUnsigned);
3696     MinMaxCost *= LT.first - 1;
3697     NumVecElts = MTy.getVectorNumElements();
3698   }
3699 
3700   if (ST->hasBWI())
3701     if (const auto *Entry = CostTableLookup(AVX512BWCostTblNoPairWise, ISD, MTy))
3702       return MinMaxCost + Entry->Cost;
3703 
3704   if (ST->hasAVX())
3705     if (const auto *Entry = CostTableLookup(AVX1CostTblNoPairWise, ISD, MTy))
3706       return MinMaxCost + Entry->Cost;
3707 
3708   if (ST->hasSSE41())
3709     if (const auto *Entry = CostTableLookup(SSE41CostTblNoPairWise, ISD, MTy))
3710       return MinMaxCost + Entry->Cost;
3711 
3712   if (ST->hasSSE2())
3713     if (const auto *Entry = CostTableLookup(SSE2CostTblNoPairWise, ISD, MTy))
3714       return MinMaxCost + Entry->Cost;
3715 
3716   unsigned ScalarSize = ValTy->getScalarSizeInBits();
3717 
3718   // Special case power of 2 reductions where the scalar type isn't changed
3719   // by type legalization.
3720   if (!isPowerOf2_32(ValVTy->getNumElements()) ||
3721       ScalarSize != MTy.getScalarSizeInBits())
3722     return BaseT::getMinMaxReductionCost(ValTy, CondTy, IsPairwise, IsUnsigned,
3723                                          CostKind);
3724 
3725   // Now handle reduction with the legal type, taking into account size changes
3726   // at each level.
3727   while (NumVecElts > 1) {
3728     // Determine the size of the remaining vector we need to reduce.
3729     unsigned Size = NumVecElts * ScalarSize;
3730     NumVecElts /= 2;
3731     // If we're reducing from 256/512 bits, use an extract_subvector.
3732     if (Size > 128) {
3733       auto *SubTy = FixedVectorType::get(ValVTy->getElementType(), NumVecElts);
3734       MinMaxCost +=
3735           getShuffleCost(TTI::SK_ExtractSubvector, Ty, NumVecElts, SubTy);
3736       Ty = SubTy;
3737     } else if (Size == 128) {
3738       // Reducing from 128 bits is a permute of v2f64/v2i64.
3739       VectorType *ShufTy;
3740       if (ValTy->isFloatingPointTy())
3741         ShufTy =
3742             FixedVectorType::get(Type::getDoubleTy(ValTy->getContext()), 2);
3743       else
3744         ShufTy = FixedVectorType::get(Type::getInt64Ty(ValTy->getContext()), 2);
3745       MinMaxCost +=
3746           getShuffleCost(TTI::SK_PermuteSingleSrc, ShufTy, 0, nullptr);
3747     } else if (Size == 64) {
3748       // Reducing from 64 bits is a shuffle of v4f32/v4i32.
3749       FixedVectorType *ShufTy;
3750       if (ValTy->isFloatingPointTy())
3751         ShufTy = FixedVectorType::get(Type::getFloatTy(ValTy->getContext()), 4);
3752       else
3753         ShufTy = FixedVectorType::get(Type::getInt32Ty(ValTy->getContext()), 4);
3754       MinMaxCost +=
3755           getShuffleCost(TTI::SK_PermuteSingleSrc, ShufTy, 0, nullptr);
3756     } else {
3757       // Reducing from smaller size is a shift by immediate.
3758       auto *ShiftTy = FixedVectorType::get(
3759           Type::getIntNTy(ValTy->getContext(), Size), 128 / Size);
3760       MinMaxCost += getArithmeticInstrCost(
3761           Instruction::LShr, ShiftTy, TTI::TCK_RecipThroughput,
3762           TargetTransformInfo::OK_AnyValue,
3763           TargetTransformInfo::OK_UniformConstantValue,
3764           TargetTransformInfo::OP_None, TargetTransformInfo::OP_None);
3765     }
3766 
3767     // Add the arithmetic op for this level.
3768     auto *SubCondTy =
3769         FixedVectorType::get(CondTy->getElementType(), Ty->getNumElements());
3770     MinMaxCost += getMinMaxCost(Ty, SubCondTy, IsUnsigned);
3771   }
3772 
3773   // Add the final extract element to the cost.
3774   return MinMaxCost + getVectorInstrCost(Instruction::ExtractElement, Ty, 0);
3775 }
3776 
3777 /// Calculate the cost of materializing a 64-bit value. This helper
3778 /// method might only calculate a fraction of a larger immediate. Therefore it
3779 /// is valid to return a cost of ZERO.
3780 int X86TTIImpl::getIntImmCost(int64_t Val) {
3781   if (Val == 0)
3782     return TTI::TCC_Free;
3783 
3784   if (isInt<32>(Val))
3785     return TTI::TCC_Basic;
3786 
3787   return 2 * TTI::TCC_Basic;
3788 }
3789 
3790 int X86TTIImpl::getIntImmCost(const APInt &Imm, Type *Ty,
3791                               TTI::TargetCostKind CostKind) {
3792   assert(Ty->isIntegerTy());
3793 
3794   unsigned BitSize = Ty->getPrimitiveSizeInBits();
3795   if (BitSize == 0)
3796     return ~0U;
3797 
3798   // Never hoist constants larger than 128bit, because this might lead to
3799   // incorrect code generation or assertions in codegen.
3800   // Fixme: Create a cost model for types larger than i128 once the codegen
3801   // issues have been fixed.
3802   if (BitSize > 128)
3803     return TTI::TCC_Free;
3804 
3805   if (Imm == 0)
3806     return TTI::TCC_Free;
3807 
3808   // Sign-extend all constants to a multiple of 64-bit.
3809   APInt ImmVal = Imm;
3810   if (BitSize % 64 != 0)
3811     ImmVal = Imm.sext(alignTo(BitSize, 64));
3812 
3813   // Split the constant into 64-bit chunks and calculate the cost for each
3814   // chunk.
3815   int Cost = 0;
3816   for (unsigned ShiftVal = 0; ShiftVal < BitSize; ShiftVal += 64) {
3817     APInt Tmp = ImmVal.ashr(ShiftVal).sextOrTrunc(64);
3818     int64_t Val = Tmp.getSExtValue();
3819     Cost += getIntImmCost(Val);
3820   }
3821   // We need at least one instruction to materialize the constant.
3822   return std::max(1, Cost);
3823 }
3824 
3825 int X86TTIImpl::getIntImmCostInst(unsigned Opcode, unsigned Idx, const APInt &Imm,
3826                                   Type *Ty, TTI::TargetCostKind CostKind) {
3827   assert(Ty->isIntegerTy());
3828 
3829   unsigned BitSize = Ty->getPrimitiveSizeInBits();
3830   // There is no cost model for constants with a bit size of 0. Return TCC_Free
3831   // here, so that constant hoisting will ignore this constant.
3832   if (BitSize == 0)
3833     return TTI::TCC_Free;
3834 
3835   unsigned ImmIdx = ~0U;
3836   switch (Opcode) {
3837   default:
3838     return TTI::TCC_Free;
3839   case Instruction::GetElementPtr:
3840     // Always hoist the base address of a GetElementPtr. This prevents the
3841     // creation of new constants for every base constant that gets constant
3842     // folded with the offset.
3843     if (Idx == 0)
3844       return 2 * TTI::TCC_Basic;
3845     return TTI::TCC_Free;
3846   case Instruction::Store:
3847     ImmIdx = 0;
3848     break;
3849   case Instruction::ICmp:
3850     // This is an imperfect hack to prevent constant hoisting of
3851     // compares that might be trying to check if a 64-bit value fits in
3852     // 32-bits. The backend can optimize these cases using a right shift by 32.
3853     // Ideally we would check the compare predicate here. There also other
3854     // similar immediates the backend can use shifts for.
3855     if (Idx == 1 && Imm.getBitWidth() == 64) {
3856       uint64_t ImmVal = Imm.getZExtValue();
3857       if (ImmVal == 0x100000000ULL || ImmVal == 0xffffffff)
3858         return TTI::TCC_Free;
3859     }
3860     ImmIdx = 1;
3861     break;
3862   case Instruction::And:
3863     // We support 64-bit ANDs with immediates with 32-bits of leading zeroes
3864     // by using a 32-bit operation with implicit zero extension. Detect such
3865     // immediates here as the normal path expects bit 31 to be sign extended.
3866     if (Idx == 1 && Imm.getBitWidth() == 64 && isUInt<32>(Imm.getZExtValue()))
3867       return TTI::TCC_Free;
3868     ImmIdx = 1;
3869     break;
3870   case Instruction::Add:
3871   case Instruction::Sub:
3872     // For add/sub, we can use the opposite instruction for INT32_MIN.
3873     if (Idx == 1 && Imm.getBitWidth() == 64 && Imm.getZExtValue() == 0x80000000)
3874       return TTI::TCC_Free;
3875     ImmIdx = 1;
3876     break;
3877   case Instruction::UDiv:
3878   case Instruction::SDiv:
3879   case Instruction::URem:
3880   case Instruction::SRem:
3881     // Division by constant is typically expanded later into a different
3882     // instruction sequence. This completely changes the constants.
3883     // Report them as "free" to stop ConstantHoist from marking them as opaque.
3884     return TTI::TCC_Free;
3885   case Instruction::Mul:
3886   case Instruction::Or:
3887   case Instruction::Xor:
3888     ImmIdx = 1;
3889     break;
3890   // Always return TCC_Free for the shift value of a shift instruction.
3891   case Instruction::Shl:
3892   case Instruction::LShr:
3893   case Instruction::AShr:
3894     if (Idx == 1)
3895       return TTI::TCC_Free;
3896     break;
3897   case Instruction::Trunc:
3898   case Instruction::ZExt:
3899   case Instruction::SExt:
3900   case Instruction::IntToPtr:
3901   case Instruction::PtrToInt:
3902   case Instruction::BitCast:
3903   case Instruction::PHI:
3904   case Instruction::Call:
3905   case Instruction::Select:
3906   case Instruction::Ret:
3907   case Instruction::Load:
3908     break;
3909   }
3910 
3911   if (Idx == ImmIdx) {
3912     int NumConstants = divideCeil(BitSize, 64);
3913     int Cost = X86TTIImpl::getIntImmCost(Imm, Ty, CostKind);
3914     return (Cost <= NumConstants * TTI::TCC_Basic)
3915                ? static_cast<int>(TTI::TCC_Free)
3916                : Cost;
3917   }
3918 
3919   return X86TTIImpl::getIntImmCost(Imm, Ty, CostKind);
3920 }
3921 
3922 int X86TTIImpl::getIntImmCostIntrin(Intrinsic::ID IID, unsigned Idx,
3923                                     const APInt &Imm, Type *Ty,
3924                                     TTI::TargetCostKind CostKind) {
3925   assert(Ty->isIntegerTy());
3926 
3927   unsigned BitSize = Ty->getPrimitiveSizeInBits();
3928   // There is no cost model for constants with a bit size of 0. Return TCC_Free
3929   // here, so that constant hoisting will ignore this constant.
3930   if (BitSize == 0)
3931     return TTI::TCC_Free;
3932 
3933   switch (IID) {
3934   default:
3935     return TTI::TCC_Free;
3936   case Intrinsic::sadd_with_overflow:
3937   case Intrinsic::uadd_with_overflow:
3938   case Intrinsic::ssub_with_overflow:
3939   case Intrinsic::usub_with_overflow:
3940   case Intrinsic::smul_with_overflow:
3941   case Intrinsic::umul_with_overflow:
3942     if ((Idx == 1) && Imm.getBitWidth() <= 64 && isInt<32>(Imm.getSExtValue()))
3943       return TTI::TCC_Free;
3944     break;
3945   case Intrinsic::experimental_stackmap:
3946     if ((Idx < 2) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue())))
3947       return TTI::TCC_Free;
3948     break;
3949   case Intrinsic::experimental_patchpoint_void:
3950   case Intrinsic::experimental_patchpoint_i64:
3951     if ((Idx < 4) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue())))
3952       return TTI::TCC_Free;
3953     break;
3954   }
3955   return X86TTIImpl::getIntImmCost(Imm, Ty, CostKind);
3956 }
3957 
3958 unsigned
3959 X86TTIImpl::getCFInstrCost(unsigned Opcode, TTI::TargetCostKind CostKind) {
3960   if (CostKind != TTI::TCK_RecipThroughput)
3961     return Opcode == Instruction::PHI ? 0 : 1;
3962   // Branches are assumed to be predicted.
3963   return CostKind == TTI::TCK_RecipThroughput ? 0 : 1;
3964 }
3965 
3966 int X86TTIImpl::getGatherOverhead() const {
3967   // Some CPUs have more overhead for gather. The specified overhead is relative
3968   // to the Load operation. "2" is the number provided by Intel architects. This
3969   // parameter is used for cost estimation of Gather Op and comparison with
3970   // other alternatives.
3971   // TODO: Remove the explicit hasAVX512()?, That would mean we would only
3972   // enable gather with a -march.
3973   if (ST->hasAVX512() || (ST->hasAVX2() && ST->hasFastGather()))
3974     return 2;
3975 
3976   return 1024;
3977 }
3978 
3979 int X86TTIImpl::getScatterOverhead() const {
3980   if (ST->hasAVX512())
3981     return 2;
3982 
3983   return 1024;
3984 }
3985 
3986 // Return an average cost of Gather / Scatter instruction, maybe improved later
3987 int X86TTIImpl::getGSVectorCost(unsigned Opcode, Type *SrcVTy, const Value *Ptr,
3988                                 Align Alignment, unsigned AddressSpace) {
3989 
3990   assert(isa<VectorType>(SrcVTy) && "Unexpected type in getGSVectorCost");
3991   unsigned VF = cast<FixedVectorType>(SrcVTy)->getNumElements();
3992 
3993   // Try to reduce index size from 64 bit (default for GEP)
3994   // to 32. It is essential for VF 16. If the index can't be reduced to 32, the
3995   // operation will use 16 x 64 indices which do not fit in a zmm and needs
3996   // to split. Also check that the base pointer is the same for all lanes,
3997   // and that there's at most one variable index.
3998   auto getIndexSizeInBits = [](const Value *Ptr, const DataLayout &DL) {
3999     unsigned IndexSize = DL.getPointerSizeInBits();
4000     const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr);
4001     if (IndexSize < 64 || !GEP)
4002       return IndexSize;
4003 
4004     unsigned NumOfVarIndices = 0;
4005     const Value *Ptrs = GEP->getPointerOperand();
4006     if (Ptrs->getType()->isVectorTy() && !getSplatValue(Ptrs))
4007       return IndexSize;
4008     for (unsigned i = 1; i < GEP->getNumOperands(); ++i) {
4009       if (isa<Constant>(GEP->getOperand(i)))
4010         continue;
4011       Type *IndxTy = GEP->getOperand(i)->getType();
4012       if (auto *IndexVTy = dyn_cast<VectorType>(IndxTy))
4013         IndxTy = IndexVTy->getElementType();
4014       if ((IndxTy->getPrimitiveSizeInBits() == 64 &&
4015           !isa<SExtInst>(GEP->getOperand(i))) ||
4016          ++NumOfVarIndices > 1)
4017         return IndexSize; // 64
4018     }
4019     return (unsigned)32;
4020   };
4021 
4022   // Trying to reduce IndexSize to 32 bits for vector 16.
4023   // By default the IndexSize is equal to pointer size.
4024   unsigned IndexSize = (ST->hasAVX512() && VF >= 16)
4025                            ? getIndexSizeInBits(Ptr, DL)
4026                            : DL.getPointerSizeInBits();
4027 
4028   auto *IndexVTy = FixedVectorType::get(
4029       IntegerType::get(SrcVTy->getContext(), IndexSize), VF);
4030   std::pair<int, MVT> IdxsLT = TLI->getTypeLegalizationCost(DL, IndexVTy);
4031   std::pair<int, MVT> SrcLT = TLI->getTypeLegalizationCost(DL, SrcVTy);
4032   int SplitFactor = std::max(IdxsLT.first, SrcLT.first);
4033   if (SplitFactor > 1) {
4034     // Handle splitting of vector of pointers
4035     auto *SplitSrcTy =
4036         FixedVectorType::get(SrcVTy->getScalarType(), VF / SplitFactor);
4037     return SplitFactor * getGSVectorCost(Opcode, SplitSrcTy, Ptr, Alignment,
4038                                          AddressSpace);
4039   }
4040 
4041   // The gather / scatter cost is given by Intel architects. It is a rough
4042   // number since we are looking at one instruction in a time.
4043   const int GSOverhead = (Opcode == Instruction::Load)
4044                              ? getGatherOverhead()
4045                              : getScatterOverhead();
4046   return GSOverhead + VF * getMemoryOpCost(Opcode, SrcVTy->getScalarType(),
4047                                            MaybeAlign(Alignment), AddressSpace,
4048                                            TTI::TCK_RecipThroughput);
4049 }
4050 
4051 /// Return the cost of full scalarization of gather / scatter operation.
4052 ///
4053 /// Opcode - Load or Store instruction.
4054 /// SrcVTy - The type of the data vector that should be gathered or scattered.
4055 /// VariableMask - The mask is non-constant at compile time.
4056 /// Alignment - Alignment for one element.
4057 /// AddressSpace - pointer[s] address space.
4058 ///
4059 int X86TTIImpl::getGSScalarCost(unsigned Opcode, Type *SrcVTy,
4060                                 bool VariableMask, Align Alignment,
4061                                 unsigned AddressSpace) {
4062   unsigned VF = cast<FixedVectorType>(SrcVTy)->getNumElements();
4063   APInt DemandedElts = APInt::getAllOnesValue(VF);
4064   TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
4065 
4066   int MaskUnpackCost = 0;
4067   if (VariableMask) {
4068     auto *MaskTy =
4069         FixedVectorType::get(Type::getInt1Ty(SrcVTy->getContext()), VF);
4070     MaskUnpackCost =
4071         getScalarizationOverhead(MaskTy, DemandedElts, false, true);
4072     int ScalarCompareCost =
4073       getCmpSelInstrCost(Instruction::ICmp, Type::getInt1Ty(SrcVTy->getContext()),
4074                          nullptr, CostKind);
4075     int BranchCost = getCFInstrCost(Instruction::Br, CostKind);
4076     MaskUnpackCost += VF * (BranchCost + ScalarCompareCost);
4077   }
4078 
4079   // The cost of the scalar loads/stores.
4080   int MemoryOpCost = VF * getMemoryOpCost(Opcode, SrcVTy->getScalarType(),
4081                                           MaybeAlign(Alignment), AddressSpace,
4082                                           CostKind);
4083 
4084   int InsertExtractCost = 0;
4085   if (Opcode == Instruction::Load)
4086     for (unsigned i = 0; i < VF; ++i)
4087       // Add the cost of inserting each scalar load into the vector
4088       InsertExtractCost +=
4089         getVectorInstrCost(Instruction::InsertElement, SrcVTy, i);
4090   else
4091     for (unsigned i = 0; i < VF; ++i)
4092       // Add the cost of extracting each element out of the data vector
4093       InsertExtractCost +=
4094         getVectorInstrCost(Instruction::ExtractElement, SrcVTy, i);
4095 
4096   return MemoryOpCost + MaskUnpackCost + InsertExtractCost;
4097 }
4098 
4099 /// Calculate the cost of Gather / Scatter operation
4100 int X86TTIImpl::getGatherScatterOpCost(unsigned Opcode, Type *SrcVTy,
4101                                        const Value *Ptr, bool VariableMask,
4102                                        Align Alignment,
4103                                        TTI::TargetCostKind CostKind,
4104                                        const Instruction *I = nullptr) {
4105 
4106   if (CostKind != TTI::TCK_RecipThroughput)
4107     return 1;
4108 
4109   assert(SrcVTy->isVectorTy() && "Unexpected data type for Gather/Scatter");
4110   unsigned VF = cast<FixedVectorType>(SrcVTy)->getNumElements();
4111   PointerType *PtrTy = dyn_cast<PointerType>(Ptr->getType());
4112   if (!PtrTy && Ptr->getType()->isVectorTy())
4113     PtrTy = dyn_cast<PointerType>(
4114         cast<VectorType>(Ptr->getType())->getElementType());
4115   assert(PtrTy && "Unexpected type for Ptr argument");
4116   unsigned AddressSpace = PtrTy->getAddressSpace();
4117 
4118   bool Scalarize = false;
4119   if ((Opcode == Instruction::Load &&
4120        !isLegalMaskedGather(SrcVTy, Align(Alignment))) ||
4121       (Opcode == Instruction::Store &&
4122        !isLegalMaskedScatter(SrcVTy, Align(Alignment))))
4123     Scalarize = true;
4124   // Gather / Scatter for vector 2 is not profitable on KNL / SKX
4125   // Vector-4 of gather/scatter instruction does not exist on KNL.
4126   // We can extend it to 8 elements, but zeroing upper bits of
4127   // the mask vector will add more instructions. Right now we give the scalar
4128   // cost of vector-4 for KNL. TODO: Check, maybe the gather/scatter instruction
4129   // is better in the VariableMask case.
4130   if (ST->hasAVX512() && (VF == 2 || (VF == 4 && !ST->hasVLX())))
4131     Scalarize = true;
4132 
4133   if (Scalarize)
4134     return getGSScalarCost(Opcode, SrcVTy, VariableMask, Alignment,
4135                            AddressSpace);
4136 
4137   return getGSVectorCost(Opcode, SrcVTy, Ptr, Alignment, AddressSpace);
4138 }
4139 
4140 bool X86TTIImpl::isLSRCostLess(TargetTransformInfo::LSRCost &C1,
4141                                TargetTransformInfo::LSRCost &C2) {
4142     // X86 specific here are "instruction number 1st priority".
4143     return std::tie(C1.Insns, C1.NumRegs, C1.AddRecCost,
4144                     C1.NumIVMuls, C1.NumBaseAdds,
4145                     C1.ScaleCost, C1.ImmCost, C1.SetupCost) <
4146            std::tie(C2.Insns, C2.NumRegs, C2.AddRecCost,
4147                     C2.NumIVMuls, C2.NumBaseAdds,
4148                     C2.ScaleCost, C2.ImmCost, C2.SetupCost);
4149 }
4150 
4151 bool X86TTIImpl::canMacroFuseCmp() {
4152   return ST->hasMacroFusion() || ST->hasBranchFusion();
4153 }
4154 
4155 bool X86TTIImpl::isLegalMaskedLoad(Type *DataTy, Align Alignment) {
4156   if (!ST->hasAVX())
4157     return false;
4158 
4159   // The backend can't handle a single element vector.
4160   if (isa<VectorType>(DataTy) &&
4161       cast<FixedVectorType>(DataTy)->getNumElements() == 1)
4162     return false;
4163   Type *ScalarTy = DataTy->getScalarType();
4164 
4165   if (ScalarTy->isPointerTy())
4166     return true;
4167 
4168   if (ScalarTy->isFloatTy() || ScalarTy->isDoubleTy())
4169     return true;
4170 
4171   if (!ScalarTy->isIntegerTy())
4172     return false;
4173 
4174   unsigned IntWidth = ScalarTy->getIntegerBitWidth();
4175   return IntWidth == 32 || IntWidth == 64 ||
4176          ((IntWidth == 8 || IntWidth == 16) && ST->hasBWI());
4177 }
4178 
4179 bool X86TTIImpl::isLegalMaskedStore(Type *DataType, Align Alignment) {
4180   return isLegalMaskedLoad(DataType, Alignment);
4181 }
4182 
4183 bool X86TTIImpl::isLegalNTLoad(Type *DataType, Align Alignment) {
4184   unsigned DataSize = DL.getTypeStoreSize(DataType);
4185   // The only supported nontemporal loads are for aligned vectors of 16 or 32
4186   // bytes.  Note that 32-byte nontemporal vector loads are supported by AVX2
4187   // (the equivalent stores only require AVX).
4188   if (Alignment >= DataSize && (DataSize == 16 || DataSize == 32))
4189     return DataSize == 16 ?  ST->hasSSE1() : ST->hasAVX2();
4190 
4191   return false;
4192 }
4193 
4194 bool X86TTIImpl::isLegalNTStore(Type *DataType, Align Alignment) {
4195   unsigned DataSize = DL.getTypeStoreSize(DataType);
4196 
4197   // SSE4A supports nontemporal stores of float and double at arbitrary
4198   // alignment.
4199   if (ST->hasSSE4A() && (DataType->isFloatTy() || DataType->isDoubleTy()))
4200     return true;
4201 
4202   // Besides the SSE4A subtarget exception above, only aligned stores are
4203   // available nontemporaly on any other subtarget.  And only stores with a size
4204   // of 4..32 bytes (powers of 2, only) are permitted.
4205   if (Alignment < DataSize || DataSize < 4 || DataSize > 32 ||
4206       !isPowerOf2_32(DataSize))
4207     return false;
4208 
4209   // 32-byte vector nontemporal stores are supported by AVX (the equivalent
4210   // loads require AVX2).
4211   if (DataSize == 32)
4212     return ST->hasAVX();
4213   else if (DataSize == 16)
4214     return ST->hasSSE1();
4215   return true;
4216 }
4217 
4218 bool X86TTIImpl::isLegalMaskedExpandLoad(Type *DataTy) {
4219   if (!isa<VectorType>(DataTy))
4220     return false;
4221 
4222   if (!ST->hasAVX512())
4223     return false;
4224 
4225   // The backend can't handle a single element vector.
4226   if (cast<FixedVectorType>(DataTy)->getNumElements() == 1)
4227     return false;
4228 
4229   Type *ScalarTy = cast<VectorType>(DataTy)->getElementType();
4230 
4231   if (ScalarTy->isFloatTy() || ScalarTy->isDoubleTy())
4232     return true;
4233 
4234   if (!ScalarTy->isIntegerTy())
4235     return false;
4236 
4237   unsigned IntWidth = ScalarTy->getIntegerBitWidth();
4238   return IntWidth == 32 || IntWidth == 64 ||
4239          ((IntWidth == 8 || IntWidth == 16) && ST->hasVBMI2());
4240 }
4241 
4242 bool X86TTIImpl::isLegalMaskedCompressStore(Type *DataTy) {
4243   return isLegalMaskedExpandLoad(DataTy);
4244 }
4245 
4246 bool X86TTIImpl::isLegalMaskedGather(Type *DataTy, Align Alignment) {
4247   // Some CPUs have better gather performance than others.
4248   // TODO: Remove the explicit ST->hasAVX512()?, That would mean we would only
4249   // enable gather with a -march.
4250   if (!(ST->hasAVX512() || (ST->hasFastGather() && ST->hasAVX2())))
4251     return false;
4252 
4253   // This function is called now in two cases: from the Loop Vectorizer
4254   // and from the Scalarizer.
4255   // When the Loop Vectorizer asks about legality of the feature,
4256   // the vectorization factor is not calculated yet. The Loop Vectorizer
4257   // sends a scalar type and the decision is based on the width of the
4258   // scalar element.
4259   // Later on, the cost model will estimate usage this intrinsic based on
4260   // the vector type.
4261   // The Scalarizer asks again about legality. It sends a vector type.
4262   // In this case we can reject non-power-of-2 vectors.
4263   // We also reject single element vectors as the type legalizer can't
4264   // scalarize it.
4265   if (auto *DataVTy = dyn_cast<FixedVectorType>(DataTy)) {
4266     unsigned NumElts = DataVTy->getNumElements();
4267     if (NumElts == 1 || !isPowerOf2_32(NumElts))
4268       return false;
4269   }
4270   Type *ScalarTy = DataTy->getScalarType();
4271   if (ScalarTy->isPointerTy())
4272     return true;
4273 
4274   if (ScalarTy->isFloatTy() || ScalarTy->isDoubleTy())
4275     return true;
4276 
4277   if (!ScalarTy->isIntegerTy())
4278     return false;
4279 
4280   unsigned IntWidth = ScalarTy->getIntegerBitWidth();
4281   return IntWidth == 32 || IntWidth == 64;
4282 }
4283 
4284 bool X86TTIImpl::isLegalMaskedScatter(Type *DataType, Align Alignment) {
4285   // AVX2 doesn't support scatter
4286   if (!ST->hasAVX512())
4287     return false;
4288   return isLegalMaskedGather(DataType, Alignment);
4289 }
4290 
4291 bool X86TTIImpl::hasDivRemOp(Type *DataType, bool IsSigned) {
4292   EVT VT = TLI->getValueType(DL, DataType);
4293   return TLI->isOperationLegal(IsSigned ? ISD::SDIVREM : ISD::UDIVREM, VT);
4294 }
4295 
4296 bool X86TTIImpl::isFCmpOrdCheaperThanFCmpZero(Type *Ty) {
4297   return false;
4298 }
4299 
4300 bool X86TTIImpl::areInlineCompatible(const Function *Caller,
4301                                      const Function *Callee) const {
4302   const TargetMachine &TM = getTLI()->getTargetMachine();
4303 
4304   // Work this as a subsetting of subtarget features.
4305   const FeatureBitset &CallerBits =
4306       TM.getSubtargetImpl(*Caller)->getFeatureBits();
4307   const FeatureBitset &CalleeBits =
4308       TM.getSubtargetImpl(*Callee)->getFeatureBits();
4309 
4310   FeatureBitset RealCallerBits = CallerBits & ~InlineFeatureIgnoreList;
4311   FeatureBitset RealCalleeBits = CalleeBits & ~InlineFeatureIgnoreList;
4312   return (RealCallerBits & RealCalleeBits) == RealCalleeBits;
4313 }
4314 
4315 bool X86TTIImpl::areFunctionArgsABICompatible(
4316     const Function *Caller, const Function *Callee,
4317     SmallPtrSetImpl<Argument *> &Args) const {
4318   if (!BaseT::areFunctionArgsABICompatible(Caller, Callee, Args))
4319     return false;
4320 
4321   // If we get here, we know the target features match. If one function
4322   // considers 512-bit vectors legal and the other does not, consider them
4323   // incompatible.
4324   const TargetMachine &TM = getTLI()->getTargetMachine();
4325 
4326   if (TM.getSubtarget<X86Subtarget>(*Caller).useAVX512Regs() ==
4327       TM.getSubtarget<X86Subtarget>(*Callee).useAVX512Regs())
4328     return true;
4329 
4330   // Consider the arguments compatible if they aren't vectors or aggregates.
4331   // FIXME: Look at the size of vectors.
4332   // FIXME: Look at the element types of aggregates to see if there are vectors.
4333   // FIXME: The API of this function seems intended to allow arguments
4334   // to be removed from the set, but the caller doesn't check if the set
4335   // becomes empty so that may not work in practice.
4336   return llvm::none_of(Args, [](Argument *A) {
4337     auto *EltTy = cast<PointerType>(A->getType())->getElementType();
4338     return EltTy->isVectorTy() || EltTy->isAggregateType();
4339   });
4340 }
4341 
4342 X86TTIImpl::TTI::MemCmpExpansionOptions
4343 X86TTIImpl::enableMemCmpExpansion(bool OptSize, bool IsZeroCmp) const {
4344   TTI::MemCmpExpansionOptions Options;
4345   Options.MaxNumLoads = TLI->getMaxExpandSizeMemcmp(OptSize);
4346   Options.NumLoadsPerBlock = 2;
4347   // All GPR and vector loads can be unaligned.
4348   Options.AllowOverlappingLoads = true;
4349   if (IsZeroCmp) {
4350     // Only enable vector loads for equality comparison. Right now the vector
4351     // version is not as fast for three way compare (see #33329).
4352     const unsigned PreferredWidth = ST->getPreferVectorWidth();
4353     if (PreferredWidth >= 512 && ST->hasAVX512()) Options.LoadSizes.push_back(64);
4354     if (PreferredWidth >= 256 && ST->hasAVX()) Options.LoadSizes.push_back(32);
4355     if (PreferredWidth >= 128 && ST->hasSSE2()) Options.LoadSizes.push_back(16);
4356   }
4357   if (ST->is64Bit()) {
4358     Options.LoadSizes.push_back(8);
4359   }
4360   Options.LoadSizes.push_back(4);
4361   Options.LoadSizes.push_back(2);
4362   Options.LoadSizes.push_back(1);
4363   return Options;
4364 }
4365 
4366 bool X86TTIImpl::enableInterleavedAccessVectorization() {
4367   // TODO: We expect this to be beneficial regardless of arch,
4368   // but there are currently some unexplained performance artifacts on Atom.
4369   // As a temporary solution, disable on Atom.
4370   return !(ST->isAtom());
4371 }
4372 
4373 // Get estimation for interleaved load/store operations for AVX2.
4374 // \p Factor is the interleaved-access factor (stride) - number of
4375 // (interleaved) elements in the group.
4376 // \p Indices contains the indices for a strided load: when the
4377 // interleaved load has gaps they indicate which elements are used.
4378 // If Indices is empty (or if the number of indices is equal to the size
4379 // of the interleaved-access as given in \p Factor) the access has no gaps.
4380 //
4381 // As opposed to AVX-512, AVX2 does not have generic shuffles that allow
4382 // computing the cost using a generic formula as a function of generic
4383 // shuffles. We therefore use a lookup table instead, filled according to
4384 // the instruction sequences that codegen currently generates.
4385 int X86TTIImpl::getInterleavedMemoryOpCostAVX2(
4386     unsigned Opcode, FixedVectorType *VecTy, unsigned Factor,
4387     ArrayRef<unsigned> Indices, Align Alignment, unsigned AddressSpace,
4388     TTI::TargetCostKind CostKind, bool UseMaskForCond, bool UseMaskForGaps) {
4389 
4390   if (UseMaskForCond || UseMaskForGaps)
4391     return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices,
4392                                              Alignment, AddressSpace, CostKind,
4393                                              UseMaskForCond, UseMaskForGaps);
4394 
4395   // We currently Support only fully-interleaved groups, with no gaps.
4396   // TODO: Support also strided loads (interleaved-groups with gaps).
4397   if (Indices.size() && Indices.size() != Factor)
4398     return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices,
4399                                              Alignment, AddressSpace,
4400                                              CostKind);
4401 
4402   // VecTy for interleave memop is <VF*Factor x Elt>.
4403   // So, for VF=4, Interleave Factor = 3, Element type = i32 we have
4404   // VecTy = <12 x i32>.
4405   MVT LegalVT = getTLI()->getTypeLegalizationCost(DL, VecTy).second;
4406 
4407   // This function can be called with VecTy=<6xi128>, Factor=3, in which case
4408   // the VF=2, while v2i128 is an unsupported MVT vector type
4409   // (see MachineValueType.h::getVectorVT()).
4410   if (!LegalVT.isVector())
4411     return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices,
4412                                              Alignment, AddressSpace,
4413                                              CostKind);
4414 
4415   unsigned VF = VecTy->getNumElements() / Factor;
4416   Type *ScalarTy = VecTy->getElementType();
4417 
4418   // Calculate the number of memory operations (NumOfMemOps), required
4419   // for load/store the VecTy.
4420   unsigned VecTySize = DL.getTypeStoreSize(VecTy);
4421   unsigned LegalVTSize = LegalVT.getStoreSize();
4422   unsigned NumOfMemOps = (VecTySize + LegalVTSize - 1) / LegalVTSize;
4423 
4424   // Get the cost of one memory operation.
4425   auto *SingleMemOpTy = FixedVectorType::get(VecTy->getElementType(),
4426                                              LegalVT.getVectorNumElements());
4427   unsigned MemOpCost = getMemoryOpCost(Opcode, SingleMemOpTy,
4428                                        MaybeAlign(Alignment), AddressSpace,
4429                                        CostKind);
4430 
4431   auto *VT = FixedVectorType::get(ScalarTy, VF);
4432   EVT ETy = TLI->getValueType(DL, VT);
4433   if (!ETy.isSimple())
4434     return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices,
4435                                              Alignment, AddressSpace,
4436                                              CostKind);
4437 
4438   // TODO: Complete for other data-types and strides.
4439   // Each combination of Stride, ElementTy and VF results in a different
4440   // sequence; The cost tables are therefore accessed with:
4441   // Factor (stride) and VectorType=VFxElemType.
4442   // The Cost accounts only for the shuffle sequence;
4443   // The cost of the loads/stores is accounted for separately.
4444   //
4445   static const CostTblEntry AVX2InterleavedLoadTbl[] = {
4446     { 2, MVT::v4i64, 6 }, //(load 8i64 and) deinterleave into 2 x 4i64
4447     { 2, MVT::v4f64, 6 }, //(load 8f64 and) deinterleave into 2 x 4f64
4448 
4449     { 3, MVT::v2i8,  10 }, //(load 6i8 and)  deinterleave into 3 x 2i8
4450     { 3, MVT::v4i8,  4 },  //(load 12i8 and) deinterleave into 3 x 4i8
4451     { 3, MVT::v8i8,  9 },  //(load 24i8 and) deinterleave into 3 x 8i8
4452     { 3, MVT::v16i8, 11},  //(load 48i8 and) deinterleave into 3 x 16i8
4453     { 3, MVT::v32i8, 13},  //(load 96i8 and) deinterleave into 3 x 32i8
4454     { 3, MVT::v8f32, 17 }, //(load 24f32 and)deinterleave into 3 x 8f32
4455 
4456     { 4, MVT::v2i8,  12 }, //(load 8i8 and)   deinterleave into 4 x 2i8
4457     { 4, MVT::v4i8,  4 },  //(load 16i8 and)  deinterleave into 4 x 4i8
4458     { 4, MVT::v8i8,  20 }, //(load 32i8 and)  deinterleave into 4 x 8i8
4459     { 4, MVT::v16i8, 39 }, //(load 64i8 and)  deinterleave into 4 x 16i8
4460     { 4, MVT::v32i8, 80 }, //(load 128i8 and) deinterleave into 4 x 32i8
4461 
4462     { 8, MVT::v8f32, 40 }  //(load 64f32 and)deinterleave into 8 x 8f32
4463   };
4464 
4465   static const CostTblEntry AVX2InterleavedStoreTbl[] = {
4466     { 2, MVT::v4i64, 6 }, //interleave into 2 x 4i64 into 8i64 (and store)
4467     { 2, MVT::v4f64, 6 }, //interleave into 2 x 4f64 into 8f64 (and store)
4468 
4469     { 3, MVT::v2i8,  7 },  //interleave 3 x 2i8  into 6i8 (and store)
4470     { 3, MVT::v4i8,  8 },  //interleave 3 x 4i8  into 12i8 (and store)
4471     { 3, MVT::v8i8,  11 }, //interleave 3 x 8i8  into 24i8 (and store)
4472     { 3, MVT::v16i8, 11 }, //interleave 3 x 16i8 into 48i8 (and store)
4473     { 3, MVT::v32i8, 13 }, //interleave 3 x 32i8 into 96i8 (and store)
4474 
4475     { 4, MVT::v2i8,  12 }, //interleave 4 x 2i8  into 8i8 (and store)
4476     { 4, MVT::v4i8,  9 },  //interleave 4 x 4i8  into 16i8 (and store)
4477     { 4, MVT::v8i8,  10 }, //interleave 4 x 8i8  into 32i8 (and store)
4478     { 4, MVT::v16i8, 10 }, //interleave 4 x 16i8 into 64i8 (and store)
4479     { 4, MVT::v32i8, 12 }  //interleave 4 x 32i8 into 128i8 (and store)
4480   };
4481 
4482   if (Opcode == Instruction::Load) {
4483     if (const auto *Entry =
4484             CostTableLookup(AVX2InterleavedLoadTbl, Factor, ETy.getSimpleVT()))
4485       return NumOfMemOps * MemOpCost + Entry->Cost;
4486   } else {
4487     assert(Opcode == Instruction::Store &&
4488            "Expected Store Instruction at this  point");
4489     if (const auto *Entry =
4490             CostTableLookup(AVX2InterleavedStoreTbl, Factor, ETy.getSimpleVT()))
4491       return NumOfMemOps * MemOpCost + Entry->Cost;
4492   }
4493 
4494   return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices,
4495                                            Alignment, AddressSpace, CostKind);
4496 }
4497 
4498 // Get estimation for interleaved load/store operations and strided load.
4499 // \p Indices contains indices for strided load.
4500 // \p Factor - the factor of interleaving.
4501 // AVX-512 provides 3-src shuffles that significantly reduces the cost.
4502 int X86TTIImpl::getInterleavedMemoryOpCostAVX512(
4503     unsigned Opcode, FixedVectorType *VecTy, unsigned Factor,
4504     ArrayRef<unsigned> Indices, Align Alignment, unsigned AddressSpace,
4505     TTI::TargetCostKind CostKind, bool UseMaskForCond, bool UseMaskForGaps) {
4506 
4507   if (UseMaskForCond || UseMaskForGaps)
4508     return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices,
4509                                              Alignment, AddressSpace, CostKind,
4510                                              UseMaskForCond, UseMaskForGaps);
4511 
4512   // VecTy for interleave memop is <VF*Factor x Elt>.
4513   // So, for VF=4, Interleave Factor = 3, Element type = i32 we have
4514   // VecTy = <12 x i32>.
4515 
4516   // Calculate the number of memory operations (NumOfMemOps), required
4517   // for load/store the VecTy.
4518   MVT LegalVT = getTLI()->getTypeLegalizationCost(DL, VecTy).second;
4519   unsigned VecTySize = DL.getTypeStoreSize(VecTy);
4520   unsigned LegalVTSize = LegalVT.getStoreSize();
4521   unsigned NumOfMemOps = (VecTySize + LegalVTSize - 1) / LegalVTSize;
4522 
4523   // Get the cost of one memory operation.
4524   auto *SingleMemOpTy = FixedVectorType::get(VecTy->getElementType(),
4525                                              LegalVT.getVectorNumElements());
4526   unsigned MemOpCost = getMemoryOpCost(Opcode, SingleMemOpTy,
4527                                        MaybeAlign(Alignment), AddressSpace,
4528                                        CostKind);
4529 
4530   unsigned VF = VecTy->getNumElements() / Factor;
4531   MVT VT = MVT::getVectorVT(MVT::getVT(VecTy->getScalarType()), VF);
4532 
4533   if (Opcode == Instruction::Load) {
4534     // The tables (AVX512InterleavedLoadTbl and AVX512InterleavedStoreTbl)
4535     // contain the cost of the optimized shuffle sequence that the
4536     // X86InterleavedAccess pass will generate.
4537     // The cost of loads and stores are computed separately from the table.
4538 
4539     // X86InterleavedAccess support only the following interleaved-access group.
4540     static const CostTblEntry AVX512InterleavedLoadTbl[] = {
4541         {3, MVT::v16i8, 12}, //(load 48i8 and) deinterleave into 3 x 16i8
4542         {3, MVT::v32i8, 14}, //(load 96i8 and) deinterleave into 3 x 32i8
4543         {3, MVT::v64i8, 22}, //(load 96i8 and) deinterleave into 3 x 32i8
4544     };
4545 
4546     if (const auto *Entry =
4547             CostTableLookup(AVX512InterleavedLoadTbl, Factor, VT))
4548       return NumOfMemOps * MemOpCost + Entry->Cost;
4549     //If an entry does not exist, fallback to the default implementation.
4550 
4551     // Kind of shuffle depends on number of loaded values.
4552     // If we load the entire data in one register, we can use a 1-src shuffle.
4553     // Otherwise, we'll merge 2 sources in each operation.
4554     TTI::ShuffleKind ShuffleKind =
4555         (NumOfMemOps > 1) ? TTI::SK_PermuteTwoSrc : TTI::SK_PermuteSingleSrc;
4556 
4557     unsigned ShuffleCost =
4558         getShuffleCost(ShuffleKind, SingleMemOpTy, 0, nullptr);
4559 
4560     unsigned NumOfLoadsInInterleaveGrp =
4561         Indices.size() ? Indices.size() : Factor;
4562     auto *ResultTy = FixedVectorType::get(VecTy->getElementType(),
4563                                           VecTy->getNumElements() / Factor);
4564     unsigned NumOfResults =
4565         getTLI()->getTypeLegalizationCost(DL, ResultTy).first *
4566         NumOfLoadsInInterleaveGrp;
4567 
4568     // About a half of the loads may be folded in shuffles when we have only
4569     // one result. If we have more than one result, we do not fold loads at all.
4570     unsigned NumOfUnfoldedLoads =
4571         NumOfResults > 1 ? NumOfMemOps : NumOfMemOps / 2;
4572 
4573     // Get a number of shuffle operations per result.
4574     unsigned NumOfShufflesPerResult =
4575         std::max((unsigned)1, (unsigned)(NumOfMemOps - 1));
4576 
4577     // The SK_MergeTwoSrc shuffle clobbers one of src operands.
4578     // When we have more than one destination, we need additional instructions
4579     // to keep sources.
4580     unsigned NumOfMoves = 0;
4581     if (NumOfResults > 1 && ShuffleKind == TTI::SK_PermuteTwoSrc)
4582       NumOfMoves = NumOfResults * NumOfShufflesPerResult / 2;
4583 
4584     int Cost = NumOfResults * NumOfShufflesPerResult * ShuffleCost +
4585                NumOfUnfoldedLoads * MemOpCost + NumOfMoves;
4586 
4587     return Cost;
4588   }
4589 
4590   // Store.
4591   assert(Opcode == Instruction::Store &&
4592          "Expected Store Instruction at this  point");
4593   // X86InterleavedAccess support only the following interleaved-access group.
4594   static const CostTblEntry AVX512InterleavedStoreTbl[] = {
4595       {3, MVT::v16i8, 12}, // interleave 3 x 16i8 into 48i8 (and store)
4596       {3, MVT::v32i8, 14}, // interleave 3 x 32i8 into 96i8 (and store)
4597       {3, MVT::v64i8, 26}, // interleave 3 x 64i8 into 96i8 (and store)
4598 
4599       {4, MVT::v8i8, 10},  // interleave 4 x 8i8  into 32i8  (and store)
4600       {4, MVT::v16i8, 11}, // interleave 4 x 16i8 into 64i8  (and store)
4601       {4, MVT::v32i8, 14}, // interleave 4 x 32i8 into 128i8 (and store)
4602       {4, MVT::v64i8, 24}  // interleave 4 x 32i8 into 256i8 (and store)
4603   };
4604 
4605   if (const auto *Entry =
4606           CostTableLookup(AVX512InterleavedStoreTbl, Factor, VT))
4607     return NumOfMemOps * MemOpCost + Entry->Cost;
4608   //If an entry does not exist, fallback to the default implementation.
4609 
4610   // There is no strided stores meanwhile. And store can't be folded in
4611   // shuffle.
4612   unsigned NumOfSources = Factor; // The number of values to be merged.
4613   unsigned ShuffleCost =
4614       getShuffleCost(TTI::SK_PermuteTwoSrc, SingleMemOpTy, 0, nullptr);
4615   unsigned NumOfShufflesPerStore = NumOfSources - 1;
4616 
4617   // The SK_MergeTwoSrc shuffle clobbers one of src operands.
4618   // We need additional instructions to keep sources.
4619   unsigned NumOfMoves = NumOfMemOps * NumOfShufflesPerStore / 2;
4620   int Cost = NumOfMemOps * (MemOpCost + NumOfShufflesPerStore * ShuffleCost) +
4621              NumOfMoves;
4622   return Cost;
4623 }
4624 
4625 int X86TTIImpl::getInterleavedMemoryOpCost(
4626     unsigned Opcode, Type *VecTy, unsigned Factor, ArrayRef<unsigned> Indices,
4627     Align Alignment, unsigned AddressSpace, TTI::TargetCostKind CostKind,
4628     bool UseMaskForCond, bool UseMaskForGaps) {
4629   auto isSupportedOnAVX512 = [](Type *VecTy, bool HasBW) {
4630     Type *EltTy = cast<VectorType>(VecTy)->getElementType();
4631     if (EltTy->isFloatTy() || EltTy->isDoubleTy() || EltTy->isIntegerTy(64) ||
4632         EltTy->isIntegerTy(32) || EltTy->isPointerTy())
4633       return true;
4634     if (EltTy->isIntegerTy(16) || EltTy->isIntegerTy(8))
4635       return HasBW;
4636     return false;
4637   };
4638   if (ST->hasAVX512() && isSupportedOnAVX512(VecTy, ST->hasBWI()))
4639     return getInterleavedMemoryOpCostAVX512(
4640         Opcode, cast<FixedVectorType>(VecTy), Factor, Indices, Alignment,
4641         AddressSpace, CostKind, UseMaskForCond, UseMaskForGaps);
4642   if (ST->hasAVX2())
4643     return getInterleavedMemoryOpCostAVX2(
4644         Opcode, cast<FixedVectorType>(VecTy), Factor, Indices, Alignment,
4645         AddressSpace, CostKind, UseMaskForCond, UseMaskForGaps);
4646 
4647   return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices,
4648                                            Alignment, AddressSpace, CostKind,
4649                                            UseMaskForCond, UseMaskForGaps);
4650 }
4651