1 //===-- X86TargetTransformInfo.cpp - X86 specific TTI pass ----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 /// \file
9 /// This file implements a TargetTransformInfo analysis pass specific to the
10 /// X86 target machine. It uses the target's detailed information to provide
11 /// more precise answers to certain TTI queries, while letting the target
12 /// independent and default TTI implementations handle the rest.
13 ///
14 //===----------------------------------------------------------------------===//
15 /// About Cost Model numbers used below it's necessary to say the following:
16 /// the numbers correspond to some "generic" X86 CPU instead of usage of
17 /// concrete CPU model. Usually the numbers correspond to CPU where the feature
18 /// apeared at the first time. For example, if we do Subtarget.hasSSE42() in
19 /// the lookups below the cost is based on Nehalem as that was the first CPU
20 /// to support that feature level and thus has most likely the worst case cost.
21 /// Some examples of other technologies/CPUs:
22 ///   SSE 3   - Pentium4 / Athlon64
23 ///   SSE 4.1 - Penryn
24 ///   SSE 4.2 - Nehalem
25 ///   AVX     - Sandy Bridge
26 ///   AVX2    - Haswell
27 ///   AVX-512 - Xeon Phi / Skylake
28 /// And some examples of instruction target dependent costs (latency)
29 ///                   divss     sqrtss          rsqrtss
30 ///   AMD K7            11-16     19              3
31 ///   Piledriver        9-24      13-15           5
32 ///   Jaguar            14        16              2
33 ///   Pentium II,III    18        30              2
34 ///   Nehalem           7-14      7-18            3
35 ///   Haswell           10-13     11              5
36 /// TODO: Develop and implement  the target dependent cost model and
37 /// specialize cost numbers for different Cost Model Targets such as throughput,
38 /// code size, latency and uop count.
39 //===----------------------------------------------------------------------===//
40 
41 #include "X86TargetTransformInfo.h"
42 #include "llvm/Analysis/TargetTransformInfo.h"
43 #include "llvm/CodeGen/BasicTTIImpl.h"
44 #include "llvm/CodeGen/CostTable.h"
45 #include "llvm/CodeGen/TargetLowering.h"
46 #include "llvm/IR/IntrinsicInst.h"
47 #include "llvm/Support/Debug.h"
48 
49 using namespace llvm;
50 
51 #define DEBUG_TYPE "x86tti"
52 
53 //===----------------------------------------------------------------------===//
54 //
55 // X86 cost model.
56 //
57 //===----------------------------------------------------------------------===//
58 
59 TargetTransformInfo::PopcntSupportKind
60 X86TTIImpl::getPopcntSupport(unsigned TyWidth) {
61   assert(isPowerOf2_32(TyWidth) && "Ty width must be power of 2");
62   // TODO: Currently the __builtin_popcount() implementation using SSE3
63   //   instructions is inefficient. Once the problem is fixed, we should
64   //   call ST->hasSSE3() instead of ST->hasPOPCNT().
65   return ST->hasPOPCNT() ? TTI::PSK_FastHardware : TTI::PSK_Software;
66 }
67 
68 llvm::Optional<unsigned> X86TTIImpl::getCacheSize(
69   TargetTransformInfo::CacheLevel Level) const {
70   switch (Level) {
71   case TargetTransformInfo::CacheLevel::L1D:
72     //   - Penryn
73     //   - Nehalem
74     //   - Westmere
75     //   - Sandy Bridge
76     //   - Ivy Bridge
77     //   - Haswell
78     //   - Broadwell
79     //   - Skylake
80     //   - Kabylake
81     return 32 * 1024;  //  32 KByte
82   case TargetTransformInfo::CacheLevel::L2D:
83     //   - Penryn
84     //   - Nehalem
85     //   - Westmere
86     //   - Sandy Bridge
87     //   - Ivy Bridge
88     //   - Haswell
89     //   - Broadwell
90     //   - Skylake
91     //   - Kabylake
92     return 256 * 1024; // 256 KByte
93   }
94 
95   llvm_unreachable("Unknown TargetTransformInfo::CacheLevel");
96 }
97 
98 llvm::Optional<unsigned> X86TTIImpl::getCacheAssociativity(
99   TargetTransformInfo::CacheLevel Level) const {
100   //   - Penryn
101   //   - Nehalem
102   //   - Westmere
103   //   - Sandy Bridge
104   //   - Ivy Bridge
105   //   - Haswell
106   //   - Broadwell
107   //   - Skylake
108   //   - Kabylake
109   switch (Level) {
110   case TargetTransformInfo::CacheLevel::L1D:
111     LLVM_FALLTHROUGH;
112   case TargetTransformInfo::CacheLevel::L2D:
113     return 8;
114   }
115 
116   llvm_unreachable("Unknown TargetTransformInfo::CacheLevel");
117 }
118 
119 unsigned X86TTIImpl::getNumberOfRegisters(unsigned ClassID) const {
120   bool Vector = (ClassID == 1);
121   if (Vector && !ST->hasSSE1())
122     return 0;
123 
124   if (ST->is64Bit()) {
125     if (Vector && ST->hasAVX512())
126       return 32;
127     return 16;
128   }
129   return 8;
130 }
131 
132 TypeSize
133 X86TTIImpl::getRegisterBitWidth(TargetTransformInfo::RegisterKind K) const {
134   unsigned PreferVectorWidth = ST->getPreferVectorWidth();
135   switch (K) {
136   case TargetTransformInfo::RGK_Scalar:
137     return TypeSize::getFixed(ST->is64Bit() ? 64 : 32);
138   case TargetTransformInfo::RGK_FixedWidthVector:
139     if (ST->hasAVX512() && PreferVectorWidth >= 512)
140       return TypeSize::getFixed(512);
141     if (ST->hasAVX() && PreferVectorWidth >= 256)
142       return TypeSize::getFixed(256);
143     if (ST->hasSSE1() && PreferVectorWidth >= 128)
144       return TypeSize::getFixed(128);
145     return TypeSize::getFixed(0);
146   case TargetTransformInfo::RGK_ScalableVector:
147     return TypeSize::getScalable(0);
148   }
149 
150   llvm_unreachable("Unsupported register kind");
151 }
152 
153 unsigned X86TTIImpl::getLoadStoreVecRegBitWidth(unsigned) const {
154   return getRegisterBitWidth(TargetTransformInfo::RGK_FixedWidthVector)
155       .getFixedSize();
156 }
157 
158 unsigned X86TTIImpl::getMaxInterleaveFactor(unsigned VF) {
159   // If the loop will not be vectorized, don't interleave the loop.
160   // Let regular unroll to unroll the loop, which saves the overflow
161   // check and memory check cost.
162   if (VF == 1)
163     return 1;
164 
165   if (ST->isAtom())
166     return 1;
167 
168   // Sandybridge and Haswell have multiple execution ports and pipelined
169   // vector units.
170   if (ST->hasAVX())
171     return 4;
172 
173   return 2;
174 }
175 
176 InstructionCost X86TTIImpl::getArithmeticInstrCost(
177     unsigned Opcode, Type *Ty, TTI::TargetCostKind CostKind,
178     TTI::OperandValueKind Op1Info, TTI::OperandValueKind Op2Info,
179     TTI::OperandValueProperties Opd1PropInfo,
180     TTI::OperandValueProperties Opd2PropInfo, ArrayRef<const Value *> Args,
181     const Instruction *CxtI) {
182   // TODO: Handle more cost kinds.
183   if (CostKind != TTI::TCK_RecipThroughput)
184     return BaseT::getArithmeticInstrCost(Opcode, Ty, CostKind, Op1Info,
185                                          Op2Info, Opd1PropInfo,
186                                          Opd2PropInfo, Args, CxtI);
187   // Legalize the type.
188   std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Ty);
189 
190   int ISD = TLI->InstructionOpcodeToISD(Opcode);
191   assert(ISD && "Invalid opcode");
192 
193   static const CostTblEntry GLMCostTable[] = {
194     { ISD::FDIV,  MVT::f32,   18 }, // divss
195     { ISD::FDIV,  MVT::v4f32, 35 }, // divps
196     { ISD::FDIV,  MVT::f64,   33 }, // divsd
197     { ISD::FDIV,  MVT::v2f64, 65 }, // divpd
198   };
199 
200   if (ST->useGLMDivSqrtCosts())
201     if (const auto *Entry = CostTableLookup(GLMCostTable, ISD,
202                                             LT.second))
203       return LT.first * Entry->Cost;
204 
205   static const CostTblEntry SLMCostTable[] = {
206     { ISD::MUL,   MVT::v4i32, 11 }, // pmulld
207     { ISD::MUL,   MVT::v8i16, 2  }, // pmullw
208     { ISD::MUL,   MVT::v16i8, 14 }, // extend/pmullw/trunc sequence.
209     { ISD::FMUL,  MVT::f64,   2  }, // mulsd
210     { ISD::FMUL,  MVT::v2f64, 4  }, // mulpd
211     { ISD::FMUL,  MVT::v4f32, 2  }, // mulps
212     { ISD::FDIV,  MVT::f32,   17 }, // divss
213     { ISD::FDIV,  MVT::v4f32, 39 }, // divps
214     { ISD::FDIV,  MVT::f64,   32 }, // divsd
215     { ISD::FDIV,  MVT::v2f64, 69 }, // divpd
216     { ISD::FADD,  MVT::v2f64, 2  }, // addpd
217     { ISD::FSUB,  MVT::v2f64, 2  }, // subpd
218     // v2i64/v4i64 mul is custom lowered as a series of long:
219     // multiplies(3), shifts(3) and adds(2)
220     // slm muldq version throughput is 2 and addq throughput 4
221     // thus: 3X2 (muldq throughput) + 3X1 (shift throughput) +
222     //       3X4 (addq throughput) = 17
223     { ISD::MUL,   MVT::v2i64, 17 },
224     // slm addq\subq throughput is 4
225     { ISD::ADD,   MVT::v2i64, 4  },
226     { ISD::SUB,   MVT::v2i64, 4  },
227   };
228 
229   if (ST->isSLM()) {
230     if (Args.size() == 2 && ISD == ISD::MUL && LT.second == MVT::v4i32) {
231       // Check if the operands can be shrinked into a smaller datatype.
232       bool Op1Signed = false;
233       unsigned Op1MinSize = BaseT::minRequiredElementSize(Args[0], Op1Signed);
234       bool Op2Signed = false;
235       unsigned Op2MinSize = BaseT::minRequiredElementSize(Args[1], Op2Signed);
236 
237       bool SignedMode = Op1Signed || Op2Signed;
238       unsigned OpMinSize = std::max(Op1MinSize, Op2MinSize);
239 
240       if (OpMinSize <= 7)
241         return LT.first * 3; // pmullw/sext
242       if (!SignedMode && OpMinSize <= 8)
243         return LT.first * 3; // pmullw/zext
244       if (OpMinSize <= 15)
245         return LT.first * 5; // pmullw/pmulhw/pshuf
246       if (!SignedMode && OpMinSize <= 16)
247         return LT.first * 5; // pmullw/pmulhw/pshuf
248     }
249 
250     if (const auto *Entry = CostTableLookup(SLMCostTable, ISD,
251                                             LT.second)) {
252       return LT.first * Entry->Cost;
253     }
254   }
255 
256   if ((ISD == ISD::SDIV || ISD == ISD::SREM || ISD == ISD::UDIV ||
257        ISD == ISD::UREM) &&
258       (Op2Info == TargetTransformInfo::OK_UniformConstantValue ||
259        Op2Info == TargetTransformInfo::OK_NonUniformConstantValue) &&
260       Opd2PropInfo == TargetTransformInfo::OP_PowerOf2) {
261     if (ISD == ISD::SDIV || ISD == ISD::SREM) {
262       // On X86, vector signed division by constants power-of-two are
263       // normally expanded to the sequence SRA + SRL + ADD + SRA.
264       // The OperandValue properties may not be the same as that of the previous
265       // operation; conservatively assume OP_None.
266       InstructionCost Cost =
267           2 * getArithmeticInstrCost(Instruction::AShr, Ty, CostKind, Op1Info,
268                                      Op2Info, TargetTransformInfo::OP_None,
269                                      TargetTransformInfo::OP_None);
270       Cost += getArithmeticInstrCost(Instruction::LShr, Ty, CostKind, Op1Info,
271                                      Op2Info,
272                                      TargetTransformInfo::OP_None,
273                                      TargetTransformInfo::OP_None);
274       Cost += getArithmeticInstrCost(Instruction::Add, Ty, CostKind, Op1Info,
275                                      Op2Info,
276                                      TargetTransformInfo::OP_None,
277                                      TargetTransformInfo::OP_None);
278 
279       if (ISD == ISD::SREM) {
280         // For SREM: (X % C) is the equivalent of (X - (X/C)*C)
281         Cost += getArithmeticInstrCost(Instruction::Mul, Ty, CostKind, Op1Info,
282                                        Op2Info);
283         Cost += getArithmeticInstrCost(Instruction::Sub, Ty, CostKind, Op1Info,
284                                        Op2Info);
285       }
286 
287       return Cost;
288     }
289 
290     // Vector unsigned division/remainder will be simplified to shifts/masks.
291     if (ISD == ISD::UDIV)
292       return getArithmeticInstrCost(Instruction::LShr, Ty, CostKind,
293                                     Op1Info, Op2Info,
294                                     TargetTransformInfo::OP_None,
295                                     TargetTransformInfo::OP_None);
296 
297     else // UREM
298       return getArithmeticInstrCost(Instruction::And, Ty, CostKind,
299                                     Op1Info, Op2Info,
300                                     TargetTransformInfo::OP_None,
301                                     TargetTransformInfo::OP_None);
302   }
303 
304   static const CostTblEntry AVX512BWUniformConstCostTable[] = {
305     { ISD::SHL,  MVT::v64i8,   2 }, // psllw + pand.
306     { ISD::SRL,  MVT::v64i8,   2 }, // psrlw + pand.
307     { ISD::SRA,  MVT::v64i8,   4 }, // psrlw, pand, pxor, psubb.
308   };
309 
310   if (Op2Info == TargetTransformInfo::OK_UniformConstantValue &&
311       ST->hasBWI()) {
312     if (const auto *Entry = CostTableLookup(AVX512BWUniformConstCostTable, ISD,
313                                             LT.second))
314       return LT.first * Entry->Cost;
315   }
316 
317   static const CostTblEntry AVX512UniformConstCostTable[] = {
318     { ISD::SRA,  MVT::v2i64,   1 },
319     { ISD::SRA,  MVT::v4i64,   1 },
320     { ISD::SRA,  MVT::v8i64,   1 },
321 
322     { ISD::SHL,  MVT::v64i8,   4 }, // psllw + pand.
323     { ISD::SRL,  MVT::v64i8,   4 }, // psrlw + pand.
324     { ISD::SRA,  MVT::v64i8,   8 }, // psrlw, pand, pxor, psubb.
325 
326     { ISD::SDIV, MVT::v16i32,  6 }, // pmuludq sequence
327     { ISD::SREM, MVT::v16i32,  8 }, // pmuludq+mul+sub sequence
328     { ISD::UDIV, MVT::v16i32,  5 }, // pmuludq sequence
329     { ISD::UREM, MVT::v16i32,  7 }, // pmuludq+mul+sub sequence
330   };
331 
332   if (Op2Info == TargetTransformInfo::OK_UniformConstantValue &&
333       ST->hasAVX512()) {
334     if (const auto *Entry = CostTableLookup(AVX512UniformConstCostTable, ISD,
335                                             LT.second))
336       return LT.first * Entry->Cost;
337   }
338 
339   static const CostTblEntry AVX2UniformConstCostTable[] = {
340     { ISD::SHL,  MVT::v32i8,   2 }, // psllw + pand.
341     { ISD::SRL,  MVT::v32i8,   2 }, // psrlw + pand.
342     { ISD::SRA,  MVT::v32i8,   4 }, // psrlw, pand, pxor, psubb.
343 
344     { ISD::SRA,  MVT::v4i64,   4 }, // 2 x psrad + shuffle.
345 
346     { ISD::SDIV, MVT::v8i32,   6 }, // pmuludq sequence
347     { ISD::SREM, MVT::v8i32,   8 }, // pmuludq+mul+sub sequence
348     { ISD::UDIV, MVT::v8i32,   5 }, // pmuludq sequence
349     { ISD::UREM, MVT::v8i32,   7 }, // pmuludq+mul+sub sequence
350   };
351 
352   if (Op2Info == TargetTransformInfo::OK_UniformConstantValue &&
353       ST->hasAVX2()) {
354     if (const auto *Entry = CostTableLookup(AVX2UniformConstCostTable, ISD,
355                                             LT.second))
356       return LT.first * Entry->Cost;
357   }
358 
359   static const CostTblEntry SSE2UniformConstCostTable[] = {
360     { ISD::SHL,  MVT::v16i8,     2 }, // psllw + pand.
361     { ISD::SRL,  MVT::v16i8,     2 }, // psrlw + pand.
362     { ISD::SRA,  MVT::v16i8,     4 }, // psrlw, pand, pxor, psubb.
363 
364     { ISD::SHL,  MVT::v32i8,   4+2 }, // 2*(psllw + pand) + split.
365     { ISD::SRL,  MVT::v32i8,   4+2 }, // 2*(psrlw + pand) + split.
366     { ISD::SRA,  MVT::v32i8,   8+2 }, // 2*(psrlw, pand, pxor, psubb) + split.
367 
368     { ISD::SDIV, MVT::v8i32,  12+2 }, // 2*pmuludq sequence + split.
369     { ISD::SREM, MVT::v8i32,  16+2 }, // 2*pmuludq+mul+sub sequence + split.
370     { ISD::SDIV, MVT::v4i32,     6 }, // pmuludq sequence
371     { ISD::SREM, MVT::v4i32,     8 }, // pmuludq+mul+sub sequence
372     { ISD::UDIV, MVT::v8i32,  10+2 }, // 2*pmuludq sequence + split.
373     { ISD::UREM, MVT::v8i32,  14+2 }, // 2*pmuludq+mul+sub sequence + split.
374     { ISD::UDIV, MVT::v4i32,     5 }, // pmuludq sequence
375     { ISD::UREM, MVT::v4i32,     7 }, // pmuludq+mul+sub sequence
376   };
377 
378   // XOP has faster vXi8 shifts.
379   if (Op2Info == TargetTransformInfo::OK_UniformConstantValue &&
380       ST->hasSSE2() && !ST->hasXOP()) {
381     if (const auto *Entry =
382             CostTableLookup(SSE2UniformConstCostTable, ISD, LT.second))
383       return LT.first * Entry->Cost;
384   }
385 
386   static const CostTblEntry AVX512BWConstCostTable[] = {
387     { ISD::SDIV, MVT::v64i8,  14 }, // 2*ext+2*pmulhw sequence
388     { ISD::SREM, MVT::v64i8,  16 }, // 2*ext+2*pmulhw+mul+sub sequence
389     { ISD::UDIV, MVT::v64i8,  14 }, // 2*ext+2*pmulhw sequence
390     { ISD::UREM, MVT::v64i8,  16 }, // 2*ext+2*pmulhw+mul+sub sequence
391     { ISD::SDIV, MVT::v32i16,  6 }, // vpmulhw sequence
392     { ISD::SREM, MVT::v32i16,  8 }, // vpmulhw+mul+sub sequence
393     { ISD::UDIV, MVT::v32i16,  6 }, // vpmulhuw sequence
394     { ISD::UREM, MVT::v32i16,  8 }, // vpmulhuw+mul+sub sequence
395   };
396 
397   if ((Op2Info == TargetTransformInfo::OK_UniformConstantValue ||
398        Op2Info == TargetTransformInfo::OK_NonUniformConstantValue) &&
399       ST->hasBWI()) {
400     if (const auto *Entry =
401             CostTableLookup(AVX512BWConstCostTable, ISD, LT.second))
402       return LT.first * Entry->Cost;
403   }
404 
405   static const CostTblEntry AVX512ConstCostTable[] = {
406     { ISD::SDIV, MVT::v16i32, 15 }, // vpmuldq sequence
407     { ISD::SREM, MVT::v16i32, 17 }, // vpmuldq+mul+sub sequence
408     { ISD::UDIV, MVT::v16i32, 15 }, // vpmuludq sequence
409     { ISD::UREM, MVT::v16i32, 17 }, // vpmuludq+mul+sub sequence
410     { ISD::SDIV, MVT::v64i8,  28 }, // 4*ext+4*pmulhw sequence
411     { ISD::SREM, MVT::v64i8,  32 }, // 4*ext+4*pmulhw+mul+sub sequence
412     { ISD::UDIV, MVT::v64i8,  28 }, // 4*ext+4*pmulhw sequence
413     { ISD::UREM, MVT::v64i8,  32 }, // 4*ext+4*pmulhw+mul+sub sequence
414     { ISD::SDIV, MVT::v32i16, 12 }, // 2*vpmulhw sequence
415     { ISD::SREM, MVT::v32i16, 16 }, // 2*vpmulhw+mul+sub sequence
416     { ISD::UDIV, MVT::v32i16, 12 }, // 2*vpmulhuw sequence
417     { ISD::UREM, MVT::v32i16, 16 }, // 2*vpmulhuw+mul+sub sequence
418   };
419 
420   if ((Op2Info == TargetTransformInfo::OK_UniformConstantValue ||
421        Op2Info == TargetTransformInfo::OK_NonUniformConstantValue) &&
422       ST->hasAVX512()) {
423     if (const auto *Entry =
424             CostTableLookup(AVX512ConstCostTable, ISD, LT.second))
425       return LT.first * Entry->Cost;
426   }
427 
428   static const CostTblEntry AVX2ConstCostTable[] = {
429     { ISD::SDIV, MVT::v32i8,  14 }, // 2*ext+2*pmulhw sequence
430     { ISD::SREM, MVT::v32i8,  16 }, // 2*ext+2*pmulhw+mul+sub sequence
431     { ISD::UDIV, MVT::v32i8,  14 }, // 2*ext+2*pmulhw sequence
432     { ISD::UREM, MVT::v32i8,  16 }, // 2*ext+2*pmulhw+mul+sub sequence
433     { ISD::SDIV, MVT::v16i16,  6 }, // vpmulhw sequence
434     { ISD::SREM, MVT::v16i16,  8 }, // vpmulhw+mul+sub sequence
435     { ISD::UDIV, MVT::v16i16,  6 }, // vpmulhuw sequence
436     { ISD::UREM, MVT::v16i16,  8 }, // vpmulhuw+mul+sub sequence
437     { ISD::SDIV, MVT::v8i32,  15 }, // vpmuldq sequence
438     { ISD::SREM, MVT::v8i32,  19 }, // vpmuldq+mul+sub sequence
439     { ISD::UDIV, MVT::v8i32,  15 }, // vpmuludq sequence
440     { ISD::UREM, MVT::v8i32,  19 }, // vpmuludq+mul+sub sequence
441   };
442 
443   if ((Op2Info == TargetTransformInfo::OK_UniformConstantValue ||
444        Op2Info == TargetTransformInfo::OK_NonUniformConstantValue) &&
445       ST->hasAVX2()) {
446     if (const auto *Entry = CostTableLookup(AVX2ConstCostTable, ISD, LT.second))
447       return LT.first * Entry->Cost;
448   }
449 
450   static const CostTblEntry SSE2ConstCostTable[] = {
451     { ISD::SDIV, MVT::v32i8,  28+2 }, // 4*ext+4*pmulhw sequence + split.
452     { ISD::SREM, MVT::v32i8,  32+2 }, // 4*ext+4*pmulhw+mul+sub sequence + split.
453     { ISD::SDIV, MVT::v16i8,    14 }, // 2*ext+2*pmulhw sequence
454     { ISD::SREM, MVT::v16i8,    16 }, // 2*ext+2*pmulhw+mul+sub sequence
455     { ISD::UDIV, MVT::v32i8,  28+2 }, // 4*ext+4*pmulhw sequence + split.
456     { ISD::UREM, MVT::v32i8,  32+2 }, // 4*ext+4*pmulhw+mul+sub sequence + split.
457     { ISD::UDIV, MVT::v16i8,    14 }, // 2*ext+2*pmulhw sequence
458     { ISD::UREM, MVT::v16i8,    16 }, // 2*ext+2*pmulhw+mul+sub sequence
459     { ISD::SDIV, MVT::v16i16, 12+2 }, // 2*pmulhw sequence + split.
460     { ISD::SREM, MVT::v16i16, 16+2 }, // 2*pmulhw+mul+sub sequence + split.
461     { ISD::SDIV, MVT::v8i16,     6 }, // pmulhw sequence
462     { ISD::SREM, MVT::v8i16,     8 }, // pmulhw+mul+sub sequence
463     { ISD::UDIV, MVT::v16i16, 12+2 }, // 2*pmulhuw sequence + split.
464     { ISD::UREM, MVT::v16i16, 16+2 }, // 2*pmulhuw+mul+sub sequence + split.
465     { ISD::UDIV, MVT::v8i16,     6 }, // pmulhuw sequence
466     { ISD::UREM, MVT::v8i16,     8 }, // pmulhuw+mul+sub sequence
467     { ISD::SDIV, MVT::v8i32,  38+2 }, // 2*pmuludq sequence + split.
468     { ISD::SREM, MVT::v8i32,  48+2 }, // 2*pmuludq+mul+sub sequence + split.
469     { ISD::SDIV, MVT::v4i32,    19 }, // pmuludq sequence
470     { ISD::SREM, MVT::v4i32,    24 }, // pmuludq+mul+sub sequence
471     { ISD::UDIV, MVT::v8i32,  30+2 }, // 2*pmuludq sequence + split.
472     { ISD::UREM, MVT::v8i32,  40+2 }, // 2*pmuludq+mul+sub sequence + split.
473     { ISD::UDIV, MVT::v4i32,    15 }, // pmuludq sequence
474     { ISD::UREM, MVT::v4i32,    20 }, // pmuludq+mul+sub sequence
475   };
476 
477   if ((Op2Info == TargetTransformInfo::OK_UniformConstantValue ||
478        Op2Info == TargetTransformInfo::OK_NonUniformConstantValue) &&
479       ST->hasSSE2()) {
480     // pmuldq sequence.
481     if (ISD == ISD::SDIV && LT.second == MVT::v8i32 && ST->hasAVX())
482       return LT.first * 32;
483     if (ISD == ISD::SREM && LT.second == MVT::v8i32 && ST->hasAVX())
484       return LT.first * 38;
485     if (ISD == ISD::SDIV && LT.second == MVT::v4i32 && ST->hasSSE41())
486       return LT.first * 15;
487     if (ISD == ISD::SREM && LT.second == MVT::v4i32 && ST->hasSSE41())
488       return LT.first * 20;
489 
490     if (const auto *Entry = CostTableLookup(SSE2ConstCostTable, ISD, LT.second))
491       return LT.first * Entry->Cost;
492   }
493 
494   static const CostTblEntry AVX512BWShiftCostTable[] = {
495     { ISD::SHL,   MVT::v8i16,      1 }, // vpsllvw
496     { ISD::SRL,   MVT::v8i16,      1 }, // vpsrlvw
497     { ISD::SRA,   MVT::v8i16,      1 }, // vpsravw
498 
499     { ISD::SHL,   MVT::v16i16,     1 }, // vpsllvw
500     { ISD::SRL,   MVT::v16i16,     1 }, // vpsrlvw
501     { ISD::SRA,   MVT::v16i16,     1 }, // vpsravw
502 
503     { ISD::SHL,   MVT::v32i16,     1 }, // vpsllvw
504     { ISD::SRL,   MVT::v32i16,     1 }, // vpsrlvw
505     { ISD::SRA,   MVT::v32i16,     1 }, // vpsravw
506   };
507 
508   if (ST->hasBWI())
509     if (const auto *Entry = CostTableLookup(AVX512BWShiftCostTable, ISD, LT.second))
510       return LT.first * Entry->Cost;
511 
512   static const CostTblEntry AVX2UniformCostTable[] = {
513     // Uniform splats are cheaper for the following instructions.
514     { ISD::SHL,  MVT::v16i16, 1 }, // psllw.
515     { ISD::SRL,  MVT::v16i16, 1 }, // psrlw.
516     { ISD::SRA,  MVT::v16i16, 1 }, // psraw.
517     { ISD::SHL,  MVT::v32i16, 2 }, // 2*psllw.
518     { ISD::SRL,  MVT::v32i16, 2 }, // 2*psrlw.
519     { ISD::SRA,  MVT::v32i16, 2 }, // 2*psraw.
520   };
521 
522   if (ST->hasAVX2() &&
523       ((Op2Info == TargetTransformInfo::OK_UniformConstantValue) ||
524        (Op2Info == TargetTransformInfo::OK_UniformValue))) {
525     if (const auto *Entry =
526             CostTableLookup(AVX2UniformCostTable, ISD, LT.second))
527       return LT.first * Entry->Cost;
528   }
529 
530   static const CostTblEntry SSE2UniformCostTable[] = {
531     // Uniform splats are cheaper for the following instructions.
532     { ISD::SHL,  MVT::v8i16,  1 }, // psllw.
533     { ISD::SHL,  MVT::v4i32,  1 }, // pslld
534     { ISD::SHL,  MVT::v2i64,  1 }, // psllq.
535 
536     { ISD::SRL,  MVT::v8i16,  1 }, // psrlw.
537     { ISD::SRL,  MVT::v4i32,  1 }, // psrld.
538     { ISD::SRL,  MVT::v2i64,  1 }, // psrlq.
539 
540     { ISD::SRA,  MVT::v8i16,  1 }, // psraw.
541     { ISD::SRA,  MVT::v4i32,  1 }, // psrad.
542   };
543 
544   if (ST->hasSSE2() &&
545       ((Op2Info == TargetTransformInfo::OK_UniformConstantValue) ||
546        (Op2Info == TargetTransformInfo::OK_UniformValue))) {
547     if (const auto *Entry =
548             CostTableLookup(SSE2UniformCostTable, ISD, LT.second))
549       return LT.first * Entry->Cost;
550   }
551 
552   static const CostTblEntry AVX512DQCostTable[] = {
553     { ISD::MUL,  MVT::v2i64, 1 },
554     { ISD::MUL,  MVT::v4i64, 1 },
555     { ISD::MUL,  MVT::v8i64, 1 }
556   };
557 
558   // Look for AVX512DQ lowering tricks for custom cases.
559   if (ST->hasDQI())
560     if (const auto *Entry = CostTableLookup(AVX512DQCostTable, ISD, LT.second))
561       return LT.first * Entry->Cost;
562 
563   static const CostTblEntry AVX512BWCostTable[] = {
564     { ISD::SHL,   MVT::v64i8,     11 }, // vpblendvb sequence.
565     { ISD::SRL,   MVT::v64i8,     11 }, // vpblendvb sequence.
566     { ISD::SRA,   MVT::v64i8,     24 }, // vpblendvb sequence.
567 
568     { ISD::MUL,   MVT::v64i8,     11 }, // extend/pmullw/trunc sequence.
569     { ISD::MUL,   MVT::v32i8,      4 }, // extend/pmullw/trunc sequence.
570     { ISD::MUL,   MVT::v16i8,      4 }, // extend/pmullw/trunc sequence.
571   };
572 
573   // Look for AVX512BW lowering tricks for custom cases.
574   if (ST->hasBWI())
575     if (const auto *Entry = CostTableLookup(AVX512BWCostTable, ISD, LT.second))
576       return LT.first * Entry->Cost;
577 
578   static const CostTblEntry AVX512CostTable[] = {
579     { ISD::SHL,     MVT::v16i32,     1 },
580     { ISD::SRL,     MVT::v16i32,     1 },
581     { ISD::SRA,     MVT::v16i32,     1 },
582 
583     { ISD::SHL,     MVT::v8i64,      1 },
584     { ISD::SRL,     MVT::v8i64,      1 },
585 
586     { ISD::SRA,     MVT::v2i64,      1 },
587     { ISD::SRA,     MVT::v4i64,      1 },
588     { ISD::SRA,     MVT::v8i64,      1 },
589 
590     { ISD::MUL,     MVT::v64i8,     26 }, // extend/pmullw/trunc sequence.
591     { ISD::MUL,     MVT::v32i8,     13 }, // extend/pmullw/trunc sequence.
592     { ISD::MUL,     MVT::v16i8,      5 }, // extend/pmullw/trunc sequence.
593     { ISD::MUL,     MVT::v16i32,     1 }, // pmulld (Skylake from agner.org)
594     { ISD::MUL,     MVT::v8i32,      1 }, // pmulld (Skylake from agner.org)
595     { ISD::MUL,     MVT::v4i32,      1 }, // pmulld (Skylake from agner.org)
596     { ISD::MUL,     MVT::v8i64,      8 }, // 3*pmuludq/3*shift/2*add
597 
598     { ISD::FADD,    MVT::v8f64,      1 }, // Skylake from http://www.agner.org/
599     { ISD::FSUB,    MVT::v8f64,      1 }, // Skylake from http://www.agner.org/
600     { ISD::FMUL,    MVT::v8f64,      1 }, // Skylake from http://www.agner.org/
601 
602     { ISD::FADD,    MVT::v16f32,     1 }, // Skylake from http://www.agner.org/
603     { ISD::FSUB,    MVT::v16f32,     1 }, // Skylake from http://www.agner.org/
604     { ISD::FMUL,    MVT::v16f32,     1 }, // Skylake from http://www.agner.org/
605   };
606 
607   if (ST->hasAVX512())
608     if (const auto *Entry = CostTableLookup(AVX512CostTable, ISD, LT.second))
609       return LT.first * Entry->Cost;
610 
611   static const CostTblEntry AVX2ShiftCostTable[] = {
612     // Shifts on v4i64/v8i32 on AVX2 is legal even though we declare to
613     // customize them to detect the cases where shift amount is a scalar one.
614     { ISD::SHL,     MVT::v4i32,    1 },
615     { ISD::SRL,     MVT::v4i32,    1 },
616     { ISD::SRA,     MVT::v4i32,    1 },
617     { ISD::SHL,     MVT::v8i32,    1 },
618     { ISD::SRL,     MVT::v8i32,    1 },
619     { ISD::SRA,     MVT::v8i32,    1 },
620     { ISD::SHL,     MVT::v2i64,    1 },
621     { ISD::SRL,     MVT::v2i64,    1 },
622     { ISD::SHL,     MVT::v4i64,    1 },
623     { ISD::SRL,     MVT::v4i64,    1 },
624   };
625 
626   if (ST->hasAVX512()) {
627     if (ISD == ISD::SHL && LT.second == MVT::v32i16 &&
628         (Op2Info == TargetTransformInfo::OK_UniformConstantValue ||
629          Op2Info == TargetTransformInfo::OK_NonUniformConstantValue))
630       // On AVX512, a packed v32i16 shift left by a constant build_vector
631       // is lowered into a vector multiply (vpmullw).
632       return getArithmeticInstrCost(Instruction::Mul, Ty, CostKind,
633                                     Op1Info, Op2Info,
634                                     TargetTransformInfo::OP_None,
635                                     TargetTransformInfo::OP_None);
636   }
637 
638   // Look for AVX2 lowering tricks.
639   if (ST->hasAVX2()) {
640     if (ISD == ISD::SHL && LT.second == MVT::v16i16 &&
641         (Op2Info == TargetTransformInfo::OK_UniformConstantValue ||
642          Op2Info == TargetTransformInfo::OK_NonUniformConstantValue))
643       // On AVX2, a packed v16i16 shift left by a constant build_vector
644       // is lowered into a vector multiply (vpmullw).
645       return getArithmeticInstrCost(Instruction::Mul, Ty, CostKind,
646                                     Op1Info, Op2Info,
647                                     TargetTransformInfo::OP_None,
648                                     TargetTransformInfo::OP_None);
649 
650     if (const auto *Entry = CostTableLookup(AVX2ShiftCostTable, ISD, LT.second))
651       return LT.first * Entry->Cost;
652   }
653 
654   static const CostTblEntry XOPShiftCostTable[] = {
655     // 128bit shifts take 1cy, but right shifts require negation beforehand.
656     { ISD::SHL,     MVT::v16i8,    1 },
657     { ISD::SRL,     MVT::v16i8,    2 },
658     { ISD::SRA,     MVT::v16i8,    2 },
659     { ISD::SHL,     MVT::v8i16,    1 },
660     { ISD::SRL,     MVT::v8i16,    2 },
661     { ISD::SRA,     MVT::v8i16,    2 },
662     { ISD::SHL,     MVT::v4i32,    1 },
663     { ISD::SRL,     MVT::v4i32,    2 },
664     { ISD::SRA,     MVT::v4i32,    2 },
665     { ISD::SHL,     MVT::v2i64,    1 },
666     { ISD::SRL,     MVT::v2i64,    2 },
667     { ISD::SRA,     MVT::v2i64,    2 },
668     // 256bit shifts require splitting if AVX2 didn't catch them above.
669     { ISD::SHL,     MVT::v32i8,  2+2 },
670     { ISD::SRL,     MVT::v32i8,  4+2 },
671     { ISD::SRA,     MVT::v32i8,  4+2 },
672     { ISD::SHL,     MVT::v16i16, 2+2 },
673     { ISD::SRL,     MVT::v16i16, 4+2 },
674     { ISD::SRA,     MVT::v16i16, 4+2 },
675     { ISD::SHL,     MVT::v8i32,  2+2 },
676     { ISD::SRL,     MVT::v8i32,  4+2 },
677     { ISD::SRA,     MVT::v8i32,  4+2 },
678     { ISD::SHL,     MVT::v4i64,  2+2 },
679     { ISD::SRL,     MVT::v4i64,  4+2 },
680     { ISD::SRA,     MVT::v4i64,  4+2 },
681   };
682 
683   // Look for XOP lowering tricks.
684   if (ST->hasXOP()) {
685     // If the right shift is constant then we'll fold the negation so
686     // it's as cheap as a left shift.
687     int ShiftISD = ISD;
688     if ((ShiftISD == ISD::SRL || ShiftISD == ISD::SRA) &&
689         (Op2Info == TargetTransformInfo::OK_UniformConstantValue ||
690          Op2Info == TargetTransformInfo::OK_NonUniformConstantValue))
691       ShiftISD = ISD::SHL;
692     if (const auto *Entry =
693             CostTableLookup(XOPShiftCostTable, ShiftISD, LT.second))
694       return LT.first * Entry->Cost;
695   }
696 
697   static const CostTblEntry SSE2UniformShiftCostTable[] = {
698     // Uniform splats are cheaper for the following instructions.
699     { ISD::SHL,  MVT::v16i16, 2+2 }, // 2*psllw + split.
700     { ISD::SHL,  MVT::v8i32,  2+2 }, // 2*pslld + split.
701     { ISD::SHL,  MVT::v4i64,  2+2 }, // 2*psllq + split.
702 
703     { ISD::SRL,  MVT::v16i16, 2+2 }, // 2*psrlw + split.
704     { ISD::SRL,  MVT::v8i32,  2+2 }, // 2*psrld + split.
705     { ISD::SRL,  MVT::v4i64,  2+2 }, // 2*psrlq + split.
706 
707     { ISD::SRA,  MVT::v16i16, 2+2 }, // 2*psraw + split.
708     { ISD::SRA,  MVT::v8i32,  2+2 }, // 2*psrad + split.
709     { ISD::SRA,  MVT::v2i64,    4 }, // 2*psrad + shuffle.
710     { ISD::SRA,  MVT::v4i64,  8+2 }, // 2*(2*psrad + shuffle) + split.
711   };
712 
713   if (ST->hasSSE2() &&
714       ((Op2Info == TargetTransformInfo::OK_UniformConstantValue) ||
715        (Op2Info == TargetTransformInfo::OK_UniformValue))) {
716 
717     // Handle AVX2 uniform v4i64 ISD::SRA, it's not worth a table.
718     if (ISD == ISD::SRA && LT.second == MVT::v4i64 && ST->hasAVX2())
719       return LT.first * 4; // 2*psrad + shuffle.
720 
721     if (const auto *Entry =
722             CostTableLookup(SSE2UniformShiftCostTable, ISD, LT.second))
723       return LT.first * Entry->Cost;
724   }
725 
726   if (ISD == ISD::SHL &&
727       Op2Info == TargetTransformInfo::OK_NonUniformConstantValue) {
728     MVT VT = LT.second;
729     // Vector shift left by non uniform constant can be lowered
730     // into vector multiply.
731     if (((VT == MVT::v8i16 || VT == MVT::v4i32) && ST->hasSSE2()) ||
732         ((VT == MVT::v16i16 || VT == MVT::v8i32) && ST->hasAVX()))
733       ISD = ISD::MUL;
734   }
735 
736   static const CostTblEntry AVX2CostTable[] = {
737     { ISD::SHL,  MVT::v32i8,     11 }, // vpblendvb sequence.
738     { ISD::SHL,  MVT::v64i8,     22 }, // 2*vpblendvb sequence.
739     { ISD::SHL,  MVT::v16i16,    10 }, // extend/vpsrlvd/pack sequence.
740     { ISD::SHL,  MVT::v32i16,    20 }, // 2*extend/vpsrlvd/pack sequence.
741 
742     { ISD::SRL,  MVT::v32i8,     11 }, // vpblendvb sequence.
743     { ISD::SRL,  MVT::v64i8,     22 }, // 2*vpblendvb sequence.
744     { ISD::SRL,  MVT::v16i16,    10 }, // extend/vpsrlvd/pack sequence.
745     { ISD::SRL,  MVT::v32i16,    20 }, // 2*extend/vpsrlvd/pack sequence.
746 
747     { ISD::SRA,  MVT::v32i8,     24 }, // vpblendvb sequence.
748     { ISD::SRA,  MVT::v64i8,     48 }, // 2*vpblendvb sequence.
749     { ISD::SRA,  MVT::v16i16,    10 }, // extend/vpsravd/pack sequence.
750     { ISD::SRA,  MVT::v32i16,    20 }, // 2*extend/vpsravd/pack sequence.
751     { ISD::SRA,  MVT::v2i64,      4 }, // srl/xor/sub sequence.
752     { ISD::SRA,  MVT::v4i64,      4 }, // srl/xor/sub sequence.
753 
754     { ISD::SUB,  MVT::v32i8,      1 }, // psubb
755     { ISD::ADD,  MVT::v32i8,      1 }, // paddb
756     { ISD::SUB,  MVT::v16i16,     1 }, // psubw
757     { ISD::ADD,  MVT::v16i16,     1 }, // paddw
758     { ISD::SUB,  MVT::v8i32,      1 }, // psubd
759     { ISD::ADD,  MVT::v8i32,      1 }, // paddd
760     { ISD::SUB,  MVT::v4i64,      1 }, // psubq
761     { ISD::ADD,  MVT::v4i64,      1 }, // paddq
762 
763     { ISD::MUL,  MVT::v32i8,     17 }, // extend/pmullw/trunc sequence.
764     { ISD::MUL,  MVT::v16i8,      7 }, // extend/pmullw/trunc sequence.
765     { ISD::MUL,  MVT::v16i16,     1 }, // pmullw
766     { ISD::MUL,  MVT::v8i32,      2 }, // pmulld (Haswell from agner.org)
767     { ISD::MUL,  MVT::v4i64,      8 }, // 3*pmuludq/3*shift/2*add
768 
769     { ISD::FADD, MVT::v4f64,      1 }, // Haswell from http://www.agner.org/
770     { ISD::FADD, MVT::v8f32,      1 }, // Haswell from http://www.agner.org/
771     { ISD::FSUB, MVT::v4f64,      1 }, // Haswell from http://www.agner.org/
772     { ISD::FSUB, MVT::v8f32,      1 }, // Haswell from http://www.agner.org/
773     { ISD::FMUL, MVT::v4f64,      1 }, // Haswell from http://www.agner.org/
774     { ISD::FMUL, MVT::v8f32,      1 }, // Haswell from http://www.agner.org/
775 
776     { ISD::FDIV, MVT::f32,        7 }, // Haswell from http://www.agner.org/
777     { ISD::FDIV, MVT::v4f32,      7 }, // Haswell from http://www.agner.org/
778     { ISD::FDIV, MVT::v8f32,     14 }, // Haswell from http://www.agner.org/
779     { ISD::FDIV, MVT::f64,       14 }, // Haswell from http://www.agner.org/
780     { ISD::FDIV, MVT::v2f64,     14 }, // Haswell from http://www.agner.org/
781     { ISD::FDIV, MVT::v4f64,     28 }, // Haswell from http://www.agner.org/
782   };
783 
784   // Look for AVX2 lowering tricks for custom cases.
785   if (ST->hasAVX2())
786     if (const auto *Entry = CostTableLookup(AVX2CostTable, ISD, LT.second))
787       return LT.first * Entry->Cost;
788 
789   static const CostTblEntry AVX1CostTable[] = {
790     // We don't have to scalarize unsupported ops. We can issue two half-sized
791     // operations and we only need to extract the upper YMM half.
792     // Two ops + 1 extract + 1 insert = 4.
793     { ISD::MUL,     MVT::v16i16,     4 },
794     { ISD::MUL,     MVT::v8i32,      4 },
795     { ISD::SUB,     MVT::v32i8,      4 },
796     { ISD::ADD,     MVT::v32i8,      4 },
797     { ISD::SUB,     MVT::v16i16,     4 },
798     { ISD::ADD,     MVT::v16i16,     4 },
799     { ISD::SUB,     MVT::v8i32,      4 },
800     { ISD::ADD,     MVT::v8i32,      4 },
801     { ISD::SUB,     MVT::v4i64,      4 },
802     { ISD::ADD,     MVT::v4i64,      4 },
803 
804     // A v4i64 multiply is custom lowered as two split v2i64 vectors that then
805     // are lowered as a series of long multiplies(3), shifts(3) and adds(2)
806     // Because we believe v4i64 to be a legal type, we must also include the
807     // extract+insert in the cost table. Therefore, the cost here is 18
808     // instead of 8.
809     { ISD::MUL,     MVT::v4i64,     18 },
810 
811     { ISD::MUL,     MVT::v32i8,     26 }, // extend/pmullw/trunc sequence.
812 
813     { ISD::FDIV,    MVT::f32,       14 }, // SNB from http://www.agner.org/
814     { ISD::FDIV,    MVT::v4f32,     14 }, // SNB from http://www.agner.org/
815     { ISD::FDIV,    MVT::v8f32,     28 }, // SNB from http://www.agner.org/
816     { ISD::FDIV,    MVT::f64,       22 }, // SNB from http://www.agner.org/
817     { ISD::FDIV,    MVT::v2f64,     22 }, // SNB from http://www.agner.org/
818     { ISD::FDIV,    MVT::v4f64,     44 }, // SNB from http://www.agner.org/
819   };
820 
821   if (ST->hasAVX())
822     if (const auto *Entry = CostTableLookup(AVX1CostTable, ISD, LT.second))
823       return LT.first * Entry->Cost;
824 
825   static const CostTblEntry SSE42CostTable[] = {
826     { ISD::FADD, MVT::f64,     1 }, // Nehalem from http://www.agner.org/
827     { ISD::FADD, MVT::f32,     1 }, // Nehalem from http://www.agner.org/
828     { ISD::FADD, MVT::v2f64,   1 }, // Nehalem from http://www.agner.org/
829     { ISD::FADD, MVT::v4f32,   1 }, // Nehalem from http://www.agner.org/
830 
831     { ISD::FSUB, MVT::f64,     1 }, // Nehalem from http://www.agner.org/
832     { ISD::FSUB, MVT::f32 ,    1 }, // Nehalem from http://www.agner.org/
833     { ISD::FSUB, MVT::v2f64,   1 }, // Nehalem from http://www.agner.org/
834     { ISD::FSUB, MVT::v4f32,   1 }, // Nehalem from http://www.agner.org/
835 
836     { ISD::FMUL, MVT::f64,     1 }, // Nehalem from http://www.agner.org/
837     { ISD::FMUL, MVT::f32,     1 }, // Nehalem from http://www.agner.org/
838     { ISD::FMUL, MVT::v2f64,   1 }, // Nehalem from http://www.agner.org/
839     { ISD::FMUL, MVT::v4f32,   1 }, // Nehalem from http://www.agner.org/
840 
841     { ISD::FDIV,  MVT::f32,   14 }, // Nehalem from http://www.agner.org/
842     { ISD::FDIV,  MVT::v4f32, 14 }, // Nehalem from http://www.agner.org/
843     { ISD::FDIV,  MVT::f64,   22 }, // Nehalem from http://www.agner.org/
844     { ISD::FDIV,  MVT::v2f64, 22 }, // Nehalem from http://www.agner.org/
845   };
846 
847   if (ST->hasSSE42())
848     if (const auto *Entry = CostTableLookup(SSE42CostTable, ISD, LT.second))
849       return LT.first * Entry->Cost;
850 
851   static const CostTblEntry SSE41CostTable[] = {
852     { ISD::SHL,  MVT::v16i8,      11 }, // pblendvb sequence.
853     { ISD::SHL,  MVT::v32i8,  2*11+2 }, // pblendvb sequence + split.
854     { ISD::SHL,  MVT::v8i16,      14 }, // pblendvb sequence.
855     { ISD::SHL,  MVT::v16i16, 2*14+2 }, // pblendvb sequence + split.
856     { ISD::SHL,  MVT::v4i32,       4 }, // pslld/paddd/cvttps2dq/pmulld
857     { ISD::SHL,  MVT::v8i32,   2*4+2 }, // pslld/paddd/cvttps2dq/pmulld + split
858 
859     { ISD::SRL,  MVT::v16i8,      12 }, // pblendvb sequence.
860     { ISD::SRL,  MVT::v32i8,  2*12+2 }, // pblendvb sequence + split.
861     { ISD::SRL,  MVT::v8i16,      14 }, // pblendvb sequence.
862     { ISD::SRL,  MVT::v16i16, 2*14+2 }, // pblendvb sequence + split.
863     { ISD::SRL,  MVT::v4i32,      11 }, // Shift each lane + blend.
864     { ISD::SRL,  MVT::v8i32,  2*11+2 }, // Shift each lane + blend + split.
865 
866     { ISD::SRA,  MVT::v16i8,      24 }, // pblendvb sequence.
867     { ISD::SRA,  MVT::v32i8,  2*24+2 }, // pblendvb sequence + split.
868     { ISD::SRA,  MVT::v8i16,      14 }, // pblendvb sequence.
869     { ISD::SRA,  MVT::v16i16, 2*14+2 }, // pblendvb sequence + split.
870     { ISD::SRA,  MVT::v4i32,      12 }, // Shift each lane + blend.
871     { ISD::SRA,  MVT::v8i32,  2*12+2 }, // Shift each lane + blend + split.
872 
873     { ISD::MUL,  MVT::v4i32,       2 }  // pmulld (Nehalem from agner.org)
874   };
875 
876   if (ST->hasSSE41())
877     if (const auto *Entry = CostTableLookup(SSE41CostTable, ISD, LT.second))
878       return LT.first * Entry->Cost;
879 
880   static const CostTblEntry SSE2CostTable[] = {
881     // We don't correctly identify costs of casts because they are marked as
882     // custom.
883     { ISD::SHL,  MVT::v16i8,      26 }, // cmpgtb sequence.
884     { ISD::SHL,  MVT::v8i16,      32 }, // cmpgtb sequence.
885     { ISD::SHL,  MVT::v4i32,     2*5 }, // We optimized this using mul.
886     { ISD::SHL,  MVT::v2i64,       4 }, // splat+shuffle sequence.
887     { ISD::SHL,  MVT::v4i64,   2*4+2 }, // splat+shuffle sequence + split.
888 
889     { ISD::SRL,  MVT::v16i8,      26 }, // cmpgtb sequence.
890     { ISD::SRL,  MVT::v8i16,      32 }, // cmpgtb sequence.
891     { ISD::SRL,  MVT::v4i32,      16 }, // Shift each lane + blend.
892     { ISD::SRL,  MVT::v2i64,       4 }, // splat+shuffle sequence.
893     { ISD::SRL,  MVT::v4i64,   2*4+2 }, // splat+shuffle sequence + split.
894 
895     { ISD::SRA,  MVT::v16i8,      54 }, // unpacked cmpgtb sequence.
896     { ISD::SRA,  MVT::v8i16,      32 }, // cmpgtb sequence.
897     { ISD::SRA,  MVT::v4i32,      16 }, // Shift each lane + blend.
898     { ISD::SRA,  MVT::v2i64,      12 }, // srl/xor/sub sequence.
899     { ISD::SRA,  MVT::v4i64,  2*12+2 }, // srl/xor/sub sequence+split.
900 
901     { ISD::MUL,  MVT::v16i8,      12 }, // extend/pmullw/trunc sequence.
902     { ISD::MUL,  MVT::v8i16,       1 }, // pmullw
903     { ISD::MUL,  MVT::v4i32,       6 }, // 3*pmuludq/4*shuffle
904     { ISD::MUL,  MVT::v2i64,       8 }, // 3*pmuludq/3*shift/2*add
905 
906     { ISD::FDIV, MVT::f32,        23 }, // Pentium IV from http://www.agner.org/
907     { ISD::FDIV, MVT::v4f32,      39 }, // Pentium IV from http://www.agner.org/
908     { ISD::FDIV, MVT::f64,        38 }, // Pentium IV from http://www.agner.org/
909     { ISD::FDIV, MVT::v2f64,      69 }, // Pentium IV from http://www.agner.org/
910 
911     { ISD::FADD, MVT::f32,         2 }, // Pentium IV from http://www.agner.org/
912     { ISD::FADD, MVT::f64,         2 }, // Pentium IV from http://www.agner.org/
913 
914     { ISD::FSUB, MVT::f32,         2 }, // Pentium IV from http://www.agner.org/
915     { ISD::FSUB, MVT::f64,         2 }, // Pentium IV from http://www.agner.org/
916   };
917 
918   if (ST->hasSSE2())
919     if (const auto *Entry = CostTableLookup(SSE2CostTable, ISD, LT.second))
920       return LT.first * Entry->Cost;
921 
922   static const CostTblEntry SSE1CostTable[] = {
923     { ISD::FDIV, MVT::f32,   17 }, // Pentium III from http://www.agner.org/
924     { ISD::FDIV, MVT::v4f32, 34 }, // Pentium III from http://www.agner.org/
925 
926     { ISD::FADD, MVT::f32,    1 }, // Pentium III from http://www.agner.org/
927     { ISD::FADD, MVT::v4f32,  2 }, // Pentium III from http://www.agner.org/
928 
929     { ISD::FSUB, MVT::f32,    1 }, // Pentium III from http://www.agner.org/
930     { ISD::FSUB, MVT::v4f32,  2 }, // Pentium III from http://www.agner.org/
931 
932     { ISD::ADD, MVT::i8,      1 }, // Pentium III from http://www.agner.org/
933     { ISD::ADD, MVT::i16,     1 }, // Pentium III from http://www.agner.org/
934     { ISD::ADD, MVT::i32,     1 }, // Pentium III from http://www.agner.org/
935 
936     { ISD::SUB, MVT::i8,      1 }, // Pentium III from http://www.agner.org/
937     { ISD::SUB, MVT::i16,     1 }, // Pentium III from http://www.agner.org/
938     { ISD::SUB, MVT::i32,     1 }, // Pentium III from http://www.agner.org/
939   };
940 
941   if (ST->hasSSE1())
942     if (const auto *Entry = CostTableLookup(SSE1CostTable, ISD, LT.second))
943       return LT.first * Entry->Cost;
944 
945   // It is not a good idea to vectorize division. We have to scalarize it and
946   // in the process we will often end up having to spilling regular
947   // registers. The overhead of division is going to dominate most kernels
948   // anyways so try hard to prevent vectorization of division - it is
949   // generally a bad idea. Assume somewhat arbitrarily that we have to be able
950   // to hide "20 cycles" for each lane.
951   if (LT.second.isVector() && (ISD == ISD::SDIV || ISD == ISD::SREM ||
952                                ISD == ISD::UDIV || ISD == ISD::UREM)) {
953     InstructionCost ScalarCost = getArithmeticInstrCost(
954         Opcode, Ty->getScalarType(), CostKind, Op1Info, Op2Info,
955         TargetTransformInfo::OP_None, TargetTransformInfo::OP_None);
956     return 20 * LT.first * LT.second.getVectorNumElements() * ScalarCost;
957   }
958 
959   // Fallback to the default implementation.
960   return BaseT::getArithmeticInstrCost(Opcode, Ty, CostKind, Op1Info, Op2Info);
961 }
962 
963 InstructionCost X86TTIImpl::getShuffleCost(TTI::ShuffleKind Kind,
964                                            VectorType *BaseTp,
965                                            ArrayRef<int> Mask, int Index,
966                                            VectorType *SubTp) {
967   // 64-bit packed float vectors (v2f32) are widened to type v4f32.
968   // 64-bit packed integer vectors (v2i32) are widened to type v4i32.
969   std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, BaseTp);
970 
971   // Treat Transpose as 2-op shuffles - there's no difference in lowering.
972   if (Kind == TTI::SK_Transpose)
973     Kind = TTI::SK_PermuteTwoSrc;
974 
975   // For Broadcasts we are splatting the first element from the first input
976   // register, so only need to reference that input and all the output
977   // registers are the same.
978   if (Kind == TTI::SK_Broadcast)
979     LT.first = 1;
980 
981   // Subvector extractions are free if they start at the beginning of a
982   // vector and cheap if the subvectors are aligned.
983   if (Kind == TTI::SK_ExtractSubvector && LT.second.isVector()) {
984     int NumElts = LT.second.getVectorNumElements();
985     if ((Index % NumElts) == 0)
986       return 0;
987     std::pair<int, MVT> SubLT = TLI->getTypeLegalizationCost(DL, SubTp);
988     if (SubLT.second.isVector()) {
989       int NumSubElts = SubLT.second.getVectorNumElements();
990       if ((Index % NumSubElts) == 0 && (NumElts % NumSubElts) == 0)
991         return SubLT.first;
992       // Handle some cases for widening legalization. For now we only handle
993       // cases where the original subvector was naturally aligned and evenly
994       // fit in its legalized subvector type.
995       // FIXME: Remove some of the alignment restrictions.
996       // FIXME: We can use permq for 64-bit or larger extracts from 256-bit
997       // vectors.
998       int OrigSubElts = cast<FixedVectorType>(SubTp)->getNumElements();
999       if (NumSubElts > OrigSubElts && (Index % OrigSubElts) == 0 &&
1000           (NumSubElts % OrigSubElts) == 0 &&
1001           LT.second.getVectorElementType() ==
1002               SubLT.second.getVectorElementType() &&
1003           LT.second.getVectorElementType().getSizeInBits() ==
1004               BaseTp->getElementType()->getPrimitiveSizeInBits()) {
1005         assert(NumElts >= NumSubElts && NumElts > OrigSubElts &&
1006                "Unexpected number of elements!");
1007         auto *VecTy = FixedVectorType::get(BaseTp->getElementType(),
1008                                            LT.second.getVectorNumElements());
1009         auto *SubTy = FixedVectorType::get(BaseTp->getElementType(),
1010                                            SubLT.second.getVectorNumElements());
1011         int ExtractIndex = alignDown((Index % NumElts), NumSubElts);
1012         InstructionCost ExtractCost = getShuffleCost(
1013             TTI::SK_ExtractSubvector, VecTy, None, ExtractIndex, SubTy);
1014 
1015         // If the original size is 32-bits or more, we can use pshufd. Otherwise
1016         // if we have SSSE3 we can use pshufb.
1017         if (SubTp->getPrimitiveSizeInBits() >= 32 || ST->hasSSSE3())
1018           return ExtractCost + 1; // pshufd or pshufb
1019 
1020         assert(SubTp->getPrimitiveSizeInBits() == 16 &&
1021                "Unexpected vector size");
1022 
1023         return ExtractCost + 2; // worst case pshufhw + pshufd
1024       }
1025     }
1026   }
1027 
1028   // Handle some common (illegal) sub-vector types as they are often very cheap
1029   // to shuffle even on targets without PSHUFB.
1030   EVT VT = TLI->getValueType(DL, BaseTp);
1031   if (VT.isSimple() && VT.isVector() && VT.getSizeInBits() < 128 &&
1032       !ST->hasSSSE3()) {
1033      static const CostTblEntry SSE2SubVectorShuffleTbl[] = {
1034       {TTI::SK_Broadcast,        MVT::v4i16, 1}, // pshuflw
1035       {TTI::SK_Broadcast,        MVT::v2i16, 1}, // pshuflw
1036       {TTI::SK_Broadcast,        MVT::v8i8,  2}, // punpck/pshuflw
1037       {TTI::SK_Broadcast,        MVT::v4i8,  2}, // punpck/pshuflw
1038       {TTI::SK_Broadcast,        MVT::v2i8,  1}, // punpck
1039 
1040       {TTI::SK_Reverse,          MVT::v4i16, 1}, // pshuflw
1041       {TTI::SK_Reverse,          MVT::v2i16, 1}, // pshuflw
1042       {TTI::SK_Reverse,          MVT::v4i8,  3}, // punpck/pshuflw/packus
1043       {TTI::SK_Reverse,          MVT::v2i8,  1}, // punpck
1044 
1045       {TTI::SK_PermuteTwoSrc,    MVT::v4i16, 2}, // punpck/pshuflw
1046       {TTI::SK_PermuteTwoSrc,    MVT::v2i16, 2}, // punpck/pshuflw
1047       {TTI::SK_PermuteTwoSrc,    MVT::v8i8,  7}, // punpck/pshuflw
1048       {TTI::SK_PermuteTwoSrc,    MVT::v4i8,  4}, // punpck/pshuflw
1049       {TTI::SK_PermuteTwoSrc,    MVT::v2i8,  2}, // punpck
1050 
1051       {TTI::SK_PermuteSingleSrc, MVT::v4i16, 1}, // pshuflw
1052       {TTI::SK_PermuteSingleSrc, MVT::v2i16, 1}, // pshuflw
1053       {TTI::SK_PermuteSingleSrc, MVT::v8i8,  5}, // punpck/pshuflw
1054       {TTI::SK_PermuteSingleSrc, MVT::v4i8,  3}, // punpck/pshuflw
1055       {TTI::SK_PermuteSingleSrc, MVT::v2i8,  1}, // punpck
1056     };
1057 
1058     if (ST->hasSSE2())
1059       if (const auto *Entry =
1060               CostTableLookup(SSE2SubVectorShuffleTbl, Kind, VT.getSimpleVT()))
1061         return Entry->Cost;
1062   }
1063 
1064   // We are going to permute multiple sources and the result will be in multiple
1065   // destinations. Providing an accurate cost only for splits where the element
1066   // type remains the same.
1067   if (Kind == TTI::SK_PermuteSingleSrc && LT.first != 1) {
1068     MVT LegalVT = LT.second;
1069     if (LegalVT.isVector() &&
1070         LegalVT.getVectorElementType().getSizeInBits() ==
1071             BaseTp->getElementType()->getPrimitiveSizeInBits() &&
1072         LegalVT.getVectorNumElements() <
1073             cast<FixedVectorType>(BaseTp)->getNumElements()) {
1074 
1075       unsigned VecTySize = DL.getTypeStoreSize(BaseTp);
1076       unsigned LegalVTSize = LegalVT.getStoreSize();
1077       // Number of source vectors after legalization:
1078       unsigned NumOfSrcs = (VecTySize + LegalVTSize - 1) / LegalVTSize;
1079       // Number of destination vectors after legalization:
1080       unsigned NumOfDests = LT.first;
1081 
1082       auto *SingleOpTy = FixedVectorType::get(BaseTp->getElementType(),
1083                                               LegalVT.getVectorNumElements());
1084 
1085       unsigned NumOfShuffles = (NumOfSrcs - 1) * NumOfDests;
1086       return NumOfShuffles * getShuffleCost(TTI::SK_PermuteTwoSrc, SingleOpTy,
1087                                             None, 0, nullptr);
1088     }
1089 
1090     return BaseT::getShuffleCost(Kind, BaseTp, Mask, Index, SubTp);
1091   }
1092 
1093   // For 2-input shuffles, we must account for splitting the 2 inputs into many.
1094   if (Kind == TTI::SK_PermuteTwoSrc && LT.first != 1) {
1095     // We assume that source and destination have the same vector type.
1096     int NumOfDests = LT.first;
1097     int NumOfShufflesPerDest = LT.first * 2 - 1;
1098     LT.first = NumOfDests * NumOfShufflesPerDest;
1099   }
1100 
1101   static const CostTblEntry AVX512VBMIShuffleTbl[] = {
1102       {TTI::SK_Reverse, MVT::v64i8, 1}, // vpermb
1103       {TTI::SK_Reverse, MVT::v32i8, 1}, // vpermb
1104 
1105       {TTI::SK_PermuteSingleSrc, MVT::v64i8, 1}, // vpermb
1106       {TTI::SK_PermuteSingleSrc, MVT::v32i8, 1}, // vpermb
1107 
1108       {TTI::SK_PermuteTwoSrc, MVT::v64i8, 2}, // vpermt2b
1109       {TTI::SK_PermuteTwoSrc, MVT::v32i8, 2}, // vpermt2b
1110       {TTI::SK_PermuteTwoSrc, MVT::v16i8, 2}  // vpermt2b
1111   };
1112 
1113   if (ST->hasVBMI())
1114     if (const auto *Entry =
1115             CostTableLookup(AVX512VBMIShuffleTbl, Kind, LT.second))
1116       return LT.first * Entry->Cost;
1117 
1118   static const CostTblEntry AVX512BWShuffleTbl[] = {
1119       {TTI::SK_Broadcast, MVT::v32i16, 1}, // vpbroadcastw
1120       {TTI::SK_Broadcast, MVT::v64i8, 1},  // vpbroadcastb
1121 
1122       {TTI::SK_Reverse, MVT::v32i16, 2}, // vpermw
1123       {TTI::SK_Reverse, MVT::v16i16, 2}, // vpermw
1124       {TTI::SK_Reverse, MVT::v64i8, 2},  // pshufb + vshufi64x2
1125 
1126       {TTI::SK_PermuteSingleSrc, MVT::v32i16, 2}, // vpermw
1127       {TTI::SK_PermuteSingleSrc, MVT::v16i16, 2}, // vpermw
1128       {TTI::SK_PermuteSingleSrc, MVT::v64i8, 8},  // extend to v32i16
1129 
1130       {TTI::SK_PermuteTwoSrc, MVT::v32i16, 2}, // vpermt2w
1131       {TTI::SK_PermuteTwoSrc, MVT::v16i16, 2}, // vpermt2w
1132       {TTI::SK_PermuteTwoSrc, MVT::v8i16, 2},  // vpermt2w
1133       {TTI::SK_PermuteTwoSrc, MVT::v64i8, 19}, // 6 * v32i8 + 1
1134 
1135       {TTI::SK_Select, MVT::v32i16, 1}, // vblendmw
1136       {TTI::SK_Select, MVT::v64i8,  1}, // vblendmb
1137   };
1138 
1139   if (ST->hasBWI())
1140     if (const auto *Entry =
1141             CostTableLookup(AVX512BWShuffleTbl, Kind, LT.second))
1142       return LT.first * Entry->Cost;
1143 
1144   static const CostTblEntry AVX512ShuffleTbl[] = {
1145       {TTI::SK_Broadcast, MVT::v8f64, 1},  // vbroadcastpd
1146       {TTI::SK_Broadcast, MVT::v16f32, 1}, // vbroadcastps
1147       {TTI::SK_Broadcast, MVT::v8i64, 1},  // vpbroadcastq
1148       {TTI::SK_Broadcast, MVT::v16i32, 1}, // vpbroadcastd
1149       {TTI::SK_Broadcast, MVT::v32i16, 1}, // vpbroadcastw
1150       {TTI::SK_Broadcast, MVT::v64i8, 1},  // vpbroadcastb
1151 
1152       {TTI::SK_Reverse, MVT::v8f64, 1},  // vpermpd
1153       {TTI::SK_Reverse, MVT::v16f32, 1}, // vpermps
1154       {TTI::SK_Reverse, MVT::v8i64, 1},  // vpermq
1155       {TTI::SK_Reverse, MVT::v16i32, 1}, // vpermd
1156 
1157       {TTI::SK_PermuteSingleSrc, MVT::v8f64, 1},  // vpermpd
1158       {TTI::SK_PermuteSingleSrc, MVT::v4f64, 1},  // vpermpd
1159       {TTI::SK_PermuteSingleSrc, MVT::v2f64, 1},  // vpermpd
1160       {TTI::SK_PermuteSingleSrc, MVT::v16f32, 1}, // vpermps
1161       {TTI::SK_PermuteSingleSrc, MVT::v8f32, 1},  // vpermps
1162       {TTI::SK_PermuteSingleSrc, MVT::v4f32, 1},  // vpermps
1163       {TTI::SK_PermuteSingleSrc, MVT::v8i64, 1},  // vpermq
1164       {TTI::SK_PermuteSingleSrc, MVT::v4i64, 1},  // vpermq
1165       {TTI::SK_PermuteSingleSrc, MVT::v2i64, 1},  // vpermq
1166       {TTI::SK_PermuteSingleSrc, MVT::v16i32, 1}, // vpermd
1167       {TTI::SK_PermuteSingleSrc, MVT::v8i32, 1},  // vpermd
1168       {TTI::SK_PermuteSingleSrc, MVT::v4i32, 1},  // vpermd
1169       {TTI::SK_PermuteSingleSrc, MVT::v16i8, 1},  // pshufb
1170 
1171       {TTI::SK_PermuteTwoSrc, MVT::v8f64, 1},  // vpermt2pd
1172       {TTI::SK_PermuteTwoSrc, MVT::v16f32, 1}, // vpermt2ps
1173       {TTI::SK_PermuteTwoSrc, MVT::v8i64, 1},  // vpermt2q
1174       {TTI::SK_PermuteTwoSrc, MVT::v16i32, 1}, // vpermt2d
1175       {TTI::SK_PermuteTwoSrc, MVT::v4f64, 1},  // vpermt2pd
1176       {TTI::SK_PermuteTwoSrc, MVT::v8f32, 1},  // vpermt2ps
1177       {TTI::SK_PermuteTwoSrc, MVT::v4i64, 1},  // vpermt2q
1178       {TTI::SK_PermuteTwoSrc, MVT::v8i32, 1},  // vpermt2d
1179       {TTI::SK_PermuteTwoSrc, MVT::v2f64, 1},  // vpermt2pd
1180       {TTI::SK_PermuteTwoSrc, MVT::v4f32, 1},  // vpermt2ps
1181       {TTI::SK_PermuteTwoSrc, MVT::v2i64, 1},  // vpermt2q
1182       {TTI::SK_PermuteTwoSrc, MVT::v4i32, 1},  // vpermt2d
1183 
1184       // FIXME: This just applies the type legalization cost rules above
1185       // assuming these completely split.
1186       {TTI::SK_PermuteSingleSrc, MVT::v32i16, 14},
1187       {TTI::SK_PermuteSingleSrc, MVT::v64i8,  14},
1188       {TTI::SK_PermuteTwoSrc,    MVT::v32i16, 42},
1189       {TTI::SK_PermuteTwoSrc,    MVT::v64i8,  42},
1190 
1191       {TTI::SK_Select, MVT::v32i16, 1}, // vpternlogq
1192       {TTI::SK_Select, MVT::v64i8,  1}, // vpternlogq
1193       {TTI::SK_Select, MVT::v8f64,  1}, // vblendmpd
1194       {TTI::SK_Select, MVT::v16f32, 1}, // vblendmps
1195       {TTI::SK_Select, MVT::v8i64,  1}, // vblendmq
1196       {TTI::SK_Select, MVT::v16i32, 1}, // vblendmd
1197   };
1198 
1199   if (ST->hasAVX512())
1200     if (const auto *Entry = CostTableLookup(AVX512ShuffleTbl, Kind, LT.second))
1201       return LT.first * Entry->Cost;
1202 
1203   static const CostTblEntry AVX2ShuffleTbl[] = {
1204       {TTI::SK_Broadcast, MVT::v4f64, 1},  // vbroadcastpd
1205       {TTI::SK_Broadcast, MVT::v8f32, 1},  // vbroadcastps
1206       {TTI::SK_Broadcast, MVT::v4i64, 1},  // vpbroadcastq
1207       {TTI::SK_Broadcast, MVT::v8i32, 1},  // vpbroadcastd
1208       {TTI::SK_Broadcast, MVT::v16i16, 1}, // vpbroadcastw
1209       {TTI::SK_Broadcast, MVT::v32i8, 1},  // vpbroadcastb
1210 
1211       {TTI::SK_Reverse, MVT::v4f64, 1},  // vpermpd
1212       {TTI::SK_Reverse, MVT::v8f32, 1},  // vpermps
1213       {TTI::SK_Reverse, MVT::v4i64, 1},  // vpermq
1214       {TTI::SK_Reverse, MVT::v8i32, 1},  // vpermd
1215       {TTI::SK_Reverse, MVT::v16i16, 2}, // vperm2i128 + pshufb
1216       {TTI::SK_Reverse, MVT::v32i8, 2},  // vperm2i128 + pshufb
1217 
1218       {TTI::SK_Select, MVT::v16i16, 1}, // vpblendvb
1219       {TTI::SK_Select, MVT::v32i8, 1},  // vpblendvb
1220 
1221       {TTI::SK_PermuteSingleSrc, MVT::v4f64, 1},  // vpermpd
1222       {TTI::SK_PermuteSingleSrc, MVT::v8f32, 1},  // vpermps
1223       {TTI::SK_PermuteSingleSrc, MVT::v4i64, 1},  // vpermq
1224       {TTI::SK_PermuteSingleSrc, MVT::v8i32, 1},  // vpermd
1225       {TTI::SK_PermuteSingleSrc, MVT::v16i16, 4}, // vperm2i128 + 2*vpshufb
1226                                                   // + vpblendvb
1227       {TTI::SK_PermuteSingleSrc, MVT::v32i8, 4},  // vperm2i128 + 2*vpshufb
1228                                                   // + vpblendvb
1229 
1230       {TTI::SK_PermuteTwoSrc, MVT::v4f64, 3},  // 2*vpermpd + vblendpd
1231       {TTI::SK_PermuteTwoSrc, MVT::v8f32, 3},  // 2*vpermps + vblendps
1232       {TTI::SK_PermuteTwoSrc, MVT::v4i64, 3},  // 2*vpermq + vpblendd
1233       {TTI::SK_PermuteTwoSrc, MVT::v8i32, 3},  // 2*vpermd + vpblendd
1234       {TTI::SK_PermuteTwoSrc, MVT::v16i16, 7}, // 2*vperm2i128 + 4*vpshufb
1235                                                // + vpblendvb
1236       {TTI::SK_PermuteTwoSrc, MVT::v32i8, 7},  // 2*vperm2i128 + 4*vpshufb
1237                                                // + vpblendvb
1238   };
1239 
1240   if (ST->hasAVX2())
1241     if (const auto *Entry = CostTableLookup(AVX2ShuffleTbl, Kind, LT.second))
1242       return LT.first * Entry->Cost;
1243 
1244   static const CostTblEntry XOPShuffleTbl[] = {
1245       {TTI::SK_PermuteSingleSrc, MVT::v4f64, 2},  // vperm2f128 + vpermil2pd
1246       {TTI::SK_PermuteSingleSrc, MVT::v8f32, 2},  // vperm2f128 + vpermil2ps
1247       {TTI::SK_PermuteSingleSrc, MVT::v4i64, 2},  // vperm2f128 + vpermil2pd
1248       {TTI::SK_PermuteSingleSrc, MVT::v8i32, 2},  // vperm2f128 + vpermil2ps
1249       {TTI::SK_PermuteSingleSrc, MVT::v16i16, 4}, // vextractf128 + 2*vpperm
1250                                                   // + vinsertf128
1251       {TTI::SK_PermuteSingleSrc, MVT::v32i8, 4},  // vextractf128 + 2*vpperm
1252                                                   // + vinsertf128
1253 
1254       {TTI::SK_PermuteTwoSrc, MVT::v16i16, 9}, // 2*vextractf128 + 6*vpperm
1255                                                // + vinsertf128
1256       {TTI::SK_PermuteTwoSrc, MVT::v8i16, 1},  // vpperm
1257       {TTI::SK_PermuteTwoSrc, MVT::v32i8, 9},  // 2*vextractf128 + 6*vpperm
1258                                                // + vinsertf128
1259       {TTI::SK_PermuteTwoSrc, MVT::v16i8, 1},  // vpperm
1260   };
1261 
1262   if (ST->hasXOP())
1263     if (const auto *Entry = CostTableLookup(XOPShuffleTbl, Kind, LT.second))
1264       return LT.first * Entry->Cost;
1265 
1266   static const CostTblEntry AVX1ShuffleTbl[] = {
1267       {TTI::SK_Broadcast, MVT::v4f64, 2},  // vperm2f128 + vpermilpd
1268       {TTI::SK_Broadcast, MVT::v8f32, 2},  // vperm2f128 + vpermilps
1269       {TTI::SK_Broadcast, MVT::v4i64, 2},  // vperm2f128 + vpermilpd
1270       {TTI::SK_Broadcast, MVT::v8i32, 2},  // vperm2f128 + vpermilps
1271       {TTI::SK_Broadcast, MVT::v16i16, 3}, // vpshuflw + vpshufd + vinsertf128
1272       {TTI::SK_Broadcast, MVT::v32i8, 2},  // vpshufb + vinsertf128
1273 
1274       {TTI::SK_Reverse, MVT::v4f64, 2},  // vperm2f128 + vpermilpd
1275       {TTI::SK_Reverse, MVT::v8f32, 2},  // vperm2f128 + vpermilps
1276       {TTI::SK_Reverse, MVT::v4i64, 2},  // vperm2f128 + vpermilpd
1277       {TTI::SK_Reverse, MVT::v8i32, 2},  // vperm2f128 + vpermilps
1278       {TTI::SK_Reverse, MVT::v16i16, 4}, // vextractf128 + 2*pshufb
1279                                          // + vinsertf128
1280       {TTI::SK_Reverse, MVT::v32i8, 4},  // vextractf128 + 2*pshufb
1281                                          // + vinsertf128
1282 
1283       {TTI::SK_Select, MVT::v4i64, 1},  // vblendpd
1284       {TTI::SK_Select, MVT::v4f64, 1},  // vblendpd
1285       {TTI::SK_Select, MVT::v8i32, 1},  // vblendps
1286       {TTI::SK_Select, MVT::v8f32, 1},  // vblendps
1287       {TTI::SK_Select, MVT::v16i16, 3}, // vpand + vpandn + vpor
1288       {TTI::SK_Select, MVT::v32i8, 3},  // vpand + vpandn + vpor
1289 
1290       {TTI::SK_PermuteSingleSrc, MVT::v4f64, 2},  // vperm2f128 + vshufpd
1291       {TTI::SK_PermuteSingleSrc, MVT::v4i64, 2},  // vperm2f128 + vshufpd
1292       {TTI::SK_PermuteSingleSrc, MVT::v8f32, 4},  // 2*vperm2f128 + 2*vshufps
1293       {TTI::SK_PermuteSingleSrc, MVT::v8i32, 4},  // 2*vperm2f128 + 2*vshufps
1294       {TTI::SK_PermuteSingleSrc, MVT::v16i16, 8}, // vextractf128 + 4*pshufb
1295                                                   // + 2*por + vinsertf128
1296       {TTI::SK_PermuteSingleSrc, MVT::v32i8, 8},  // vextractf128 + 4*pshufb
1297                                                   // + 2*por + vinsertf128
1298 
1299       {TTI::SK_PermuteTwoSrc, MVT::v4f64, 3},   // 2*vperm2f128 + vshufpd
1300       {TTI::SK_PermuteTwoSrc, MVT::v4i64, 3},   // 2*vperm2f128 + vshufpd
1301       {TTI::SK_PermuteTwoSrc, MVT::v8f32, 4},   // 2*vperm2f128 + 2*vshufps
1302       {TTI::SK_PermuteTwoSrc, MVT::v8i32, 4},   // 2*vperm2f128 + 2*vshufps
1303       {TTI::SK_PermuteTwoSrc, MVT::v16i16, 15}, // 2*vextractf128 + 8*pshufb
1304                                                 // + 4*por + vinsertf128
1305       {TTI::SK_PermuteTwoSrc, MVT::v32i8, 15},  // 2*vextractf128 + 8*pshufb
1306                                                 // + 4*por + vinsertf128
1307   };
1308 
1309   if (ST->hasAVX())
1310     if (const auto *Entry = CostTableLookup(AVX1ShuffleTbl, Kind, LT.second))
1311       return LT.first * Entry->Cost;
1312 
1313   static const CostTblEntry SSE41ShuffleTbl[] = {
1314       {TTI::SK_Select, MVT::v2i64, 1}, // pblendw
1315       {TTI::SK_Select, MVT::v2f64, 1}, // movsd
1316       {TTI::SK_Select, MVT::v4i32, 1}, // pblendw
1317       {TTI::SK_Select, MVT::v4f32, 1}, // blendps
1318       {TTI::SK_Select, MVT::v8i16, 1}, // pblendw
1319       {TTI::SK_Select, MVT::v16i8, 1}  // pblendvb
1320   };
1321 
1322   if (ST->hasSSE41())
1323     if (const auto *Entry = CostTableLookup(SSE41ShuffleTbl, Kind, LT.second))
1324       return LT.first * Entry->Cost;
1325 
1326   static const CostTblEntry SSSE3ShuffleTbl[] = {
1327       {TTI::SK_Broadcast, MVT::v8i16, 1}, // pshufb
1328       {TTI::SK_Broadcast, MVT::v16i8, 1}, // pshufb
1329 
1330       {TTI::SK_Reverse, MVT::v8i16, 1}, // pshufb
1331       {TTI::SK_Reverse, MVT::v16i8, 1}, // pshufb
1332 
1333       {TTI::SK_Select, MVT::v8i16, 3}, // 2*pshufb + por
1334       {TTI::SK_Select, MVT::v16i8, 3}, // 2*pshufb + por
1335 
1336       {TTI::SK_PermuteSingleSrc, MVT::v8i16, 1}, // pshufb
1337       {TTI::SK_PermuteSingleSrc, MVT::v16i8, 1}, // pshufb
1338 
1339       {TTI::SK_PermuteTwoSrc, MVT::v8i16, 3}, // 2*pshufb + por
1340       {TTI::SK_PermuteTwoSrc, MVT::v16i8, 3}, // 2*pshufb + por
1341   };
1342 
1343   if (ST->hasSSSE3())
1344     if (const auto *Entry = CostTableLookup(SSSE3ShuffleTbl, Kind, LT.second))
1345       return LT.first * Entry->Cost;
1346 
1347   static const CostTblEntry SSE2ShuffleTbl[] = {
1348       {TTI::SK_Broadcast, MVT::v2f64, 1}, // shufpd
1349       {TTI::SK_Broadcast, MVT::v2i64, 1}, // pshufd
1350       {TTI::SK_Broadcast, MVT::v4i32, 1}, // pshufd
1351       {TTI::SK_Broadcast, MVT::v8i16, 2}, // pshuflw + pshufd
1352       {TTI::SK_Broadcast, MVT::v16i8, 3}, // unpck + pshuflw + pshufd
1353 
1354       {TTI::SK_Reverse, MVT::v2f64, 1}, // shufpd
1355       {TTI::SK_Reverse, MVT::v2i64, 1}, // pshufd
1356       {TTI::SK_Reverse, MVT::v4i32, 1}, // pshufd
1357       {TTI::SK_Reverse, MVT::v8i16, 3}, // pshuflw + pshufhw + pshufd
1358       {TTI::SK_Reverse, MVT::v16i8, 9}, // 2*pshuflw + 2*pshufhw
1359                                         // + 2*pshufd + 2*unpck + packus
1360 
1361       {TTI::SK_Select, MVT::v2i64, 1}, // movsd
1362       {TTI::SK_Select, MVT::v2f64, 1}, // movsd
1363       {TTI::SK_Select, MVT::v4i32, 2}, // 2*shufps
1364       {TTI::SK_Select, MVT::v8i16, 3}, // pand + pandn + por
1365       {TTI::SK_Select, MVT::v16i8, 3}, // pand + pandn + por
1366 
1367       {TTI::SK_PermuteSingleSrc, MVT::v2f64, 1}, // shufpd
1368       {TTI::SK_PermuteSingleSrc, MVT::v2i64, 1}, // pshufd
1369       {TTI::SK_PermuteSingleSrc, MVT::v4i32, 1}, // pshufd
1370       {TTI::SK_PermuteSingleSrc, MVT::v8i16, 5}, // 2*pshuflw + 2*pshufhw
1371                                                   // + pshufd/unpck
1372     { TTI::SK_PermuteSingleSrc, MVT::v16i8, 10 }, // 2*pshuflw + 2*pshufhw
1373                                                   // + 2*pshufd + 2*unpck + 2*packus
1374 
1375     { TTI::SK_PermuteTwoSrc,    MVT::v2f64,  1 }, // shufpd
1376     { TTI::SK_PermuteTwoSrc,    MVT::v2i64,  1 }, // shufpd
1377     { TTI::SK_PermuteTwoSrc,    MVT::v4i32,  2 }, // 2*{unpck,movsd,pshufd}
1378     { TTI::SK_PermuteTwoSrc,    MVT::v8i16,  8 }, // blend+permute
1379     { TTI::SK_PermuteTwoSrc,    MVT::v16i8, 13 }, // blend+permute
1380   };
1381 
1382   if (ST->hasSSE2())
1383     if (const auto *Entry = CostTableLookup(SSE2ShuffleTbl, Kind, LT.second))
1384       return LT.first * Entry->Cost;
1385 
1386   static const CostTblEntry SSE1ShuffleTbl[] = {
1387     { TTI::SK_Broadcast,        MVT::v4f32, 1 }, // shufps
1388     { TTI::SK_Reverse,          MVT::v4f32, 1 }, // shufps
1389     { TTI::SK_Select,           MVT::v4f32, 2 }, // 2*shufps
1390     { TTI::SK_PermuteSingleSrc, MVT::v4f32, 1 }, // shufps
1391     { TTI::SK_PermuteTwoSrc,    MVT::v4f32, 2 }, // 2*shufps
1392   };
1393 
1394   if (ST->hasSSE1())
1395     if (const auto *Entry = CostTableLookup(SSE1ShuffleTbl, Kind, LT.second))
1396       return LT.first * Entry->Cost;
1397 
1398   return BaseT::getShuffleCost(Kind, BaseTp, Mask, Index, SubTp);
1399 }
1400 
1401 InstructionCost X86TTIImpl::getCastInstrCost(unsigned Opcode, Type *Dst,
1402                                              Type *Src,
1403                                              TTI::CastContextHint CCH,
1404                                              TTI::TargetCostKind CostKind,
1405                                              const Instruction *I) {
1406   int ISD = TLI->InstructionOpcodeToISD(Opcode);
1407   assert(ISD && "Invalid opcode");
1408 
1409   // TODO: Allow non-throughput costs that aren't binary.
1410   auto AdjustCost = [&CostKind](InstructionCost Cost) -> InstructionCost {
1411     if (CostKind != TTI::TCK_RecipThroughput)
1412       return Cost == 0 ? 0 : 1;
1413     return Cost;
1414   };
1415 
1416   // FIXME: Need a better design of the cost table to handle non-simple types of
1417   // potential massive combinations (elem_num x src_type x dst_type).
1418 
1419   static const TypeConversionCostTblEntry AVX512BWConversionTbl[] {
1420     { ISD::SIGN_EXTEND, MVT::v32i16, MVT::v32i8, 1 },
1421     { ISD::ZERO_EXTEND, MVT::v32i16, MVT::v32i8, 1 },
1422 
1423     // Mask sign extend has an instruction.
1424     { ISD::SIGN_EXTEND, MVT::v2i8,   MVT::v2i1,  1 },
1425     { ISD::SIGN_EXTEND, MVT::v2i16,  MVT::v2i1,  1 },
1426     { ISD::SIGN_EXTEND, MVT::v4i8,   MVT::v4i1,  1 },
1427     { ISD::SIGN_EXTEND, MVT::v4i16,  MVT::v4i1,  1 },
1428     { ISD::SIGN_EXTEND, MVT::v8i8,   MVT::v8i1,  1 },
1429     { ISD::SIGN_EXTEND, MVT::v8i16,  MVT::v8i1,  1 },
1430     { ISD::SIGN_EXTEND, MVT::v16i8,  MVT::v16i1, 1 },
1431     { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i1, 1 },
1432     { ISD::SIGN_EXTEND, MVT::v32i8,  MVT::v32i1, 1 },
1433     { ISD::SIGN_EXTEND, MVT::v32i16, MVT::v32i1, 1 },
1434     { ISD::SIGN_EXTEND, MVT::v64i8,  MVT::v64i1, 1 },
1435 
1436     // Mask zero extend is a sext + shift.
1437     { ISD::ZERO_EXTEND, MVT::v2i8,   MVT::v2i1,  2 },
1438     { ISD::ZERO_EXTEND, MVT::v2i16,  MVT::v2i1,  2 },
1439     { ISD::ZERO_EXTEND, MVT::v4i8,   MVT::v4i1,  2 },
1440     { ISD::ZERO_EXTEND, MVT::v4i16,  MVT::v4i1,  2 },
1441     { ISD::ZERO_EXTEND, MVT::v8i8,   MVT::v8i1,  2 },
1442     { ISD::ZERO_EXTEND, MVT::v8i16,  MVT::v8i1,  2 },
1443     { ISD::ZERO_EXTEND, MVT::v16i8,  MVT::v16i1, 2 },
1444     { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i1, 2 },
1445     { ISD::ZERO_EXTEND, MVT::v32i8,  MVT::v32i1, 2 },
1446     { ISD::ZERO_EXTEND, MVT::v32i16, MVT::v32i1, 2 },
1447     { ISD::ZERO_EXTEND, MVT::v64i8,  MVT::v64i1, 2 },
1448 
1449     { ISD::TRUNCATE,    MVT::v32i8,  MVT::v32i16, 2 },
1450     { ISD::TRUNCATE,    MVT::v16i8,  MVT::v16i16, 2 }, // widen to zmm
1451     { ISD::TRUNCATE,    MVT::v2i1,   MVT::v2i8,   2 }, // widen to zmm
1452     { ISD::TRUNCATE,    MVT::v2i1,   MVT::v2i16,  2 }, // widen to zmm
1453     { ISD::TRUNCATE,    MVT::v4i1,   MVT::v4i8,   2 }, // widen to zmm
1454     { ISD::TRUNCATE,    MVT::v4i1,   MVT::v4i16,  2 }, // widen to zmm
1455     { ISD::TRUNCATE,    MVT::v8i1,   MVT::v8i8,   2 }, // widen to zmm
1456     { ISD::TRUNCATE,    MVT::v8i1,   MVT::v8i16,  2 }, // widen to zmm
1457     { ISD::TRUNCATE,    MVT::v16i1,  MVT::v16i8,  2 }, // widen to zmm
1458     { ISD::TRUNCATE,    MVT::v16i1,  MVT::v16i16, 2 }, // widen to zmm
1459     { ISD::TRUNCATE,    MVT::v32i1,  MVT::v32i8,  2 }, // widen to zmm
1460     { ISD::TRUNCATE,    MVT::v32i1,  MVT::v32i16, 2 },
1461     { ISD::TRUNCATE,    MVT::v64i1,  MVT::v64i8,  2 },
1462   };
1463 
1464   static const TypeConversionCostTblEntry AVX512DQConversionTbl[] = {
1465     { ISD::SINT_TO_FP,  MVT::v8f32,  MVT::v8i64,  1 },
1466     { ISD::SINT_TO_FP,  MVT::v8f64,  MVT::v8i64,  1 },
1467 
1468     { ISD::UINT_TO_FP,  MVT::v8f32,  MVT::v8i64,  1 },
1469     { ISD::UINT_TO_FP,  MVT::v8f64,  MVT::v8i64,  1 },
1470 
1471     { ISD::FP_TO_SINT,  MVT::v8i64,  MVT::v8f32,  1 },
1472     { ISD::FP_TO_SINT,  MVT::v8i64,  MVT::v8f64,  1 },
1473 
1474     { ISD::FP_TO_UINT,  MVT::v8i64,  MVT::v8f32,  1 },
1475     { ISD::FP_TO_UINT,  MVT::v8i64,  MVT::v8f64,  1 },
1476   };
1477 
1478   // TODO: For AVX512DQ + AVX512VL, we also have cheap casts for 128-bit and
1479   // 256-bit wide vectors.
1480 
1481   static const TypeConversionCostTblEntry AVX512FConversionTbl[] = {
1482     { ISD::FP_EXTEND, MVT::v8f64,   MVT::v8f32,  1 },
1483     { ISD::FP_EXTEND, MVT::v8f64,   MVT::v16f32, 3 },
1484     { ISD::FP_ROUND,  MVT::v8f32,   MVT::v8f64,  1 },
1485 
1486     { ISD::TRUNCATE,  MVT::v2i1,    MVT::v2i8,   3 }, // sext+vpslld+vptestmd
1487     { ISD::TRUNCATE,  MVT::v4i1,    MVT::v4i8,   3 }, // sext+vpslld+vptestmd
1488     { ISD::TRUNCATE,  MVT::v8i1,    MVT::v8i8,   3 }, // sext+vpslld+vptestmd
1489     { ISD::TRUNCATE,  MVT::v16i1,   MVT::v16i8,  3 }, // sext+vpslld+vptestmd
1490     { ISD::TRUNCATE,  MVT::v2i1,    MVT::v2i16,  3 }, // sext+vpsllq+vptestmq
1491     { ISD::TRUNCATE,  MVT::v4i1,    MVT::v4i16,  3 }, // sext+vpsllq+vptestmq
1492     { ISD::TRUNCATE,  MVT::v8i1,    MVT::v8i16,  3 }, // sext+vpsllq+vptestmq
1493     { ISD::TRUNCATE,  MVT::v16i1,   MVT::v16i16, 3 }, // sext+vpslld+vptestmd
1494     { ISD::TRUNCATE,  MVT::v2i1,    MVT::v2i32,  2 }, // zmm vpslld+vptestmd
1495     { ISD::TRUNCATE,  MVT::v4i1,    MVT::v4i32,  2 }, // zmm vpslld+vptestmd
1496     { ISD::TRUNCATE,  MVT::v8i1,    MVT::v8i32,  2 }, // zmm vpslld+vptestmd
1497     { ISD::TRUNCATE,  MVT::v16i1,   MVT::v16i32, 2 }, // vpslld+vptestmd
1498     { ISD::TRUNCATE,  MVT::v2i1,    MVT::v2i64,  2 }, // zmm vpsllq+vptestmq
1499     { ISD::TRUNCATE,  MVT::v4i1,    MVT::v4i64,  2 }, // zmm vpsllq+vptestmq
1500     { ISD::TRUNCATE,  MVT::v8i1,    MVT::v8i64,  2 }, // vpsllq+vptestmq
1501     { ISD::TRUNCATE,  MVT::v16i8,   MVT::v16i32, 2 },
1502     { ISD::TRUNCATE,  MVT::v16i16,  MVT::v16i32, 2 },
1503     { ISD::TRUNCATE,  MVT::v8i8,    MVT::v8i64,  2 },
1504     { ISD::TRUNCATE,  MVT::v8i16,   MVT::v8i64,  2 },
1505     { ISD::TRUNCATE,  MVT::v8i32,   MVT::v8i64,  1 },
1506     { ISD::TRUNCATE,  MVT::v4i32,   MVT::v4i64,  1 }, // zmm vpmovqd
1507     { ISD::TRUNCATE,  MVT::v16i8,   MVT::v16i64, 5 },// 2*vpmovqd+concat+vpmovdb
1508 
1509     { ISD::TRUNCATE,  MVT::v16i8,  MVT::v16i16,  3 }, // extend to v16i32
1510     { ISD::TRUNCATE,  MVT::v32i8,  MVT::v32i16,  8 },
1511 
1512     // Sign extend is zmm vpternlogd+vptruncdb.
1513     // Zero extend is zmm broadcast load+vptruncdw.
1514     { ISD::SIGN_EXTEND, MVT::v2i8,   MVT::v2i1,   3 },
1515     { ISD::ZERO_EXTEND, MVT::v2i8,   MVT::v2i1,   4 },
1516     { ISD::SIGN_EXTEND, MVT::v4i8,   MVT::v4i1,   3 },
1517     { ISD::ZERO_EXTEND, MVT::v4i8,   MVT::v4i1,   4 },
1518     { ISD::SIGN_EXTEND, MVT::v8i8,   MVT::v8i1,   3 },
1519     { ISD::ZERO_EXTEND, MVT::v8i8,   MVT::v8i1,   4 },
1520     { ISD::SIGN_EXTEND, MVT::v16i8,  MVT::v16i1,  3 },
1521     { ISD::ZERO_EXTEND, MVT::v16i8,  MVT::v16i1,  4 },
1522 
1523     // Sign extend is zmm vpternlogd+vptruncdw.
1524     // Zero extend is zmm vpternlogd+vptruncdw+vpsrlw.
1525     { ISD::SIGN_EXTEND, MVT::v2i16,  MVT::v2i1,   3 },
1526     { ISD::ZERO_EXTEND, MVT::v2i16,  MVT::v2i1,   4 },
1527     { ISD::SIGN_EXTEND, MVT::v4i16,  MVT::v4i1,   3 },
1528     { ISD::ZERO_EXTEND, MVT::v4i16,  MVT::v4i1,   4 },
1529     { ISD::SIGN_EXTEND, MVT::v8i16,  MVT::v8i1,   3 },
1530     { ISD::ZERO_EXTEND, MVT::v8i16,  MVT::v8i1,   4 },
1531     { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i1,  3 },
1532     { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i1,  4 },
1533 
1534     { ISD::SIGN_EXTEND, MVT::v2i32,  MVT::v2i1,   1 }, // zmm vpternlogd
1535     { ISD::ZERO_EXTEND, MVT::v2i32,  MVT::v2i1,   2 }, // zmm vpternlogd+psrld
1536     { ISD::SIGN_EXTEND, MVT::v4i32,  MVT::v4i1,   1 }, // zmm vpternlogd
1537     { ISD::ZERO_EXTEND, MVT::v4i32,  MVT::v4i1,   2 }, // zmm vpternlogd+psrld
1538     { ISD::SIGN_EXTEND, MVT::v8i32,  MVT::v8i1,   1 }, // zmm vpternlogd
1539     { ISD::ZERO_EXTEND, MVT::v8i32,  MVT::v8i1,   2 }, // zmm vpternlogd+psrld
1540     { ISD::SIGN_EXTEND, MVT::v2i64,  MVT::v2i1,   1 }, // zmm vpternlogq
1541     { ISD::ZERO_EXTEND, MVT::v2i64,  MVT::v2i1,   2 }, // zmm vpternlogq+psrlq
1542     { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v4i1,   1 }, // zmm vpternlogq
1543     { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v4i1,   2 }, // zmm vpternlogq+psrlq
1544 
1545     { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i1,  1 }, // vpternlogd
1546     { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i1,  2 }, // vpternlogd+psrld
1547     { ISD::SIGN_EXTEND, MVT::v8i64,  MVT::v8i1,   1 }, // vpternlogq
1548     { ISD::ZERO_EXTEND, MVT::v8i64,  MVT::v8i1,   2 }, // vpternlogq+psrlq
1549 
1550     { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i8,  1 },
1551     { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i8,  1 },
1552     { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i16, 1 },
1553     { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i16, 1 },
1554     { ISD::SIGN_EXTEND, MVT::v8i64,  MVT::v8i8,   1 },
1555     { ISD::ZERO_EXTEND, MVT::v8i64,  MVT::v8i8,   1 },
1556     { ISD::SIGN_EXTEND, MVT::v8i64,  MVT::v8i16,  1 },
1557     { ISD::ZERO_EXTEND, MVT::v8i64,  MVT::v8i16,  1 },
1558     { ISD::SIGN_EXTEND, MVT::v8i64,  MVT::v8i32,  1 },
1559     { ISD::ZERO_EXTEND, MVT::v8i64,  MVT::v8i32,  1 },
1560 
1561     { ISD::SIGN_EXTEND, MVT::v32i16, MVT::v32i8, 3 }, // FIXME: May not be right
1562     { ISD::ZERO_EXTEND, MVT::v32i16, MVT::v32i8, 3 }, // FIXME: May not be right
1563 
1564     { ISD::SINT_TO_FP,  MVT::v8f64,  MVT::v8i1,   4 },
1565     { ISD::SINT_TO_FP,  MVT::v16f32, MVT::v16i1,  3 },
1566     { ISD::SINT_TO_FP,  MVT::v8f64,  MVT::v8i8,   2 },
1567     { ISD::SINT_TO_FP,  MVT::v16f32, MVT::v16i8,  2 },
1568     { ISD::SINT_TO_FP,  MVT::v8f64,  MVT::v8i16,  2 },
1569     { ISD::SINT_TO_FP,  MVT::v16f32, MVT::v16i16, 2 },
1570     { ISD::SINT_TO_FP,  MVT::v16f32, MVT::v16i32, 1 },
1571     { ISD::SINT_TO_FP,  MVT::v8f64,  MVT::v8i32,  1 },
1572 
1573     { ISD::UINT_TO_FP,  MVT::v8f64,  MVT::v8i1,   4 },
1574     { ISD::UINT_TO_FP,  MVT::v16f32, MVT::v16i1,  3 },
1575     { ISD::UINT_TO_FP,  MVT::v8f64,  MVT::v8i8,   2 },
1576     { ISD::UINT_TO_FP,  MVT::v16f32, MVT::v16i8,  2 },
1577     { ISD::UINT_TO_FP,  MVT::v8f64,  MVT::v8i16,  2 },
1578     { ISD::UINT_TO_FP,  MVT::v16f32, MVT::v16i16, 2 },
1579     { ISD::UINT_TO_FP,  MVT::v8f64,  MVT::v8i32,  1 },
1580     { ISD::UINT_TO_FP,  MVT::v16f32, MVT::v16i32, 1 },
1581     { ISD::UINT_TO_FP,  MVT::v8f32,  MVT::v8i64, 26 },
1582     { ISD::UINT_TO_FP,  MVT::v8f64,  MVT::v8i64,  5 },
1583 
1584     { ISD::FP_TO_SINT,  MVT::v8i8,   MVT::v8f64,  3 },
1585     { ISD::FP_TO_SINT,  MVT::v8i16,  MVT::v8f64,  3 },
1586     { ISD::FP_TO_SINT,  MVT::v16i8,  MVT::v16f32, 3 },
1587     { ISD::FP_TO_SINT,  MVT::v16i16, MVT::v16f32, 3 },
1588 
1589     { ISD::FP_TO_UINT,  MVT::v8i32,  MVT::v8f64,  1 },
1590     { ISD::FP_TO_UINT,  MVT::v8i16,  MVT::v8f64,  3 },
1591     { ISD::FP_TO_UINT,  MVT::v8i8,   MVT::v8f64,  3 },
1592     { ISD::FP_TO_UINT,  MVT::v16i32, MVT::v16f32, 1 },
1593     { ISD::FP_TO_UINT,  MVT::v16i16, MVT::v16f32, 3 },
1594     { ISD::FP_TO_UINT,  MVT::v16i8,  MVT::v16f32, 3 },
1595   };
1596 
1597   static const TypeConversionCostTblEntry AVX512BWVLConversionTbl[] {
1598     // Mask sign extend has an instruction.
1599     { ISD::SIGN_EXTEND, MVT::v2i8,   MVT::v2i1,  1 },
1600     { ISD::SIGN_EXTEND, MVT::v2i16,  MVT::v2i1,  1 },
1601     { ISD::SIGN_EXTEND, MVT::v4i8,   MVT::v4i1,  1 },
1602     { ISD::SIGN_EXTEND, MVT::v4i16,  MVT::v4i1,  1 },
1603     { ISD::SIGN_EXTEND, MVT::v8i8,   MVT::v8i1,  1 },
1604     { ISD::SIGN_EXTEND, MVT::v8i16,  MVT::v8i1,  1 },
1605     { ISD::SIGN_EXTEND, MVT::v16i8,  MVT::v16i1, 1 },
1606     { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i1, 1 },
1607     { ISD::SIGN_EXTEND, MVT::v32i8,  MVT::v32i1, 1 },
1608 
1609     // Mask zero extend is a sext + shift.
1610     { ISD::ZERO_EXTEND, MVT::v2i8,   MVT::v2i1,  2 },
1611     { ISD::ZERO_EXTEND, MVT::v2i16,  MVT::v2i1,  2 },
1612     { ISD::ZERO_EXTEND, MVT::v4i8,   MVT::v4i1,  2 },
1613     { ISD::ZERO_EXTEND, MVT::v4i16,  MVT::v4i1,  2 },
1614     { ISD::ZERO_EXTEND, MVT::v8i8,   MVT::v8i1,  2 },
1615     { ISD::ZERO_EXTEND, MVT::v8i16,  MVT::v8i1,  2 },
1616     { ISD::ZERO_EXTEND, MVT::v16i8,  MVT::v16i1, 2 },
1617     { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i1, 2 },
1618     { ISD::ZERO_EXTEND, MVT::v32i8,  MVT::v32i1, 2 },
1619 
1620     { ISD::TRUNCATE,    MVT::v16i8,  MVT::v16i16, 2 },
1621     { ISD::TRUNCATE,    MVT::v2i1,   MVT::v2i8,   2 }, // vpsllw+vptestmb
1622     { ISD::TRUNCATE,    MVT::v2i1,   MVT::v2i16,  2 }, // vpsllw+vptestmw
1623     { ISD::TRUNCATE,    MVT::v4i1,   MVT::v4i8,   2 }, // vpsllw+vptestmb
1624     { ISD::TRUNCATE,    MVT::v4i1,   MVT::v4i16,  2 }, // vpsllw+vptestmw
1625     { ISD::TRUNCATE,    MVT::v8i1,   MVT::v8i8,   2 }, // vpsllw+vptestmb
1626     { ISD::TRUNCATE,    MVT::v8i1,   MVT::v8i16,  2 }, // vpsllw+vptestmw
1627     { ISD::TRUNCATE,    MVT::v16i1,  MVT::v16i8,  2 }, // vpsllw+vptestmb
1628     { ISD::TRUNCATE,    MVT::v16i1,  MVT::v16i16, 2 }, // vpsllw+vptestmw
1629     { ISD::TRUNCATE,    MVT::v32i1,  MVT::v32i8,  2 }, // vpsllw+vptestmb
1630   };
1631 
1632   static const TypeConversionCostTblEntry AVX512DQVLConversionTbl[] = {
1633     { ISD::SINT_TO_FP,  MVT::v2f32,  MVT::v2i64,  1 },
1634     { ISD::SINT_TO_FP,  MVT::v2f64,  MVT::v2i64,  1 },
1635     { ISD::SINT_TO_FP,  MVT::v4f32,  MVT::v4i64,  1 },
1636     { ISD::SINT_TO_FP,  MVT::v4f64,  MVT::v4i64,  1 },
1637 
1638     { ISD::UINT_TO_FP,  MVT::v2f32,  MVT::v2i64,  1 },
1639     { ISD::UINT_TO_FP,  MVT::v2f64,  MVT::v2i64,  1 },
1640     { ISD::UINT_TO_FP,  MVT::v4f32,  MVT::v4i64,  1 },
1641     { ISD::UINT_TO_FP,  MVT::v4f64,  MVT::v4i64,  1 },
1642 
1643     { ISD::FP_TO_SINT,  MVT::v2i64,  MVT::v2f32,  1 },
1644     { ISD::FP_TO_SINT,  MVT::v4i64,  MVT::v4f32,  1 },
1645     { ISD::FP_TO_SINT,  MVT::v2i64,  MVT::v2f64,  1 },
1646     { ISD::FP_TO_SINT,  MVT::v4i64,  MVT::v4f64,  1 },
1647 
1648     { ISD::FP_TO_UINT,  MVT::v2i64,  MVT::v2f32,  1 },
1649     { ISD::FP_TO_UINT,  MVT::v4i64,  MVT::v4f32,  1 },
1650     { ISD::FP_TO_UINT,  MVT::v2i64,  MVT::v2f64,  1 },
1651     { ISD::FP_TO_UINT,  MVT::v4i64,  MVT::v4f64,  1 },
1652   };
1653 
1654   static const TypeConversionCostTblEntry AVX512VLConversionTbl[] = {
1655     { ISD::TRUNCATE,  MVT::v2i1,    MVT::v2i8,   3 }, // sext+vpslld+vptestmd
1656     { ISD::TRUNCATE,  MVT::v4i1,    MVT::v4i8,   3 }, // sext+vpslld+vptestmd
1657     { ISD::TRUNCATE,  MVT::v8i1,    MVT::v8i8,   3 }, // sext+vpslld+vptestmd
1658     { ISD::TRUNCATE,  MVT::v16i1,   MVT::v16i8,  8 }, // split+2*v8i8
1659     { ISD::TRUNCATE,  MVT::v2i1,    MVT::v2i16,  3 }, // sext+vpsllq+vptestmq
1660     { ISD::TRUNCATE,  MVT::v4i1,    MVT::v4i16,  3 }, // sext+vpsllq+vptestmq
1661     { ISD::TRUNCATE,  MVT::v8i1,    MVT::v8i16,  3 }, // sext+vpsllq+vptestmq
1662     { ISD::TRUNCATE,  MVT::v16i1,   MVT::v16i16, 8 }, // split+2*v8i16
1663     { ISD::TRUNCATE,  MVT::v2i1,    MVT::v2i32,  2 }, // vpslld+vptestmd
1664     { ISD::TRUNCATE,  MVT::v4i1,    MVT::v4i32,  2 }, // vpslld+vptestmd
1665     { ISD::TRUNCATE,  MVT::v8i1,    MVT::v8i32,  2 }, // vpslld+vptestmd
1666     { ISD::TRUNCATE,  MVT::v2i1,    MVT::v2i64,  2 }, // vpsllq+vptestmq
1667     { ISD::TRUNCATE,  MVT::v4i1,    MVT::v4i64,  2 }, // vpsllq+vptestmq
1668     { ISD::TRUNCATE,  MVT::v4i32,   MVT::v4i64,  1 }, // vpmovqd
1669 
1670     // sign extend is vpcmpeq+maskedmove+vpmovdw+vpacksswb
1671     // zero extend is vpcmpeq+maskedmove+vpmovdw+vpsrlw+vpackuswb
1672     { ISD::SIGN_EXTEND, MVT::v2i8,   MVT::v2i1,   5 },
1673     { ISD::ZERO_EXTEND, MVT::v2i8,   MVT::v2i1,   6 },
1674     { ISD::SIGN_EXTEND, MVT::v4i8,   MVT::v4i1,   5 },
1675     { ISD::ZERO_EXTEND, MVT::v4i8,   MVT::v4i1,   6 },
1676     { ISD::SIGN_EXTEND, MVT::v8i8,   MVT::v8i1,   5 },
1677     { ISD::ZERO_EXTEND, MVT::v8i8,   MVT::v8i1,   6 },
1678     { ISD::SIGN_EXTEND, MVT::v16i8,  MVT::v16i1, 10 },
1679     { ISD::ZERO_EXTEND, MVT::v16i8,  MVT::v16i1, 12 },
1680 
1681     // sign extend is vpcmpeq+maskedmove+vpmovdw
1682     // zero extend is vpcmpeq+maskedmove+vpmovdw+vpsrlw
1683     { ISD::SIGN_EXTEND, MVT::v2i16,  MVT::v2i1,   4 },
1684     { ISD::ZERO_EXTEND, MVT::v2i16,  MVT::v2i1,   5 },
1685     { ISD::SIGN_EXTEND, MVT::v4i16,  MVT::v4i1,   4 },
1686     { ISD::ZERO_EXTEND, MVT::v4i16,  MVT::v4i1,   5 },
1687     { ISD::SIGN_EXTEND, MVT::v8i16,  MVT::v8i1,   4 },
1688     { ISD::ZERO_EXTEND, MVT::v8i16,  MVT::v8i1,   5 },
1689     { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i1, 10 },
1690     { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i1, 12 },
1691 
1692     { ISD::SIGN_EXTEND, MVT::v2i32,  MVT::v2i1,   1 }, // vpternlogd
1693     { ISD::ZERO_EXTEND, MVT::v2i32,  MVT::v2i1,   2 }, // vpternlogd+psrld
1694     { ISD::SIGN_EXTEND, MVT::v4i32,  MVT::v4i1,   1 }, // vpternlogd
1695     { ISD::ZERO_EXTEND, MVT::v4i32,  MVT::v4i1,   2 }, // vpternlogd+psrld
1696     { ISD::SIGN_EXTEND, MVT::v8i32,  MVT::v8i1,   1 }, // vpternlogd
1697     { ISD::ZERO_EXTEND, MVT::v8i32,  MVT::v8i1,   2 }, // vpternlogd+psrld
1698     { ISD::SIGN_EXTEND, MVT::v2i64,  MVT::v2i1,   1 }, // vpternlogq
1699     { ISD::ZERO_EXTEND, MVT::v2i64,  MVT::v2i1,   2 }, // vpternlogq+psrlq
1700     { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v4i1,   1 }, // vpternlogq
1701     { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v4i1,   2 }, // vpternlogq+psrlq
1702 
1703     { ISD::UINT_TO_FP,  MVT::v2f64,  MVT::v2i8,   2 },
1704     { ISD::UINT_TO_FP,  MVT::v4f64,  MVT::v4i8,   2 },
1705     { ISD::UINT_TO_FP,  MVT::v8f32,  MVT::v8i8,   2 },
1706     { ISD::UINT_TO_FP,  MVT::v2f64,  MVT::v2i16,  5 },
1707     { ISD::UINT_TO_FP,  MVT::v4f64,  MVT::v4i16,  2 },
1708     { ISD::UINT_TO_FP,  MVT::v8f32,  MVT::v8i16,  2 },
1709     { ISD::UINT_TO_FP,  MVT::v2f32,  MVT::v2i32,  2 },
1710     { ISD::UINT_TO_FP,  MVT::v2f64,  MVT::v2i32,  1 },
1711     { ISD::UINT_TO_FP,  MVT::v4f32,  MVT::v4i32,  1 },
1712     { ISD::UINT_TO_FP,  MVT::v4f64,  MVT::v4i32,  1 },
1713     { ISD::UINT_TO_FP,  MVT::v8f32,  MVT::v8i32,  1 },
1714     { ISD::UINT_TO_FP,  MVT::v2f32,  MVT::v2i64,  5 },
1715     { ISD::UINT_TO_FP,  MVT::v2f64,  MVT::v2i64,  5 },
1716     { ISD::UINT_TO_FP,  MVT::v4f64,  MVT::v4i64,  5 },
1717 
1718     { ISD::UINT_TO_FP,  MVT::f32,    MVT::i64,    1 },
1719     { ISD::UINT_TO_FP,  MVT::f64,    MVT::i64,    1 },
1720 
1721     { ISD::FP_TO_SINT,  MVT::v8i8,   MVT::v8f32,  3 },
1722     { ISD::FP_TO_UINT,  MVT::v8i8,   MVT::v8f32,  3 },
1723 
1724     { ISD::FP_TO_UINT,  MVT::i64,    MVT::f32,    1 },
1725     { ISD::FP_TO_UINT,  MVT::i64,    MVT::f64,    1 },
1726 
1727     { ISD::FP_TO_UINT,  MVT::v2i32,  MVT::v2f32,  1 },
1728     { ISD::FP_TO_UINT,  MVT::v4i32,  MVT::v4f32,  1 },
1729     { ISD::FP_TO_UINT,  MVT::v2i32,  MVT::v2f64,  1 },
1730     { ISD::FP_TO_UINT,  MVT::v4i32,  MVT::v4f64,  1 },
1731     { ISD::FP_TO_UINT,  MVT::v8i32,  MVT::v8f32,  1 },
1732   };
1733 
1734   static const TypeConversionCostTblEntry AVX2ConversionTbl[] = {
1735     { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v4i1,   3 },
1736     { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v4i1,   3 },
1737     { ISD::SIGN_EXTEND, MVT::v8i32,  MVT::v8i1,   3 },
1738     { ISD::ZERO_EXTEND, MVT::v8i32,  MVT::v8i1,   3 },
1739     { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v4i8,   1 },
1740     { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v4i8,   1 },
1741     { ISD::SIGN_EXTEND, MVT::v8i32,  MVT::v8i8,   1 },
1742     { ISD::ZERO_EXTEND, MVT::v8i32,  MVT::v8i8,   1 },
1743     { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i1,  1 },
1744     { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i1,  1 },
1745     { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i8,  1 },
1746     { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i8,  1 },
1747     { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v4i16,  1 },
1748     { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v4i16,  1 },
1749     { ISD::SIGN_EXTEND, MVT::v8i32,  MVT::v8i16,  1 },
1750     { ISD::ZERO_EXTEND, MVT::v8i32,  MVT::v8i16,  1 },
1751     { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v4i32,  1 },
1752     { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v4i32,  1 },
1753     { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i16, 3 },
1754     { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i16, 3 },
1755 
1756     { ISD::TRUNCATE,    MVT::v4i32,  MVT::v4i64,  2 },
1757     { ISD::TRUNCATE,    MVT::v8i1,   MVT::v8i32,  2 },
1758 
1759     { ISD::TRUNCATE,    MVT::v4i8,   MVT::v4i64,  2 },
1760     { ISD::TRUNCATE,    MVT::v4i16,  MVT::v4i64,  2 },
1761     { ISD::TRUNCATE,    MVT::v8i8,   MVT::v8i32,  2 },
1762     { ISD::TRUNCATE,    MVT::v8i16,  MVT::v8i32,  2 },
1763 
1764     { ISD::FP_EXTEND,   MVT::v8f64,  MVT::v8f32,  3 },
1765     { ISD::FP_ROUND,    MVT::v8f32,  MVT::v8f64,  3 },
1766 
1767     { ISD::UINT_TO_FP,  MVT::v8f32,  MVT::v8i32,  8 },
1768   };
1769 
1770   static const TypeConversionCostTblEntry AVXConversionTbl[] = {
1771     { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v4i1,  6 },
1772     { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v4i1,  4 },
1773     { ISD::SIGN_EXTEND, MVT::v8i32,  MVT::v8i1,  7 },
1774     { ISD::ZERO_EXTEND, MVT::v8i32,  MVT::v8i1,  4 },
1775     { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v4i8,  4 },
1776     { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v4i8,  4 },
1777     { ISD::SIGN_EXTEND, MVT::v8i32,  MVT::v8i8,  4 },
1778     { ISD::ZERO_EXTEND, MVT::v8i32,  MVT::v8i8,  4 },
1779     { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i1, 4 },
1780     { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i1, 4 },
1781     { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i8, 4 },
1782     { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i8, 4 },
1783     { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v4i16, 4 },
1784     { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v4i16, 3 },
1785     { ISD::SIGN_EXTEND, MVT::v8i32,  MVT::v8i16, 4 },
1786     { ISD::ZERO_EXTEND, MVT::v8i32,  MVT::v8i16, 4 },
1787     { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v4i32, 4 },
1788     { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v4i32, 4 },
1789 
1790     { ISD::TRUNCATE,    MVT::v4i1,  MVT::v4i64,  4 },
1791     { ISD::TRUNCATE,    MVT::v8i1,  MVT::v8i32,  5 },
1792     { ISD::TRUNCATE,    MVT::v16i1, MVT::v16i16, 4 },
1793     { ISD::TRUNCATE,    MVT::v8i1,  MVT::v8i64,  9 },
1794     { ISD::TRUNCATE,    MVT::v16i1, MVT::v16i64, 11 },
1795 
1796     { ISD::TRUNCATE,    MVT::v16i8, MVT::v16i16, 4 },
1797     { ISD::TRUNCATE,    MVT::v8i8,  MVT::v8i32,  4 },
1798     { ISD::TRUNCATE,    MVT::v8i16, MVT::v8i32,  5 },
1799     { ISD::TRUNCATE,    MVT::v4i8,  MVT::v4i64,  4 },
1800     { ISD::TRUNCATE,    MVT::v4i16, MVT::v4i64,  4 },
1801     { ISD::TRUNCATE,    MVT::v4i32, MVT::v4i64,  2 },
1802     { ISD::TRUNCATE,    MVT::v8i8,  MVT::v8i64, 11 },
1803     { ISD::TRUNCATE,    MVT::v8i16, MVT::v8i64,  9 },
1804     { ISD::TRUNCATE,    MVT::v8i32, MVT::v8i64,  3 },
1805     { ISD::TRUNCATE,    MVT::v16i8, MVT::v16i64, 11 },
1806 
1807     { ISD::SINT_TO_FP,  MVT::v4f32, MVT::v4i1,  3 },
1808     { ISD::SINT_TO_FP,  MVT::v4f64, MVT::v4i1,  3 },
1809     { ISD::SINT_TO_FP,  MVT::v8f32, MVT::v8i1,  8 },
1810     { ISD::SINT_TO_FP,  MVT::v4f32, MVT::v4i8,  3 },
1811     { ISD::SINT_TO_FP,  MVT::v4f64, MVT::v4i8,  3 },
1812     { ISD::SINT_TO_FP,  MVT::v8f32, MVT::v8i8,  8 },
1813     { ISD::SINT_TO_FP,  MVT::v4f32, MVT::v4i16, 3 },
1814     { ISD::SINT_TO_FP,  MVT::v4f64, MVT::v4i16, 3 },
1815     { ISD::SINT_TO_FP,  MVT::v8f32, MVT::v8i16, 5 },
1816     { ISD::SINT_TO_FP,  MVT::v4f32, MVT::v4i32, 1 },
1817     { ISD::SINT_TO_FP,  MVT::v4f64, MVT::v4i32, 1 },
1818     { ISD::SINT_TO_FP,  MVT::v8f32, MVT::v8i32, 1 },
1819 
1820     { ISD::UINT_TO_FP,  MVT::v4f32, MVT::v4i1,  7 },
1821     { ISD::UINT_TO_FP,  MVT::v4f64, MVT::v4i1,  7 },
1822     { ISD::UINT_TO_FP,  MVT::v8f32, MVT::v8i1,  6 },
1823     { ISD::UINT_TO_FP,  MVT::v4f32, MVT::v4i8,  2 },
1824     { ISD::UINT_TO_FP,  MVT::v4f64, MVT::v4i8,  2 },
1825     { ISD::UINT_TO_FP,  MVT::v8f32, MVT::v8i8,  5 },
1826     { ISD::UINT_TO_FP,  MVT::v4f32, MVT::v4i16, 2 },
1827     { ISD::UINT_TO_FP,  MVT::v4f64, MVT::v4i16, 2 },
1828     { ISD::UINT_TO_FP,  MVT::v8f32, MVT::v8i16, 5 },
1829     { ISD::UINT_TO_FP,  MVT::v2f64, MVT::v2i32, 6 },
1830     { ISD::UINT_TO_FP,  MVT::v4f32, MVT::v4i32, 6 },
1831     { ISD::UINT_TO_FP,  MVT::v4f64, MVT::v4i32, 6 },
1832     { ISD::UINT_TO_FP,  MVT::v8f32, MVT::v8i32, 9 },
1833     { ISD::UINT_TO_FP,  MVT::v2f64, MVT::v2i64, 5 },
1834     { ISD::UINT_TO_FP,  MVT::v4f64, MVT::v4i64, 6 },
1835     // The generic code to compute the scalar overhead is currently broken.
1836     // Workaround this limitation by estimating the scalarization overhead
1837     // here. We have roughly 10 instructions per scalar element.
1838     // Multiply that by the vector width.
1839     // FIXME: remove that when PR19268 is fixed.
1840     { ISD::SINT_TO_FP,  MVT::v4f64, MVT::v4i64, 13 },
1841     { ISD::SINT_TO_FP,  MVT::v4f64, MVT::v4i64, 13 },
1842 
1843     { ISD::FP_TO_SINT,  MVT::v8i8,  MVT::v8f32, 4 },
1844     { ISD::FP_TO_SINT,  MVT::v4i8,  MVT::v4f64, 3 },
1845     { ISD::FP_TO_SINT,  MVT::v4i16, MVT::v4f64, 2 },
1846     { ISD::FP_TO_SINT,  MVT::v8i16, MVT::v8f32, 3 },
1847 
1848     { ISD::FP_TO_UINT,  MVT::v4i8,  MVT::v4f64, 3 },
1849     { ISD::FP_TO_UINT,  MVT::v4i16, MVT::v4f64, 2 },
1850     { ISD::FP_TO_UINT,  MVT::v8i8,  MVT::v8f32, 4 },
1851     { ISD::FP_TO_UINT,  MVT::v8i16, MVT::v8f32, 3 },
1852     // This node is expanded into scalarized operations but BasicTTI is overly
1853     // optimistic estimating its cost.  It computes 3 per element (one
1854     // vector-extract, one scalar conversion and one vector-insert).  The
1855     // problem is that the inserts form a read-modify-write chain so latency
1856     // should be factored in too.  Inflating the cost per element by 1.
1857     { ISD::FP_TO_UINT,  MVT::v8i32, MVT::v8f32, 8*4 },
1858     { ISD::FP_TO_UINT,  MVT::v4i32, MVT::v4f64, 4*4 },
1859 
1860     { ISD::FP_EXTEND,   MVT::v4f64,  MVT::v4f32,  1 },
1861     { ISD::FP_ROUND,    MVT::v4f32,  MVT::v4f64,  1 },
1862   };
1863 
1864   static const TypeConversionCostTblEntry SSE41ConversionTbl[] = {
1865     { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i8,    2 },
1866     { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i8,    2 },
1867     { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i16,   2 },
1868     { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i16,   2 },
1869     { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i32,   2 },
1870     { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i32,   2 },
1871 
1872     { ISD::ZERO_EXTEND, MVT::v4i16,  MVT::v4i8,   1 },
1873     { ISD::SIGN_EXTEND, MVT::v4i16,  MVT::v4i8,   2 },
1874     { ISD::ZERO_EXTEND, MVT::v4i32,  MVT::v4i8,   1 },
1875     { ISD::SIGN_EXTEND, MVT::v4i32,  MVT::v4i8,   1 },
1876     { ISD::ZERO_EXTEND, MVT::v8i16,  MVT::v8i8,   1 },
1877     { ISD::SIGN_EXTEND, MVT::v8i16,  MVT::v8i8,   1 },
1878     { ISD::ZERO_EXTEND, MVT::v8i32,  MVT::v8i8,   2 },
1879     { ISD::SIGN_EXTEND, MVT::v8i32,  MVT::v8i8,   2 },
1880     { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i8,  2 },
1881     { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i8,  2 },
1882     { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i8,  4 },
1883     { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i8,  4 },
1884     { ISD::ZERO_EXTEND, MVT::v4i32,  MVT::v4i16,  1 },
1885     { ISD::SIGN_EXTEND, MVT::v4i32,  MVT::v4i16,  1 },
1886     { ISD::ZERO_EXTEND, MVT::v8i32,  MVT::v8i16,  2 },
1887     { ISD::SIGN_EXTEND, MVT::v8i32,  MVT::v8i16,  2 },
1888     { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i16, 4 },
1889     { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i16, 4 },
1890 
1891     // These truncates end up widening elements.
1892     { ISD::TRUNCATE,    MVT::v2i1,   MVT::v2i8,   1 }, // PMOVXZBQ
1893     { ISD::TRUNCATE,    MVT::v2i1,   MVT::v2i16,  1 }, // PMOVXZWQ
1894     { ISD::TRUNCATE,    MVT::v4i1,   MVT::v4i8,   1 }, // PMOVXZBD
1895 
1896     { ISD::TRUNCATE,    MVT::v2i8,   MVT::v2i16,  1 },
1897     { ISD::TRUNCATE,    MVT::v4i8,   MVT::v4i16,  1 },
1898     { ISD::TRUNCATE,    MVT::v8i8,   MVT::v8i16,  1 },
1899     { ISD::TRUNCATE,    MVT::v4i8,   MVT::v4i32,  1 },
1900     { ISD::TRUNCATE,    MVT::v4i16,  MVT::v4i32,  1 },
1901     { ISD::TRUNCATE,    MVT::v8i8,   MVT::v8i32,  3 },
1902     { ISD::TRUNCATE,    MVT::v8i16,  MVT::v8i32,  3 },
1903     { ISD::TRUNCATE,    MVT::v16i16, MVT::v16i32, 6 },
1904     { ISD::TRUNCATE,    MVT::v2i8,   MVT::v2i64,  1 }, // PSHUFB
1905 
1906     { ISD::UINT_TO_FP,  MVT::f32,    MVT::i64,    4 },
1907     { ISD::UINT_TO_FP,  MVT::f64,    MVT::i64,    4 },
1908 
1909     { ISD::FP_TO_SINT,  MVT::v2i8,   MVT::v2f32,  3 },
1910     { ISD::FP_TO_SINT,  MVT::v2i8,   MVT::v2f64,  3 },
1911 
1912     { ISD::FP_TO_UINT,  MVT::v2i8,   MVT::v2f32,  3 },
1913     { ISD::FP_TO_UINT,  MVT::v2i8,   MVT::v2f64,  3 },
1914     { ISD::FP_TO_UINT,  MVT::v4i16,  MVT::v4f32,  2 },
1915   };
1916 
1917   static const TypeConversionCostTblEntry SSE2ConversionTbl[] = {
1918     // These are somewhat magic numbers justified by looking at the output of
1919     // Intel's IACA, running some kernels and making sure when we take
1920     // legalization into account the throughput will be overestimated.
1921     { ISD::SINT_TO_FP, MVT::v4f32, MVT::v16i8, 8 },
1922     { ISD::SINT_TO_FP, MVT::v2f64, MVT::v16i8, 16*10 },
1923     { ISD::SINT_TO_FP, MVT::v4f32, MVT::v8i16, 15 },
1924     { ISD::SINT_TO_FP, MVT::v2f64, MVT::v8i16, 8*10 },
1925     { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i32, 5 },
1926     { ISD::SINT_TO_FP, MVT::v2f64, MVT::v4i32, 2*10 },
1927     { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i32, 2*10 },
1928     { ISD::SINT_TO_FP, MVT::v4f32, MVT::v2i64, 15 },
1929     { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i64, 2*10 },
1930 
1931     { ISD::UINT_TO_FP, MVT::v2f64, MVT::v16i8, 16*10 },
1932     { ISD::UINT_TO_FP, MVT::v4f32, MVT::v16i8, 8 },
1933     { ISD::UINT_TO_FP, MVT::v4f32, MVT::v8i16, 15 },
1934     { ISD::UINT_TO_FP, MVT::v2f64, MVT::v8i16, 8*10 },
1935     { ISD::UINT_TO_FP, MVT::v2f64, MVT::v4i32, 4*10 },
1936     { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i32, 8 },
1937     { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i64, 6 },
1938     { ISD::UINT_TO_FP, MVT::v4f32, MVT::v2i64, 15 },
1939 
1940     { ISD::FP_TO_SINT,  MVT::v2i8,   MVT::v2f32,  4 },
1941     { ISD::FP_TO_SINT,  MVT::v2i16,  MVT::v2f32,  2 },
1942     { ISD::FP_TO_SINT,  MVT::v4i8,   MVT::v4f32,  3 },
1943     { ISD::FP_TO_SINT,  MVT::v4i16,  MVT::v4f32,  2 },
1944     { ISD::FP_TO_SINT,  MVT::v2i16,  MVT::v2f64,  2 },
1945     { ISD::FP_TO_SINT,  MVT::v2i8,   MVT::v2f64,  4 },
1946 
1947     { ISD::FP_TO_SINT,  MVT::v2i32,  MVT::v2f64,  1 },
1948 
1949     { ISD::UINT_TO_FP,  MVT::f32,    MVT::i64,    6 },
1950     { ISD::UINT_TO_FP,  MVT::f64,    MVT::i64,    6 },
1951 
1952     { ISD::FP_TO_UINT,  MVT::i64,    MVT::f32,    4 },
1953     { ISD::FP_TO_UINT,  MVT::i64,    MVT::f64,    4 },
1954     { ISD::FP_TO_UINT,  MVT::v2i8,   MVT::v2f32,  4 },
1955     { ISD::FP_TO_UINT,  MVT::v2i8,   MVT::v2f64,  4 },
1956     { ISD::FP_TO_UINT,  MVT::v4i8,   MVT::v4f32,  3 },
1957     { ISD::FP_TO_UINT,  MVT::v2i16,  MVT::v2f32,  2 },
1958     { ISD::FP_TO_UINT,  MVT::v2i16,  MVT::v2f64,  2 },
1959     { ISD::FP_TO_UINT,  MVT::v4i16,  MVT::v4f32,  4 },
1960 
1961     { ISD::ZERO_EXTEND, MVT::v4i16,  MVT::v4i8,   1 },
1962     { ISD::SIGN_EXTEND, MVT::v4i16,  MVT::v4i8,   6 },
1963     { ISD::ZERO_EXTEND, MVT::v4i32,  MVT::v4i8,   2 },
1964     { ISD::SIGN_EXTEND, MVT::v4i32,  MVT::v4i8,   3 },
1965     { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v4i8,   4 },
1966     { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v4i8,   8 },
1967     { ISD::ZERO_EXTEND, MVT::v8i16,  MVT::v8i8,   1 },
1968     { ISD::SIGN_EXTEND, MVT::v8i16,  MVT::v8i8,   2 },
1969     { ISD::ZERO_EXTEND, MVT::v8i32,  MVT::v8i8,   6 },
1970     { ISD::SIGN_EXTEND, MVT::v8i32,  MVT::v8i8,   6 },
1971     { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i8,  3 },
1972     { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i8,  4 },
1973     { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i8,  9 },
1974     { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i8,  12 },
1975     { ISD::ZERO_EXTEND, MVT::v4i32,  MVT::v4i16,  1 },
1976     { ISD::SIGN_EXTEND, MVT::v4i32,  MVT::v4i16,  2 },
1977     { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v4i16,  3 },
1978     { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v4i16,  10 },
1979     { ISD::ZERO_EXTEND, MVT::v8i32,  MVT::v8i16,  3 },
1980     { ISD::SIGN_EXTEND, MVT::v8i32,  MVT::v8i16,  4 },
1981     { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i16, 6 },
1982     { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i16, 8 },
1983     { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v4i32,  3 },
1984     { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v4i32,  5 },
1985 
1986     // These truncates are really widening elements.
1987     { ISD::TRUNCATE,    MVT::v2i1,   MVT::v2i32,  1 }, // PSHUFD
1988     { ISD::TRUNCATE,    MVT::v2i1,   MVT::v2i16,  2 }, // PUNPCKLWD+DQ
1989     { ISD::TRUNCATE,    MVT::v2i1,   MVT::v2i8,   3 }, // PUNPCKLBW+WD+PSHUFD
1990     { ISD::TRUNCATE,    MVT::v4i1,   MVT::v4i16,  1 }, // PUNPCKLWD
1991     { ISD::TRUNCATE,    MVT::v4i1,   MVT::v4i8,   2 }, // PUNPCKLBW+WD
1992     { ISD::TRUNCATE,    MVT::v8i1,   MVT::v8i8,   1 }, // PUNPCKLBW
1993 
1994     { ISD::TRUNCATE,    MVT::v2i8,   MVT::v2i16,  2 }, // PAND+PACKUSWB
1995     { ISD::TRUNCATE,    MVT::v4i8,   MVT::v4i16,  2 }, // PAND+PACKUSWB
1996     { ISD::TRUNCATE,    MVT::v8i8,   MVT::v8i16,  2 }, // PAND+PACKUSWB
1997     { ISD::TRUNCATE,    MVT::v16i8,  MVT::v16i16, 3 },
1998     { ISD::TRUNCATE,    MVT::v2i8,   MVT::v2i32,  3 }, // PAND+2*PACKUSWB
1999     { ISD::TRUNCATE,    MVT::v2i16,  MVT::v2i32,  1 },
2000     { ISD::TRUNCATE,    MVT::v4i8,   MVT::v4i32,  3 },
2001     { ISD::TRUNCATE,    MVT::v4i16,  MVT::v4i32,  3 },
2002     { ISD::TRUNCATE,    MVT::v8i8,   MVT::v8i32,  4 },
2003     { ISD::TRUNCATE,    MVT::v16i8,  MVT::v16i32, 7 },
2004     { ISD::TRUNCATE,    MVT::v8i16,  MVT::v8i32,  5 },
2005     { ISD::TRUNCATE,    MVT::v16i16, MVT::v16i32, 10 },
2006     { ISD::TRUNCATE,    MVT::v2i8,   MVT::v2i64,  4 }, // PAND+3*PACKUSWB
2007     { ISD::TRUNCATE,    MVT::v2i16,  MVT::v2i64,  2 }, // PSHUFD+PSHUFLW
2008     { ISD::TRUNCATE,    MVT::v2i32,  MVT::v2i64,  1 }, // PSHUFD
2009   };
2010 
2011   std::pair<int, MVT> LTSrc = TLI->getTypeLegalizationCost(DL, Src);
2012   std::pair<int, MVT> LTDest = TLI->getTypeLegalizationCost(DL, Dst);
2013 
2014   if (ST->hasSSE2() && !ST->hasAVX()) {
2015     if (const auto *Entry = ConvertCostTableLookup(SSE2ConversionTbl, ISD,
2016                                                    LTDest.second, LTSrc.second))
2017       return AdjustCost(LTSrc.first * Entry->Cost);
2018   }
2019 
2020   EVT SrcTy = TLI->getValueType(DL, Src);
2021   EVT DstTy = TLI->getValueType(DL, Dst);
2022 
2023   // The function getSimpleVT only handles simple value types.
2024   if (!SrcTy.isSimple() || !DstTy.isSimple())
2025     return AdjustCost(BaseT::getCastInstrCost(Opcode, Dst, Src, CCH, CostKind));
2026 
2027   MVT SimpleSrcTy = SrcTy.getSimpleVT();
2028   MVT SimpleDstTy = DstTy.getSimpleVT();
2029 
2030   if (ST->useAVX512Regs()) {
2031     if (ST->hasBWI())
2032       if (const auto *Entry = ConvertCostTableLookup(AVX512BWConversionTbl, ISD,
2033                                                      SimpleDstTy, SimpleSrcTy))
2034         return AdjustCost(Entry->Cost);
2035 
2036     if (ST->hasDQI())
2037       if (const auto *Entry = ConvertCostTableLookup(AVX512DQConversionTbl, ISD,
2038                                                      SimpleDstTy, SimpleSrcTy))
2039         return AdjustCost(Entry->Cost);
2040 
2041     if (ST->hasAVX512())
2042       if (const auto *Entry = ConvertCostTableLookup(AVX512FConversionTbl, ISD,
2043                                                      SimpleDstTy, SimpleSrcTy))
2044         return AdjustCost(Entry->Cost);
2045   }
2046 
2047   if (ST->hasBWI())
2048     if (const auto *Entry = ConvertCostTableLookup(AVX512BWVLConversionTbl, ISD,
2049                                                    SimpleDstTy, SimpleSrcTy))
2050       return AdjustCost(Entry->Cost);
2051 
2052   if (ST->hasDQI())
2053     if (const auto *Entry = ConvertCostTableLookup(AVX512DQVLConversionTbl, ISD,
2054                                                    SimpleDstTy, SimpleSrcTy))
2055       return AdjustCost(Entry->Cost);
2056 
2057   if (ST->hasAVX512())
2058     if (const auto *Entry = ConvertCostTableLookup(AVX512VLConversionTbl, ISD,
2059                                                    SimpleDstTy, SimpleSrcTy))
2060       return AdjustCost(Entry->Cost);
2061 
2062   if (ST->hasAVX2()) {
2063     if (const auto *Entry = ConvertCostTableLookup(AVX2ConversionTbl, ISD,
2064                                                    SimpleDstTy, SimpleSrcTy))
2065       return AdjustCost(Entry->Cost);
2066   }
2067 
2068   if (ST->hasAVX()) {
2069     if (const auto *Entry = ConvertCostTableLookup(AVXConversionTbl, ISD,
2070                                                    SimpleDstTy, SimpleSrcTy))
2071       return AdjustCost(Entry->Cost);
2072   }
2073 
2074   if (ST->hasSSE41()) {
2075     if (const auto *Entry = ConvertCostTableLookup(SSE41ConversionTbl, ISD,
2076                                                    SimpleDstTy, SimpleSrcTy))
2077       return AdjustCost(Entry->Cost);
2078   }
2079 
2080   if (ST->hasSSE2()) {
2081     if (const auto *Entry = ConvertCostTableLookup(SSE2ConversionTbl, ISD,
2082                                                    SimpleDstTy, SimpleSrcTy))
2083       return AdjustCost(Entry->Cost);
2084   }
2085 
2086   return AdjustCost(
2087       BaseT::getCastInstrCost(Opcode, Dst, Src, CCH, CostKind, I));
2088 }
2089 
2090 InstructionCost X86TTIImpl::getCmpSelInstrCost(unsigned Opcode, Type *ValTy,
2091                                                Type *CondTy,
2092                                                CmpInst::Predicate VecPred,
2093                                                TTI::TargetCostKind CostKind,
2094                                                const Instruction *I) {
2095   // TODO: Handle other cost kinds.
2096   if (CostKind != TTI::TCK_RecipThroughput)
2097     return BaseT::getCmpSelInstrCost(Opcode, ValTy, CondTy, VecPred, CostKind,
2098                                      I);
2099 
2100   // Legalize the type.
2101   std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, ValTy);
2102 
2103   MVT MTy = LT.second;
2104 
2105   int ISD = TLI->InstructionOpcodeToISD(Opcode);
2106   assert(ISD && "Invalid opcode");
2107 
2108   unsigned ExtraCost = 0;
2109   if (I && (Opcode == Instruction::ICmp || Opcode == Instruction::FCmp)) {
2110     // Some vector comparison predicates cost extra instructions.
2111     if (MTy.isVector() &&
2112         !((ST->hasXOP() && (!ST->hasAVX2() || MTy.is128BitVector())) ||
2113           (ST->hasAVX512() && 32 <= MTy.getScalarSizeInBits()) ||
2114           ST->hasBWI())) {
2115       switch (cast<CmpInst>(I)->getPredicate()) {
2116       case CmpInst::Predicate::ICMP_NE:
2117         // xor(cmpeq(x,y),-1)
2118         ExtraCost = 1;
2119         break;
2120       case CmpInst::Predicate::ICMP_SGE:
2121       case CmpInst::Predicate::ICMP_SLE:
2122         // xor(cmpgt(x,y),-1)
2123         ExtraCost = 1;
2124         break;
2125       case CmpInst::Predicate::ICMP_ULT:
2126       case CmpInst::Predicate::ICMP_UGT:
2127         // cmpgt(xor(x,signbit),xor(y,signbit))
2128         // xor(cmpeq(pmaxu(x,y),x),-1)
2129         ExtraCost = 2;
2130         break;
2131       case CmpInst::Predicate::ICMP_ULE:
2132       case CmpInst::Predicate::ICMP_UGE:
2133         if ((ST->hasSSE41() && MTy.getScalarSizeInBits() == 32) ||
2134             (ST->hasSSE2() && MTy.getScalarSizeInBits() < 32)) {
2135           // cmpeq(psubus(x,y),0)
2136           // cmpeq(pminu(x,y),x)
2137           ExtraCost = 1;
2138         } else {
2139           // xor(cmpgt(xor(x,signbit),xor(y,signbit)),-1)
2140           ExtraCost = 3;
2141         }
2142         break;
2143       default:
2144         break;
2145       }
2146     }
2147   }
2148 
2149   static const CostTblEntry SLMCostTbl[] = {
2150     // slm pcmpeq/pcmpgt throughput is 2
2151     { ISD::SETCC,   MVT::v2i64,   2 },
2152   };
2153 
2154   static const CostTblEntry AVX512BWCostTbl[] = {
2155     { ISD::SETCC,   MVT::v32i16,  1 },
2156     { ISD::SETCC,   MVT::v64i8,   1 },
2157 
2158     { ISD::SELECT,  MVT::v32i16,  1 },
2159     { ISD::SELECT,  MVT::v64i8,   1 },
2160   };
2161 
2162   static const CostTblEntry AVX512CostTbl[] = {
2163     { ISD::SETCC,   MVT::v8i64,   1 },
2164     { ISD::SETCC,   MVT::v16i32,  1 },
2165     { ISD::SETCC,   MVT::v8f64,   1 },
2166     { ISD::SETCC,   MVT::v16f32,  1 },
2167 
2168     { ISD::SELECT,  MVT::v8i64,   1 },
2169     { ISD::SELECT,  MVT::v16i32,  1 },
2170     { ISD::SELECT,  MVT::v8f64,   1 },
2171     { ISD::SELECT,  MVT::v16f32,  1 },
2172 
2173     { ISD::SETCC,   MVT::v32i16,  2 }, // FIXME: should probably be 4
2174     { ISD::SETCC,   MVT::v64i8,   2 }, // FIXME: should probably be 4
2175 
2176     { ISD::SELECT,  MVT::v32i16,  2 }, // FIXME: should be 3
2177     { ISD::SELECT,  MVT::v64i8,   2 }, // FIXME: should be 3
2178   };
2179 
2180   static const CostTblEntry AVX2CostTbl[] = {
2181     { ISD::SETCC,   MVT::v4i64,   1 },
2182     { ISD::SETCC,   MVT::v8i32,   1 },
2183     { ISD::SETCC,   MVT::v16i16,  1 },
2184     { ISD::SETCC,   MVT::v32i8,   1 },
2185 
2186     { ISD::SELECT,  MVT::v4i64,   1 }, // pblendvb
2187     { ISD::SELECT,  MVT::v8i32,   1 }, // pblendvb
2188     { ISD::SELECT,  MVT::v16i16,  1 }, // pblendvb
2189     { ISD::SELECT,  MVT::v32i8,   1 }, // pblendvb
2190   };
2191 
2192   static const CostTblEntry AVX1CostTbl[] = {
2193     { ISD::SETCC,   MVT::v4f64,   1 },
2194     { ISD::SETCC,   MVT::v8f32,   1 },
2195     // AVX1 does not support 8-wide integer compare.
2196     { ISD::SETCC,   MVT::v4i64,   4 },
2197     { ISD::SETCC,   MVT::v8i32,   4 },
2198     { ISD::SETCC,   MVT::v16i16,  4 },
2199     { ISD::SETCC,   MVT::v32i8,   4 },
2200 
2201     { ISD::SELECT,  MVT::v4f64,   1 }, // vblendvpd
2202     { ISD::SELECT,  MVT::v8f32,   1 }, // vblendvps
2203     { ISD::SELECT,  MVT::v4i64,   1 }, // vblendvpd
2204     { ISD::SELECT,  MVT::v8i32,   1 }, // vblendvps
2205     { ISD::SELECT,  MVT::v16i16,  3 }, // vandps + vandnps + vorps
2206     { ISD::SELECT,  MVT::v32i8,   3 }, // vandps + vandnps + vorps
2207   };
2208 
2209   static const CostTblEntry SSE42CostTbl[] = {
2210     { ISD::SETCC,   MVT::v2f64,   1 },
2211     { ISD::SETCC,   MVT::v4f32,   1 },
2212     { ISD::SETCC,   MVT::v2i64,   1 },
2213   };
2214 
2215   static const CostTblEntry SSE41CostTbl[] = {
2216     { ISD::SELECT,  MVT::v2f64,   1 }, // blendvpd
2217     { ISD::SELECT,  MVT::v4f32,   1 }, // blendvps
2218     { ISD::SELECT,  MVT::v2i64,   1 }, // pblendvb
2219     { ISD::SELECT,  MVT::v4i32,   1 }, // pblendvb
2220     { ISD::SELECT,  MVT::v8i16,   1 }, // pblendvb
2221     { ISD::SELECT,  MVT::v16i8,   1 }, // pblendvb
2222   };
2223 
2224   static const CostTblEntry SSE2CostTbl[] = {
2225     { ISD::SETCC,   MVT::v2f64,   2 },
2226     { ISD::SETCC,   MVT::f64,     1 },
2227     { ISD::SETCC,   MVT::v2i64,   8 },
2228     { ISD::SETCC,   MVT::v4i32,   1 },
2229     { ISD::SETCC,   MVT::v8i16,   1 },
2230     { ISD::SETCC,   MVT::v16i8,   1 },
2231 
2232     { ISD::SELECT,  MVT::v2f64,   3 }, // andpd + andnpd + orpd
2233     { ISD::SELECT,  MVT::v2i64,   3 }, // pand + pandn + por
2234     { ISD::SELECT,  MVT::v4i32,   3 }, // pand + pandn + por
2235     { ISD::SELECT,  MVT::v8i16,   3 }, // pand + pandn + por
2236     { ISD::SELECT,  MVT::v16i8,   3 }, // pand + pandn + por
2237   };
2238 
2239   static const CostTblEntry SSE1CostTbl[] = {
2240     { ISD::SETCC,   MVT::v4f32,   2 },
2241     { ISD::SETCC,   MVT::f32,     1 },
2242 
2243     { ISD::SELECT,  MVT::v4f32,   3 }, // andps + andnps + orps
2244   };
2245 
2246   if (ST->isSLM())
2247     if (const auto *Entry = CostTableLookup(SLMCostTbl, ISD, MTy))
2248       return LT.first * (ExtraCost + Entry->Cost);
2249 
2250   if (ST->hasBWI())
2251     if (const auto *Entry = CostTableLookup(AVX512BWCostTbl, ISD, MTy))
2252       return LT.first * (ExtraCost + Entry->Cost);
2253 
2254   if (ST->hasAVX512())
2255     if (const auto *Entry = CostTableLookup(AVX512CostTbl, ISD, MTy))
2256       return LT.first * (ExtraCost + Entry->Cost);
2257 
2258   if (ST->hasAVX2())
2259     if (const auto *Entry = CostTableLookup(AVX2CostTbl, ISD, MTy))
2260       return LT.first * (ExtraCost + Entry->Cost);
2261 
2262   if (ST->hasAVX())
2263     if (const auto *Entry = CostTableLookup(AVX1CostTbl, ISD, MTy))
2264       return LT.first * (ExtraCost + Entry->Cost);
2265 
2266   if (ST->hasSSE42())
2267     if (const auto *Entry = CostTableLookup(SSE42CostTbl, ISD, MTy))
2268       return LT.first * (ExtraCost + Entry->Cost);
2269 
2270   if (ST->hasSSE41())
2271     if (const auto *Entry = CostTableLookup(SSE41CostTbl, ISD, MTy))
2272       return LT.first * (ExtraCost + Entry->Cost);
2273 
2274   if (ST->hasSSE2())
2275     if (const auto *Entry = CostTableLookup(SSE2CostTbl, ISD, MTy))
2276       return LT.first * (ExtraCost + Entry->Cost);
2277 
2278   if (ST->hasSSE1())
2279     if (const auto *Entry = CostTableLookup(SSE1CostTbl, ISD, MTy))
2280       return LT.first * (ExtraCost + Entry->Cost);
2281 
2282   return BaseT::getCmpSelInstrCost(Opcode, ValTy, CondTy, VecPred, CostKind, I);
2283 }
2284 
2285 unsigned X86TTIImpl::getAtomicMemIntrinsicMaxElementSize() const { return 16; }
2286 
2287 InstructionCost
2288 X86TTIImpl::getTypeBasedIntrinsicInstrCost(const IntrinsicCostAttributes &ICA,
2289                                            TTI::TargetCostKind CostKind) {
2290 
2291   // Costs should match the codegen from:
2292   // BITREVERSE: llvm\test\CodeGen\X86\vector-bitreverse.ll
2293   // BSWAP: llvm\test\CodeGen\X86\bswap-vector.ll
2294   // CTLZ: llvm\test\CodeGen\X86\vector-lzcnt-*.ll
2295   // CTPOP: llvm\test\CodeGen\X86\vector-popcnt-*.ll
2296   // CTTZ: llvm\test\CodeGen\X86\vector-tzcnt-*.ll
2297 
2298   // TODO: Overflow intrinsics (*ADDO, *SUBO, *MULO) with vector types are not
2299   //       specialized in these tables yet.
2300   static const CostTblEntry AVX512CDCostTbl[] = {
2301     { ISD::CTLZ,       MVT::v8i64,   1 },
2302     { ISD::CTLZ,       MVT::v16i32,  1 },
2303     { ISD::CTLZ,       MVT::v32i16,  8 },
2304     { ISD::CTLZ,       MVT::v64i8,  20 },
2305     { ISD::CTLZ,       MVT::v4i64,   1 },
2306     { ISD::CTLZ,       MVT::v8i32,   1 },
2307     { ISD::CTLZ,       MVT::v16i16,  4 },
2308     { ISD::CTLZ,       MVT::v32i8,  10 },
2309     { ISD::CTLZ,       MVT::v2i64,   1 },
2310     { ISD::CTLZ,       MVT::v4i32,   1 },
2311     { ISD::CTLZ,       MVT::v8i16,   4 },
2312     { ISD::CTLZ,       MVT::v16i8,   4 },
2313   };
2314   static const CostTblEntry AVX512BWCostTbl[] = {
2315     { ISD::ABS,        MVT::v32i16,  1 },
2316     { ISD::ABS,        MVT::v64i8,   1 },
2317     { ISD::BITREVERSE, MVT::v8i64,   5 },
2318     { ISD::BITREVERSE, MVT::v16i32,  5 },
2319     { ISD::BITREVERSE, MVT::v32i16,  5 },
2320     { ISD::BITREVERSE, MVT::v64i8,   5 },
2321     { ISD::CTLZ,       MVT::v8i64,  23 },
2322     { ISD::CTLZ,       MVT::v16i32, 22 },
2323     { ISD::CTLZ,       MVT::v32i16, 18 },
2324     { ISD::CTLZ,       MVT::v64i8,  17 },
2325     { ISD::CTPOP,      MVT::v8i64,   7 },
2326     { ISD::CTPOP,      MVT::v16i32, 11 },
2327     { ISD::CTPOP,      MVT::v32i16,  9 },
2328     { ISD::CTPOP,      MVT::v64i8,   6 },
2329     { ISD::CTTZ,       MVT::v8i64,  10 },
2330     { ISD::CTTZ,       MVT::v16i32, 14 },
2331     { ISD::CTTZ,       MVT::v32i16, 12 },
2332     { ISD::CTTZ,       MVT::v64i8,   9 },
2333     { ISD::SADDSAT,    MVT::v32i16,  1 },
2334     { ISD::SADDSAT,    MVT::v64i8,   1 },
2335     { ISD::SMAX,       MVT::v32i16,  1 },
2336     { ISD::SMAX,       MVT::v64i8,   1 },
2337     { ISD::SMIN,       MVT::v32i16,  1 },
2338     { ISD::SMIN,       MVT::v64i8,   1 },
2339     { ISD::SSUBSAT,    MVT::v32i16,  1 },
2340     { ISD::SSUBSAT,    MVT::v64i8,   1 },
2341     { ISD::UADDSAT,    MVT::v32i16,  1 },
2342     { ISD::UADDSAT,    MVT::v64i8,   1 },
2343     { ISD::UMAX,       MVT::v32i16,  1 },
2344     { ISD::UMAX,       MVT::v64i8,   1 },
2345     { ISD::UMIN,       MVT::v32i16,  1 },
2346     { ISD::UMIN,       MVT::v64i8,   1 },
2347     { ISD::USUBSAT,    MVT::v32i16,  1 },
2348     { ISD::USUBSAT,    MVT::v64i8,   1 },
2349   };
2350   static const CostTblEntry AVX512CostTbl[] = {
2351     { ISD::ABS,        MVT::v8i64,   1 },
2352     { ISD::ABS,        MVT::v16i32,  1 },
2353     { ISD::ABS,        MVT::v32i16,  2 }, // FIXME: include split
2354     { ISD::ABS,        MVT::v64i8,   2 }, // FIXME: include split
2355     { ISD::ABS,        MVT::v4i64,   1 },
2356     { ISD::ABS,        MVT::v2i64,   1 },
2357     { ISD::BITREVERSE, MVT::v8i64,  36 },
2358     { ISD::BITREVERSE, MVT::v16i32, 24 },
2359     { ISD::BITREVERSE, MVT::v32i16, 10 },
2360     { ISD::BITREVERSE, MVT::v64i8,  10 },
2361     { ISD::CTLZ,       MVT::v8i64,  29 },
2362     { ISD::CTLZ,       MVT::v16i32, 35 },
2363     { ISD::CTLZ,       MVT::v32i16, 28 },
2364     { ISD::CTLZ,       MVT::v64i8,  18 },
2365     { ISD::CTPOP,      MVT::v8i64,  16 },
2366     { ISD::CTPOP,      MVT::v16i32, 24 },
2367     { ISD::CTPOP,      MVT::v32i16, 18 },
2368     { ISD::CTPOP,      MVT::v64i8,  12 },
2369     { ISD::CTTZ,       MVT::v8i64,  20 },
2370     { ISD::CTTZ,       MVT::v16i32, 28 },
2371     { ISD::CTTZ,       MVT::v32i16, 24 },
2372     { ISD::CTTZ,       MVT::v64i8,  18 },
2373     { ISD::SMAX,       MVT::v8i64,   1 },
2374     { ISD::SMAX,       MVT::v16i32,  1 },
2375     { ISD::SMAX,       MVT::v32i16,  2 }, // FIXME: include split
2376     { ISD::SMAX,       MVT::v64i8,   2 }, // FIXME: include split
2377     { ISD::SMAX,       MVT::v4i64,   1 },
2378     { ISD::SMAX,       MVT::v2i64,   1 },
2379     { ISD::SMIN,       MVT::v8i64,   1 },
2380     { ISD::SMIN,       MVT::v16i32,  1 },
2381     { ISD::SMIN,       MVT::v32i16,  2 }, // FIXME: include split
2382     { ISD::SMIN,       MVT::v64i8,   2 }, // FIXME: include split
2383     { ISD::SMIN,       MVT::v4i64,   1 },
2384     { ISD::SMIN,       MVT::v2i64,   1 },
2385     { ISD::UMAX,       MVT::v8i64,   1 },
2386     { ISD::UMAX,       MVT::v16i32,  1 },
2387     { ISD::UMAX,       MVT::v32i16,  2 }, // FIXME: include split
2388     { ISD::UMAX,       MVT::v64i8,   2 }, // FIXME: include split
2389     { ISD::UMAX,       MVT::v4i64,   1 },
2390     { ISD::UMAX,       MVT::v2i64,   1 },
2391     { ISD::UMIN,       MVT::v8i64,   1 },
2392     { ISD::UMIN,       MVT::v16i32,  1 },
2393     { ISD::UMIN,       MVT::v32i16,  2 }, // FIXME: include split
2394     { ISD::UMIN,       MVT::v64i8,   2 }, // FIXME: include split
2395     { ISD::UMIN,       MVT::v4i64,   1 },
2396     { ISD::UMIN,       MVT::v2i64,   1 },
2397     { ISD::USUBSAT,    MVT::v16i32,  2 }, // pmaxud + psubd
2398     { ISD::USUBSAT,    MVT::v2i64,   2 }, // pmaxuq + psubq
2399     { ISD::USUBSAT,    MVT::v4i64,   2 }, // pmaxuq + psubq
2400     { ISD::USUBSAT,    MVT::v8i64,   2 }, // pmaxuq + psubq
2401     { ISD::UADDSAT,    MVT::v16i32,  3 }, // not + pminud + paddd
2402     { ISD::UADDSAT,    MVT::v2i64,   3 }, // not + pminuq + paddq
2403     { ISD::UADDSAT,    MVT::v4i64,   3 }, // not + pminuq + paddq
2404     { ISD::UADDSAT,    MVT::v8i64,   3 }, // not + pminuq + paddq
2405     { ISD::SADDSAT,    MVT::v32i16,  2 }, // FIXME: include split
2406     { ISD::SADDSAT,    MVT::v64i8,   2 }, // FIXME: include split
2407     { ISD::SSUBSAT,    MVT::v32i16,  2 }, // FIXME: include split
2408     { ISD::SSUBSAT,    MVT::v64i8,   2 }, // FIXME: include split
2409     { ISD::UADDSAT,    MVT::v32i16,  2 }, // FIXME: include split
2410     { ISD::UADDSAT,    MVT::v64i8,   2 }, // FIXME: include split
2411     { ISD::USUBSAT,    MVT::v32i16,  2 }, // FIXME: include split
2412     { ISD::USUBSAT,    MVT::v64i8,   2 }, // FIXME: include split
2413     { ISD::FMAXNUM,    MVT::f32,     2 },
2414     { ISD::FMAXNUM,    MVT::v4f32,   2 },
2415     { ISD::FMAXNUM,    MVT::v8f32,   2 },
2416     { ISD::FMAXNUM,    MVT::v16f32,  2 },
2417     { ISD::FMAXNUM,    MVT::f64,     2 },
2418     { ISD::FMAXNUM,    MVT::v2f64,   2 },
2419     { ISD::FMAXNUM,    MVT::v4f64,   2 },
2420     { ISD::FMAXNUM,    MVT::v8f64,   2 },
2421   };
2422   static const CostTblEntry XOPCostTbl[] = {
2423     { ISD::BITREVERSE, MVT::v4i64,   4 },
2424     { ISD::BITREVERSE, MVT::v8i32,   4 },
2425     { ISD::BITREVERSE, MVT::v16i16,  4 },
2426     { ISD::BITREVERSE, MVT::v32i8,   4 },
2427     { ISD::BITREVERSE, MVT::v2i64,   1 },
2428     { ISD::BITREVERSE, MVT::v4i32,   1 },
2429     { ISD::BITREVERSE, MVT::v8i16,   1 },
2430     { ISD::BITREVERSE, MVT::v16i8,   1 },
2431     { ISD::BITREVERSE, MVT::i64,     3 },
2432     { ISD::BITREVERSE, MVT::i32,     3 },
2433     { ISD::BITREVERSE, MVT::i16,     3 },
2434     { ISD::BITREVERSE, MVT::i8,      3 }
2435   };
2436   static const CostTblEntry AVX2CostTbl[] = {
2437     { ISD::ABS,        MVT::v4i64,   2 }, // VBLENDVPD(X,VPSUBQ(0,X),X)
2438     { ISD::ABS,        MVT::v8i32,   1 },
2439     { ISD::ABS,        MVT::v16i16,  1 },
2440     { ISD::ABS,        MVT::v32i8,   1 },
2441     { ISD::BITREVERSE, MVT::v4i64,   5 },
2442     { ISD::BITREVERSE, MVT::v8i32,   5 },
2443     { ISD::BITREVERSE, MVT::v16i16,  5 },
2444     { ISD::BITREVERSE, MVT::v32i8,   5 },
2445     { ISD::BSWAP,      MVT::v4i64,   1 },
2446     { ISD::BSWAP,      MVT::v8i32,   1 },
2447     { ISD::BSWAP,      MVT::v16i16,  1 },
2448     { ISD::CTLZ,       MVT::v4i64,  23 },
2449     { ISD::CTLZ,       MVT::v8i32,  18 },
2450     { ISD::CTLZ,       MVT::v16i16, 14 },
2451     { ISD::CTLZ,       MVT::v32i8,   9 },
2452     { ISD::CTPOP,      MVT::v4i64,   7 },
2453     { ISD::CTPOP,      MVT::v8i32,  11 },
2454     { ISD::CTPOP,      MVT::v16i16,  9 },
2455     { ISD::CTPOP,      MVT::v32i8,   6 },
2456     { ISD::CTTZ,       MVT::v4i64,  10 },
2457     { ISD::CTTZ,       MVT::v8i32,  14 },
2458     { ISD::CTTZ,       MVT::v16i16, 12 },
2459     { ISD::CTTZ,       MVT::v32i8,   9 },
2460     { ISD::SADDSAT,    MVT::v16i16,  1 },
2461     { ISD::SADDSAT,    MVT::v32i8,   1 },
2462     { ISD::SMAX,       MVT::v8i32,   1 },
2463     { ISD::SMAX,       MVT::v16i16,  1 },
2464     { ISD::SMAX,       MVT::v32i8,   1 },
2465     { ISD::SMIN,       MVT::v8i32,   1 },
2466     { ISD::SMIN,       MVT::v16i16,  1 },
2467     { ISD::SMIN,       MVT::v32i8,   1 },
2468     { ISD::SSUBSAT,    MVT::v16i16,  1 },
2469     { ISD::SSUBSAT,    MVT::v32i8,   1 },
2470     { ISD::UADDSAT,    MVT::v16i16,  1 },
2471     { ISD::UADDSAT,    MVT::v32i8,   1 },
2472     { ISD::UADDSAT,    MVT::v8i32,   3 }, // not + pminud + paddd
2473     { ISD::UMAX,       MVT::v8i32,   1 },
2474     { ISD::UMAX,       MVT::v16i16,  1 },
2475     { ISD::UMAX,       MVT::v32i8,   1 },
2476     { ISD::UMIN,       MVT::v8i32,   1 },
2477     { ISD::UMIN,       MVT::v16i16,  1 },
2478     { ISD::UMIN,       MVT::v32i8,   1 },
2479     { ISD::USUBSAT,    MVT::v16i16,  1 },
2480     { ISD::USUBSAT,    MVT::v32i8,   1 },
2481     { ISD::USUBSAT,    MVT::v8i32,   2 }, // pmaxud + psubd
2482     { ISD::FMAXNUM,    MVT::v8f32,   3 }, // MAXPS + CMPUNORDPS + BLENDVPS
2483     { ISD::FMAXNUM,    MVT::v4f64,   3 }, // MAXPD + CMPUNORDPD + BLENDVPD
2484     { ISD::FSQRT,      MVT::f32,     7 }, // Haswell from http://www.agner.org/
2485     { ISD::FSQRT,      MVT::v4f32,   7 }, // Haswell from http://www.agner.org/
2486     { ISD::FSQRT,      MVT::v8f32,  14 }, // Haswell from http://www.agner.org/
2487     { ISD::FSQRT,      MVT::f64,    14 }, // Haswell from http://www.agner.org/
2488     { ISD::FSQRT,      MVT::v2f64,  14 }, // Haswell from http://www.agner.org/
2489     { ISD::FSQRT,      MVT::v4f64,  28 }, // Haswell from http://www.agner.org/
2490   };
2491   static const CostTblEntry AVX1CostTbl[] = {
2492     { ISD::ABS,        MVT::v4i64,   5 }, // VBLENDVPD(X,VPSUBQ(0,X),X)
2493     { ISD::ABS,        MVT::v8i32,   3 },
2494     { ISD::ABS,        MVT::v16i16,  3 },
2495     { ISD::ABS,        MVT::v32i8,   3 },
2496     { ISD::BITREVERSE, MVT::v4i64,  12 }, // 2 x 128-bit Op + extract/insert
2497     { ISD::BITREVERSE, MVT::v8i32,  12 }, // 2 x 128-bit Op + extract/insert
2498     { ISD::BITREVERSE, MVT::v16i16, 12 }, // 2 x 128-bit Op + extract/insert
2499     { ISD::BITREVERSE, MVT::v32i8,  12 }, // 2 x 128-bit Op + extract/insert
2500     { ISD::BSWAP,      MVT::v4i64,   4 },
2501     { ISD::BSWAP,      MVT::v8i32,   4 },
2502     { ISD::BSWAP,      MVT::v16i16,  4 },
2503     { ISD::CTLZ,       MVT::v4i64,  48 }, // 2 x 128-bit Op + extract/insert
2504     { ISD::CTLZ,       MVT::v8i32,  38 }, // 2 x 128-bit Op + extract/insert
2505     { ISD::CTLZ,       MVT::v16i16, 30 }, // 2 x 128-bit Op + extract/insert
2506     { ISD::CTLZ,       MVT::v32i8,  20 }, // 2 x 128-bit Op + extract/insert
2507     { ISD::CTPOP,      MVT::v4i64,  16 }, // 2 x 128-bit Op + extract/insert
2508     { ISD::CTPOP,      MVT::v8i32,  24 }, // 2 x 128-bit Op + extract/insert
2509     { ISD::CTPOP,      MVT::v16i16, 20 }, // 2 x 128-bit Op + extract/insert
2510     { ISD::CTPOP,      MVT::v32i8,  14 }, // 2 x 128-bit Op + extract/insert
2511     { ISD::CTTZ,       MVT::v4i64,  22 }, // 2 x 128-bit Op + extract/insert
2512     { ISD::CTTZ,       MVT::v8i32,  30 }, // 2 x 128-bit Op + extract/insert
2513     { ISD::CTTZ,       MVT::v16i16, 26 }, // 2 x 128-bit Op + extract/insert
2514     { ISD::CTTZ,       MVT::v32i8,  20 }, // 2 x 128-bit Op + extract/insert
2515     { ISD::SADDSAT,    MVT::v16i16,  4 }, // 2 x 128-bit Op + extract/insert
2516     { ISD::SADDSAT,    MVT::v32i8,   4 }, // 2 x 128-bit Op + extract/insert
2517     { ISD::SMAX,       MVT::v8i32,   4 }, // 2 x 128-bit Op + extract/insert
2518     { ISD::SMAX,       MVT::v16i16,  4 }, // 2 x 128-bit Op + extract/insert
2519     { ISD::SMAX,       MVT::v32i8,   4 }, // 2 x 128-bit Op + extract/insert
2520     { ISD::SMIN,       MVT::v8i32,   4 }, // 2 x 128-bit Op + extract/insert
2521     { ISD::SMIN,       MVT::v16i16,  4 }, // 2 x 128-bit Op + extract/insert
2522     { ISD::SMIN,       MVT::v32i8,   4 }, // 2 x 128-bit Op + extract/insert
2523     { ISD::SSUBSAT,    MVT::v16i16,  4 }, // 2 x 128-bit Op + extract/insert
2524     { ISD::SSUBSAT,    MVT::v32i8,   4 }, // 2 x 128-bit Op + extract/insert
2525     { ISD::UADDSAT,    MVT::v16i16,  4 }, // 2 x 128-bit Op + extract/insert
2526     { ISD::UADDSAT,    MVT::v32i8,   4 }, // 2 x 128-bit Op + extract/insert
2527     { ISD::UADDSAT,    MVT::v8i32,   8 }, // 2 x 128-bit Op + extract/insert
2528     { ISD::UMAX,       MVT::v8i32,   4 }, // 2 x 128-bit Op + extract/insert
2529     { ISD::UMAX,       MVT::v16i16,  4 }, // 2 x 128-bit Op + extract/insert
2530     { ISD::UMAX,       MVT::v32i8,   4 }, // 2 x 128-bit Op + extract/insert
2531     { ISD::UMIN,       MVT::v8i32,   4 }, // 2 x 128-bit Op + extract/insert
2532     { ISD::UMIN,       MVT::v16i16,  4 }, // 2 x 128-bit Op + extract/insert
2533     { ISD::UMIN,       MVT::v32i8,   4 }, // 2 x 128-bit Op + extract/insert
2534     { ISD::USUBSAT,    MVT::v16i16,  4 }, // 2 x 128-bit Op + extract/insert
2535     { ISD::USUBSAT,    MVT::v32i8,   4 }, // 2 x 128-bit Op + extract/insert
2536     { ISD::USUBSAT,    MVT::v8i32,   6 }, // 2 x 128-bit Op + extract/insert
2537     { ISD::FMAXNUM,    MVT::f32,     3 }, // MAXSS + CMPUNORDSS + BLENDVPS
2538     { ISD::FMAXNUM,    MVT::v4f32,   3 }, // MAXPS + CMPUNORDPS + BLENDVPS
2539     { ISD::FMAXNUM,    MVT::v8f32,   5 }, // MAXPS + CMPUNORDPS + BLENDVPS + ?
2540     { ISD::FMAXNUM,    MVT::f64,     3 }, // MAXSD + CMPUNORDSD + BLENDVPD
2541     { ISD::FMAXNUM,    MVT::v2f64,   3 }, // MAXPD + CMPUNORDPD + BLENDVPD
2542     { ISD::FMAXNUM,    MVT::v4f64,   5 }, // MAXPD + CMPUNORDPD + BLENDVPD + ?
2543     { ISD::FSQRT,      MVT::f32,    14 }, // SNB from http://www.agner.org/
2544     { ISD::FSQRT,      MVT::v4f32,  14 }, // SNB from http://www.agner.org/
2545     { ISD::FSQRT,      MVT::v8f32,  28 }, // SNB from http://www.agner.org/
2546     { ISD::FSQRT,      MVT::f64,    21 }, // SNB from http://www.agner.org/
2547     { ISD::FSQRT,      MVT::v2f64,  21 }, // SNB from http://www.agner.org/
2548     { ISD::FSQRT,      MVT::v4f64,  43 }, // SNB from http://www.agner.org/
2549   };
2550   static const CostTblEntry GLMCostTbl[] = {
2551     { ISD::FSQRT, MVT::f32,   19 }, // sqrtss
2552     { ISD::FSQRT, MVT::v4f32, 37 }, // sqrtps
2553     { ISD::FSQRT, MVT::f64,   34 }, // sqrtsd
2554     { ISD::FSQRT, MVT::v2f64, 67 }, // sqrtpd
2555   };
2556   static const CostTblEntry SLMCostTbl[] = {
2557     { ISD::FSQRT, MVT::f32,   20 }, // sqrtss
2558     { ISD::FSQRT, MVT::v4f32, 40 }, // sqrtps
2559     { ISD::FSQRT, MVT::f64,   35 }, // sqrtsd
2560     { ISD::FSQRT, MVT::v2f64, 70 }, // sqrtpd
2561   };
2562   static const CostTblEntry SSE42CostTbl[] = {
2563     { ISD::USUBSAT,    MVT::v4i32,   2 }, // pmaxud + psubd
2564     { ISD::UADDSAT,    MVT::v4i32,   3 }, // not + pminud + paddd
2565     { ISD::FSQRT,      MVT::f32,    18 }, // Nehalem from http://www.agner.org/
2566     { ISD::FSQRT,      MVT::v4f32,  18 }, // Nehalem from http://www.agner.org/
2567   };
2568   static const CostTblEntry SSE41CostTbl[] = {
2569     { ISD::ABS,        MVT::v2i64,   2 }, // BLENDVPD(X,PSUBQ(0,X),X)
2570     { ISD::SMAX,       MVT::v4i32,   1 },
2571     { ISD::SMAX,       MVT::v16i8,   1 },
2572     { ISD::SMIN,       MVT::v4i32,   1 },
2573     { ISD::SMIN,       MVT::v16i8,   1 },
2574     { ISD::UMAX,       MVT::v4i32,   1 },
2575     { ISD::UMAX,       MVT::v8i16,   1 },
2576     { ISD::UMIN,       MVT::v4i32,   1 },
2577     { ISD::UMIN,       MVT::v8i16,   1 },
2578   };
2579   static const CostTblEntry SSSE3CostTbl[] = {
2580     { ISD::ABS,        MVT::v4i32,   1 },
2581     { ISD::ABS,        MVT::v8i16,   1 },
2582     { ISD::ABS,        MVT::v16i8,   1 },
2583     { ISD::BITREVERSE, MVT::v2i64,   5 },
2584     { ISD::BITREVERSE, MVT::v4i32,   5 },
2585     { ISD::BITREVERSE, MVT::v8i16,   5 },
2586     { ISD::BITREVERSE, MVT::v16i8,   5 },
2587     { ISD::BSWAP,      MVT::v2i64,   1 },
2588     { ISD::BSWAP,      MVT::v4i32,   1 },
2589     { ISD::BSWAP,      MVT::v8i16,   1 },
2590     { ISD::CTLZ,       MVT::v2i64,  23 },
2591     { ISD::CTLZ,       MVT::v4i32,  18 },
2592     { ISD::CTLZ,       MVT::v8i16,  14 },
2593     { ISD::CTLZ,       MVT::v16i8,   9 },
2594     { ISD::CTPOP,      MVT::v2i64,   7 },
2595     { ISD::CTPOP,      MVT::v4i32,  11 },
2596     { ISD::CTPOP,      MVT::v8i16,   9 },
2597     { ISD::CTPOP,      MVT::v16i8,   6 },
2598     { ISD::CTTZ,       MVT::v2i64,  10 },
2599     { ISD::CTTZ,       MVT::v4i32,  14 },
2600     { ISD::CTTZ,       MVT::v8i16,  12 },
2601     { ISD::CTTZ,       MVT::v16i8,   9 }
2602   };
2603   static const CostTblEntry SSE2CostTbl[] = {
2604     { ISD::ABS,        MVT::v2i64,   4 },
2605     { ISD::ABS,        MVT::v4i32,   3 },
2606     { ISD::ABS,        MVT::v8i16,   2 },
2607     { ISD::ABS,        MVT::v16i8,   2 },
2608     { ISD::BITREVERSE, MVT::v2i64,  29 },
2609     { ISD::BITREVERSE, MVT::v4i32,  27 },
2610     { ISD::BITREVERSE, MVT::v8i16,  27 },
2611     { ISD::BITREVERSE, MVT::v16i8,  20 },
2612     { ISD::BSWAP,      MVT::v2i64,   7 },
2613     { ISD::BSWAP,      MVT::v4i32,   7 },
2614     { ISD::BSWAP,      MVT::v8i16,   7 },
2615     { ISD::CTLZ,       MVT::v2i64,  25 },
2616     { ISD::CTLZ,       MVT::v4i32,  26 },
2617     { ISD::CTLZ,       MVT::v8i16,  20 },
2618     { ISD::CTLZ,       MVT::v16i8,  17 },
2619     { ISD::CTPOP,      MVT::v2i64,  12 },
2620     { ISD::CTPOP,      MVT::v4i32,  15 },
2621     { ISD::CTPOP,      MVT::v8i16,  13 },
2622     { ISD::CTPOP,      MVT::v16i8,  10 },
2623     { ISD::CTTZ,       MVT::v2i64,  14 },
2624     { ISD::CTTZ,       MVT::v4i32,  18 },
2625     { ISD::CTTZ,       MVT::v8i16,  16 },
2626     { ISD::CTTZ,       MVT::v16i8,  13 },
2627     { ISD::SADDSAT,    MVT::v8i16,   1 },
2628     { ISD::SADDSAT,    MVT::v16i8,   1 },
2629     { ISD::SMAX,       MVT::v8i16,   1 },
2630     { ISD::SMIN,       MVT::v8i16,   1 },
2631     { ISD::SSUBSAT,    MVT::v8i16,   1 },
2632     { ISD::SSUBSAT,    MVT::v16i8,   1 },
2633     { ISD::UADDSAT,    MVT::v8i16,   1 },
2634     { ISD::UADDSAT,    MVT::v16i8,   1 },
2635     { ISD::UMAX,       MVT::v8i16,   2 },
2636     { ISD::UMAX,       MVT::v16i8,   1 },
2637     { ISD::UMIN,       MVT::v8i16,   2 },
2638     { ISD::UMIN,       MVT::v16i8,   1 },
2639     { ISD::USUBSAT,    MVT::v8i16,   1 },
2640     { ISD::USUBSAT,    MVT::v16i8,   1 },
2641     { ISD::FMAXNUM,    MVT::f64,     4 },
2642     { ISD::FMAXNUM,    MVT::v2f64,   4 },
2643     { ISD::FSQRT,      MVT::f64,    32 }, // Nehalem from http://www.agner.org/
2644     { ISD::FSQRT,      MVT::v2f64,  32 }, // Nehalem from http://www.agner.org/
2645   };
2646   static const CostTblEntry SSE1CostTbl[] = {
2647     { ISD::FMAXNUM,    MVT::f32,     4 },
2648     { ISD::FMAXNUM,    MVT::v4f32,   4 },
2649     { ISD::FSQRT,      MVT::f32,    28 }, // Pentium III from http://www.agner.org/
2650     { ISD::FSQRT,      MVT::v4f32,  56 }, // Pentium III from http://www.agner.org/
2651   };
2652   static const CostTblEntry BMI64CostTbl[] = { // 64-bit targets
2653     { ISD::CTTZ,       MVT::i64,     1 },
2654   };
2655   static const CostTblEntry BMI32CostTbl[] = { // 32 or 64-bit targets
2656     { ISD::CTTZ,       MVT::i32,     1 },
2657     { ISD::CTTZ,       MVT::i16,     1 },
2658     { ISD::CTTZ,       MVT::i8,      1 },
2659   };
2660   static const CostTblEntry LZCNT64CostTbl[] = { // 64-bit targets
2661     { ISD::CTLZ,       MVT::i64,     1 },
2662   };
2663   static const CostTblEntry LZCNT32CostTbl[] = { // 32 or 64-bit targets
2664     { ISD::CTLZ,       MVT::i32,     1 },
2665     { ISD::CTLZ,       MVT::i16,     1 },
2666     { ISD::CTLZ,       MVT::i8,      1 },
2667   };
2668   static const CostTblEntry POPCNT64CostTbl[] = { // 64-bit targets
2669     { ISD::CTPOP,      MVT::i64,     1 },
2670   };
2671   static const CostTblEntry POPCNT32CostTbl[] = { // 32 or 64-bit targets
2672     { ISD::CTPOP,      MVT::i32,     1 },
2673     { ISD::CTPOP,      MVT::i16,     1 },
2674     { ISD::CTPOP,      MVT::i8,      1 },
2675   };
2676   static const CostTblEntry X64CostTbl[] = { // 64-bit targets
2677     { ISD::ABS,        MVT::i64,     2 }, // SUB+CMOV
2678     { ISD::BITREVERSE, MVT::i64,    14 },
2679     { ISD::CTLZ,       MVT::i64,     4 }, // BSR+XOR or BSR+XOR+CMOV
2680     { ISD::CTTZ,       MVT::i64,     3 }, // TEST+BSF+CMOV/BRANCH
2681     { ISD::CTPOP,      MVT::i64,    10 },
2682     { ISD::SADDO,      MVT::i64,     1 },
2683     { ISD::UADDO,      MVT::i64,     1 },
2684     { ISD::UMULO,      MVT::i64,     2 }, // mulq + seto
2685   };
2686   static const CostTblEntry X86CostTbl[] = { // 32 or 64-bit targets
2687     { ISD::ABS,        MVT::i32,     2 }, // SUB+CMOV
2688     { ISD::ABS,        MVT::i16,     2 }, // SUB+CMOV
2689     { ISD::BITREVERSE, MVT::i32,    14 },
2690     { ISD::BITREVERSE, MVT::i16,    14 },
2691     { ISD::BITREVERSE, MVT::i8,     11 },
2692     { ISD::CTLZ,       MVT::i32,     4 }, // BSR+XOR or BSR+XOR+CMOV
2693     { ISD::CTLZ,       MVT::i16,     4 }, // BSR+XOR or BSR+XOR+CMOV
2694     { ISD::CTLZ,       MVT::i8,      4 }, // BSR+XOR or BSR+XOR+CMOV
2695     { ISD::CTTZ,       MVT::i32,     3 }, // TEST+BSF+CMOV/BRANCH
2696     { ISD::CTTZ,       MVT::i16,     3 }, // TEST+BSF+CMOV/BRANCH
2697     { ISD::CTTZ,       MVT::i8,      3 }, // TEST+BSF+CMOV/BRANCH
2698     { ISD::CTPOP,      MVT::i32,     8 },
2699     { ISD::CTPOP,      MVT::i16,     9 },
2700     { ISD::CTPOP,      MVT::i8,      7 },
2701     { ISD::SADDO,      MVT::i32,     1 },
2702     { ISD::SADDO,      MVT::i16,     1 },
2703     { ISD::SADDO,      MVT::i8,      1 },
2704     { ISD::UADDO,      MVT::i32,     1 },
2705     { ISD::UADDO,      MVT::i16,     1 },
2706     { ISD::UADDO,      MVT::i8,      1 },
2707     { ISD::UMULO,      MVT::i32,     2 }, // mul + seto
2708     { ISD::UMULO,      MVT::i16,     2 },
2709     { ISD::UMULO,      MVT::i8,      2 },
2710   };
2711 
2712   Type *RetTy = ICA.getReturnType();
2713   Type *OpTy = RetTy;
2714   Intrinsic::ID IID = ICA.getID();
2715   unsigned ISD = ISD::DELETED_NODE;
2716   switch (IID) {
2717   default:
2718     break;
2719   case Intrinsic::abs:
2720     ISD = ISD::ABS;
2721     break;
2722   case Intrinsic::bitreverse:
2723     ISD = ISD::BITREVERSE;
2724     break;
2725   case Intrinsic::bswap:
2726     ISD = ISD::BSWAP;
2727     break;
2728   case Intrinsic::ctlz:
2729     ISD = ISD::CTLZ;
2730     break;
2731   case Intrinsic::ctpop:
2732     ISD = ISD::CTPOP;
2733     break;
2734   case Intrinsic::cttz:
2735     ISD = ISD::CTTZ;
2736     break;
2737   case Intrinsic::maxnum:
2738   case Intrinsic::minnum:
2739     // FMINNUM has same costs so don't duplicate.
2740     ISD = ISD::FMAXNUM;
2741     break;
2742   case Intrinsic::sadd_sat:
2743     ISD = ISD::SADDSAT;
2744     break;
2745   case Intrinsic::smax:
2746     ISD = ISD::SMAX;
2747     break;
2748   case Intrinsic::smin:
2749     ISD = ISD::SMIN;
2750     break;
2751   case Intrinsic::ssub_sat:
2752     ISD = ISD::SSUBSAT;
2753     break;
2754   case Intrinsic::uadd_sat:
2755     ISD = ISD::UADDSAT;
2756     break;
2757   case Intrinsic::umax:
2758     ISD = ISD::UMAX;
2759     break;
2760   case Intrinsic::umin:
2761     ISD = ISD::UMIN;
2762     break;
2763   case Intrinsic::usub_sat:
2764     ISD = ISD::USUBSAT;
2765     break;
2766   case Intrinsic::sqrt:
2767     ISD = ISD::FSQRT;
2768     break;
2769   case Intrinsic::sadd_with_overflow:
2770   case Intrinsic::ssub_with_overflow:
2771     // SSUBO has same costs so don't duplicate.
2772     ISD = ISD::SADDO;
2773     OpTy = RetTy->getContainedType(0);
2774     break;
2775   case Intrinsic::uadd_with_overflow:
2776   case Intrinsic::usub_with_overflow:
2777     // USUBO has same costs so don't duplicate.
2778     ISD = ISD::UADDO;
2779     OpTy = RetTy->getContainedType(0);
2780     break;
2781   case Intrinsic::umul_with_overflow:
2782   case Intrinsic::smul_with_overflow:
2783     // SMULO has same costs so don't duplicate.
2784     ISD = ISD::UMULO;
2785     OpTy = RetTy->getContainedType(0);
2786     break;
2787   }
2788 
2789   if (ISD != ISD::DELETED_NODE) {
2790     // Legalize the type.
2791     std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, OpTy);
2792     MVT MTy = LT.second;
2793 
2794     // Attempt to lookup cost.
2795     if (ISD == ISD::BITREVERSE && ST->hasGFNI() && ST->hasSSSE3() &&
2796         MTy.isVector()) {
2797       // With PSHUFB the code is very similar for all types. If we have integer
2798       // byte operations, we just need a GF2P8AFFINEQB for vXi8. For other types
2799       // we also need a PSHUFB.
2800       unsigned Cost = MTy.getVectorElementType() == MVT::i8 ? 1 : 2;
2801 
2802       // Without byte operations, we need twice as many GF2P8AFFINEQB and PSHUFB
2803       // instructions. We also need an extract and an insert.
2804       if (!(MTy.is128BitVector() || (ST->hasAVX2() && MTy.is256BitVector()) ||
2805             (ST->hasBWI() && MTy.is512BitVector())))
2806         Cost = Cost * 2 + 2;
2807 
2808       return LT.first * Cost;
2809     }
2810 
2811     auto adjustTableCost = [](const CostTblEntry &Entry, int LegalizationCost,
2812                               FastMathFlags FMF) {
2813       // If there are no NANs to deal with, then these are reduced to a
2814       // single MIN** or MAX** instruction instead of the MIN/CMP/SELECT that we
2815       // assume is used in the non-fast case.
2816       if (Entry.ISD == ISD::FMAXNUM || Entry.ISD == ISD::FMINNUM) {
2817         if (FMF.noNaNs())
2818           return LegalizationCost * 1;
2819       }
2820       return LegalizationCost * (int)Entry.Cost;
2821     };
2822 
2823     if (ST->useGLMDivSqrtCosts())
2824       if (const auto *Entry = CostTableLookup(GLMCostTbl, ISD, MTy))
2825         return adjustTableCost(*Entry, LT.first, ICA.getFlags());
2826 
2827     if (ST->isSLM())
2828       if (const auto *Entry = CostTableLookup(SLMCostTbl, ISD, MTy))
2829         return adjustTableCost(*Entry, LT.first, ICA.getFlags());
2830 
2831     if (ST->hasCDI())
2832       if (const auto *Entry = CostTableLookup(AVX512CDCostTbl, ISD, MTy))
2833         return adjustTableCost(*Entry, LT.first, ICA.getFlags());
2834 
2835     if (ST->hasBWI())
2836       if (const auto *Entry = CostTableLookup(AVX512BWCostTbl, ISD, MTy))
2837         return adjustTableCost(*Entry, LT.first, ICA.getFlags());
2838 
2839     if (ST->hasAVX512())
2840       if (const auto *Entry = CostTableLookup(AVX512CostTbl, ISD, MTy))
2841         return adjustTableCost(*Entry, LT.first, ICA.getFlags());
2842 
2843     if (ST->hasXOP())
2844       if (const auto *Entry = CostTableLookup(XOPCostTbl, ISD, MTy))
2845         return adjustTableCost(*Entry, LT.first, ICA.getFlags());
2846 
2847     if (ST->hasAVX2())
2848       if (const auto *Entry = CostTableLookup(AVX2CostTbl, ISD, MTy))
2849         return adjustTableCost(*Entry, LT.first, ICA.getFlags());
2850 
2851     if (ST->hasAVX())
2852       if (const auto *Entry = CostTableLookup(AVX1CostTbl, ISD, MTy))
2853         return adjustTableCost(*Entry, LT.first, ICA.getFlags());
2854 
2855     if (ST->hasSSE42())
2856       if (const auto *Entry = CostTableLookup(SSE42CostTbl, ISD, MTy))
2857         return adjustTableCost(*Entry, LT.first, ICA.getFlags());
2858 
2859     if (ST->hasSSE41())
2860       if (const auto *Entry = CostTableLookup(SSE41CostTbl, ISD, MTy))
2861         return adjustTableCost(*Entry, LT.first, ICA.getFlags());
2862 
2863     if (ST->hasSSSE3())
2864       if (const auto *Entry = CostTableLookup(SSSE3CostTbl, ISD, MTy))
2865         return adjustTableCost(*Entry, LT.first, ICA.getFlags());
2866 
2867     if (ST->hasSSE2())
2868       if (const auto *Entry = CostTableLookup(SSE2CostTbl, ISD, MTy))
2869         return adjustTableCost(*Entry, LT.first, ICA.getFlags());
2870 
2871     if (ST->hasSSE1())
2872       if (const auto *Entry = CostTableLookup(SSE1CostTbl, ISD, MTy))
2873         return adjustTableCost(*Entry, LT.first, ICA.getFlags());
2874 
2875     if (ST->hasBMI()) {
2876       if (ST->is64Bit())
2877         if (const auto *Entry = CostTableLookup(BMI64CostTbl, ISD, MTy))
2878           return adjustTableCost(*Entry, LT.first, ICA.getFlags());
2879 
2880       if (const auto *Entry = CostTableLookup(BMI32CostTbl, ISD, MTy))
2881         return adjustTableCost(*Entry, LT.first, ICA.getFlags());
2882     }
2883 
2884     if (ST->hasLZCNT()) {
2885       if (ST->is64Bit())
2886         if (const auto *Entry = CostTableLookup(LZCNT64CostTbl, ISD, MTy))
2887           return adjustTableCost(*Entry, LT.first, ICA.getFlags());
2888 
2889       if (const auto *Entry = CostTableLookup(LZCNT32CostTbl, ISD, MTy))
2890         return adjustTableCost(*Entry, LT.first, ICA.getFlags());
2891     }
2892 
2893     if (ST->hasPOPCNT()) {
2894       if (ST->is64Bit())
2895         if (const auto *Entry = CostTableLookup(POPCNT64CostTbl, ISD, MTy))
2896           return adjustTableCost(*Entry, LT.first, ICA.getFlags());
2897 
2898       if (const auto *Entry = CostTableLookup(POPCNT32CostTbl, ISD, MTy))
2899         return adjustTableCost(*Entry, LT.first, ICA.getFlags());
2900     }
2901 
2902     // TODO - add BMI (TZCNT) scalar handling
2903 
2904     if (ST->is64Bit())
2905       if (const auto *Entry = CostTableLookup(X64CostTbl, ISD, MTy))
2906         return adjustTableCost(*Entry, LT.first, ICA.getFlags());
2907 
2908     if (const auto *Entry = CostTableLookup(X86CostTbl, ISD, MTy))
2909       return adjustTableCost(*Entry, LT.first, ICA.getFlags());
2910   }
2911 
2912   return BaseT::getIntrinsicInstrCost(ICA, CostKind);
2913 }
2914 
2915 InstructionCost
2916 X86TTIImpl::getIntrinsicInstrCost(const IntrinsicCostAttributes &ICA,
2917                                   TTI::TargetCostKind CostKind) {
2918   if (ICA.isTypeBasedOnly())
2919     return getTypeBasedIntrinsicInstrCost(ICA, CostKind);
2920 
2921   static const CostTblEntry AVX512CostTbl[] = {
2922     { ISD::ROTL,       MVT::v8i64,   1 },
2923     { ISD::ROTL,       MVT::v4i64,   1 },
2924     { ISD::ROTL,       MVT::v2i64,   1 },
2925     { ISD::ROTL,       MVT::v16i32,  1 },
2926     { ISD::ROTL,       MVT::v8i32,   1 },
2927     { ISD::ROTL,       MVT::v4i32,   1 },
2928     { ISD::ROTR,       MVT::v8i64,   1 },
2929     { ISD::ROTR,       MVT::v4i64,   1 },
2930     { ISD::ROTR,       MVT::v2i64,   1 },
2931     { ISD::ROTR,       MVT::v16i32,  1 },
2932     { ISD::ROTR,       MVT::v8i32,   1 },
2933     { ISD::ROTR,       MVT::v4i32,   1 }
2934   };
2935   // XOP: ROTL = VPROT(X,Y), ROTR = VPROT(X,SUB(0,Y))
2936   static const CostTblEntry XOPCostTbl[] = {
2937     { ISD::ROTL,       MVT::v4i64,   4 },
2938     { ISD::ROTL,       MVT::v8i32,   4 },
2939     { ISD::ROTL,       MVT::v16i16,  4 },
2940     { ISD::ROTL,       MVT::v32i8,   4 },
2941     { ISD::ROTL,       MVT::v2i64,   1 },
2942     { ISD::ROTL,       MVT::v4i32,   1 },
2943     { ISD::ROTL,       MVT::v8i16,   1 },
2944     { ISD::ROTL,       MVT::v16i8,   1 },
2945     { ISD::ROTR,       MVT::v4i64,   6 },
2946     { ISD::ROTR,       MVT::v8i32,   6 },
2947     { ISD::ROTR,       MVT::v16i16,  6 },
2948     { ISD::ROTR,       MVT::v32i8,   6 },
2949     { ISD::ROTR,       MVT::v2i64,   2 },
2950     { ISD::ROTR,       MVT::v4i32,   2 },
2951     { ISD::ROTR,       MVT::v8i16,   2 },
2952     { ISD::ROTR,       MVT::v16i8,   2 }
2953   };
2954   static const CostTblEntry X64CostTbl[] = { // 64-bit targets
2955     { ISD::ROTL,       MVT::i64,     1 },
2956     { ISD::ROTR,       MVT::i64,     1 },
2957     { ISD::FSHL,       MVT::i64,     4 }
2958   };
2959   static const CostTblEntry X86CostTbl[] = { // 32 or 64-bit targets
2960     { ISD::ROTL,       MVT::i32,     1 },
2961     { ISD::ROTL,       MVT::i16,     1 },
2962     { ISD::ROTL,       MVT::i8,      1 },
2963     { ISD::ROTR,       MVT::i32,     1 },
2964     { ISD::ROTR,       MVT::i16,     1 },
2965     { ISD::ROTR,       MVT::i8,      1 },
2966     { ISD::FSHL,       MVT::i32,     4 },
2967     { ISD::FSHL,       MVT::i16,     4 },
2968     { ISD::FSHL,       MVT::i8,      4 }
2969   };
2970 
2971   Intrinsic::ID IID = ICA.getID();
2972   Type *RetTy = ICA.getReturnType();
2973   const SmallVectorImpl<const Value *> &Args = ICA.getArgs();
2974   unsigned ISD = ISD::DELETED_NODE;
2975   switch (IID) {
2976   default:
2977     break;
2978   case Intrinsic::fshl:
2979     ISD = ISD::FSHL;
2980     if (Args[0] == Args[1])
2981       ISD = ISD::ROTL;
2982     break;
2983   case Intrinsic::fshr:
2984     // FSHR has same costs so don't duplicate.
2985     ISD = ISD::FSHL;
2986     if (Args[0] == Args[1])
2987       ISD = ISD::ROTR;
2988     break;
2989   }
2990 
2991   if (ISD != ISD::DELETED_NODE) {
2992     // Legalize the type.
2993     std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, RetTy);
2994     MVT MTy = LT.second;
2995 
2996     // Attempt to lookup cost.
2997     if (ST->hasAVX512())
2998       if (const auto *Entry = CostTableLookup(AVX512CostTbl, ISD, MTy))
2999         return LT.first * Entry->Cost;
3000 
3001     if (ST->hasXOP())
3002       if (const auto *Entry = CostTableLookup(XOPCostTbl, ISD, MTy))
3003         return LT.first * Entry->Cost;
3004 
3005     if (ST->is64Bit())
3006       if (const auto *Entry = CostTableLookup(X64CostTbl, ISD, MTy))
3007         return LT.first * Entry->Cost;
3008 
3009     if (const auto *Entry = CostTableLookup(X86CostTbl, ISD, MTy))
3010       return LT.first * Entry->Cost;
3011   }
3012 
3013   return BaseT::getIntrinsicInstrCost(ICA, CostKind);
3014 }
3015 
3016 InstructionCost X86TTIImpl::getVectorInstrCost(unsigned Opcode, Type *Val,
3017                                                unsigned Index) {
3018   static const CostTblEntry SLMCostTbl[] = {
3019      { ISD::EXTRACT_VECTOR_ELT,       MVT::i8,      4 },
3020      { ISD::EXTRACT_VECTOR_ELT,       MVT::i16,     4 },
3021      { ISD::EXTRACT_VECTOR_ELT,       MVT::i32,     4 },
3022      { ISD::EXTRACT_VECTOR_ELT,       MVT::i64,     7 }
3023    };
3024 
3025   assert(Val->isVectorTy() && "This must be a vector type");
3026   Type *ScalarType = Val->getScalarType();
3027   int RegisterFileMoveCost = 0;
3028 
3029   if (Index != -1U && (Opcode == Instruction::ExtractElement ||
3030                        Opcode == Instruction::InsertElement)) {
3031     // Legalize the type.
3032     std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Val);
3033 
3034     // This type is legalized to a scalar type.
3035     if (!LT.second.isVector())
3036       return 0;
3037 
3038     // The type may be split. Normalize the index to the new type.
3039     unsigned NumElts = LT.second.getVectorNumElements();
3040     unsigned SubNumElts = NumElts;
3041     Index = Index % NumElts;
3042 
3043     // For >128-bit vectors, we need to extract higher 128-bit subvectors.
3044     // For inserts, we also need to insert the subvector back.
3045     if (LT.second.getSizeInBits() > 128) {
3046       assert((LT.second.getSizeInBits() % 128) == 0 && "Illegal vector");
3047       unsigned NumSubVecs = LT.second.getSizeInBits() / 128;
3048       SubNumElts = NumElts / NumSubVecs;
3049       if (SubNumElts <= Index) {
3050         RegisterFileMoveCost += (Opcode == Instruction::InsertElement ? 2 : 1);
3051         Index %= SubNumElts;
3052       }
3053     }
3054 
3055     if (Index == 0) {
3056       // Floating point scalars are already located in index #0.
3057       // Many insertions to #0 can fold away for scalar fp-ops, so let's assume
3058       // true for all.
3059       if (ScalarType->isFloatingPointTy())
3060         return RegisterFileMoveCost;
3061 
3062       // Assume movd/movq XMM -> GPR is relatively cheap on all targets.
3063       if (ScalarType->isIntegerTy() && Opcode == Instruction::ExtractElement)
3064         return 1 + RegisterFileMoveCost;
3065     }
3066 
3067     int ISD = TLI->InstructionOpcodeToISD(Opcode);
3068     assert(ISD && "Unexpected vector opcode");
3069     MVT MScalarTy = LT.second.getScalarType();
3070     if (ST->isSLM())
3071       if (auto *Entry = CostTableLookup(SLMCostTbl, ISD, MScalarTy))
3072         return Entry->Cost + RegisterFileMoveCost;
3073 
3074     // Assume pinsr/pextr XMM <-> GPR is relatively cheap on all targets.
3075     if ((MScalarTy == MVT::i16 && ST->hasSSE2()) ||
3076         (MScalarTy.isInteger() && ST->hasSSE41()))
3077       return 1 + RegisterFileMoveCost;
3078 
3079     // Assume insertps is relatively cheap on all targets.
3080     if (MScalarTy == MVT::f32 && ST->hasSSE41() &&
3081         Opcode == Instruction::InsertElement)
3082       return 1 + RegisterFileMoveCost;
3083 
3084     // For extractions we just need to shuffle the element to index 0, which
3085     // should be very cheap (assume cost = 1). For insertions we need to shuffle
3086     // the elements to its destination. In both cases we must handle the
3087     // subvector move(s).
3088     // If the vector type is already less than 128-bits then don't reduce it.
3089     // TODO: Under what circumstances should we shuffle using the full width?
3090     InstructionCost ShuffleCost = 1;
3091     if (Opcode == Instruction::InsertElement) {
3092       auto *SubTy = cast<VectorType>(Val);
3093       EVT VT = TLI->getValueType(DL, Val);
3094       if (VT.getScalarType() != MScalarTy || VT.getSizeInBits() >= 128)
3095         SubTy = FixedVectorType::get(ScalarType, SubNumElts);
3096       ShuffleCost =
3097           getShuffleCost(TTI::SK_PermuteTwoSrc, SubTy, None, 0, SubTy);
3098     }
3099     int IntOrFpCost = ScalarType->isFloatingPointTy() ? 0 : 1;
3100     return ShuffleCost + IntOrFpCost + RegisterFileMoveCost;
3101   }
3102 
3103   // Add to the base cost if we know that the extracted element of a vector is
3104   // destined to be moved to and used in the integer register file.
3105   if (Opcode == Instruction::ExtractElement && ScalarType->isPointerTy())
3106     RegisterFileMoveCost += 1;
3107 
3108   return BaseT::getVectorInstrCost(Opcode, Val, Index) + RegisterFileMoveCost;
3109 }
3110 
3111 unsigned X86TTIImpl::getScalarizationOverhead(VectorType *Ty,
3112                                               const APInt &DemandedElts,
3113                                               bool Insert, bool Extract) {
3114   unsigned Cost = 0;
3115 
3116   // For insertions, a ISD::BUILD_VECTOR style vector initialization can be much
3117   // cheaper than an accumulation of ISD::INSERT_VECTOR_ELT.
3118   if (Insert) {
3119     std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Ty);
3120     MVT MScalarTy = LT.second.getScalarType();
3121 
3122     if ((MScalarTy == MVT::i16 && ST->hasSSE2()) ||
3123         (MScalarTy.isInteger() && ST->hasSSE41()) ||
3124         (MScalarTy == MVT::f32 && ST->hasSSE41())) {
3125       // For types we can insert directly, insertion into 128-bit sub vectors is
3126       // cheap, followed by a cheap chain of concatenations.
3127       if (LT.second.getSizeInBits() <= 128) {
3128         Cost +=
3129             BaseT::getScalarizationOverhead(Ty, DemandedElts, Insert, false);
3130       } else {
3131         // In each 128-lane, if at least one index is demanded but not all
3132         // indices are demanded and this 128-lane is not the first 128-lane of
3133         // the legalized-vector, then this 128-lane needs a extracti128; If in
3134         // each 128-lane, there is at least one demanded index, this 128-lane
3135         // needs a inserti128.
3136 
3137         // The following cases will help you build a better understanding:
3138         // Assume we insert several elements into a v8i32 vector in avx2,
3139         // Case#1: inserting into 1th index needs vpinsrd + inserti128.
3140         // Case#2: inserting into 5th index needs extracti128 + vpinsrd +
3141         // inserti128.
3142         // Case#3: inserting into 4,5,6,7 index needs 4*vpinsrd + inserti128.
3143         unsigned Num128Lanes = LT.second.getSizeInBits() / 128 * LT.first;
3144         unsigned NumElts = LT.second.getVectorNumElements() * LT.first;
3145         APInt WidenedDemandedElts = DemandedElts.zextOrSelf(NumElts);
3146         unsigned Scale = NumElts / Num128Lanes;
3147         // We iterate each 128-lane, and check if we need a
3148         // extracti128/inserti128 for this 128-lane.
3149         for (unsigned I = 0; I < NumElts; I += Scale) {
3150           APInt Mask = WidenedDemandedElts.getBitsSet(NumElts, I, I + Scale);
3151           APInt MaskedDE = Mask & WidenedDemandedElts;
3152           unsigned Population = MaskedDE.countPopulation();
3153           Cost += (Population > 0 && Population != Scale &&
3154                    I % LT.second.getVectorNumElements() != 0);
3155           Cost += Population > 0;
3156         }
3157         Cost += DemandedElts.countPopulation();
3158 
3159         // For vXf32 cases, insertion into the 0'th index in each v4f32
3160         // 128-bit vector is free.
3161         // NOTE: This assumes legalization widens vXf32 vectors.
3162         if (MScalarTy == MVT::f32)
3163           for (unsigned i = 0, e = cast<FixedVectorType>(Ty)->getNumElements();
3164                i < e; i += 4)
3165             if (DemandedElts[i])
3166               Cost--;
3167       }
3168     } else if (LT.second.isVector()) {
3169       // Without fast insertion, we need to use MOVD/MOVQ to pass each demanded
3170       // integer element as a SCALAR_TO_VECTOR, then we build the vector as a
3171       // series of UNPCK followed by CONCAT_VECTORS - all of these can be
3172       // considered cheap.
3173       if (Ty->isIntOrIntVectorTy())
3174         Cost += DemandedElts.countPopulation();
3175 
3176       // Get the smaller of the legalized or original pow2-extended number of
3177       // vector elements, which represents the number of unpacks we'll end up
3178       // performing.
3179       unsigned NumElts = LT.second.getVectorNumElements();
3180       unsigned Pow2Elts =
3181           PowerOf2Ceil(cast<FixedVectorType>(Ty)->getNumElements());
3182       Cost += (std::min<unsigned>(NumElts, Pow2Elts) - 1) * LT.first;
3183     }
3184   }
3185 
3186   // TODO: Use default extraction for now, but we should investigate extending this
3187   // to handle repeated subvector extraction.
3188   if (Extract)
3189     Cost += BaseT::getScalarizationOverhead(Ty, DemandedElts, false, Extract);
3190 
3191   return Cost;
3192 }
3193 
3194 InstructionCost X86TTIImpl::getMemoryOpCost(unsigned Opcode, Type *Src,
3195                                             MaybeAlign Alignment,
3196                                             unsigned AddressSpace,
3197                                             TTI::TargetCostKind CostKind,
3198                                             const Instruction *I) {
3199   // TODO: Handle other cost kinds.
3200   if (CostKind != TTI::TCK_RecipThroughput) {
3201     if (auto *SI = dyn_cast_or_null<StoreInst>(I)) {
3202       // Store instruction with index and scale costs 2 Uops.
3203       // Check the preceding GEP to identify non-const indices.
3204       if (auto *GEP = dyn_cast<GetElementPtrInst>(SI->getPointerOperand())) {
3205         if (!all_of(GEP->indices(), [](Value *V) { return isa<Constant>(V); }))
3206           return TTI::TCC_Basic * 2;
3207       }
3208     }
3209     return TTI::TCC_Basic;
3210   }
3211 
3212   // Handle non-power-of-two vectors such as <3 x float>
3213   if (auto *VTy = dyn_cast<FixedVectorType>(Src)) {
3214     unsigned NumElem = VTy->getNumElements();
3215 
3216     // Handle a few common cases:
3217     // <3 x float>
3218     if (NumElem == 3 && VTy->getScalarSizeInBits() == 32)
3219       // Cost = 64 bit store + extract + 32 bit store.
3220       return 3;
3221 
3222     // <3 x double>
3223     if (NumElem == 3 && VTy->getScalarSizeInBits() == 64)
3224       // Cost = 128 bit store + unpack + 64 bit store.
3225       return 3;
3226 
3227     // Assume that all other non-power-of-two numbers are scalarized.
3228     if (!isPowerOf2_32(NumElem)) {
3229       APInt DemandedElts = APInt::getAllOnesValue(NumElem);
3230       InstructionCost Cost = BaseT::getMemoryOpCost(
3231           Opcode, VTy->getScalarType(), Alignment, AddressSpace, CostKind);
3232       int SplitCost = getScalarizationOverhead(VTy, DemandedElts,
3233                                                Opcode == Instruction::Load,
3234                                                Opcode == Instruction::Store);
3235       return NumElem * Cost + SplitCost;
3236     }
3237   }
3238 
3239   // Type legalization can't handle structs
3240   if (TLI->getValueType(DL, Src,  true) == MVT::Other)
3241     return BaseT::getMemoryOpCost(Opcode, Src, Alignment, AddressSpace,
3242                                   CostKind);
3243 
3244   // Legalize the type.
3245   std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Src);
3246   assert((Opcode == Instruction::Load || Opcode == Instruction::Store) &&
3247          "Invalid Opcode");
3248 
3249   // Each load/store unit costs 1.
3250   int Cost = LT.first * 1;
3251 
3252   // This isn't exactly right. We're using slow unaligned 32-byte accesses as a
3253   // proxy for a double-pumped AVX memory interface such as on Sandybridge.
3254   if (LT.second.getStoreSize() == 32 && ST->isUnalignedMem32Slow())
3255     Cost *= 2;
3256 
3257   return Cost;
3258 }
3259 
3260 InstructionCost
3261 X86TTIImpl::getMaskedMemoryOpCost(unsigned Opcode, Type *SrcTy, Align Alignment,
3262                                   unsigned AddressSpace,
3263                                   TTI::TargetCostKind CostKind) {
3264   bool IsLoad = (Instruction::Load == Opcode);
3265   bool IsStore = (Instruction::Store == Opcode);
3266 
3267   auto *SrcVTy = dyn_cast<FixedVectorType>(SrcTy);
3268   if (!SrcVTy)
3269     // To calculate scalar take the regular cost, without mask
3270     return getMemoryOpCost(Opcode, SrcTy, Alignment, AddressSpace, CostKind);
3271 
3272   unsigned NumElem = SrcVTy->getNumElements();
3273   auto *MaskTy =
3274       FixedVectorType::get(Type::getInt8Ty(SrcVTy->getContext()), NumElem);
3275   if ((IsLoad && !isLegalMaskedLoad(SrcVTy, Alignment)) ||
3276       (IsStore && !isLegalMaskedStore(SrcVTy, Alignment)) ||
3277       !isPowerOf2_32(NumElem)) {
3278     // Scalarization
3279     APInt DemandedElts = APInt::getAllOnesValue(NumElem);
3280     InstructionCost MaskSplitCost =
3281         getScalarizationOverhead(MaskTy, DemandedElts, false, true);
3282     InstructionCost ScalarCompareCost = getCmpSelInstrCost(
3283         Instruction::ICmp, Type::getInt8Ty(SrcVTy->getContext()), nullptr,
3284         CmpInst::BAD_ICMP_PREDICATE, CostKind);
3285     InstructionCost BranchCost = getCFInstrCost(Instruction::Br, CostKind);
3286     InstructionCost MaskCmpCost = NumElem * (BranchCost + ScalarCompareCost);
3287     InstructionCost ValueSplitCost =
3288         getScalarizationOverhead(SrcVTy, DemandedElts, IsLoad, IsStore);
3289     InstructionCost MemopCost =
3290         NumElem * BaseT::getMemoryOpCost(Opcode, SrcVTy->getScalarType(),
3291                                          Alignment, AddressSpace, CostKind);
3292     return MemopCost + ValueSplitCost + MaskSplitCost + MaskCmpCost;
3293   }
3294 
3295   // Legalize the type.
3296   std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, SrcVTy);
3297   auto VT = TLI->getValueType(DL, SrcVTy);
3298   InstructionCost Cost = 0;
3299   if (VT.isSimple() && LT.second != VT.getSimpleVT() &&
3300       LT.second.getVectorNumElements() == NumElem)
3301     // Promotion requires expand/truncate for data and a shuffle for mask.
3302     Cost += getShuffleCost(TTI::SK_PermuteTwoSrc, SrcVTy, None, 0, nullptr) +
3303             getShuffleCost(TTI::SK_PermuteTwoSrc, MaskTy, None, 0, nullptr);
3304 
3305   else if (LT.second.getVectorNumElements() > NumElem) {
3306     auto *NewMaskTy = FixedVectorType::get(MaskTy->getElementType(),
3307                                            LT.second.getVectorNumElements());
3308     // Expanding requires fill mask with zeroes
3309     Cost += getShuffleCost(TTI::SK_InsertSubvector, NewMaskTy, None, 0, MaskTy);
3310   }
3311 
3312   // Pre-AVX512 - each maskmov load costs 2 + store costs ~8.
3313   if (!ST->hasAVX512())
3314     return Cost + LT.first * (IsLoad ? 2 : 8);
3315 
3316   // AVX-512 masked load/store is cheapper
3317   return Cost + LT.first;
3318 }
3319 
3320 int X86TTIImpl::getAddressComputationCost(Type *Ty, ScalarEvolution *SE,
3321                                           const SCEV *Ptr) {
3322   // Address computations in vectorized code with non-consecutive addresses will
3323   // likely result in more instructions compared to scalar code where the
3324   // computation can more often be merged into the index mode. The resulting
3325   // extra micro-ops can significantly decrease throughput.
3326   const unsigned NumVectorInstToHideOverhead = 10;
3327 
3328   // Cost modeling of Strided Access Computation is hidden by the indexing
3329   // modes of X86 regardless of the stride value. We dont believe that there
3330   // is a difference between constant strided access in gerenal and constant
3331   // strided value which is less than or equal to 64.
3332   // Even in the case of (loop invariant) stride whose value is not known at
3333   // compile time, the address computation will not incur more than one extra
3334   // ADD instruction.
3335   if (Ty->isVectorTy() && SE) {
3336     if (!BaseT::isStridedAccess(Ptr))
3337       return NumVectorInstToHideOverhead;
3338     if (!BaseT::getConstantStrideStep(SE, Ptr))
3339       return 1;
3340   }
3341 
3342   return BaseT::getAddressComputationCost(Ty, SE, Ptr);
3343 }
3344 
3345 InstructionCost
3346 X86TTIImpl::getArithmeticReductionCost(unsigned Opcode, VectorType *ValTy,
3347                                        bool IsPairwise,
3348                                        TTI::TargetCostKind CostKind) {
3349   // Just use the default implementation for pair reductions.
3350   if (IsPairwise)
3351     return BaseT::getArithmeticReductionCost(Opcode, ValTy, IsPairwise, CostKind);
3352 
3353   // We use the Intel Architecture Code Analyzer(IACA) to measure the throughput
3354   // and make it as the cost.
3355 
3356   static const CostTblEntry SLMCostTblNoPairWise[] = {
3357     { ISD::FADD,  MVT::v2f64,   3 },
3358     { ISD::ADD,   MVT::v2i64,   5 },
3359   };
3360 
3361   static const CostTblEntry SSE2CostTblNoPairWise[] = {
3362     { ISD::FADD,  MVT::v2f64,   2 },
3363     { ISD::FADD,  MVT::v4f32,   4 },
3364     { ISD::ADD,   MVT::v2i64,   2 },      // The data reported by the IACA tool is "1.6".
3365     { ISD::ADD,   MVT::v2i32,   2 }, // FIXME: chosen to be less than v4i32
3366     { ISD::ADD,   MVT::v4i32,   3 },      // The data reported by the IACA tool is "3.3".
3367     { ISD::ADD,   MVT::v2i16,   2 },      // The data reported by the IACA tool is "4.3".
3368     { ISD::ADD,   MVT::v4i16,   3 },      // The data reported by the IACA tool is "4.3".
3369     { ISD::ADD,   MVT::v8i16,   4 },      // The data reported by the IACA tool is "4.3".
3370     { ISD::ADD,   MVT::v2i8,    2 },
3371     { ISD::ADD,   MVT::v4i8,    2 },
3372     { ISD::ADD,   MVT::v8i8,    2 },
3373     { ISD::ADD,   MVT::v16i8,   3 },
3374   };
3375 
3376   static const CostTblEntry AVX1CostTblNoPairWise[] = {
3377     { ISD::FADD,  MVT::v4f64,   3 },
3378     { ISD::FADD,  MVT::v4f32,   3 },
3379     { ISD::FADD,  MVT::v8f32,   4 },
3380     { ISD::ADD,   MVT::v2i64,   1 },      // The data reported by the IACA tool is "1.5".
3381     { ISD::ADD,   MVT::v4i64,   3 },
3382     { ISD::ADD,   MVT::v8i32,   5 },
3383     { ISD::ADD,   MVT::v16i16,  5 },
3384     { ISD::ADD,   MVT::v32i8,   4 },
3385   };
3386 
3387   int ISD = TLI->InstructionOpcodeToISD(Opcode);
3388   assert(ISD && "Invalid opcode");
3389 
3390   // Before legalizing the type, give a chance to look up illegal narrow types
3391   // in the table.
3392   // FIXME: Is there a better way to do this?
3393   EVT VT = TLI->getValueType(DL, ValTy);
3394   if (VT.isSimple()) {
3395     MVT MTy = VT.getSimpleVT();
3396     if (ST->isSLM())
3397       if (const auto *Entry = CostTableLookup(SLMCostTblNoPairWise, ISD, MTy))
3398         return Entry->Cost;
3399 
3400     if (ST->hasAVX())
3401       if (const auto *Entry = CostTableLookup(AVX1CostTblNoPairWise, ISD, MTy))
3402         return Entry->Cost;
3403 
3404     if (ST->hasSSE2())
3405       if (const auto *Entry = CostTableLookup(SSE2CostTblNoPairWise, ISD, MTy))
3406         return Entry->Cost;
3407   }
3408 
3409   std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, ValTy);
3410 
3411   MVT MTy = LT.second;
3412 
3413   auto *ValVTy = cast<FixedVectorType>(ValTy);
3414 
3415   // Special case: vXi8 mul reductions are performed as vXi16.
3416   if (ISD == ISD::MUL && MTy.getScalarType() == MVT::i8) {
3417     auto *WideSclTy = IntegerType::get(ValVTy->getContext(), 16);
3418     auto *WideVecTy = FixedVectorType::get(WideSclTy, ValVTy->getNumElements());
3419     return getCastInstrCost(Instruction::ZExt, WideVecTy, ValTy,
3420                             TargetTransformInfo::CastContextHint::None,
3421                             CostKind) +
3422            getArithmeticReductionCost(Opcode, WideVecTy, IsPairwise, CostKind);
3423   }
3424 
3425   InstructionCost ArithmeticCost = 0;
3426   if (LT.first != 1 && MTy.isVector() &&
3427       MTy.getVectorNumElements() < ValVTy->getNumElements()) {
3428     // Type needs to be split. We need LT.first - 1 arithmetic ops.
3429     auto *SingleOpTy = FixedVectorType::get(ValVTy->getElementType(),
3430                                             MTy.getVectorNumElements());
3431     ArithmeticCost = getArithmeticInstrCost(Opcode, SingleOpTy, CostKind);
3432     ArithmeticCost *= LT.first - 1;
3433   }
3434 
3435   if (ST->isSLM())
3436     if (const auto *Entry = CostTableLookup(SLMCostTblNoPairWise, ISD, MTy))
3437       return ArithmeticCost + Entry->Cost;
3438 
3439   if (ST->hasAVX())
3440     if (const auto *Entry = CostTableLookup(AVX1CostTblNoPairWise, ISD, MTy))
3441       return ArithmeticCost + Entry->Cost;
3442 
3443   if (ST->hasSSE2())
3444     if (const auto *Entry = CostTableLookup(SSE2CostTblNoPairWise, ISD, MTy))
3445       return ArithmeticCost + Entry->Cost;
3446 
3447   // FIXME: These assume a naive kshift+binop lowering, which is probably
3448   // conservative in most cases.
3449   static const CostTblEntry AVX512BoolReduction[] = {
3450     { ISD::AND,  MVT::v2i1,   3 },
3451     { ISD::AND,  MVT::v4i1,   5 },
3452     { ISD::AND,  MVT::v8i1,   7 },
3453     { ISD::AND,  MVT::v16i1,  9 },
3454     { ISD::AND,  MVT::v32i1, 11 },
3455     { ISD::AND,  MVT::v64i1, 13 },
3456     { ISD::OR,   MVT::v2i1,   3 },
3457     { ISD::OR,   MVT::v4i1,   5 },
3458     { ISD::OR,   MVT::v8i1,   7 },
3459     { ISD::OR,   MVT::v16i1,  9 },
3460     { ISD::OR,   MVT::v32i1, 11 },
3461     { ISD::OR,   MVT::v64i1, 13 },
3462   };
3463 
3464   static const CostTblEntry AVX2BoolReduction[] = {
3465     { ISD::AND,  MVT::v16i16,  2 }, // vpmovmskb + cmp
3466     { ISD::AND,  MVT::v32i8,   2 }, // vpmovmskb + cmp
3467     { ISD::OR,   MVT::v16i16,  2 }, // vpmovmskb + cmp
3468     { ISD::OR,   MVT::v32i8,   2 }, // vpmovmskb + cmp
3469   };
3470 
3471   static const CostTblEntry AVX1BoolReduction[] = {
3472     { ISD::AND,  MVT::v4i64,   2 }, // vmovmskpd + cmp
3473     { ISD::AND,  MVT::v8i32,   2 }, // vmovmskps + cmp
3474     { ISD::AND,  MVT::v16i16,  4 }, // vextractf128 + vpand + vpmovmskb + cmp
3475     { ISD::AND,  MVT::v32i8,   4 }, // vextractf128 + vpand + vpmovmskb + cmp
3476     { ISD::OR,   MVT::v4i64,   2 }, // vmovmskpd + cmp
3477     { ISD::OR,   MVT::v8i32,   2 }, // vmovmskps + cmp
3478     { ISD::OR,   MVT::v16i16,  4 }, // vextractf128 + vpor + vpmovmskb + cmp
3479     { ISD::OR,   MVT::v32i8,   4 }, // vextractf128 + vpor + vpmovmskb + cmp
3480   };
3481 
3482   static const CostTblEntry SSE2BoolReduction[] = {
3483     { ISD::AND,  MVT::v2i64,   2 }, // movmskpd + cmp
3484     { ISD::AND,  MVT::v4i32,   2 }, // movmskps + cmp
3485     { ISD::AND,  MVT::v8i16,   2 }, // pmovmskb + cmp
3486     { ISD::AND,  MVT::v16i8,   2 }, // pmovmskb + cmp
3487     { ISD::OR,   MVT::v2i64,   2 }, // movmskpd + cmp
3488     { ISD::OR,   MVT::v4i32,   2 }, // movmskps + cmp
3489     { ISD::OR,   MVT::v8i16,   2 }, // pmovmskb + cmp
3490     { ISD::OR,   MVT::v16i8,   2 }, // pmovmskb + cmp
3491   };
3492 
3493   // Handle bool allof/anyof patterns.
3494   if (ValVTy->getElementType()->isIntegerTy(1)) {
3495     InstructionCost ArithmeticCost = 0;
3496     if (LT.first != 1 && MTy.isVector() &&
3497         MTy.getVectorNumElements() < ValVTy->getNumElements()) {
3498       // Type needs to be split. We need LT.first - 1 arithmetic ops.
3499       auto *SingleOpTy = FixedVectorType::get(ValVTy->getElementType(),
3500                                               MTy.getVectorNumElements());
3501       ArithmeticCost = getArithmeticInstrCost(Opcode, SingleOpTy, CostKind);
3502       ArithmeticCost *= LT.first - 1;
3503     }
3504 
3505     if (ST->hasAVX512())
3506       if (const auto *Entry = CostTableLookup(AVX512BoolReduction, ISD, MTy))
3507         return ArithmeticCost + Entry->Cost;
3508     if (ST->hasAVX2())
3509       if (const auto *Entry = CostTableLookup(AVX2BoolReduction, ISD, MTy))
3510         return ArithmeticCost + Entry->Cost;
3511     if (ST->hasAVX())
3512       if (const auto *Entry = CostTableLookup(AVX1BoolReduction, ISD, MTy))
3513         return ArithmeticCost + Entry->Cost;
3514     if (ST->hasSSE2())
3515       if (const auto *Entry = CostTableLookup(SSE2BoolReduction, ISD, MTy))
3516         return ArithmeticCost + Entry->Cost;
3517 
3518     return BaseT::getArithmeticReductionCost(Opcode, ValVTy, IsPairwise,
3519                                              CostKind);
3520   }
3521 
3522   unsigned NumVecElts = ValVTy->getNumElements();
3523   unsigned ScalarSize = ValVTy->getScalarSizeInBits();
3524 
3525   // Special case power of 2 reductions where the scalar type isn't changed
3526   // by type legalization.
3527   if (!isPowerOf2_32(NumVecElts) || ScalarSize != MTy.getScalarSizeInBits())
3528     return BaseT::getArithmeticReductionCost(Opcode, ValVTy, IsPairwise,
3529                                              CostKind);
3530 
3531   InstructionCost ReductionCost = 0;
3532 
3533   auto *Ty = ValVTy;
3534   if (LT.first != 1 && MTy.isVector() &&
3535       MTy.getVectorNumElements() < ValVTy->getNumElements()) {
3536     // Type needs to be split. We need LT.first - 1 arithmetic ops.
3537     Ty = FixedVectorType::get(ValVTy->getElementType(),
3538                               MTy.getVectorNumElements());
3539     ReductionCost = getArithmeticInstrCost(Opcode, Ty, CostKind);
3540     ReductionCost *= LT.first - 1;
3541     NumVecElts = MTy.getVectorNumElements();
3542   }
3543 
3544   // Now handle reduction with the legal type, taking into account size changes
3545   // at each level.
3546   while (NumVecElts > 1) {
3547     // Determine the size of the remaining vector we need to reduce.
3548     unsigned Size = NumVecElts * ScalarSize;
3549     NumVecElts /= 2;
3550     // If we're reducing from 256/512 bits, use an extract_subvector.
3551     if (Size > 128) {
3552       auto *SubTy = FixedVectorType::get(ValVTy->getElementType(), NumVecElts);
3553       ReductionCost +=
3554           getShuffleCost(TTI::SK_ExtractSubvector, Ty, None, NumVecElts, SubTy);
3555       Ty = SubTy;
3556     } else if (Size == 128) {
3557       // Reducing from 128 bits is a permute of v2f64/v2i64.
3558       FixedVectorType *ShufTy;
3559       if (ValVTy->isFloatingPointTy())
3560         ShufTy =
3561             FixedVectorType::get(Type::getDoubleTy(ValVTy->getContext()), 2);
3562       else
3563         ShufTy =
3564             FixedVectorType::get(Type::getInt64Ty(ValVTy->getContext()), 2);
3565       ReductionCost +=
3566           getShuffleCost(TTI::SK_PermuteSingleSrc, ShufTy, None, 0, nullptr);
3567     } else if (Size == 64) {
3568       // Reducing from 64 bits is a shuffle of v4f32/v4i32.
3569       FixedVectorType *ShufTy;
3570       if (ValVTy->isFloatingPointTy())
3571         ShufTy =
3572             FixedVectorType::get(Type::getFloatTy(ValVTy->getContext()), 4);
3573       else
3574         ShufTy =
3575             FixedVectorType::get(Type::getInt32Ty(ValVTy->getContext()), 4);
3576       ReductionCost +=
3577           getShuffleCost(TTI::SK_PermuteSingleSrc, ShufTy, None, 0, nullptr);
3578     } else {
3579       // Reducing from smaller size is a shift by immediate.
3580       auto *ShiftTy = FixedVectorType::get(
3581           Type::getIntNTy(ValVTy->getContext(), Size), 128 / Size);
3582       ReductionCost += getArithmeticInstrCost(
3583           Instruction::LShr, ShiftTy, CostKind,
3584           TargetTransformInfo::OK_AnyValue,
3585           TargetTransformInfo::OK_UniformConstantValue,
3586           TargetTransformInfo::OP_None, TargetTransformInfo::OP_None);
3587     }
3588 
3589     // Add the arithmetic op for this level.
3590     ReductionCost += getArithmeticInstrCost(Opcode, Ty, CostKind);
3591   }
3592 
3593   // Add the final extract element to the cost.
3594   return ReductionCost + getVectorInstrCost(Instruction::ExtractElement, Ty, 0);
3595 }
3596 
3597 InstructionCost X86TTIImpl::getMinMaxCost(Type *Ty, Type *CondTy,
3598                                           bool IsUnsigned) {
3599   std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Ty);
3600 
3601   MVT MTy = LT.second;
3602 
3603   int ISD;
3604   if (Ty->isIntOrIntVectorTy()) {
3605     ISD = IsUnsigned ? ISD::UMIN : ISD::SMIN;
3606   } else {
3607     assert(Ty->isFPOrFPVectorTy() &&
3608            "Expected float point or integer vector type.");
3609     ISD = ISD::FMINNUM;
3610   }
3611 
3612   static const CostTblEntry SSE1CostTbl[] = {
3613     {ISD::FMINNUM, MVT::v4f32, 1},
3614   };
3615 
3616   static const CostTblEntry SSE2CostTbl[] = {
3617     {ISD::FMINNUM, MVT::v2f64, 1},
3618     {ISD::SMIN,    MVT::v8i16, 1},
3619     {ISD::UMIN,    MVT::v16i8, 1},
3620   };
3621 
3622   static const CostTblEntry SSE41CostTbl[] = {
3623     {ISD::SMIN,    MVT::v4i32, 1},
3624     {ISD::UMIN,    MVT::v4i32, 1},
3625     {ISD::UMIN,    MVT::v8i16, 1},
3626     {ISD::SMIN,    MVT::v16i8, 1},
3627   };
3628 
3629   static const CostTblEntry SSE42CostTbl[] = {
3630     {ISD::UMIN,    MVT::v2i64, 3}, // xor+pcmpgtq+blendvpd
3631   };
3632 
3633   static const CostTblEntry AVX1CostTbl[] = {
3634     {ISD::FMINNUM, MVT::v8f32,  1},
3635     {ISD::FMINNUM, MVT::v4f64,  1},
3636     {ISD::SMIN,    MVT::v8i32,  3},
3637     {ISD::UMIN,    MVT::v8i32,  3},
3638     {ISD::SMIN,    MVT::v16i16, 3},
3639     {ISD::UMIN,    MVT::v16i16, 3},
3640     {ISD::SMIN,    MVT::v32i8,  3},
3641     {ISD::UMIN,    MVT::v32i8,  3},
3642   };
3643 
3644   static const CostTblEntry AVX2CostTbl[] = {
3645     {ISD::SMIN,    MVT::v8i32,  1},
3646     {ISD::UMIN,    MVT::v8i32,  1},
3647     {ISD::SMIN,    MVT::v16i16, 1},
3648     {ISD::UMIN,    MVT::v16i16, 1},
3649     {ISD::SMIN,    MVT::v32i8,  1},
3650     {ISD::UMIN,    MVT::v32i8,  1},
3651   };
3652 
3653   static const CostTblEntry AVX512CostTbl[] = {
3654     {ISD::FMINNUM, MVT::v16f32, 1},
3655     {ISD::FMINNUM, MVT::v8f64,  1},
3656     {ISD::SMIN,    MVT::v2i64,  1},
3657     {ISD::UMIN,    MVT::v2i64,  1},
3658     {ISD::SMIN,    MVT::v4i64,  1},
3659     {ISD::UMIN,    MVT::v4i64,  1},
3660     {ISD::SMIN,    MVT::v8i64,  1},
3661     {ISD::UMIN,    MVT::v8i64,  1},
3662     {ISD::SMIN,    MVT::v16i32, 1},
3663     {ISD::UMIN,    MVT::v16i32, 1},
3664   };
3665 
3666   static const CostTblEntry AVX512BWCostTbl[] = {
3667     {ISD::SMIN,    MVT::v32i16, 1},
3668     {ISD::UMIN,    MVT::v32i16, 1},
3669     {ISD::SMIN,    MVT::v64i8,  1},
3670     {ISD::UMIN,    MVT::v64i8,  1},
3671   };
3672 
3673   // If we have a native MIN/MAX instruction for this type, use it.
3674   if (ST->hasBWI())
3675     if (const auto *Entry = CostTableLookup(AVX512BWCostTbl, ISD, MTy))
3676       return LT.first * Entry->Cost;
3677 
3678   if (ST->hasAVX512())
3679     if (const auto *Entry = CostTableLookup(AVX512CostTbl, ISD, MTy))
3680       return LT.first * Entry->Cost;
3681 
3682   if (ST->hasAVX2())
3683     if (const auto *Entry = CostTableLookup(AVX2CostTbl, ISD, MTy))
3684       return LT.first * Entry->Cost;
3685 
3686   if (ST->hasAVX())
3687     if (const auto *Entry = CostTableLookup(AVX1CostTbl, ISD, MTy))
3688       return LT.first * Entry->Cost;
3689 
3690   if (ST->hasSSE42())
3691     if (const auto *Entry = CostTableLookup(SSE42CostTbl, ISD, MTy))
3692       return LT.first * Entry->Cost;
3693 
3694   if (ST->hasSSE41())
3695     if (const auto *Entry = CostTableLookup(SSE41CostTbl, ISD, MTy))
3696       return LT.first * Entry->Cost;
3697 
3698   if (ST->hasSSE2())
3699     if (const auto *Entry = CostTableLookup(SSE2CostTbl, ISD, MTy))
3700       return LT.first * Entry->Cost;
3701 
3702   if (ST->hasSSE1())
3703     if (const auto *Entry = CostTableLookup(SSE1CostTbl, ISD, MTy))
3704       return LT.first * Entry->Cost;
3705 
3706   unsigned CmpOpcode;
3707   if (Ty->isFPOrFPVectorTy()) {
3708     CmpOpcode = Instruction::FCmp;
3709   } else {
3710     assert(Ty->isIntOrIntVectorTy() &&
3711            "expecting floating point or integer type for min/max reduction");
3712     CmpOpcode = Instruction::ICmp;
3713   }
3714 
3715   TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
3716   // Otherwise fall back to cmp+select.
3717   InstructionCost Result =
3718       getCmpSelInstrCost(CmpOpcode, Ty, CondTy, CmpInst::BAD_ICMP_PREDICATE,
3719                          CostKind) +
3720       getCmpSelInstrCost(Instruction::Select, Ty, CondTy,
3721                          CmpInst::BAD_ICMP_PREDICATE, CostKind);
3722   return Result;
3723 }
3724 
3725 InstructionCost
3726 X86TTIImpl::getMinMaxReductionCost(VectorType *ValTy, VectorType *CondTy,
3727                                    bool IsPairwise, bool IsUnsigned,
3728                                    TTI::TargetCostKind CostKind) {
3729   // Just use the default implementation for pair reductions.
3730   if (IsPairwise)
3731     return BaseT::getMinMaxReductionCost(ValTy, CondTy, IsPairwise, IsUnsigned,
3732                                          CostKind);
3733 
3734   std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, ValTy);
3735 
3736   MVT MTy = LT.second;
3737 
3738   int ISD;
3739   if (ValTy->isIntOrIntVectorTy()) {
3740     ISD = IsUnsigned ? ISD::UMIN : ISD::SMIN;
3741   } else {
3742     assert(ValTy->isFPOrFPVectorTy() &&
3743            "Expected float point or integer vector type.");
3744     ISD = ISD::FMINNUM;
3745   }
3746 
3747   // We use the Intel Architecture Code Analyzer(IACA) to measure the throughput
3748   // and make it as the cost.
3749 
3750   static const CostTblEntry SSE2CostTblNoPairWise[] = {
3751       {ISD::UMIN, MVT::v2i16, 5}, // need pxors to use pminsw/pmaxsw
3752       {ISD::UMIN, MVT::v4i16, 7}, // need pxors to use pminsw/pmaxsw
3753       {ISD::UMIN, MVT::v8i16, 9}, // need pxors to use pminsw/pmaxsw
3754   };
3755 
3756   static const CostTblEntry SSE41CostTblNoPairWise[] = {
3757       {ISD::SMIN, MVT::v2i16, 3}, // same as sse2
3758       {ISD::SMIN, MVT::v4i16, 5}, // same as sse2
3759       {ISD::UMIN, MVT::v2i16, 5}, // same as sse2
3760       {ISD::UMIN, MVT::v4i16, 7}, // same as sse2
3761       {ISD::SMIN, MVT::v8i16, 4}, // phminposuw+xor
3762       {ISD::UMIN, MVT::v8i16, 4}, // FIXME: umin is cheaper than umax
3763       {ISD::SMIN, MVT::v2i8,  3}, // pminsb
3764       {ISD::SMIN, MVT::v4i8,  5}, // pminsb
3765       {ISD::SMIN, MVT::v8i8,  7}, // pminsb
3766       {ISD::SMIN, MVT::v16i8, 6},
3767       {ISD::UMIN, MVT::v2i8,  3}, // same as sse2
3768       {ISD::UMIN, MVT::v4i8,  5}, // same as sse2
3769       {ISD::UMIN, MVT::v8i8,  7}, // same as sse2
3770       {ISD::UMIN, MVT::v16i8, 6}, // FIXME: umin is cheaper than umax
3771   };
3772 
3773   static const CostTblEntry AVX1CostTblNoPairWise[] = {
3774       {ISD::SMIN, MVT::v16i16, 6},
3775       {ISD::UMIN, MVT::v16i16, 6}, // FIXME: umin is cheaper than umax
3776       {ISD::SMIN, MVT::v32i8, 8},
3777       {ISD::UMIN, MVT::v32i8, 8},
3778   };
3779 
3780   static const CostTblEntry AVX512BWCostTblNoPairWise[] = {
3781       {ISD::SMIN, MVT::v32i16, 8},
3782       {ISD::UMIN, MVT::v32i16, 8}, // FIXME: umin is cheaper than umax
3783       {ISD::SMIN, MVT::v64i8, 10},
3784       {ISD::UMIN, MVT::v64i8, 10},
3785   };
3786 
3787   // Before legalizing the type, give a chance to look up illegal narrow types
3788   // in the table.
3789   // FIXME: Is there a better way to do this?
3790   EVT VT = TLI->getValueType(DL, ValTy);
3791   if (VT.isSimple()) {
3792     MVT MTy = VT.getSimpleVT();
3793     if (ST->hasBWI())
3794       if (const auto *Entry = CostTableLookup(AVX512BWCostTblNoPairWise, ISD, MTy))
3795         return Entry->Cost;
3796 
3797     if (ST->hasAVX())
3798       if (const auto *Entry = CostTableLookup(AVX1CostTblNoPairWise, ISD, MTy))
3799         return Entry->Cost;
3800 
3801     if (ST->hasSSE41())
3802       if (const auto *Entry = CostTableLookup(SSE41CostTblNoPairWise, ISD, MTy))
3803         return Entry->Cost;
3804 
3805     if (ST->hasSSE2())
3806       if (const auto *Entry = CostTableLookup(SSE2CostTblNoPairWise, ISD, MTy))
3807         return Entry->Cost;
3808   }
3809 
3810   auto *ValVTy = cast<FixedVectorType>(ValTy);
3811   unsigned NumVecElts = ValVTy->getNumElements();
3812 
3813   auto *Ty = ValVTy;
3814   InstructionCost MinMaxCost = 0;
3815   if (LT.first != 1 && MTy.isVector() &&
3816       MTy.getVectorNumElements() < ValVTy->getNumElements()) {
3817     // Type needs to be split. We need LT.first - 1 operations ops.
3818     Ty = FixedVectorType::get(ValVTy->getElementType(),
3819                               MTy.getVectorNumElements());
3820     auto *SubCondTy = FixedVectorType::get(CondTy->getElementType(),
3821                                            MTy.getVectorNumElements());
3822     MinMaxCost = getMinMaxCost(Ty, SubCondTy, IsUnsigned);
3823     MinMaxCost *= LT.first - 1;
3824     NumVecElts = MTy.getVectorNumElements();
3825   }
3826 
3827   if (ST->hasBWI())
3828     if (const auto *Entry = CostTableLookup(AVX512BWCostTblNoPairWise, ISD, MTy))
3829       return MinMaxCost + Entry->Cost;
3830 
3831   if (ST->hasAVX())
3832     if (const auto *Entry = CostTableLookup(AVX1CostTblNoPairWise, ISD, MTy))
3833       return MinMaxCost + Entry->Cost;
3834 
3835   if (ST->hasSSE41())
3836     if (const auto *Entry = CostTableLookup(SSE41CostTblNoPairWise, ISD, MTy))
3837       return MinMaxCost + Entry->Cost;
3838 
3839   if (ST->hasSSE2())
3840     if (const auto *Entry = CostTableLookup(SSE2CostTblNoPairWise, ISD, MTy))
3841       return MinMaxCost + Entry->Cost;
3842 
3843   unsigned ScalarSize = ValTy->getScalarSizeInBits();
3844 
3845   // Special case power of 2 reductions where the scalar type isn't changed
3846   // by type legalization.
3847   if (!isPowerOf2_32(ValVTy->getNumElements()) ||
3848       ScalarSize != MTy.getScalarSizeInBits())
3849     return BaseT::getMinMaxReductionCost(ValTy, CondTy, IsPairwise, IsUnsigned,
3850                                          CostKind);
3851 
3852   // Now handle reduction with the legal type, taking into account size changes
3853   // at each level.
3854   while (NumVecElts > 1) {
3855     // Determine the size of the remaining vector we need to reduce.
3856     unsigned Size = NumVecElts * ScalarSize;
3857     NumVecElts /= 2;
3858     // If we're reducing from 256/512 bits, use an extract_subvector.
3859     if (Size > 128) {
3860       auto *SubTy = FixedVectorType::get(ValVTy->getElementType(), NumVecElts);
3861       MinMaxCost +=
3862           getShuffleCost(TTI::SK_ExtractSubvector, Ty, None, NumVecElts, SubTy);
3863       Ty = SubTy;
3864     } else if (Size == 128) {
3865       // Reducing from 128 bits is a permute of v2f64/v2i64.
3866       VectorType *ShufTy;
3867       if (ValTy->isFloatingPointTy())
3868         ShufTy =
3869             FixedVectorType::get(Type::getDoubleTy(ValTy->getContext()), 2);
3870       else
3871         ShufTy = FixedVectorType::get(Type::getInt64Ty(ValTy->getContext()), 2);
3872       MinMaxCost +=
3873           getShuffleCost(TTI::SK_PermuteSingleSrc, ShufTy, None, 0, nullptr);
3874     } else if (Size == 64) {
3875       // Reducing from 64 bits is a shuffle of v4f32/v4i32.
3876       FixedVectorType *ShufTy;
3877       if (ValTy->isFloatingPointTy())
3878         ShufTy = FixedVectorType::get(Type::getFloatTy(ValTy->getContext()), 4);
3879       else
3880         ShufTy = FixedVectorType::get(Type::getInt32Ty(ValTy->getContext()), 4);
3881       MinMaxCost +=
3882           getShuffleCost(TTI::SK_PermuteSingleSrc, ShufTy, None, 0, nullptr);
3883     } else {
3884       // Reducing from smaller size is a shift by immediate.
3885       auto *ShiftTy = FixedVectorType::get(
3886           Type::getIntNTy(ValTy->getContext(), Size), 128 / Size);
3887       MinMaxCost += getArithmeticInstrCost(
3888           Instruction::LShr, ShiftTy, TTI::TCK_RecipThroughput,
3889           TargetTransformInfo::OK_AnyValue,
3890           TargetTransformInfo::OK_UniformConstantValue,
3891           TargetTransformInfo::OP_None, TargetTransformInfo::OP_None);
3892     }
3893 
3894     // Add the arithmetic op for this level.
3895     auto *SubCondTy =
3896         FixedVectorType::get(CondTy->getElementType(), Ty->getNumElements());
3897     MinMaxCost += getMinMaxCost(Ty, SubCondTy, IsUnsigned);
3898   }
3899 
3900   // Add the final extract element to the cost.
3901   return MinMaxCost + getVectorInstrCost(Instruction::ExtractElement, Ty, 0);
3902 }
3903 
3904 /// Calculate the cost of materializing a 64-bit value. This helper
3905 /// method might only calculate a fraction of a larger immediate. Therefore it
3906 /// is valid to return a cost of ZERO.
3907 int X86TTIImpl::getIntImmCost(int64_t Val) {
3908   if (Val == 0)
3909     return TTI::TCC_Free;
3910 
3911   if (isInt<32>(Val))
3912     return TTI::TCC_Basic;
3913 
3914   return 2 * TTI::TCC_Basic;
3915 }
3916 
3917 int X86TTIImpl::getIntImmCost(const APInt &Imm, Type *Ty,
3918                               TTI::TargetCostKind CostKind) {
3919   assert(Ty->isIntegerTy());
3920 
3921   unsigned BitSize = Ty->getPrimitiveSizeInBits();
3922   if (BitSize == 0)
3923     return ~0U;
3924 
3925   // Never hoist constants larger than 128bit, because this might lead to
3926   // incorrect code generation or assertions in codegen.
3927   // Fixme: Create a cost model for types larger than i128 once the codegen
3928   // issues have been fixed.
3929   if (BitSize > 128)
3930     return TTI::TCC_Free;
3931 
3932   if (Imm == 0)
3933     return TTI::TCC_Free;
3934 
3935   // Sign-extend all constants to a multiple of 64-bit.
3936   APInt ImmVal = Imm;
3937   if (BitSize % 64 != 0)
3938     ImmVal = Imm.sext(alignTo(BitSize, 64));
3939 
3940   // Split the constant into 64-bit chunks and calculate the cost for each
3941   // chunk.
3942   int Cost = 0;
3943   for (unsigned ShiftVal = 0; ShiftVal < BitSize; ShiftVal += 64) {
3944     APInt Tmp = ImmVal.ashr(ShiftVal).sextOrTrunc(64);
3945     int64_t Val = Tmp.getSExtValue();
3946     Cost += getIntImmCost(Val);
3947   }
3948   // We need at least one instruction to materialize the constant.
3949   return std::max(1, Cost);
3950 }
3951 
3952 int X86TTIImpl::getIntImmCostInst(unsigned Opcode, unsigned Idx,
3953                                   const APInt &Imm, Type *Ty,
3954                                   TTI::TargetCostKind CostKind,
3955                                   Instruction *Inst) {
3956   assert(Ty->isIntegerTy());
3957 
3958   unsigned BitSize = Ty->getPrimitiveSizeInBits();
3959   // There is no cost model for constants with a bit size of 0. Return TCC_Free
3960   // here, so that constant hoisting will ignore this constant.
3961   if (BitSize == 0)
3962     return TTI::TCC_Free;
3963 
3964   unsigned ImmIdx = ~0U;
3965   switch (Opcode) {
3966   default:
3967     return TTI::TCC_Free;
3968   case Instruction::GetElementPtr:
3969     // Always hoist the base address of a GetElementPtr. This prevents the
3970     // creation of new constants for every base constant that gets constant
3971     // folded with the offset.
3972     if (Idx == 0)
3973       return 2 * TTI::TCC_Basic;
3974     return TTI::TCC_Free;
3975   case Instruction::Store:
3976     ImmIdx = 0;
3977     break;
3978   case Instruction::ICmp:
3979     // This is an imperfect hack to prevent constant hoisting of
3980     // compares that might be trying to check if a 64-bit value fits in
3981     // 32-bits. The backend can optimize these cases using a right shift by 32.
3982     // Ideally we would check the compare predicate here. There also other
3983     // similar immediates the backend can use shifts for.
3984     if (Idx == 1 && Imm.getBitWidth() == 64) {
3985       uint64_t ImmVal = Imm.getZExtValue();
3986       if (ImmVal == 0x100000000ULL || ImmVal == 0xffffffff)
3987         return TTI::TCC_Free;
3988     }
3989     ImmIdx = 1;
3990     break;
3991   case Instruction::And:
3992     // We support 64-bit ANDs with immediates with 32-bits of leading zeroes
3993     // by using a 32-bit operation with implicit zero extension. Detect such
3994     // immediates here as the normal path expects bit 31 to be sign extended.
3995     if (Idx == 1 && Imm.getBitWidth() == 64 && isUInt<32>(Imm.getZExtValue()))
3996       return TTI::TCC_Free;
3997     ImmIdx = 1;
3998     break;
3999   case Instruction::Add:
4000   case Instruction::Sub:
4001     // For add/sub, we can use the opposite instruction for INT32_MIN.
4002     if (Idx == 1 && Imm.getBitWidth() == 64 && Imm.getZExtValue() == 0x80000000)
4003       return TTI::TCC_Free;
4004     ImmIdx = 1;
4005     break;
4006   case Instruction::UDiv:
4007   case Instruction::SDiv:
4008   case Instruction::URem:
4009   case Instruction::SRem:
4010     // Division by constant is typically expanded later into a different
4011     // instruction sequence. This completely changes the constants.
4012     // Report them as "free" to stop ConstantHoist from marking them as opaque.
4013     return TTI::TCC_Free;
4014   case Instruction::Mul:
4015   case Instruction::Or:
4016   case Instruction::Xor:
4017     ImmIdx = 1;
4018     break;
4019   // Always return TCC_Free for the shift value of a shift instruction.
4020   case Instruction::Shl:
4021   case Instruction::LShr:
4022   case Instruction::AShr:
4023     if (Idx == 1)
4024       return TTI::TCC_Free;
4025     break;
4026   case Instruction::Trunc:
4027   case Instruction::ZExt:
4028   case Instruction::SExt:
4029   case Instruction::IntToPtr:
4030   case Instruction::PtrToInt:
4031   case Instruction::BitCast:
4032   case Instruction::PHI:
4033   case Instruction::Call:
4034   case Instruction::Select:
4035   case Instruction::Ret:
4036   case Instruction::Load:
4037     break;
4038   }
4039 
4040   if (Idx == ImmIdx) {
4041     int NumConstants = divideCeil(BitSize, 64);
4042     int Cost = X86TTIImpl::getIntImmCost(Imm, Ty, CostKind);
4043     return (Cost <= NumConstants * TTI::TCC_Basic)
4044                ? static_cast<int>(TTI::TCC_Free)
4045                : Cost;
4046   }
4047 
4048   return X86TTIImpl::getIntImmCost(Imm, Ty, CostKind);
4049 }
4050 
4051 int X86TTIImpl::getIntImmCostIntrin(Intrinsic::ID IID, unsigned Idx,
4052                                     const APInt &Imm, Type *Ty,
4053                                     TTI::TargetCostKind CostKind) {
4054   assert(Ty->isIntegerTy());
4055 
4056   unsigned BitSize = Ty->getPrimitiveSizeInBits();
4057   // There is no cost model for constants with a bit size of 0. Return TCC_Free
4058   // here, so that constant hoisting will ignore this constant.
4059   if (BitSize == 0)
4060     return TTI::TCC_Free;
4061 
4062   switch (IID) {
4063   default:
4064     return TTI::TCC_Free;
4065   case Intrinsic::sadd_with_overflow:
4066   case Intrinsic::uadd_with_overflow:
4067   case Intrinsic::ssub_with_overflow:
4068   case Intrinsic::usub_with_overflow:
4069   case Intrinsic::smul_with_overflow:
4070   case Intrinsic::umul_with_overflow:
4071     if ((Idx == 1) && Imm.getBitWidth() <= 64 && isInt<32>(Imm.getSExtValue()))
4072       return TTI::TCC_Free;
4073     break;
4074   case Intrinsic::experimental_stackmap:
4075     if ((Idx < 2) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue())))
4076       return TTI::TCC_Free;
4077     break;
4078   case Intrinsic::experimental_patchpoint_void:
4079   case Intrinsic::experimental_patchpoint_i64:
4080     if ((Idx < 4) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue())))
4081       return TTI::TCC_Free;
4082     break;
4083   }
4084   return X86TTIImpl::getIntImmCost(Imm, Ty, CostKind);
4085 }
4086 
4087 InstructionCost X86TTIImpl::getCFInstrCost(unsigned Opcode,
4088                                            TTI::TargetCostKind CostKind,
4089                                            const Instruction *I) {
4090   if (CostKind != TTI::TCK_RecipThroughput)
4091     return Opcode == Instruction::PHI ? 0 : 1;
4092   // Branches are assumed to be predicted.
4093   return 0;
4094 }
4095 
4096 int X86TTIImpl::getGatherOverhead() const {
4097   // Some CPUs have more overhead for gather. The specified overhead is relative
4098   // to the Load operation. "2" is the number provided by Intel architects. This
4099   // parameter is used for cost estimation of Gather Op and comparison with
4100   // other alternatives.
4101   // TODO: Remove the explicit hasAVX512()?, That would mean we would only
4102   // enable gather with a -march.
4103   if (ST->hasAVX512() || (ST->hasAVX2() && ST->hasFastGather()))
4104     return 2;
4105 
4106   return 1024;
4107 }
4108 
4109 int X86TTIImpl::getScatterOverhead() const {
4110   if (ST->hasAVX512())
4111     return 2;
4112 
4113   return 1024;
4114 }
4115 
4116 // Return an average cost of Gather / Scatter instruction, maybe improved later.
4117 // FIXME: Add TargetCostKind support.
4118 InstructionCost X86TTIImpl::getGSVectorCost(unsigned Opcode, Type *SrcVTy,
4119                                             const Value *Ptr, Align Alignment,
4120                                             unsigned AddressSpace) {
4121 
4122   assert(isa<VectorType>(SrcVTy) && "Unexpected type in getGSVectorCost");
4123   unsigned VF = cast<FixedVectorType>(SrcVTy)->getNumElements();
4124 
4125   // Try to reduce index size from 64 bit (default for GEP)
4126   // to 32. It is essential for VF 16. If the index can't be reduced to 32, the
4127   // operation will use 16 x 64 indices which do not fit in a zmm and needs
4128   // to split. Also check that the base pointer is the same for all lanes,
4129   // and that there's at most one variable index.
4130   auto getIndexSizeInBits = [](const Value *Ptr, const DataLayout &DL) {
4131     unsigned IndexSize = DL.getPointerSizeInBits();
4132     const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr);
4133     if (IndexSize < 64 || !GEP)
4134       return IndexSize;
4135 
4136     unsigned NumOfVarIndices = 0;
4137     const Value *Ptrs = GEP->getPointerOperand();
4138     if (Ptrs->getType()->isVectorTy() && !getSplatValue(Ptrs))
4139       return IndexSize;
4140     for (unsigned i = 1; i < GEP->getNumOperands(); ++i) {
4141       if (isa<Constant>(GEP->getOperand(i)))
4142         continue;
4143       Type *IndxTy = GEP->getOperand(i)->getType();
4144       if (auto *IndexVTy = dyn_cast<VectorType>(IndxTy))
4145         IndxTy = IndexVTy->getElementType();
4146       if ((IndxTy->getPrimitiveSizeInBits() == 64 &&
4147           !isa<SExtInst>(GEP->getOperand(i))) ||
4148          ++NumOfVarIndices > 1)
4149         return IndexSize; // 64
4150     }
4151     return (unsigned)32;
4152   };
4153 
4154   // Trying to reduce IndexSize to 32 bits for vector 16.
4155   // By default the IndexSize is equal to pointer size.
4156   unsigned IndexSize = (ST->hasAVX512() && VF >= 16)
4157                            ? getIndexSizeInBits(Ptr, DL)
4158                            : DL.getPointerSizeInBits();
4159 
4160   auto *IndexVTy = FixedVectorType::get(
4161       IntegerType::get(SrcVTy->getContext(), IndexSize), VF);
4162   std::pair<int, MVT> IdxsLT = TLI->getTypeLegalizationCost(DL, IndexVTy);
4163   std::pair<int, MVT> SrcLT = TLI->getTypeLegalizationCost(DL, SrcVTy);
4164   int SplitFactor = std::max(IdxsLT.first, SrcLT.first);
4165   if (SplitFactor > 1) {
4166     // Handle splitting of vector of pointers
4167     auto *SplitSrcTy =
4168         FixedVectorType::get(SrcVTy->getScalarType(), VF / SplitFactor);
4169     return SplitFactor * getGSVectorCost(Opcode, SplitSrcTy, Ptr, Alignment,
4170                                          AddressSpace);
4171   }
4172 
4173   // The gather / scatter cost is given by Intel architects. It is a rough
4174   // number since we are looking at one instruction in a time.
4175   const int GSOverhead = (Opcode == Instruction::Load)
4176                              ? getGatherOverhead()
4177                              : getScatterOverhead();
4178   return GSOverhead + VF * getMemoryOpCost(Opcode, SrcVTy->getScalarType(),
4179                                            MaybeAlign(Alignment), AddressSpace,
4180                                            TTI::TCK_RecipThroughput);
4181 }
4182 
4183 /// Return the cost of full scalarization of gather / scatter operation.
4184 ///
4185 /// Opcode - Load or Store instruction.
4186 /// SrcVTy - The type of the data vector that should be gathered or scattered.
4187 /// VariableMask - The mask is non-constant at compile time.
4188 /// Alignment - Alignment for one element.
4189 /// AddressSpace - pointer[s] address space.
4190 ///
4191 /// FIXME: Add TargetCostKind support.
4192 InstructionCost X86TTIImpl::getGSScalarCost(unsigned Opcode, Type *SrcVTy,
4193                                             bool VariableMask, Align Alignment,
4194                                             unsigned AddressSpace) {
4195   unsigned VF = cast<FixedVectorType>(SrcVTy)->getNumElements();
4196   APInt DemandedElts = APInt::getAllOnesValue(VF);
4197   TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
4198 
4199   InstructionCost MaskUnpackCost = 0;
4200   if (VariableMask) {
4201     auto *MaskTy =
4202         FixedVectorType::get(Type::getInt1Ty(SrcVTy->getContext()), VF);
4203     MaskUnpackCost =
4204         getScalarizationOverhead(MaskTy, DemandedElts, false, true);
4205     InstructionCost ScalarCompareCost = getCmpSelInstrCost(
4206         Instruction::ICmp, Type::getInt1Ty(SrcVTy->getContext()), nullptr,
4207         CmpInst::BAD_ICMP_PREDICATE, CostKind);
4208     InstructionCost BranchCost = getCFInstrCost(Instruction::Br, CostKind);
4209     MaskUnpackCost += VF * (BranchCost + ScalarCompareCost);
4210   }
4211 
4212   // The cost of the scalar loads/stores.
4213   InstructionCost MemoryOpCost =
4214       VF * getMemoryOpCost(Opcode, SrcVTy->getScalarType(),
4215                            MaybeAlign(Alignment), AddressSpace, CostKind);
4216 
4217   InstructionCost InsertExtractCost = 0;
4218   if (Opcode == Instruction::Load)
4219     for (unsigned i = 0; i < VF; ++i)
4220       // Add the cost of inserting each scalar load into the vector
4221       InsertExtractCost +=
4222         getVectorInstrCost(Instruction::InsertElement, SrcVTy, i);
4223   else
4224     for (unsigned i = 0; i < VF; ++i)
4225       // Add the cost of extracting each element out of the data vector
4226       InsertExtractCost +=
4227         getVectorInstrCost(Instruction::ExtractElement, SrcVTy, i);
4228 
4229   return MemoryOpCost + MaskUnpackCost + InsertExtractCost;
4230 }
4231 
4232 /// Calculate the cost of Gather / Scatter operation
4233 InstructionCost X86TTIImpl::getGatherScatterOpCost(
4234     unsigned Opcode, Type *SrcVTy, const Value *Ptr, bool VariableMask,
4235     Align Alignment, TTI::TargetCostKind CostKind,
4236     const Instruction *I = nullptr) {
4237   if (CostKind != TTI::TCK_RecipThroughput) {
4238     if ((Opcode == Instruction::Load &&
4239          isLegalMaskedGather(SrcVTy, Align(Alignment))) ||
4240         (Opcode == Instruction::Store &&
4241          isLegalMaskedScatter(SrcVTy, Align(Alignment))))
4242       return 1;
4243     return BaseT::getGatherScatterOpCost(Opcode, SrcVTy, Ptr, VariableMask,
4244                                          Alignment, CostKind, I);
4245   }
4246 
4247   assert(SrcVTy->isVectorTy() && "Unexpected data type for Gather/Scatter");
4248   unsigned VF = cast<FixedVectorType>(SrcVTy)->getNumElements();
4249   PointerType *PtrTy = dyn_cast<PointerType>(Ptr->getType());
4250   if (!PtrTy && Ptr->getType()->isVectorTy())
4251     PtrTy = dyn_cast<PointerType>(
4252         cast<VectorType>(Ptr->getType())->getElementType());
4253   assert(PtrTy && "Unexpected type for Ptr argument");
4254   unsigned AddressSpace = PtrTy->getAddressSpace();
4255 
4256   bool Scalarize = false;
4257   if ((Opcode == Instruction::Load &&
4258        !isLegalMaskedGather(SrcVTy, Align(Alignment))) ||
4259       (Opcode == Instruction::Store &&
4260        !isLegalMaskedScatter(SrcVTy, Align(Alignment))))
4261     Scalarize = true;
4262   // Gather / Scatter for vector 2 is not profitable on KNL / SKX
4263   // Vector-4 of gather/scatter instruction does not exist on KNL.
4264   // We can extend it to 8 elements, but zeroing upper bits of
4265   // the mask vector will add more instructions. Right now we give the scalar
4266   // cost of vector-4 for KNL. TODO: Check, maybe the gather/scatter instruction
4267   // is better in the VariableMask case.
4268   if (ST->hasAVX512() && (VF == 2 || (VF == 4 && !ST->hasVLX())))
4269     Scalarize = true;
4270 
4271   if (Scalarize)
4272     return getGSScalarCost(Opcode, SrcVTy, VariableMask, Alignment,
4273                            AddressSpace);
4274 
4275   return getGSVectorCost(Opcode, SrcVTy, Ptr, Alignment, AddressSpace);
4276 }
4277 
4278 bool X86TTIImpl::isLSRCostLess(TargetTransformInfo::LSRCost &C1,
4279                                TargetTransformInfo::LSRCost &C2) {
4280     // X86 specific here are "instruction number 1st priority".
4281     return std::tie(C1.Insns, C1.NumRegs, C1.AddRecCost,
4282                     C1.NumIVMuls, C1.NumBaseAdds,
4283                     C1.ScaleCost, C1.ImmCost, C1.SetupCost) <
4284            std::tie(C2.Insns, C2.NumRegs, C2.AddRecCost,
4285                     C2.NumIVMuls, C2.NumBaseAdds,
4286                     C2.ScaleCost, C2.ImmCost, C2.SetupCost);
4287 }
4288 
4289 bool X86TTIImpl::canMacroFuseCmp() {
4290   return ST->hasMacroFusion() || ST->hasBranchFusion();
4291 }
4292 
4293 bool X86TTIImpl::isLegalMaskedLoad(Type *DataTy, Align Alignment) {
4294   if (!ST->hasAVX())
4295     return false;
4296 
4297   // The backend can't handle a single element vector.
4298   if (isa<VectorType>(DataTy) &&
4299       cast<FixedVectorType>(DataTy)->getNumElements() == 1)
4300     return false;
4301   Type *ScalarTy = DataTy->getScalarType();
4302 
4303   if (ScalarTy->isPointerTy())
4304     return true;
4305 
4306   if (ScalarTy->isFloatTy() || ScalarTy->isDoubleTy())
4307     return true;
4308 
4309   if (!ScalarTy->isIntegerTy())
4310     return false;
4311 
4312   unsigned IntWidth = ScalarTy->getIntegerBitWidth();
4313   return IntWidth == 32 || IntWidth == 64 ||
4314          ((IntWidth == 8 || IntWidth == 16) && ST->hasBWI());
4315 }
4316 
4317 bool X86TTIImpl::isLegalMaskedStore(Type *DataType, Align Alignment) {
4318   return isLegalMaskedLoad(DataType, Alignment);
4319 }
4320 
4321 bool X86TTIImpl::isLegalNTLoad(Type *DataType, Align Alignment) {
4322   unsigned DataSize = DL.getTypeStoreSize(DataType);
4323   // The only supported nontemporal loads are for aligned vectors of 16 or 32
4324   // bytes.  Note that 32-byte nontemporal vector loads are supported by AVX2
4325   // (the equivalent stores only require AVX).
4326   if (Alignment >= DataSize && (DataSize == 16 || DataSize == 32))
4327     return DataSize == 16 ?  ST->hasSSE1() : ST->hasAVX2();
4328 
4329   return false;
4330 }
4331 
4332 bool X86TTIImpl::isLegalNTStore(Type *DataType, Align Alignment) {
4333   unsigned DataSize = DL.getTypeStoreSize(DataType);
4334 
4335   // SSE4A supports nontemporal stores of float and double at arbitrary
4336   // alignment.
4337   if (ST->hasSSE4A() && (DataType->isFloatTy() || DataType->isDoubleTy()))
4338     return true;
4339 
4340   // Besides the SSE4A subtarget exception above, only aligned stores are
4341   // available nontemporaly on any other subtarget.  And only stores with a size
4342   // of 4..32 bytes (powers of 2, only) are permitted.
4343   if (Alignment < DataSize || DataSize < 4 || DataSize > 32 ||
4344       !isPowerOf2_32(DataSize))
4345     return false;
4346 
4347   // 32-byte vector nontemporal stores are supported by AVX (the equivalent
4348   // loads require AVX2).
4349   if (DataSize == 32)
4350     return ST->hasAVX();
4351   else if (DataSize == 16)
4352     return ST->hasSSE1();
4353   return true;
4354 }
4355 
4356 bool X86TTIImpl::isLegalMaskedExpandLoad(Type *DataTy) {
4357   if (!isa<VectorType>(DataTy))
4358     return false;
4359 
4360   if (!ST->hasAVX512())
4361     return false;
4362 
4363   // The backend can't handle a single element vector.
4364   if (cast<FixedVectorType>(DataTy)->getNumElements() == 1)
4365     return false;
4366 
4367   Type *ScalarTy = cast<VectorType>(DataTy)->getElementType();
4368 
4369   if (ScalarTy->isFloatTy() || ScalarTy->isDoubleTy())
4370     return true;
4371 
4372   if (!ScalarTy->isIntegerTy())
4373     return false;
4374 
4375   unsigned IntWidth = ScalarTy->getIntegerBitWidth();
4376   return IntWidth == 32 || IntWidth == 64 ||
4377          ((IntWidth == 8 || IntWidth == 16) && ST->hasVBMI2());
4378 }
4379 
4380 bool X86TTIImpl::isLegalMaskedCompressStore(Type *DataTy) {
4381   return isLegalMaskedExpandLoad(DataTy);
4382 }
4383 
4384 bool X86TTIImpl::isLegalMaskedGather(Type *DataTy, Align Alignment) {
4385   // Some CPUs have better gather performance than others.
4386   // TODO: Remove the explicit ST->hasAVX512()?, That would mean we would only
4387   // enable gather with a -march.
4388   if (!(ST->hasAVX512() || (ST->hasFastGather() && ST->hasAVX2())))
4389     return false;
4390 
4391   // This function is called now in two cases: from the Loop Vectorizer
4392   // and from the Scalarizer.
4393   // When the Loop Vectorizer asks about legality of the feature,
4394   // the vectorization factor is not calculated yet. The Loop Vectorizer
4395   // sends a scalar type and the decision is based on the width of the
4396   // scalar element.
4397   // Later on, the cost model will estimate usage this intrinsic based on
4398   // the vector type.
4399   // The Scalarizer asks again about legality. It sends a vector type.
4400   // In this case we can reject non-power-of-2 vectors.
4401   // We also reject single element vectors as the type legalizer can't
4402   // scalarize it.
4403   if (auto *DataVTy = dyn_cast<FixedVectorType>(DataTy)) {
4404     unsigned NumElts = DataVTy->getNumElements();
4405     if (NumElts == 1)
4406       return false;
4407   }
4408   Type *ScalarTy = DataTy->getScalarType();
4409   if (ScalarTy->isPointerTy())
4410     return true;
4411 
4412   if (ScalarTy->isFloatTy() || ScalarTy->isDoubleTy())
4413     return true;
4414 
4415   if (!ScalarTy->isIntegerTy())
4416     return false;
4417 
4418   unsigned IntWidth = ScalarTy->getIntegerBitWidth();
4419   return IntWidth == 32 || IntWidth == 64;
4420 }
4421 
4422 bool X86TTIImpl::isLegalMaskedScatter(Type *DataType, Align Alignment) {
4423   // AVX2 doesn't support scatter
4424   if (!ST->hasAVX512())
4425     return false;
4426   return isLegalMaskedGather(DataType, Alignment);
4427 }
4428 
4429 bool X86TTIImpl::hasDivRemOp(Type *DataType, bool IsSigned) {
4430   EVT VT = TLI->getValueType(DL, DataType);
4431   return TLI->isOperationLegal(IsSigned ? ISD::SDIVREM : ISD::UDIVREM, VT);
4432 }
4433 
4434 bool X86TTIImpl::isFCmpOrdCheaperThanFCmpZero(Type *Ty) {
4435   return false;
4436 }
4437 
4438 bool X86TTIImpl::areInlineCompatible(const Function *Caller,
4439                                      const Function *Callee) const {
4440   const TargetMachine &TM = getTLI()->getTargetMachine();
4441 
4442   // Work this as a subsetting of subtarget features.
4443   const FeatureBitset &CallerBits =
4444       TM.getSubtargetImpl(*Caller)->getFeatureBits();
4445   const FeatureBitset &CalleeBits =
4446       TM.getSubtargetImpl(*Callee)->getFeatureBits();
4447 
4448   FeatureBitset RealCallerBits = CallerBits & ~InlineFeatureIgnoreList;
4449   FeatureBitset RealCalleeBits = CalleeBits & ~InlineFeatureIgnoreList;
4450   return (RealCallerBits & RealCalleeBits) == RealCalleeBits;
4451 }
4452 
4453 bool X86TTIImpl::areFunctionArgsABICompatible(
4454     const Function *Caller, const Function *Callee,
4455     SmallPtrSetImpl<Argument *> &Args) const {
4456   if (!BaseT::areFunctionArgsABICompatible(Caller, Callee, Args))
4457     return false;
4458 
4459   // If we get here, we know the target features match. If one function
4460   // considers 512-bit vectors legal and the other does not, consider them
4461   // incompatible.
4462   const TargetMachine &TM = getTLI()->getTargetMachine();
4463 
4464   if (TM.getSubtarget<X86Subtarget>(*Caller).useAVX512Regs() ==
4465       TM.getSubtarget<X86Subtarget>(*Callee).useAVX512Regs())
4466     return true;
4467 
4468   // Consider the arguments compatible if they aren't vectors or aggregates.
4469   // FIXME: Look at the size of vectors.
4470   // FIXME: Look at the element types of aggregates to see if there are vectors.
4471   // FIXME: The API of this function seems intended to allow arguments
4472   // to be removed from the set, but the caller doesn't check if the set
4473   // becomes empty so that may not work in practice.
4474   return llvm::none_of(Args, [](Argument *A) {
4475     auto *EltTy = cast<PointerType>(A->getType())->getElementType();
4476     return EltTy->isVectorTy() || EltTy->isAggregateType();
4477   });
4478 }
4479 
4480 X86TTIImpl::TTI::MemCmpExpansionOptions
4481 X86TTIImpl::enableMemCmpExpansion(bool OptSize, bool IsZeroCmp) const {
4482   TTI::MemCmpExpansionOptions Options;
4483   Options.MaxNumLoads = TLI->getMaxExpandSizeMemcmp(OptSize);
4484   Options.NumLoadsPerBlock = 2;
4485   // All GPR and vector loads can be unaligned.
4486   Options.AllowOverlappingLoads = true;
4487   if (IsZeroCmp) {
4488     // Only enable vector loads for equality comparison. Right now the vector
4489     // version is not as fast for three way compare (see #33329).
4490     const unsigned PreferredWidth = ST->getPreferVectorWidth();
4491     if (PreferredWidth >= 512 && ST->hasAVX512()) Options.LoadSizes.push_back(64);
4492     if (PreferredWidth >= 256 && ST->hasAVX()) Options.LoadSizes.push_back(32);
4493     if (PreferredWidth >= 128 && ST->hasSSE2()) Options.LoadSizes.push_back(16);
4494   }
4495   if (ST->is64Bit()) {
4496     Options.LoadSizes.push_back(8);
4497   }
4498   Options.LoadSizes.push_back(4);
4499   Options.LoadSizes.push_back(2);
4500   Options.LoadSizes.push_back(1);
4501   return Options;
4502 }
4503 
4504 bool X86TTIImpl::enableInterleavedAccessVectorization() {
4505   // TODO: We expect this to be beneficial regardless of arch,
4506   // but there are currently some unexplained performance artifacts on Atom.
4507   // As a temporary solution, disable on Atom.
4508   return !(ST->isAtom());
4509 }
4510 
4511 // Get estimation for interleaved load/store operations for AVX2.
4512 // \p Factor is the interleaved-access factor (stride) - number of
4513 // (interleaved) elements in the group.
4514 // \p Indices contains the indices for a strided load: when the
4515 // interleaved load has gaps they indicate which elements are used.
4516 // If Indices is empty (or if the number of indices is equal to the size
4517 // of the interleaved-access as given in \p Factor) the access has no gaps.
4518 //
4519 // As opposed to AVX-512, AVX2 does not have generic shuffles that allow
4520 // computing the cost using a generic formula as a function of generic
4521 // shuffles. We therefore use a lookup table instead, filled according to
4522 // the instruction sequences that codegen currently generates.
4523 InstructionCost X86TTIImpl::getInterleavedMemoryOpCostAVX2(
4524     unsigned Opcode, FixedVectorType *VecTy, unsigned Factor,
4525     ArrayRef<unsigned> Indices, Align Alignment, unsigned AddressSpace,
4526     TTI::TargetCostKind CostKind, bool UseMaskForCond, bool UseMaskForGaps) {
4527 
4528   if (UseMaskForCond || UseMaskForGaps)
4529     return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices,
4530                                              Alignment, AddressSpace, CostKind,
4531                                              UseMaskForCond, UseMaskForGaps);
4532 
4533   // We currently Support only fully-interleaved groups, with no gaps.
4534   // TODO: Support also strided loads (interleaved-groups with gaps).
4535   if (Indices.size() && Indices.size() != Factor)
4536     return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices,
4537                                              Alignment, AddressSpace,
4538                                              CostKind);
4539 
4540   // VecTy for interleave memop is <VF*Factor x Elt>.
4541   // So, for VF=4, Interleave Factor = 3, Element type = i32 we have
4542   // VecTy = <12 x i32>.
4543   MVT LegalVT = getTLI()->getTypeLegalizationCost(DL, VecTy).second;
4544 
4545   // This function can be called with VecTy=<6xi128>, Factor=3, in which case
4546   // the VF=2, while v2i128 is an unsupported MVT vector type
4547   // (see MachineValueType.h::getVectorVT()).
4548   if (!LegalVT.isVector())
4549     return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices,
4550                                              Alignment, AddressSpace,
4551                                              CostKind);
4552 
4553   unsigned VF = VecTy->getNumElements() / Factor;
4554   Type *ScalarTy = VecTy->getElementType();
4555 
4556   // Calculate the number of memory operations (NumOfMemOps), required
4557   // for load/store the VecTy.
4558   unsigned VecTySize = DL.getTypeStoreSize(VecTy);
4559   unsigned LegalVTSize = LegalVT.getStoreSize();
4560   unsigned NumOfMemOps = (VecTySize + LegalVTSize - 1) / LegalVTSize;
4561 
4562   // Get the cost of one memory operation.
4563   auto *SingleMemOpTy = FixedVectorType::get(VecTy->getElementType(),
4564                                              LegalVT.getVectorNumElements());
4565   InstructionCost MemOpCost = getMemoryOpCost(
4566       Opcode, SingleMemOpTy, MaybeAlign(Alignment), AddressSpace, CostKind);
4567 
4568   auto *VT = FixedVectorType::get(ScalarTy, VF);
4569   EVT ETy = TLI->getValueType(DL, VT);
4570   if (!ETy.isSimple())
4571     return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices,
4572                                              Alignment, AddressSpace,
4573                                              CostKind);
4574 
4575   // TODO: Complete for other data-types and strides.
4576   // Each combination of Stride, ElementTy and VF results in a different
4577   // sequence; The cost tables are therefore accessed with:
4578   // Factor (stride) and VectorType=VFxElemType.
4579   // The Cost accounts only for the shuffle sequence;
4580   // The cost of the loads/stores is accounted for separately.
4581   //
4582   static const CostTblEntry AVX2InterleavedLoadTbl[] = {
4583     { 2, MVT::v4i64, 6 }, //(load 8i64 and) deinterleave into 2 x 4i64
4584     { 2, MVT::v4f64, 6 }, //(load 8f64 and) deinterleave into 2 x 4f64
4585 
4586     { 3, MVT::v2i8,  10 }, //(load 6i8 and)  deinterleave into 3 x 2i8
4587     { 3, MVT::v4i8,  4 },  //(load 12i8 and) deinterleave into 3 x 4i8
4588     { 3, MVT::v8i8,  9 },  //(load 24i8 and) deinterleave into 3 x 8i8
4589     { 3, MVT::v16i8, 11},  //(load 48i8 and) deinterleave into 3 x 16i8
4590     { 3, MVT::v32i8, 13},  //(load 96i8 and) deinterleave into 3 x 32i8
4591     { 3, MVT::v8f32, 17 }, //(load 24f32 and)deinterleave into 3 x 8f32
4592 
4593     { 4, MVT::v2i8,  12 }, //(load 8i8 and)   deinterleave into 4 x 2i8
4594     { 4, MVT::v4i8,  4 },  //(load 16i8 and)  deinterleave into 4 x 4i8
4595     { 4, MVT::v8i8,  20 }, //(load 32i8 and)  deinterleave into 4 x 8i8
4596     { 4, MVT::v16i8, 39 }, //(load 64i8 and)  deinterleave into 4 x 16i8
4597     { 4, MVT::v32i8, 80 }, //(load 128i8 and) deinterleave into 4 x 32i8
4598 
4599     { 8, MVT::v8f32, 40 }  //(load 64f32 and)deinterleave into 8 x 8f32
4600   };
4601 
4602   static const CostTblEntry AVX2InterleavedStoreTbl[] = {
4603     { 2, MVT::v4i64, 6 }, //interleave into 2 x 4i64 into 8i64 (and store)
4604     { 2, MVT::v4f64, 6 }, //interleave into 2 x 4f64 into 8f64 (and store)
4605 
4606     { 3, MVT::v2i8,  7 },  //interleave 3 x 2i8  into 6i8 (and store)
4607     { 3, MVT::v4i8,  8 },  //interleave 3 x 4i8  into 12i8 (and store)
4608     { 3, MVT::v8i8,  11 }, //interleave 3 x 8i8  into 24i8 (and store)
4609     { 3, MVT::v16i8, 11 }, //interleave 3 x 16i8 into 48i8 (and store)
4610     { 3, MVT::v32i8, 13 }, //interleave 3 x 32i8 into 96i8 (and store)
4611 
4612     { 4, MVT::v2i8,  12 }, //interleave 4 x 2i8  into 8i8 (and store)
4613     { 4, MVT::v4i8,  9 },  //interleave 4 x 4i8  into 16i8 (and store)
4614     { 4, MVT::v8i8,  10 }, //interleave 4 x 8i8  into 32i8 (and store)
4615     { 4, MVT::v16i8, 10 }, //interleave 4 x 16i8 into 64i8 (and store)
4616     { 4, MVT::v32i8, 12 }  //interleave 4 x 32i8 into 128i8 (and store)
4617   };
4618 
4619   if (Opcode == Instruction::Load) {
4620     if (const auto *Entry =
4621             CostTableLookup(AVX2InterleavedLoadTbl, Factor, ETy.getSimpleVT()))
4622       return NumOfMemOps * MemOpCost + Entry->Cost;
4623   } else {
4624     assert(Opcode == Instruction::Store &&
4625            "Expected Store Instruction at this  point");
4626     if (const auto *Entry =
4627             CostTableLookup(AVX2InterleavedStoreTbl, Factor, ETy.getSimpleVT()))
4628       return NumOfMemOps * MemOpCost + Entry->Cost;
4629   }
4630 
4631   return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices,
4632                                            Alignment, AddressSpace, CostKind);
4633 }
4634 
4635 // Get estimation for interleaved load/store operations and strided load.
4636 // \p Indices contains indices for strided load.
4637 // \p Factor - the factor of interleaving.
4638 // AVX-512 provides 3-src shuffles that significantly reduces the cost.
4639 InstructionCost X86TTIImpl::getInterleavedMemoryOpCostAVX512(
4640     unsigned Opcode, FixedVectorType *VecTy, unsigned Factor,
4641     ArrayRef<unsigned> Indices, Align Alignment, unsigned AddressSpace,
4642     TTI::TargetCostKind CostKind, bool UseMaskForCond, bool UseMaskForGaps) {
4643 
4644   if (UseMaskForCond || UseMaskForGaps)
4645     return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices,
4646                                              Alignment, AddressSpace, CostKind,
4647                                              UseMaskForCond, UseMaskForGaps);
4648 
4649   // VecTy for interleave memop is <VF*Factor x Elt>.
4650   // So, for VF=4, Interleave Factor = 3, Element type = i32 we have
4651   // VecTy = <12 x i32>.
4652 
4653   // Calculate the number of memory operations (NumOfMemOps), required
4654   // for load/store the VecTy.
4655   MVT LegalVT = getTLI()->getTypeLegalizationCost(DL, VecTy).second;
4656   unsigned VecTySize = DL.getTypeStoreSize(VecTy);
4657   unsigned LegalVTSize = LegalVT.getStoreSize();
4658   unsigned NumOfMemOps = (VecTySize + LegalVTSize - 1) / LegalVTSize;
4659 
4660   // Get the cost of one memory operation.
4661   auto *SingleMemOpTy = FixedVectorType::get(VecTy->getElementType(),
4662                                              LegalVT.getVectorNumElements());
4663   InstructionCost MemOpCost = getMemoryOpCost(
4664       Opcode, SingleMemOpTy, MaybeAlign(Alignment), AddressSpace, CostKind);
4665 
4666   unsigned VF = VecTy->getNumElements() / Factor;
4667   MVT VT = MVT::getVectorVT(MVT::getVT(VecTy->getScalarType()), VF);
4668 
4669   if (Opcode == Instruction::Load) {
4670     // The tables (AVX512InterleavedLoadTbl and AVX512InterleavedStoreTbl)
4671     // contain the cost of the optimized shuffle sequence that the
4672     // X86InterleavedAccess pass will generate.
4673     // The cost of loads and stores are computed separately from the table.
4674 
4675     // X86InterleavedAccess support only the following interleaved-access group.
4676     static const CostTblEntry AVX512InterleavedLoadTbl[] = {
4677         {3, MVT::v16i8, 12}, //(load 48i8 and) deinterleave into 3 x 16i8
4678         {3, MVT::v32i8, 14}, //(load 96i8 and) deinterleave into 3 x 32i8
4679         {3, MVT::v64i8, 22}, //(load 96i8 and) deinterleave into 3 x 32i8
4680     };
4681 
4682     if (const auto *Entry =
4683             CostTableLookup(AVX512InterleavedLoadTbl, Factor, VT))
4684       return NumOfMemOps * MemOpCost + Entry->Cost;
4685     //If an entry does not exist, fallback to the default implementation.
4686 
4687     // Kind of shuffle depends on number of loaded values.
4688     // If we load the entire data in one register, we can use a 1-src shuffle.
4689     // Otherwise, we'll merge 2 sources in each operation.
4690     TTI::ShuffleKind ShuffleKind =
4691         (NumOfMemOps > 1) ? TTI::SK_PermuteTwoSrc : TTI::SK_PermuteSingleSrc;
4692 
4693     InstructionCost ShuffleCost =
4694         getShuffleCost(ShuffleKind, SingleMemOpTy, None, 0, nullptr);
4695 
4696     unsigned NumOfLoadsInInterleaveGrp =
4697         Indices.size() ? Indices.size() : Factor;
4698     auto *ResultTy = FixedVectorType::get(VecTy->getElementType(),
4699                                           VecTy->getNumElements() / Factor);
4700     unsigned NumOfResults =
4701         getTLI()->getTypeLegalizationCost(DL, ResultTy).first *
4702         NumOfLoadsInInterleaveGrp;
4703 
4704     // About a half of the loads may be folded in shuffles when we have only
4705     // one result. If we have more than one result, we do not fold loads at all.
4706     unsigned NumOfUnfoldedLoads =
4707         NumOfResults > 1 ? NumOfMemOps : NumOfMemOps / 2;
4708 
4709     // Get a number of shuffle operations per result.
4710     unsigned NumOfShufflesPerResult =
4711         std::max((unsigned)1, (unsigned)(NumOfMemOps - 1));
4712 
4713     // The SK_MergeTwoSrc shuffle clobbers one of src operands.
4714     // When we have more than one destination, we need additional instructions
4715     // to keep sources.
4716     unsigned NumOfMoves = 0;
4717     if (NumOfResults > 1 && ShuffleKind == TTI::SK_PermuteTwoSrc)
4718       NumOfMoves = NumOfResults * NumOfShufflesPerResult / 2;
4719 
4720     InstructionCost Cost = NumOfResults * NumOfShufflesPerResult * ShuffleCost +
4721                            NumOfUnfoldedLoads * MemOpCost + NumOfMoves;
4722 
4723     return Cost;
4724   }
4725 
4726   // Store.
4727   assert(Opcode == Instruction::Store &&
4728          "Expected Store Instruction at this  point");
4729   // X86InterleavedAccess support only the following interleaved-access group.
4730   static const CostTblEntry AVX512InterleavedStoreTbl[] = {
4731       {3, MVT::v16i8, 12}, // interleave 3 x 16i8 into 48i8 (and store)
4732       {3, MVT::v32i8, 14}, // interleave 3 x 32i8 into 96i8 (and store)
4733       {3, MVT::v64i8, 26}, // interleave 3 x 64i8 into 96i8 (and store)
4734 
4735       {4, MVT::v8i8, 10},  // interleave 4 x 8i8  into 32i8  (and store)
4736       {4, MVT::v16i8, 11}, // interleave 4 x 16i8 into 64i8  (and store)
4737       {4, MVT::v32i8, 14}, // interleave 4 x 32i8 into 128i8 (and store)
4738       {4, MVT::v64i8, 24}  // interleave 4 x 32i8 into 256i8 (and store)
4739   };
4740 
4741   if (const auto *Entry =
4742           CostTableLookup(AVX512InterleavedStoreTbl, Factor, VT))
4743     return NumOfMemOps * MemOpCost + Entry->Cost;
4744   //If an entry does not exist, fallback to the default implementation.
4745 
4746   // There is no strided stores meanwhile. And store can't be folded in
4747   // shuffle.
4748   unsigned NumOfSources = Factor; // The number of values to be merged.
4749   InstructionCost ShuffleCost =
4750       getShuffleCost(TTI::SK_PermuteTwoSrc, SingleMemOpTy, None, 0, nullptr);
4751   unsigned NumOfShufflesPerStore = NumOfSources - 1;
4752 
4753   // The SK_MergeTwoSrc shuffle clobbers one of src operands.
4754   // We need additional instructions to keep sources.
4755   unsigned NumOfMoves = NumOfMemOps * NumOfShufflesPerStore / 2;
4756   InstructionCost Cost =
4757       NumOfMemOps * (MemOpCost + NumOfShufflesPerStore * ShuffleCost) +
4758       NumOfMoves;
4759   return Cost;
4760 }
4761 
4762 InstructionCost X86TTIImpl::getInterleavedMemoryOpCost(
4763     unsigned Opcode, Type *VecTy, unsigned Factor, ArrayRef<unsigned> Indices,
4764     Align Alignment, unsigned AddressSpace, TTI::TargetCostKind CostKind,
4765     bool UseMaskForCond, bool UseMaskForGaps) {
4766   auto isSupportedOnAVX512 = [](Type *VecTy, bool HasBW) {
4767     Type *EltTy = cast<VectorType>(VecTy)->getElementType();
4768     if (EltTy->isFloatTy() || EltTy->isDoubleTy() || EltTy->isIntegerTy(64) ||
4769         EltTy->isIntegerTy(32) || EltTy->isPointerTy())
4770       return true;
4771     if (EltTy->isIntegerTy(16) || EltTy->isIntegerTy(8))
4772       return HasBW;
4773     return false;
4774   };
4775   if (ST->hasAVX512() && isSupportedOnAVX512(VecTy, ST->hasBWI()))
4776     return getInterleavedMemoryOpCostAVX512(
4777         Opcode, cast<FixedVectorType>(VecTy), Factor, Indices, Alignment,
4778         AddressSpace, CostKind, UseMaskForCond, UseMaskForGaps);
4779   if (ST->hasAVX2())
4780     return getInterleavedMemoryOpCostAVX2(
4781         Opcode, cast<FixedVectorType>(VecTy), Factor, Indices, Alignment,
4782         AddressSpace, CostKind, UseMaskForCond, UseMaskForGaps);
4783 
4784   return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices,
4785                                            Alignment, AddressSpace, CostKind,
4786                                            UseMaskForCond, UseMaskForGaps);
4787 }
4788