1 //===-- X86TargetTransformInfo.cpp - X86 specific TTI pass ----------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 /// \file
10 /// This file implements a TargetTransformInfo analysis pass specific to the
11 /// X86 target machine. It uses the target's detailed information to provide
12 /// more precise answers to certain TTI queries, while letting the target
13 /// independent and default TTI implementations handle the rest.
14 ///
15 //===----------------------------------------------------------------------===//
16 /// About Cost Model numbers used below it's necessary to say the following:
17 /// the numbers correspond to some "generic" X86 CPU instead of usage of
18 /// concrete CPU model. Usually the numbers correspond to CPU where the feature
19 /// apeared at the first time. For example, if we do Subtarget.hasSSE42() in
20 /// the lookups below the cost is based on Nehalem as that was the first CPU
21 /// to support that feature level and thus has most likely the worst case cost.
22 /// Some examples of other technologies/CPUs:
23 ///   SSE 3   - Pentium4 / Athlon64
24 ///   SSE 4.1 - Penryn
25 ///   SSE 4.2 - Nehalem
26 ///   AVX     - Sandy Bridge
27 ///   AVX2    - Haswell
28 ///   AVX-512 - Xeon Phi / Skylake
29 /// And some examples of instruction target dependent costs (latency)
30 ///                   divss     sqrtss          rsqrtss
31 ///   AMD K7            11-16     19              3
32 ///   Piledriver        9-24      13-15           5
33 ///   Jaguar            14        16              2
34 ///   Pentium II,III    18        30              2
35 ///   Nehalem           7-14      7-18            3
36 ///   Haswell           10-13     11              5
37 /// TODO: Develop and implement  the target dependent cost model and
38 /// specialize cost numbers for different Cost Model Targets such as throughput,
39 /// code size, latency and uop count.
40 //===----------------------------------------------------------------------===//
41 
42 #include "X86TargetTransformInfo.h"
43 #include "llvm/Analysis/TargetTransformInfo.h"
44 #include "llvm/CodeGen/BasicTTIImpl.h"
45 #include "llvm/CodeGen/CostTable.h"
46 #include "llvm/CodeGen/TargetLowering.h"
47 #include "llvm/IR/IntrinsicInst.h"
48 #include "llvm/Support/Debug.h"
49 
50 using namespace llvm;
51 
52 #define DEBUG_TYPE "x86tti"
53 
54 //===----------------------------------------------------------------------===//
55 //
56 // X86 cost model.
57 //
58 //===----------------------------------------------------------------------===//
59 
60 TargetTransformInfo::PopcntSupportKind
61 X86TTIImpl::getPopcntSupport(unsigned TyWidth) {
62   assert(isPowerOf2_32(TyWidth) && "Ty width must be power of 2");
63   // TODO: Currently the __builtin_popcount() implementation using SSE3
64   //   instructions is inefficient. Once the problem is fixed, we should
65   //   call ST->hasSSE3() instead of ST->hasPOPCNT().
66   return ST->hasPOPCNT() ? TTI::PSK_FastHardware : TTI::PSK_Software;
67 }
68 
69 llvm::Optional<unsigned> X86TTIImpl::getCacheSize(
70   TargetTransformInfo::CacheLevel Level) const {
71   switch (Level) {
72   case TargetTransformInfo::CacheLevel::L1D:
73     //   - Penryn
74     //   - Nehalem
75     //   - Westmere
76     //   - Sandy Bridge
77     //   - Ivy Bridge
78     //   - Haswell
79     //   - Broadwell
80     //   - Skylake
81     //   - Kabylake
82     return 32 * 1024;  //  32 KByte
83   case TargetTransformInfo::CacheLevel::L2D:
84     //   - Penryn
85     //   - Nehalem
86     //   - Westmere
87     //   - Sandy Bridge
88     //   - Ivy Bridge
89     //   - Haswell
90     //   - Broadwell
91     //   - Skylake
92     //   - Kabylake
93     return 256 * 1024; // 256 KByte
94   }
95 
96   llvm_unreachable("Unknown TargetTransformInfo::CacheLevel");
97 }
98 
99 llvm::Optional<unsigned> X86TTIImpl::getCacheAssociativity(
100   TargetTransformInfo::CacheLevel Level) const {
101   //   - Penryn
102   //   - Nehalem
103   //   - Westmere
104   //   - Sandy Bridge
105   //   - Ivy Bridge
106   //   - Haswell
107   //   - Broadwell
108   //   - Skylake
109   //   - Kabylake
110   switch (Level) {
111   case TargetTransformInfo::CacheLevel::L1D:
112     LLVM_FALLTHROUGH;
113   case TargetTransformInfo::CacheLevel::L2D:
114     return 8;
115   }
116 
117   llvm_unreachable("Unknown TargetTransformInfo::CacheLevel");
118 }
119 
120 unsigned X86TTIImpl::getNumberOfRegisters(bool Vector) {
121   if (Vector && !ST->hasSSE1())
122     return 0;
123 
124   if (ST->is64Bit()) {
125     if (Vector && ST->hasAVX512())
126       return 32;
127     return 16;
128   }
129   return 8;
130 }
131 
132 unsigned X86TTIImpl::getRegisterBitWidth(bool Vector) const {
133   unsigned PreferVectorWidth = ST->getPreferVectorWidth();
134   if (Vector) {
135     if (ST->hasAVX512() && PreferVectorWidth >= 512)
136       return 512;
137     if (ST->hasAVX() && PreferVectorWidth >= 256)
138       return 256;
139     if (ST->hasSSE1() && PreferVectorWidth >= 128)
140       return 128;
141     return 0;
142   }
143 
144   if (ST->is64Bit())
145     return 64;
146 
147   return 32;
148 }
149 
150 unsigned X86TTIImpl::getLoadStoreVecRegBitWidth(unsigned) const {
151   return getRegisterBitWidth(true);
152 }
153 
154 unsigned X86TTIImpl::getMaxInterleaveFactor(unsigned VF) {
155   // If the loop will not be vectorized, don't interleave the loop.
156   // Let regular unroll to unroll the loop, which saves the overflow
157   // check and memory check cost.
158   if (VF == 1)
159     return 1;
160 
161   if (ST->isAtom())
162     return 1;
163 
164   // Sandybridge and Haswell have multiple execution ports and pipelined
165   // vector units.
166   if (ST->hasAVX())
167     return 4;
168 
169   return 2;
170 }
171 
172 int X86TTIImpl::getArithmeticInstrCost(
173     unsigned Opcode, Type *Ty,
174     TTI::OperandValueKind Op1Info, TTI::OperandValueKind Op2Info,
175     TTI::OperandValueProperties Opd1PropInfo,
176     TTI::OperandValueProperties Opd2PropInfo,
177     ArrayRef<const Value *> Args) {
178   // Legalize the type.
179   std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Ty);
180 
181   int ISD = TLI->InstructionOpcodeToISD(Opcode);
182   assert(ISD && "Invalid opcode");
183 
184   static const CostTblEntry GLMCostTable[] = {
185     { ISD::FDIV,  MVT::f32,   18 }, // divss
186     { ISD::FDIV,  MVT::v4f32, 35 }, // divps
187     { ISD::FDIV,  MVT::f64,   33 }, // divsd
188     { ISD::FDIV,  MVT::v2f64, 65 }, // divpd
189   };
190 
191   if (ST->isGLM())
192     if (const auto *Entry = CostTableLookup(GLMCostTable, ISD,
193                                             LT.second))
194       return LT.first * Entry->Cost;
195 
196   static const CostTblEntry SLMCostTable[] = {
197     { ISD::MUL,   MVT::v4i32, 11 }, // pmulld
198     { ISD::MUL,   MVT::v8i16, 2  }, // pmullw
199     { ISD::MUL,   MVT::v16i8, 14 }, // extend/pmullw/trunc sequence.
200     { ISD::FMUL,  MVT::f64,   2  }, // mulsd
201     { ISD::FMUL,  MVT::v2f64, 4  }, // mulpd
202     { ISD::FMUL,  MVT::v4f32, 2  }, // mulps
203     { ISD::FDIV,  MVT::f32,   17 }, // divss
204     { ISD::FDIV,  MVT::v4f32, 39 }, // divps
205     { ISD::FDIV,  MVT::f64,   32 }, // divsd
206     { ISD::FDIV,  MVT::v2f64, 69 }, // divpd
207     { ISD::FADD,  MVT::v2f64, 2  }, // addpd
208     { ISD::FSUB,  MVT::v2f64, 2  }, // subpd
209     // v2i64/v4i64 mul is custom lowered as a series of long:
210     // multiplies(3), shifts(3) and adds(2)
211     // slm muldq version throughput is 2 and addq throughput 4
212     // thus: 3X2 (muldq throughput) + 3X1 (shift throughput) +
213     //       3X4 (addq throughput) = 17
214     { ISD::MUL,   MVT::v2i64, 17 },
215     // slm addq\subq throughput is 4
216     { ISD::ADD,   MVT::v2i64, 4  },
217     { ISD::SUB,   MVT::v2i64, 4  },
218   };
219 
220   if (ST->isSLM()) {
221     if (Args.size() == 2 && ISD == ISD::MUL && LT.second == MVT::v4i32) {
222       // Check if the operands can be shrinked into a smaller datatype.
223       bool Op1Signed = false;
224       unsigned Op1MinSize = BaseT::minRequiredElementSize(Args[0], Op1Signed);
225       bool Op2Signed = false;
226       unsigned Op2MinSize = BaseT::minRequiredElementSize(Args[1], Op2Signed);
227 
228       bool signedMode = Op1Signed | Op2Signed;
229       unsigned OpMinSize = std::max(Op1MinSize, Op2MinSize);
230 
231       if (OpMinSize <= 7)
232         return LT.first * 3; // pmullw/sext
233       if (!signedMode && OpMinSize <= 8)
234         return LT.first * 3; // pmullw/zext
235       if (OpMinSize <= 15)
236         return LT.first * 5; // pmullw/pmulhw/pshuf
237       if (!signedMode && OpMinSize <= 16)
238         return LT.first * 5; // pmullw/pmulhw/pshuf
239     }
240 
241     if (const auto *Entry = CostTableLookup(SLMCostTable, ISD,
242                                             LT.second)) {
243       return LT.first * Entry->Cost;
244     }
245   }
246 
247   if ((ISD == ISD::SDIV || ISD == ISD::SREM || ISD == ISD::UDIV ||
248        ISD == ISD::UREM) &&
249       (Op2Info == TargetTransformInfo::OK_UniformConstantValue ||
250        Op2Info == TargetTransformInfo::OK_NonUniformConstantValue) &&
251       Opd2PropInfo == TargetTransformInfo::OP_PowerOf2) {
252     if (ISD == ISD::SDIV || ISD == ISD::SREM) {
253       // On X86, vector signed division by constants power-of-two are
254       // normally expanded to the sequence SRA + SRL + ADD + SRA.
255       // The OperandValue properties may not be the same as that of the previous
256       // operation; conservatively assume OP_None.
257       int Cost =
258           2 * getArithmeticInstrCost(Instruction::AShr, Ty, Op1Info, Op2Info,
259                                      TargetTransformInfo::OP_None,
260                                      TargetTransformInfo::OP_None);
261       Cost += getArithmeticInstrCost(Instruction::LShr, Ty, Op1Info, Op2Info,
262                                      TargetTransformInfo::OP_None,
263                                      TargetTransformInfo::OP_None);
264       Cost += getArithmeticInstrCost(Instruction::Add, Ty, Op1Info, Op2Info,
265                                      TargetTransformInfo::OP_None,
266                                      TargetTransformInfo::OP_None);
267 
268       if (ISD == ISD::SREM) {
269         // For SREM: (X % C) is the equivalent of (X - (X/C)*C)
270         Cost += getArithmeticInstrCost(Instruction::Mul, Ty, Op1Info, Op2Info);
271         Cost += getArithmeticInstrCost(Instruction::Sub, Ty, Op1Info, Op2Info);
272       }
273 
274       return Cost;
275     }
276 
277     // Vector unsigned division/remainder will be simplified to shifts/masks.
278     if (ISD == ISD::UDIV)
279       return getArithmeticInstrCost(Instruction::LShr, Ty, Op1Info, Op2Info,
280                                     TargetTransformInfo::OP_None,
281                                     TargetTransformInfo::OP_None);
282 
283     if (ISD == ISD::UREM)
284       return getArithmeticInstrCost(Instruction::And, Ty, Op1Info, Op2Info,
285                                     TargetTransformInfo::OP_None,
286                                     TargetTransformInfo::OP_None);
287   }
288 
289   static const CostTblEntry AVX512BWUniformConstCostTable[] = {
290     { ISD::SHL,  MVT::v64i8,   2 }, // psllw + pand.
291     { ISD::SRL,  MVT::v64i8,   2 }, // psrlw + pand.
292     { ISD::SRA,  MVT::v64i8,   4 }, // psrlw, pand, pxor, psubb.
293   };
294 
295   if (Op2Info == TargetTransformInfo::OK_UniformConstantValue &&
296       ST->hasBWI()) {
297     if (const auto *Entry = CostTableLookup(AVX512BWUniformConstCostTable, ISD,
298                                             LT.second))
299       return LT.first * Entry->Cost;
300   }
301 
302   static const CostTblEntry AVX512UniformConstCostTable[] = {
303     { ISD::SRA,  MVT::v2i64,   1 },
304     { ISD::SRA,  MVT::v4i64,   1 },
305     { ISD::SRA,  MVT::v8i64,   1 },
306   };
307 
308   if (Op2Info == TargetTransformInfo::OK_UniformConstantValue &&
309       ST->hasAVX512()) {
310     if (const auto *Entry = CostTableLookup(AVX512UniformConstCostTable, ISD,
311                                             LT.second))
312       return LT.first * Entry->Cost;
313   }
314 
315   static const CostTblEntry AVX2UniformConstCostTable[] = {
316     { ISD::SHL,  MVT::v32i8,   2 }, // psllw + pand.
317     { ISD::SRL,  MVT::v32i8,   2 }, // psrlw + pand.
318     { ISD::SRA,  MVT::v32i8,   4 }, // psrlw, pand, pxor, psubb.
319 
320     { ISD::SRA,  MVT::v4i64,   4 }, // 2 x psrad + shuffle.
321   };
322 
323   if (Op2Info == TargetTransformInfo::OK_UniformConstantValue &&
324       ST->hasAVX2()) {
325     if (const auto *Entry = CostTableLookup(AVX2UniformConstCostTable, ISD,
326                                             LT.second))
327       return LT.first * Entry->Cost;
328   }
329 
330   static const CostTblEntry SSE2UniformConstCostTable[] = {
331     { ISD::SHL,  MVT::v16i8,     2 }, // psllw + pand.
332     { ISD::SRL,  MVT::v16i8,     2 }, // psrlw + pand.
333     { ISD::SRA,  MVT::v16i8,     4 }, // psrlw, pand, pxor, psubb.
334 
335     { ISD::SHL,  MVT::v32i8,   4+2 }, // 2*(psllw + pand) + split.
336     { ISD::SRL,  MVT::v32i8,   4+2 }, // 2*(psrlw + pand) + split.
337     { ISD::SRA,  MVT::v32i8,   8+2 }, // 2*(psrlw, pand, pxor, psubb) + split.
338   };
339 
340   // XOP has faster vXi8 shifts.
341   if (Op2Info == TargetTransformInfo::OK_UniformConstantValue &&
342       ST->hasSSE2() && !ST->hasXOP()) {
343     if (const auto *Entry =
344             CostTableLookup(SSE2UniformConstCostTable, ISD, LT.second))
345       return LT.first * Entry->Cost;
346   }
347 
348   static const CostTblEntry AVX512BWConstCostTable[] = {
349     { ISD::SDIV, MVT::v64i8,  14 }, // 2*ext+2*pmulhw sequence
350     { ISD::SREM, MVT::v64i8,  16 }, // 2*ext+2*pmulhw+mul+sub sequence
351     { ISD::UDIV, MVT::v64i8,  14 }, // 2*ext+2*pmulhw sequence
352     { ISD::UREM, MVT::v64i8,  16 }, // 2*ext+2*pmulhw+mul+sub sequence
353     { ISD::SDIV, MVT::v32i16,  6 }, // vpmulhw sequence
354     { ISD::SREM, MVT::v32i16,  8 }, // vpmulhw+mul+sub sequence
355     { ISD::UDIV, MVT::v32i16,  6 }, // vpmulhuw sequence
356     { ISD::UREM, MVT::v32i16,  8 }, // vpmulhuw+mul+sub sequence
357   };
358 
359   if ((Op2Info == TargetTransformInfo::OK_UniformConstantValue ||
360        Op2Info == TargetTransformInfo::OK_NonUniformConstantValue) &&
361       ST->hasBWI()) {
362     if (const auto *Entry =
363             CostTableLookup(AVX512BWConstCostTable, ISD, LT.second))
364       return LT.first * Entry->Cost;
365   }
366 
367   static const CostTblEntry AVX512ConstCostTable[] = {
368     { ISD::SDIV, MVT::v16i32, 15 }, // vpmuldq sequence
369     { ISD::SREM, MVT::v16i32, 17 }, // vpmuldq+mul+sub sequence
370     { ISD::UDIV, MVT::v16i32, 15 }, // vpmuludq sequence
371     { ISD::UREM, MVT::v16i32, 17 }, // vpmuludq+mul+sub sequence
372   };
373 
374   if ((Op2Info == TargetTransformInfo::OK_UniformConstantValue ||
375        Op2Info == TargetTransformInfo::OK_NonUniformConstantValue) &&
376       ST->hasAVX512()) {
377     if (const auto *Entry =
378             CostTableLookup(AVX512ConstCostTable, ISD, LT.second))
379       return LT.first * Entry->Cost;
380   }
381 
382   static const CostTblEntry AVX2ConstCostTable[] = {
383     { ISD::SDIV, MVT::v32i8,  14 }, // 2*ext+2*pmulhw sequence
384     { ISD::SREM, MVT::v32i8,  16 }, // 2*ext+2*pmulhw+mul+sub sequence
385     { ISD::UDIV, MVT::v32i8,  14 }, // 2*ext+2*pmulhw sequence
386     { ISD::UREM, MVT::v32i8,  16 }, // 2*ext+2*pmulhw+mul+sub sequence
387     { ISD::SDIV, MVT::v16i16,  6 }, // vpmulhw sequence
388     { ISD::SREM, MVT::v16i16,  8 }, // vpmulhw+mul+sub sequence
389     { ISD::UDIV, MVT::v16i16,  6 }, // vpmulhuw sequence
390     { ISD::UREM, MVT::v16i16,  8 }, // vpmulhuw+mul+sub sequence
391     { ISD::SDIV, MVT::v8i32,  15 }, // vpmuldq sequence
392     { ISD::SREM, MVT::v8i32,  19 }, // vpmuldq+mul+sub sequence
393     { ISD::UDIV, MVT::v8i32,  15 }, // vpmuludq sequence
394     { ISD::UREM, MVT::v8i32,  19 }, // vpmuludq+mul+sub sequence
395   };
396 
397   if ((Op2Info == TargetTransformInfo::OK_UniformConstantValue ||
398        Op2Info == TargetTransformInfo::OK_NonUniformConstantValue) &&
399       ST->hasAVX2()) {
400     if (const auto *Entry = CostTableLookup(AVX2ConstCostTable, ISD, LT.second))
401       return LT.first * Entry->Cost;
402   }
403 
404   static const CostTblEntry SSE2ConstCostTable[] = {
405     { ISD::SDIV, MVT::v32i8,  28+2 }, // 4*ext+4*pmulhw sequence + split.
406     { ISD::SREM, MVT::v32i8,  32+2 }, // 4*ext+4*pmulhw+mul+sub sequence + split.
407     { ISD::SDIV, MVT::v16i8,    14 }, // 2*ext+2*pmulhw sequence
408     { ISD::SREM, MVT::v16i8,    16 }, // 2*ext+2*pmulhw+mul+sub sequence
409     { ISD::UDIV, MVT::v32i8,  28+2 }, // 4*ext+4*pmulhw sequence + split.
410     { ISD::UREM, MVT::v32i8,  32+2 }, // 4*ext+4*pmulhw+mul+sub sequence + split.
411     { ISD::UDIV, MVT::v16i8,    14 }, // 2*ext+2*pmulhw sequence
412     { ISD::UREM, MVT::v16i8,    16 }, // 2*ext+2*pmulhw+mul+sub sequence
413     { ISD::SDIV, MVT::v16i16, 12+2 }, // 2*pmulhw sequence + split.
414     { ISD::SREM, MVT::v16i16, 16+2 }, // 2*pmulhw+mul+sub sequence + split.
415     { ISD::SDIV, MVT::v8i16,     6 }, // pmulhw sequence
416     { ISD::SREM, MVT::v8i16,     8 }, // pmulhw+mul+sub sequence
417     { ISD::UDIV, MVT::v16i16, 12+2 }, // 2*pmulhuw sequence + split.
418     { ISD::UREM, MVT::v16i16, 16+2 }, // 2*pmulhuw+mul+sub sequence + split.
419     { ISD::UDIV, MVT::v8i16,     6 }, // pmulhuw sequence
420     { ISD::UREM, MVT::v8i16,     8 }, // pmulhuw+mul+sub sequence
421     { ISD::SDIV, MVT::v8i32,  38+2 }, // 2*pmuludq sequence + split.
422     { ISD::SREM, MVT::v8i32,  48+2 }, // 2*pmuludq+mul+sub sequence + split.
423     { ISD::SDIV, MVT::v4i32,    19 }, // pmuludq sequence
424     { ISD::SREM, MVT::v4i32,    24 }, // pmuludq+mul+sub sequence
425     { ISD::UDIV, MVT::v8i32,  30+2 }, // 2*pmuludq sequence + split.
426     { ISD::UREM, MVT::v8i32,  40+2 }, // 2*pmuludq+mul+sub sequence + split.
427     { ISD::UDIV, MVT::v4i32,    15 }, // pmuludq sequence
428     { ISD::UREM, MVT::v4i32,    20 }, // pmuludq+mul+sub sequence
429   };
430 
431   if ((Op2Info == TargetTransformInfo::OK_UniformConstantValue ||
432        Op2Info == TargetTransformInfo::OK_NonUniformConstantValue) &&
433       ST->hasSSE2()) {
434     // pmuldq sequence.
435     if (ISD == ISD::SDIV && LT.second == MVT::v8i32 && ST->hasAVX())
436       return LT.first * 32;
437     if (ISD == ISD::SREM && LT.second == MVT::v8i32 && ST->hasAVX())
438       return LT.first * 38;
439     if (ISD == ISD::SDIV && LT.second == MVT::v4i32 && ST->hasSSE41())
440       return LT.first * 15;
441     if (ISD == ISD::SREM && LT.second == MVT::v4i32 && ST->hasSSE41())
442       return LT.first * 20;
443 
444     if (const auto *Entry = CostTableLookup(SSE2ConstCostTable, ISD, LT.second))
445       return LT.first * Entry->Cost;
446   }
447 
448   static const CostTblEntry AVX2UniformCostTable[] = {
449     // Uniform splats are cheaper for the following instructions.
450     { ISD::SHL,  MVT::v16i16, 1 }, // psllw.
451     { ISD::SRL,  MVT::v16i16, 1 }, // psrlw.
452     { ISD::SRA,  MVT::v16i16, 1 }, // psraw.
453   };
454 
455   if (ST->hasAVX2() &&
456       ((Op2Info == TargetTransformInfo::OK_UniformConstantValue) ||
457        (Op2Info == TargetTransformInfo::OK_UniformValue))) {
458     if (const auto *Entry =
459             CostTableLookup(AVX2UniformCostTable, ISD, LT.second))
460       return LT.first * Entry->Cost;
461   }
462 
463   static const CostTblEntry SSE2UniformCostTable[] = {
464     // Uniform splats are cheaper for the following instructions.
465     { ISD::SHL,  MVT::v8i16,  1 }, // psllw.
466     { ISD::SHL,  MVT::v4i32,  1 }, // pslld
467     { ISD::SHL,  MVT::v2i64,  1 }, // psllq.
468 
469     { ISD::SRL,  MVT::v8i16,  1 }, // psrlw.
470     { ISD::SRL,  MVT::v4i32,  1 }, // psrld.
471     { ISD::SRL,  MVT::v2i64,  1 }, // psrlq.
472 
473     { ISD::SRA,  MVT::v8i16,  1 }, // psraw.
474     { ISD::SRA,  MVT::v4i32,  1 }, // psrad.
475   };
476 
477   if (ST->hasSSE2() &&
478       ((Op2Info == TargetTransformInfo::OK_UniformConstantValue) ||
479        (Op2Info == TargetTransformInfo::OK_UniformValue))) {
480     if (const auto *Entry =
481             CostTableLookup(SSE2UniformCostTable, ISD, LT.second))
482       return LT.first * Entry->Cost;
483   }
484 
485   static const CostTblEntry AVX512DQCostTable[] = {
486     { ISD::MUL,  MVT::v2i64, 1 },
487     { ISD::MUL,  MVT::v4i64, 1 },
488     { ISD::MUL,  MVT::v8i64, 1 }
489   };
490 
491   // Look for AVX512DQ lowering tricks for custom cases.
492   if (ST->hasDQI())
493     if (const auto *Entry = CostTableLookup(AVX512DQCostTable, ISD, LT.second))
494       return LT.first * Entry->Cost;
495 
496   static const CostTblEntry AVX512BWCostTable[] = {
497     { ISD::SHL,   MVT::v8i16,      1 }, // vpsllvw
498     { ISD::SRL,   MVT::v8i16,      1 }, // vpsrlvw
499     { ISD::SRA,   MVT::v8i16,      1 }, // vpsravw
500 
501     { ISD::SHL,   MVT::v16i16,     1 }, // vpsllvw
502     { ISD::SRL,   MVT::v16i16,     1 }, // vpsrlvw
503     { ISD::SRA,   MVT::v16i16,     1 }, // vpsravw
504 
505     { ISD::SHL,   MVT::v32i16,     1 }, // vpsllvw
506     { ISD::SRL,   MVT::v32i16,     1 }, // vpsrlvw
507     { ISD::SRA,   MVT::v32i16,     1 }, // vpsravw
508 
509     { ISD::SHL,   MVT::v64i8,     11 }, // vpblendvb sequence.
510     { ISD::SRL,   MVT::v64i8,     11 }, // vpblendvb sequence.
511     { ISD::SRA,   MVT::v64i8,     24 }, // vpblendvb sequence.
512 
513     { ISD::MUL,   MVT::v64i8,     11 }, // extend/pmullw/trunc sequence.
514     { ISD::MUL,   MVT::v32i8,      4 }, // extend/pmullw/trunc sequence.
515     { ISD::MUL,   MVT::v16i8,      4 }, // extend/pmullw/trunc sequence.
516   };
517 
518   // Look for AVX512BW lowering tricks for custom cases.
519   if (ST->hasBWI())
520     if (const auto *Entry = CostTableLookup(AVX512BWCostTable, ISD, LT.second))
521       return LT.first * Entry->Cost;
522 
523   static const CostTblEntry AVX512CostTable[] = {
524     { ISD::SHL,     MVT::v16i32,     1 },
525     { ISD::SRL,     MVT::v16i32,     1 },
526     { ISD::SRA,     MVT::v16i32,     1 },
527 
528     { ISD::SHL,     MVT::v8i64,      1 },
529     { ISD::SRL,     MVT::v8i64,      1 },
530 
531     { ISD::SRA,     MVT::v2i64,      1 },
532     { ISD::SRA,     MVT::v4i64,      1 },
533     { ISD::SRA,     MVT::v8i64,      1 },
534 
535     { ISD::MUL,     MVT::v32i8,     13 }, // extend/pmullw/trunc sequence.
536     { ISD::MUL,     MVT::v16i8,      5 }, // extend/pmullw/trunc sequence.
537     { ISD::MUL,     MVT::v16i32,     1 }, // pmulld (Skylake from agner.org)
538     { ISD::MUL,     MVT::v8i32,      1 }, // pmulld (Skylake from agner.org)
539     { ISD::MUL,     MVT::v4i32,      1 }, // pmulld (Skylake from agner.org)
540     { ISD::MUL,     MVT::v8i64,      8 }, // 3*pmuludq/3*shift/2*add
541 
542     { ISD::FADD,    MVT::v8f64,      1 }, // Skylake from http://www.agner.org/
543     { ISD::FSUB,    MVT::v8f64,      1 }, // Skylake from http://www.agner.org/
544     { ISD::FMUL,    MVT::v8f64,      1 }, // Skylake from http://www.agner.org/
545 
546     { ISD::FADD,    MVT::v16f32,     1 }, // Skylake from http://www.agner.org/
547     { ISD::FSUB,    MVT::v16f32,     1 }, // Skylake from http://www.agner.org/
548     { ISD::FMUL,    MVT::v16f32,     1 }, // Skylake from http://www.agner.org/
549   };
550 
551   if (ST->hasAVX512())
552     if (const auto *Entry = CostTableLookup(AVX512CostTable, ISD, LT.second))
553       return LT.first * Entry->Cost;
554 
555   static const CostTblEntry AVX2ShiftCostTable[] = {
556     // Shifts on v4i64/v8i32 on AVX2 is legal even though we declare to
557     // customize them to detect the cases where shift amount is a scalar one.
558     { ISD::SHL,     MVT::v4i32,    1 },
559     { ISD::SRL,     MVT::v4i32,    1 },
560     { ISD::SRA,     MVT::v4i32,    1 },
561     { ISD::SHL,     MVT::v8i32,    1 },
562     { ISD::SRL,     MVT::v8i32,    1 },
563     { ISD::SRA,     MVT::v8i32,    1 },
564     { ISD::SHL,     MVT::v2i64,    1 },
565     { ISD::SRL,     MVT::v2i64,    1 },
566     { ISD::SHL,     MVT::v4i64,    1 },
567     { ISD::SRL,     MVT::v4i64,    1 },
568   };
569 
570   // Look for AVX2 lowering tricks.
571   if (ST->hasAVX2()) {
572     if (ISD == ISD::SHL && LT.second == MVT::v16i16 &&
573         (Op2Info == TargetTransformInfo::OK_UniformConstantValue ||
574          Op2Info == TargetTransformInfo::OK_NonUniformConstantValue))
575       // On AVX2, a packed v16i16 shift left by a constant build_vector
576       // is lowered into a vector multiply (vpmullw).
577       return getArithmeticInstrCost(Instruction::Mul, Ty, Op1Info, Op2Info,
578                                     TargetTransformInfo::OP_None,
579                                     TargetTransformInfo::OP_None);
580 
581     if (const auto *Entry = CostTableLookup(AVX2ShiftCostTable, ISD, LT.second))
582       return LT.first * Entry->Cost;
583   }
584 
585   static const CostTblEntry XOPShiftCostTable[] = {
586     // 128bit shifts take 1cy, but right shifts require negation beforehand.
587     { ISD::SHL,     MVT::v16i8,    1 },
588     { ISD::SRL,     MVT::v16i8,    2 },
589     { ISD::SRA,     MVT::v16i8,    2 },
590     { ISD::SHL,     MVT::v8i16,    1 },
591     { ISD::SRL,     MVT::v8i16,    2 },
592     { ISD::SRA,     MVT::v8i16,    2 },
593     { ISD::SHL,     MVT::v4i32,    1 },
594     { ISD::SRL,     MVT::v4i32,    2 },
595     { ISD::SRA,     MVT::v4i32,    2 },
596     { ISD::SHL,     MVT::v2i64,    1 },
597     { ISD::SRL,     MVT::v2i64,    2 },
598     { ISD::SRA,     MVT::v2i64,    2 },
599     // 256bit shifts require splitting if AVX2 didn't catch them above.
600     { ISD::SHL,     MVT::v32i8,  2+2 },
601     { ISD::SRL,     MVT::v32i8,  4+2 },
602     { ISD::SRA,     MVT::v32i8,  4+2 },
603     { ISD::SHL,     MVT::v16i16, 2+2 },
604     { ISD::SRL,     MVT::v16i16, 4+2 },
605     { ISD::SRA,     MVT::v16i16, 4+2 },
606     { ISD::SHL,     MVT::v8i32,  2+2 },
607     { ISD::SRL,     MVT::v8i32,  4+2 },
608     { ISD::SRA,     MVT::v8i32,  4+2 },
609     { ISD::SHL,     MVT::v4i64,  2+2 },
610     { ISD::SRL,     MVT::v4i64,  4+2 },
611     { ISD::SRA,     MVT::v4i64,  4+2 },
612   };
613 
614   // Look for XOP lowering tricks.
615   if (ST->hasXOP()) {
616     // If the right shift is constant then we'll fold the negation so
617     // it's as cheap as a left shift.
618     int ShiftISD = ISD;
619     if ((ShiftISD == ISD::SRL || ShiftISD == ISD::SRA) &&
620         (Op2Info == TargetTransformInfo::OK_UniformConstantValue ||
621          Op2Info == TargetTransformInfo::OK_NonUniformConstantValue))
622       ShiftISD = ISD::SHL;
623     if (const auto *Entry =
624             CostTableLookup(XOPShiftCostTable, ShiftISD, LT.second))
625       return LT.first * Entry->Cost;
626   }
627 
628   static const CostTblEntry SSE2UniformShiftCostTable[] = {
629     // Uniform splats are cheaper for the following instructions.
630     { ISD::SHL,  MVT::v16i16, 2+2 }, // 2*psllw + split.
631     { ISD::SHL,  MVT::v8i32,  2+2 }, // 2*pslld + split.
632     { ISD::SHL,  MVT::v4i64,  2+2 }, // 2*psllq + split.
633 
634     { ISD::SRL,  MVT::v16i16, 2+2 }, // 2*psrlw + split.
635     { ISD::SRL,  MVT::v8i32,  2+2 }, // 2*psrld + split.
636     { ISD::SRL,  MVT::v4i64,  2+2 }, // 2*psrlq + split.
637 
638     { ISD::SRA,  MVT::v16i16, 2+2 }, // 2*psraw + split.
639     { ISD::SRA,  MVT::v8i32,  2+2 }, // 2*psrad + split.
640     { ISD::SRA,  MVT::v2i64,    4 }, // 2*psrad + shuffle.
641     { ISD::SRA,  MVT::v4i64,  8+2 }, // 2*(2*psrad + shuffle) + split.
642   };
643 
644   if (ST->hasSSE2() &&
645       ((Op2Info == TargetTransformInfo::OK_UniformConstantValue) ||
646        (Op2Info == TargetTransformInfo::OK_UniformValue))) {
647 
648     // Handle AVX2 uniform v4i64 ISD::SRA, it's not worth a table.
649     if (ISD == ISD::SRA && LT.second == MVT::v4i64 && ST->hasAVX2())
650       return LT.first * 4; // 2*psrad + shuffle.
651 
652     if (const auto *Entry =
653             CostTableLookup(SSE2UniformShiftCostTable, ISD, LT.second))
654       return LT.first * Entry->Cost;
655   }
656 
657   if (ISD == ISD::SHL &&
658       Op2Info == TargetTransformInfo::OK_NonUniformConstantValue) {
659     MVT VT = LT.second;
660     // Vector shift left by non uniform constant can be lowered
661     // into vector multiply.
662     if (((VT == MVT::v8i16 || VT == MVT::v4i32) && ST->hasSSE2()) ||
663         ((VT == MVT::v16i16 || VT == MVT::v8i32) && ST->hasAVX()))
664       ISD = ISD::MUL;
665   }
666 
667   static const CostTblEntry AVX2CostTable[] = {
668     { ISD::SHL,  MVT::v32i8,     11 }, // vpblendvb sequence.
669     { ISD::SHL,  MVT::v16i16,    10 }, // extend/vpsrlvd/pack sequence.
670 
671     { ISD::SRL,  MVT::v32i8,     11 }, // vpblendvb sequence.
672     { ISD::SRL,  MVT::v16i16,    10 }, // extend/vpsrlvd/pack sequence.
673 
674     { ISD::SRA,  MVT::v32i8,     24 }, // vpblendvb sequence.
675     { ISD::SRA,  MVT::v16i16,    10 }, // extend/vpsravd/pack sequence.
676     { ISD::SRA,  MVT::v2i64,      4 }, // srl/xor/sub sequence.
677     { ISD::SRA,  MVT::v4i64,      4 }, // srl/xor/sub sequence.
678 
679     { ISD::SUB,  MVT::v32i8,      1 }, // psubb
680     { ISD::ADD,  MVT::v32i8,      1 }, // paddb
681     { ISD::SUB,  MVT::v16i16,     1 }, // psubw
682     { ISD::ADD,  MVT::v16i16,     1 }, // paddw
683     { ISD::SUB,  MVT::v8i32,      1 }, // psubd
684     { ISD::ADD,  MVT::v8i32,      1 }, // paddd
685     { ISD::SUB,  MVT::v4i64,      1 }, // psubq
686     { ISD::ADD,  MVT::v4i64,      1 }, // paddq
687 
688     { ISD::MUL,  MVT::v32i8,     17 }, // extend/pmullw/trunc sequence.
689     { ISD::MUL,  MVT::v16i8,      7 }, // extend/pmullw/trunc sequence.
690     { ISD::MUL,  MVT::v16i16,     1 }, // pmullw
691     { ISD::MUL,  MVT::v8i32,      2 }, // pmulld (Haswell from agner.org)
692     { ISD::MUL,  MVT::v4i64,      8 }, // 3*pmuludq/3*shift/2*add
693 
694     { ISD::FADD, MVT::v4f64,      1 }, // Haswell from http://www.agner.org/
695     { ISD::FADD, MVT::v8f32,      1 }, // Haswell from http://www.agner.org/
696     { ISD::FSUB, MVT::v4f64,      1 }, // Haswell from http://www.agner.org/
697     { ISD::FSUB, MVT::v8f32,      1 }, // Haswell from http://www.agner.org/
698     { ISD::FMUL, MVT::v4f64,      1 }, // Haswell from http://www.agner.org/
699     { ISD::FMUL, MVT::v8f32,      1 }, // Haswell from http://www.agner.org/
700 
701     { ISD::FDIV, MVT::f32,        7 }, // Haswell from http://www.agner.org/
702     { ISD::FDIV, MVT::v4f32,      7 }, // Haswell from http://www.agner.org/
703     { ISD::FDIV, MVT::v8f32,     14 }, // Haswell from http://www.agner.org/
704     { ISD::FDIV, MVT::f64,       14 }, // Haswell from http://www.agner.org/
705     { ISD::FDIV, MVT::v2f64,     14 }, // Haswell from http://www.agner.org/
706     { ISD::FDIV, MVT::v4f64,     28 }, // Haswell from http://www.agner.org/
707   };
708 
709   // Look for AVX2 lowering tricks for custom cases.
710   if (ST->hasAVX2())
711     if (const auto *Entry = CostTableLookup(AVX2CostTable, ISD, LT.second))
712       return LT.first * Entry->Cost;
713 
714   static const CostTblEntry AVX1CostTable[] = {
715     // We don't have to scalarize unsupported ops. We can issue two half-sized
716     // operations and we only need to extract the upper YMM half.
717     // Two ops + 1 extract + 1 insert = 4.
718     { ISD::MUL,     MVT::v16i16,     4 },
719     { ISD::MUL,     MVT::v8i32,      4 },
720     { ISD::SUB,     MVT::v32i8,      4 },
721     { ISD::ADD,     MVT::v32i8,      4 },
722     { ISD::SUB,     MVT::v16i16,     4 },
723     { ISD::ADD,     MVT::v16i16,     4 },
724     { ISD::SUB,     MVT::v8i32,      4 },
725     { ISD::ADD,     MVT::v8i32,      4 },
726     { ISD::SUB,     MVT::v4i64,      4 },
727     { ISD::ADD,     MVT::v4i64,      4 },
728 
729     // A v4i64 multiply is custom lowered as two split v2i64 vectors that then
730     // are lowered as a series of long multiplies(3), shifts(3) and adds(2)
731     // Because we believe v4i64 to be a legal type, we must also include the
732     // extract+insert in the cost table. Therefore, the cost here is 18
733     // instead of 8.
734     { ISD::MUL,     MVT::v4i64,     18 },
735 
736     { ISD::MUL,     MVT::v32i8,     26 }, // extend/pmullw/trunc sequence.
737 
738     { ISD::FDIV,    MVT::f32,       14 }, // SNB from http://www.agner.org/
739     { ISD::FDIV,    MVT::v4f32,     14 }, // SNB from http://www.agner.org/
740     { ISD::FDIV,    MVT::v8f32,     28 }, // SNB from http://www.agner.org/
741     { ISD::FDIV,    MVT::f64,       22 }, // SNB from http://www.agner.org/
742     { ISD::FDIV,    MVT::v2f64,     22 }, // SNB from http://www.agner.org/
743     { ISD::FDIV,    MVT::v4f64,     44 }, // SNB from http://www.agner.org/
744   };
745 
746   if (ST->hasAVX())
747     if (const auto *Entry = CostTableLookup(AVX1CostTable, ISD, LT.second))
748       return LT.first * Entry->Cost;
749 
750   static const CostTblEntry SSE42CostTable[] = {
751     { ISD::FADD, MVT::f64,     1 }, // Nehalem from http://www.agner.org/
752     { ISD::FADD, MVT::f32,     1 }, // Nehalem from http://www.agner.org/
753     { ISD::FADD, MVT::v2f64,   1 }, // Nehalem from http://www.agner.org/
754     { ISD::FADD, MVT::v4f32,   1 }, // Nehalem from http://www.agner.org/
755 
756     { ISD::FSUB, MVT::f64,     1 }, // Nehalem from http://www.agner.org/
757     { ISD::FSUB, MVT::f32 ,    1 }, // Nehalem from http://www.agner.org/
758     { ISD::FSUB, MVT::v2f64,   1 }, // Nehalem from http://www.agner.org/
759     { ISD::FSUB, MVT::v4f32,   1 }, // Nehalem from http://www.agner.org/
760 
761     { ISD::FMUL, MVT::f64,     1 }, // Nehalem from http://www.agner.org/
762     { ISD::FMUL, MVT::f32,     1 }, // Nehalem from http://www.agner.org/
763     { ISD::FMUL, MVT::v2f64,   1 }, // Nehalem from http://www.agner.org/
764     { ISD::FMUL, MVT::v4f32,   1 }, // Nehalem from http://www.agner.org/
765 
766     { ISD::FDIV,  MVT::f32,   14 }, // Nehalem from http://www.agner.org/
767     { ISD::FDIV,  MVT::v4f32, 14 }, // Nehalem from http://www.agner.org/
768     { ISD::FDIV,  MVT::f64,   22 }, // Nehalem from http://www.agner.org/
769     { ISD::FDIV,  MVT::v2f64, 22 }, // Nehalem from http://www.agner.org/
770   };
771 
772   if (ST->hasSSE42())
773     if (const auto *Entry = CostTableLookup(SSE42CostTable, ISD, LT.second))
774       return LT.first * Entry->Cost;
775 
776   static const CostTblEntry SSE41CostTable[] = {
777     { ISD::SHL,  MVT::v16i8,      11 }, // pblendvb sequence.
778     { ISD::SHL,  MVT::v32i8,  2*11+2 }, // pblendvb sequence + split.
779     { ISD::SHL,  MVT::v8i16,      14 }, // pblendvb sequence.
780     { ISD::SHL,  MVT::v16i16, 2*14+2 }, // pblendvb sequence + split.
781     { ISD::SHL,  MVT::v4i32,       4 }, // pslld/paddd/cvttps2dq/pmulld
782     { ISD::SHL,  MVT::v8i32,   2*4+2 }, // pslld/paddd/cvttps2dq/pmulld + split
783 
784     { ISD::SRL,  MVT::v16i8,      12 }, // pblendvb sequence.
785     { ISD::SRL,  MVT::v32i8,  2*12+2 }, // pblendvb sequence + split.
786     { ISD::SRL,  MVT::v8i16,      14 }, // pblendvb sequence.
787     { ISD::SRL,  MVT::v16i16, 2*14+2 }, // pblendvb sequence + split.
788     { ISD::SRL,  MVT::v4i32,      11 }, // Shift each lane + blend.
789     { ISD::SRL,  MVT::v8i32,  2*11+2 }, // Shift each lane + blend + split.
790 
791     { ISD::SRA,  MVT::v16i8,      24 }, // pblendvb sequence.
792     { ISD::SRA,  MVT::v32i8,  2*24+2 }, // pblendvb sequence + split.
793     { ISD::SRA,  MVT::v8i16,      14 }, // pblendvb sequence.
794     { ISD::SRA,  MVT::v16i16, 2*14+2 }, // pblendvb sequence + split.
795     { ISD::SRA,  MVT::v4i32,      12 }, // Shift each lane + blend.
796     { ISD::SRA,  MVT::v8i32,  2*12+2 }, // Shift each lane + blend + split.
797 
798     { ISD::MUL,  MVT::v4i32,       2 }  // pmulld (Nehalem from agner.org)
799   };
800 
801   if (ST->hasSSE41())
802     if (const auto *Entry = CostTableLookup(SSE41CostTable, ISD, LT.second))
803       return LT.first * Entry->Cost;
804 
805   static const CostTblEntry SSE2CostTable[] = {
806     // We don't correctly identify costs of casts because they are marked as
807     // custom.
808     { ISD::SHL,  MVT::v16i8,      26 }, // cmpgtb sequence.
809     { ISD::SHL,  MVT::v8i16,      32 }, // cmpgtb sequence.
810     { ISD::SHL,  MVT::v4i32,     2*5 }, // We optimized this using mul.
811     { ISD::SHL,  MVT::v2i64,       4 }, // splat+shuffle sequence.
812     { ISD::SHL,  MVT::v4i64,   2*4+2 }, // splat+shuffle sequence + split.
813 
814     { ISD::SRL,  MVT::v16i8,      26 }, // cmpgtb sequence.
815     { ISD::SRL,  MVT::v8i16,      32 }, // cmpgtb sequence.
816     { ISD::SRL,  MVT::v4i32,      16 }, // Shift each lane + blend.
817     { ISD::SRL,  MVT::v2i64,       4 }, // splat+shuffle sequence.
818     { ISD::SRL,  MVT::v4i64,   2*4+2 }, // splat+shuffle sequence + split.
819 
820     { ISD::SRA,  MVT::v16i8,      54 }, // unpacked cmpgtb sequence.
821     { ISD::SRA,  MVT::v8i16,      32 }, // cmpgtb sequence.
822     { ISD::SRA,  MVT::v4i32,      16 }, // Shift each lane + blend.
823     { ISD::SRA,  MVT::v2i64,      12 }, // srl/xor/sub sequence.
824     { ISD::SRA,  MVT::v4i64,  2*12+2 }, // srl/xor/sub sequence+split.
825 
826     { ISD::MUL,  MVT::v16i8,      12 }, // extend/pmullw/trunc sequence.
827     { ISD::MUL,  MVT::v8i16,       1 }, // pmullw
828     { ISD::MUL,  MVT::v4i32,       6 }, // 3*pmuludq/4*shuffle
829     { ISD::MUL,  MVT::v2i64,       8 }, // 3*pmuludq/3*shift/2*add
830 
831     { ISD::FDIV, MVT::f32,        23 }, // Pentium IV from http://www.agner.org/
832     { ISD::FDIV, MVT::v4f32,      39 }, // Pentium IV from http://www.agner.org/
833     { ISD::FDIV, MVT::f64,        38 }, // Pentium IV from http://www.agner.org/
834     { ISD::FDIV, MVT::v2f64,      69 }, // Pentium IV from http://www.agner.org/
835   };
836 
837   if (ST->hasSSE2())
838     if (const auto *Entry = CostTableLookup(SSE2CostTable, ISD, LT.second))
839       return LT.first * Entry->Cost;
840 
841   static const CostTblEntry SSE1CostTable[] = {
842     { ISD::FDIV, MVT::f32,   17 }, // Pentium III from http://www.agner.org/
843     { ISD::FDIV, MVT::v4f32, 34 }, // Pentium III from http://www.agner.org/
844   };
845 
846   if (ST->hasSSE1())
847     if (const auto *Entry = CostTableLookup(SSE1CostTable, ISD, LT.second))
848       return LT.first * Entry->Cost;
849 
850   // It is not a good idea to vectorize division. We have to scalarize it and
851   // in the process we will often end up having to spilling regular
852   // registers. The overhead of division is going to dominate most kernels
853   // anyways so try hard to prevent vectorization of division - it is
854   // generally a bad idea. Assume somewhat arbitrarily that we have to be able
855   // to hide "20 cycles" for each lane.
856   if (LT.second.isVector() && (ISD == ISD::SDIV || ISD == ISD::SREM ||
857                                ISD == ISD::UDIV || ISD == ISD::UREM)) {
858     int ScalarCost = getArithmeticInstrCost(
859         Opcode, Ty->getScalarType(), Op1Info, Op2Info,
860         TargetTransformInfo::OP_None, TargetTransformInfo::OP_None);
861     return 20 * LT.first * LT.second.getVectorNumElements() * ScalarCost;
862   }
863 
864   // Fallback to the default implementation.
865   return BaseT::getArithmeticInstrCost(Opcode, Ty, Op1Info, Op2Info);
866 }
867 
868 int X86TTIImpl::getShuffleCost(TTI::ShuffleKind Kind, Type *Tp, int Index,
869                                Type *SubTp) {
870   // 64-bit packed float vectors (v2f32) are widened to type v4f32.
871   // 64-bit packed integer vectors (v2i32) are promoted to type v2i64.
872   std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Tp);
873 
874   // Treat Transpose as 2-op shuffles - there's no difference in lowering.
875   if (Kind == TTI::SK_Transpose)
876     Kind = TTI::SK_PermuteTwoSrc;
877 
878   // For Broadcasts we are splatting the first element from the first input
879   // register, so only need to reference that input and all the output
880   // registers are the same.
881   if (Kind == TTI::SK_Broadcast)
882     LT.first = 1;
883 
884   // Subvector extractions are free if they start at the beginning of a
885   // vector and cheap if the subvectors are aligned.
886   if (Kind == TTI::SK_ExtractSubvector && LT.second.isVector()) {
887     int NumElts = LT.second.getVectorNumElements();
888     if ((Index % NumElts) == 0)
889       return 0;
890     std::pair<int, MVT> SubLT = TLI->getTypeLegalizationCost(DL, SubTp);
891     if (SubLT.second.isVector()) {
892       int NumSubElts = SubLT.second.getVectorNumElements();
893       if ((Index % NumSubElts) == 0 && (NumElts % NumSubElts) == 0)
894         return SubLT.first;
895     }
896   }
897 
898   // We are going to permute multiple sources and the result will be in multiple
899   // destinations. Providing an accurate cost only for splits where the element
900   // type remains the same.
901   if (Kind == TTI::SK_PermuteSingleSrc && LT.first != 1) {
902     MVT LegalVT = LT.second;
903     if (LegalVT.isVector() &&
904         LegalVT.getVectorElementType().getSizeInBits() ==
905             Tp->getVectorElementType()->getPrimitiveSizeInBits() &&
906         LegalVT.getVectorNumElements() < Tp->getVectorNumElements()) {
907 
908       unsigned VecTySize = DL.getTypeStoreSize(Tp);
909       unsigned LegalVTSize = LegalVT.getStoreSize();
910       // Number of source vectors after legalization:
911       unsigned NumOfSrcs = (VecTySize + LegalVTSize - 1) / LegalVTSize;
912       // Number of destination vectors after legalization:
913       unsigned NumOfDests = LT.first;
914 
915       Type *SingleOpTy = VectorType::get(Tp->getVectorElementType(),
916                                          LegalVT.getVectorNumElements());
917 
918       unsigned NumOfShuffles = (NumOfSrcs - 1) * NumOfDests;
919       return NumOfShuffles *
920              getShuffleCost(TTI::SK_PermuteTwoSrc, SingleOpTy, 0, nullptr);
921     }
922 
923     return BaseT::getShuffleCost(Kind, Tp, Index, SubTp);
924   }
925 
926   // For 2-input shuffles, we must account for splitting the 2 inputs into many.
927   if (Kind == TTI::SK_PermuteTwoSrc && LT.first != 1) {
928     // We assume that source and destination have the same vector type.
929     int NumOfDests = LT.first;
930     int NumOfShufflesPerDest = LT.first * 2 - 1;
931     LT.first = NumOfDests * NumOfShufflesPerDest;
932   }
933 
934   static const CostTblEntry AVX512VBMIShuffleTbl[] = {
935       {TTI::SK_Reverse, MVT::v64i8, 1}, // vpermb
936       {TTI::SK_Reverse, MVT::v32i8, 1}, // vpermb
937 
938       {TTI::SK_PermuteSingleSrc, MVT::v64i8, 1}, // vpermb
939       {TTI::SK_PermuteSingleSrc, MVT::v32i8, 1}, // vpermb
940 
941       {TTI::SK_PermuteTwoSrc, MVT::v64i8, 1}, // vpermt2b
942       {TTI::SK_PermuteTwoSrc, MVT::v32i8, 1}, // vpermt2b
943       {TTI::SK_PermuteTwoSrc, MVT::v16i8, 1}  // vpermt2b
944   };
945 
946   if (ST->hasVBMI())
947     if (const auto *Entry =
948             CostTableLookup(AVX512VBMIShuffleTbl, Kind, LT.second))
949       return LT.first * Entry->Cost;
950 
951   static const CostTblEntry AVX512BWShuffleTbl[] = {
952       {TTI::SK_Broadcast, MVT::v32i16, 1}, // vpbroadcastw
953       {TTI::SK_Broadcast, MVT::v64i8, 1},  // vpbroadcastb
954 
955       {TTI::SK_Reverse, MVT::v32i16, 1}, // vpermw
956       {TTI::SK_Reverse, MVT::v16i16, 1}, // vpermw
957       {TTI::SK_Reverse, MVT::v64i8, 2},  // pshufb + vshufi64x2
958 
959       {TTI::SK_PermuteSingleSrc, MVT::v32i16, 1}, // vpermw
960       {TTI::SK_PermuteSingleSrc, MVT::v16i16, 1}, // vpermw
961       {TTI::SK_PermuteSingleSrc, MVT::v8i16, 1},  // vpermw
962       {TTI::SK_PermuteSingleSrc, MVT::v64i8, 8},  // extend to v32i16
963       {TTI::SK_PermuteSingleSrc, MVT::v32i8, 3},  // vpermw + zext/trunc
964 
965       {TTI::SK_PermuteTwoSrc, MVT::v32i16, 1}, // vpermt2w
966       {TTI::SK_PermuteTwoSrc, MVT::v16i16, 1}, // vpermt2w
967       {TTI::SK_PermuteTwoSrc, MVT::v8i16, 1},  // vpermt2w
968       {TTI::SK_PermuteTwoSrc, MVT::v32i8, 3},  // zext + vpermt2w + trunc
969       {TTI::SK_PermuteTwoSrc, MVT::v64i8, 19}, // 6 * v32i8 + 1
970       {TTI::SK_PermuteTwoSrc, MVT::v16i8, 3}   // zext + vpermt2w + trunc
971   };
972 
973   if (ST->hasBWI())
974     if (const auto *Entry =
975             CostTableLookup(AVX512BWShuffleTbl, Kind, LT.second))
976       return LT.first * Entry->Cost;
977 
978   static const CostTblEntry AVX512ShuffleTbl[] = {
979       {TTI::SK_Broadcast, MVT::v8f64, 1},  // vbroadcastpd
980       {TTI::SK_Broadcast, MVT::v16f32, 1}, // vbroadcastps
981       {TTI::SK_Broadcast, MVT::v8i64, 1},  // vpbroadcastq
982       {TTI::SK_Broadcast, MVT::v16i32, 1}, // vpbroadcastd
983 
984       {TTI::SK_Reverse, MVT::v8f64, 1},  // vpermpd
985       {TTI::SK_Reverse, MVT::v16f32, 1}, // vpermps
986       {TTI::SK_Reverse, MVT::v8i64, 1},  // vpermq
987       {TTI::SK_Reverse, MVT::v16i32, 1}, // vpermd
988 
989       {TTI::SK_PermuteSingleSrc, MVT::v8f64, 1},  // vpermpd
990       {TTI::SK_PermuteSingleSrc, MVT::v4f64, 1},  // vpermpd
991       {TTI::SK_PermuteSingleSrc, MVT::v2f64, 1},  // vpermpd
992       {TTI::SK_PermuteSingleSrc, MVT::v16f32, 1}, // vpermps
993       {TTI::SK_PermuteSingleSrc, MVT::v8f32, 1},  // vpermps
994       {TTI::SK_PermuteSingleSrc, MVT::v4f32, 1},  // vpermps
995       {TTI::SK_PermuteSingleSrc, MVT::v8i64, 1},  // vpermq
996       {TTI::SK_PermuteSingleSrc, MVT::v4i64, 1},  // vpermq
997       {TTI::SK_PermuteSingleSrc, MVT::v2i64, 1},  // vpermq
998       {TTI::SK_PermuteSingleSrc, MVT::v16i32, 1}, // vpermd
999       {TTI::SK_PermuteSingleSrc, MVT::v8i32, 1},  // vpermd
1000       {TTI::SK_PermuteSingleSrc, MVT::v4i32, 1},  // vpermd
1001       {TTI::SK_PermuteSingleSrc, MVT::v16i8, 1},  // pshufb
1002 
1003       {TTI::SK_PermuteTwoSrc, MVT::v8f64, 1},  // vpermt2pd
1004       {TTI::SK_PermuteTwoSrc, MVT::v16f32, 1}, // vpermt2ps
1005       {TTI::SK_PermuteTwoSrc, MVT::v8i64, 1},  // vpermt2q
1006       {TTI::SK_PermuteTwoSrc, MVT::v16i32, 1}, // vpermt2d
1007       {TTI::SK_PermuteTwoSrc, MVT::v4f64, 1},  // vpermt2pd
1008       {TTI::SK_PermuteTwoSrc, MVT::v8f32, 1},  // vpermt2ps
1009       {TTI::SK_PermuteTwoSrc, MVT::v4i64, 1},  // vpermt2q
1010       {TTI::SK_PermuteTwoSrc, MVT::v8i32, 1},  // vpermt2d
1011       {TTI::SK_PermuteTwoSrc, MVT::v2f64, 1},  // vpermt2pd
1012       {TTI::SK_PermuteTwoSrc, MVT::v4f32, 1},  // vpermt2ps
1013       {TTI::SK_PermuteTwoSrc, MVT::v2i64, 1},  // vpermt2q
1014       {TTI::SK_PermuteTwoSrc, MVT::v4i32, 1}   // vpermt2d
1015   };
1016 
1017   if (ST->hasAVX512())
1018     if (const auto *Entry = CostTableLookup(AVX512ShuffleTbl, Kind, LT.second))
1019       return LT.first * Entry->Cost;
1020 
1021   static const CostTblEntry AVX2ShuffleTbl[] = {
1022       {TTI::SK_Broadcast, MVT::v4f64, 1},  // vbroadcastpd
1023       {TTI::SK_Broadcast, MVT::v8f32, 1},  // vbroadcastps
1024       {TTI::SK_Broadcast, MVT::v4i64, 1},  // vpbroadcastq
1025       {TTI::SK_Broadcast, MVT::v8i32, 1},  // vpbroadcastd
1026       {TTI::SK_Broadcast, MVT::v16i16, 1}, // vpbroadcastw
1027       {TTI::SK_Broadcast, MVT::v32i8, 1},  // vpbroadcastb
1028 
1029       {TTI::SK_Reverse, MVT::v4f64, 1},  // vpermpd
1030       {TTI::SK_Reverse, MVT::v8f32, 1},  // vpermps
1031       {TTI::SK_Reverse, MVT::v4i64, 1},  // vpermq
1032       {TTI::SK_Reverse, MVT::v8i32, 1},  // vpermd
1033       {TTI::SK_Reverse, MVT::v16i16, 2}, // vperm2i128 + pshufb
1034       {TTI::SK_Reverse, MVT::v32i8, 2},  // vperm2i128 + pshufb
1035 
1036       {TTI::SK_Select, MVT::v16i16, 1}, // vpblendvb
1037       {TTI::SK_Select, MVT::v32i8, 1},  // vpblendvb
1038 
1039       {TTI::SK_PermuteSingleSrc, MVT::v4f64, 1},  // vpermpd
1040       {TTI::SK_PermuteSingleSrc, MVT::v8f32, 1},  // vpermps
1041       {TTI::SK_PermuteSingleSrc, MVT::v4i64, 1},  // vpermq
1042       {TTI::SK_PermuteSingleSrc, MVT::v8i32, 1},  // vpermd
1043       {TTI::SK_PermuteSingleSrc, MVT::v16i16, 4}, // vperm2i128 + 2*vpshufb
1044                                                   // + vpblendvb
1045       {TTI::SK_PermuteSingleSrc, MVT::v32i8, 4},  // vperm2i128 + 2*vpshufb
1046                                                   // + vpblendvb
1047 
1048       {TTI::SK_PermuteTwoSrc, MVT::v4f64, 3},  // 2*vpermpd + vblendpd
1049       {TTI::SK_PermuteTwoSrc, MVT::v8f32, 3},  // 2*vpermps + vblendps
1050       {TTI::SK_PermuteTwoSrc, MVT::v4i64, 3},  // 2*vpermq + vpblendd
1051       {TTI::SK_PermuteTwoSrc, MVT::v8i32, 3},  // 2*vpermd + vpblendd
1052       {TTI::SK_PermuteTwoSrc, MVT::v16i16, 7}, // 2*vperm2i128 + 4*vpshufb
1053                                                // + vpblendvb
1054       {TTI::SK_PermuteTwoSrc, MVT::v32i8, 7},  // 2*vperm2i128 + 4*vpshufb
1055                                                // + vpblendvb
1056   };
1057 
1058   if (ST->hasAVX2())
1059     if (const auto *Entry = CostTableLookup(AVX2ShuffleTbl, Kind, LT.second))
1060       return LT.first * Entry->Cost;
1061 
1062   static const CostTblEntry XOPShuffleTbl[] = {
1063       {TTI::SK_PermuteSingleSrc, MVT::v4f64, 2},  // vperm2f128 + vpermil2pd
1064       {TTI::SK_PermuteSingleSrc, MVT::v8f32, 2},  // vperm2f128 + vpermil2ps
1065       {TTI::SK_PermuteSingleSrc, MVT::v4i64, 2},  // vperm2f128 + vpermil2pd
1066       {TTI::SK_PermuteSingleSrc, MVT::v8i32, 2},  // vperm2f128 + vpermil2ps
1067       {TTI::SK_PermuteSingleSrc, MVT::v16i16, 4}, // vextractf128 + 2*vpperm
1068                                                   // + vinsertf128
1069       {TTI::SK_PermuteSingleSrc, MVT::v32i8, 4},  // vextractf128 + 2*vpperm
1070                                                   // + vinsertf128
1071 
1072       {TTI::SK_PermuteTwoSrc, MVT::v16i16, 9}, // 2*vextractf128 + 6*vpperm
1073                                                // + vinsertf128
1074       {TTI::SK_PermuteTwoSrc, MVT::v8i16, 1},  // vpperm
1075       {TTI::SK_PermuteTwoSrc, MVT::v32i8, 9},  // 2*vextractf128 + 6*vpperm
1076                                                // + vinsertf128
1077       {TTI::SK_PermuteTwoSrc, MVT::v16i8, 1},  // vpperm
1078   };
1079 
1080   if (ST->hasXOP())
1081     if (const auto *Entry = CostTableLookup(XOPShuffleTbl, Kind, LT.second))
1082       return LT.first * Entry->Cost;
1083 
1084   static const CostTblEntry AVX1ShuffleTbl[] = {
1085       {TTI::SK_Broadcast, MVT::v4f64, 2},  // vperm2f128 + vpermilpd
1086       {TTI::SK_Broadcast, MVT::v8f32, 2},  // vperm2f128 + vpermilps
1087       {TTI::SK_Broadcast, MVT::v4i64, 2},  // vperm2f128 + vpermilpd
1088       {TTI::SK_Broadcast, MVT::v8i32, 2},  // vperm2f128 + vpermilps
1089       {TTI::SK_Broadcast, MVT::v16i16, 3}, // vpshuflw + vpshufd + vinsertf128
1090       {TTI::SK_Broadcast, MVT::v32i8, 2},  // vpshufb + vinsertf128
1091 
1092       {TTI::SK_Reverse, MVT::v4f64, 2},  // vperm2f128 + vpermilpd
1093       {TTI::SK_Reverse, MVT::v8f32, 2},  // vperm2f128 + vpermilps
1094       {TTI::SK_Reverse, MVT::v4i64, 2},  // vperm2f128 + vpermilpd
1095       {TTI::SK_Reverse, MVT::v8i32, 2},  // vperm2f128 + vpermilps
1096       {TTI::SK_Reverse, MVT::v16i16, 4}, // vextractf128 + 2*pshufb
1097                                          // + vinsertf128
1098       {TTI::SK_Reverse, MVT::v32i8, 4},  // vextractf128 + 2*pshufb
1099                                          // + vinsertf128
1100 
1101       {TTI::SK_Select, MVT::v4i64, 1},  // vblendpd
1102       {TTI::SK_Select, MVT::v4f64, 1},  // vblendpd
1103       {TTI::SK_Select, MVT::v8i32, 1},  // vblendps
1104       {TTI::SK_Select, MVT::v8f32, 1},  // vblendps
1105       {TTI::SK_Select, MVT::v16i16, 3}, // vpand + vpandn + vpor
1106       {TTI::SK_Select, MVT::v32i8, 3},  // vpand + vpandn + vpor
1107 
1108       {TTI::SK_PermuteSingleSrc, MVT::v4f64, 2},  // vperm2f128 + vshufpd
1109       {TTI::SK_PermuteSingleSrc, MVT::v4i64, 2},  // vperm2f128 + vshufpd
1110       {TTI::SK_PermuteSingleSrc, MVT::v8f32, 4},  // 2*vperm2f128 + 2*vshufps
1111       {TTI::SK_PermuteSingleSrc, MVT::v8i32, 4},  // 2*vperm2f128 + 2*vshufps
1112       {TTI::SK_PermuteSingleSrc, MVT::v16i16, 8}, // vextractf128 + 4*pshufb
1113                                                   // + 2*por + vinsertf128
1114       {TTI::SK_PermuteSingleSrc, MVT::v32i8, 8},  // vextractf128 + 4*pshufb
1115                                                   // + 2*por + vinsertf128
1116 
1117       {TTI::SK_PermuteTwoSrc, MVT::v4f64, 3},   // 2*vperm2f128 + vshufpd
1118       {TTI::SK_PermuteTwoSrc, MVT::v4i64, 3},   // 2*vperm2f128 + vshufpd
1119       {TTI::SK_PermuteTwoSrc, MVT::v8f32, 4},   // 2*vperm2f128 + 2*vshufps
1120       {TTI::SK_PermuteTwoSrc, MVT::v8i32, 4},   // 2*vperm2f128 + 2*vshufps
1121       {TTI::SK_PermuteTwoSrc, MVT::v16i16, 15}, // 2*vextractf128 + 8*pshufb
1122                                                 // + 4*por + vinsertf128
1123       {TTI::SK_PermuteTwoSrc, MVT::v32i8, 15},  // 2*vextractf128 + 8*pshufb
1124                                                 // + 4*por + vinsertf128
1125   };
1126 
1127   if (ST->hasAVX())
1128     if (const auto *Entry = CostTableLookup(AVX1ShuffleTbl, Kind, LT.second))
1129       return LT.first * Entry->Cost;
1130 
1131   static const CostTblEntry SSE41ShuffleTbl[] = {
1132       {TTI::SK_Select, MVT::v2i64, 1}, // pblendw
1133       {TTI::SK_Select, MVT::v2f64, 1}, // movsd
1134       {TTI::SK_Select, MVT::v4i32, 1}, // pblendw
1135       {TTI::SK_Select, MVT::v4f32, 1}, // blendps
1136       {TTI::SK_Select, MVT::v8i16, 1}, // pblendw
1137       {TTI::SK_Select, MVT::v16i8, 1}  // pblendvb
1138   };
1139 
1140   if (ST->hasSSE41())
1141     if (const auto *Entry = CostTableLookup(SSE41ShuffleTbl, Kind, LT.second))
1142       return LT.first * Entry->Cost;
1143 
1144   static const CostTblEntry SSSE3ShuffleTbl[] = {
1145       {TTI::SK_Broadcast, MVT::v8i16, 1}, // pshufb
1146       {TTI::SK_Broadcast, MVT::v16i8, 1}, // pshufb
1147 
1148       {TTI::SK_Reverse, MVT::v8i16, 1}, // pshufb
1149       {TTI::SK_Reverse, MVT::v16i8, 1}, // pshufb
1150 
1151       {TTI::SK_Select, MVT::v8i16, 3}, // 2*pshufb + por
1152       {TTI::SK_Select, MVT::v16i8, 3}, // 2*pshufb + por
1153 
1154       {TTI::SK_PermuteSingleSrc, MVT::v8i16, 1}, // pshufb
1155       {TTI::SK_PermuteSingleSrc, MVT::v16i8, 1}, // pshufb
1156 
1157       {TTI::SK_PermuteTwoSrc, MVT::v8i16, 3}, // 2*pshufb + por
1158       {TTI::SK_PermuteTwoSrc, MVT::v16i8, 3}, // 2*pshufb + por
1159   };
1160 
1161   if (ST->hasSSSE3())
1162     if (const auto *Entry = CostTableLookup(SSSE3ShuffleTbl, Kind, LT.second))
1163       return LT.first * Entry->Cost;
1164 
1165   static const CostTblEntry SSE2ShuffleTbl[] = {
1166       {TTI::SK_Broadcast, MVT::v2f64, 1}, // shufpd
1167       {TTI::SK_Broadcast, MVT::v2i64, 1}, // pshufd
1168       {TTI::SK_Broadcast, MVT::v4i32, 1}, // pshufd
1169       {TTI::SK_Broadcast, MVT::v8i16, 2}, // pshuflw + pshufd
1170       {TTI::SK_Broadcast, MVT::v16i8, 3}, // unpck + pshuflw + pshufd
1171 
1172       {TTI::SK_Reverse, MVT::v2f64, 1}, // shufpd
1173       {TTI::SK_Reverse, MVT::v2i64, 1}, // pshufd
1174       {TTI::SK_Reverse, MVT::v4i32, 1}, // pshufd
1175       {TTI::SK_Reverse, MVT::v8i16, 3}, // pshuflw + pshufhw + pshufd
1176       {TTI::SK_Reverse, MVT::v16i8, 9}, // 2*pshuflw + 2*pshufhw
1177                                         // + 2*pshufd + 2*unpck + packus
1178 
1179       {TTI::SK_Select, MVT::v2i64, 1}, // movsd
1180       {TTI::SK_Select, MVT::v2f64, 1}, // movsd
1181       {TTI::SK_Select, MVT::v4i32, 2}, // 2*shufps
1182       {TTI::SK_Select, MVT::v8i16, 3}, // pand + pandn + por
1183       {TTI::SK_Select, MVT::v16i8, 3}, // pand + pandn + por
1184 
1185       {TTI::SK_PermuteSingleSrc, MVT::v2f64, 1}, // shufpd
1186       {TTI::SK_PermuteSingleSrc, MVT::v2i64, 1}, // pshufd
1187       {TTI::SK_PermuteSingleSrc, MVT::v4i32, 1}, // pshufd
1188       {TTI::SK_PermuteSingleSrc, MVT::v8i16, 5}, // 2*pshuflw + 2*pshufhw
1189                                                   // + pshufd/unpck
1190     { TTI::SK_PermuteSingleSrc, MVT::v16i8, 10 }, // 2*pshuflw + 2*pshufhw
1191                                                   // + 2*pshufd + 2*unpck + 2*packus
1192 
1193     { TTI::SK_PermuteTwoSrc,    MVT::v2f64,  1 }, // shufpd
1194     { TTI::SK_PermuteTwoSrc,    MVT::v2i64,  1 }, // shufpd
1195     { TTI::SK_PermuteTwoSrc,    MVT::v4i32,  2 }, // 2*{unpck,movsd,pshufd}
1196     { TTI::SK_PermuteTwoSrc,    MVT::v8i16,  8 }, // blend+permute
1197     { TTI::SK_PermuteTwoSrc,    MVT::v16i8, 13 }, // blend+permute
1198   };
1199 
1200   if (ST->hasSSE2())
1201     if (const auto *Entry = CostTableLookup(SSE2ShuffleTbl, Kind, LT.second))
1202       return LT.first * Entry->Cost;
1203 
1204   static const CostTblEntry SSE1ShuffleTbl[] = {
1205     { TTI::SK_Broadcast,        MVT::v4f32, 1 }, // shufps
1206     { TTI::SK_Reverse,          MVT::v4f32, 1 }, // shufps
1207     { TTI::SK_Select,           MVT::v4f32, 2 }, // 2*shufps
1208     { TTI::SK_PermuteSingleSrc, MVT::v4f32, 1 }, // shufps
1209     { TTI::SK_PermuteTwoSrc,    MVT::v4f32, 2 }, // 2*shufps
1210   };
1211 
1212   if (ST->hasSSE1())
1213     if (const auto *Entry = CostTableLookup(SSE1ShuffleTbl, Kind, LT.second))
1214       return LT.first * Entry->Cost;
1215 
1216   return BaseT::getShuffleCost(Kind, Tp, Index, SubTp);
1217 }
1218 
1219 int X86TTIImpl::getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src,
1220                                  const Instruction *I) {
1221   int ISD = TLI->InstructionOpcodeToISD(Opcode);
1222   assert(ISD && "Invalid opcode");
1223 
1224   // FIXME: Need a better design of the cost table to handle non-simple types of
1225   // potential massive combinations (elem_num x src_type x dst_type).
1226 
1227   static const TypeConversionCostTblEntry AVX512BWConversionTbl[] {
1228     { ISD::SIGN_EXTEND, MVT::v32i16, MVT::v32i8, 1 },
1229     { ISD::ZERO_EXTEND, MVT::v32i16, MVT::v32i8, 1 },
1230 
1231     // Mask sign extend has an instruction.
1232     { ISD::SIGN_EXTEND, MVT::v8i16,  MVT::v8i1,  1 },
1233     { ISD::SIGN_EXTEND, MVT::v16i8,  MVT::v16i1, 1 },
1234     { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i1, 1 },
1235     { ISD::SIGN_EXTEND, MVT::v32i8,  MVT::v32i1, 1 },
1236     { ISD::SIGN_EXTEND, MVT::v32i16, MVT::v32i1, 1 },
1237     { ISD::SIGN_EXTEND, MVT::v64i8,  MVT::v64i1, 1 },
1238 
1239     // Mask zero extend is a load + broadcast.
1240     { ISD::ZERO_EXTEND, MVT::v8i16,  MVT::v8i1,  2 },
1241     { ISD::ZERO_EXTEND, MVT::v16i8,  MVT::v16i1, 2 },
1242     { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i1, 2 },
1243     { ISD::ZERO_EXTEND, MVT::v32i8,  MVT::v32i1, 2 },
1244     { ISD::ZERO_EXTEND, MVT::v32i16, MVT::v32i1, 2 },
1245     { ISD::ZERO_EXTEND, MVT::v64i8,  MVT::v64i1, 2 },
1246   };
1247 
1248   static const TypeConversionCostTblEntry AVX512DQConversionTbl[] = {
1249     { ISD::SINT_TO_FP,  MVT::v2f32,  MVT::v2i64,  1 },
1250     { ISD::SINT_TO_FP,  MVT::v2f64,  MVT::v2i64,  1 },
1251     { ISD::SINT_TO_FP,  MVT::v4f32,  MVT::v4i64,  1 },
1252     { ISD::SINT_TO_FP,  MVT::v4f64,  MVT::v4i64,  1 },
1253     { ISD::SINT_TO_FP,  MVT::v8f32,  MVT::v8i64,  1 },
1254     { ISD::SINT_TO_FP,  MVT::v8f64,  MVT::v8i64,  1 },
1255 
1256     { ISD::UINT_TO_FP,  MVT::v2f32,  MVT::v2i64,  1 },
1257     { ISD::UINT_TO_FP,  MVT::v2f64,  MVT::v2i64,  1 },
1258     { ISD::UINT_TO_FP,  MVT::v4f32,  MVT::v4i64,  1 },
1259     { ISD::UINT_TO_FP,  MVT::v4f64,  MVT::v4i64,  1 },
1260     { ISD::UINT_TO_FP,  MVT::v8f32,  MVT::v8i64,  1 },
1261     { ISD::UINT_TO_FP,  MVT::v8f64,  MVT::v8i64,  1 },
1262 
1263     { ISD::FP_TO_SINT,  MVT::v2i64,  MVT::v2f32,  1 },
1264     { ISD::FP_TO_SINT,  MVT::v4i64,  MVT::v4f32,  1 },
1265     { ISD::FP_TO_SINT,  MVT::v8i64,  MVT::v8f32,  1 },
1266     { ISD::FP_TO_SINT,  MVT::v2i64,  MVT::v2f64,  1 },
1267     { ISD::FP_TO_SINT,  MVT::v4i64,  MVT::v4f64,  1 },
1268     { ISD::FP_TO_SINT,  MVT::v8i64,  MVT::v8f64,  1 },
1269 
1270     { ISD::FP_TO_UINT,  MVT::v2i64,  MVT::v2f32,  1 },
1271     { ISD::FP_TO_UINT,  MVT::v4i64,  MVT::v4f32,  1 },
1272     { ISD::FP_TO_UINT,  MVT::v8i64,  MVT::v8f32,  1 },
1273     { ISD::FP_TO_UINT,  MVT::v2i64,  MVT::v2f64,  1 },
1274     { ISD::FP_TO_UINT,  MVT::v4i64,  MVT::v4f64,  1 },
1275     { ISD::FP_TO_UINT,  MVT::v8i64,  MVT::v8f64,  1 },
1276   };
1277 
1278   // TODO: For AVX512DQ + AVX512VL, we also have cheap casts for 128-bit and
1279   // 256-bit wide vectors.
1280 
1281   static const TypeConversionCostTblEntry AVX512FConversionTbl[] = {
1282     { ISD::FP_EXTEND, MVT::v8f64,   MVT::v8f32,  1 },
1283     { ISD::FP_EXTEND, MVT::v8f64,   MVT::v16f32, 3 },
1284     { ISD::FP_ROUND,  MVT::v8f32,   MVT::v8f64,  1 },
1285 
1286     { ISD::TRUNCATE,  MVT::v16i8,   MVT::v16i32, 1 },
1287     { ISD::TRUNCATE,  MVT::v16i16,  MVT::v16i32, 1 },
1288     { ISD::TRUNCATE,  MVT::v8i16,   MVT::v8i64,  1 },
1289     { ISD::TRUNCATE,  MVT::v8i32,   MVT::v8i64,  1 },
1290 
1291     // v16i1 -> v16i32 - load + broadcast
1292     { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i1,  2 },
1293     { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i1,  2 },
1294     { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i8,  1 },
1295     { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i8,  1 },
1296     { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i16, 1 },
1297     { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i16, 1 },
1298     { ISD::ZERO_EXTEND, MVT::v8i64,  MVT::v8i16,  1 },
1299     { ISD::SIGN_EXTEND, MVT::v8i64,  MVT::v8i16,  1 },
1300     { ISD::SIGN_EXTEND, MVT::v8i64,  MVT::v8i32,  1 },
1301     { ISD::ZERO_EXTEND, MVT::v8i64,  MVT::v8i32,  1 },
1302 
1303     { ISD::SINT_TO_FP,  MVT::v8f64,  MVT::v8i1,   4 },
1304     { ISD::SINT_TO_FP,  MVT::v16f32, MVT::v16i1,  3 },
1305     { ISD::SINT_TO_FP,  MVT::v8f64,  MVT::v8i8,   2 },
1306     { ISD::SINT_TO_FP,  MVT::v16f32, MVT::v16i8,  2 },
1307     { ISD::SINT_TO_FP,  MVT::v8f64,  MVT::v8i16,  2 },
1308     { ISD::SINT_TO_FP,  MVT::v16f32, MVT::v16i16, 2 },
1309     { ISD::SINT_TO_FP,  MVT::v16f32, MVT::v16i32, 1 },
1310     { ISD::SINT_TO_FP,  MVT::v8f64,  MVT::v8i32,  1 },
1311 
1312     { ISD::UINT_TO_FP,  MVT::v8f64,  MVT::v8i1,   4 },
1313     { ISD::UINT_TO_FP,  MVT::v16f32, MVT::v16i1,  3 },
1314     { ISD::UINT_TO_FP,  MVT::v2f64,  MVT::v2i8,   2 },
1315     { ISD::UINT_TO_FP,  MVT::v4f64,  MVT::v4i8,   2 },
1316     { ISD::UINT_TO_FP,  MVT::v8f32,  MVT::v8i8,   2 },
1317     { ISD::UINT_TO_FP,  MVT::v8f64,  MVT::v8i8,   2 },
1318     { ISD::UINT_TO_FP,  MVT::v16f32, MVT::v16i8,  2 },
1319     { ISD::UINT_TO_FP,  MVT::v2f64,  MVT::v2i16,  5 },
1320     { ISD::UINT_TO_FP,  MVT::v4f64,  MVT::v4i16,  2 },
1321     { ISD::UINT_TO_FP,  MVT::v8f32,  MVT::v8i16,  2 },
1322     { ISD::UINT_TO_FP,  MVT::v8f64,  MVT::v8i16,  2 },
1323     { ISD::UINT_TO_FP,  MVT::v16f32, MVT::v16i16, 2 },
1324     { ISD::UINT_TO_FP,  MVT::v2f32,  MVT::v2i32,  2 },
1325     { ISD::UINT_TO_FP,  MVT::v2f64,  MVT::v2i32,  1 },
1326     { ISD::UINT_TO_FP,  MVT::v4f32,  MVT::v4i32,  1 },
1327     { ISD::UINT_TO_FP,  MVT::v4f64,  MVT::v4i32,  1 },
1328     { ISD::UINT_TO_FP,  MVT::v8f32,  MVT::v8i32,  1 },
1329     { ISD::UINT_TO_FP,  MVT::v8f64,  MVT::v8i32,  1 },
1330     { ISD::UINT_TO_FP,  MVT::v16f32, MVT::v16i32, 1 },
1331     { ISD::UINT_TO_FP,  MVT::v2f32,  MVT::v2i64,  5 },
1332     { ISD::UINT_TO_FP,  MVT::v8f32,  MVT::v8i64, 26 },
1333     { ISD::UINT_TO_FP,  MVT::v2f64,  MVT::v2i64,  5 },
1334     { ISD::UINT_TO_FP,  MVT::v4f64,  MVT::v4i64,  5 },
1335     { ISD::UINT_TO_FP,  MVT::v8f64,  MVT::v8i64,  5 },
1336 
1337     { ISD::UINT_TO_FP,  MVT::f64,    MVT::i64,    1 },
1338 
1339     { ISD::FP_TO_UINT,  MVT::v2i32,  MVT::v2f32,  1 },
1340     { ISD::FP_TO_UINT,  MVT::v4i32,  MVT::v4f32,  1 },
1341     { ISD::FP_TO_UINT,  MVT::v4i32,  MVT::v4f64,  1 },
1342     { ISD::FP_TO_UINT,  MVT::v8i32,  MVT::v8f32,  1 },
1343     { ISD::FP_TO_UINT,  MVT::v8i16,  MVT::v8f64,  2 },
1344     { ISD::FP_TO_UINT,  MVT::v8i8,   MVT::v8f64,  2 },
1345     { ISD::FP_TO_UINT,  MVT::v16i32, MVT::v16f32, 1 },
1346     { ISD::FP_TO_UINT,  MVT::v16i16, MVT::v16f32, 2 },
1347     { ISD::FP_TO_UINT,  MVT::v16i8,  MVT::v16f32, 2 },
1348   };
1349 
1350   static const TypeConversionCostTblEntry AVX2ConversionTbl[] = {
1351     { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v4i1,   3 },
1352     { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v4i1,   3 },
1353     { ISD::SIGN_EXTEND, MVT::v8i32,  MVT::v8i1,   3 },
1354     { ISD::ZERO_EXTEND, MVT::v8i32,  MVT::v8i1,   3 },
1355     { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v4i8,   3 },
1356     { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v4i8,   3 },
1357     { ISD::SIGN_EXTEND, MVT::v8i32,  MVT::v8i8,   3 },
1358     { ISD::ZERO_EXTEND, MVT::v8i32,  MVT::v8i8,   3 },
1359     { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i8,  1 },
1360     { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i8,  1 },
1361     { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v4i16,  3 },
1362     { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v4i16,  3 },
1363     { ISD::SIGN_EXTEND, MVT::v8i32,  MVT::v8i16,  1 },
1364     { ISD::ZERO_EXTEND, MVT::v8i32,  MVT::v8i16,  1 },
1365     { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v4i32,  1 },
1366     { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v4i32,  1 },
1367 
1368     { ISD::TRUNCATE,    MVT::v4i8,   MVT::v4i64,  2 },
1369     { ISD::TRUNCATE,    MVT::v4i16,  MVT::v4i64,  2 },
1370     { ISD::TRUNCATE,    MVT::v4i32,  MVT::v4i64,  2 },
1371     { ISD::TRUNCATE,    MVT::v8i8,   MVT::v8i32,  2 },
1372     { ISD::TRUNCATE,    MVT::v8i16,  MVT::v8i32,  2 },
1373     { ISD::TRUNCATE,    MVT::v8i32,  MVT::v8i64,  4 },
1374 
1375     { ISD::FP_EXTEND,   MVT::v8f64,  MVT::v8f32,  3 },
1376     { ISD::FP_ROUND,    MVT::v8f32,  MVT::v8f64,  3 },
1377 
1378     { ISD::UINT_TO_FP,  MVT::v8f32,  MVT::v8i32,  8 },
1379   };
1380 
1381   static const TypeConversionCostTblEntry AVXConversionTbl[] = {
1382     { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v4i1,  6 },
1383     { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v4i1,  4 },
1384     { ISD::SIGN_EXTEND, MVT::v8i32,  MVT::v8i1,  7 },
1385     { ISD::ZERO_EXTEND, MVT::v8i32,  MVT::v8i1,  4 },
1386     { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v4i8,  6 },
1387     { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v4i8,  4 },
1388     { ISD::SIGN_EXTEND, MVT::v8i32,  MVT::v8i8,  7 },
1389     { ISD::ZERO_EXTEND, MVT::v8i32,  MVT::v8i8,  4 },
1390     { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i8, 4 },
1391     { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i8, 4 },
1392     { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v4i16, 6 },
1393     { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v4i16, 3 },
1394     { ISD::SIGN_EXTEND, MVT::v8i32,  MVT::v8i16, 4 },
1395     { ISD::ZERO_EXTEND, MVT::v8i32,  MVT::v8i16, 4 },
1396     { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v4i32, 4 },
1397     { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v4i32, 4 },
1398 
1399     { ISD::TRUNCATE,    MVT::v16i8, MVT::v16i16, 4 },
1400     { ISD::TRUNCATE,    MVT::v8i8,  MVT::v8i32,  4 },
1401     { ISD::TRUNCATE,    MVT::v8i16, MVT::v8i32,  5 },
1402     { ISD::TRUNCATE,    MVT::v4i8,  MVT::v4i64,  4 },
1403     { ISD::TRUNCATE,    MVT::v4i16, MVT::v4i64,  4 },
1404     { ISD::TRUNCATE,    MVT::v4i32, MVT::v4i64,  4 },
1405     { ISD::TRUNCATE,    MVT::v8i32, MVT::v8i64,  9 },
1406 
1407     { ISD::SINT_TO_FP,  MVT::v4f32, MVT::v4i1,  3 },
1408     { ISD::SINT_TO_FP,  MVT::v4f64, MVT::v4i1,  3 },
1409     { ISD::SINT_TO_FP,  MVT::v8f32, MVT::v8i1,  8 },
1410     { ISD::SINT_TO_FP,  MVT::v4f32, MVT::v4i8,  3 },
1411     { ISD::SINT_TO_FP,  MVT::v4f64, MVT::v4i8,  3 },
1412     { ISD::SINT_TO_FP,  MVT::v8f32, MVT::v8i8,  8 },
1413     { ISD::SINT_TO_FP,  MVT::v4f32, MVT::v4i16, 3 },
1414     { ISD::SINT_TO_FP,  MVT::v4f64, MVT::v4i16, 3 },
1415     { ISD::SINT_TO_FP,  MVT::v8f32, MVT::v8i16, 5 },
1416     { ISD::SINT_TO_FP,  MVT::v4f32, MVT::v4i32, 1 },
1417     { ISD::SINT_TO_FP,  MVT::v4f64, MVT::v4i32, 1 },
1418     { ISD::SINT_TO_FP,  MVT::v8f32, MVT::v8i32, 1 },
1419 
1420     { ISD::UINT_TO_FP,  MVT::v4f32, MVT::v4i1,  7 },
1421     { ISD::UINT_TO_FP,  MVT::v4f64, MVT::v4i1,  7 },
1422     { ISD::UINT_TO_FP,  MVT::v8f32, MVT::v8i1,  6 },
1423     { ISD::UINT_TO_FP,  MVT::v4f32, MVT::v4i8,  2 },
1424     { ISD::UINT_TO_FP,  MVT::v4f64, MVT::v4i8,  2 },
1425     { ISD::UINT_TO_FP,  MVT::v8f32, MVT::v8i8,  5 },
1426     { ISD::UINT_TO_FP,  MVT::v4f32, MVT::v4i16, 2 },
1427     { ISD::UINT_TO_FP,  MVT::v4f64, MVT::v4i16, 2 },
1428     { ISD::UINT_TO_FP,  MVT::v8f32, MVT::v8i16, 5 },
1429     { ISD::UINT_TO_FP,  MVT::v2f64, MVT::v2i32, 6 },
1430     { ISD::UINT_TO_FP,  MVT::v4f32, MVT::v4i32, 6 },
1431     { ISD::UINT_TO_FP,  MVT::v4f64, MVT::v4i32, 6 },
1432     { ISD::UINT_TO_FP,  MVT::v8f32, MVT::v8i32, 9 },
1433     { ISD::UINT_TO_FP,  MVT::v2f64, MVT::v2i64, 5 },
1434     { ISD::UINT_TO_FP,  MVT::v4f64, MVT::v4i64, 6 },
1435     // The generic code to compute the scalar overhead is currently broken.
1436     // Workaround this limitation by estimating the scalarization overhead
1437     // here. We have roughly 10 instructions per scalar element.
1438     // Multiply that by the vector width.
1439     // FIXME: remove that when PR19268 is fixed.
1440     { ISD::SINT_TO_FP,  MVT::v4f64, MVT::v4i64, 13 },
1441     { ISD::SINT_TO_FP,  MVT::v4f64, MVT::v4i64, 13 },
1442 
1443     { ISD::FP_TO_SINT,  MVT::v4i8,  MVT::v4f32, 1 },
1444     { ISD::FP_TO_SINT,  MVT::v8i8,  MVT::v8f32, 7 },
1445     // This node is expanded into scalarized operations but BasicTTI is overly
1446     // optimistic estimating its cost.  It computes 3 per element (one
1447     // vector-extract, one scalar conversion and one vector-insert).  The
1448     // problem is that the inserts form a read-modify-write chain so latency
1449     // should be factored in too.  Inflating the cost per element by 1.
1450     { ISD::FP_TO_UINT,  MVT::v8i32, MVT::v8f32, 8*4 },
1451     { ISD::FP_TO_UINT,  MVT::v4i32, MVT::v4f64, 4*4 },
1452 
1453     { ISD::FP_EXTEND,   MVT::v4f64,  MVT::v4f32,  1 },
1454     { ISD::FP_ROUND,    MVT::v4f32,  MVT::v4f64,  1 },
1455   };
1456 
1457   static const TypeConversionCostTblEntry SSE41ConversionTbl[] = {
1458     { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i8,    2 },
1459     { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i8,    2 },
1460     { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i16,   2 },
1461     { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i16,   2 },
1462     { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i32,   2 },
1463     { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i32,   2 },
1464 
1465     { ISD::ZERO_EXTEND, MVT::v4i16,  MVT::v4i8,   1 },
1466     { ISD::SIGN_EXTEND, MVT::v4i16,  MVT::v4i8,   2 },
1467     { ISD::ZERO_EXTEND, MVT::v4i32,  MVT::v4i8,   1 },
1468     { ISD::SIGN_EXTEND, MVT::v4i32,  MVT::v4i8,   1 },
1469     { ISD::ZERO_EXTEND, MVT::v8i16,  MVT::v8i8,   1 },
1470     { ISD::SIGN_EXTEND, MVT::v8i16,  MVT::v8i8,   1 },
1471     { ISD::ZERO_EXTEND, MVT::v8i32,  MVT::v8i8,   2 },
1472     { ISD::SIGN_EXTEND, MVT::v8i32,  MVT::v8i8,   2 },
1473     { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i8,  2 },
1474     { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i8,  2 },
1475     { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i8,  4 },
1476     { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i8,  4 },
1477     { ISD::ZERO_EXTEND, MVT::v4i32,  MVT::v4i16,  1 },
1478     { ISD::SIGN_EXTEND, MVT::v4i32,  MVT::v4i16,  1 },
1479     { ISD::ZERO_EXTEND, MVT::v8i32,  MVT::v8i16,  2 },
1480     { ISD::SIGN_EXTEND, MVT::v8i32,  MVT::v8i16,  2 },
1481     { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i16, 4 },
1482     { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i16, 4 },
1483 
1484     { ISD::TRUNCATE,    MVT::v4i8,   MVT::v4i16,  2 },
1485     { ISD::TRUNCATE,    MVT::v8i8,   MVT::v8i16,  1 },
1486     { ISD::TRUNCATE,    MVT::v4i8,   MVT::v4i32,  1 },
1487     { ISD::TRUNCATE,    MVT::v4i16,  MVT::v4i32,  1 },
1488     { ISD::TRUNCATE,    MVT::v8i8,   MVT::v8i32,  3 },
1489     { ISD::TRUNCATE,    MVT::v8i16,  MVT::v8i32,  3 },
1490     { ISD::TRUNCATE,    MVT::v16i16, MVT::v16i32, 6 },
1491 
1492     { ISD::UINT_TO_FP,  MVT::f64,    MVT::i64,    4 },
1493   };
1494 
1495   static const TypeConversionCostTblEntry SSE2ConversionTbl[] = {
1496     // These are somewhat magic numbers justified by looking at the output of
1497     // Intel's IACA, running some kernels and making sure when we take
1498     // legalization into account the throughput will be overestimated.
1499     { ISD::SINT_TO_FP, MVT::v4f32, MVT::v16i8, 8 },
1500     { ISD::SINT_TO_FP, MVT::v2f64, MVT::v16i8, 16*10 },
1501     { ISD::SINT_TO_FP, MVT::v4f32, MVT::v8i16, 15 },
1502     { ISD::SINT_TO_FP, MVT::v2f64, MVT::v8i16, 8*10 },
1503     { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i32, 5 },
1504     { ISD::SINT_TO_FP, MVT::v2f64, MVT::v4i32, 4*10 },
1505     { ISD::SINT_TO_FP, MVT::v4f32, MVT::v2i64, 15 },
1506     { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i64, 2*10 },
1507 
1508     { ISD::UINT_TO_FP, MVT::v2f64, MVT::v16i8, 16*10 },
1509     { ISD::UINT_TO_FP, MVT::v4f32, MVT::v16i8, 8 },
1510     { ISD::UINT_TO_FP, MVT::v4f32, MVT::v8i16, 15 },
1511     { ISD::UINT_TO_FP, MVT::v2f64, MVT::v8i16, 8*10 },
1512     { ISD::UINT_TO_FP, MVT::v2f64, MVT::v4i32, 4*10 },
1513     { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i32, 8 },
1514     { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i64, 6 },
1515     { ISD::UINT_TO_FP, MVT::v4f32, MVT::v2i64, 15 },
1516 
1517     { ISD::FP_TO_SINT,  MVT::v2i32,  MVT::v2f64,  3 },
1518 
1519     { ISD::UINT_TO_FP,  MVT::f64,    MVT::i64,    6 },
1520 
1521     { ISD::ZERO_EXTEND, MVT::v4i16,  MVT::v4i8,   1 },
1522     { ISD::SIGN_EXTEND, MVT::v4i16,  MVT::v4i8,   6 },
1523     { ISD::ZERO_EXTEND, MVT::v4i32,  MVT::v4i8,   2 },
1524     { ISD::SIGN_EXTEND, MVT::v4i32,  MVT::v4i8,   3 },
1525     { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v4i8,   4 },
1526     { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v4i8,   8 },
1527     { ISD::ZERO_EXTEND, MVT::v8i16,  MVT::v8i8,   1 },
1528     { ISD::SIGN_EXTEND, MVT::v8i16,  MVT::v8i8,   2 },
1529     { ISD::ZERO_EXTEND, MVT::v8i32,  MVT::v8i8,   6 },
1530     { ISD::SIGN_EXTEND, MVT::v8i32,  MVT::v8i8,   6 },
1531     { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i8,  3 },
1532     { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i8,  4 },
1533     { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i8,  9 },
1534     { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i8,  12 },
1535     { ISD::ZERO_EXTEND, MVT::v4i32,  MVT::v4i16,  1 },
1536     { ISD::SIGN_EXTEND, MVT::v4i32,  MVT::v4i16,  2 },
1537     { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v4i16,  3 },
1538     { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v4i16,  10 },
1539     { ISD::ZERO_EXTEND, MVT::v8i32,  MVT::v8i16,  3 },
1540     { ISD::SIGN_EXTEND, MVT::v8i32,  MVT::v8i16,  4 },
1541     { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i16, 6 },
1542     { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i16, 8 },
1543     { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v4i32,  3 },
1544     { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v4i32,  5 },
1545 
1546     { ISD::TRUNCATE,    MVT::v4i8,   MVT::v4i16,  4 },
1547     { ISD::TRUNCATE,    MVT::v8i8,   MVT::v8i16,  2 },
1548     { ISD::TRUNCATE,    MVT::v16i8,  MVT::v16i16, 3 },
1549     { ISD::TRUNCATE,    MVT::v4i8,   MVT::v4i32,  3 },
1550     { ISD::TRUNCATE,    MVT::v4i16,  MVT::v4i32,  3 },
1551     { ISD::TRUNCATE,    MVT::v8i8,   MVT::v8i32,  4 },
1552     { ISD::TRUNCATE,    MVT::v16i8,  MVT::v16i32, 7 },
1553     { ISD::TRUNCATE,    MVT::v8i16,  MVT::v8i32,  5 },
1554     { ISD::TRUNCATE,    MVT::v16i16, MVT::v16i32, 10 },
1555   };
1556 
1557   std::pair<int, MVT> LTSrc = TLI->getTypeLegalizationCost(DL, Src);
1558   std::pair<int, MVT> LTDest = TLI->getTypeLegalizationCost(DL, Dst);
1559 
1560   if (ST->hasSSE2() && !ST->hasAVX()) {
1561     if (const auto *Entry = ConvertCostTableLookup(SSE2ConversionTbl, ISD,
1562                                                    LTDest.second, LTSrc.second))
1563       return LTSrc.first * Entry->Cost;
1564   }
1565 
1566   EVT SrcTy = TLI->getValueType(DL, Src);
1567   EVT DstTy = TLI->getValueType(DL, Dst);
1568 
1569   // The function getSimpleVT only handles simple value types.
1570   if (!SrcTy.isSimple() || !DstTy.isSimple())
1571     return BaseT::getCastInstrCost(Opcode, Dst, Src);
1572 
1573   MVT SimpleSrcTy = SrcTy.getSimpleVT();
1574   MVT SimpleDstTy = DstTy.getSimpleVT();
1575 
1576   // Make sure that neither type is going to be split before using the
1577   // AVX512 tables. This handles -mprefer-vector-width=256
1578   // with -min-legal-vector-width<=256
1579   if (TLI->getTypeAction(SimpleSrcTy) != TargetLowering::TypeSplitVector &&
1580       TLI->getTypeAction(SimpleDstTy) != TargetLowering::TypeSplitVector) {
1581     if (ST->hasBWI())
1582       if (const auto *Entry = ConvertCostTableLookup(AVX512BWConversionTbl, ISD,
1583                                                      SimpleDstTy, SimpleSrcTy))
1584         return Entry->Cost;
1585 
1586     if (ST->hasDQI())
1587       if (const auto *Entry = ConvertCostTableLookup(AVX512DQConversionTbl, ISD,
1588                                                      SimpleDstTy, SimpleSrcTy))
1589         return Entry->Cost;
1590 
1591     if (ST->hasAVX512())
1592       if (const auto *Entry = ConvertCostTableLookup(AVX512FConversionTbl, ISD,
1593                                                      SimpleDstTy, SimpleSrcTy))
1594         return Entry->Cost;
1595   }
1596 
1597   if (ST->hasAVX2()) {
1598     if (const auto *Entry = ConvertCostTableLookup(AVX2ConversionTbl, ISD,
1599                                                    SimpleDstTy, SimpleSrcTy))
1600       return Entry->Cost;
1601   }
1602 
1603   if (ST->hasAVX()) {
1604     if (const auto *Entry = ConvertCostTableLookup(AVXConversionTbl, ISD,
1605                                                    SimpleDstTy, SimpleSrcTy))
1606       return Entry->Cost;
1607   }
1608 
1609   if (ST->hasSSE41()) {
1610     if (const auto *Entry = ConvertCostTableLookup(SSE41ConversionTbl, ISD,
1611                                                    SimpleDstTy, SimpleSrcTy))
1612       return Entry->Cost;
1613   }
1614 
1615   if (ST->hasSSE2()) {
1616     if (const auto *Entry = ConvertCostTableLookup(SSE2ConversionTbl, ISD,
1617                                                    SimpleDstTy, SimpleSrcTy))
1618       return Entry->Cost;
1619   }
1620 
1621   return BaseT::getCastInstrCost(Opcode, Dst, Src, I);
1622 }
1623 
1624 int X86TTIImpl::getCmpSelInstrCost(unsigned Opcode, Type *ValTy, Type *CondTy,
1625                                    const Instruction *I) {
1626   // Legalize the type.
1627   std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, ValTy);
1628 
1629   MVT MTy = LT.second;
1630 
1631   int ISD = TLI->InstructionOpcodeToISD(Opcode);
1632   assert(ISD && "Invalid opcode");
1633 
1634   static const CostTblEntry SSE2CostTbl[] = {
1635     { ISD::SETCC,   MVT::v2i64,   8 },
1636     { ISD::SETCC,   MVT::v4i32,   1 },
1637     { ISD::SETCC,   MVT::v8i16,   1 },
1638     { ISD::SETCC,   MVT::v16i8,   1 },
1639   };
1640 
1641   static const CostTblEntry SSE42CostTbl[] = {
1642     { ISD::SETCC,   MVT::v2f64,   1 },
1643     { ISD::SETCC,   MVT::v4f32,   1 },
1644     { ISD::SETCC,   MVT::v2i64,   1 },
1645   };
1646 
1647   static const CostTblEntry AVX1CostTbl[] = {
1648     { ISD::SETCC,   MVT::v4f64,   1 },
1649     { ISD::SETCC,   MVT::v8f32,   1 },
1650     // AVX1 does not support 8-wide integer compare.
1651     { ISD::SETCC,   MVT::v4i64,   4 },
1652     { ISD::SETCC,   MVT::v8i32,   4 },
1653     { ISD::SETCC,   MVT::v16i16,  4 },
1654     { ISD::SETCC,   MVT::v32i8,   4 },
1655   };
1656 
1657   static const CostTblEntry AVX2CostTbl[] = {
1658     { ISD::SETCC,   MVT::v4i64,   1 },
1659     { ISD::SETCC,   MVT::v8i32,   1 },
1660     { ISD::SETCC,   MVT::v16i16,  1 },
1661     { ISD::SETCC,   MVT::v32i8,   1 },
1662   };
1663 
1664   static const CostTblEntry AVX512CostTbl[] = {
1665     { ISD::SETCC,   MVT::v8i64,   1 },
1666     { ISD::SETCC,   MVT::v16i32,  1 },
1667     { ISD::SETCC,   MVT::v8f64,   1 },
1668     { ISD::SETCC,   MVT::v16f32,  1 },
1669   };
1670 
1671   static const CostTblEntry AVX512BWCostTbl[] = {
1672     { ISD::SETCC,   MVT::v32i16,  1 },
1673     { ISD::SETCC,   MVT::v64i8,   1 },
1674   };
1675 
1676   if (ST->hasBWI())
1677     if (const auto *Entry = CostTableLookup(AVX512BWCostTbl, ISD, MTy))
1678       return LT.first * Entry->Cost;
1679 
1680   if (ST->hasAVX512())
1681     if (const auto *Entry = CostTableLookup(AVX512CostTbl, ISD, MTy))
1682       return LT.first * Entry->Cost;
1683 
1684   if (ST->hasAVX2())
1685     if (const auto *Entry = CostTableLookup(AVX2CostTbl, ISD, MTy))
1686       return LT.first * Entry->Cost;
1687 
1688   if (ST->hasAVX())
1689     if (const auto *Entry = CostTableLookup(AVX1CostTbl, ISD, MTy))
1690       return LT.first * Entry->Cost;
1691 
1692   if (ST->hasSSE42())
1693     if (const auto *Entry = CostTableLookup(SSE42CostTbl, ISD, MTy))
1694       return LT.first * Entry->Cost;
1695 
1696   if (ST->hasSSE2())
1697     if (const auto *Entry = CostTableLookup(SSE2CostTbl, ISD, MTy))
1698       return LT.first * Entry->Cost;
1699 
1700   return BaseT::getCmpSelInstrCost(Opcode, ValTy, CondTy, I);
1701 }
1702 
1703 unsigned X86TTIImpl::getAtomicMemIntrinsicMaxElementSize() const { return 16; }
1704 
1705 int X86TTIImpl::getIntrinsicInstrCost(Intrinsic::ID IID, Type *RetTy,
1706                                       ArrayRef<Type *> Tys, FastMathFlags FMF,
1707                                       unsigned ScalarizationCostPassed) {
1708   // Costs should match the codegen from:
1709   // BITREVERSE: llvm\test\CodeGen\X86\vector-bitreverse.ll
1710   // BSWAP: llvm\test\CodeGen\X86\bswap-vector.ll
1711   // CTLZ: llvm\test\CodeGen\X86\vector-lzcnt-*.ll
1712   // CTPOP: llvm\test\CodeGen\X86\vector-popcnt-*.ll
1713   // CTTZ: llvm\test\CodeGen\X86\vector-tzcnt-*.ll
1714   static const CostTblEntry AVX512CDCostTbl[] = {
1715     { ISD::CTLZ,       MVT::v8i64,   1 },
1716     { ISD::CTLZ,       MVT::v16i32,  1 },
1717     { ISD::CTLZ,       MVT::v32i16,  8 },
1718     { ISD::CTLZ,       MVT::v64i8,  20 },
1719     { ISD::CTLZ,       MVT::v4i64,   1 },
1720     { ISD::CTLZ,       MVT::v8i32,   1 },
1721     { ISD::CTLZ,       MVT::v16i16,  4 },
1722     { ISD::CTLZ,       MVT::v32i8,  10 },
1723     { ISD::CTLZ,       MVT::v2i64,   1 },
1724     { ISD::CTLZ,       MVT::v4i32,   1 },
1725     { ISD::CTLZ,       MVT::v8i16,   4 },
1726     { ISD::CTLZ,       MVT::v16i8,   4 },
1727   };
1728   static const CostTblEntry AVX512BWCostTbl[] = {
1729     { ISD::BITREVERSE, MVT::v8i64,   5 },
1730     { ISD::BITREVERSE, MVT::v16i32,  5 },
1731     { ISD::BITREVERSE, MVT::v32i16,  5 },
1732     { ISD::BITREVERSE, MVT::v64i8,   5 },
1733     { ISD::CTLZ,       MVT::v8i64,  23 },
1734     { ISD::CTLZ,       MVT::v16i32, 22 },
1735     { ISD::CTLZ,       MVT::v32i16, 18 },
1736     { ISD::CTLZ,       MVT::v64i8,  17 },
1737     { ISD::CTPOP,      MVT::v8i64,   7 },
1738     { ISD::CTPOP,      MVT::v16i32, 11 },
1739     { ISD::CTPOP,      MVT::v32i16,  9 },
1740     { ISD::CTPOP,      MVT::v64i8,   6 },
1741     { ISD::CTTZ,       MVT::v8i64,  10 },
1742     { ISD::CTTZ,       MVT::v16i32, 14 },
1743     { ISD::CTTZ,       MVT::v32i16, 12 },
1744     { ISD::CTTZ,       MVT::v64i8,   9 },
1745   };
1746   static const CostTblEntry AVX512CostTbl[] = {
1747     { ISD::BITREVERSE, MVT::v8i64,  36 },
1748     { ISD::BITREVERSE, MVT::v16i32, 24 },
1749     { ISD::CTLZ,       MVT::v8i64,  29 },
1750     { ISD::CTLZ,       MVT::v16i32, 35 },
1751     { ISD::CTPOP,      MVT::v8i64,  16 },
1752     { ISD::CTPOP,      MVT::v16i32, 24 },
1753     { ISD::CTTZ,       MVT::v8i64,  20 },
1754     { ISD::CTTZ,       MVT::v16i32, 28 },
1755   };
1756   static const CostTblEntry XOPCostTbl[] = {
1757     { ISD::BITREVERSE, MVT::v4i64,   4 },
1758     { ISD::BITREVERSE, MVT::v8i32,   4 },
1759     { ISD::BITREVERSE, MVT::v16i16,  4 },
1760     { ISD::BITREVERSE, MVT::v32i8,   4 },
1761     { ISD::BITREVERSE, MVT::v2i64,   1 },
1762     { ISD::BITREVERSE, MVT::v4i32,   1 },
1763     { ISD::BITREVERSE, MVT::v8i16,   1 },
1764     { ISD::BITREVERSE, MVT::v16i8,   1 },
1765     { ISD::BITREVERSE, MVT::i64,     3 },
1766     { ISD::BITREVERSE, MVT::i32,     3 },
1767     { ISD::BITREVERSE, MVT::i16,     3 },
1768     { ISD::BITREVERSE, MVT::i8,      3 }
1769   };
1770   static const CostTblEntry AVX2CostTbl[] = {
1771     { ISD::BITREVERSE, MVT::v4i64,   5 },
1772     { ISD::BITREVERSE, MVT::v8i32,   5 },
1773     { ISD::BITREVERSE, MVT::v16i16,  5 },
1774     { ISD::BITREVERSE, MVT::v32i8,   5 },
1775     { ISD::BSWAP,      MVT::v4i64,   1 },
1776     { ISD::BSWAP,      MVT::v8i32,   1 },
1777     { ISD::BSWAP,      MVT::v16i16,  1 },
1778     { ISD::CTLZ,       MVT::v4i64,  23 },
1779     { ISD::CTLZ,       MVT::v8i32,  18 },
1780     { ISD::CTLZ,       MVT::v16i16, 14 },
1781     { ISD::CTLZ,       MVT::v32i8,   9 },
1782     { ISD::CTPOP,      MVT::v4i64,   7 },
1783     { ISD::CTPOP,      MVT::v8i32,  11 },
1784     { ISD::CTPOP,      MVT::v16i16,  9 },
1785     { ISD::CTPOP,      MVT::v32i8,   6 },
1786     { ISD::CTTZ,       MVT::v4i64,  10 },
1787     { ISD::CTTZ,       MVT::v8i32,  14 },
1788     { ISD::CTTZ,       MVT::v16i16, 12 },
1789     { ISD::CTTZ,       MVT::v32i8,   9 },
1790     { ISD::FSQRT,      MVT::f32,     7 }, // Haswell from http://www.agner.org/
1791     { ISD::FSQRT,      MVT::v4f32,   7 }, // Haswell from http://www.agner.org/
1792     { ISD::FSQRT,      MVT::v8f32,  14 }, // Haswell from http://www.agner.org/
1793     { ISD::FSQRT,      MVT::f64,    14 }, // Haswell from http://www.agner.org/
1794     { ISD::FSQRT,      MVT::v2f64,  14 }, // Haswell from http://www.agner.org/
1795     { ISD::FSQRT,      MVT::v4f64,  28 }, // Haswell from http://www.agner.org/
1796   };
1797   static const CostTblEntry AVX1CostTbl[] = {
1798     { ISD::BITREVERSE, MVT::v4i64,  12 }, // 2 x 128-bit Op + extract/insert
1799     { ISD::BITREVERSE, MVT::v8i32,  12 }, // 2 x 128-bit Op + extract/insert
1800     { ISD::BITREVERSE, MVT::v16i16, 12 }, // 2 x 128-bit Op + extract/insert
1801     { ISD::BITREVERSE, MVT::v32i8,  12 }, // 2 x 128-bit Op + extract/insert
1802     { ISD::BSWAP,      MVT::v4i64,   4 },
1803     { ISD::BSWAP,      MVT::v8i32,   4 },
1804     { ISD::BSWAP,      MVT::v16i16,  4 },
1805     { ISD::CTLZ,       MVT::v4i64,  48 }, // 2 x 128-bit Op + extract/insert
1806     { ISD::CTLZ,       MVT::v8i32,  38 }, // 2 x 128-bit Op + extract/insert
1807     { ISD::CTLZ,       MVT::v16i16, 30 }, // 2 x 128-bit Op + extract/insert
1808     { ISD::CTLZ,       MVT::v32i8,  20 }, // 2 x 128-bit Op + extract/insert
1809     { ISD::CTPOP,      MVT::v4i64,  16 }, // 2 x 128-bit Op + extract/insert
1810     { ISD::CTPOP,      MVT::v8i32,  24 }, // 2 x 128-bit Op + extract/insert
1811     { ISD::CTPOP,      MVT::v16i16, 20 }, // 2 x 128-bit Op + extract/insert
1812     { ISD::CTPOP,      MVT::v32i8,  14 }, // 2 x 128-bit Op + extract/insert
1813     { ISD::CTTZ,       MVT::v4i64,  22 }, // 2 x 128-bit Op + extract/insert
1814     { ISD::CTTZ,       MVT::v8i32,  30 }, // 2 x 128-bit Op + extract/insert
1815     { ISD::CTTZ,       MVT::v16i16, 26 }, // 2 x 128-bit Op + extract/insert
1816     { ISD::CTTZ,       MVT::v32i8,  20 }, // 2 x 128-bit Op + extract/insert
1817     { ISD::FSQRT,      MVT::f32,    14 }, // SNB from http://www.agner.org/
1818     { ISD::FSQRT,      MVT::v4f32,  14 }, // SNB from http://www.agner.org/
1819     { ISD::FSQRT,      MVT::v8f32,  28 }, // SNB from http://www.agner.org/
1820     { ISD::FSQRT,      MVT::f64,    21 }, // SNB from http://www.agner.org/
1821     { ISD::FSQRT,      MVT::v2f64,  21 }, // SNB from http://www.agner.org/
1822     { ISD::FSQRT,      MVT::v4f64,  43 }, // SNB from http://www.agner.org/
1823   };
1824   static const CostTblEntry GLMCostTbl[] = {
1825     { ISD::FSQRT, MVT::f32,   19 }, // sqrtss
1826     { ISD::FSQRT, MVT::v4f32, 37 }, // sqrtps
1827     { ISD::FSQRT, MVT::f64,   34 }, // sqrtsd
1828     { ISD::FSQRT, MVT::v2f64, 67 }, // sqrtpd
1829   };
1830   static const CostTblEntry SLMCostTbl[] = {
1831     { ISD::FSQRT, MVT::f32,   20 }, // sqrtss
1832     { ISD::FSQRT, MVT::v4f32, 40 }, // sqrtps
1833     { ISD::FSQRT, MVT::f64,   35 }, // sqrtsd
1834     { ISD::FSQRT, MVT::v2f64, 70 }, // sqrtpd
1835   };
1836   static const CostTblEntry SSE42CostTbl[] = {
1837     { ISD::FSQRT,      MVT::f32,    18 }, // Nehalem from http://www.agner.org/
1838     { ISD::FSQRT,      MVT::v4f32,  18 }, // Nehalem from http://www.agner.org/
1839   };
1840   static const CostTblEntry SSSE3CostTbl[] = {
1841     { ISD::BITREVERSE, MVT::v2i64,   5 },
1842     { ISD::BITREVERSE, MVT::v4i32,   5 },
1843     { ISD::BITREVERSE, MVT::v8i16,   5 },
1844     { ISD::BITREVERSE, MVT::v16i8,   5 },
1845     { ISD::BSWAP,      MVT::v2i64,   1 },
1846     { ISD::BSWAP,      MVT::v4i32,   1 },
1847     { ISD::BSWAP,      MVT::v8i16,   1 },
1848     { ISD::CTLZ,       MVT::v2i64,  23 },
1849     { ISD::CTLZ,       MVT::v4i32,  18 },
1850     { ISD::CTLZ,       MVT::v8i16,  14 },
1851     { ISD::CTLZ,       MVT::v16i8,   9 },
1852     { ISD::CTPOP,      MVT::v2i64,   7 },
1853     { ISD::CTPOP,      MVT::v4i32,  11 },
1854     { ISD::CTPOP,      MVT::v8i16,   9 },
1855     { ISD::CTPOP,      MVT::v16i8,   6 },
1856     { ISD::CTTZ,       MVT::v2i64,  10 },
1857     { ISD::CTTZ,       MVT::v4i32,  14 },
1858     { ISD::CTTZ,       MVT::v8i16,  12 },
1859     { ISD::CTTZ,       MVT::v16i8,   9 }
1860   };
1861   static const CostTblEntry SSE2CostTbl[] = {
1862     { ISD::BITREVERSE, MVT::v2i64,  29 },
1863     { ISD::BITREVERSE, MVT::v4i32,  27 },
1864     { ISD::BITREVERSE, MVT::v8i16,  27 },
1865     { ISD::BITREVERSE, MVT::v16i8,  20 },
1866     { ISD::BSWAP,      MVT::v2i64,   7 },
1867     { ISD::BSWAP,      MVT::v4i32,   7 },
1868     { ISD::BSWAP,      MVT::v8i16,   7 },
1869     { ISD::CTLZ,       MVT::v2i64,  25 },
1870     { ISD::CTLZ,       MVT::v4i32,  26 },
1871     { ISD::CTLZ,       MVT::v8i16,  20 },
1872     { ISD::CTLZ,       MVT::v16i8,  17 },
1873     { ISD::CTPOP,      MVT::v2i64,  12 },
1874     { ISD::CTPOP,      MVT::v4i32,  15 },
1875     { ISD::CTPOP,      MVT::v8i16,  13 },
1876     { ISD::CTPOP,      MVT::v16i8,  10 },
1877     { ISD::CTTZ,       MVT::v2i64,  14 },
1878     { ISD::CTTZ,       MVT::v4i32,  18 },
1879     { ISD::CTTZ,       MVT::v8i16,  16 },
1880     { ISD::CTTZ,       MVT::v16i8,  13 },
1881     { ISD::FSQRT,      MVT::f64,    32 }, // Nehalem from http://www.agner.org/
1882     { ISD::FSQRT,      MVT::v2f64,  32 }, // Nehalem from http://www.agner.org/
1883   };
1884   static const CostTblEntry SSE1CostTbl[] = {
1885     { ISD::FSQRT,      MVT::f32,    28 }, // Pentium III from http://www.agner.org/
1886     { ISD::FSQRT,      MVT::v4f32,  56 }, // Pentium III from http://www.agner.org/
1887   };
1888   static const CostTblEntry X64CostTbl[] = { // 64-bit targets
1889     { ISD::BITREVERSE, MVT::i64,    14 }
1890   };
1891   static const CostTblEntry X86CostTbl[] = { // 32 or 64-bit targets
1892     { ISD::BITREVERSE, MVT::i32,    14 },
1893     { ISD::BITREVERSE, MVT::i16,    14 },
1894     { ISD::BITREVERSE, MVT::i8,     11 }
1895   };
1896 
1897   unsigned ISD = ISD::DELETED_NODE;
1898   switch (IID) {
1899   default:
1900     break;
1901   case Intrinsic::bitreverse:
1902     ISD = ISD::BITREVERSE;
1903     break;
1904   case Intrinsic::bswap:
1905     ISD = ISD::BSWAP;
1906     break;
1907   case Intrinsic::ctlz:
1908     ISD = ISD::CTLZ;
1909     break;
1910   case Intrinsic::ctpop:
1911     ISD = ISD::CTPOP;
1912     break;
1913   case Intrinsic::cttz:
1914     ISD = ISD::CTTZ;
1915     break;
1916   case Intrinsic::sqrt:
1917     ISD = ISD::FSQRT;
1918     break;
1919   }
1920 
1921   if (ISD != ISD::DELETED_NODE) {
1922     // Legalize the type.
1923     std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, RetTy);
1924     MVT MTy = LT.second;
1925 
1926     // Attempt to lookup cost.
1927     if (ST->isGLM())
1928       if (const auto *Entry = CostTableLookup(GLMCostTbl, ISD, MTy))
1929         return LT.first * Entry->Cost;
1930 
1931     if (ST->isSLM())
1932       if (const auto *Entry = CostTableLookup(SLMCostTbl, ISD, MTy))
1933         return LT.first * Entry->Cost;
1934 
1935     if (ST->hasCDI())
1936       if (const auto *Entry = CostTableLookup(AVX512CDCostTbl, ISD, MTy))
1937         return LT.first * Entry->Cost;
1938 
1939     if (ST->hasBWI())
1940       if (const auto *Entry = CostTableLookup(AVX512BWCostTbl, ISD, MTy))
1941         return LT.first * Entry->Cost;
1942 
1943     if (ST->hasAVX512())
1944       if (const auto *Entry = CostTableLookup(AVX512CostTbl, ISD, MTy))
1945         return LT.first * Entry->Cost;
1946 
1947     if (ST->hasXOP())
1948       if (const auto *Entry = CostTableLookup(XOPCostTbl, ISD, MTy))
1949         return LT.first * Entry->Cost;
1950 
1951     if (ST->hasAVX2())
1952       if (const auto *Entry = CostTableLookup(AVX2CostTbl, ISD, MTy))
1953         return LT.first * Entry->Cost;
1954 
1955     if (ST->hasAVX())
1956       if (const auto *Entry = CostTableLookup(AVX1CostTbl, ISD, MTy))
1957         return LT.first * Entry->Cost;
1958 
1959     if (ST->hasSSE42())
1960       if (const auto *Entry = CostTableLookup(SSE42CostTbl, ISD, MTy))
1961         return LT.first * Entry->Cost;
1962 
1963     if (ST->hasSSSE3())
1964       if (const auto *Entry = CostTableLookup(SSSE3CostTbl, ISD, MTy))
1965         return LT.first * Entry->Cost;
1966 
1967     if (ST->hasSSE2())
1968       if (const auto *Entry = CostTableLookup(SSE2CostTbl, ISD, MTy))
1969         return LT.first * Entry->Cost;
1970 
1971     if (ST->hasSSE1())
1972       if (const auto *Entry = CostTableLookup(SSE1CostTbl, ISD, MTy))
1973         return LT.first * Entry->Cost;
1974 
1975     if (ST->is64Bit())
1976       if (const auto *Entry = CostTableLookup(X64CostTbl, ISD, MTy))
1977         return LT.first * Entry->Cost;
1978 
1979     if (const auto *Entry = CostTableLookup(X86CostTbl, ISD, MTy))
1980       return LT.first * Entry->Cost;
1981   }
1982 
1983   return BaseT::getIntrinsicInstrCost(IID, RetTy, Tys, FMF, ScalarizationCostPassed);
1984 }
1985 
1986 int X86TTIImpl::getIntrinsicInstrCost(Intrinsic::ID IID, Type *RetTy,
1987                                       ArrayRef<Value *> Args, FastMathFlags FMF,
1988                                       unsigned VF) {
1989   static const CostTblEntry AVX512CostTbl[] = {
1990     { ISD::ROTL,       MVT::v8i64,   1 },
1991     { ISD::ROTL,       MVT::v4i64,   1 },
1992     { ISD::ROTL,       MVT::v2i64,   1 },
1993     { ISD::ROTL,       MVT::v16i32,  1 },
1994     { ISD::ROTL,       MVT::v8i32,   1 },
1995     { ISD::ROTL,       MVT::v4i32,   1 },
1996     { ISD::ROTR,       MVT::v8i64,   1 },
1997     { ISD::ROTR,       MVT::v4i64,   1 },
1998     { ISD::ROTR,       MVT::v2i64,   1 },
1999     { ISD::ROTR,       MVT::v16i32,  1 },
2000     { ISD::ROTR,       MVT::v8i32,   1 },
2001     { ISD::ROTR,       MVT::v4i32,   1 }
2002   };
2003   // XOP: ROTL = VPROT(X,Y), ROTR = VPROT(X,SUB(0,Y))
2004   static const CostTblEntry XOPCostTbl[] = {
2005     { ISD::ROTL,       MVT::v4i64,   4 },
2006     { ISD::ROTL,       MVT::v8i32,   4 },
2007     { ISD::ROTL,       MVT::v16i16,  4 },
2008     { ISD::ROTL,       MVT::v32i8,   4 },
2009     { ISD::ROTL,       MVT::v2i64,   1 },
2010     { ISD::ROTL,       MVT::v4i32,   1 },
2011     { ISD::ROTL,       MVT::v8i16,   1 },
2012     { ISD::ROTL,       MVT::v16i8,   1 },
2013     { ISD::ROTR,       MVT::v4i64,   6 },
2014     { ISD::ROTR,       MVT::v8i32,   6 },
2015     { ISD::ROTR,       MVT::v16i16,  6 },
2016     { ISD::ROTR,       MVT::v32i8,   6 },
2017     { ISD::ROTR,       MVT::v2i64,   2 },
2018     { ISD::ROTR,       MVT::v4i32,   2 },
2019     { ISD::ROTR,       MVT::v8i16,   2 },
2020     { ISD::ROTR,       MVT::v16i8,   2 }
2021   };
2022   static const CostTblEntry X64CostTbl[] = { // 64-bit targets
2023     { ISD::ROTL,       MVT::i64,     1 },
2024     { ISD::ROTR,       MVT::i64,     1 },
2025     { ISD::FSHL,       MVT::i64,     4 }
2026   };
2027   static const CostTblEntry X86CostTbl[] = { // 32 or 64-bit targets
2028     { ISD::ROTL,       MVT::i32,     1 },
2029     { ISD::ROTL,       MVT::i16,     1 },
2030     { ISD::ROTL,       MVT::i8,      1 },
2031     { ISD::ROTR,       MVT::i32,     1 },
2032     { ISD::ROTR,       MVT::i16,     1 },
2033     { ISD::ROTR,       MVT::i8,      1 },
2034     { ISD::FSHL,       MVT::i32,     4 },
2035     { ISD::FSHL,       MVT::i16,     4 },
2036     { ISD::FSHL,       MVT::i8,      4 }
2037   };
2038 
2039   unsigned ISD = ISD::DELETED_NODE;
2040   switch (IID) {
2041   default:
2042     break;
2043   case Intrinsic::fshl:
2044     ISD = ISD::FSHL;
2045     if (Args[0] == Args[1])
2046       ISD = ISD::ROTL;
2047     break;
2048   case Intrinsic::fshr:
2049     // FSHR has same costs so don't duplicate.
2050     ISD = ISD::FSHL;
2051     if (Args[0] == Args[1])
2052       ISD = ISD::ROTR;
2053     break;
2054   }
2055 
2056   if (ISD != ISD::DELETED_NODE) {
2057     // Legalize the type.
2058     std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, RetTy);
2059     MVT MTy = LT.second;
2060 
2061     // Attempt to lookup cost.
2062     if (ST->hasAVX512())
2063       if (const auto *Entry = CostTableLookup(AVX512CostTbl, ISD, MTy))
2064         return LT.first * Entry->Cost;
2065 
2066     if (ST->hasXOP())
2067       if (const auto *Entry = CostTableLookup(XOPCostTbl, ISD, MTy))
2068         return LT.first * Entry->Cost;
2069 
2070     if (ST->is64Bit())
2071       if (const auto *Entry = CostTableLookup(X64CostTbl, ISD, MTy))
2072         return LT.first * Entry->Cost;
2073 
2074     if (const auto *Entry = CostTableLookup(X86CostTbl, ISD, MTy))
2075       return LT.first * Entry->Cost;
2076   }
2077 
2078   return BaseT::getIntrinsicInstrCost(IID, RetTy, Args, FMF, VF);
2079 }
2080 
2081 int X86TTIImpl::getVectorInstrCost(unsigned Opcode, Type *Val, unsigned Index) {
2082   assert(Val->isVectorTy() && "This must be a vector type");
2083 
2084   Type *ScalarType = Val->getScalarType();
2085 
2086   if (Index != -1U) {
2087     // Legalize the type.
2088     std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Val);
2089 
2090     // This type is legalized to a scalar type.
2091     if (!LT.second.isVector())
2092       return 0;
2093 
2094     // The type may be split. Normalize the index to the new type.
2095     unsigned Width = LT.second.getVectorNumElements();
2096     Index = Index % Width;
2097 
2098     // Floating point scalars are already located in index #0.
2099     if (ScalarType->isFloatingPointTy() && Index == 0)
2100       return 0;
2101   }
2102 
2103   // Add to the base cost if we know that the extracted element of a vector is
2104   // destined to be moved to and used in the integer register file.
2105   int RegisterFileMoveCost = 0;
2106   if (Opcode == Instruction::ExtractElement && ScalarType->isPointerTy())
2107     RegisterFileMoveCost = 1;
2108 
2109   return BaseT::getVectorInstrCost(Opcode, Val, Index) + RegisterFileMoveCost;
2110 }
2111 
2112 int X86TTIImpl::getMemoryOpCost(unsigned Opcode, Type *Src, unsigned Alignment,
2113                                 unsigned AddressSpace, const Instruction *I) {
2114   // Handle non-power-of-two vectors such as <3 x float>
2115   if (VectorType *VTy = dyn_cast<VectorType>(Src)) {
2116     unsigned NumElem = VTy->getVectorNumElements();
2117 
2118     // Handle a few common cases:
2119     // <3 x float>
2120     if (NumElem == 3 && VTy->getScalarSizeInBits() == 32)
2121       // Cost = 64 bit store + extract + 32 bit store.
2122       return 3;
2123 
2124     // <3 x double>
2125     if (NumElem == 3 && VTy->getScalarSizeInBits() == 64)
2126       // Cost = 128 bit store + unpack + 64 bit store.
2127       return 3;
2128 
2129     // Assume that all other non-power-of-two numbers are scalarized.
2130     if (!isPowerOf2_32(NumElem)) {
2131       int Cost = BaseT::getMemoryOpCost(Opcode, VTy->getScalarType(), Alignment,
2132                                         AddressSpace);
2133       int SplitCost = getScalarizationOverhead(Src, Opcode == Instruction::Load,
2134                                                Opcode == Instruction::Store);
2135       return NumElem * Cost + SplitCost;
2136     }
2137   }
2138 
2139   // Legalize the type.
2140   std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Src);
2141   assert((Opcode == Instruction::Load || Opcode == Instruction::Store) &&
2142          "Invalid Opcode");
2143 
2144   // Each load/store unit costs 1.
2145   int Cost = LT.first * 1;
2146 
2147   // This isn't exactly right. We're using slow unaligned 32-byte accesses as a
2148   // proxy for a double-pumped AVX memory interface such as on Sandybridge.
2149   if (LT.second.getStoreSize() == 32 && ST->isUnalignedMem32Slow())
2150     Cost *= 2;
2151 
2152   return Cost;
2153 }
2154 
2155 int X86TTIImpl::getMaskedMemoryOpCost(unsigned Opcode, Type *SrcTy,
2156                                       unsigned Alignment,
2157                                       unsigned AddressSpace) {
2158   VectorType *SrcVTy = dyn_cast<VectorType>(SrcTy);
2159   if (!SrcVTy)
2160     // To calculate scalar take the regular cost, without mask
2161     return getMemoryOpCost(Opcode, SrcTy, Alignment, AddressSpace);
2162 
2163   unsigned NumElem = SrcVTy->getVectorNumElements();
2164   VectorType *MaskTy =
2165     VectorType::get(Type::getInt8Ty(SrcVTy->getContext()), NumElem);
2166   if ((Opcode == Instruction::Load && !isLegalMaskedLoad(SrcVTy)) ||
2167       (Opcode == Instruction::Store && !isLegalMaskedStore(SrcVTy)) ||
2168       !isPowerOf2_32(NumElem)) {
2169     // Scalarization
2170     int MaskSplitCost = getScalarizationOverhead(MaskTy, false, true);
2171     int ScalarCompareCost = getCmpSelInstrCost(
2172         Instruction::ICmp, Type::getInt8Ty(SrcVTy->getContext()), nullptr);
2173     int BranchCost = getCFInstrCost(Instruction::Br);
2174     int MaskCmpCost = NumElem * (BranchCost + ScalarCompareCost);
2175 
2176     int ValueSplitCost = getScalarizationOverhead(
2177         SrcVTy, Opcode == Instruction::Load, Opcode == Instruction::Store);
2178     int MemopCost =
2179         NumElem * BaseT::getMemoryOpCost(Opcode, SrcVTy->getScalarType(),
2180                                          Alignment, AddressSpace);
2181     return MemopCost + ValueSplitCost + MaskSplitCost + MaskCmpCost;
2182   }
2183 
2184   // Legalize the type.
2185   std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, SrcVTy);
2186   auto VT = TLI->getValueType(DL, SrcVTy);
2187   int Cost = 0;
2188   if (VT.isSimple() && LT.second != VT.getSimpleVT() &&
2189       LT.second.getVectorNumElements() == NumElem)
2190     // Promotion requires expand/truncate for data and a shuffle for mask.
2191     Cost += getShuffleCost(TTI::SK_Select, SrcVTy, 0, nullptr) +
2192             getShuffleCost(TTI::SK_Select, MaskTy, 0, nullptr);
2193 
2194   else if (LT.second.getVectorNumElements() > NumElem) {
2195     VectorType *NewMaskTy = VectorType::get(MaskTy->getVectorElementType(),
2196                                             LT.second.getVectorNumElements());
2197     // Expanding requires fill mask with zeroes
2198     Cost += getShuffleCost(TTI::SK_InsertSubvector, NewMaskTy, 0, MaskTy);
2199   }
2200   if (!ST->hasAVX512())
2201     return Cost + LT.first*4; // Each maskmov costs 4
2202 
2203   // AVX-512 masked load/store is cheapper
2204   return Cost+LT.first;
2205 }
2206 
2207 int X86TTIImpl::getAddressComputationCost(Type *Ty, ScalarEvolution *SE,
2208                                           const SCEV *Ptr) {
2209   // Address computations in vectorized code with non-consecutive addresses will
2210   // likely result in more instructions compared to scalar code where the
2211   // computation can more often be merged into the index mode. The resulting
2212   // extra micro-ops can significantly decrease throughput.
2213   unsigned NumVectorInstToHideOverhead = 10;
2214 
2215   // Cost modeling of Strided Access Computation is hidden by the indexing
2216   // modes of X86 regardless of the stride value. We dont believe that there
2217   // is a difference between constant strided access in gerenal and constant
2218   // strided value which is less than or equal to 64.
2219   // Even in the case of (loop invariant) stride whose value is not known at
2220   // compile time, the address computation will not incur more than one extra
2221   // ADD instruction.
2222   if (Ty->isVectorTy() && SE) {
2223     if (!BaseT::isStridedAccess(Ptr))
2224       return NumVectorInstToHideOverhead;
2225     if (!BaseT::getConstantStrideStep(SE, Ptr))
2226       return 1;
2227   }
2228 
2229   return BaseT::getAddressComputationCost(Ty, SE, Ptr);
2230 }
2231 
2232 int X86TTIImpl::getArithmeticReductionCost(unsigned Opcode, Type *ValTy,
2233                                            bool IsPairwise) {
2234 
2235   std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, ValTy);
2236 
2237   MVT MTy = LT.second;
2238 
2239   int ISD = TLI->InstructionOpcodeToISD(Opcode);
2240   assert(ISD && "Invalid opcode");
2241 
2242   // We use the Intel Architecture Code Analyzer(IACA) to measure the throughput
2243   // and make it as the cost.
2244 
2245   static const CostTblEntry SSE42CostTblPairWise[] = {
2246     { ISD::FADD,  MVT::v2f64,   2 },
2247     { ISD::FADD,  MVT::v4f32,   4 },
2248     { ISD::ADD,   MVT::v2i64,   2 },      // The data reported by the IACA tool is "1.6".
2249     { ISD::ADD,   MVT::v4i32,   3 },      // The data reported by the IACA tool is "3.5".
2250     { ISD::ADD,   MVT::v8i16,   5 },
2251   };
2252 
2253   static const CostTblEntry AVX1CostTblPairWise[] = {
2254     { ISD::FADD,  MVT::v4f32,   4 },
2255     { ISD::FADD,  MVT::v4f64,   5 },
2256     { ISD::FADD,  MVT::v8f32,   7 },
2257     { ISD::ADD,   MVT::v2i64,   1 },      // The data reported by the IACA tool is "1.5".
2258     { ISD::ADD,   MVT::v4i32,   3 },      // The data reported by the IACA tool is "3.5".
2259     { ISD::ADD,   MVT::v4i64,   5 },      // The data reported by the IACA tool is "4.8".
2260     { ISD::ADD,   MVT::v8i16,   5 },
2261     { ISD::ADD,   MVT::v8i32,   5 },
2262   };
2263 
2264   static const CostTblEntry SSE42CostTblNoPairWise[] = {
2265     { ISD::FADD,  MVT::v2f64,   2 },
2266     { ISD::FADD,  MVT::v4f32,   4 },
2267     { ISD::ADD,   MVT::v2i64,   2 },      // The data reported by the IACA tool is "1.6".
2268     { ISD::ADD,   MVT::v4i32,   3 },      // The data reported by the IACA tool is "3.3".
2269     { ISD::ADD,   MVT::v8i16,   4 },      // The data reported by the IACA tool is "4.3".
2270   };
2271 
2272   static const CostTblEntry AVX1CostTblNoPairWise[] = {
2273     { ISD::FADD,  MVT::v4f32,   3 },
2274     { ISD::FADD,  MVT::v4f64,   3 },
2275     { ISD::FADD,  MVT::v8f32,   4 },
2276     { ISD::ADD,   MVT::v2i64,   1 },      // The data reported by the IACA tool is "1.5".
2277     { ISD::ADD,   MVT::v4i32,   3 },      // The data reported by the IACA tool is "2.8".
2278     { ISD::ADD,   MVT::v4i64,   3 },
2279     { ISD::ADD,   MVT::v8i16,   4 },
2280     { ISD::ADD,   MVT::v8i32,   5 },
2281   };
2282 
2283   if (IsPairwise) {
2284     if (ST->hasAVX())
2285       if (const auto *Entry = CostTableLookup(AVX1CostTblPairWise, ISD, MTy))
2286         return LT.first * Entry->Cost;
2287 
2288     if (ST->hasSSE42())
2289       if (const auto *Entry = CostTableLookup(SSE42CostTblPairWise, ISD, MTy))
2290         return LT.first * Entry->Cost;
2291   } else {
2292     if (ST->hasAVX())
2293       if (const auto *Entry = CostTableLookup(AVX1CostTblNoPairWise, ISD, MTy))
2294         return LT.first * Entry->Cost;
2295 
2296     if (ST->hasSSE42())
2297       if (const auto *Entry = CostTableLookup(SSE42CostTblNoPairWise, ISD, MTy))
2298         return LT.first * Entry->Cost;
2299   }
2300 
2301   return BaseT::getArithmeticReductionCost(Opcode, ValTy, IsPairwise);
2302 }
2303 
2304 int X86TTIImpl::getMinMaxReductionCost(Type *ValTy, Type *CondTy,
2305                                        bool IsPairwise, bool IsUnsigned) {
2306   std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, ValTy);
2307 
2308   MVT MTy = LT.second;
2309 
2310   int ISD;
2311   if (ValTy->isIntOrIntVectorTy()) {
2312     ISD = IsUnsigned ? ISD::UMIN : ISD::SMIN;
2313   } else {
2314     assert(ValTy->isFPOrFPVectorTy() &&
2315            "Expected float point or integer vector type.");
2316     ISD = ISD::FMINNUM;
2317   }
2318 
2319   // We use the Intel Architecture Code Analyzer(IACA) to measure the throughput
2320   // and make it as the cost.
2321 
2322   static const CostTblEntry SSE42CostTblPairWise[] = {
2323       {ISD::FMINNUM, MVT::v2f64, 3},
2324       {ISD::FMINNUM, MVT::v4f32, 2},
2325       {ISD::SMIN, MVT::v2i64, 7}, // The data reported by the IACA is "6.8"
2326       {ISD::UMIN, MVT::v2i64, 8}, // The data reported by the IACA is "8.6"
2327       {ISD::SMIN, MVT::v4i32, 1}, // The data reported by the IACA is "1.5"
2328       {ISD::UMIN, MVT::v4i32, 2}, // The data reported by the IACA is "1.8"
2329       {ISD::SMIN, MVT::v8i16, 2},
2330       {ISD::UMIN, MVT::v8i16, 2},
2331   };
2332 
2333   static const CostTblEntry AVX1CostTblPairWise[] = {
2334       {ISD::FMINNUM, MVT::v4f32, 1},
2335       {ISD::FMINNUM, MVT::v4f64, 1},
2336       {ISD::FMINNUM, MVT::v8f32, 2},
2337       {ISD::SMIN, MVT::v2i64, 3},
2338       {ISD::UMIN, MVT::v2i64, 3},
2339       {ISD::SMIN, MVT::v4i32, 1},
2340       {ISD::UMIN, MVT::v4i32, 1},
2341       {ISD::SMIN, MVT::v8i16, 1},
2342       {ISD::UMIN, MVT::v8i16, 1},
2343       {ISD::SMIN, MVT::v8i32, 3},
2344       {ISD::UMIN, MVT::v8i32, 3},
2345   };
2346 
2347   static const CostTblEntry AVX2CostTblPairWise[] = {
2348       {ISD::SMIN, MVT::v4i64, 2},
2349       {ISD::UMIN, MVT::v4i64, 2},
2350       {ISD::SMIN, MVT::v8i32, 1},
2351       {ISD::UMIN, MVT::v8i32, 1},
2352       {ISD::SMIN, MVT::v16i16, 1},
2353       {ISD::UMIN, MVT::v16i16, 1},
2354       {ISD::SMIN, MVT::v32i8, 2},
2355       {ISD::UMIN, MVT::v32i8, 2},
2356   };
2357 
2358   static const CostTblEntry AVX512CostTblPairWise[] = {
2359       {ISD::FMINNUM, MVT::v8f64, 1},
2360       {ISD::FMINNUM, MVT::v16f32, 2},
2361       {ISD::SMIN, MVT::v8i64, 2},
2362       {ISD::UMIN, MVT::v8i64, 2},
2363       {ISD::SMIN, MVT::v16i32, 1},
2364       {ISD::UMIN, MVT::v16i32, 1},
2365   };
2366 
2367   static const CostTblEntry SSE42CostTblNoPairWise[] = {
2368       {ISD::FMINNUM, MVT::v2f64, 3},
2369       {ISD::FMINNUM, MVT::v4f32, 3},
2370       {ISD::SMIN, MVT::v2i64, 7}, // The data reported by the IACA is "6.8"
2371       {ISD::UMIN, MVT::v2i64, 9}, // The data reported by the IACA is "8.6"
2372       {ISD::SMIN, MVT::v4i32, 1}, // The data reported by the IACA is "1.5"
2373       {ISD::UMIN, MVT::v4i32, 2}, // The data reported by the IACA is "1.8"
2374       {ISD::SMIN, MVT::v8i16, 1}, // The data reported by the IACA is "1.5"
2375       {ISD::UMIN, MVT::v8i16, 2}, // The data reported by the IACA is "1.8"
2376   };
2377 
2378   static const CostTblEntry AVX1CostTblNoPairWise[] = {
2379       {ISD::FMINNUM, MVT::v4f32, 1},
2380       {ISD::FMINNUM, MVT::v4f64, 1},
2381       {ISD::FMINNUM, MVT::v8f32, 1},
2382       {ISD::SMIN, MVT::v2i64, 3},
2383       {ISD::UMIN, MVT::v2i64, 3},
2384       {ISD::SMIN, MVT::v4i32, 1},
2385       {ISD::UMIN, MVT::v4i32, 1},
2386       {ISD::SMIN, MVT::v8i16, 1},
2387       {ISD::UMIN, MVT::v8i16, 1},
2388       {ISD::SMIN, MVT::v8i32, 2},
2389       {ISD::UMIN, MVT::v8i32, 2},
2390   };
2391 
2392   static const CostTblEntry AVX2CostTblNoPairWise[] = {
2393       {ISD::SMIN, MVT::v4i64, 1},
2394       {ISD::UMIN, MVT::v4i64, 1},
2395       {ISD::SMIN, MVT::v8i32, 1},
2396       {ISD::UMIN, MVT::v8i32, 1},
2397       {ISD::SMIN, MVT::v16i16, 1},
2398       {ISD::UMIN, MVT::v16i16, 1},
2399       {ISD::SMIN, MVT::v32i8, 1},
2400       {ISD::UMIN, MVT::v32i8, 1},
2401   };
2402 
2403   static const CostTblEntry AVX512CostTblNoPairWise[] = {
2404       {ISD::FMINNUM, MVT::v8f64, 1},
2405       {ISD::FMINNUM, MVT::v16f32, 2},
2406       {ISD::SMIN, MVT::v8i64, 1},
2407       {ISD::UMIN, MVT::v8i64, 1},
2408       {ISD::SMIN, MVT::v16i32, 1},
2409       {ISD::UMIN, MVT::v16i32, 1},
2410   };
2411 
2412   if (IsPairwise) {
2413     if (ST->hasAVX512())
2414       if (const auto *Entry = CostTableLookup(AVX512CostTblPairWise, ISD, MTy))
2415         return LT.first * Entry->Cost;
2416 
2417     if (ST->hasAVX2())
2418       if (const auto *Entry = CostTableLookup(AVX2CostTblPairWise, ISD, MTy))
2419         return LT.first * Entry->Cost;
2420 
2421     if (ST->hasAVX())
2422       if (const auto *Entry = CostTableLookup(AVX1CostTblPairWise, ISD, MTy))
2423         return LT.first * Entry->Cost;
2424 
2425     if (ST->hasSSE42())
2426       if (const auto *Entry = CostTableLookup(SSE42CostTblPairWise, ISD, MTy))
2427         return LT.first * Entry->Cost;
2428   } else {
2429     if (ST->hasAVX512())
2430       if (const auto *Entry =
2431               CostTableLookup(AVX512CostTblNoPairWise, ISD, MTy))
2432         return LT.first * Entry->Cost;
2433 
2434     if (ST->hasAVX2())
2435       if (const auto *Entry = CostTableLookup(AVX2CostTblNoPairWise, ISD, MTy))
2436         return LT.first * Entry->Cost;
2437 
2438     if (ST->hasAVX())
2439       if (const auto *Entry = CostTableLookup(AVX1CostTblNoPairWise, ISD, MTy))
2440         return LT.first * Entry->Cost;
2441 
2442     if (ST->hasSSE42())
2443       if (const auto *Entry = CostTableLookup(SSE42CostTblNoPairWise, ISD, MTy))
2444         return LT.first * Entry->Cost;
2445   }
2446 
2447   return BaseT::getMinMaxReductionCost(ValTy, CondTy, IsPairwise, IsUnsigned);
2448 }
2449 
2450 /// Calculate the cost of materializing a 64-bit value. This helper
2451 /// method might only calculate a fraction of a larger immediate. Therefore it
2452 /// is valid to return a cost of ZERO.
2453 int X86TTIImpl::getIntImmCost(int64_t Val) {
2454   if (Val == 0)
2455     return TTI::TCC_Free;
2456 
2457   if (isInt<32>(Val))
2458     return TTI::TCC_Basic;
2459 
2460   return 2 * TTI::TCC_Basic;
2461 }
2462 
2463 int X86TTIImpl::getIntImmCost(const APInt &Imm, Type *Ty) {
2464   assert(Ty->isIntegerTy());
2465 
2466   unsigned BitSize = Ty->getPrimitiveSizeInBits();
2467   if (BitSize == 0)
2468     return ~0U;
2469 
2470   // Never hoist constants larger than 128bit, because this might lead to
2471   // incorrect code generation or assertions in codegen.
2472   // Fixme: Create a cost model for types larger than i128 once the codegen
2473   // issues have been fixed.
2474   if (BitSize > 128)
2475     return TTI::TCC_Free;
2476 
2477   if (Imm == 0)
2478     return TTI::TCC_Free;
2479 
2480   // Sign-extend all constants to a multiple of 64-bit.
2481   APInt ImmVal = Imm;
2482   if (BitSize % 64 != 0)
2483     ImmVal = Imm.sext(alignTo(BitSize, 64));
2484 
2485   // Split the constant into 64-bit chunks and calculate the cost for each
2486   // chunk.
2487   int Cost = 0;
2488   for (unsigned ShiftVal = 0; ShiftVal < BitSize; ShiftVal += 64) {
2489     APInt Tmp = ImmVal.ashr(ShiftVal).sextOrTrunc(64);
2490     int64_t Val = Tmp.getSExtValue();
2491     Cost += getIntImmCost(Val);
2492   }
2493   // We need at least one instruction to materialize the constant.
2494   return std::max(1, Cost);
2495 }
2496 
2497 int X86TTIImpl::getIntImmCost(unsigned Opcode, unsigned Idx, const APInt &Imm,
2498                               Type *Ty) {
2499   assert(Ty->isIntegerTy());
2500 
2501   unsigned BitSize = Ty->getPrimitiveSizeInBits();
2502   // There is no cost model for constants with a bit size of 0. Return TCC_Free
2503   // here, so that constant hoisting will ignore this constant.
2504   if (BitSize == 0)
2505     return TTI::TCC_Free;
2506 
2507   unsigned ImmIdx = ~0U;
2508   switch (Opcode) {
2509   default:
2510     return TTI::TCC_Free;
2511   case Instruction::GetElementPtr:
2512     // Always hoist the base address of a GetElementPtr. This prevents the
2513     // creation of new constants for every base constant that gets constant
2514     // folded with the offset.
2515     if (Idx == 0)
2516       return 2 * TTI::TCC_Basic;
2517     return TTI::TCC_Free;
2518   case Instruction::Store:
2519     ImmIdx = 0;
2520     break;
2521   case Instruction::ICmp:
2522     // This is an imperfect hack to prevent constant hoisting of
2523     // compares that might be trying to check if a 64-bit value fits in
2524     // 32-bits. The backend can optimize these cases using a right shift by 32.
2525     // Ideally we would check the compare predicate here. There also other
2526     // similar immediates the backend can use shifts for.
2527     if (Idx == 1 && Imm.getBitWidth() == 64) {
2528       uint64_t ImmVal = Imm.getZExtValue();
2529       if (ImmVal == 0x100000000ULL || ImmVal == 0xffffffff)
2530         return TTI::TCC_Free;
2531     }
2532     ImmIdx = 1;
2533     break;
2534   case Instruction::And:
2535     // We support 64-bit ANDs with immediates with 32-bits of leading zeroes
2536     // by using a 32-bit operation with implicit zero extension. Detect such
2537     // immediates here as the normal path expects bit 31 to be sign extended.
2538     if (Idx == 1 && Imm.getBitWidth() == 64 && isUInt<32>(Imm.getZExtValue()))
2539       return TTI::TCC_Free;
2540     ImmIdx = 1;
2541     break;
2542   case Instruction::Add:
2543   case Instruction::Sub:
2544     // For add/sub, we can use the opposite instruction for INT32_MIN.
2545     if (Idx == 1 && Imm.getBitWidth() == 64 && Imm.getZExtValue() == 0x80000000)
2546       return TTI::TCC_Free;
2547     ImmIdx = 1;
2548     break;
2549   case Instruction::UDiv:
2550   case Instruction::SDiv:
2551   case Instruction::URem:
2552   case Instruction::SRem:
2553     // Division by constant is typically expanded later into a different
2554     // instruction sequence. This completely changes the constants.
2555     // Report them as "free" to stop ConstantHoist from marking them as opaque.
2556     return TTI::TCC_Free;
2557   case Instruction::Mul:
2558   case Instruction::Or:
2559   case Instruction::Xor:
2560     ImmIdx = 1;
2561     break;
2562   // Always return TCC_Free for the shift value of a shift instruction.
2563   case Instruction::Shl:
2564   case Instruction::LShr:
2565   case Instruction::AShr:
2566     if (Idx == 1)
2567       return TTI::TCC_Free;
2568     break;
2569   case Instruction::Trunc:
2570   case Instruction::ZExt:
2571   case Instruction::SExt:
2572   case Instruction::IntToPtr:
2573   case Instruction::PtrToInt:
2574   case Instruction::BitCast:
2575   case Instruction::PHI:
2576   case Instruction::Call:
2577   case Instruction::Select:
2578   case Instruction::Ret:
2579   case Instruction::Load:
2580     break;
2581   }
2582 
2583   if (Idx == ImmIdx) {
2584     int NumConstants = divideCeil(BitSize, 64);
2585     int Cost = X86TTIImpl::getIntImmCost(Imm, Ty);
2586     return (Cost <= NumConstants * TTI::TCC_Basic)
2587                ? static_cast<int>(TTI::TCC_Free)
2588                : Cost;
2589   }
2590 
2591   return X86TTIImpl::getIntImmCost(Imm, Ty);
2592 }
2593 
2594 int X86TTIImpl::getIntImmCost(Intrinsic::ID IID, unsigned Idx, const APInt &Imm,
2595                               Type *Ty) {
2596   assert(Ty->isIntegerTy());
2597 
2598   unsigned BitSize = Ty->getPrimitiveSizeInBits();
2599   // There is no cost model for constants with a bit size of 0. Return TCC_Free
2600   // here, so that constant hoisting will ignore this constant.
2601   if (BitSize == 0)
2602     return TTI::TCC_Free;
2603 
2604   switch (IID) {
2605   default:
2606     return TTI::TCC_Free;
2607   case Intrinsic::sadd_with_overflow:
2608   case Intrinsic::uadd_with_overflow:
2609   case Intrinsic::ssub_with_overflow:
2610   case Intrinsic::usub_with_overflow:
2611   case Intrinsic::smul_with_overflow:
2612   case Intrinsic::umul_with_overflow:
2613     if ((Idx == 1) && Imm.getBitWidth() <= 64 && isInt<32>(Imm.getSExtValue()))
2614       return TTI::TCC_Free;
2615     break;
2616   case Intrinsic::experimental_stackmap:
2617     if ((Idx < 2) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue())))
2618       return TTI::TCC_Free;
2619     break;
2620   case Intrinsic::experimental_patchpoint_void:
2621   case Intrinsic::experimental_patchpoint_i64:
2622     if ((Idx < 4) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue())))
2623       return TTI::TCC_Free;
2624     break;
2625   }
2626   return X86TTIImpl::getIntImmCost(Imm, Ty);
2627 }
2628 
2629 unsigned X86TTIImpl::getUserCost(const User *U,
2630                                  ArrayRef<const Value *> Operands) {
2631   if (isa<StoreInst>(U)) {
2632     Value *Ptr = U->getOperand(1);
2633     // Store instruction with index and scale costs 2 Uops.
2634     // Check the preceding GEP to identify non-const indices.
2635     if (auto GEP = dyn_cast<GetElementPtrInst>(Ptr)) {
2636       if (!all_of(GEP->indices(), [](Value *V) { return isa<Constant>(V); }))
2637         return TTI::TCC_Basic * 2;
2638     }
2639     return TTI::TCC_Basic;
2640   }
2641   return BaseT::getUserCost(U, Operands);
2642 }
2643 
2644 // Return an average cost of Gather / Scatter instruction, maybe improved later
2645 int X86TTIImpl::getGSVectorCost(unsigned Opcode, Type *SrcVTy, Value *Ptr,
2646                                 unsigned Alignment, unsigned AddressSpace) {
2647 
2648   assert(isa<VectorType>(SrcVTy) && "Unexpected type in getGSVectorCost");
2649   unsigned VF = SrcVTy->getVectorNumElements();
2650 
2651   // Try to reduce index size from 64 bit (default for GEP)
2652   // to 32. It is essential for VF 16. If the index can't be reduced to 32, the
2653   // operation will use 16 x 64 indices which do not fit in a zmm and needs
2654   // to split. Also check that the base pointer is the same for all lanes,
2655   // and that there's at most one variable index.
2656   auto getIndexSizeInBits = [](Value *Ptr, const DataLayout& DL) {
2657     unsigned IndexSize = DL.getPointerSizeInBits();
2658     GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr);
2659     if (IndexSize < 64 || !GEP)
2660       return IndexSize;
2661 
2662     unsigned NumOfVarIndices = 0;
2663     Value *Ptrs = GEP->getPointerOperand();
2664     if (Ptrs->getType()->isVectorTy() && !getSplatValue(Ptrs))
2665       return IndexSize;
2666     for (unsigned i = 1; i < GEP->getNumOperands(); ++i) {
2667       if (isa<Constant>(GEP->getOperand(i)))
2668         continue;
2669       Type *IndxTy = GEP->getOperand(i)->getType();
2670       if (IndxTy->isVectorTy())
2671         IndxTy = IndxTy->getVectorElementType();
2672       if ((IndxTy->getPrimitiveSizeInBits() == 64 &&
2673           !isa<SExtInst>(GEP->getOperand(i))) ||
2674          ++NumOfVarIndices > 1)
2675         return IndexSize; // 64
2676     }
2677     return (unsigned)32;
2678   };
2679 
2680 
2681   // Trying to reduce IndexSize to 32 bits for vector 16.
2682   // By default the IndexSize is equal to pointer size.
2683   unsigned IndexSize = (ST->hasAVX512() && VF >= 16)
2684                            ? getIndexSizeInBits(Ptr, DL)
2685                            : DL.getPointerSizeInBits();
2686 
2687   Type *IndexVTy = VectorType::get(IntegerType::get(SrcVTy->getContext(),
2688                                                     IndexSize), VF);
2689   std::pair<int, MVT> IdxsLT = TLI->getTypeLegalizationCost(DL, IndexVTy);
2690   std::pair<int, MVT> SrcLT = TLI->getTypeLegalizationCost(DL, SrcVTy);
2691   int SplitFactor = std::max(IdxsLT.first, SrcLT.first);
2692   if (SplitFactor > 1) {
2693     // Handle splitting of vector of pointers
2694     Type *SplitSrcTy = VectorType::get(SrcVTy->getScalarType(), VF / SplitFactor);
2695     return SplitFactor * getGSVectorCost(Opcode, SplitSrcTy, Ptr, Alignment,
2696                                          AddressSpace);
2697   }
2698 
2699   // The gather / scatter cost is given by Intel architects. It is a rough
2700   // number since we are looking at one instruction in a time.
2701   const int GSOverhead = (Opcode == Instruction::Load)
2702                              ? ST->getGatherOverhead()
2703                              : ST->getScatterOverhead();
2704   return GSOverhead + VF * getMemoryOpCost(Opcode, SrcVTy->getScalarType(),
2705                                            Alignment, AddressSpace);
2706 }
2707 
2708 /// Return the cost of full scalarization of gather / scatter operation.
2709 ///
2710 /// Opcode - Load or Store instruction.
2711 /// SrcVTy - The type of the data vector that should be gathered or scattered.
2712 /// VariableMask - The mask is non-constant at compile time.
2713 /// Alignment - Alignment for one element.
2714 /// AddressSpace - pointer[s] address space.
2715 ///
2716 int X86TTIImpl::getGSScalarCost(unsigned Opcode, Type *SrcVTy,
2717                                 bool VariableMask, unsigned Alignment,
2718                                 unsigned AddressSpace) {
2719   unsigned VF = SrcVTy->getVectorNumElements();
2720 
2721   int MaskUnpackCost = 0;
2722   if (VariableMask) {
2723     VectorType *MaskTy =
2724       VectorType::get(Type::getInt1Ty(SrcVTy->getContext()), VF);
2725     MaskUnpackCost = getScalarizationOverhead(MaskTy, false, true);
2726     int ScalarCompareCost =
2727       getCmpSelInstrCost(Instruction::ICmp, Type::getInt1Ty(SrcVTy->getContext()),
2728                          nullptr);
2729     int BranchCost = getCFInstrCost(Instruction::Br);
2730     MaskUnpackCost += VF * (BranchCost + ScalarCompareCost);
2731   }
2732 
2733   // The cost of the scalar loads/stores.
2734   int MemoryOpCost = VF * getMemoryOpCost(Opcode, SrcVTy->getScalarType(),
2735                                           Alignment, AddressSpace);
2736 
2737   int InsertExtractCost = 0;
2738   if (Opcode == Instruction::Load)
2739     for (unsigned i = 0; i < VF; ++i)
2740       // Add the cost of inserting each scalar load into the vector
2741       InsertExtractCost +=
2742         getVectorInstrCost(Instruction::InsertElement, SrcVTy, i);
2743   else
2744     for (unsigned i = 0; i < VF; ++i)
2745       // Add the cost of extracting each element out of the data vector
2746       InsertExtractCost +=
2747         getVectorInstrCost(Instruction::ExtractElement, SrcVTy, i);
2748 
2749   return MemoryOpCost + MaskUnpackCost + InsertExtractCost;
2750 }
2751 
2752 /// Calculate the cost of Gather / Scatter operation
2753 int X86TTIImpl::getGatherScatterOpCost(unsigned Opcode, Type *SrcVTy,
2754                                        Value *Ptr, bool VariableMask,
2755                                        unsigned Alignment) {
2756   assert(SrcVTy->isVectorTy() && "Unexpected data type for Gather/Scatter");
2757   unsigned VF = SrcVTy->getVectorNumElements();
2758   PointerType *PtrTy = dyn_cast<PointerType>(Ptr->getType());
2759   if (!PtrTy && Ptr->getType()->isVectorTy())
2760     PtrTy = dyn_cast<PointerType>(Ptr->getType()->getVectorElementType());
2761   assert(PtrTy && "Unexpected type for Ptr argument");
2762   unsigned AddressSpace = PtrTy->getAddressSpace();
2763 
2764   bool Scalarize = false;
2765   if ((Opcode == Instruction::Load && !isLegalMaskedGather(SrcVTy)) ||
2766       (Opcode == Instruction::Store && !isLegalMaskedScatter(SrcVTy)))
2767     Scalarize = true;
2768   // Gather / Scatter for vector 2 is not profitable on KNL / SKX
2769   // Vector-4 of gather/scatter instruction does not exist on KNL.
2770   // We can extend it to 8 elements, but zeroing upper bits of
2771   // the mask vector will add more instructions. Right now we give the scalar
2772   // cost of vector-4 for KNL. TODO: Check, maybe the gather/scatter instruction
2773   // is better in the VariableMask case.
2774   if (ST->hasAVX512() && (VF == 2 || (VF == 4 && !ST->hasVLX())))
2775     Scalarize = true;
2776 
2777   if (Scalarize)
2778     return getGSScalarCost(Opcode, SrcVTy, VariableMask, Alignment,
2779                            AddressSpace);
2780 
2781   return getGSVectorCost(Opcode, SrcVTy, Ptr, Alignment, AddressSpace);
2782 }
2783 
2784 bool X86TTIImpl::isLSRCostLess(TargetTransformInfo::LSRCost &C1,
2785                                TargetTransformInfo::LSRCost &C2) {
2786     // X86 specific here are "instruction number 1st priority".
2787     return std::tie(C1.Insns, C1.NumRegs, C1.AddRecCost,
2788                     C1.NumIVMuls, C1.NumBaseAdds,
2789                     C1.ScaleCost, C1.ImmCost, C1.SetupCost) <
2790            std::tie(C2.Insns, C2.NumRegs, C2.AddRecCost,
2791                     C2.NumIVMuls, C2.NumBaseAdds,
2792                     C2.ScaleCost, C2.ImmCost, C2.SetupCost);
2793 }
2794 
2795 bool X86TTIImpl::canMacroFuseCmp() {
2796   return ST->hasMacroFusion();
2797 }
2798 
2799 bool X86TTIImpl::isLegalMaskedLoad(Type *DataTy) {
2800   // The backend can't handle a single element vector.
2801   if (isa<VectorType>(DataTy) && DataTy->getVectorNumElements() == 1)
2802     return false;
2803   Type *ScalarTy = DataTy->getScalarType();
2804   int DataWidth = isa<PointerType>(ScalarTy) ?
2805     DL.getPointerSizeInBits() : ScalarTy->getPrimitiveSizeInBits();
2806 
2807   return ((DataWidth == 32 || DataWidth == 64) && ST->hasAVX()) ||
2808          ((DataWidth == 8 || DataWidth == 16) && ST->hasBWI());
2809 }
2810 
2811 bool X86TTIImpl::isLegalMaskedStore(Type *DataType) {
2812   return isLegalMaskedLoad(DataType);
2813 }
2814 
2815 bool X86TTIImpl::isLegalMaskedGather(Type *DataTy) {
2816   // This function is called now in two cases: from the Loop Vectorizer
2817   // and from the Scalarizer.
2818   // When the Loop Vectorizer asks about legality of the feature,
2819   // the vectorization factor is not calculated yet. The Loop Vectorizer
2820   // sends a scalar type and the decision is based on the width of the
2821   // scalar element.
2822   // Later on, the cost model will estimate usage this intrinsic based on
2823   // the vector type.
2824   // The Scalarizer asks again about legality. It sends a vector type.
2825   // In this case we can reject non-power-of-2 vectors.
2826   // We also reject single element vectors as the type legalizer can't
2827   // scalarize it.
2828   if (isa<VectorType>(DataTy)) {
2829     unsigned NumElts = DataTy->getVectorNumElements();
2830     if (NumElts == 1 || !isPowerOf2_32(NumElts))
2831       return false;
2832   }
2833   Type *ScalarTy = DataTy->getScalarType();
2834   int DataWidth = isa<PointerType>(ScalarTy) ?
2835     DL.getPointerSizeInBits() : ScalarTy->getPrimitiveSizeInBits();
2836 
2837   // Some CPUs have better gather performance than others.
2838   // TODO: Remove the explicit ST->hasAVX512()?, That would mean we would only
2839   // enable gather with a -march.
2840   return (DataWidth == 32 || DataWidth == 64) &&
2841          (ST->hasAVX512() || (ST->hasFastGather() && ST->hasAVX2()));
2842 }
2843 
2844 bool X86TTIImpl::isLegalMaskedScatter(Type *DataType) {
2845   // AVX2 doesn't support scatter
2846   if (!ST->hasAVX512())
2847     return false;
2848   return isLegalMaskedGather(DataType);
2849 }
2850 
2851 bool X86TTIImpl::hasDivRemOp(Type *DataType, bool IsSigned) {
2852   EVT VT = TLI->getValueType(DL, DataType);
2853   return TLI->isOperationLegal(IsSigned ? ISD::SDIVREM : ISD::UDIVREM, VT);
2854 }
2855 
2856 bool X86TTIImpl::isFCmpOrdCheaperThanFCmpZero(Type *Ty) {
2857   return false;
2858 }
2859 
2860 bool X86TTIImpl::areInlineCompatible(const Function *Caller,
2861                                      const Function *Callee) const {
2862   const TargetMachine &TM = getTLI()->getTargetMachine();
2863 
2864   // Work this as a subsetting of subtarget features.
2865   const FeatureBitset &CallerBits =
2866       TM.getSubtargetImpl(*Caller)->getFeatureBits();
2867   const FeatureBitset &CalleeBits =
2868       TM.getSubtargetImpl(*Callee)->getFeatureBits();
2869 
2870   // FIXME: This is likely too limiting as it will include subtarget features
2871   // that we might not care about for inlining, but it is conservatively
2872   // correct.
2873   return (CallerBits & CalleeBits) == CalleeBits;
2874 }
2875 
2876 const X86TTIImpl::TTI::MemCmpExpansionOptions *
2877 X86TTIImpl::enableMemCmpExpansion(bool IsZeroCmp) const {
2878   // Only enable vector loads for equality comparison.
2879   // Right now the vector version is not as fast, see #33329.
2880   static const auto ThreeWayOptions = [this]() {
2881     TTI::MemCmpExpansionOptions Options;
2882     if (ST->is64Bit()) {
2883       Options.LoadSizes.push_back(8);
2884     }
2885     Options.LoadSizes.push_back(4);
2886     Options.LoadSizes.push_back(2);
2887     Options.LoadSizes.push_back(1);
2888     return Options;
2889   }();
2890   static const auto EqZeroOptions = [this]() {
2891     TTI::MemCmpExpansionOptions Options;
2892     // TODO: enable AVX512 when the DAG is ready.
2893     // if (ST->hasAVX512()) Options.LoadSizes.push_back(64);
2894     if (ST->hasAVX2()) Options.LoadSizes.push_back(32);
2895     if (ST->hasSSE2()) Options.LoadSizes.push_back(16);
2896     if (ST->is64Bit()) {
2897       Options.LoadSizes.push_back(8);
2898     }
2899     Options.LoadSizes.push_back(4);
2900     Options.LoadSizes.push_back(2);
2901     Options.LoadSizes.push_back(1);
2902     // All GPR and vector loads can be unaligned. SIMD compare requires integer
2903     // vectors (SSE2/AVX2).
2904     Options.AllowOverlappingLoads = true;
2905     return Options;
2906   }();
2907   return IsZeroCmp ? &EqZeroOptions : &ThreeWayOptions;
2908 }
2909 
2910 bool X86TTIImpl::enableInterleavedAccessVectorization() {
2911   // TODO: We expect this to be beneficial regardless of arch,
2912   // but there are currently some unexplained performance artifacts on Atom.
2913   // As a temporary solution, disable on Atom.
2914   return !(ST->isAtom());
2915 }
2916 
2917 // Get estimation for interleaved load/store operations for AVX2.
2918 // \p Factor is the interleaved-access factor (stride) - number of
2919 // (interleaved) elements in the group.
2920 // \p Indices contains the indices for a strided load: when the
2921 // interleaved load has gaps they indicate which elements are used.
2922 // If Indices is empty (or if the number of indices is equal to the size
2923 // of the interleaved-access as given in \p Factor) the access has no gaps.
2924 //
2925 // As opposed to AVX-512, AVX2 does not have generic shuffles that allow
2926 // computing the cost using a generic formula as a function of generic
2927 // shuffles. We therefore use a lookup table instead, filled according to
2928 // the instruction sequences that codegen currently generates.
2929 int X86TTIImpl::getInterleavedMemoryOpCostAVX2(unsigned Opcode, Type *VecTy,
2930                                                unsigned Factor,
2931                                                ArrayRef<unsigned> Indices,
2932                                                unsigned Alignment,
2933                                                unsigned AddressSpace,
2934                                                bool UseMaskForCond,
2935                                                bool UseMaskForGaps) {
2936 
2937   if (UseMaskForCond || UseMaskForGaps)
2938     return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices,
2939                                              Alignment, AddressSpace,
2940                                              UseMaskForCond, UseMaskForGaps);
2941 
2942   // We currently Support only fully-interleaved groups, with no gaps.
2943   // TODO: Support also strided loads (interleaved-groups with gaps).
2944   if (Indices.size() && Indices.size() != Factor)
2945     return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices,
2946                                              Alignment, AddressSpace);
2947 
2948   // VecTy for interleave memop is <VF*Factor x Elt>.
2949   // So, for VF=4, Interleave Factor = 3, Element type = i32 we have
2950   // VecTy = <12 x i32>.
2951   MVT LegalVT = getTLI()->getTypeLegalizationCost(DL, VecTy).second;
2952 
2953   // This function can be called with VecTy=<6xi128>, Factor=3, in which case
2954   // the VF=2, while v2i128 is an unsupported MVT vector type
2955   // (see MachineValueType.h::getVectorVT()).
2956   if (!LegalVT.isVector())
2957     return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices,
2958                                              Alignment, AddressSpace);
2959 
2960   unsigned VF = VecTy->getVectorNumElements() / Factor;
2961   Type *ScalarTy = VecTy->getVectorElementType();
2962 
2963   // Calculate the number of memory operations (NumOfMemOps), required
2964   // for load/store the VecTy.
2965   unsigned VecTySize = DL.getTypeStoreSize(VecTy);
2966   unsigned LegalVTSize = LegalVT.getStoreSize();
2967   unsigned NumOfMemOps = (VecTySize + LegalVTSize - 1) / LegalVTSize;
2968 
2969   // Get the cost of one memory operation.
2970   Type *SingleMemOpTy = VectorType::get(VecTy->getVectorElementType(),
2971                                         LegalVT.getVectorNumElements());
2972   unsigned MemOpCost =
2973       getMemoryOpCost(Opcode, SingleMemOpTy, Alignment, AddressSpace);
2974 
2975   VectorType *VT = VectorType::get(ScalarTy, VF);
2976   EVT ETy = TLI->getValueType(DL, VT);
2977   if (!ETy.isSimple())
2978     return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices,
2979                                              Alignment, AddressSpace);
2980 
2981   // TODO: Complete for other data-types and strides.
2982   // Each combination of Stride, ElementTy and VF results in a different
2983   // sequence; The cost tables are therefore accessed with:
2984   // Factor (stride) and VectorType=VFxElemType.
2985   // The Cost accounts only for the shuffle sequence;
2986   // The cost of the loads/stores is accounted for separately.
2987   //
2988   static const CostTblEntry AVX2InterleavedLoadTbl[] = {
2989     { 2, MVT::v4i64, 6 }, //(load 8i64 and) deinterleave into 2 x 4i64
2990     { 2, MVT::v4f64, 6 }, //(load 8f64 and) deinterleave into 2 x 4f64
2991 
2992     { 3, MVT::v2i8,  10 }, //(load 6i8 and)  deinterleave into 3 x 2i8
2993     { 3, MVT::v4i8,  4 },  //(load 12i8 and) deinterleave into 3 x 4i8
2994     { 3, MVT::v8i8,  9 },  //(load 24i8 and) deinterleave into 3 x 8i8
2995     { 3, MVT::v16i8, 11},  //(load 48i8 and) deinterleave into 3 x 16i8
2996     { 3, MVT::v32i8, 13},  //(load 96i8 and) deinterleave into 3 x 32i8
2997     { 3, MVT::v8f32, 17 }, //(load 24f32 and)deinterleave into 3 x 8f32
2998 
2999     { 4, MVT::v2i8,  12 }, //(load 8i8 and)   deinterleave into 4 x 2i8
3000     { 4, MVT::v4i8,  4 },  //(load 16i8 and)  deinterleave into 4 x 4i8
3001     { 4, MVT::v8i8,  20 }, //(load 32i8 and)  deinterleave into 4 x 8i8
3002     { 4, MVT::v16i8, 39 }, //(load 64i8 and)  deinterleave into 4 x 16i8
3003     { 4, MVT::v32i8, 80 }, //(load 128i8 and) deinterleave into 4 x 32i8
3004 
3005     { 8, MVT::v8f32, 40 }  //(load 64f32 and)deinterleave into 8 x 8f32
3006   };
3007 
3008   static const CostTblEntry AVX2InterleavedStoreTbl[] = {
3009     { 2, MVT::v4i64, 6 }, //interleave into 2 x 4i64 into 8i64 (and store)
3010     { 2, MVT::v4f64, 6 }, //interleave into 2 x 4f64 into 8f64 (and store)
3011 
3012     { 3, MVT::v2i8,  7 },  //interleave 3 x 2i8  into 6i8 (and store)
3013     { 3, MVT::v4i8,  8 },  //interleave 3 x 4i8  into 12i8 (and store)
3014     { 3, MVT::v8i8,  11 }, //interleave 3 x 8i8  into 24i8 (and store)
3015     { 3, MVT::v16i8, 11 }, //interleave 3 x 16i8 into 48i8 (and store)
3016     { 3, MVT::v32i8, 13 }, //interleave 3 x 32i8 into 96i8 (and store)
3017 
3018     { 4, MVT::v2i8,  12 }, //interleave 4 x 2i8  into 8i8 (and store)
3019     { 4, MVT::v4i8,  9 },  //interleave 4 x 4i8  into 16i8 (and store)
3020     { 4, MVT::v8i8,  10 }, //interleave 4 x 8i8  into 32i8 (and store)
3021     { 4, MVT::v16i8, 10 }, //interleave 4 x 16i8 into 64i8 (and store)
3022     { 4, MVT::v32i8, 12 }  //interleave 4 x 32i8 into 128i8 (and store)
3023   };
3024 
3025   if (Opcode == Instruction::Load) {
3026     if (const auto *Entry =
3027             CostTableLookup(AVX2InterleavedLoadTbl, Factor, ETy.getSimpleVT()))
3028       return NumOfMemOps * MemOpCost + Entry->Cost;
3029   } else {
3030     assert(Opcode == Instruction::Store &&
3031            "Expected Store Instruction at this  point");
3032     if (const auto *Entry =
3033             CostTableLookup(AVX2InterleavedStoreTbl, Factor, ETy.getSimpleVT()))
3034       return NumOfMemOps * MemOpCost + Entry->Cost;
3035   }
3036 
3037   return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices,
3038                                            Alignment, AddressSpace);
3039 }
3040 
3041 // Get estimation for interleaved load/store operations and strided load.
3042 // \p Indices contains indices for strided load.
3043 // \p Factor - the factor of interleaving.
3044 // AVX-512 provides 3-src shuffles that significantly reduces the cost.
3045 int X86TTIImpl::getInterleavedMemoryOpCostAVX512(unsigned Opcode, Type *VecTy,
3046                                                  unsigned Factor,
3047                                                  ArrayRef<unsigned> Indices,
3048                                                  unsigned Alignment,
3049                                                  unsigned AddressSpace,
3050                                                  bool UseMaskForCond,
3051                                                  bool UseMaskForGaps) {
3052 
3053   if (UseMaskForCond || UseMaskForGaps)
3054     return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices,
3055                                              Alignment, AddressSpace,
3056                                              UseMaskForCond, UseMaskForGaps);
3057 
3058   // VecTy for interleave memop is <VF*Factor x Elt>.
3059   // So, for VF=4, Interleave Factor = 3, Element type = i32 we have
3060   // VecTy = <12 x i32>.
3061 
3062   // Calculate the number of memory operations (NumOfMemOps), required
3063   // for load/store the VecTy.
3064   MVT LegalVT = getTLI()->getTypeLegalizationCost(DL, VecTy).second;
3065   unsigned VecTySize = DL.getTypeStoreSize(VecTy);
3066   unsigned LegalVTSize = LegalVT.getStoreSize();
3067   unsigned NumOfMemOps = (VecTySize + LegalVTSize - 1) / LegalVTSize;
3068 
3069   // Get the cost of one memory operation.
3070   Type *SingleMemOpTy = VectorType::get(VecTy->getVectorElementType(),
3071                                         LegalVT.getVectorNumElements());
3072   unsigned MemOpCost =
3073       getMemoryOpCost(Opcode, SingleMemOpTy, Alignment, AddressSpace);
3074 
3075   unsigned VF = VecTy->getVectorNumElements() / Factor;
3076   MVT VT = MVT::getVectorVT(MVT::getVT(VecTy->getScalarType()), VF);
3077 
3078   if (Opcode == Instruction::Load) {
3079     // The tables (AVX512InterleavedLoadTbl and AVX512InterleavedStoreTbl)
3080     // contain the cost of the optimized shuffle sequence that the
3081     // X86InterleavedAccess pass will generate.
3082     // The cost of loads and stores are computed separately from the table.
3083 
3084     // X86InterleavedAccess support only the following interleaved-access group.
3085     static const CostTblEntry AVX512InterleavedLoadTbl[] = {
3086         {3, MVT::v16i8, 12}, //(load 48i8 and) deinterleave into 3 x 16i8
3087         {3, MVT::v32i8, 14}, //(load 96i8 and) deinterleave into 3 x 32i8
3088         {3, MVT::v64i8, 22}, //(load 96i8 and) deinterleave into 3 x 32i8
3089     };
3090 
3091     if (const auto *Entry =
3092             CostTableLookup(AVX512InterleavedLoadTbl, Factor, VT))
3093       return NumOfMemOps * MemOpCost + Entry->Cost;
3094     //If an entry does not exist, fallback to the default implementation.
3095 
3096     // Kind of shuffle depends on number of loaded values.
3097     // If we load the entire data in one register, we can use a 1-src shuffle.
3098     // Otherwise, we'll merge 2 sources in each operation.
3099     TTI::ShuffleKind ShuffleKind =
3100         (NumOfMemOps > 1) ? TTI::SK_PermuteTwoSrc : TTI::SK_PermuteSingleSrc;
3101 
3102     unsigned ShuffleCost =
3103         getShuffleCost(ShuffleKind, SingleMemOpTy, 0, nullptr);
3104 
3105     unsigned NumOfLoadsInInterleaveGrp =
3106         Indices.size() ? Indices.size() : Factor;
3107     Type *ResultTy = VectorType::get(VecTy->getVectorElementType(),
3108                                      VecTy->getVectorNumElements() / Factor);
3109     unsigned NumOfResults =
3110         getTLI()->getTypeLegalizationCost(DL, ResultTy).first *
3111         NumOfLoadsInInterleaveGrp;
3112 
3113     // About a half of the loads may be folded in shuffles when we have only
3114     // one result. If we have more than one result, we do not fold loads at all.
3115     unsigned NumOfUnfoldedLoads =
3116         NumOfResults > 1 ? NumOfMemOps : NumOfMemOps / 2;
3117 
3118     // Get a number of shuffle operations per result.
3119     unsigned NumOfShufflesPerResult =
3120         std::max((unsigned)1, (unsigned)(NumOfMemOps - 1));
3121 
3122     // The SK_MergeTwoSrc shuffle clobbers one of src operands.
3123     // When we have more than one destination, we need additional instructions
3124     // to keep sources.
3125     unsigned NumOfMoves = 0;
3126     if (NumOfResults > 1 && ShuffleKind == TTI::SK_PermuteTwoSrc)
3127       NumOfMoves = NumOfResults * NumOfShufflesPerResult / 2;
3128 
3129     int Cost = NumOfResults * NumOfShufflesPerResult * ShuffleCost +
3130                NumOfUnfoldedLoads * MemOpCost + NumOfMoves;
3131 
3132     return Cost;
3133   }
3134 
3135   // Store.
3136   assert(Opcode == Instruction::Store &&
3137          "Expected Store Instruction at this  point");
3138   // X86InterleavedAccess support only the following interleaved-access group.
3139   static const CostTblEntry AVX512InterleavedStoreTbl[] = {
3140       {3, MVT::v16i8, 12}, // interleave 3 x 16i8 into 48i8 (and store)
3141       {3, MVT::v32i8, 14}, // interleave 3 x 32i8 into 96i8 (and store)
3142       {3, MVT::v64i8, 26}, // interleave 3 x 64i8 into 96i8 (and store)
3143 
3144       {4, MVT::v8i8, 10},  // interleave 4 x 8i8  into 32i8  (and store)
3145       {4, MVT::v16i8, 11}, // interleave 4 x 16i8 into 64i8  (and store)
3146       {4, MVT::v32i8, 14}, // interleave 4 x 32i8 into 128i8 (and store)
3147       {4, MVT::v64i8, 24}  // interleave 4 x 32i8 into 256i8 (and store)
3148   };
3149 
3150   if (const auto *Entry =
3151           CostTableLookup(AVX512InterleavedStoreTbl, Factor, VT))
3152     return NumOfMemOps * MemOpCost + Entry->Cost;
3153   //If an entry does not exist, fallback to the default implementation.
3154 
3155   // There is no strided stores meanwhile. And store can't be folded in
3156   // shuffle.
3157   unsigned NumOfSources = Factor; // The number of values to be merged.
3158   unsigned ShuffleCost =
3159       getShuffleCost(TTI::SK_PermuteTwoSrc, SingleMemOpTy, 0, nullptr);
3160   unsigned NumOfShufflesPerStore = NumOfSources - 1;
3161 
3162   // The SK_MergeTwoSrc shuffle clobbers one of src operands.
3163   // We need additional instructions to keep sources.
3164   unsigned NumOfMoves = NumOfMemOps * NumOfShufflesPerStore / 2;
3165   int Cost = NumOfMemOps * (MemOpCost + NumOfShufflesPerStore * ShuffleCost) +
3166              NumOfMoves;
3167   return Cost;
3168 }
3169 
3170 int X86TTIImpl::getInterleavedMemoryOpCost(unsigned Opcode, Type *VecTy,
3171                                            unsigned Factor,
3172                                            ArrayRef<unsigned> Indices,
3173                                            unsigned Alignment,
3174                                            unsigned AddressSpace,
3175                                            bool UseMaskForCond,
3176                                            bool UseMaskForGaps) {
3177   auto isSupportedOnAVX512 = [](Type *VecTy, bool HasBW) {
3178     Type *EltTy = VecTy->getVectorElementType();
3179     if (EltTy->isFloatTy() || EltTy->isDoubleTy() || EltTy->isIntegerTy(64) ||
3180         EltTy->isIntegerTy(32) || EltTy->isPointerTy())
3181       return true;
3182     if (EltTy->isIntegerTy(16) || EltTy->isIntegerTy(8))
3183       return HasBW;
3184     return false;
3185   };
3186   if (ST->hasAVX512() && isSupportedOnAVX512(VecTy, ST->hasBWI()))
3187     return getInterleavedMemoryOpCostAVX512(Opcode, VecTy, Factor, Indices,
3188                                             Alignment, AddressSpace,
3189                                             UseMaskForCond, UseMaskForGaps);
3190   if (ST->hasAVX2())
3191     return getInterleavedMemoryOpCostAVX2(Opcode, VecTy, Factor, Indices,
3192                                           Alignment, AddressSpace,
3193                                           UseMaskForCond, UseMaskForGaps);
3194 
3195   return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices,
3196                                            Alignment, AddressSpace,
3197                                            UseMaskForCond, UseMaskForGaps);
3198 }
3199