1 //===-- X86TargetTransformInfo.cpp - X86 specific TTI pass ----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 /// \file
9 /// This file implements a TargetTransformInfo analysis pass specific to the
10 /// X86 target machine. It uses the target's detailed information to provide
11 /// more precise answers to certain TTI queries, while letting the target
12 /// independent and default TTI implementations handle the rest.
13 ///
14 //===----------------------------------------------------------------------===//
15 /// About Cost Model numbers used below it's necessary to say the following:
16 /// the numbers correspond to some "generic" X86 CPU instead of usage of
17 /// concrete CPU model. Usually the numbers correspond to CPU where the feature
18 /// apeared at the first time. For example, if we do Subtarget.hasSSE42() in
19 /// the lookups below the cost is based on Nehalem as that was the first CPU
20 /// to support that feature level and thus has most likely the worst case cost.
21 /// Some examples of other technologies/CPUs:
22 ///   SSE 3   - Pentium4 / Athlon64
23 ///   SSE 4.1 - Penryn
24 ///   SSE 4.2 - Nehalem
25 ///   AVX     - Sandy Bridge
26 ///   AVX2    - Haswell
27 ///   AVX-512 - Xeon Phi / Skylake
28 /// And some examples of instruction target dependent costs (latency)
29 ///                   divss     sqrtss          rsqrtss
30 ///   AMD K7            11-16     19              3
31 ///   Piledriver        9-24      13-15           5
32 ///   Jaguar            14        16              2
33 ///   Pentium II,III    18        30              2
34 ///   Nehalem           7-14      7-18            3
35 ///   Haswell           10-13     11              5
36 /// TODO: Develop and implement  the target dependent cost model and
37 /// specialize cost numbers for different Cost Model Targets such as throughput,
38 /// code size, latency and uop count.
39 //===----------------------------------------------------------------------===//
40 
41 #include "X86TargetTransformInfo.h"
42 #include "llvm/Analysis/TargetTransformInfo.h"
43 #include "llvm/CodeGen/BasicTTIImpl.h"
44 #include "llvm/CodeGen/CostTable.h"
45 #include "llvm/CodeGen/TargetLowering.h"
46 #include "llvm/IR/IntrinsicInst.h"
47 #include "llvm/Support/Debug.h"
48 
49 using namespace llvm;
50 
51 #define DEBUG_TYPE "x86tti"
52 
53 //===----------------------------------------------------------------------===//
54 //
55 // X86 cost model.
56 //
57 //===----------------------------------------------------------------------===//
58 
59 TargetTransformInfo::PopcntSupportKind
60 X86TTIImpl::getPopcntSupport(unsigned TyWidth) {
61   assert(isPowerOf2_32(TyWidth) && "Ty width must be power of 2");
62   // TODO: Currently the __builtin_popcount() implementation using SSE3
63   //   instructions is inefficient. Once the problem is fixed, we should
64   //   call ST->hasSSE3() instead of ST->hasPOPCNT().
65   return ST->hasPOPCNT() ? TTI::PSK_FastHardware : TTI::PSK_Software;
66 }
67 
68 llvm::Optional<unsigned> X86TTIImpl::getCacheSize(
69   TargetTransformInfo::CacheLevel Level) const {
70   switch (Level) {
71   case TargetTransformInfo::CacheLevel::L1D:
72     //   - Penryn
73     //   - Nehalem
74     //   - Westmere
75     //   - Sandy Bridge
76     //   - Ivy Bridge
77     //   - Haswell
78     //   - Broadwell
79     //   - Skylake
80     //   - Kabylake
81     return 32 * 1024;  //  32 KByte
82   case TargetTransformInfo::CacheLevel::L2D:
83     //   - Penryn
84     //   - Nehalem
85     //   - Westmere
86     //   - Sandy Bridge
87     //   - Ivy Bridge
88     //   - Haswell
89     //   - Broadwell
90     //   - Skylake
91     //   - Kabylake
92     return 256 * 1024; // 256 KByte
93   }
94 
95   llvm_unreachable("Unknown TargetTransformInfo::CacheLevel");
96 }
97 
98 llvm::Optional<unsigned> X86TTIImpl::getCacheAssociativity(
99   TargetTransformInfo::CacheLevel Level) const {
100   //   - Penryn
101   //   - Nehalem
102   //   - Westmere
103   //   - Sandy Bridge
104   //   - Ivy Bridge
105   //   - Haswell
106   //   - Broadwell
107   //   - Skylake
108   //   - Kabylake
109   switch (Level) {
110   case TargetTransformInfo::CacheLevel::L1D:
111     LLVM_FALLTHROUGH;
112   case TargetTransformInfo::CacheLevel::L2D:
113     return 8;
114   }
115 
116   llvm_unreachable("Unknown TargetTransformInfo::CacheLevel");
117 }
118 
119 unsigned X86TTIImpl::getNumberOfRegisters(unsigned ClassID) const {
120   bool Vector = (ClassID == 1);
121   if (Vector && !ST->hasSSE1())
122     return 0;
123 
124   if (ST->is64Bit()) {
125     if (Vector && ST->hasAVX512())
126       return 32;
127     return 16;
128   }
129   return 8;
130 }
131 
132 unsigned X86TTIImpl::getRegisterBitWidth(bool Vector) const {
133   unsigned PreferVectorWidth = ST->getPreferVectorWidth();
134   if (Vector) {
135     if (ST->hasAVX512() && PreferVectorWidth >= 512)
136       return 512;
137     if (ST->hasAVX() && PreferVectorWidth >= 256)
138       return 256;
139     if (ST->hasSSE1() && PreferVectorWidth >= 128)
140       return 128;
141     return 0;
142   }
143 
144   if (ST->is64Bit())
145     return 64;
146 
147   return 32;
148 }
149 
150 unsigned X86TTIImpl::getLoadStoreVecRegBitWidth(unsigned) const {
151   return getRegisterBitWidth(true);
152 }
153 
154 unsigned X86TTIImpl::getMaxInterleaveFactor(unsigned VF) {
155   // If the loop will not be vectorized, don't interleave the loop.
156   // Let regular unroll to unroll the loop, which saves the overflow
157   // check and memory check cost.
158   if (VF == 1)
159     return 1;
160 
161   if (ST->isAtom())
162     return 1;
163 
164   // Sandybridge and Haswell have multiple execution ports and pipelined
165   // vector units.
166   if (ST->hasAVX())
167     return 4;
168 
169   return 2;
170 }
171 
172 int X86TTIImpl::getArithmeticInstrCost(unsigned Opcode, Type *Ty,
173                                        TTI::TargetCostKind CostKind,
174                                        TTI::OperandValueKind Op1Info,
175                                        TTI::OperandValueKind Op2Info,
176                                        TTI::OperandValueProperties Opd1PropInfo,
177                                        TTI::OperandValueProperties Opd2PropInfo,
178                                        ArrayRef<const Value *> Args,
179                                        const Instruction *CxtI) {
180   // Legalize the type.
181   std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Ty);
182 
183   int ISD = TLI->InstructionOpcodeToISD(Opcode);
184   assert(ISD && "Invalid opcode");
185 
186   static const CostTblEntry GLMCostTable[] = {
187     { ISD::FDIV,  MVT::f32,   18 }, // divss
188     { ISD::FDIV,  MVT::v4f32, 35 }, // divps
189     { ISD::FDIV,  MVT::f64,   33 }, // divsd
190     { ISD::FDIV,  MVT::v2f64, 65 }, // divpd
191   };
192 
193   if (ST->useGLMDivSqrtCosts())
194     if (const auto *Entry = CostTableLookup(GLMCostTable, ISD,
195                                             LT.second))
196       return LT.first * Entry->Cost;
197 
198   static const CostTblEntry SLMCostTable[] = {
199     { ISD::MUL,   MVT::v4i32, 11 }, // pmulld
200     { ISD::MUL,   MVT::v8i16, 2  }, // pmullw
201     { ISD::MUL,   MVT::v16i8, 14 }, // extend/pmullw/trunc sequence.
202     { ISD::FMUL,  MVT::f64,   2  }, // mulsd
203     { ISD::FMUL,  MVT::v2f64, 4  }, // mulpd
204     { ISD::FMUL,  MVT::v4f32, 2  }, // mulps
205     { ISD::FDIV,  MVT::f32,   17 }, // divss
206     { ISD::FDIV,  MVT::v4f32, 39 }, // divps
207     { ISD::FDIV,  MVT::f64,   32 }, // divsd
208     { ISD::FDIV,  MVT::v2f64, 69 }, // divpd
209     { ISD::FADD,  MVT::v2f64, 2  }, // addpd
210     { ISD::FSUB,  MVT::v2f64, 2  }, // subpd
211     // v2i64/v4i64 mul is custom lowered as a series of long:
212     // multiplies(3), shifts(3) and adds(2)
213     // slm muldq version throughput is 2 and addq throughput 4
214     // thus: 3X2 (muldq throughput) + 3X1 (shift throughput) +
215     //       3X4 (addq throughput) = 17
216     { ISD::MUL,   MVT::v2i64, 17 },
217     // slm addq\subq throughput is 4
218     { ISD::ADD,   MVT::v2i64, 4  },
219     { ISD::SUB,   MVT::v2i64, 4  },
220   };
221 
222   if (ST->isSLM()) {
223     if (Args.size() == 2 && ISD == ISD::MUL && LT.second == MVT::v4i32) {
224       // Check if the operands can be shrinked into a smaller datatype.
225       bool Op1Signed = false;
226       unsigned Op1MinSize = BaseT::minRequiredElementSize(Args[0], Op1Signed);
227       bool Op2Signed = false;
228       unsigned Op2MinSize = BaseT::minRequiredElementSize(Args[1], Op2Signed);
229 
230       bool signedMode = Op1Signed | Op2Signed;
231       unsigned OpMinSize = std::max(Op1MinSize, Op2MinSize);
232 
233       if (OpMinSize <= 7)
234         return LT.first * 3; // pmullw/sext
235       if (!signedMode && OpMinSize <= 8)
236         return LT.first * 3; // pmullw/zext
237       if (OpMinSize <= 15)
238         return LT.first * 5; // pmullw/pmulhw/pshuf
239       if (!signedMode && OpMinSize <= 16)
240         return LT.first * 5; // pmullw/pmulhw/pshuf
241     }
242 
243     if (const auto *Entry = CostTableLookup(SLMCostTable, ISD,
244                                             LT.second)) {
245       return LT.first * Entry->Cost;
246     }
247   }
248 
249   if ((ISD == ISD::SDIV || ISD == ISD::SREM || ISD == ISD::UDIV ||
250        ISD == ISD::UREM) &&
251       (Op2Info == TargetTransformInfo::OK_UniformConstantValue ||
252        Op2Info == TargetTransformInfo::OK_NonUniformConstantValue) &&
253       Opd2PropInfo == TargetTransformInfo::OP_PowerOf2) {
254     if (ISD == ISD::SDIV || ISD == ISD::SREM) {
255       // On X86, vector signed division by constants power-of-two are
256       // normally expanded to the sequence SRA + SRL + ADD + SRA.
257       // The OperandValue properties may not be the same as that of the previous
258       // operation; conservatively assume OP_None.
259       int Cost =
260           2 * getArithmeticInstrCost(Instruction::AShr, Ty, CostKind, Op1Info,
261                                      Op2Info,
262                                      TargetTransformInfo::OP_None,
263                                      TargetTransformInfo::OP_None);
264       Cost += getArithmeticInstrCost(Instruction::LShr, Ty, CostKind, Op1Info,
265                                      Op2Info,
266                                      TargetTransformInfo::OP_None,
267                                      TargetTransformInfo::OP_None);
268       Cost += getArithmeticInstrCost(Instruction::Add, Ty, CostKind, Op1Info,
269                                      Op2Info,
270                                      TargetTransformInfo::OP_None,
271                                      TargetTransformInfo::OP_None);
272 
273       if (ISD == ISD::SREM) {
274         // For SREM: (X % C) is the equivalent of (X - (X/C)*C)
275         Cost += getArithmeticInstrCost(Instruction::Mul, Ty, CostKind, Op1Info,
276                                        Op2Info);
277         Cost += getArithmeticInstrCost(Instruction::Sub, Ty, CostKind, Op1Info,
278                                        Op2Info);
279       }
280 
281       return Cost;
282     }
283 
284     // Vector unsigned division/remainder will be simplified to shifts/masks.
285     if (ISD == ISD::UDIV)
286       return getArithmeticInstrCost(Instruction::LShr, Ty, CostKind,
287                                     Op1Info, Op2Info,
288                                     TargetTransformInfo::OP_None,
289                                     TargetTransformInfo::OP_None);
290 
291     else // UREM
292       return getArithmeticInstrCost(Instruction::And, Ty, CostKind,
293                                     Op1Info, Op2Info,
294                                     TargetTransformInfo::OP_None,
295                                     TargetTransformInfo::OP_None);
296   }
297 
298   static const CostTblEntry AVX512BWUniformConstCostTable[] = {
299     { ISD::SHL,  MVT::v64i8,   2 }, // psllw + pand.
300     { ISD::SRL,  MVT::v64i8,   2 }, // psrlw + pand.
301     { ISD::SRA,  MVT::v64i8,   4 }, // psrlw, pand, pxor, psubb.
302   };
303 
304   if (Op2Info == TargetTransformInfo::OK_UniformConstantValue &&
305       ST->hasBWI()) {
306     if (const auto *Entry = CostTableLookup(AVX512BWUniformConstCostTable, ISD,
307                                             LT.second))
308       return LT.first * Entry->Cost;
309   }
310 
311   static const CostTblEntry AVX512UniformConstCostTable[] = {
312     { ISD::SRA,  MVT::v2i64,   1 },
313     { ISD::SRA,  MVT::v4i64,   1 },
314     { ISD::SRA,  MVT::v8i64,   1 },
315 
316     { ISD::SHL,  MVT::v64i8,   4 }, // psllw + pand.
317     { ISD::SRL,  MVT::v64i8,   4 }, // psrlw + pand.
318     { ISD::SRA,  MVT::v64i8,   8 }, // psrlw, pand, pxor, psubb.
319   };
320 
321   if (Op2Info == TargetTransformInfo::OK_UniformConstantValue &&
322       ST->hasAVX512()) {
323     if (const auto *Entry = CostTableLookup(AVX512UniformConstCostTable, ISD,
324                                             LT.second))
325       return LT.first * Entry->Cost;
326   }
327 
328   static const CostTblEntry AVX2UniformConstCostTable[] = {
329     { ISD::SHL,  MVT::v32i8,   2 }, // psllw + pand.
330     { ISD::SRL,  MVT::v32i8,   2 }, // psrlw + pand.
331     { ISD::SRA,  MVT::v32i8,   4 }, // psrlw, pand, pxor, psubb.
332 
333     { ISD::SRA,  MVT::v4i64,   4 }, // 2 x psrad + shuffle.
334   };
335 
336   if (Op2Info == TargetTransformInfo::OK_UniformConstantValue &&
337       ST->hasAVX2()) {
338     if (const auto *Entry = CostTableLookup(AVX2UniformConstCostTable, ISD,
339                                             LT.second))
340       return LT.first * Entry->Cost;
341   }
342 
343   static const CostTblEntry SSE2UniformConstCostTable[] = {
344     { ISD::SHL,  MVT::v16i8,     2 }, // psllw + pand.
345     { ISD::SRL,  MVT::v16i8,     2 }, // psrlw + pand.
346     { ISD::SRA,  MVT::v16i8,     4 }, // psrlw, pand, pxor, psubb.
347 
348     { ISD::SHL,  MVT::v32i8,   4+2 }, // 2*(psllw + pand) + split.
349     { ISD::SRL,  MVT::v32i8,   4+2 }, // 2*(psrlw + pand) + split.
350     { ISD::SRA,  MVT::v32i8,   8+2 }, // 2*(psrlw, pand, pxor, psubb) + split.
351   };
352 
353   // XOP has faster vXi8 shifts.
354   if (Op2Info == TargetTransformInfo::OK_UniformConstantValue &&
355       ST->hasSSE2() && !ST->hasXOP()) {
356     if (const auto *Entry =
357             CostTableLookup(SSE2UniformConstCostTable, ISD, LT.second))
358       return LT.first * Entry->Cost;
359   }
360 
361   static const CostTblEntry AVX512BWConstCostTable[] = {
362     { ISD::SDIV, MVT::v64i8,  14 }, // 2*ext+2*pmulhw sequence
363     { ISD::SREM, MVT::v64i8,  16 }, // 2*ext+2*pmulhw+mul+sub sequence
364     { ISD::UDIV, MVT::v64i8,  14 }, // 2*ext+2*pmulhw sequence
365     { ISD::UREM, MVT::v64i8,  16 }, // 2*ext+2*pmulhw+mul+sub sequence
366     { ISD::SDIV, MVT::v32i16,  6 }, // vpmulhw sequence
367     { ISD::SREM, MVT::v32i16,  8 }, // vpmulhw+mul+sub sequence
368     { ISD::UDIV, MVT::v32i16,  6 }, // vpmulhuw sequence
369     { ISD::UREM, MVT::v32i16,  8 }, // vpmulhuw+mul+sub sequence
370   };
371 
372   if ((Op2Info == TargetTransformInfo::OK_UniformConstantValue ||
373        Op2Info == TargetTransformInfo::OK_NonUniformConstantValue) &&
374       ST->hasBWI()) {
375     if (const auto *Entry =
376             CostTableLookup(AVX512BWConstCostTable, ISD, LT.second))
377       return LT.first * Entry->Cost;
378   }
379 
380   static const CostTblEntry AVX512ConstCostTable[] = {
381     { ISD::SDIV, MVT::v16i32, 15 }, // vpmuldq sequence
382     { ISD::SREM, MVT::v16i32, 17 }, // vpmuldq+mul+sub sequence
383     { ISD::UDIV, MVT::v16i32, 15 }, // vpmuludq sequence
384     { ISD::UREM, MVT::v16i32, 17 }, // vpmuludq+mul+sub sequence
385     { ISD::SDIV, MVT::v64i8,  28 }, // 4*ext+4*pmulhw sequence
386     { ISD::SREM, MVT::v64i8,  32 }, // 4*ext+4*pmulhw+mul+sub sequence
387     { ISD::UDIV, MVT::v64i8,  28 }, // 4*ext+4*pmulhw sequence
388     { ISD::UREM, MVT::v64i8,  32 }, // 4*ext+4*pmulhw+mul+sub sequence
389     { ISD::SDIV, MVT::v32i16, 12 }, // 2*vpmulhw sequence
390     { ISD::SREM, MVT::v32i16, 16 }, // 2*vpmulhw+mul+sub sequence
391     { ISD::UDIV, MVT::v32i16, 12 }, // 2*vpmulhuw sequence
392     { ISD::UREM, MVT::v32i16, 16 }, // 2*vpmulhuw+mul+sub sequence
393   };
394 
395   if ((Op2Info == TargetTransformInfo::OK_UniformConstantValue ||
396        Op2Info == TargetTransformInfo::OK_NonUniformConstantValue) &&
397       ST->hasAVX512()) {
398     if (const auto *Entry =
399             CostTableLookup(AVX512ConstCostTable, ISD, LT.second))
400       return LT.first * Entry->Cost;
401   }
402 
403   static const CostTblEntry AVX2ConstCostTable[] = {
404     { ISD::SDIV, MVT::v32i8,  14 }, // 2*ext+2*pmulhw sequence
405     { ISD::SREM, MVT::v32i8,  16 }, // 2*ext+2*pmulhw+mul+sub sequence
406     { ISD::UDIV, MVT::v32i8,  14 }, // 2*ext+2*pmulhw sequence
407     { ISD::UREM, MVT::v32i8,  16 }, // 2*ext+2*pmulhw+mul+sub sequence
408     { ISD::SDIV, MVT::v16i16,  6 }, // vpmulhw sequence
409     { ISD::SREM, MVT::v16i16,  8 }, // vpmulhw+mul+sub sequence
410     { ISD::UDIV, MVT::v16i16,  6 }, // vpmulhuw sequence
411     { ISD::UREM, MVT::v16i16,  8 }, // vpmulhuw+mul+sub sequence
412     { ISD::SDIV, MVT::v8i32,  15 }, // vpmuldq sequence
413     { ISD::SREM, MVT::v8i32,  19 }, // vpmuldq+mul+sub sequence
414     { ISD::UDIV, MVT::v8i32,  15 }, // vpmuludq sequence
415     { ISD::UREM, MVT::v8i32,  19 }, // vpmuludq+mul+sub sequence
416   };
417 
418   if ((Op2Info == TargetTransformInfo::OK_UniformConstantValue ||
419        Op2Info == TargetTransformInfo::OK_NonUniformConstantValue) &&
420       ST->hasAVX2()) {
421     if (const auto *Entry = CostTableLookup(AVX2ConstCostTable, ISD, LT.second))
422       return LT.first * Entry->Cost;
423   }
424 
425   static const CostTblEntry SSE2ConstCostTable[] = {
426     { ISD::SDIV, MVT::v32i8,  28+2 }, // 4*ext+4*pmulhw sequence + split.
427     { ISD::SREM, MVT::v32i8,  32+2 }, // 4*ext+4*pmulhw+mul+sub sequence + split.
428     { ISD::SDIV, MVT::v16i8,    14 }, // 2*ext+2*pmulhw sequence
429     { ISD::SREM, MVT::v16i8,    16 }, // 2*ext+2*pmulhw+mul+sub sequence
430     { ISD::UDIV, MVT::v32i8,  28+2 }, // 4*ext+4*pmulhw sequence + split.
431     { ISD::UREM, MVT::v32i8,  32+2 }, // 4*ext+4*pmulhw+mul+sub sequence + split.
432     { ISD::UDIV, MVT::v16i8,    14 }, // 2*ext+2*pmulhw sequence
433     { ISD::UREM, MVT::v16i8,    16 }, // 2*ext+2*pmulhw+mul+sub sequence
434     { ISD::SDIV, MVT::v16i16, 12+2 }, // 2*pmulhw sequence + split.
435     { ISD::SREM, MVT::v16i16, 16+2 }, // 2*pmulhw+mul+sub sequence + split.
436     { ISD::SDIV, MVT::v8i16,     6 }, // pmulhw sequence
437     { ISD::SREM, MVT::v8i16,     8 }, // pmulhw+mul+sub sequence
438     { ISD::UDIV, MVT::v16i16, 12+2 }, // 2*pmulhuw sequence + split.
439     { ISD::UREM, MVT::v16i16, 16+2 }, // 2*pmulhuw+mul+sub sequence + split.
440     { ISD::UDIV, MVT::v8i16,     6 }, // pmulhuw sequence
441     { ISD::UREM, MVT::v8i16,     8 }, // pmulhuw+mul+sub sequence
442     { ISD::SDIV, MVT::v8i32,  38+2 }, // 2*pmuludq sequence + split.
443     { ISD::SREM, MVT::v8i32,  48+2 }, // 2*pmuludq+mul+sub sequence + split.
444     { ISD::SDIV, MVT::v4i32,    19 }, // pmuludq sequence
445     { ISD::SREM, MVT::v4i32,    24 }, // pmuludq+mul+sub sequence
446     { ISD::UDIV, MVT::v8i32,  30+2 }, // 2*pmuludq sequence + split.
447     { ISD::UREM, MVT::v8i32,  40+2 }, // 2*pmuludq+mul+sub sequence + split.
448     { ISD::UDIV, MVT::v4i32,    15 }, // pmuludq sequence
449     { ISD::UREM, MVT::v4i32,    20 }, // pmuludq+mul+sub sequence
450   };
451 
452   if ((Op2Info == TargetTransformInfo::OK_UniformConstantValue ||
453        Op2Info == TargetTransformInfo::OK_NonUniformConstantValue) &&
454       ST->hasSSE2()) {
455     // pmuldq sequence.
456     if (ISD == ISD::SDIV && LT.second == MVT::v8i32 && ST->hasAVX())
457       return LT.first * 32;
458     if (ISD == ISD::SREM && LT.second == MVT::v8i32 && ST->hasAVX())
459       return LT.first * 38;
460     if (ISD == ISD::SDIV && LT.second == MVT::v4i32 && ST->hasSSE41())
461       return LT.first * 15;
462     if (ISD == ISD::SREM && LT.second == MVT::v4i32 && ST->hasSSE41())
463       return LT.first * 20;
464 
465     if (const auto *Entry = CostTableLookup(SSE2ConstCostTable, ISD, LT.second))
466       return LT.first * Entry->Cost;
467   }
468 
469   static const CostTblEntry AVX512BWShiftCostTable[] = {
470     { ISD::SHL,   MVT::v8i16,      1 }, // vpsllvw
471     { ISD::SRL,   MVT::v8i16,      1 }, // vpsrlvw
472     { ISD::SRA,   MVT::v8i16,      1 }, // vpsravw
473 
474     { ISD::SHL,   MVT::v16i16,     1 }, // vpsllvw
475     { ISD::SRL,   MVT::v16i16,     1 }, // vpsrlvw
476     { ISD::SRA,   MVT::v16i16,     1 }, // vpsravw
477 
478     { ISD::SHL,   MVT::v32i16,     1 }, // vpsllvw
479     { ISD::SRL,   MVT::v32i16,     1 }, // vpsrlvw
480     { ISD::SRA,   MVT::v32i16,     1 }, // vpsravw
481   };
482 
483   if (ST->hasBWI())
484     if (const auto *Entry = CostTableLookup(AVX512BWShiftCostTable, ISD, LT.second))
485       return LT.first * Entry->Cost;
486 
487   static const CostTblEntry AVX2UniformCostTable[] = {
488     // Uniform splats are cheaper for the following instructions.
489     { ISD::SHL,  MVT::v16i16, 1 }, // psllw.
490     { ISD::SRL,  MVT::v16i16, 1 }, // psrlw.
491     { ISD::SRA,  MVT::v16i16, 1 }, // psraw.
492     { ISD::SHL,  MVT::v32i16, 2 }, // 2*psllw.
493     { ISD::SRL,  MVT::v32i16, 2 }, // 2*psrlw.
494     { ISD::SRA,  MVT::v32i16, 2 }, // 2*psraw.
495   };
496 
497   if (ST->hasAVX2() &&
498       ((Op2Info == TargetTransformInfo::OK_UniformConstantValue) ||
499        (Op2Info == TargetTransformInfo::OK_UniformValue))) {
500     if (const auto *Entry =
501             CostTableLookup(AVX2UniformCostTable, ISD, LT.second))
502       return LT.first * Entry->Cost;
503   }
504 
505   static const CostTblEntry SSE2UniformCostTable[] = {
506     // Uniform splats are cheaper for the following instructions.
507     { ISD::SHL,  MVT::v8i16,  1 }, // psllw.
508     { ISD::SHL,  MVT::v4i32,  1 }, // pslld
509     { ISD::SHL,  MVT::v2i64,  1 }, // psllq.
510 
511     { ISD::SRL,  MVT::v8i16,  1 }, // psrlw.
512     { ISD::SRL,  MVT::v4i32,  1 }, // psrld.
513     { ISD::SRL,  MVT::v2i64,  1 }, // psrlq.
514 
515     { ISD::SRA,  MVT::v8i16,  1 }, // psraw.
516     { ISD::SRA,  MVT::v4i32,  1 }, // psrad.
517   };
518 
519   if (ST->hasSSE2() &&
520       ((Op2Info == TargetTransformInfo::OK_UniformConstantValue) ||
521        (Op2Info == TargetTransformInfo::OK_UniformValue))) {
522     if (const auto *Entry =
523             CostTableLookup(SSE2UniformCostTable, ISD, LT.second))
524       return LT.first * Entry->Cost;
525   }
526 
527   static const CostTblEntry AVX512DQCostTable[] = {
528     { ISD::MUL,  MVT::v2i64, 1 },
529     { ISD::MUL,  MVT::v4i64, 1 },
530     { ISD::MUL,  MVT::v8i64, 1 }
531   };
532 
533   // Look for AVX512DQ lowering tricks for custom cases.
534   if (ST->hasDQI())
535     if (const auto *Entry = CostTableLookup(AVX512DQCostTable, ISD, LT.second))
536       return LT.first * Entry->Cost;
537 
538   static const CostTblEntry AVX512BWCostTable[] = {
539     { ISD::SHL,   MVT::v64i8,     11 }, // vpblendvb sequence.
540     { ISD::SRL,   MVT::v64i8,     11 }, // vpblendvb sequence.
541     { ISD::SRA,   MVT::v64i8,     24 }, // vpblendvb sequence.
542 
543     { ISD::MUL,   MVT::v64i8,     11 }, // extend/pmullw/trunc sequence.
544     { ISD::MUL,   MVT::v32i8,      4 }, // extend/pmullw/trunc sequence.
545     { ISD::MUL,   MVT::v16i8,      4 }, // extend/pmullw/trunc sequence.
546   };
547 
548   // Look for AVX512BW lowering tricks for custom cases.
549   if (ST->hasBWI())
550     if (const auto *Entry = CostTableLookup(AVX512BWCostTable, ISD, LT.second))
551       return LT.first * Entry->Cost;
552 
553   static const CostTblEntry AVX512CostTable[] = {
554     { ISD::SHL,     MVT::v16i32,     1 },
555     { ISD::SRL,     MVT::v16i32,     1 },
556     { ISD::SRA,     MVT::v16i32,     1 },
557 
558     { ISD::SHL,     MVT::v8i64,      1 },
559     { ISD::SRL,     MVT::v8i64,      1 },
560 
561     { ISD::SRA,     MVT::v2i64,      1 },
562     { ISD::SRA,     MVT::v4i64,      1 },
563     { ISD::SRA,     MVT::v8i64,      1 },
564 
565     { ISD::MUL,     MVT::v64i8,     26 }, // extend/pmullw/trunc sequence.
566     { ISD::MUL,     MVT::v32i8,     13 }, // extend/pmullw/trunc sequence.
567     { ISD::MUL,     MVT::v16i8,      5 }, // extend/pmullw/trunc sequence.
568     { ISD::MUL,     MVT::v16i32,     1 }, // pmulld (Skylake from agner.org)
569     { ISD::MUL,     MVT::v8i32,      1 }, // pmulld (Skylake from agner.org)
570     { ISD::MUL,     MVT::v4i32,      1 }, // pmulld (Skylake from agner.org)
571     { ISD::MUL,     MVT::v8i64,      8 }, // 3*pmuludq/3*shift/2*add
572 
573     { ISD::FADD,    MVT::v8f64,      1 }, // Skylake from http://www.agner.org/
574     { ISD::FSUB,    MVT::v8f64,      1 }, // Skylake from http://www.agner.org/
575     { ISD::FMUL,    MVT::v8f64,      1 }, // Skylake from http://www.agner.org/
576 
577     { ISD::FADD,    MVT::v16f32,     1 }, // Skylake from http://www.agner.org/
578     { ISD::FSUB,    MVT::v16f32,     1 }, // Skylake from http://www.agner.org/
579     { ISD::FMUL,    MVT::v16f32,     1 }, // Skylake from http://www.agner.org/
580   };
581 
582   if (ST->hasAVX512())
583     if (const auto *Entry = CostTableLookup(AVX512CostTable, ISD, LT.second))
584       return LT.first * Entry->Cost;
585 
586   static const CostTblEntry AVX2ShiftCostTable[] = {
587     // Shifts on v4i64/v8i32 on AVX2 is legal even though we declare to
588     // customize them to detect the cases where shift amount is a scalar one.
589     { ISD::SHL,     MVT::v4i32,    1 },
590     { ISD::SRL,     MVT::v4i32,    1 },
591     { ISD::SRA,     MVT::v4i32,    1 },
592     { ISD::SHL,     MVT::v8i32,    1 },
593     { ISD::SRL,     MVT::v8i32,    1 },
594     { ISD::SRA,     MVT::v8i32,    1 },
595     { ISD::SHL,     MVT::v2i64,    1 },
596     { ISD::SRL,     MVT::v2i64,    1 },
597     { ISD::SHL,     MVT::v4i64,    1 },
598     { ISD::SRL,     MVT::v4i64,    1 },
599   };
600 
601   if (ST->hasAVX512()) {
602     if (ISD == ISD::SHL && LT.second == MVT::v32i16 &&
603         (Op2Info == TargetTransformInfo::OK_UniformConstantValue ||
604          Op2Info == TargetTransformInfo::OK_NonUniformConstantValue))
605       // On AVX512, a packed v32i16 shift left by a constant build_vector
606       // is lowered into a vector multiply (vpmullw).
607       return getArithmeticInstrCost(Instruction::Mul, Ty, CostKind,
608                                     Op1Info, Op2Info,
609                                     TargetTransformInfo::OP_None,
610                                     TargetTransformInfo::OP_None);
611   }
612 
613   // Look for AVX2 lowering tricks.
614   if (ST->hasAVX2()) {
615     if (ISD == ISD::SHL && LT.second == MVT::v16i16 &&
616         (Op2Info == TargetTransformInfo::OK_UniformConstantValue ||
617          Op2Info == TargetTransformInfo::OK_NonUniformConstantValue))
618       // On AVX2, a packed v16i16 shift left by a constant build_vector
619       // is lowered into a vector multiply (vpmullw).
620       return getArithmeticInstrCost(Instruction::Mul, Ty, CostKind,
621                                     Op1Info, Op2Info,
622                                     TargetTransformInfo::OP_None,
623                                     TargetTransformInfo::OP_None);
624 
625     if (const auto *Entry = CostTableLookup(AVX2ShiftCostTable, ISD, LT.second))
626       return LT.first * Entry->Cost;
627   }
628 
629   static const CostTblEntry XOPShiftCostTable[] = {
630     // 128bit shifts take 1cy, but right shifts require negation beforehand.
631     { ISD::SHL,     MVT::v16i8,    1 },
632     { ISD::SRL,     MVT::v16i8,    2 },
633     { ISD::SRA,     MVT::v16i8,    2 },
634     { ISD::SHL,     MVT::v8i16,    1 },
635     { ISD::SRL,     MVT::v8i16,    2 },
636     { ISD::SRA,     MVT::v8i16,    2 },
637     { ISD::SHL,     MVT::v4i32,    1 },
638     { ISD::SRL,     MVT::v4i32,    2 },
639     { ISD::SRA,     MVT::v4i32,    2 },
640     { ISD::SHL,     MVT::v2i64,    1 },
641     { ISD::SRL,     MVT::v2i64,    2 },
642     { ISD::SRA,     MVT::v2i64,    2 },
643     // 256bit shifts require splitting if AVX2 didn't catch them above.
644     { ISD::SHL,     MVT::v32i8,  2+2 },
645     { ISD::SRL,     MVT::v32i8,  4+2 },
646     { ISD::SRA,     MVT::v32i8,  4+2 },
647     { ISD::SHL,     MVT::v16i16, 2+2 },
648     { ISD::SRL,     MVT::v16i16, 4+2 },
649     { ISD::SRA,     MVT::v16i16, 4+2 },
650     { ISD::SHL,     MVT::v8i32,  2+2 },
651     { ISD::SRL,     MVT::v8i32,  4+2 },
652     { ISD::SRA,     MVT::v8i32,  4+2 },
653     { ISD::SHL,     MVT::v4i64,  2+2 },
654     { ISD::SRL,     MVT::v4i64,  4+2 },
655     { ISD::SRA,     MVT::v4i64,  4+2 },
656   };
657 
658   // Look for XOP lowering tricks.
659   if (ST->hasXOP()) {
660     // If the right shift is constant then we'll fold the negation so
661     // it's as cheap as a left shift.
662     int ShiftISD = ISD;
663     if ((ShiftISD == ISD::SRL || ShiftISD == ISD::SRA) &&
664         (Op2Info == TargetTransformInfo::OK_UniformConstantValue ||
665          Op2Info == TargetTransformInfo::OK_NonUniformConstantValue))
666       ShiftISD = ISD::SHL;
667     if (const auto *Entry =
668             CostTableLookup(XOPShiftCostTable, ShiftISD, LT.second))
669       return LT.first * Entry->Cost;
670   }
671 
672   static const CostTblEntry SSE2UniformShiftCostTable[] = {
673     // Uniform splats are cheaper for the following instructions.
674     { ISD::SHL,  MVT::v16i16, 2+2 }, // 2*psllw + split.
675     { ISD::SHL,  MVT::v8i32,  2+2 }, // 2*pslld + split.
676     { ISD::SHL,  MVT::v4i64,  2+2 }, // 2*psllq + split.
677 
678     { ISD::SRL,  MVT::v16i16, 2+2 }, // 2*psrlw + split.
679     { ISD::SRL,  MVT::v8i32,  2+2 }, // 2*psrld + split.
680     { ISD::SRL,  MVT::v4i64,  2+2 }, // 2*psrlq + split.
681 
682     { ISD::SRA,  MVT::v16i16, 2+2 }, // 2*psraw + split.
683     { ISD::SRA,  MVT::v8i32,  2+2 }, // 2*psrad + split.
684     { ISD::SRA,  MVT::v2i64,    4 }, // 2*psrad + shuffle.
685     { ISD::SRA,  MVT::v4i64,  8+2 }, // 2*(2*psrad + shuffle) + split.
686   };
687 
688   if (ST->hasSSE2() &&
689       ((Op2Info == TargetTransformInfo::OK_UniformConstantValue) ||
690        (Op2Info == TargetTransformInfo::OK_UniformValue))) {
691 
692     // Handle AVX2 uniform v4i64 ISD::SRA, it's not worth a table.
693     if (ISD == ISD::SRA && LT.second == MVT::v4i64 && ST->hasAVX2())
694       return LT.first * 4; // 2*psrad + shuffle.
695 
696     if (const auto *Entry =
697             CostTableLookup(SSE2UniformShiftCostTable, ISD, LT.second))
698       return LT.first * Entry->Cost;
699   }
700 
701   if (ISD == ISD::SHL &&
702       Op2Info == TargetTransformInfo::OK_NonUniformConstantValue) {
703     MVT VT = LT.second;
704     // Vector shift left by non uniform constant can be lowered
705     // into vector multiply.
706     if (((VT == MVT::v8i16 || VT == MVT::v4i32) && ST->hasSSE2()) ||
707         ((VT == MVT::v16i16 || VT == MVT::v8i32) && ST->hasAVX()))
708       ISD = ISD::MUL;
709   }
710 
711   static const CostTblEntry AVX2CostTable[] = {
712     { ISD::SHL,  MVT::v32i8,     11 }, // vpblendvb sequence.
713     { ISD::SHL,  MVT::v64i8,     22 }, // 2*vpblendvb sequence.
714     { ISD::SHL,  MVT::v16i16,    10 }, // extend/vpsrlvd/pack sequence.
715     { ISD::SHL,  MVT::v32i16,    20 }, // 2*extend/vpsrlvd/pack sequence.
716 
717     { ISD::SRL,  MVT::v32i8,     11 }, // vpblendvb sequence.
718     { ISD::SRL,  MVT::v64i8,     22 }, // 2*vpblendvb sequence.
719     { ISD::SRL,  MVT::v16i16,    10 }, // extend/vpsrlvd/pack sequence.
720     { ISD::SRL,  MVT::v32i16,    20 }, // 2*extend/vpsrlvd/pack sequence.
721 
722     { ISD::SRA,  MVT::v32i8,     24 }, // vpblendvb sequence.
723     { ISD::SRA,  MVT::v64i8,     48 }, // 2*vpblendvb sequence.
724     { ISD::SRA,  MVT::v16i16,    10 }, // extend/vpsravd/pack sequence.
725     { ISD::SRA,  MVT::v32i16,    20 }, // 2*extend/vpsravd/pack sequence.
726     { ISD::SRA,  MVT::v2i64,      4 }, // srl/xor/sub sequence.
727     { ISD::SRA,  MVT::v4i64,      4 }, // srl/xor/sub sequence.
728 
729     { ISD::SUB,  MVT::v32i8,      1 }, // psubb
730     { ISD::ADD,  MVT::v32i8,      1 }, // paddb
731     { ISD::SUB,  MVT::v16i16,     1 }, // psubw
732     { ISD::ADD,  MVT::v16i16,     1 }, // paddw
733     { ISD::SUB,  MVT::v8i32,      1 }, // psubd
734     { ISD::ADD,  MVT::v8i32,      1 }, // paddd
735     { ISD::SUB,  MVT::v4i64,      1 }, // psubq
736     { ISD::ADD,  MVT::v4i64,      1 }, // paddq
737 
738     { ISD::MUL,  MVT::v32i8,     17 }, // extend/pmullw/trunc sequence.
739     { ISD::MUL,  MVT::v16i8,      7 }, // extend/pmullw/trunc sequence.
740     { ISD::MUL,  MVT::v16i16,     1 }, // pmullw
741     { ISD::MUL,  MVT::v8i32,      2 }, // pmulld (Haswell from agner.org)
742     { ISD::MUL,  MVT::v4i64,      8 }, // 3*pmuludq/3*shift/2*add
743 
744     { ISD::FADD, MVT::v4f64,      1 }, // Haswell from http://www.agner.org/
745     { ISD::FADD, MVT::v8f32,      1 }, // Haswell from http://www.agner.org/
746     { ISD::FSUB, MVT::v4f64,      1 }, // Haswell from http://www.agner.org/
747     { ISD::FSUB, MVT::v8f32,      1 }, // Haswell from http://www.agner.org/
748     { ISD::FMUL, MVT::v4f64,      1 }, // Haswell from http://www.agner.org/
749     { ISD::FMUL, MVT::v8f32,      1 }, // Haswell from http://www.agner.org/
750 
751     { ISD::FDIV, MVT::f32,        7 }, // Haswell from http://www.agner.org/
752     { ISD::FDIV, MVT::v4f32,      7 }, // Haswell from http://www.agner.org/
753     { ISD::FDIV, MVT::v8f32,     14 }, // Haswell from http://www.agner.org/
754     { ISD::FDIV, MVT::f64,       14 }, // Haswell from http://www.agner.org/
755     { ISD::FDIV, MVT::v2f64,     14 }, // Haswell from http://www.agner.org/
756     { ISD::FDIV, MVT::v4f64,     28 }, // Haswell from http://www.agner.org/
757   };
758 
759   // Look for AVX2 lowering tricks for custom cases.
760   if (ST->hasAVX2())
761     if (const auto *Entry = CostTableLookup(AVX2CostTable, ISD, LT.second))
762       return LT.first * Entry->Cost;
763 
764   static const CostTblEntry AVX1CostTable[] = {
765     // We don't have to scalarize unsupported ops. We can issue two half-sized
766     // operations and we only need to extract the upper YMM half.
767     // Two ops + 1 extract + 1 insert = 4.
768     { ISD::MUL,     MVT::v16i16,     4 },
769     { ISD::MUL,     MVT::v8i32,      4 },
770     { ISD::SUB,     MVT::v32i8,      4 },
771     { ISD::ADD,     MVT::v32i8,      4 },
772     { ISD::SUB,     MVT::v16i16,     4 },
773     { ISD::ADD,     MVT::v16i16,     4 },
774     { ISD::SUB,     MVT::v8i32,      4 },
775     { ISD::ADD,     MVT::v8i32,      4 },
776     { ISD::SUB,     MVT::v4i64,      4 },
777     { ISD::ADD,     MVT::v4i64,      4 },
778 
779     // A v4i64 multiply is custom lowered as two split v2i64 vectors that then
780     // are lowered as a series of long multiplies(3), shifts(3) and adds(2)
781     // Because we believe v4i64 to be a legal type, we must also include the
782     // extract+insert in the cost table. Therefore, the cost here is 18
783     // instead of 8.
784     { ISD::MUL,     MVT::v4i64,     18 },
785 
786     { ISD::MUL,     MVT::v32i8,     26 }, // extend/pmullw/trunc sequence.
787 
788     { ISD::FDIV,    MVT::f32,       14 }, // SNB from http://www.agner.org/
789     { ISD::FDIV,    MVT::v4f32,     14 }, // SNB from http://www.agner.org/
790     { ISD::FDIV,    MVT::v8f32,     28 }, // SNB from http://www.agner.org/
791     { ISD::FDIV,    MVT::f64,       22 }, // SNB from http://www.agner.org/
792     { ISD::FDIV,    MVT::v2f64,     22 }, // SNB from http://www.agner.org/
793     { ISD::FDIV,    MVT::v4f64,     44 }, // SNB from http://www.agner.org/
794   };
795 
796   if (ST->hasAVX())
797     if (const auto *Entry = CostTableLookup(AVX1CostTable, ISD, LT.second))
798       return LT.first * Entry->Cost;
799 
800   static const CostTblEntry SSE42CostTable[] = {
801     { ISD::FADD, MVT::f64,     1 }, // Nehalem from http://www.agner.org/
802     { ISD::FADD, MVT::f32,     1 }, // Nehalem from http://www.agner.org/
803     { ISD::FADD, MVT::v2f64,   1 }, // Nehalem from http://www.agner.org/
804     { ISD::FADD, MVT::v4f32,   1 }, // Nehalem from http://www.agner.org/
805 
806     { ISD::FSUB, MVT::f64,     1 }, // Nehalem from http://www.agner.org/
807     { ISD::FSUB, MVT::f32 ,    1 }, // Nehalem from http://www.agner.org/
808     { ISD::FSUB, MVT::v2f64,   1 }, // Nehalem from http://www.agner.org/
809     { ISD::FSUB, MVT::v4f32,   1 }, // Nehalem from http://www.agner.org/
810 
811     { ISD::FMUL, MVT::f64,     1 }, // Nehalem from http://www.agner.org/
812     { ISD::FMUL, MVT::f32,     1 }, // Nehalem from http://www.agner.org/
813     { ISD::FMUL, MVT::v2f64,   1 }, // Nehalem from http://www.agner.org/
814     { ISD::FMUL, MVT::v4f32,   1 }, // Nehalem from http://www.agner.org/
815 
816     { ISD::FDIV,  MVT::f32,   14 }, // Nehalem from http://www.agner.org/
817     { ISD::FDIV,  MVT::v4f32, 14 }, // Nehalem from http://www.agner.org/
818     { ISD::FDIV,  MVT::f64,   22 }, // Nehalem from http://www.agner.org/
819     { ISD::FDIV,  MVT::v2f64, 22 }, // Nehalem from http://www.agner.org/
820   };
821 
822   if (ST->hasSSE42())
823     if (const auto *Entry = CostTableLookup(SSE42CostTable, ISD, LT.second))
824       return LT.first * Entry->Cost;
825 
826   static const CostTblEntry SSE41CostTable[] = {
827     { ISD::SHL,  MVT::v16i8,      11 }, // pblendvb sequence.
828     { ISD::SHL,  MVT::v32i8,  2*11+2 }, // pblendvb sequence + split.
829     { ISD::SHL,  MVT::v8i16,      14 }, // pblendvb sequence.
830     { ISD::SHL,  MVT::v16i16, 2*14+2 }, // pblendvb sequence + split.
831     { ISD::SHL,  MVT::v4i32,       4 }, // pslld/paddd/cvttps2dq/pmulld
832     { ISD::SHL,  MVT::v8i32,   2*4+2 }, // pslld/paddd/cvttps2dq/pmulld + split
833 
834     { ISD::SRL,  MVT::v16i8,      12 }, // pblendvb sequence.
835     { ISD::SRL,  MVT::v32i8,  2*12+2 }, // pblendvb sequence + split.
836     { ISD::SRL,  MVT::v8i16,      14 }, // pblendvb sequence.
837     { ISD::SRL,  MVT::v16i16, 2*14+2 }, // pblendvb sequence + split.
838     { ISD::SRL,  MVT::v4i32,      11 }, // Shift each lane + blend.
839     { ISD::SRL,  MVT::v8i32,  2*11+2 }, // Shift each lane + blend + split.
840 
841     { ISD::SRA,  MVT::v16i8,      24 }, // pblendvb sequence.
842     { ISD::SRA,  MVT::v32i8,  2*24+2 }, // pblendvb sequence + split.
843     { ISD::SRA,  MVT::v8i16,      14 }, // pblendvb sequence.
844     { ISD::SRA,  MVT::v16i16, 2*14+2 }, // pblendvb sequence + split.
845     { ISD::SRA,  MVT::v4i32,      12 }, // Shift each lane + blend.
846     { ISD::SRA,  MVT::v8i32,  2*12+2 }, // Shift each lane + blend + split.
847 
848     { ISD::MUL,  MVT::v4i32,       2 }  // pmulld (Nehalem from agner.org)
849   };
850 
851   if (ST->hasSSE41())
852     if (const auto *Entry = CostTableLookup(SSE41CostTable, ISD, LT.second))
853       return LT.first * Entry->Cost;
854 
855   static const CostTblEntry SSE2CostTable[] = {
856     // We don't correctly identify costs of casts because they are marked as
857     // custom.
858     { ISD::SHL,  MVT::v16i8,      26 }, // cmpgtb sequence.
859     { ISD::SHL,  MVT::v8i16,      32 }, // cmpgtb sequence.
860     { ISD::SHL,  MVT::v4i32,     2*5 }, // We optimized this using mul.
861     { ISD::SHL,  MVT::v2i64,       4 }, // splat+shuffle sequence.
862     { ISD::SHL,  MVT::v4i64,   2*4+2 }, // splat+shuffle sequence + split.
863 
864     { ISD::SRL,  MVT::v16i8,      26 }, // cmpgtb sequence.
865     { ISD::SRL,  MVT::v8i16,      32 }, // cmpgtb sequence.
866     { ISD::SRL,  MVT::v4i32,      16 }, // Shift each lane + blend.
867     { ISD::SRL,  MVT::v2i64,       4 }, // splat+shuffle sequence.
868     { ISD::SRL,  MVT::v4i64,   2*4+2 }, // splat+shuffle sequence + split.
869 
870     { ISD::SRA,  MVT::v16i8,      54 }, // unpacked cmpgtb sequence.
871     { ISD::SRA,  MVT::v8i16,      32 }, // cmpgtb sequence.
872     { ISD::SRA,  MVT::v4i32,      16 }, // Shift each lane + blend.
873     { ISD::SRA,  MVT::v2i64,      12 }, // srl/xor/sub sequence.
874     { ISD::SRA,  MVT::v4i64,  2*12+2 }, // srl/xor/sub sequence+split.
875 
876     { ISD::MUL,  MVT::v16i8,      12 }, // extend/pmullw/trunc sequence.
877     { ISD::MUL,  MVT::v8i16,       1 }, // pmullw
878     { ISD::MUL,  MVT::v4i32,       6 }, // 3*pmuludq/4*shuffle
879     { ISD::MUL,  MVT::v2i64,       8 }, // 3*pmuludq/3*shift/2*add
880 
881     { ISD::FDIV, MVT::f32,        23 }, // Pentium IV from http://www.agner.org/
882     { ISD::FDIV, MVT::v4f32,      39 }, // Pentium IV from http://www.agner.org/
883     { ISD::FDIV, MVT::f64,        38 }, // Pentium IV from http://www.agner.org/
884     { ISD::FDIV, MVT::v2f64,      69 }, // Pentium IV from http://www.agner.org/
885 
886     { ISD::FADD, MVT::f32,         2 }, // Pentium IV from http://www.agner.org/
887     { ISD::FADD, MVT::f64,         2 }, // Pentium IV from http://www.agner.org/
888 
889     { ISD::FSUB, MVT::f32,         2 }, // Pentium IV from http://www.agner.org/
890     { ISD::FSUB, MVT::f64,         2 }, // Pentium IV from http://www.agner.org/
891   };
892 
893   if (ST->hasSSE2())
894     if (const auto *Entry = CostTableLookup(SSE2CostTable, ISD, LT.second))
895       return LT.first * Entry->Cost;
896 
897   static const CostTblEntry SSE1CostTable[] = {
898     { ISD::FDIV, MVT::f32,   17 }, // Pentium III from http://www.agner.org/
899     { ISD::FDIV, MVT::v4f32, 34 }, // Pentium III from http://www.agner.org/
900 
901     { ISD::FADD, MVT::f32,    1 }, // Pentium III from http://www.agner.org/
902     { ISD::FADD, MVT::v4f32,  2 }, // Pentium III from http://www.agner.org/
903 
904     { ISD::FSUB, MVT::f32,    1 }, // Pentium III from http://www.agner.org/
905     { ISD::FSUB, MVT::v4f32,  2 }, // Pentium III from http://www.agner.org/
906 
907     { ISD::ADD, MVT::i8,      1 }, // Pentium III from http://www.agner.org/
908     { ISD::ADD, MVT::i16,     1 }, // Pentium III from http://www.agner.org/
909     { ISD::ADD, MVT::i32,     1 }, // Pentium III from http://www.agner.org/
910 
911     { ISD::SUB, MVT::i8,      1 }, // Pentium III from http://www.agner.org/
912     { ISD::SUB, MVT::i16,     1 }, // Pentium III from http://www.agner.org/
913     { ISD::SUB, MVT::i32,     1 }, // Pentium III from http://www.agner.org/
914   };
915 
916   if (ST->hasSSE1())
917     if (const auto *Entry = CostTableLookup(SSE1CostTable, ISD, LT.second))
918       return LT.first * Entry->Cost;
919 
920   // It is not a good idea to vectorize division. We have to scalarize it and
921   // in the process we will often end up having to spilling regular
922   // registers. The overhead of division is going to dominate most kernels
923   // anyways so try hard to prevent vectorization of division - it is
924   // generally a bad idea. Assume somewhat arbitrarily that we have to be able
925   // to hide "20 cycles" for each lane.
926   if (LT.second.isVector() && (ISD == ISD::SDIV || ISD == ISD::SREM ||
927                                ISD == ISD::UDIV || ISD == ISD::UREM)) {
928     int ScalarCost = getArithmeticInstrCost(
929         Opcode, Ty->getScalarType(), CostKind, Op1Info, Op2Info,
930         TargetTransformInfo::OP_None, TargetTransformInfo::OP_None);
931     return 20 * LT.first * LT.second.getVectorNumElements() * ScalarCost;
932   }
933 
934   // Fallback to the default implementation.
935   return BaseT::getArithmeticInstrCost(Opcode, Ty, CostKind, Op1Info, Op2Info);
936 }
937 
938 int X86TTIImpl::getShuffleCost(TTI::ShuffleKind Kind, VectorType *BaseTp,
939                                int Index, VectorType *SubTp) {
940   // 64-bit packed float vectors (v2f32) are widened to type v4f32.
941   // 64-bit packed integer vectors (v2i32) are widened to type v4i32.
942   std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, BaseTp);
943 
944   // Treat Transpose as 2-op shuffles - there's no difference in lowering.
945   if (Kind == TTI::SK_Transpose)
946     Kind = TTI::SK_PermuteTwoSrc;
947 
948   // For Broadcasts we are splatting the first element from the first input
949   // register, so only need to reference that input and all the output
950   // registers are the same.
951   if (Kind == TTI::SK_Broadcast)
952     LT.first = 1;
953 
954   // Subvector extractions are free if they start at the beginning of a
955   // vector and cheap if the subvectors are aligned.
956   if (Kind == TTI::SK_ExtractSubvector && LT.second.isVector()) {
957     int NumElts = LT.second.getVectorNumElements();
958     if ((Index % NumElts) == 0)
959       return 0;
960     std::pair<int, MVT> SubLT = TLI->getTypeLegalizationCost(DL, SubTp);
961     if (SubLT.second.isVector()) {
962       int NumSubElts = SubLT.second.getVectorNumElements();
963       if ((Index % NumSubElts) == 0 && (NumElts % NumSubElts) == 0)
964         return SubLT.first;
965       // Handle some cases for widening legalization. For now we only handle
966       // cases where the original subvector was naturally aligned and evenly
967       // fit in its legalized subvector type.
968       // FIXME: Remove some of the alignment restrictions.
969       // FIXME: We can use permq for 64-bit or larger extracts from 256-bit
970       // vectors.
971       int OrigSubElts = cast<VectorType>(SubTp)->getNumElements();
972       if (NumSubElts > OrigSubElts && (Index % OrigSubElts) == 0 &&
973           (NumSubElts % OrigSubElts) == 0 &&
974           LT.second.getVectorElementType() ==
975               SubLT.second.getVectorElementType() &&
976           LT.second.getVectorElementType().getSizeInBits() ==
977               BaseTp->getElementType()->getPrimitiveSizeInBits()) {
978         assert(NumElts >= NumSubElts && NumElts > OrigSubElts &&
979                "Unexpected number of elements!");
980         VectorType *VecTy = VectorType::get(BaseTp->getElementType(),
981                                             LT.second.getVectorNumElements());
982         VectorType *SubTy =
983           VectorType::get(BaseTp->getElementType(),
984                           SubLT.second.getVectorNumElements());
985         int ExtractIndex = alignDown((Index % NumElts), NumSubElts);
986         int ExtractCost = getShuffleCost(TTI::SK_ExtractSubvector, VecTy,
987                                          ExtractIndex, SubTy);
988 
989         // If the original size is 32-bits or more, we can use pshufd. Otherwise
990         // if we have SSSE3 we can use pshufb.
991         if (SubTp->getPrimitiveSizeInBits() >= 32 || ST->hasSSSE3())
992           return ExtractCost + 1; // pshufd or pshufb
993 
994         assert(SubTp->getPrimitiveSizeInBits() == 16 &&
995                "Unexpected vector size");
996 
997         return ExtractCost + 2; // worst case pshufhw + pshufd
998       }
999     }
1000   }
1001 
1002   // Handle some common (illegal) sub-vector types as they are often very cheap
1003   // to shuffle even on targets without PSHUFB.
1004   EVT VT = TLI->getValueType(DL, BaseTp);
1005   if (VT.isSimple() && VT.isVector() && VT.getSizeInBits() < 128 &&
1006       !ST->hasSSSE3()) {
1007      static const CostTblEntry SSE2SubVectorShuffleTbl[] = {
1008       {TTI::SK_Broadcast,        MVT::v4i16, 1}, // pshuflw
1009       {TTI::SK_Broadcast,        MVT::v2i16, 1}, // pshuflw
1010       {TTI::SK_Broadcast,        MVT::v8i8,  2}, // punpck/pshuflw
1011       {TTI::SK_Broadcast,        MVT::v4i8,  2}, // punpck/pshuflw
1012       {TTI::SK_Broadcast,        MVT::v2i8,  1}, // punpck
1013 
1014       {TTI::SK_Reverse,          MVT::v4i16, 1}, // pshuflw
1015       {TTI::SK_Reverse,          MVT::v2i16, 1}, // pshuflw
1016       {TTI::SK_Reverse,          MVT::v4i8,  3}, // punpck/pshuflw/packus
1017       {TTI::SK_Reverse,          MVT::v2i8,  1}, // punpck
1018 
1019       {TTI::SK_PermuteTwoSrc,    MVT::v4i16, 2}, // punpck/pshuflw
1020       {TTI::SK_PermuteTwoSrc,    MVT::v2i16, 2}, // punpck/pshuflw
1021       {TTI::SK_PermuteTwoSrc,    MVT::v8i8,  7}, // punpck/pshuflw
1022       {TTI::SK_PermuteTwoSrc,    MVT::v4i8,  4}, // punpck/pshuflw
1023       {TTI::SK_PermuteTwoSrc,    MVT::v2i8,  2}, // punpck
1024 
1025       {TTI::SK_PermuteSingleSrc, MVT::v4i16, 1}, // pshuflw
1026       {TTI::SK_PermuteSingleSrc, MVT::v2i16, 1}, // pshuflw
1027       {TTI::SK_PermuteSingleSrc, MVT::v8i8,  5}, // punpck/pshuflw
1028       {TTI::SK_PermuteSingleSrc, MVT::v4i8,  3}, // punpck/pshuflw
1029       {TTI::SK_PermuteSingleSrc, MVT::v2i8,  1}, // punpck
1030     };
1031 
1032     if (ST->hasSSE2())
1033       if (const auto *Entry =
1034               CostTableLookup(SSE2SubVectorShuffleTbl, Kind, VT.getSimpleVT()))
1035         return Entry->Cost;
1036   }
1037 
1038   // We are going to permute multiple sources and the result will be in multiple
1039   // destinations. Providing an accurate cost only for splits where the element
1040   // type remains the same.
1041   if (Kind == TTI::SK_PermuteSingleSrc && LT.first != 1) {
1042     MVT LegalVT = LT.second;
1043     if (LegalVT.isVector() &&
1044         LegalVT.getVectorElementType().getSizeInBits() ==
1045             BaseTp->getElementType()->getPrimitiveSizeInBits() &&
1046         LegalVT.getVectorNumElements() < BaseTp->getNumElements()) {
1047 
1048       unsigned VecTySize = DL.getTypeStoreSize(BaseTp);
1049       unsigned LegalVTSize = LegalVT.getStoreSize();
1050       // Number of source vectors after legalization:
1051       unsigned NumOfSrcs = (VecTySize + LegalVTSize - 1) / LegalVTSize;
1052       // Number of destination vectors after legalization:
1053       unsigned NumOfDests = LT.first;
1054 
1055       VectorType *SingleOpTy =
1056         VectorType::get(BaseTp->getElementType(),
1057                         LegalVT.getVectorNumElements());
1058 
1059       unsigned NumOfShuffles = (NumOfSrcs - 1) * NumOfDests;
1060       return NumOfShuffles *
1061              getShuffleCost(TTI::SK_PermuteTwoSrc, SingleOpTy, 0, nullptr);
1062     }
1063 
1064     return BaseT::getShuffleCost(Kind, BaseTp, Index, SubTp);
1065   }
1066 
1067   // For 2-input shuffles, we must account for splitting the 2 inputs into many.
1068   if (Kind == TTI::SK_PermuteTwoSrc && LT.first != 1) {
1069     // We assume that source and destination have the same vector type.
1070     int NumOfDests = LT.first;
1071     int NumOfShufflesPerDest = LT.first * 2 - 1;
1072     LT.first = NumOfDests * NumOfShufflesPerDest;
1073   }
1074 
1075   static const CostTblEntry AVX512VBMIShuffleTbl[] = {
1076       {TTI::SK_Reverse, MVT::v64i8, 1}, // vpermb
1077       {TTI::SK_Reverse, MVT::v32i8, 1}, // vpermb
1078 
1079       {TTI::SK_PermuteSingleSrc, MVT::v64i8, 1}, // vpermb
1080       {TTI::SK_PermuteSingleSrc, MVT::v32i8, 1}, // vpermb
1081 
1082       {TTI::SK_PermuteTwoSrc, MVT::v64i8, 2}, // vpermt2b
1083       {TTI::SK_PermuteTwoSrc, MVT::v32i8, 2}, // vpermt2b
1084       {TTI::SK_PermuteTwoSrc, MVT::v16i8, 2}  // vpermt2b
1085   };
1086 
1087   if (ST->hasVBMI())
1088     if (const auto *Entry =
1089             CostTableLookup(AVX512VBMIShuffleTbl, Kind, LT.second))
1090       return LT.first * Entry->Cost;
1091 
1092   static const CostTblEntry AVX512BWShuffleTbl[] = {
1093       {TTI::SK_Broadcast, MVT::v32i16, 1}, // vpbroadcastw
1094       {TTI::SK_Broadcast, MVT::v64i8, 1},  // vpbroadcastb
1095 
1096       {TTI::SK_Reverse, MVT::v32i16, 2}, // vpermw
1097       {TTI::SK_Reverse, MVT::v16i16, 2}, // vpermw
1098       {TTI::SK_Reverse, MVT::v64i8, 2},  // pshufb + vshufi64x2
1099 
1100       {TTI::SK_PermuteSingleSrc, MVT::v32i16, 2}, // vpermw
1101       {TTI::SK_PermuteSingleSrc, MVT::v16i16, 2}, // vpermw
1102       {TTI::SK_PermuteSingleSrc, MVT::v64i8, 8},  // extend to v32i16
1103 
1104       {TTI::SK_PermuteTwoSrc, MVT::v32i16, 2}, // vpermt2w
1105       {TTI::SK_PermuteTwoSrc, MVT::v16i16, 2}, // vpermt2w
1106       {TTI::SK_PermuteTwoSrc, MVT::v8i16, 2},  // vpermt2w
1107       {TTI::SK_PermuteTwoSrc, MVT::v64i8, 19}, // 6 * v32i8 + 1
1108   };
1109 
1110   if (ST->hasBWI())
1111     if (const auto *Entry =
1112             CostTableLookup(AVX512BWShuffleTbl, Kind, LT.second))
1113       return LT.first * Entry->Cost;
1114 
1115   static const CostTblEntry AVX512ShuffleTbl[] = {
1116       {TTI::SK_Broadcast, MVT::v8f64, 1},  // vbroadcastpd
1117       {TTI::SK_Broadcast, MVT::v16f32, 1}, // vbroadcastps
1118       {TTI::SK_Broadcast, MVT::v8i64, 1},  // vpbroadcastq
1119       {TTI::SK_Broadcast, MVT::v16i32, 1}, // vpbroadcastd
1120       {TTI::SK_Broadcast, MVT::v32i16, 1}, // vpbroadcastw
1121       {TTI::SK_Broadcast, MVT::v64i8, 1},  // vpbroadcastb
1122 
1123       {TTI::SK_Reverse, MVT::v8f64, 1},  // vpermpd
1124       {TTI::SK_Reverse, MVT::v16f32, 1}, // vpermps
1125       {TTI::SK_Reverse, MVT::v8i64, 1},  // vpermq
1126       {TTI::SK_Reverse, MVT::v16i32, 1}, // vpermd
1127 
1128       {TTI::SK_PermuteSingleSrc, MVT::v8f64, 1},  // vpermpd
1129       {TTI::SK_PermuteSingleSrc, MVT::v4f64, 1},  // vpermpd
1130       {TTI::SK_PermuteSingleSrc, MVT::v2f64, 1},  // vpermpd
1131       {TTI::SK_PermuteSingleSrc, MVT::v16f32, 1}, // vpermps
1132       {TTI::SK_PermuteSingleSrc, MVT::v8f32, 1},  // vpermps
1133       {TTI::SK_PermuteSingleSrc, MVT::v4f32, 1},  // vpermps
1134       {TTI::SK_PermuteSingleSrc, MVT::v8i64, 1},  // vpermq
1135       {TTI::SK_PermuteSingleSrc, MVT::v4i64, 1},  // vpermq
1136       {TTI::SK_PermuteSingleSrc, MVT::v2i64, 1},  // vpermq
1137       {TTI::SK_PermuteSingleSrc, MVT::v16i32, 1}, // vpermd
1138       {TTI::SK_PermuteSingleSrc, MVT::v8i32, 1},  // vpermd
1139       {TTI::SK_PermuteSingleSrc, MVT::v4i32, 1},  // vpermd
1140       {TTI::SK_PermuteSingleSrc, MVT::v16i8, 1},  // pshufb
1141 
1142       {TTI::SK_PermuteTwoSrc, MVT::v8f64, 1},  // vpermt2pd
1143       {TTI::SK_PermuteTwoSrc, MVT::v16f32, 1}, // vpermt2ps
1144       {TTI::SK_PermuteTwoSrc, MVT::v8i64, 1},  // vpermt2q
1145       {TTI::SK_PermuteTwoSrc, MVT::v16i32, 1}, // vpermt2d
1146       {TTI::SK_PermuteTwoSrc, MVT::v4f64, 1},  // vpermt2pd
1147       {TTI::SK_PermuteTwoSrc, MVT::v8f32, 1},  // vpermt2ps
1148       {TTI::SK_PermuteTwoSrc, MVT::v4i64, 1},  // vpermt2q
1149       {TTI::SK_PermuteTwoSrc, MVT::v8i32, 1},  // vpermt2d
1150       {TTI::SK_PermuteTwoSrc, MVT::v2f64, 1},  // vpermt2pd
1151       {TTI::SK_PermuteTwoSrc, MVT::v4f32, 1},  // vpermt2ps
1152       {TTI::SK_PermuteTwoSrc, MVT::v2i64, 1},  // vpermt2q
1153       {TTI::SK_PermuteTwoSrc, MVT::v4i32, 1},  // vpermt2d
1154 
1155       // FIXME: This just applies the type legalization cost rules above
1156       // assuming these completely split.
1157       {TTI::SK_PermuteSingleSrc, MVT::v32i16, 14},
1158       {TTI::SK_PermuteSingleSrc, MVT::v64i8,  14},
1159       {TTI::SK_PermuteTwoSrc,    MVT::v32i16, 42},
1160       {TTI::SK_PermuteTwoSrc,    MVT::v64i8,  42},
1161   };
1162 
1163   if (ST->hasAVX512())
1164     if (const auto *Entry = CostTableLookup(AVX512ShuffleTbl, Kind, LT.second))
1165       return LT.first * Entry->Cost;
1166 
1167   static const CostTblEntry AVX2ShuffleTbl[] = {
1168       {TTI::SK_Broadcast, MVT::v4f64, 1},  // vbroadcastpd
1169       {TTI::SK_Broadcast, MVT::v8f32, 1},  // vbroadcastps
1170       {TTI::SK_Broadcast, MVT::v4i64, 1},  // vpbroadcastq
1171       {TTI::SK_Broadcast, MVT::v8i32, 1},  // vpbroadcastd
1172       {TTI::SK_Broadcast, MVT::v16i16, 1}, // vpbroadcastw
1173       {TTI::SK_Broadcast, MVT::v32i8, 1},  // vpbroadcastb
1174 
1175       {TTI::SK_Reverse, MVT::v4f64, 1},  // vpermpd
1176       {TTI::SK_Reverse, MVT::v8f32, 1},  // vpermps
1177       {TTI::SK_Reverse, MVT::v4i64, 1},  // vpermq
1178       {TTI::SK_Reverse, MVT::v8i32, 1},  // vpermd
1179       {TTI::SK_Reverse, MVT::v16i16, 2}, // vperm2i128 + pshufb
1180       {TTI::SK_Reverse, MVT::v32i8, 2},  // vperm2i128 + pshufb
1181 
1182       {TTI::SK_Select, MVT::v16i16, 1}, // vpblendvb
1183       {TTI::SK_Select, MVT::v32i8, 1},  // vpblendvb
1184 
1185       {TTI::SK_PermuteSingleSrc, MVT::v4f64, 1},  // vpermpd
1186       {TTI::SK_PermuteSingleSrc, MVT::v8f32, 1},  // vpermps
1187       {TTI::SK_PermuteSingleSrc, MVT::v4i64, 1},  // vpermq
1188       {TTI::SK_PermuteSingleSrc, MVT::v8i32, 1},  // vpermd
1189       {TTI::SK_PermuteSingleSrc, MVT::v16i16, 4}, // vperm2i128 + 2*vpshufb
1190                                                   // + vpblendvb
1191       {TTI::SK_PermuteSingleSrc, MVT::v32i8, 4},  // vperm2i128 + 2*vpshufb
1192                                                   // + vpblendvb
1193 
1194       {TTI::SK_PermuteTwoSrc, MVT::v4f64, 3},  // 2*vpermpd + vblendpd
1195       {TTI::SK_PermuteTwoSrc, MVT::v8f32, 3},  // 2*vpermps + vblendps
1196       {TTI::SK_PermuteTwoSrc, MVT::v4i64, 3},  // 2*vpermq + vpblendd
1197       {TTI::SK_PermuteTwoSrc, MVT::v8i32, 3},  // 2*vpermd + vpblendd
1198       {TTI::SK_PermuteTwoSrc, MVT::v16i16, 7}, // 2*vperm2i128 + 4*vpshufb
1199                                                // + vpblendvb
1200       {TTI::SK_PermuteTwoSrc, MVT::v32i8, 7},  // 2*vperm2i128 + 4*vpshufb
1201                                                // + vpblendvb
1202   };
1203 
1204   if (ST->hasAVX2())
1205     if (const auto *Entry = CostTableLookup(AVX2ShuffleTbl, Kind, LT.second))
1206       return LT.first * Entry->Cost;
1207 
1208   static const CostTblEntry XOPShuffleTbl[] = {
1209       {TTI::SK_PermuteSingleSrc, MVT::v4f64, 2},  // vperm2f128 + vpermil2pd
1210       {TTI::SK_PermuteSingleSrc, MVT::v8f32, 2},  // vperm2f128 + vpermil2ps
1211       {TTI::SK_PermuteSingleSrc, MVT::v4i64, 2},  // vperm2f128 + vpermil2pd
1212       {TTI::SK_PermuteSingleSrc, MVT::v8i32, 2},  // vperm2f128 + vpermil2ps
1213       {TTI::SK_PermuteSingleSrc, MVT::v16i16, 4}, // vextractf128 + 2*vpperm
1214                                                   // + vinsertf128
1215       {TTI::SK_PermuteSingleSrc, MVT::v32i8, 4},  // vextractf128 + 2*vpperm
1216                                                   // + vinsertf128
1217 
1218       {TTI::SK_PermuteTwoSrc, MVT::v16i16, 9}, // 2*vextractf128 + 6*vpperm
1219                                                // + vinsertf128
1220       {TTI::SK_PermuteTwoSrc, MVT::v8i16, 1},  // vpperm
1221       {TTI::SK_PermuteTwoSrc, MVT::v32i8, 9},  // 2*vextractf128 + 6*vpperm
1222                                                // + vinsertf128
1223       {TTI::SK_PermuteTwoSrc, MVT::v16i8, 1},  // vpperm
1224   };
1225 
1226   if (ST->hasXOP())
1227     if (const auto *Entry = CostTableLookup(XOPShuffleTbl, Kind, LT.second))
1228       return LT.first * Entry->Cost;
1229 
1230   static const CostTblEntry AVX1ShuffleTbl[] = {
1231       {TTI::SK_Broadcast, MVT::v4f64, 2},  // vperm2f128 + vpermilpd
1232       {TTI::SK_Broadcast, MVT::v8f32, 2},  // vperm2f128 + vpermilps
1233       {TTI::SK_Broadcast, MVT::v4i64, 2},  // vperm2f128 + vpermilpd
1234       {TTI::SK_Broadcast, MVT::v8i32, 2},  // vperm2f128 + vpermilps
1235       {TTI::SK_Broadcast, MVT::v16i16, 3}, // vpshuflw + vpshufd + vinsertf128
1236       {TTI::SK_Broadcast, MVT::v32i8, 2},  // vpshufb + vinsertf128
1237 
1238       {TTI::SK_Reverse, MVT::v4f64, 2},  // vperm2f128 + vpermilpd
1239       {TTI::SK_Reverse, MVT::v8f32, 2},  // vperm2f128 + vpermilps
1240       {TTI::SK_Reverse, MVT::v4i64, 2},  // vperm2f128 + vpermilpd
1241       {TTI::SK_Reverse, MVT::v8i32, 2},  // vperm2f128 + vpermilps
1242       {TTI::SK_Reverse, MVT::v16i16, 4}, // vextractf128 + 2*pshufb
1243                                          // + vinsertf128
1244       {TTI::SK_Reverse, MVT::v32i8, 4},  // vextractf128 + 2*pshufb
1245                                          // + vinsertf128
1246 
1247       {TTI::SK_Select, MVT::v4i64, 1},  // vblendpd
1248       {TTI::SK_Select, MVT::v4f64, 1},  // vblendpd
1249       {TTI::SK_Select, MVT::v8i32, 1},  // vblendps
1250       {TTI::SK_Select, MVT::v8f32, 1},  // vblendps
1251       {TTI::SK_Select, MVT::v16i16, 3}, // vpand + vpandn + vpor
1252       {TTI::SK_Select, MVT::v32i8, 3},  // vpand + vpandn + vpor
1253 
1254       {TTI::SK_PermuteSingleSrc, MVT::v4f64, 2},  // vperm2f128 + vshufpd
1255       {TTI::SK_PermuteSingleSrc, MVT::v4i64, 2},  // vperm2f128 + vshufpd
1256       {TTI::SK_PermuteSingleSrc, MVT::v8f32, 4},  // 2*vperm2f128 + 2*vshufps
1257       {TTI::SK_PermuteSingleSrc, MVT::v8i32, 4},  // 2*vperm2f128 + 2*vshufps
1258       {TTI::SK_PermuteSingleSrc, MVT::v16i16, 8}, // vextractf128 + 4*pshufb
1259                                                   // + 2*por + vinsertf128
1260       {TTI::SK_PermuteSingleSrc, MVT::v32i8, 8},  // vextractf128 + 4*pshufb
1261                                                   // + 2*por + vinsertf128
1262 
1263       {TTI::SK_PermuteTwoSrc, MVT::v4f64, 3},   // 2*vperm2f128 + vshufpd
1264       {TTI::SK_PermuteTwoSrc, MVT::v4i64, 3},   // 2*vperm2f128 + vshufpd
1265       {TTI::SK_PermuteTwoSrc, MVT::v8f32, 4},   // 2*vperm2f128 + 2*vshufps
1266       {TTI::SK_PermuteTwoSrc, MVT::v8i32, 4},   // 2*vperm2f128 + 2*vshufps
1267       {TTI::SK_PermuteTwoSrc, MVT::v16i16, 15}, // 2*vextractf128 + 8*pshufb
1268                                                 // + 4*por + vinsertf128
1269       {TTI::SK_PermuteTwoSrc, MVT::v32i8, 15},  // 2*vextractf128 + 8*pshufb
1270                                                 // + 4*por + vinsertf128
1271   };
1272 
1273   if (ST->hasAVX())
1274     if (const auto *Entry = CostTableLookup(AVX1ShuffleTbl, Kind, LT.second))
1275       return LT.first * Entry->Cost;
1276 
1277   static const CostTblEntry SSE41ShuffleTbl[] = {
1278       {TTI::SK_Select, MVT::v2i64, 1}, // pblendw
1279       {TTI::SK_Select, MVT::v2f64, 1}, // movsd
1280       {TTI::SK_Select, MVT::v4i32, 1}, // pblendw
1281       {TTI::SK_Select, MVT::v4f32, 1}, // blendps
1282       {TTI::SK_Select, MVT::v8i16, 1}, // pblendw
1283       {TTI::SK_Select, MVT::v16i8, 1}  // pblendvb
1284   };
1285 
1286   if (ST->hasSSE41())
1287     if (const auto *Entry = CostTableLookup(SSE41ShuffleTbl, Kind, LT.second))
1288       return LT.first * Entry->Cost;
1289 
1290   static const CostTblEntry SSSE3ShuffleTbl[] = {
1291       {TTI::SK_Broadcast, MVT::v8i16, 1}, // pshufb
1292       {TTI::SK_Broadcast, MVT::v16i8, 1}, // pshufb
1293 
1294       {TTI::SK_Reverse, MVT::v8i16, 1}, // pshufb
1295       {TTI::SK_Reverse, MVT::v16i8, 1}, // pshufb
1296 
1297       {TTI::SK_Select, MVT::v8i16, 3}, // 2*pshufb + por
1298       {TTI::SK_Select, MVT::v16i8, 3}, // 2*pshufb + por
1299 
1300       {TTI::SK_PermuteSingleSrc, MVT::v8i16, 1}, // pshufb
1301       {TTI::SK_PermuteSingleSrc, MVT::v16i8, 1}, // pshufb
1302 
1303       {TTI::SK_PermuteTwoSrc, MVT::v8i16, 3}, // 2*pshufb + por
1304       {TTI::SK_PermuteTwoSrc, MVT::v16i8, 3}, // 2*pshufb + por
1305   };
1306 
1307   if (ST->hasSSSE3())
1308     if (const auto *Entry = CostTableLookup(SSSE3ShuffleTbl, Kind, LT.second))
1309       return LT.first * Entry->Cost;
1310 
1311   static const CostTblEntry SSE2ShuffleTbl[] = {
1312       {TTI::SK_Broadcast, MVT::v2f64, 1}, // shufpd
1313       {TTI::SK_Broadcast, MVT::v2i64, 1}, // pshufd
1314       {TTI::SK_Broadcast, MVT::v4i32, 1}, // pshufd
1315       {TTI::SK_Broadcast, MVT::v8i16, 2}, // pshuflw + pshufd
1316       {TTI::SK_Broadcast, MVT::v16i8, 3}, // unpck + pshuflw + pshufd
1317 
1318       {TTI::SK_Reverse, MVT::v2f64, 1}, // shufpd
1319       {TTI::SK_Reverse, MVT::v2i64, 1}, // pshufd
1320       {TTI::SK_Reverse, MVT::v4i32, 1}, // pshufd
1321       {TTI::SK_Reverse, MVT::v8i16, 3}, // pshuflw + pshufhw + pshufd
1322       {TTI::SK_Reverse, MVT::v16i8, 9}, // 2*pshuflw + 2*pshufhw
1323                                         // + 2*pshufd + 2*unpck + packus
1324 
1325       {TTI::SK_Select, MVT::v2i64, 1}, // movsd
1326       {TTI::SK_Select, MVT::v2f64, 1}, // movsd
1327       {TTI::SK_Select, MVT::v4i32, 2}, // 2*shufps
1328       {TTI::SK_Select, MVT::v8i16, 3}, // pand + pandn + por
1329       {TTI::SK_Select, MVT::v16i8, 3}, // pand + pandn + por
1330 
1331       {TTI::SK_PermuteSingleSrc, MVT::v2f64, 1}, // shufpd
1332       {TTI::SK_PermuteSingleSrc, MVT::v2i64, 1}, // pshufd
1333       {TTI::SK_PermuteSingleSrc, MVT::v4i32, 1}, // pshufd
1334       {TTI::SK_PermuteSingleSrc, MVT::v8i16, 5}, // 2*pshuflw + 2*pshufhw
1335                                                   // + pshufd/unpck
1336     { TTI::SK_PermuteSingleSrc, MVT::v16i8, 10 }, // 2*pshuflw + 2*pshufhw
1337                                                   // + 2*pshufd + 2*unpck + 2*packus
1338 
1339     { TTI::SK_PermuteTwoSrc,    MVT::v2f64,  1 }, // shufpd
1340     { TTI::SK_PermuteTwoSrc,    MVT::v2i64,  1 }, // shufpd
1341     { TTI::SK_PermuteTwoSrc,    MVT::v4i32,  2 }, // 2*{unpck,movsd,pshufd}
1342     { TTI::SK_PermuteTwoSrc,    MVT::v8i16,  8 }, // blend+permute
1343     { TTI::SK_PermuteTwoSrc,    MVT::v16i8, 13 }, // blend+permute
1344   };
1345 
1346   if (ST->hasSSE2())
1347     if (const auto *Entry = CostTableLookup(SSE2ShuffleTbl, Kind, LT.second))
1348       return LT.first * Entry->Cost;
1349 
1350   static const CostTblEntry SSE1ShuffleTbl[] = {
1351     { TTI::SK_Broadcast,        MVT::v4f32, 1 }, // shufps
1352     { TTI::SK_Reverse,          MVT::v4f32, 1 }, // shufps
1353     { TTI::SK_Select,           MVT::v4f32, 2 }, // 2*shufps
1354     { TTI::SK_PermuteSingleSrc, MVT::v4f32, 1 }, // shufps
1355     { TTI::SK_PermuteTwoSrc,    MVT::v4f32, 2 }, // 2*shufps
1356   };
1357 
1358   if (ST->hasSSE1())
1359     if (const auto *Entry = CostTableLookup(SSE1ShuffleTbl, Kind, LT.second))
1360       return LT.first * Entry->Cost;
1361 
1362   return BaseT::getShuffleCost(Kind, BaseTp, Index, SubTp);
1363 }
1364 
1365 int X86TTIImpl::getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src,
1366                                  TTI::TargetCostKind CostKind,
1367                                  const Instruction *I) {
1368   int ISD = TLI->InstructionOpcodeToISD(Opcode);
1369   assert(ISD && "Invalid opcode");
1370 
1371   // FIXME: Need a better design of the cost table to handle non-simple types of
1372   // potential massive combinations (elem_num x src_type x dst_type).
1373 
1374   static const TypeConversionCostTblEntry AVX512BWConversionTbl[] {
1375     { ISD::SIGN_EXTEND, MVT::v32i16, MVT::v32i8, 1 },
1376     { ISD::ZERO_EXTEND, MVT::v32i16, MVT::v32i8, 1 },
1377 
1378     // Mask sign extend has an instruction.
1379     { ISD::SIGN_EXTEND, MVT::v2i8,   MVT::v2i1,  1 },
1380     { ISD::SIGN_EXTEND, MVT::v2i16,  MVT::v2i1,  1 },
1381     { ISD::SIGN_EXTEND, MVT::v4i8,   MVT::v4i1,  1 },
1382     { ISD::SIGN_EXTEND, MVT::v4i16,  MVT::v4i1,  1 },
1383     { ISD::SIGN_EXTEND, MVT::v8i8,   MVT::v8i1,  1 },
1384     { ISD::SIGN_EXTEND, MVT::v8i16,  MVT::v8i1,  1 },
1385     { ISD::SIGN_EXTEND, MVT::v16i8,  MVT::v16i1, 1 },
1386     { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i1, 1 },
1387     { ISD::SIGN_EXTEND, MVT::v32i8,  MVT::v32i1, 1 },
1388     { ISD::SIGN_EXTEND, MVT::v32i16, MVT::v32i1, 1 },
1389     { ISD::SIGN_EXTEND, MVT::v64i8,  MVT::v64i1, 1 },
1390 
1391     // Mask zero extend is a sext + shift.
1392     { ISD::ZERO_EXTEND, MVT::v2i8,   MVT::v2i1,  2 },
1393     { ISD::ZERO_EXTEND, MVT::v2i16,  MVT::v2i1,  2 },
1394     { ISD::ZERO_EXTEND, MVT::v4i8,   MVT::v4i1,  2 },
1395     { ISD::ZERO_EXTEND, MVT::v4i16,  MVT::v4i1,  2 },
1396     { ISD::ZERO_EXTEND, MVT::v8i8,   MVT::v8i1,  2 },
1397     { ISD::ZERO_EXTEND, MVT::v8i16,  MVT::v8i1,  2 },
1398     { ISD::ZERO_EXTEND, MVT::v16i8,  MVT::v16i1, 2 },
1399     { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i1, 2 },
1400     { ISD::ZERO_EXTEND, MVT::v32i8,  MVT::v32i1, 2 },
1401     { ISD::ZERO_EXTEND, MVT::v32i16, MVT::v32i1, 2 },
1402     { ISD::ZERO_EXTEND, MVT::v64i8,  MVT::v64i1, 2 },
1403 
1404     { ISD::TRUNCATE,    MVT::v32i8,  MVT::v32i16, 2 },
1405     { ISD::TRUNCATE,    MVT::v16i8,  MVT::v16i16, 2 }, // widen to zmm
1406     { ISD::TRUNCATE,    MVT::v2i1,   MVT::v2i8,   2 }, // widen to zmm
1407     { ISD::TRUNCATE,    MVT::v2i1,   MVT::v2i16,  2 }, // widen to zmm
1408     { ISD::TRUNCATE,    MVT::v4i1,   MVT::v4i8,   2 }, // widen to zmm
1409     { ISD::TRUNCATE,    MVT::v4i1,   MVT::v4i16,  2 }, // widen to zmm
1410     { ISD::TRUNCATE,    MVT::v8i1,   MVT::v8i8,   2 }, // widen to zmm
1411     { ISD::TRUNCATE,    MVT::v8i1,   MVT::v8i16,  2 }, // widen to zmm
1412     { ISD::TRUNCATE,    MVT::v16i1,  MVT::v16i8,  2 }, // widen to zmm
1413     { ISD::TRUNCATE,    MVT::v16i1,  MVT::v16i16, 2 }, // widen to zmm
1414     { ISD::TRUNCATE,    MVT::v32i1,  MVT::v32i8,  2 }, // widen to zmm
1415     { ISD::TRUNCATE,    MVT::v32i1,  MVT::v32i16, 2 },
1416     { ISD::TRUNCATE,    MVT::v64i1,  MVT::v64i8,  2 },
1417   };
1418 
1419   static const TypeConversionCostTblEntry AVX512DQConversionTbl[] = {
1420     { ISD::SINT_TO_FP,  MVT::v8f32,  MVT::v8i64,  1 },
1421     { ISD::SINT_TO_FP,  MVT::v8f64,  MVT::v8i64,  1 },
1422 
1423     { ISD::UINT_TO_FP,  MVT::v8f32,  MVT::v8i64,  1 },
1424     { ISD::UINT_TO_FP,  MVT::v8f64,  MVT::v8i64,  1 },
1425 
1426     { ISD::FP_TO_SINT,  MVT::v8i64,  MVT::v8f32,  1 },
1427     { ISD::FP_TO_SINT,  MVT::v8i64,  MVT::v8f64,  1 },
1428 
1429     { ISD::FP_TO_UINT,  MVT::v8i64,  MVT::v8f32,  1 },
1430     { ISD::FP_TO_UINT,  MVT::v8i64,  MVT::v8f64,  1 },
1431   };
1432 
1433   // TODO: For AVX512DQ + AVX512VL, we also have cheap casts for 128-bit and
1434   // 256-bit wide vectors.
1435 
1436   static const TypeConversionCostTblEntry AVX512FConversionTbl[] = {
1437     { ISD::FP_EXTEND, MVT::v8f64,   MVT::v8f32,  1 },
1438     { ISD::FP_EXTEND, MVT::v8f64,   MVT::v16f32, 3 },
1439     { ISD::FP_ROUND,  MVT::v8f32,   MVT::v8f64,  1 },
1440 
1441     { ISD::TRUNCATE,  MVT::v2i1,    MVT::v2i8,   3 }, // sext+vpslld+vptestmd
1442     { ISD::TRUNCATE,  MVT::v4i1,    MVT::v4i8,   3 }, // sext+vpslld+vptestmd
1443     { ISD::TRUNCATE,  MVT::v8i1,    MVT::v8i8,   3 }, // sext+vpslld+vptestmd
1444     { ISD::TRUNCATE,  MVT::v16i1,   MVT::v16i8,  3 }, // sext+vpslld+vptestmd
1445     { ISD::TRUNCATE,  MVT::v2i1,    MVT::v2i16,  3 }, // sext+vpsllq+vptestmq
1446     { ISD::TRUNCATE,  MVT::v4i1,    MVT::v4i16,  3 }, // sext+vpsllq+vptestmq
1447     { ISD::TRUNCATE,  MVT::v8i1,    MVT::v8i16,  3 }, // sext+vpsllq+vptestmq
1448     { ISD::TRUNCATE,  MVT::v16i1,   MVT::v16i16, 3 }, // sext+vpslld+vptestmd
1449     { ISD::TRUNCATE,  MVT::v2i1,    MVT::v2i32,  2 }, // zmm vpslld+vptestmd
1450     { ISD::TRUNCATE,  MVT::v4i1,    MVT::v4i32,  2 }, // zmm vpslld+vptestmd
1451     { ISD::TRUNCATE,  MVT::v8i1,    MVT::v8i32,  2 }, // zmm vpslld+vptestmd
1452     { ISD::TRUNCATE,  MVT::v16i1,   MVT::v16i32, 2 }, // vpslld+vptestmd
1453     { ISD::TRUNCATE,  MVT::v2i1,    MVT::v2i64,  2 }, // zmm vpsllq+vptestmq
1454     { ISD::TRUNCATE,  MVT::v4i1,    MVT::v4i64,  2 }, // zmm vpsllq+vptestmq
1455     { ISD::TRUNCATE,  MVT::v8i1,    MVT::v8i64,  2 }, // vpsllq+vptestmq
1456     { ISD::TRUNCATE,  MVT::v16i8,   MVT::v16i32, 2 },
1457     { ISD::TRUNCATE,  MVT::v16i16,  MVT::v16i32, 2 },
1458     { ISD::TRUNCATE,  MVT::v8i8,    MVT::v8i64,  2 },
1459     { ISD::TRUNCATE,  MVT::v8i16,   MVT::v8i64,  2 },
1460     { ISD::TRUNCATE,  MVT::v8i32,   MVT::v8i64,  1 },
1461     { ISD::TRUNCATE,  MVT::v4i32,   MVT::v4i64,  1 }, // zmm vpmovqd
1462     { ISD::TRUNCATE,  MVT::v16i8,   MVT::v16i64, 5 },// 2*vpmovqd+concat+vpmovdb
1463 
1464     { ISD::TRUNCATE,  MVT::v16i8,  MVT::v16i16,  3 }, // extend to v16i32
1465     { ISD::TRUNCATE,  MVT::v32i8,  MVT::v32i16,  8 },
1466 
1467     // Sign extend is zmm vpternlogd+vptruncdb.
1468     // Zero extend is zmm broadcast load+vptruncdw.
1469     { ISD::SIGN_EXTEND, MVT::v2i8,   MVT::v2i1,   3 },
1470     { ISD::ZERO_EXTEND, MVT::v2i8,   MVT::v2i1,   4 },
1471     { ISD::SIGN_EXTEND, MVT::v4i8,   MVT::v4i1,   3 },
1472     { ISD::ZERO_EXTEND, MVT::v4i8,   MVT::v4i1,   4 },
1473     { ISD::SIGN_EXTEND, MVT::v8i8,   MVT::v8i1,   3 },
1474     { ISD::ZERO_EXTEND, MVT::v8i8,   MVT::v8i1,   4 },
1475     { ISD::SIGN_EXTEND, MVT::v16i8,  MVT::v16i1,  3 },
1476     { ISD::ZERO_EXTEND, MVT::v16i8,  MVT::v16i1,  4 },
1477 
1478     // Sign extend is zmm vpternlogd+vptruncdw.
1479     // Zero extend is zmm vpternlogd+vptruncdw+vpsrlw.
1480     { ISD::SIGN_EXTEND, MVT::v2i16,  MVT::v2i1,   3 },
1481     { ISD::ZERO_EXTEND, MVT::v2i16,  MVT::v2i1,   4 },
1482     { ISD::SIGN_EXTEND, MVT::v4i16,  MVT::v4i1,   3 },
1483     { ISD::ZERO_EXTEND, MVT::v4i16,  MVT::v4i1,   4 },
1484     { ISD::SIGN_EXTEND, MVT::v8i16,  MVT::v8i1,   3 },
1485     { ISD::ZERO_EXTEND, MVT::v8i16,  MVT::v8i1,   4 },
1486     { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i1,  3 },
1487     { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i1,  4 },
1488 
1489     { ISD::SIGN_EXTEND, MVT::v2i32,  MVT::v2i1,   1 }, // zmm vpternlogd
1490     { ISD::ZERO_EXTEND, MVT::v2i32,  MVT::v2i1,   2 }, // zmm vpternlogd+psrld
1491     { ISD::SIGN_EXTEND, MVT::v4i32,  MVT::v4i1,   1 }, // zmm vpternlogd
1492     { ISD::ZERO_EXTEND, MVT::v4i32,  MVT::v4i1,   2 }, // zmm vpternlogd+psrld
1493     { ISD::SIGN_EXTEND, MVT::v8i32,  MVT::v8i1,   1 }, // zmm vpternlogd
1494     { ISD::ZERO_EXTEND, MVT::v8i32,  MVT::v8i1,   2 }, // zmm vpternlogd+psrld
1495     { ISD::SIGN_EXTEND, MVT::v2i64,  MVT::v2i1,   1 }, // zmm vpternlogq
1496     { ISD::ZERO_EXTEND, MVT::v2i64,  MVT::v2i1,   2 }, // zmm vpternlogq+psrlq
1497     { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v4i1,   1 }, // zmm vpternlogq
1498     { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v4i1,   2 }, // zmm vpternlogq+psrlq
1499 
1500     { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i1,  1 }, // vpternlogd
1501     { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i1,  2 }, // vpternlogd+psrld
1502     { ISD::SIGN_EXTEND, MVT::v8i64,  MVT::v8i1,   1 }, // vpternlogq
1503     { ISD::ZERO_EXTEND, MVT::v8i64,  MVT::v8i1,   2 }, // vpternlogq+psrlq
1504 
1505     { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i8,  1 },
1506     { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i8,  1 },
1507     { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i16, 1 },
1508     { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i16, 1 },
1509     { ISD::SIGN_EXTEND, MVT::v8i64,  MVT::v8i8,   1 },
1510     { ISD::ZERO_EXTEND, MVT::v8i64,  MVT::v8i8,   1 },
1511     { ISD::SIGN_EXTEND, MVT::v8i64,  MVT::v8i16,  1 },
1512     { ISD::ZERO_EXTEND, MVT::v8i64,  MVT::v8i16,  1 },
1513     { ISD::SIGN_EXTEND, MVT::v8i64,  MVT::v8i32,  1 },
1514     { ISD::ZERO_EXTEND, MVT::v8i64,  MVT::v8i32,  1 },
1515 
1516     { ISD::SIGN_EXTEND, MVT::v32i16, MVT::v32i8, 3 }, // FIXME: May not be right
1517     { ISD::ZERO_EXTEND, MVT::v32i16, MVT::v32i8, 3 }, // FIXME: May not be right
1518 
1519     { ISD::SINT_TO_FP,  MVT::v8f64,  MVT::v8i1,   4 },
1520     { ISD::SINT_TO_FP,  MVT::v16f32, MVT::v16i1,  3 },
1521     { ISD::SINT_TO_FP,  MVT::v8f64,  MVT::v8i8,   2 },
1522     { ISD::SINT_TO_FP,  MVT::v16f32, MVT::v16i8,  2 },
1523     { ISD::SINT_TO_FP,  MVT::v8f64,  MVT::v8i16,  2 },
1524     { ISD::SINT_TO_FP,  MVT::v16f32, MVT::v16i16, 2 },
1525     { ISD::SINT_TO_FP,  MVT::v16f32, MVT::v16i32, 1 },
1526     { ISD::SINT_TO_FP,  MVT::v8f64,  MVT::v8i32,  1 },
1527 
1528     { ISD::UINT_TO_FP,  MVT::v8f64,  MVT::v8i1,   4 },
1529     { ISD::UINT_TO_FP,  MVT::v16f32, MVT::v16i1,  3 },
1530     { ISD::UINT_TO_FP,  MVT::v8f64,  MVT::v8i8,   2 },
1531     { ISD::UINT_TO_FP,  MVT::v16f32, MVT::v16i8,  2 },
1532     { ISD::UINT_TO_FP,  MVT::v8f64,  MVT::v8i16,  2 },
1533     { ISD::UINT_TO_FP,  MVT::v16f32, MVT::v16i16, 2 },
1534     { ISD::UINT_TO_FP,  MVT::v8f64,  MVT::v8i32,  1 },
1535     { ISD::UINT_TO_FP,  MVT::v16f32, MVT::v16i32, 1 },
1536     { ISD::UINT_TO_FP,  MVT::v8f32,  MVT::v8i64, 26 },
1537     { ISD::UINT_TO_FP,  MVT::v8f64,  MVT::v8i64,  5 },
1538 
1539     { ISD::FP_TO_SINT,  MVT::v8i8,   MVT::v8f64,  3 },
1540     { ISD::FP_TO_SINT,  MVT::v8i16,  MVT::v8f64,  3 },
1541     { ISD::FP_TO_SINT,  MVT::v16i8,  MVT::v16f32, 3 },
1542     { ISD::FP_TO_SINT,  MVT::v16i16, MVT::v16f32, 3 },
1543 
1544     { ISD::FP_TO_UINT,  MVT::v8i32,  MVT::v8f64,  1 },
1545     { ISD::FP_TO_UINT,  MVT::v8i16,  MVT::v8f64,  3 },
1546     { ISD::FP_TO_UINT,  MVT::v8i8,   MVT::v8f64,  3 },
1547     { ISD::FP_TO_UINT,  MVT::v16i32, MVT::v16f32, 1 },
1548     { ISD::FP_TO_UINT,  MVT::v16i16, MVT::v16f32, 3 },
1549     { ISD::FP_TO_UINT,  MVT::v16i8,  MVT::v16f32, 3 },
1550   };
1551 
1552   static const TypeConversionCostTblEntry AVX512BWVLConversionTbl[] {
1553     // Mask sign extend has an instruction.
1554     { ISD::SIGN_EXTEND, MVT::v2i8,   MVT::v2i1,  1 },
1555     { ISD::SIGN_EXTEND, MVT::v2i16,  MVT::v2i1,  1 },
1556     { ISD::SIGN_EXTEND, MVT::v4i8,   MVT::v4i1,  1 },
1557     { ISD::SIGN_EXTEND, MVT::v4i16,  MVT::v4i1,  1 },
1558     { ISD::SIGN_EXTEND, MVT::v8i8,   MVT::v8i1,  1 },
1559     { ISD::SIGN_EXTEND, MVT::v8i16,  MVT::v8i1,  1 },
1560     { ISD::SIGN_EXTEND, MVT::v16i8,  MVT::v16i1, 1 },
1561     { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i1, 1 },
1562     { ISD::SIGN_EXTEND, MVT::v32i8,  MVT::v32i1, 1 },
1563 
1564     // Mask zero extend is a sext + shift.
1565     { ISD::ZERO_EXTEND, MVT::v2i8,   MVT::v2i1,  2 },
1566     { ISD::ZERO_EXTEND, MVT::v2i16,  MVT::v2i1,  2 },
1567     { ISD::ZERO_EXTEND, MVT::v4i8,   MVT::v4i1,  2 },
1568     { ISD::ZERO_EXTEND, MVT::v4i16,  MVT::v4i1,  2 },
1569     { ISD::ZERO_EXTEND, MVT::v8i8,   MVT::v8i1,  2 },
1570     { ISD::ZERO_EXTEND, MVT::v8i16,  MVT::v8i1,  2 },
1571     { ISD::ZERO_EXTEND, MVT::v16i8,  MVT::v16i1, 2 },
1572     { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i1, 2 },
1573     { ISD::ZERO_EXTEND, MVT::v32i8,  MVT::v32i1, 2 },
1574 
1575     { ISD::TRUNCATE,    MVT::v16i8,  MVT::v16i16, 2 },
1576     { ISD::TRUNCATE,    MVT::v2i1,   MVT::v2i8,   2 }, // vpsllw+vptestmb
1577     { ISD::TRUNCATE,    MVT::v2i1,   MVT::v2i16,  2 }, // vpsllw+vptestmw
1578     { ISD::TRUNCATE,    MVT::v4i1,   MVT::v4i8,   2 }, // vpsllw+vptestmb
1579     { ISD::TRUNCATE,    MVT::v4i1,   MVT::v4i16,  2 }, // vpsllw+vptestmw
1580     { ISD::TRUNCATE,    MVT::v8i1,   MVT::v8i8,   2 }, // vpsllw+vptestmb
1581     { ISD::TRUNCATE,    MVT::v8i1,   MVT::v8i16,  2 }, // vpsllw+vptestmw
1582     { ISD::TRUNCATE,    MVT::v16i1,  MVT::v16i8,  2 }, // vpsllw+vptestmb
1583     { ISD::TRUNCATE,    MVT::v16i1,  MVT::v16i16, 2 }, // vpsllw+vptestmw
1584     { ISD::TRUNCATE,    MVT::v32i1,  MVT::v32i8,  2 }, // vpsllw+vptestmb
1585   };
1586 
1587   static const TypeConversionCostTblEntry AVX512DQVLConversionTbl[] = {
1588     { ISD::SINT_TO_FP,  MVT::v2f32,  MVT::v2i64,  1 },
1589     { ISD::SINT_TO_FP,  MVT::v2f64,  MVT::v2i64,  1 },
1590     { ISD::SINT_TO_FP,  MVT::v4f32,  MVT::v4i64,  1 },
1591     { ISD::SINT_TO_FP,  MVT::v4f64,  MVT::v4i64,  1 },
1592 
1593     { ISD::UINT_TO_FP,  MVT::v2f32,  MVT::v2i64,  1 },
1594     { ISD::UINT_TO_FP,  MVT::v2f64,  MVT::v2i64,  1 },
1595     { ISD::UINT_TO_FP,  MVT::v4f32,  MVT::v4i64,  1 },
1596     { ISD::UINT_TO_FP,  MVT::v4f64,  MVT::v4i64,  1 },
1597 
1598     { ISD::FP_TO_SINT,  MVT::v2i64,  MVT::v2f32,  1 },
1599     { ISD::FP_TO_SINT,  MVT::v4i64,  MVT::v4f32,  1 },
1600     { ISD::FP_TO_SINT,  MVT::v2i64,  MVT::v2f64,  1 },
1601     { ISD::FP_TO_SINT,  MVT::v4i64,  MVT::v4f64,  1 },
1602 
1603     { ISD::FP_TO_UINT,  MVT::v2i64,  MVT::v2f32,  1 },
1604     { ISD::FP_TO_UINT,  MVT::v4i64,  MVT::v4f32,  1 },
1605     { ISD::FP_TO_UINT,  MVT::v2i64,  MVT::v2f64,  1 },
1606     { ISD::FP_TO_UINT,  MVT::v4i64,  MVT::v4f64,  1 },
1607   };
1608 
1609   static const TypeConversionCostTblEntry AVX512VLConversionTbl[] = {
1610     { ISD::TRUNCATE,  MVT::v2i1,    MVT::v2i8,   3 }, // sext+vpslld+vptestmd
1611     { ISD::TRUNCATE,  MVT::v4i1,    MVT::v4i8,   3 }, // sext+vpslld+vptestmd
1612     { ISD::TRUNCATE,  MVT::v8i1,    MVT::v8i8,   3 }, // sext+vpslld+vptestmd
1613     { ISD::TRUNCATE,  MVT::v16i1,   MVT::v16i8,  8 }, // split+2*v8i8
1614     { ISD::TRUNCATE,  MVT::v2i1,    MVT::v2i16,  3 }, // sext+vpsllq+vptestmq
1615     { ISD::TRUNCATE,  MVT::v4i1,    MVT::v4i16,  3 }, // sext+vpsllq+vptestmq
1616     { ISD::TRUNCATE,  MVT::v8i1,    MVT::v8i16,  3 }, // sext+vpsllq+vptestmq
1617     { ISD::TRUNCATE,  MVT::v16i1,   MVT::v16i16, 8 }, // split+2*v8i16
1618     { ISD::TRUNCATE,  MVT::v2i1,    MVT::v2i32,  2 }, // vpslld+vptestmd
1619     { ISD::TRUNCATE,  MVT::v4i1,    MVT::v4i32,  2 }, // vpslld+vptestmd
1620     { ISD::TRUNCATE,  MVT::v8i1,    MVT::v8i32,  2 }, // vpslld+vptestmd
1621     { ISD::TRUNCATE,  MVT::v2i1,    MVT::v2i64,  2 }, // vpsllq+vptestmq
1622     { ISD::TRUNCATE,  MVT::v4i1,    MVT::v4i64,  2 }, // vpsllq+vptestmq
1623     { ISD::TRUNCATE,  MVT::v4i32,   MVT::v4i64,  1 }, // vpmovqd
1624 
1625     // sign extend is vpcmpeq+maskedmove+vpmovdw+vpacksswb
1626     // zero extend is vpcmpeq+maskedmove+vpmovdw+vpsrlw+vpackuswb
1627     { ISD::SIGN_EXTEND, MVT::v2i8,   MVT::v2i1,   5 },
1628     { ISD::ZERO_EXTEND, MVT::v2i8,   MVT::v2i1,   6 },
1629     { ISD::SIGN_EXTEND, MVT::v4i8,   MVT::v4i1,   5 },
1630     { ISD::ZERO_EXTEND, MVT::v4i8,   MVT::v4i1,   6 },
1631     { ISD::SIGN_EXTEND, MVT::v8i8,   MVT::v8i1,   5 },
1632     { ISD::ZERO_EXTEND, MVT::v8i8,   MVT::v8i1,   6 },
1633     { ISD::SIGN_EXTEND, MVT::v16i8,  MVT::v16i1, 10 },
1634     { ISD::ZERO_EXTEND, MVT::v16i8,  MVT::v16i1, 12 },
1635 
1636     // sign extend is vpcmpeq+maskedmove+vpmovdw
1637     // zero extend is vpcmpeq+maskedmove+vpmovdw+vpsrlw
1638     { ISD::SIGN_EXTEND, MVT::v2i16,  MVT::v2i1,   4 },
1639     { ISD::ZERO_EXTEND, MVT::v2i16,  MVT::v2i1,   5 },
1640     { ISD::SIGN_EXTEND, MVT::v4i16,  MVT::v4i1,   4 },
1641     { ISD::ZERO_EXTEND, MVT::v4i16,  MVT::v4i1,   5 },
1642     { ISD::SIGN_EXTEND, MVT::v8i16,  MVT::v8i1,   4 },
1643     { ISD::ZERO_EXTEND, MVT::v8i16,  MVT::v8i1,   5 },
1644     { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i1, 10 },
1645     { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i1, 12 },
1646 
1647     { ISD::SIGN_EXTEND, MVT::v2i32,  MVT::v2i1,   1 }, // vpternlogd
1648     { ISD::ZERO_EXTEND, MVT::v2i32,  MVT::v2i1,   2 }, // vpternlogd+psrld
1649     { ISD::SIGN_EXTEND, MVT::v4i32,  MVT::v4i1,   1 }, // vpternlogd
1650     { ISD::ZERO_EXTEND, MVT::v4i32,  MVT::v4i1,   2 }, // vpternlogd+psrld
1651     { ISD::SIGN_EXTEND, MVT::v8i32,  MVT::v8i1,   1 }, // vpternlogd
1652     { ISD::ZERO_EXTEND, MVT::v8i32,  MVT::v8i1,   2 }, // vpternlogd+psrld
1653     { ISD::SIGN_EXTEND, MVT::v2i64,  MVT::v2i1,   1 }, // vpternlogq
1654     { ISD::ZERO_EXTEND, MVT::v2i64,  MVT::v2i1,   2 }, // vpternlogq+psrlq
1655     { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v4i1,   1 }, // vpternlogq
1656     { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v4i1,   2 }, // vpternlogq+psrlq
1657 
1658     { ISD::UINT_TO_FP,  MVT::v2f64,  MVT::v2i8,   2 },
1659     { ISD::UINT_TO_FP,  MVT::v4f64,  MVT::v4i8,   2 },
1660     { ISD::UINT_TO_FP,  MVT::v8f32,  MVT::v8i8,   2 },
1661     { ISD::UINT_TO_FP,  MVT::v2f64,  MVT::v2i16,  5 },
1662     { ISD::UINT_TO_FP,  MVT::v4f64,  MVT::v4i16,  2 },
1663     { ISD::UINT_TO_FP,  MVT::v8f32,  MVT::v8i16,  2 },
1664     { ISD::UINT_TO_FP,  MVT::v2f32,  MVT::v2i32,  2 },
1665     { ISD::UINT_TO_FP,  MVT::v2f64,  MVT::v2i32,  1 },
1666     { ISD::UINT_TO_FP,  MVT::v4f32,  MVT::v4i32,  1 },
1667     { ISD::UINT_TO_FP,  MVT::v4f64,  MVT::v4i32,  1 },
1668     { ISD::UINT_TO_FP,  MVT::v8f32,  MVT::v8i32,  1 },
1669     { ISD::UINT_TO_FP,  MVT::v2f32,  MVT::v2i64,  5 },
1670     { ISD::UINT_TO_FP,  MVT::v2f64,  MVT::v2i64,  5 },
1671     { ISD::UINT_TO_FP,  MVT::v4f64,  MVT::v4i64,  5 },
1672 
1673     { ISD::UINT_TO_FP,  MVT::f32,    MVT::i64,    1 },
1674     { ISD::UINT_TO_FP,  MVT::f64,    MVT::i64,    1 },
1675 
1676     { ISD::FP_TO_SINT,  MVT::v8i8,   MVT::v8f32,  3 },
1677     { ISD::FP_TO_UINT,  MVT::v8i8,   MVT::v8f32,  3 },
1678 
1679     { ISD::FP_TO_UINT,  MVT::i64,    MVT::f32,    1 },
1680     { ISD::FP_TO_UINT,  MVT::i64,    MVT::f64,    1 },
1681 
1682     { ISD::FP_TO_UINT,  MVT::v2i32,  MVT::v2f32,  1 },
1683     { ISD::FP_TO_UINT,  MVT::v4i32,  MVT::v4f32,  1 },
1684     { ISD::FP_TO_UINT,  MVT::v2i32,  MVT::v2f64,  1 },
1685     { ISD::FP_TO_UINT,  MVT::v4i32,  MVT::v4f64,  1 },
1686     { ISD::FP_TO_UINT,  MVT::v8i32,  MVT::v8f32,  1 },
1687   };
1688 
1689   static const TypeConversionCostTblEntry AVX2ConversionTbl[] = {
1690     { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v4i1,   3 },
1691     { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v4i1,   3 },
1692     { ISD::SIGN_EXTEND, MVT::v8i32,  MVT::v8i1,   3 },
1693     { ISD::ZERO_EXTEND, MVT::v8i32,  MVT::v8i1,   3 },
1694     { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v4i8,   1 },
1695     { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v4i8,   1 },
1696     { ISD::SIGN_EXTEND, MVT::v8i32,  MVT::v8i8,   1 },
1697     { ISD::ZERO_EXTEND, MVT::v8i32,  MVT::v8i8,   1 },
1698     { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i1,  1 },
1699     { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i1,  1 },
1700     { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i8,  1 },
1701     { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i8,  1 },
1702     { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v4i16,  1 },
1703     { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v4i16,  1 },
1704     { ISD::SIGN_EXTEND, MVT::v8i32,  MVT::v8i16,  1 },
1705     { ISD::ZERO_EXTEND, MVT::v8i32,  MVT::v8i16,  1 },
1706     { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v4i32,  1 },
1707     { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v4i32,  1 },
1708     { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i16, 3 },
1709     { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i16, 3 },
1710 
1711     { ISD::TRUNCATE,    MVT::v4i32,  MVT::v4i64,  2 },
1712     { ISD::TRUNCATE,    MVT::v8i1,   MVT::v8i32,  2 },
1713 
1714     { ISD::TRUNCATE,    MVT::v4i8,   MVT::v4i64,  2 },
1715     { ISD::TRUNCATE,    MVT::v4i16,  MVT::v4i64,  2 },
1716     { ISD::TRUNCATE,    MVT::v8i8,   MVT::v8i32,  2 },
1717     { ISD::TRUNCATE,    MVT::v8i16,  MVT::v8i32,  2 },
1718 
1719     { ISD::FP_EXTEND,   MVT::v8f64,  MVT::v8f32,  3 },
1720     { ISD::FP_ROUND,    MVT::v8f32,  MVT::v8f64,  3 },
1721 
1722     { ISD::UINT_TO_FP,  MVT::v8f32,  MVT::v8i32,  8 },
1723   };
1724 
1725   static const TypeConversionCostTblEntry AVXConversionTbl[] = {
1726     { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v4i1,  6 },
1727     { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v4i1,  4 },
1728     { ISD::SIGN_EXTEND, MVT::v8i32,  MVT::v8i1,  7 },
1729     { ISD::ZERO_EXTEND, MVT::v8i32,  MVT::v8i1,  4 },
1730     { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v4i8,  4 },
1731     { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v4i8,  4 },
1732     { ISD::SIGN_EXTEND, MVT::v8i32,  MVT::v8i8,  4 },
1733     { ISD::ZERO_EXTEND, MVT::v8i32,  MVT::v8i8,  4 },
1734     { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i1, 4 },
1735     { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i1, 4 },
1736     { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i8, 4 },
1737     { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i8, 4 },
1738     { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v4i16, 4 },
1739     { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v4i16, 3 },
1740     { ISD::SIGN_EXTEND, MVT::v8i32,  MVT::v8i16, 4 },
1741     { ISD::ZERO_EXTEND, MVT::v8i32,  MVT::v8i16, 4 },
1742     { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v4i32, 4 },
1743     { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v4i32, 4 },
1744 
1745     { ISD::TRUNCATE,    MVT::v4i1,  MVT::v4i64,  4 },
1746     { ISD::TRUNCATE,    MVT::v8i1,  MVT::v8i32,  5 },
1747     { ISD::TRUNCATE,    MVT::v16i1, MVT::v16i16, 4 },
1748     { ISD::TRUNCATE,    MVT::v8i1,  MVT::v8i64,  9 },
1749     { ISD::TRUNCATE,    MVT::v16i1, MVT::v16i64, 11 },
1750 
1751     { ISD::TRUNCATE,    MVT::v16i8, MVT::v16i16, 4 },
1752     { ISD::TRUNCATE,    MVT::v8i8,  MVT::v8i32,  4 },
1753     { ISD::TRUNCATE,    MVT::v8i16, MVT::v8i32,  5 },
1754     { ISD::TRUNCATE,    MVT::v4i8,  MVT::v4i64,  4 },
1755     { ISD::TRUNCATE,    MVT::v4i16, MVT::v4i64,  4 },
1756     { ISD::TRUNCATE,    MVT::v4i32, MVT::v4i64,  2 },
1757     { ISD::TRUNCATE,    MVT::v8i8,  MVT::v8i64, 11 },
1758     { ISD::TRUNCATE,    MVT::v8i16, MVT::v8i64,  9 },
1759     { ISD::TRUNCATE,    MVT::v8i32, MVT::v8i64,  3 },
1760     { ISD::TRUNCATE,    MVT::v16i8, MVT::v16i64, 11 },
1761 
1762     { ISD::SINT_TO_FP,  MVT::v4f32, MVT::v4i1,  3 },
1763     { ISD::SINT_TO_FP,  MVT::v4f64, MVT::v4i1,  3 },
1764     { ISD::SINT_TO_FP,  MVT::v8f32, MVT::v8i1,  8 },
1765     { ISD::SINT_TO_FP,  MVT::v4f32, MVT::v4i8,  3 },
1766     { ISD::SINT_TO_FP,  MVT::v4f64, MVT::v4i8,  3 },
1767     { ISD::SINT_TO_FP,  MVT::v8f32, MVT::v8i8,  8 },
1768     { ISD::SINT_TO_FP,  MVT::v4f32, MVT::v4i16, 3 },
1769     { ISD::SINT_TO_FP,  MVT::v4f64, MVT::v4i16, 3 },
1770     { ISD::SINT_TO_FP,  MVT::v8f32, MVT::v8i16, 5 },
1771     { ISD::SINT_TO_FP,  MVT::v4f32, MVT::v4i32, 1 },
1772     { ISD::SINT_TO_FP,  MVT::v4f64, MVT::v4i32, 1 },
1773     { ISD::SINT_TO_FP,  MVT::v8f32, MVT::v8i32, 1 },
1774 
1775     { ISD::UINT_TO_FP,  MVT::v4f32, MVT::v4i1,  7 },
1776     { ISD::UINT_TO_FP,  MVT::v4f64, MVT::v4i1,  7 },
1777     { ISD::UINT_TO_FP,  MVT::v8f32, MVT::v8i1,  6 },
1778     { ISD::UINT_TO_FP,  MVT::v4f32, MVT::v4i8,  2 },
1779     { ISD::UINT_TO_FP,  MVT::v4f64, MVT::v4i8,  2 },
1780     { ISD::UINT_TO_FP,  MVT::v8f32, MVT::v8i8,  5 },
1781     { ISD::UINT_TO_FP,  MVT::v4f32, MVT::v4i16, 2 },
1782     { ISD::UINT_TO_FP,  MVT::v4f64, MVT::v4i16, 2 },
1783     { ISD::UINT_TO_FP,  MVT::v8f32, MVT::v8i16, 5 },
1784     { ISD::UINT_TO_FP,  MVT::v2f64, MVT::v2i32, 6 },
1785     { ISD::UINT_TO_FP,  MVT::v4f32, MVT::v4i32, 6 },
1786     { ISD::UINT_TO_FP,  MVT::v4f64, MVT::v4i32, 6 },
1787     { ISD::UINT_TO_FP,  MVT::v8f32, MVT::v8i32, 9 },
1788     { ISD::UINT_TO_FP,  MVT::v2f64, MVT::v2i64, 5 },
1789     { ISD::UINT_TO_FP,  MVT::v4f64, MVT::v4i64, 6 },
1790     // The generic code to compute the scalar overhead is currently broken.
1791     // Workaround this limitation by estimating the scalarization overhead
1792     // here. We have roughly 10 instructions per scalar element.
1793     // Multiply that by the vector width.
1794     // FIXME: remove that when PR19268 is fixed.
1795     { ISD::SINT_TO_FP,  MVT::v4f64, MVT::v4i64, 13 },
1796     { ISD::SINT_TO_FP,  MVT::v4f64, MVT::v4i64, 13 },
1797 
1798     { ISD::FP_TO_SINT,  MVT::v8i8,  MVT::v8f32, 4 },
1799     { ISD::FP_TO_SINT,  MVT::v4i8,  MVT::v4f64, 3 },
1800     { ISD::FP_TO_SINT,  MVT::v4i16, MVT::v4f64, 2 },
1801     { ISD::FP_TO_SINT,  MVT::v8i16, MVT::v8f32, 3 },
1802 
1803     { ISD::FP_TO_UINT,  MVT::v4i8,  MVT::v4f64, 3 },
1804     { ISD::FP_TO_UINT,  MVT::v4i16, MVT::v4f64, 2 },
1805     { ISD::FP_TO_UINT,  MVT::v8i8,  MVT::v8f32, 4 },
1806     { ISD::FP_TO_UINT,  MVT::v8i16, MVT::v8f32, 3 },
1807     // This node is expanded into scalarized operations but BasicTTI is overly
1808     // optimistic estimating its cost.  It computes 3 per element (one
1809     // vector-extract, one scalar conversion and one vector-insert).  The
1810     // problem is that the inserts form a read-modify-write chain so latency
1811     // should be factored in too.  Inflating the cost per element by 1.
1812     { ISD::FP_TO_UINT,  MVT::v8i32, MVT::v8f32, 8*4 },
1813     { ISD::FP_TO_UINT,  MVT::v4i32, MVT::v4f64, 4*4 },
1814 
1815     { ISD::FP_EXTEND,   MVT::v4f64,  MVT::v4f32,  1 },
1816     { ISD::FP_ROUND,    MVT::v4f32,  MVT::v4f64,  1 },
1817   };
1818 
1819   static const TypeConversionCostTblEntry SSE41ConversionTbl[] = {
1820     { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i8,    2 },
1821     { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i8,    2 },
1822     { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i16,   2 },
1823     { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i16,   2 },
1824     { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i32,   2 },
1825     { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i32,   2 },
1826 
1827     { ISD::ZERO_EXTEND, MVT::v4i16,  MVT::v4i8,   1 },
1828     { ISD::SIGN_EXTEND, MVT::v4i16,  MVT::v4i8,   2 },
1829     { ISD::ZERO_EXTEND, MVT::v4i32,  MVT::v4i8,   1 },
1830     { ISD::SIGN_EXTEND, MVT::v4i32,  MVT::v4i8,   1 },
1831     { ISD::ZERO_EXTEND, MVT::v8i16,  MVT::v8i8,   1 },
1832     { ISD::SIGN_EXTEND, MVT::v8i16,  MVT::v8i8,   1 },
1833     { ISD::ZERO_EXTEND, MVT::v8i32,  MVT::v8i8,   2 },
1834     { ISD::SIGN_EXTEND, MVT::v8i32,  MVT::v8i8,   2 },
1835     { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i8,  2 },
1836     { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i8,  2 },
1837     { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i8,  4 },
1838     { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i8,  4 },
1839     { ISD::ZERO_EXTEND, MVT::v4i32,  MVT::v4i16,  1 },
1840     { ISD::SIGN_EXTEND, MVT::v4i32,  MVT::v4i16,  1 },
1841     { ISD::ZERO_EXTEND, MVT::v8i32,  MVT::v8i16,  2 },
1842     { ISD::SIGN_EXTEND, MVT::v8i32,  MVT::v8i16,  2 },
1843     { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i16, 4 },
1844     { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i16, 4 },
1845 
1846     // These truncates end up widening elements.
1847     { ISD::TRUNCATE,    MVT::v2i1,   MVT::v2i8,   1 }, // PMOVXZBQ
1848     { ISD::TRUNCATE,    MVT::v2i1,   MVT::v2i16,  1 }, // PMOVXZWQ
1849     { ISD::TRUNCATE,    MVT::v4i1,   MVT::v4i8,   1 }, // PMOVXZBD
1850 
1851     { ISD::TRUNCATE,    MVT::v2i8,   MVT::v2i16,  1 },
1852     { ISD::TRUNCATE,    MVT::v4i8,   MVT::v4i16,  1 },
1853     { ISD::TRUNCATE,    MVT::v8i8,   MVT::v8i16,  1 },
1854     { ISD::TRUNCATE,    MVT::v4i8,   MVT::v4i32,  1 },
1855     { ISD::TRUNCATE,    MVT::v4i16,  MVT::v4i32,  1 },
1856     { ISD::TRUNCATE,    MVT::v8i8,   MVT::v8i32,  3 },
1857     { ISD::TRUNCATE,    MVT::v8i16,  MVT::v8i32,  3 },
1858     { ISD::TRUNCATE,    MVT::v16i16, MVT::v16i32, 6 },
1859     { ISD::TRUNCATE,    MVT::v2i8,   MVT::v2i64,  1 }, // PSHUFB
1860 
1861     { ISD::UINT_TO_FP,  MVT::f32,    MVT::i64,    4 },
1862     { ISD::UINT_TO_FP,  MVT::f64,    MVT::i64,    4 },
1863 
1864     { ISD::FP_TO_SINT,  MVT::v2i8,   MVT::v2f32,  3 },
1865     { ISD::FP_TO_SINT,  MVT::v2i8,   MVT::v2f64,  3 },
1866 
1867     { ISD::FP_TO_UINT,  MVT::v2i8,   MVT::v2f32,  3 },
1868     { ISD::FP_TO_UINT,  MVT::v2i8,   MVT::v2f64,  3 },
1869     { ISD::FP_TO_UINT,  MVT::v4i16,  MVT::v4f32,  2 },
1870   };
1871 
1872   static const TypeConversionCostTblEntry SSE2ConversionTbl[] = {
1873     // These are somewhat magic numbers justified by looking at the output of
1874     // Intel's IACA, running some kernels and making sure when we take
1875     // legalization into account the throughput will be overestimated.
1876     { ISD::SINT_TO_FP, MVT::v4f32, MVT::v16i8, 8 },
1877     { ISD::SINT_TO_FP, MVT::v2f64, MVT::v16i8, 16*10 },
1878     { ISD::SINT_TO_FP, MVT::v4f32, MVT::v8i16, 15 },
1879     { ISD::SINT_TO_FP, MVT::v2f64, MVT::v8i16, 8*10 },
1880     { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i32, 5 },
1881     { ISD::SINT_TO_FP, MVT::v2f64, MVT::v4i32, 2*10 },
1882     { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i32, 2*10 },
1883     { ISD::SINT_TO_FP, MVT::v4f32, MVT::v2i64, 15 },
1884     { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i64, 2*10 },
1885 
1886     { ISD::UINT_TO_FP, MVT::v2f64, MVT::v16i8, 16*10 },
1887     { ISD::UINT_TO_FP, MVT::v4f32, MVT::v16i8, 8 },
1888     { ISD::UINT_TO_FP, MVT::v4f32, MVT::v8i16, 15 },
1889     { ISD::UINT_TO_FP, MVT::v2f64, MVT::v8i16, 8*10 },
1890     { ISD::UINT_TO_FP, MVT::v2f64, MVT::v4i32, 4*10 },
1891     { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i32, 8 },
1892     { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i64, 6 },
1893     { ISD::UINT_TO_FP, MVT::v4f32, MVT::v2i64, 15 },
1894 
1895     { ISD::FP_TO_SINT,  MVT::v2i8,   MVT::v2f32,  4 },
1896     { ISD::FP_TO_SINT,  MVT::v2i16,  MVT::v2f32,  2 },
1897     { ISD::FP_TO_SINT,  MVT::v4i8,   MVT::v4f32,  3 },
1898     { ISD::FP_TO_SINT,  MVT::v4i16,  MVT::v4f32,  2 },
1899     { ISD::FP_TO_SINT,  MVT::v2i16,  MVT::v2f64,  2 },
1900     { ISD::FP_TO_SINT,  MVT::v2i8,   MVT::v2f64,  4 },
1901 
1902     { ISD::FP_TO_SINT,  MVT::v2i32,  MVT::v2f64,  1 },
1903 
1904     { ISD::UINT_TO_FP,  MVT::f32,    MVT::i64,    6 },
1905     { ISD::UINT_TO_FP,  MVT::f64,    MVT::i64,    6 },
1906 
1907     { ISD::FP_TO_UINT,  MVT::i64,    MVT::f32,    4 },
1908     { ISD::FP_TO_UINT,  MVT::i64,    MVT::f64,    4 },
1909     { ISD::FP_TO_UINT,  MVT::v2i8,   MVT::v2f32,  4 },
1910     { ISD::FP_TO_UINT,  MVT::v2i8,   MVT::v2f64,  4 },
1911     { ISD::FP_TO_UINT,  MVT::v4i8,   MVT::v4f32,  3 },
1912     { ISD::FP_TO_UINT,  MVT::v2i16,  MVT::v2f32,  2 },
1913     { ISD::FP_TO_UINT,  MVT::v2i16,  MVT::v2f64,  2 },
1914     { ISD::FP_TO_UINT,  MVT::v4i16,  MVT::v4f32,  4 },
1915 
1916     { ISD::ZERO_EXTEND, MVT::v4i16,  MVT::v4i8,   1 },
1917     { ISD::SIGN_EXTEND, MVT::v4i16,  MVT::v4i8,   6 },
1918     { ISD::ZERO_EXTEND, MVT::v4i32,  MVT::v4i8,   2 },
1919     { ISD::SIGN_EXTEND, MVT::v4i32,  MVT::v4i8,   3 },
1920     { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v4i8,   4 },
1921     { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v4i8,   8 },
1922     { ISD::ZERO_EXTEND, MVT::v8i16,  MVT::v8i8,   1 },
1923     { ISD::SIGN_EXTEND, MVT::v8i16,  MVT::v8i8,   2 },
1924     { ISD::ZERO_EXTEND, MVT::v8i32,  MVT::v8i8,   6 },
1925     { ISD::SIGN_EXTEND, MVT::v8i32,  MVT::v8i8,   6 },
1926     { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i8,  3 },
1927     { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i8,  4 },
1928     { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i8,  9 },
1929     { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i8,  12 },
1930     { ISD::ZERO_EXTEND, MVT::v4i32,  MVT::v4i16,  1 },
1931     { ISD::SIGN_EXTEND, MVT::v4i32,  MVT::v4i16,  2 },
1932     { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v4i16,  3 },
1933     { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v4i16,  10 },
1934     { ISD::ZERO_EXTEND, MVT::v8i32,  MVT::v8i16,  3 },
1935     { ISD::SIGN_EXTEND, MVT::v8i32,  MVT::v8i16,  4 },
1936     { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i16, 6 },
1937     { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i16, 8 },
1938     { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v4i32,  3 },
1939     { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v4i32,  5 },
1940 
1941     // These truncates are really widening elements.
1942     { ISD::TRUNCATE,    MVT::v2i1,   MVT::v2i32,  1 }, // PSHUFD
1943     { ISD::TRUNCATE,    MVT::v2i1,   MVT::v2i16,  2 }, // PUNPCKLWD+DQ
1944     { ISD::TRUNCATE,    MVT::v2i1,   MVT::v2i8,   3 }, // PUNPCKLBW+WD+PSHUFD
1945     { ISD::TRUNCATE,    MVT::v4i1,   MVT::v4i16,  1 }, // PUNPCKLWD
1946     { ISD::TRUNCATE,    MVT::v4i1,   MVT::v4i8,   2 }, // PUNPCKLBW+WD
1947     { ISD::TRUNCATE,    MVT::v8i1,   MVT::v8i8,   1 }, // PUNPCKLBW
1948 
1949     { ISD::TRUNCATE,    MVT::v2i8,   MVT::v2i16,  2 }, // PAND+PACKUSWB
1950     { ISD::TRUNCATE,    MVT::v4i8,   MVT::v4i16,  2 }, // PAND+PACKUSWB
1951     { ISD::TRUNCATE,    MVT::v8i8,   MVT::v8i16,  2 }, // PAND+PACKUSWB
1952     { ISD::TRUNCATE,    MVT::v16i8,  MVT::v16i16, 3 },
1953     { ISD::TRUNCATE,    MVT::v2i8,   MVT::v2i32,  3 }, // PAND+2*PACKUSWB
1954     { ISD::TRUNCATE,    MVT::v2i16,  MVT::v2i32,  1 },
1955     { ISD::TRUNCATE,    MVT::v4i8,   MVT::v4i32,  3 },
1956     { ISD::TRUNCATE,    MVT::v4i16,  MVT::v4i32,  3 },
1957     { ISD::TRUNCATE,    MVT::v8i8,   MVT::v8i32,  4 },
1958     { ISD::TRUNCATE,    MVT::v16i8,  MVT::v16i32, 7 },
1959     { ISD::TRUNCATE,    MVT::v8i16,  MVT::v8i32,  5 },
1960     { ISD::TRUNCATE,    MVT::v16i16, MVT::v16i32, 10 },
1961     { ISD::TRUNCATE,    MVT::v2i8,   MVT::v2i64,  4 }, // PAND+3*PACKUSWB
1962     { ISD::TRUNCATE,    MVT::v2i16,  MVT::v2i64,  2 }, // PSHUFD+PSHUFLW
1963     { ISD::TRUNCATE,    MVT::v2i32,  MVT::v2i64,  1 }, // PSHUFD
1964   };
1965 
1966   std::pair<int, MVT> LTSrc = TLI->getTypeLegalizationCost(DL, Src);
1967   std::pair<int, MVT> LTDest = TLI->getTypeLegalizationCost(DL, Dst);
1968 
1969   if (ST->hasSSE2() && !ST->hasAVX()) {
1970     if (const auto *Entry = ConvertCostTableLookup(SSE2ConversionTbl, ISD,
1971                                                    LTDest.second, LTSrc.second))
1972       return LTSrc.first * Entry->Cost;
1973   }
1974 
1975   EVT SrcTy = TLI->getValueType(DL, Src);
1976   EVT DstTy = TLI->getValueType(DL, Dst);
1977 
1978   // The function getSimpleVT only handles simple value types.
1979   if (!SrcTy.isSimple() || !DstTy.isSimple())
1980     return BaseT::getCastInstrCost(Opcode, Dst, Src, CostKind);
1981 
1982   MVT SimpleSrcTy = SrcTy.getSimpleVT();
1983   MVT SimpleDstTy = DstTy.getSimpleVT();
1984 
1985   if (ST->useAVX512Regs()) {
1986     if (ST->hasBWI())
1987       if (const auto *Entry = ConvertCostTableLookup(AVX512BWConversionTbl, ISD,
1988                                                      SimpleDstTy, SimpleSrcTy))
1989         return Entry->Cost;
1990 
1991     if (ST->hasDQI())
1992       if (const auto *Entry = ConvertCostTableLookup(AVX512DQConversionTbl, ISD,
1993                                                      SimpleDstTy, SimpleSrcTy))
1994         return Entry->Cost;
1995 
1996     if (ST->hasAVX512())
1997       if (const auto *Entry = ConvertCostTableLookup(AVX512FConversionTbl, ISD,
1998                                                      SimpleDstTy, SimpleSrcTy))
1999         return Entry->Cost;
2000   }
2001 
2002   if (ST->hasBWI())
2003     if (const auto *Entry = ConvertCostTableLookup(AVX512BWVLConversionTbl, ISD,
2004                                                    SimpleDstTy, SimpleSrcTy))
2005       return Entry->Cost;
2006 
2007   if (ST->hasDQI())
2008     if (const auto *Entry = ConvertCostTableLookup(AVX512DQVLConversionTbl, ISD,
2009                                                    SimpleDstTy, SimpleSrcTy))
2010       return Entry->Cost;
2011 
2012   if (ST->hasAVX512())
2013     if (const auto *Entry = ConvertCostTableLookup(AVX512VLConversionTbl, ISD,
2014                                                    SimpleDstTy, SimpleSrcTy))
2015       return Entry->Cost;
2016 
2017   if (ST->hasAVX2()) {
2018     if (const auto *Entry = ConvertCostTableLookup(AVX2ConversionTbl, ISD,
2019                                                    SimpleDstTy, SimpleSrcTy))
2020       return Entry->Cost;
2021   }
2022 
2023   if (ST->hasAVX()) {
2024     if (const auto *Entry = ConvertCostTableLookup(AVXConversionTbl, ISD,
2025                                                    SimpleDstTy, SimpleSrcTy))
2026       return Entry->Cost;
2027   }
2028 
2029   if (ST->hasSSE41()) {
2030     if (const auto *Entry = ConvertCostTableLookup(SSE41ConversionTbl, ISD,
2031                                                    SimpleDstTy, SimpleSrcTy))
2032       return Entry->Cost;
2033   }
2034 
2035   if (ST->hasSSE2()) {
2036     if (const auto *Entry = ConvertCostTableLookup(SSE2ConversionTbl, ISD,
2037                                                    SimpleDstTy, SimpleSrcTy))
2038       return Entry->Cost;
2039   }
2040 
2041   return BaseT::getCastInstrCost(Opcode, Dst, Src, CostKind, I);
2042 }
2043 
2044 int X86TTIImpl::getCmpSelInstrCost(unsigned Opcode, Type *ValTy, Type *CondTy,
2045                                    TTI::TargetCostKind CostKind,
2046                                    const Instruction *I) {
2047   // Legalize the type.
2048   std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, ValTy);
2049 
2050   MVT MTy = LT.second;
2051 
2052   int ISD = TLI->InstructionOpcodeToISD(Opcode);
2053   assert(ISD && "Invalid opcode");
2054 
2055   unsigned ExtraCost = 0;
2056   if (I && (Opcode == Instruction::ICmp || Opcode == Instruction::FCmp)) {
2057     // Some vector comparison predicates cost extra instructions.
2058     if (MTy.isVector() &&
2059         !((ST->hasXOP() && (!ST->hasAVX2() || MTy.is128BitVector())) ||
2060           (ST->hasAVX512() && 32 <= MTy.getScalarSizeInBits()) ||
2061           ST->hasBWI())) {
2062       switch (cast<CmpInst>(I)->getPredicate()) {
2063       case CmpInst::Predicate::ICMP_NE:
2064         // xor(cmpeq(x,y),-1)
2065         ExtraCost = 1;
2066         break;
2067       case CmpInst::Predicate::ICMP_SGE:
2068       case CmpInst::Predicate::ICMP_SLE:
2069         // xor(cmpgt(x,y),-1)
2070         ExtraCost = 1;
2071         break;
2072       case CmpInst::Predicate::ICMP_ULT:
2073       case CmpInst::Predicate::ICMP_UGT:
2074         // cmpgt(xor(x,signbit),xor(y,signbit))
2075         // xor(cmpeq(pmaxu(x,y),x),-1)
2076         ExtraCost = 2;
2077         break;
2078       case CmpInst::Predicate::ICMP_ULE:
2079       case CmpInst::Predicate::ICMP_UGE:
2080         if ((ST->hasSSE41() && MTy.getScalarSizeInBits() == 32) ||
2081             (ST->hasSSE2() && MTy.getScalarSizeInBits() < 32)) {
2082           // cmpeq(psubus(x,y),0)
2083           // cmpeq(pminu(x,y),x)
2084           ExtraCost = 1;
2085         } else {
2086           // xor(cmpgt(xor(x,signbit),xor(y,signbit)),-1)
2087           ExtraCost = 3;
2088         }
2089         break;
2090       default:
2091         break;
2092       }
2093     }
2094   }
2095 
2096   static const CostTblEntry SLMCostTbl[] = {
2097     // slm pcmpeq/pcmpgt throughput is 2
2098     { ISD::SETCC,   MVT::v2i64,   2 },
2099   };
2100 
2101   static const CostTblEntry AVX512BWCostTbl[] = {
2102     { ISD::SETCC,   MVT::v32i16,  1 },
2103     { ISD::SETCC,   MVT::v64i8,   1 },
2104 
2105     { ISD::SELECT,  MVT::v32i16,  1 },
2106     { ISD::SELECT,  MVT::v64i8,   1 },
2107   };
2108 
2109   static const CostTblEntry AVX512CostTbl[] = {
2110     { ISD::SETCC,   MVT::v8i64,   1 },
2111     { ISD::SETCC,   MVT::v16i32,  1 },
2112     { ISD::SETCC,   MVT::v8f64,   1 },
2113     { ISD::SETCC,   MVT::v16f32,  1 },
2114 
2115     { ISD::SELECT,  MVT::v8i64,   1 },
2116     { ISD::SELECT,  MVT::v16i32,  1 },
2117     { ISD::SELECT,  MVT::v8f64,   1 },
2118     { ISD::SELECT,  MVT::v16f32,  1 },
2119 
2120     { ISD::SETCC,   MVT::v32i16,  2 }, // FIXME: should probably be 4
2121     { ISD::SETCC,   MVT::v64i8,   2 }, // FIXME: should probably be 4
2122 
2123     { ISD::SELECT,  MVT::v32i16,  2 }, // FIXME: should be 3
2124     { ISD::SELECT,  MVT::v64i8,   2 }, // FIXME: should be 3
2125   };
2126 
2127   static const CostTblEntry AVX2CostTbl[] = {
2128     { ISD::SETCC,   MVT::v4i64,   1 },
2129     { ISD::SETCC,   MVT::v8i32,   1 },
2130     { ISD::SETCC,   MVT::v16i16,  1 },
2131     { ISD::SETCC,   MVT::v32i8,   1 },
2132 
2133     { ISD::SELECT,  MVT::v4i64,   1 }, // pblendvb
2134     { ISD::SELECT,  MVT::v8i32,   1 }, // pblendvb
2135     { ISD::SELECT,  MVT::v16i16,  1 }, // pblendvb
2136     { ISD::SELECT,  MVT::v32i8,   1 }, // pblendvb
2137   };
2138 
2139   static const CostTblEntry AVX1CostTbl[] = {
2140     { ISD::SETCC,   MVT::v4f64,   1 },
2141     { ISD::SETCC,   MVT::v8f32,   1 },
2142     // AVX1 does not support 8-wide integer compare.
2143     { ISD::SETCC,   MVT::v4i64,   4 },
2144     { ISD::SETCC,   MVT::v8i32,   4 },
2145     { ISD::SETCC,   MVT::v16i16,  4 },
2146     { ISD::SETCC,   MVT::v32i8,   4 },
2147 
2148     { ISD::SELECT,  MVT::v4f64,   1 }, // vblendvpd
2149     { ISD::SELECT,  MVT::v8f32,   1 }, // vblendvps
2150     { ISD::SELECT,  MVT::v4i64,   1 }, // vblendvpd
2151     { ISD::SELECT,  MVT::v8i32,   1 }, // vblendvps
2152     { ISD::SELECT,  MVT::v16i16,  3 }, // vandps + vandnps + vorps
2153     { ISD::SELECT,  MVT::v32i8,   3 }, // vandps + vandnps + vorps
2154   };
2155 
2156   static const CostTblEntry SSE42CostTbl[] = {
2157     { ISD::SETCC,   MVT::v2f64,   1 },
2158     { ISD::SETCC,   MVT::v4f32,   1 },
2159     { ISD::SETCC,   MVT::v2i64,   1 },
2160   };
2161 
2162   static const CostTblEntry SSE41CostTbl[] = {
2163     { ISD::SELECT,  MVT::v2f64,   1 }, // blendvpd
2164     { ISD::SELECT,  MVT::v4f32,   1 }, // blendvps
2165     { ISD::SELECT,  MVT::v2i64,   1 }, // pblendvb
2166     { ISD::SELECT,  MVT::v4i32,   1 }, // pblendvb
2167     { ISD::SELECT,  MVT::v8i16,   1 }, // pblendvb
2168     { ISD::SELECT,  MVT::v16i8,   1 }, // pblendvb
2169   };
2170 
2171   static const CostTblEntry SSE2CostTbl[] = {
2172     { ISD::SETCC,   MVT::v2f64,   2 },
2173     { ISD::SETCC,   MVT::f64,     1 },
2174     { ISD::SETCC,   MVT::v2i64,   8 },
2175     { ISD::SETCC,   MVT::v4i32,   1 },
2176     { ISD::SETCC,   MVT::v8i16,   1 },
2177     { ISD::SETCC,   MVT::v16i8,   1 },
2178 
2179     { ISD::SELECT,  MVT::v2f64,   3 }, // andpd + andnpd + orpd
2180     { ISD::SELECT,  MVT::v2i64,   3 }, // pand + pandn + por
2181     { ISD::SELECT,  MVT::v4i32,   3 }, // pand + pandn + por
2182     { ISD::SELECT,  MVT::v8i16,   3 }, // pand + pandn + por
2183     { ISD::SELECT,  MVT::v16i8,   3 }, // pand + pandn + por
2184   };
2185 
2186   static const CostTblEntry SSE1CostTbl[] = {
2187     { ISD::SETCC,   MVT::v4f32,   2 },
2188     { ISD::SETCC,   MVT::f32,     1 },
2189 
2190     { ISD::SELECT,  MVT::v4f32,   3 }, // andps + andnps + orps
2191   };
2192 
2193   if (ST->isSLM())
2194     if (const auto *Entry = CostTableLookup(SLMCostTbl, ISD, MTy))
2195       return LT.first * (ExtraCost + Entry->Cost);
2196 
2197   if (ST->hasBWI())
2198     if (const auto *Entry = CostTableLookup(AVX512BWCostTbl, ISD, MTy))
2199       return LT.first * (ExtraCost + Entry->Cost);
2200 
2201   if (ST->hasAVX512())
2202     if (const auto *Entry = CostTableLookup(AVX512CostTbl, ISD, MTy))
2203       return LT.first * (ExtraCost + Entry->Cost);
2204 
2205   if (ST->hasAVX2())
2206     if (const auto *Entry = CostTableLookup(AVX2CostTbl, ISD, MTy))
2207       return LT.first * (ExtraCost + Entry->Cost);
2208 
2209   if (ST->hasAVX())
2210     if (const auto *Entry = CostTableLookup(AVX1CostTbl, ISD, MTy))
2211       return LT.first * (ExtraCost + Entry->Cost);
2212 
2213   if (ST->hasSSE42())
2214     if (const auto *Entry = CostTableLookup(SSE42CostTbl, ISD, MTy))
2215       return LT.first * (ExtraCost + Entry->Cost);
2216 
2217   if (ST->hasSSE41())
2218     if (const auto *Entry = CostTableLookup(SSE41CostTbl, ISD, MTy))
2219       return LT.first * (ExtraCost + Entry->Cost);
2220 
2221   if (ST->hasSSE2())
2222     if (const auto *Entry = CostTableLookup(SSE2CostTbl, ISD, MTy))
2223       return LT.first * (ExtraCost + Entry->Cost);
2224 
2225   if (ST->hasSSE1())
2226     if (const auto *Entry = CostTableLookup(SSE1CostTbl, ISD, MTy))
2227       return LT.first * (ExtraCost + Entry->Cost);
2228 
2229   return BaseT::getCmpSelInstrCost(Opcode, ValTy, CondTy, CostKind, I);
2230 }
2231 
2232 unsigned X86TTIImpl::getAtomicMemIntrinsicMaxElementSize() const { return 16; }
2233 
2234 int X86TTIImpl::getIntrinsicInstrCost(Intrinsic::ID IID, Type *RetTy,
2235                                       ArrayRef<Type *> Tys, FastMathFlags FMF,
2236                                       unsigned ScalarizationCostPassed,
2237                                       TTI::TargetCostKind CostKind,
2238                                       const Instruction *I) {
2239   // Costs should match the codegen from:
2240   // BITREVERSE: llvm\test\CodeGen\X86\vector-bitreverse.ll
2241   // BSWAP: llvm\test\CodeGen\X86\bswap-vector.ll
2242   // CTLZ: llvm\test\CodeGen\X86\vector-lzcnt-*.ll
2243   // CTPOP: llvm\test\CodeGen\X86\vector-popcnt-*.ll
2244   // CTTZ: llvm\test\CodeGen\X86\vector-tzcnt-*.ll
2245   static const CostTblEntry AVX512CDCostTbl[] = {
2246     { ISD::CTLZ,       MVT::v8i64,   1 },
2247     { ISD::CTLZ,       MVT::v16i32,  1 },
2248     { ISD::CTLZ,       MVT::v32i16,  8 },
2249     { ISD::CTLZ,       MVT::v64i8,  20 },
2250     { ISD::CTLZ,       MVT::v4i64,   1 },
2251     { ISD::CTLZ,       MVT::v8i32,   1 },
2252     { ISD::CTLZ,       MVT::v16i16,  4 },
2253     { ISD::CTLZ,       MVT::v32i8,  10 },
2254     { ISD::CTLZ,       MVT::v2i64,   1 },
2255     { ISD::CTLZ,       MVT::v4i32,   1 },
2256     { ISD::CTLZ,       MVT::v8i16,   4 },
2257     { ISD::CTLZ,       MVT::v16i8,   4 },
2258   };
2259   static const CostTblEntry AVX512BWCostTbl[] = {
2260     { ISD::BITREVERSE, MVT::v8i64,   5 },
2261     { ISD::BITREVERSE, MVT::v16i32,  5 },
2262     { ISD::BITREVERSE, MVT::v32i16,  5 },
2263     { ISD::BITREVERSE, MVT::v64i8,   5 },
2264     { ISD::CTLZ,       MVT::v8i64,  23 },
2265     { ISD::CTLZ,       MVT::v16i32, 22 },
2266     { ISD::CTLZ,       MVT::v32i16, 18 },
2267     { ISD::CTLZ,       MVT::v64i8,  17 },
2268     { ISD::CTPOP,      MVT::v8i64,   7 },
2269     { ISD::CTPOP,      MVT::v16i32, 11 },
2270     { ISD::CTPOP,      MVT::v32i16,  9 },
2271     { ISD::CTPOP,      MVT::v64i8,   6 },
2272     { ISD::CTTZ,       MVT::v8i64,  10 },
2273     { ISD::CTTZ,       MVT::v16i32, 14 },
2274     { ISD::CTTZ,       MVT::v32i16, 12 },
2275     { ISD::CTTZ,       MVT::v64i8,   9 },
2276     { ISD::SADDSAT,    MVT::v32i16,  1 },
2277     { ISD::SADDSAT,    MVT::v64i8,   1 },
2278     { ISD::SSUBSAT,    MVT::v32i16,  1 },
2279     { ISD::SSUBSAT,    MVT::v64i8,   1 },
2280     { ISD::UADDSAT,    MVT::v32i16,  1 },
2281     { ISD::UADDSAT,    MVT::v64i8,   1 },
2282     { ISD::USUBSAT,    MVT::v32i16,  1 },
2283     { ISD::USUBSAT,    MVT::v64i8,   1 },
2284   };
2285   static const CostTblEntry AVX512CostTbl[] = {
2286     { ISD::BITREVERSE, MVT::v8i64,  36 },
2287     { ISD::BITREVERSE, MVT::v16i32, 24 },
2288     { ISD::BITREVERSE, MVT::v32i16, 10 },
2289     { ISD::BITREVERSE, MVT::v64i8,  10 },
2290     { ISD::CTLZ,       MVT::v8i64,  29 },
2291     { ISD::CTLZ,       MVT::v16i32, 35 },
2292     { ISD::CTLZ,       MVT::v32i16, 28 },
2293     { ISD::CTLZ,       MVT::v64i8,  18 },
2294     { ISD::CTPOP,      MVT::v8i64,  16 },
2295     { ISD::CTPOP,      MVT::v16i32, 24 },
2296     { ISD::CTPOP,      MVT::v32i16, 18 },
2297     { ISD::CTPOP,      MVT::v64i8,  12 },
2298     { ISD::CTTZ,       MVT::v8i64,  20 },
2299     { ISD::CTTZ,       MVT::v16i32, 28 },
2300     { ISD::CTTZ,       MVT::v32i16, 24 },
2301     { ISD::CTTZ,       MVT::v64i8,  18 },
2302     { ISD::USUBSAT,    MVT::v16i32,  2 }, // pmaxud + psubd
2303     { ISD::USUBSAT,    MVT::v2i64,   2 }, // pmaxuq + psubq
2304     { ISD::USUBSAT,    MVT::v4i64,   2 }, // pmaxuq + psubq
2305     { ISD::USUBSAT,    MVT::v8i64,   2 }, // pmaxuq + psubq
2306     { ISD::UADDSAT,    MVT::v16i32,  3 }, // not + pminud + paddd
2307     { ISD::UADDSAT,    MVT::v2i64,   3 }, // not + pminuq + paddq
2308     { ISD::UADDSAT,    MVT::v4i64,   3 }, // not + pminuq + paddq
2309     { ISD::UADDSAT,    MVT::v8i64,   3 }, // not + pminuq + paddq
2310     { ISD::SADDSAT,    MVT::v32i16,  2 }, // FIXME: include split
2311     { ISD::SADDSAT,    MVT::v64i8,   2 }, // FIXME: include split
2312     { ISD::SSUBSAT,    MVT::v32i16,  2 }, // FIXME: include split
2313     { ISD::SSUBSAT,    MVT::v64i8,   2 }, // FIXME: include split
2314     { ISD::UADDSAT,    MVT::v32i16,  2 }, // FIXME: include split
2315     { ISD::UADDSAT,    MVT::v64i8,   2 }, // FIXME: include split
2316     { ISD::USUBSAT,    MVT::v32i16,  2 }, // FIXME: include split
2317     { ISD::USUBSAT,    MVT::v64i8,   2 }, // FIXME: include split
2318     { ISD::FMAXNUM,    MVT::f32,     2 },
2319     { ISD::FMAXNUM,    MVT::v4f32,   2 },
2320     { ISD::FMAXNUM,    MVT::v8f32,   2 },
2321     { ISD::FMAXNUM,    MVT::v16f32,  2 },
2322     { ISD::FMAXNUM,    MVT::f64,     2 },
2323     { ISD::FMAXNUM,    MVT::v2f64,   2 },
2324     { ISD::FMAXNUM,    MVT::v4f64,   2 },
2325     { ISD::FMAXNUM,    MVT::v8f64,   2 },
2326   };
2327   static const CostTblEntry XOPCostTbl[] = {
2328     { ISD::BITREVERSE, MVT::v4i64,   4 },
2329     { ISD::BITREVERSE, MVT::v8i32,   4 },
2330     { ISD::BITREVERSE, MVT::v16i16,  4 },
2331     { ISD::BITREVERSE, MVT::v32i8,   4 },
2332     { ISD::BITREVERSE, MVT::v2i64,   1 },
2333     { ISD::BITREVERSE, MVT::v4i32,   1 },
2334     { ISD::BITREVERSE, MVT::v8i16,   1 },
2335     { ISD::BITREVERSE, MVT::v16i8,   1 },
2336     { ISD::BITREVERSE, MVT::i64,     3 },
2337     { ISD::BITREVERSE, MVT::i32,     3 },
2338     { ISD::BITREVERSE, MVT::i16,     3 },
2339     { ISD::BITREVERSE, MVT::i8,      3 }
2340   };
2341   static const CostTblEntry AVX2CostTbl[] = {
2342     { ISD::BITREVERSE, MVT::v4i64,   5 },
2343     { ISD::BITREVERSE, MVT::v8i32,   5 },
2344     { ISD::BITREVERSE, MVT::v16i16,  5 },
2345     { ISD::BITREVERSE, MVT::v32i8,   5 },
2346     { ISD::BSWAP,      MVT::v4i64,   1 },
2347     { ISD::BSWAP,      MVT::v8i32,   1 },
2348     { ISD::BSWAP,      MVT::v16i16,  1 },
2349     { ISD::CTLZ,       MVT::v4i64,  23 },
2350     { ISD::CTLZ,       MVT::v8i32,  18 },
2351     { ISD::CTLZ,       MVT::v16i16, 14 },
2352     { ISD::CTLZ,       MVT::v32i8,   9 },
2353     { ISD::CTPOP,      MVT::v4i64,   7 },
2354     { ISD::CTPOP,      MVT::v8i32,  11 },
2355     { ISD::CTPOP,      MVT::v16i16,  9 },
2356     { ISD::CTPOP,      MVT::v32i8,   6 },
2357     { ISD::CTTZ,       MVT::v4i64,  10 },
2358     { ISD::CTTZ,       MVT::v8i32,  14 },
2359     { ISD::CTTZ,       MVT::v16i16, 12 },
2360     { ISD::CTTZ,       MVT::v32i8,   9 },
2361     { ISD::SADDSAT,    MVT::v16i16,  1 },
2362     { ISD::SADDSAT,    MVT::v32i8,   1 },
2363     { ISD::SSUBSAT,    MVT::v16i16,  1 },
2364     { ISD::SSUBSAT,    MVT::v32i8,   1 },
2365     { ISD::UADDSAT,    MVT::v16i16,  1 },
2366     { ISD::UADDSAT,    MVT::v32i8,   1 },
2367     { ISD::UADDSAT,    MVT::v8i32,   3 }, // not + pminud + paddd
2368     { ISD::USUBSAT,    MVT::v16i16,  1 },
2369     { ISD::USUBSAT,    MVT::v32i8,   1 },
2370     { ISD::USUBSAT,    MVT::v8i32,   2 }, // pmaxud + psubd
2371     { ISD::FSQRT,      MVT::f32,     7 }, // Haswell from http://www.agner.org/
2372     { ISD::FSQRT,      MVT::v4f32,   7 }, // Haswell from http://www.agner.org/
2373     { ISD::FSQRT,      MVT::v8f32,  14 }, // Haswell from http://www.agner.org/
2374     { ISD::FSQRT,      MVT::f64,    14 }, // Haswell from http://www.agner.org/
2375     { ISD::FSQRT,      MVT::v2f64,  14 }, // Haswell from http://www.agner.org/
2376     { ISD::FSQRT,      MVT::v4f64,  28 }, // Haswell from http://www.agner.org/
2377   };
2378   static const CostTblEntry AVX1CostTbl[] = {
2379     { ISD::BITREVERSE, MVT::v4i64,  12 }, // 2 x 128-bit Op + extract/insert
2380     { ISD::BITREVERSE, MVT::v8i32,  12 }, // 2 x 128-bit Op + extract/insert
2381     { ISD::BITREVERSE, MVT::v16i16, 12 }, // 2 x 128-bit Op + extract/insert
2382     { ISD::BITREVERSE, MVT::v32i8,  12 }, // 2 x 128-bit Op + extract/insert
2383     { ISD::BSWAP,      MVT::v4i64,   4 },
2384     { ISD::BSWAP,      MVT::v8i32,   4 },
2385     { ISD::BSWAP,      MVT::v16i16,  4 },
2386     { ISD::CTLZ,       MVT::v4i64,  48 }, // 2 x 128-bit Op + extract/insert
2387     { ISD::CTLZ,       MVT::v8i32,  38 }, // 2 x 128-bit Op + extract/insert
2388     { ISD::CTLZ,       MVT::v16i16, 30 }, // 2 x 128-bit Op + extract/insert
2389     { ISD::CTLZ,       MVT::v32i8,  20 }, // 2 x 128-bit Op + extract/insert
2390     { ISD::CTPOP,      MVT::v4i64,  16 }, // 2 x 128-bit Op + extract/insert
2391     { ISD::CTPOP,      MVT::v8i32,  24 }, // 2 x 128-bit Op + extract/insert
2392     { ISD::CTPOP,      MVT::v16i16, 20 }, // 2 x 128-bit Op + extract/insert
2393     { ISD::CTPOP,      MVT::v32i8,  14 }, // 2 x 128-bit Op + extract/insert
2394     { ISD::CTTZ,       MVT::v4i64,  22 }, // 2 x 128-bit Op + extract/insert
2395     { ISD::CTTZ,       MVT::v8i32,  30 }, // 2 x 128-bit Op + extract/insert
2396     { ISD::CTTZ,       MVT::v16i16, 26 }, // 2 x 128-bit Op + extract/insert
2397     { ISD::CTTZ,       MVT::v32i8,  20 }, // 2 x 128-bit Op + extract/insert
2398     { ISD::SADDSAT,    MVT::v16i16,  4 }, // 2 x 128-bit Op + extract/insert
2399     { ISD::SADDSAT,    MVT::v32i8,   4 }, // 2 x 128-bit Op + extract/insert
2400     { ISD::SSUBSAT,    MVT::v16i16,  4 }, // 2 x 128-bit Op + extract/insert
2401     { ISD::SSUBSAT,    MVT::v32i8,   4 }, // 2 x 128-bit Op + extract/insert
2402     { ISD::UADDSAT,    MVT::v16i16,  4 }, // 2 x 128-bit Op + extract/insert
2403     { ISD::UADDSAT,    MVT::v32i8,   4 }, // 2 x 128-bit Op + extract/insert
2404     { ISD::UADDSAT,    MVT::v8i32,   8 }, // 2 x 128-bit Op + extract/insert
2405     { ISD::USUBSAT,    MVT::v16i16,  4 }, // 2 x 128-bit Op + extract/insert
2406     { ISD::USUBSAT,    MVT::v32i8,   4 }, // 2 x 128-bit Op + extract/insert
2407     { ISD::USUBSAT,    MVT::v8i32,   6 }, // 2 x 128-bit Op + extract/insert
2408     { ISD::FMAXNUM,    MVT::f32,     3 },
2409     { ISD::FMAXNUM,    MVT::v4f32,   3 },
2410     { ISD::FMAXNUM,    MVT::v8f32,   5 },
2411     { ISD::FMAXNUM,    MVT::f64,     3 },
2412     { ISD::FMAXNUM,    MVT::v2f64,   3 },
2413     { ISD::FMAXNUM,    MVT::v4f64,   5 },
2414     { ISD::FSQRT,      MVT::f32,    14 }, // SNB from http://www.agner.org/
2415     { ISD::FSQRT,      MVT::v4f32,  14 }, // SNB from http://www.agner.org/
2416     { ISD::FSQRT,      MVT::v8f32,  28 }, // SNB from http://www.agner.org/
2417     { ISD::FSQRT,      MVT::f64,    21 }, // SNB from http://www.agner.org/
2418     { ISD::FSQRT,      MVT::v2f64,  21 }, // SNB from http://www.agner.org/
2419     { ISD::FSQRT,      MVT::v4f64,  43 }, // SNB from http://www.agner.org/
2420   };
2421   static const CostTblEntry GLMCostTbl[] = {
2422     { ISD::FSQRT, MVT::f32,   19 }, // sqrtss
2423     { ISD::FSQRT, MVT::v4f32, 37 }, // sqrtps
2424     { ISD::FSQRT, MVT::f64,   34 }, // sqrtsd
2425     { ISD::FSQRT, MVT::v2f64, 67 }, // sqrtpd
2426   };
2427   static const CostTblEntry SLMCostTbl[] = {
2428     { ISD::FSQRT, MVT::f32,   20 }, // sqrtss
2429     { ISD::FSQRT, MVT::v4f32, 40 }, // sqrtps
2430     { ISD::FSQRT, MVT::f64,   35 }, // sqrtsd
2431     { ISD::FSQRT, MVT::v2f64, 70 }, // sqrtpd
2432   };
2433   static const CostTblEntry SSE42CostTbl[] = {
2434     { ISD::USUBSAT,    MVT::v4i32,   2 }, // pmaxud + psubd
2435     { ISD::UADDSAT,    MVT::v4i32,   3 }, // not + pminud + paddd
2436     { ISD::FSQRT,      MVT::f32,    18 }, // Nehalem from http://www.agner.org/
2437     { ISD::FSQRT,      MVT::v4f32,  18 }, // Nehalem from http://www.agner.org/
2438   };
2439   static const CostTblEntry SSSE3CostTbl[] = {
2440     { ISD::BITREVERSE, MVT::v2i64,   5 },
2441     { ISD::BITREVERSE, MVT::v4i32,   5 },
2442     { ISD::BITREVERSE, MVT::v8i16,   5 },
2443     { ISD::BITREVERSE, MVT::v16i8,   5 },
2444     { ISD::BSWAP,      MVT::v2i64,   1 },
2445     { ISD::BSWAP,      MVT::v4i32,   1 },
2446     { ISD::BSWAP,      MVT::v8i16,   1 },
2447     { ISD::CTLZ,       MVT::v2i64,  23 },
2448     { ISD::CTLZ,       MVT::v4i32,  18 },
2449     { ISD::CTLZ,       MVT::v8i16,  14 },
2450     { ISD::CTLZ,       MVT::v16i8,   9 },
2451     { ISD::CTPOP,      MVT::v2i64,   7 },
2452     { ISD::CTPOP,      MVT::v4i32,  11 },
2453     { ISD::CTPOP,      MVT::v8i16,   9 },
2454     { ISD::CTPOP,      MVT::v16i8,   6 },
2455     { ISD::CTTZ,       MVT::v2i64,  10 },
2456     { ISD::CTTZ,       MVT::v4i32,  14 },
2457     { ISD::CTTZ,       MVT::v8i16,  12 },
2458     { ISD::CTTZ,       MVT::v16i8,   9 }
2459   };
2460   static const CostTblEntry SSE2CostTbl[] = {
2461     { ISD::BITREVERSE, MVT::v2i64,  29 },
2462     { ISD::BITREVERSE, MVT::v4i32,  27 },
2463     { ISD::BITREVERSE, MVT::v8i16,  27 },
2464     { ISD::BITREVERSE, MVT::v16i8,  20 },
2465     { ISD::BSWAP,      MVT::v2i64,   7 },
2466     { ISD::BSWAP,      MVT::v4i32,   7 },
2467     { ISD::BSWAP,      MVT::v8i16,   7 },
2468     { ISD::CTLZ,       MVT::v2i64,  25 },
2469     { ISD::CTLZ,       MVT::v4i32,  26 },
2470     { ISD::CTLZ,       MVT::v8i16,  20 },
2471     { ISD::CTLZ,       MVT::v16i8,  17 },
2472     { ISD::CTPOP,      MVT::v2i64,  12 },
2473     { ISD::CTPOP,      MVT::v4i32,  15 },
2474     { ISD::CTPOP,      MVT::v8i16,  13 },
2475     { ISD::CTPOP,      MVT::v16i8,  10 },
2476     { ISD::CTTZ,       MVT::v2i64,  14 },
2477     { ISD::CTTZ,       MVT::v4i32,  18 },
2478     { ISD::CTTZ,       MVT::v8i16,  16 },
2479     { ISD::CTTZ,       MVT::v16i8,  13 },
2480     { ISD::SADDSAT,    MVT::v8i16,   1 },
2481     { ISD::SADDSAT,    MVT::v16i8,   1 },
2482     { ISD::SSUBSAT,    MVT::v8i16,   1 },
2483     { ISD::SSUBSAT,    MVT::v16i8,   1 },
2484     { ISD::UADDSAT,    MVT::v8i16,   1 },
2485     { ISD::UADDSAT,    MVT::v16i8,   1 },
2486     { ISD::USUBSAT,    MVT::v8i16,   1 },
2487     { ISD::USUBSAT,    MVT::v16i8,   1 },
2488     { ISD::FMAXNUM,    MVT::f64,     4 },
2489     { ISD::FMAXNUM,    MVT::v2f64,   4 },
2490     { ISD::FSQRT,      MVT::f64,    32 }, // Nehalem from http://www.agner.org/
2491     { ISD::FSQRT,      MVT::v2f64,  32 }, // Nehalem from http://www.agner.org/
2492   };
2493   static const CostTblEntry SSE1CostTbl[] = {
2494     { ISD::FMAXNUM,    MVT::f32,     4 },
2495     { ISD::FMAXNUM,    MVT::v4f32,   4 },
2496     { ISD::FSQRT,      MVT::f32,    28 }, // Pentium III from http://www.agner.org/
2497     { ISD::FSQRT,      MVT::v4f32,  56 }, // Pentium III from http://www.agner.org/
2498   };
2499   static const CostTblEntry BMI64CostTbl[] = { // 64-bit targets
2500     { ISD::CTTZ,       MVT::i64,     1 },
2501   };
2502   static const CostTblEntry BMI32CostTbl[] = { // 32 or 64-bit targets
2503     { ISD::CTTZ,       MVT::i32,     1 },
2504     { ISD::CTTZ,       MVT::i16,     1 },
2505     { ISD::CTTZ,       MVT::i8,      1 },
2506   };
2507   static const CostTblEntry LZCNT64CostTbl[] = { // 64-bit targets
2508     { ISD::CTLZ,       MVT::i64,     1 },
2509   };
2510   static const CostTblEntry LZCNT32CostTbl[] = { // 32 or 64-bit targets
2511     { ISD::CTLZ,       MVT::i32,     1 },
2512     { ISD::CTLZ,       MVT::i16,     1 },
2513     { ISD::CTLZ,       MVT::i8,      1 },
2514   };
2515   static const CostTblEntry POPCNT64CostTbl[] = { // 64-bit targets
2516     { ISD::CTPOP,      MVT::i64,     1 },
2517   };
2518   static const CostTblEntry POPCNT32CostTbl[] = { // 32 or 64-bit targets
2519     { ISD::CTPOP,      MVT::i32,     1 },
2520     { ISD::CTPOP,      MVT::i16,     1 },
2521     { ISD::CTPOP,      MVT::i8,      1 },
2522   };
2523   static const CostTblEntry X64CostTbl[] = { // 64-bit targets
2524     { ISD::BITREVERSE, MVT::i64,    14 },
2525     { ISD::CTLZ,       MVT::i64,     4 }, // BSR+XOR or BSR+XOR+CMOV
2526     { ISD::CTTZ,       MVT::i64,     3 }, // TEST+BSF+CMOV/BRANCH
2527     { ISD::CTPOP,      MVT::i64,    10 },
2528     { ISD::SADDO,      MVT::i64,     1 },
2529     { ISD::UADDO,      MVT::i64,     1 },
2530   };
2531   static const CostTblEntry X86CostTbl[] = { // 32 or 64-bit targets
2532     { ISD::BITREVERSE, MVT::i32,    14 },
2533     { ISD::BITREVERSE, MVT::i16,    14 },
2534     { ISD::BITREVERSE, MVT::i8,     11 },
2535     { ISD::CTLZ,       MVT::i32,     4 }, // BSR+XOR or BSR+XOR+CMOV
2536     { ISD::CTLZ,       MVT::i16,     4 }, // BSR+XOR or BSR+XOR+CMOV
2537     { ISD::CTLZ,       MVT::i8,      4 }, // BSR+XOR or BSR+XOR+CMOV
2538     { ISD::CTTZ,       MVT::i32,     3 }, // TEST+BSF+CMOV/BRANCH
2539     { ISD::CTTZ,       MVT::i16,     3 }, // TEST+BSF+CMOV/BRANCH
2540     { ISD::CTTZ,       MVT::i8,      3 }, // TEST+BSF+CMOV/BRANCH
2541     { ISD::CTPOP,      MVT::i32,     8 },
2542     { ISD::CTPOP,      MVT::i16,     9 },
2543     { ISD::CTPOP,      MVT::i8,      7 },
2544     { ISD::SADDO,      MVT::i32,     1 },
2545     { ISD::SADDO,      MVT::i16,     1 },
2546     { ISD::SADDO,      MVT::i8,      1 },
2547     { ISD::UADDO,      MVT::i32,     1 },
2548     { ISD::UADDO,      MVT::i16,     1 },
2549     { ISD::UADDO,      MVT::i8,      1 },
2550   };
2551 
2552   Type *OpTy = RetTy;
2553   unsigned ISD = ISD::DELETED_NODE;
2554   switch (IID) {
2555   default:
2556     break;
2557   case Intrinsic::bitreverse:
2558     ISD = ISD::BITREVERSE;
2559     break;
2560   case Intrinsic::bswap:
2561     ISD = ISD::BSWAP;
2562     break;
2563   case Intrinsic::ctlz:
2564     ISD = ISD::CTLZ;
2565     break;
2566   case Intrinsic::ctpop:
2567     ISD = ISD::CTPOP;
2568     break;
2569   case Intrinsic::cttz:
2570     ISD = ISD::CTTZ;
2571     break;
2572   case Intrinsic::maxnum:
2573   case Intrinsic::minnum:
2574     // FMINNUM has same costs so don't duplicate.
2575     ISD = ISD::FMAXNUM;
2576     break;
2577   case Intrinsic::sadd_sat:
2578     ISD = ISD::SADDSAT;
2579     break;
2580   case Intrinsic::ssub_sat:
2581     ISD = ISD::SSUBSAT;
2582     break;
2583   case Intrinsic::uadd_sat:
2584     ISD = ISD::UADDSAT;
2585     break;
2586   case Intrinsic::usub_sat:
2587     ISD = ISD::USUBSAT;
2588     break;
2589   case Intrinsic::sqrt:
2590     ISD = ISD::FSQRT;
2591     break;
2592   case Intrinsic::sadd_with_overflow:
2593   case Intrinsic::ssub_with_overflow:
2594     // SSUBO has same costs so don't duplicate.
2595     ISD = ISD::SADDO;
2596     OpTy = RetTy->getContainedType(0);
2597     break;
2598   case Intrinsic::uadd_with_overflow:
2599   case Intrinsic::usub_with_overflow:
2600     // USUBO has same costs so don't duplicate.
2601     ISD = ISD::UADDO;
2602     OpTy = RetTy->getContainedType(0);
2603     break;
2604   }
2605 
2606   if (ISD != ISD::DELETED_NODE) {
2607     // Legalize the type.
2608     std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, OpTy);
2609     MVT MTy = LT.second;
2610 
2611     // Attempt to lookup cost.
2612     if (ST->useGLMDivSqrtCosts())
2613       if (const auto *Entry = CostTableLookup(GLMCostTbl, ISD, MTy))
2614         return LT.first * Entry->Cost;
2615 
2616     if (ST->isSLM())
2617       if (const auto *Entry = CostTableLookup(SLMCostTbl, ISD, MTy))
2618         return LT.first * Entry->Cost;
2619 
2620     if (ST->hasCDI())
2621       if (const auto *Entry = CostTableLookup(AVX512CDCostTbl, ISD, MTy))
2622         return LT.first * Entry->Cost;
2623 
2624     if (ST->hasBWI())
2625       if (const auto *Entry = CostTableLookup(AVX512BWCostTbl, ISD, MTy))
2626         return LT.first * Entry->Cost;
2627 
2628     if (ST->hasAVX512())
2629       if (const auto *Entry = CostTableLookup(AVX512CostTbl, ISD, MTy))
2630         return LT.first * Entry->Cost;
2631 
2632     if (ST->hasXOP())
2633       if (const auto *Entry = CostTableLookup(XOPCostTbl, ISD, MTy))
2634         return LT.first * Entry->Cost;
2635 
2636     if (ST->hasAVX2())
2637       if (const auto *Entry = CostTableLookup(AVX2CostTbl, ISD, MTy))
2638         return LT.first * Entry->Cost;
2639 
2640     if (ST->hasAVX())
2641       if (const auto *Entry = CostTableLookup(AVX1CostTbl, ISD, MTy))
2642         return LT.first * Entry->Cost;
2643 
2644     if (ST->hasSSE42())
2645       if (const auto *Entry = CostTableLookup(SSE42CostTbl, ISD, MTy))
2646         return LT.first * Entry->Cost;
2647 
2648     if (ST->hasSSSE3())
2649       if (const auto *Entry = CostTableLookup(SSSE3CostTbl, ISD, MTy))
2650         return LT.first * Entry->Cost;
2651 
2652     if (ST->hasSSE2())
2653       if (const auto *Entry = CostTableLookup(SSE2CostTbl, ISD, MTy))
2654         return LT.first * Entry->Cost;
2655 
2656     if (ST->hasSSE1())
2657       if (const auto *Entry = CostTableLookup(SSE1CostTbl, ISD, MTy))
2658         return LT.first * Entry->Cost;
2659 
2660     if (ST->hasBMI()) {
2661       if (ST->is64Bit())
2662         if (const auto *Entry = CostTableLookup(BMI64CostTbl, ISD, MTy))
2663           return LT.first * Entry->Cost;
2664 
2665       if (const auto *Entry = CostTableLookup(BMI32CostTbl, ISD, MTy))
2666         return LT.first * Entry->Cost;
2667     }
2668 
2669     if (ST->hasLZCNT()) {
2670       if (ST->is64Bit())
2671         if (const auto *Entry = CostTableLookup(LZCNT64CostTbl, ISD, MTy))
2672           return LT.first * Entry->Cost;
2673 
2674       if (const auto *Entry = CostTableLookup(LZCNT32CostTbl, ISD, MTy))
2675         return LT.first * Entry->Cost;
2676     }
2677 
2678     if (ST->hasPOPCNT()) {
2679       if (ST->is64Bit())
2680         if (const auto *Entry = CostTableLookup(POPCNT64CostTbl, ISD, MTy))
2681           return LT.first * Entry->Cost;
2682 
2683       if (const auto *Entry = CostTableLookup(POPCNT32CostTbl, ISD, MTy))
2684         return LT.first * Entry->Cost;
2685     }
2686 
2687     // TODO - add BMI (TZCNT) scalar handling
2688 
2689     if (ST->is64Bit())
2690       if (const auto *Entry = CostTableLookup(X64CostTbl, ISD, MTy))
2691         return LT.first * Entry->Cost;
2692 
2693     if (const auto *Entry = CostTableLookup(X86CostTbl, ISD, MTy))
2694       return LT.first * Entry->Cost;
2695   }
2696 
2697   return BaseT::getIntrinsicInstrCost(IID, RetTy, Tys, FMF,
2698                                       ScalarizationCostPassed, CostKind, I);
2699 }
2700 
2701 int X86TTIImpl::getIntrinsicInstrCost(Intrinsic::ID IID, Type *RetTy,
2702                                       ArrayRef<Value *> Args, FastMathFlags FMF,
2703                                       unsigned VF,
2704                                       TTI::TargetCostKind CostKind,
2705                                       const Instruction *I) {
2706   static const CostTblEntry AVX512CostTbl[] = {
2707     { ISD::ROTL,       MVT::v8i64,   1 },
2708     { ISD::ROTL,       MVT::v4i64,   1 },
2709     { ISD::ROTL,       MVT::v2i64,   1 },
2710     { ISD::ROTL,       MVT::v16i32,  1 },
2711     { ISD::ROTL,       MVT::v8i32,   1 },
2712     { ISD::ROTL,       MVT::v4i32,   1 },
2713     { ISD::ROTR,       MVT::v8i64,   1 },
2714     { ISD::ROTR,       MVT::v4i64,   1 },
2715     { ISD::ROTR,       MVT::v2i64,   1 },
2716     { ISD::ROTR,       MVT::v16i32,  1 },
2717     { ISD::ROTR,       MVT::v8i32,   1 },
2718     { ISD::ROTR,       MVT::v4i32,   1 }
2719   };
2720   // XOP: ROTL = VPROT(X,Y), ROTR = VPROT(X,SUB(0,Y))
2721   static const CostTblEntry XOPCostTbl[] = {
2722     { ISD::ROTL,       MVT::v4i64,   4 },
2723     { ISD::ROTL,       MVT::v8i32,   4 },
2724     { ISD::ROTL,       MVT::v16i16,  4 },
2725     { ISD::ROTL,       MVT::v32i8,   4 },
2726     { ISD::ROTL,       MVT::v2i64,   1 },
2727     { ISD::ROTL,       MVT::v4i32,   1 },
2728     { ISD::ROTL,       MVT::v8i16,   1 },
2729     { ISD::ROTL,       MVT::v16i8,   1 },
2730     { ISD::ROTR,       MVT::v4i64,   6 },
2731     { ISD::ROTR,       MVT::v8i32,   6 },
2732     { ISD::ROTR,       MVT::v16i16,  6 },
2733     { ISD::ROTR,       MVT::v32i8,   6 },
2734     { ISD::ROTR,       MVT::v2i64,   2 },
2735     { ISD::ROTR,       MVT::v4i32,   2 },
2736     { ISD::ROTR,       MVT::v8i16,   2 },
2737     { ISD::ROTR,       MVT::v16i8,   2 }
2738   };
2739   static const CostTblEntry X64CostTbl[] = { // 64-bit targets
2740     { ISD::ROTL,       MVT::i64,     1 },
2741     { ISD::ROTR,       MVT::i64,     1 },
2742     { ISD::FSHL,       MVT::i64,     4 }
2743   };
2744   static const CostTblEntry X86CostTbl[] = { // 32 or 64-bit targets
2745     { ISD::ROTL,       MVT::i32,     1 },
2746     { ISD::ROTL,       MVT::i16,     1 },
2747     { ISD::ROTL,       MVT::i8,      1 },
2748     { ISD::ROTR,       MVT::i32,     1 },
2749     { ISD::ROTR,       MVT::i16,     1 },
2750     { ISD::ROTR,       MVT::i8,      1 },
2751     { ISD::FSHL,       MVT::i32,     4 },
2752     { ISD::FSHL,       MVT::i16,     4 },
2753     { ISD::FSHL,       MVT::i8,      4 }
2754   };
2755 
2756   unsigned ISD = ISD::DELETED_NODE;
2757   switch (IID) {
2758   default:
2759     break;
2760   case Intrinsic::fshl:
2761     ISD = ISD::FSHL;
2762     if (Args[0] == Args[1])
2763       ISD = ISD::ROTL;
2764     break;
2765   case Intrinsic::fshr:
2766     // FSHR has same costs so don't duplicate.
2767     ISD = ISD::FSHL;
2768     if (Args[0] == Args[1])
2769       ISD = ISD::ROTR;
2770     break;
2771   }
2772 
2773   if (ISD != ISD::DELETED_NODE) {
2774     // Legalize the type.
2775     std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, RetTy);
2776     MVT MTy = LT.second;
2777 
2778     // Attempt to lookup cost.
2779     if (ST->hasAVX512())
2780       if (const auto *Entry = CostTableLookup(AVX512CostTbl, ISD, MTy))
2781         return LT.first * Entry->Cost;
2782 
2783     if (ST->hasXOP())
2784       if (const auto *Entry = CostTableLookup(XOPCostTbl, ISD, MTy))
2785         return LT.first * Entry->Cost;
2786 
2787     if (ST->is64Bit())
2788       if (const auto *Entry = CostTableLookup(X64CostTbl, ISD, MTy))
2789         return LT.first * Entry->Cost;
2790 
2791     if (const auto *Entry = CostTableLookup(X86CostTbl, ISD, MTy))
2792       return LT.first * Entry->Cost;
2793   }
2794 
2795   return BaseT::getIntrinsicInstrCost(IID, RetTy, Args, FMF, VF, CostKind, I);
2796 }
2797 
2798 int X86TTIImpl::getVectorInstrCost(unsigned Opcode, Type *Val, unsigned Index) {
2799   static const CostTblEntry SLMCostTbl[] = {
2800      { ISD::EXTRACT_VECTOR_ELT,       MVT::i8,      4 },
2801      { ISD::EXTRACT_VECTOR_ELT,       MVT::i16,     4 },
2802      { ISD::EXTRACT_VECTOR_ELT,       MVT::i32,     4 },
2803      { ISD::EXTRACT_VECTOR_ELT,       MVT::i64,     7 }
2804    };
2805 
2806   assert(Val->isVectorTy() && "This must be a vector type");
2807   Type *ScalarType = Val->getScalarType();
2808   int RegisterFileMoveCost = 0;
2809 
2810   if (Index != -1U && (Opcode == Instruction::ExtractElement ||
2811                        Opcode == Instruction::InsertElement)) {
2812     // Legalize the type.
2813     std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Val);
2814 
2815     // This type is legalized to a scalar type.
2816     if (!LT.second.isVector())
2817       return 0;
2818 
2819     // The type may be split. Normalize the index to the new type.
2820     unsigned NumElts = LT.second.getVectorNumElements();
2821     unsigned SubNumElts = NumElts;
2822     Index = Index % NumElts;
2823 
2824     // For >128-bit vectors, we need to extract higher 128-bit subvectors.
2825     // For inserts, we also need to insert the subvector back.
2826     if (LT.second.getSizeInBits() > 128) {
2827       assert((LT.second.getSizeInBits() % 128) == 0 && "Illegal vector");
2828       unsigned NumSubVecs = LT.second.getSizeInBits() / 128;
2829       SubNumElts = NumElts / NumSubVecs;
2830       if (SubNumElts <= Index) {
2831         RegisterFileMoveCost += (Opcode == Instruction::InsertElement ? 2 : 1);
2832         Index %= SubNumElts;
2833       }
2834     }
2835 
2836     if (Index == 0) {
2837       // Floating point scalars are already located in index #0.
2838       // Many insertions to #0 can fold away for scalar fp-ops, so let's assume
2839       // true for all.
2840       if (ScalarType->isFloatingPointTy())
2841         return RegisterFileMoveCost;
2842 
2843       // Assume movd/movq XMM -> GPR is relatively cheap on all targets.
2844       if (ScalarType->isIntegerTy() && Opcode == Instruction::ExtractElement)
2845         return 1 + RegisterFileMoveCost;
2846     }
2847 
2848     int ISD = TLI->InstructionOpcodeToISD(Opcode);
2849     assert(ISD && "Unexpected vector opcode");
2850     MVT MScalarTy = LT.second.getScalarType();
2851     if (ST->isSLM())
2852       if (auto *Entry = CostTableLookup(SLMCostTbl, ISD, MScalarTy))
2853         return Entry->Cost + RegisterFileMoveCost;
2854 
2855     // Assume pinsr/pextr XMM <-> GPR is relatively cheap on all targets.
2856     if ((MScalarTy == MVT::i16 && ST->hasSSE2()) ||
2857         (MScalarTy.isInteger() && ST->hasSSE41()))
2858       return 1 + RegisterFileMoveCost;
2859 
2860     // Assume insertps is relatively cheap on all targets.
2861     if (MScalarTy == MVT::f32 && ST->hasSSE41() &&
2862         Opcode == Instruction::InsertElement)
2863       return 1 + RegisterFileMoveCost;
2864 
2865     // For extractions we just need to shuffle the element to index 0, which
2866     // should be very cheap (assume cost = 1). For insertions we need to shuffle
2867     // the elements to its destination. In both cases we must handle the
2868     // subvector move(s).
2869     // If the vector type is already less than 128-bits then don't reduce it.
2870     // TODO: Under what circumstances should we shuffle using the full width?
2871     int ShuffleCost = 1;
2872     if (Opcode == Instruction::InsertElement) {
2873       auto *SubTy = cast<VectorType>(Val);
2874       EVT VT = TLI->getValueType(DL, Val);
2875       if (VT.getScalarType() != MScalarTy || VT.getSizeInBits() >= 128)
2876         SubTy = VectorType::get(ScalarType, SubNumElts);
2877       ShuffleCost = getShuffleCost(TTI::SK_PermuteTwoSrc, SubTy, 0, SubTy);
2878     }
2879     int IntOrFpCost = ScalarType->isFloatingPointTy() ? 0 : 1;
2880     return ShuffleCost + IntOrFpCost + RegisterFileMoveCost;
2881   }
2882 
2883   // Add to the base cost if we know that the extracted element of a vector is
2884   // destined to be moved to and used in the integer register file.
2885   if (Opcode == Instruction::ExtractElement && ScalarType->isPointerTy())
2886     RegisterFileMoveCost += 1;
2887 
2888   return BaseT::getVectorInstrCost(Opcode, Val, Index) + RegisterFileMoveCost;
2889 }
2890 
2891 unsigned X86TTIImpl::getScalarizationOverhead(VectorType *Ty,
2892                                               const APInt &DemandedElts,
2893                                               bool Insert, bool Extract) {
2894   unsigned Cost = 0;
2895 
2896   // For insertions, a ISD::BUILD_VECTOR style vector initialization can be much
2897   // cheaper than an accumulation of ISD::INSERT_VECTOR_ELT.
2898   if (Insert) {
2899     std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Ty);
2900     MVT MScalarTy = LT.second.getScalarType();
2901 
2902     if ((MScalarTy == MVT::i16 && ST->hasSSE2()) ||
2903         (MScalarTy.isInteger() && ST->hasSSE41()) ||
2904         (MScalarTy == MVT::f32 && ST->hasSSE41())) {
2905       // For types we can insert directly, insertion into 128-bit sub vectors is
2906       // cheap, followed by a cheap chain of concatenations.
2907       if (LT.second.getSizeInBits() <= 128) {
2908         Cost +=
2909             BaseT::getScalarizationOverhead(Ty, DemandedElts, Insert, false);
2910       } else {
2911         unsigned NumSubVecs = LT.second.getSizeInBits() / 128;
2912         Cost += (PowerOf2Ceil(NumSubVecs) - 1) * LT.first;
2913         Cost += DemandedElts.countPopulation();
2914 
2915         // For vXf32 cases, insertion into the 0'th index in each v4f32
2916         // 128-bit vector is free.
2917         // NOTE: This assumes legalization widens vXf32 vectors.
2918         if (MScalarTy == MVT::f32)
2919           for (unsigned i = 0, e = Ty->getNumElements(); i < e; i += 4)
2920             if (DemandedElts[i])
2921               Cost--;
2922       }
2923     } else if (LT.second.isVector()) {
2924       // Without fast insertion, we need to use MOVD/MOVQ to pass each demanded
2925       // integer element as a SCALAR_TO_VECTOR, then we build the vector as a
2926       // series of UNPCK followed by CONCAT_VECTORS - all of these can be
2927       // considered cheap.
2928       if (Ty->isIntOrIntVectorTy())
2929         Cost += DemandedElts.countPopulation();
2930 
2931       // Get the smaller of the legalized or original pow2-extended number of
2932       // vector elements, which represents the number of unpacks we'll end up
2933       // performing.
2934       unsigned NumElts = LT.second.getVectorNumElements();
2935       unsigned Pow2Elts = PowerOf2Ceil(Ty->getNumElements());
2936       Cost += (std::min<unsigned>(NumElts, Pow2Elts) - 1) * LT.first;
2937     }
2938   }
2939 
2940   // TODO: Use default extraction for now, but we should investigate extending this
2941   // to handle repeated subvector extraction.
2942   if (Extract)
2943     Cost += BaseT::getScalarizationOverhead(Ty, DemandedElts, false, Extract);
2944 
2945   return Cost;
2946 }
2947 
2948 int X86TTIImpl::getMemoryOpCost(unsigned Opcode, Type *Src,
2949                                 MaybeAlign Alignment, unsigned AddressSpace,
2950                                 TTI::TargetCostKind CostKind,
2951                                 const Instruction *I) {
2952   // Handle non-power-of-two vectors such as <3 x float>
2953   if (VectorType *VTy = dyn_cast<VectorType>(Src)) {
2954     unsigned NumElem = VTy->getNumElements();
2955 
2956     // Handle a few common cases:
2957     // <3 x float>
2958     if (NumElem == 3 && VTy->getScalarSizeInBits() == 32)
2959       // Cost = 64 bit store + extract + 32 bit store.
2960       return 3;
2961 
2962     // <3 x double>
2963     if (NumElem == 3 && VTy->getScalarSizeInBits() == 64)
2964       // Cost = 128 bit store + unpack + 64 bit store.
2965       return 3;
2966 
2967     // Assume that all other non-power-of-two numbers are scalarized.
2968     if (!isPowerOf2_32(NumElem)) {
2969       APInt DemandedElts = APInt::getAllOnesValue(NumElem);
2970       int Cost = BaseT::getMemoryOpCost(Opcode, VTy->getScalarType(), Alignment,
2971                                         AddressSpace, CostKind);
2972       int SplitCost = getScalarizationOverhead(VTy, DemandedElts,
2973                                                Opcode == Instruction::Load,
2974                                                Opcode == Instruction::Store);
2975       return NumElem * Cost + SplitCost;
2976     }
2977   }
2978 
2979   // Legalize the type.
2980   std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Src);
2981   assert((Opcode == Instruction::Load || Opcode == Instruction::Store) &&
2982          "Invalid Opcode");
2983 
2984   // Each load/store unit costs 1.
2985   int Cost = LT.first * 1;
2986 
2987   // This isn't exactly right. We're using slow unaligned 32-byte accesses as a
2988   // proxy for a double-pumped AVX memory interface such as on Sandybridge.
2989   if (LT.second.getStoreSize() == 32 && ST->isUnalignedMem32Slow())
2990     Cost *= 2;
2991 
2992   return Cost;
2993 }
2994 
2995 int X86TTIImpl::getMaskedMemoryOpCost(unsigned Opcode, Type *SrcTy,
2996                                       unsigned Alignment,
2997                                       unsigned AddressSpace,
2998                                       TTI::TargetCostKind CostKind) {
2999   bool IsLoad = (Instruction::Load == Opcode);
3000   bool IsStore = (Instruction::Store == Opcode);
3001 
3002   VectorType *SrcVTy = dyn_cast<VectorType>(SrcTy);
3003   if (!SrcVTy)
3004     // To calculate scalar take the regular cost, without mask
3005     return getMemoryOpCost(Opcode, SrcTy, MaybeAlign(Alignment), AddressSpace,
3006                            CostKind);
3007 
3008   unsigned NumElem = SrcVTy->getNumElements();
3009   VectorType *MaskTy =
3010       VectorType::get(Type::getInt8Ty(SrcVTy->getContext()), NumElem);
3011   if ((IsLoad && !isLegalMaskedLoad(SrcVTy, MaybeAlign(Alignment))) ||
3012       (IsStore && !isLegalMaskedStore(SrcVTy, MaybeAlign(Alignment))) ||
3013       !isPowerOf2_32(NumElem)) {
3014     // Scalarization
3015     APInt DemandedElts = APInt::getAllOnesValue(NumElem);
3016     int MaskSplitCost =
3017         getScalarizationOverhead(MaskTy, DemandedElts, false, true);
3018     int ScalarCompareCost = getCmpSelInstrCost(
3019         Instruction::ICmp, Type::getInt8Ty(SrcVTy->getContext()), nullptr,
3020         CostKind);
3021     int BranchCost = getCFInstrCost(Instruction::Br, CostKind);
3022     int MaskCmpCost = NumElem * (BranchCost + ScalarCompareCost);
3023     int ValueSplitCost =
3024         getScalarizationOverhead(SrcVTy, DemandedElts, IsLoad, IsStore);
3025     int MemopCost =
3026         NumElem * BaseT::getMemoryOpCost(Opcode, SrcVTy->getScalarType(),
3027                                          MaybeAlign(Alignment), AddressSpace,
3028                                          CostKind);
3029     return MemopCost + ValueSplitCost + MaskSplitCost + MaskCmpCost;
3030   }
3031 
3032   // Legalize the type.
3033   std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, SrcVTy);
3034   auto VT = TLI->getValueType(DL, SrcVTy);
3035   int Cost = 0;
3036   if (VT.isSimple() && LT.second != VT.getSimpleVT() &&
3037       LT.second.getVectorNumElements() == NumElem)
3038     // Promotion requires expand/truncate for data and a shuffle for mask.
3039     Cost += getShuffleCost(TTI::SK_PermuteTwoSrc, SrcVTy, 0, nullptr) +
3040             getShuffleCost(TTI::SK_PermuteTwoSrc, MaskTy, 0, nullptr);
3041 
3042   else if (LT.second.getVectorNumElements() > NumElem) {
3043     VectorType *NewMaskTy = VectorType::get(MaskTy->getElementType(),
3044                                             LT.second.getVectorNumElements());
3045     // Expanding requires fill mask with zeroes
3046     Cost += getShuffleCost(TTI::SK_InsertSubvector, NewMaskTy, 0, MaskTy);
3047   }
3048 
3049   // Pre-AVX512 - each maskmov load costs 2 + store costs ~8.
3050   if (!ST->hasAVX512())
3051     return Cost + LT.first * (IsLoad ? 2 : 8);
3052 
3053   // AVX-512 masked load/store is cheapper
3054   return Cost + LT.first;
3055 }
3056 
3057 int X86TTIImpl::getAddressComputationCost(Type *Ty, ScalarEvolution *SE,
3058                                           const SCEV *Ptr) {
3059   // Address computations in vectorized code with non-consecutive addresses will
3060   // likely result in more instructions compared to scalar code where the
3061   // computation can more often be merged into the index mode. The resulting
3062   // extra micro-ops can significantly decrease throughput.
3063   const unsigned NumVectorInstToHideOverhead = 10;
3064 
3065   // Cost modeling of Strided Access Computation is hidden by the indexing
3066   // modes of X86 regardless of the stride value. We dont believe that there
3067   // is a difference between constant strided access in gerenal and constant
3068   // strided value which is less than or equal to 64.
3069   // Even in the case of (loop invariant) stride whose value is not known at
3070   // compile time, the address computation will not incur more than one extra
3071   // ADD instruction.
3072   if (Ty->isVectorTy() && SE) {
3073     if (!BaseT::isStridedAccess(Ptr))
3074       return NumVectorInstToHideOverhead;
3075     if (!BaseT::getConstantStrideStep(SE, Ptr))
3076       return 1;
3077   }
3078 
3079   return BaseT::getAddressComputationCost(Ty, SE, Ptr);
3080 }
3081 
3082 int X86TTIImpl::getArithmeticReductionCost(unsigned Opcode, VectorType *ValTy,
3083                                            bool IsPairwise,
3084                                            TTI::TargetCostKind CostKind) {
3085   // Just use the default implementation for pair reductions.
3086   if (IsPairwise)
3087     return BaseT::getArithmeticReductionCost(Opcode, ValTy, IsPairwise, CostKind);
3088 
3089   // We use the Intel Architecture Code Analyzer(IACA) to measure the throughput
3090   // and make it as the cost.
3091 
3092   static const CostTblEntry SLMCostTblNoPairWise[] = {
3093     { ISD::FADD,  MVT::v2f64,   3 },
3094     { ISD::ADD,   MVT::v2i64,   5 },
3095   };
3096 
3097   static const CostTblEntry SSE2CostTblNoPairWise[] = {
3098     { ISD::FADD,  MVT::v2f64,   2 },
3099     { ISD::FADD,  MVT::v4f32,   4 },
3100     { ISD::ADD,   MVT::v2i64,   2 },      // The data reported by the IACA tool is "1.6".
3101     { ISD::ADD,   MVT::v2i32,   2 }, // FIXME: chosen to be less than v4i32
3102     { ISD::ADD,   MVT::v4i32,   3 },      // The data reported by the IACA tool is "3.3".
3103     { ISD::ADD,   MVT::v2i16,   2 },      // The data reported by the IACA tool is "4.3".
3104     { ISD::ADD,   MVT::v4i16,   3 },      // The data reported by the IACA tool is "4.3".
3105     { ISD::ADD,   MVT::v8i16,   4 },      // The data reported by the IACA tool is "4.3".
3106     { ISD::ADD,   MVT::v2i8,    2 },
3107     { ISD::ADD,   MVT::v4i8,    2 },
3108     { ISD::ADD,   MVT::v8i8,    2 },
3109     { ISD::ADD,   MVT::v16i8,   3 },
3110   };
3111 
3112   static const CostTblEntry AVX1CostTblNoPairWise[] = {
3113     { ISD::FADD,  MVT::v4f64,   3 },
3114     { ISD::FADD,  MVT::v4f32,   3 },
3115     { ISD::FADD,  MVT::v8f32,   4 },
3116     { ISD::ADD,   MVT::v2i64,   1 },      // The data reported by the IACA tool is "1.5".
3117     { ISD::ADD,   MVT::v4i64,   3 },
3118     { ISD::ADD,   MVT::v8i32,   5 },
3119     { ISD::ADD,   MVT::v16i16,  5 },
3120     { ISD::ADD,   MVT::v32i8,   4 },
3121   };
3122 
3123   int ISD = TLI->InstructionOpcodeToISD(Opcode);
3124   assert(ISD && "Invalid opcode");
3125 
3126   // Before legalizing the type, give a chance to look up illegal narrow types
3127   // in the table.
3128   // FIXME: Is there a better way to do this?
3129   EVT VT = TLI->getValueType(DL, ValTy);
3130   if (VT.isSimple()) {
3131     MVT MTy = VT.getSimpleVT();
3132     if (ST->isSLM())
3133       if (const auto *Entry = CostTableLookup(SLMCostTblNoPairWise, ISD, MTy))
3134         return Entry->Cost;
3135 
3136     if (ST->hasAVX())
3137       if (const auto *Entry = CostTableLookup(AVX1CostTblNoPairWise, ISD, MTy))
3138         return Entry->Cost;
3139 
3140     if (ST->hasSSE2())
3141       if (const auto *Entry = CostTableLookup(SSE2CostTblNoPairWise, ISD, MTy))
3142         return Entry->Cost;
3143   }
3144 
3145   std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, ValTy);
3146 
3147   MVT MTy = LT.second;
3148 
3149   auto *ValVTy = cast<VectorType>(ValTy);
3150 
3151   unsigned ArithmeticCost = 0;
3152   if (LT.first != 1 && MTy.isVector() &&
3153       MTy.getVectorNumElements() < ValVTy->getNumElements()) {
3154     // Type needs to be split. We need LT.first - 1 arithmetic ops.
3155     VectorType *SingleOpTy =
3156         VectorType::get(ValVTy->getElementType(), MTy.getVectorNumElements());
3157     ArithmeticCost = getArithmeticInstrCost(Opcode, SingleOpTy, CostKind);
3158     ArithmeticCost *= LT.first - 1;
3159   }
3160 
3161   if (ST->isSLM())
3162     if (const auto *Entry = CostTableLookup(SLMCostTblNoPairWise, ISD, MTy))
3163       return ArithmeticCost + Entry->Cost;
3164 
3165   if (ST->hasAVX())
3166     if (const auto *Entry = CostTableLookup(AVX1CostTblNoPairWise, ISD, MTy))
3167       return ArithmeticCost + Entry->Cost;
3168 
3169   if (ST->hasSSE2())
3170     if (const auto *Entry = CostTableLookup(SSE2CostTblNoPairWise, ISD, MTy))
3171       return ArithmeticCost + Entry->Cost;
3172 
3173   // FIXME: These assume a naive kshift+binop lowering, which is probably
3174   // conservative in most cases.
3175   static const CostTblEntry AVX512BoolReduction[] = {
3176     { ISD::AND,  MVT::v2i1,   3 },
3177     { ISD::AND,  MVT::v4i1,   5 },
3178     { ISD::AND,  MVT::v8i1,   7 },
3179     { ISD::AND,  MVT::v16i1,  9 },
3180     { ISD::AND,  MVT::v32i1, 11 },
3181     { ISD::AND,  MVT::v64i1, 13 },
3182     { ISD::OR,   MVT::v2i1,   3 },
3183     { ISD::OR,   MVT::v4i1,   5 },
3184     { ISD::OR,   MVT::v8i1,   7 },
3185     { ISD::OR,   MVT::v16i1,  9 },
3186     { ISD::OR,   MVT::v32i1, 11 },
3187     { ISD::OR,   MVT::v64i1, 13 },
3188   };
3189 
3190   static const CostTblEntry AVX2BoolReduction[] = {
3191     { ISD::AND,  MVT::v16i16,  2 }, // vpmovmskb + cmp
3192     { ISD::AND,  MVT::v32i8,   2 }, // vpmovmskb + cmp
3193     { ISD::OR,   MVT::v16i16,  2 }, // vpmovmskb + cmp
3194     { ISD::OR,   MVT::v32i8,   2 }, // vpmovmskb + cmp
3195   };
3196 
3197   static const CostTblEntry AVX1BoolReduction[] = {
3198     { ISD::AND,  MVT::v4i64,   2 }, // vmovmskpd + cmp
3199     { ISD::AND,  MVT::v8i32,   2 }, // vmovmskps + cmp
3200     { ISD::AND,  MVT::v16i16,  4 }, // vextractf128 + vpand + vpmovmskb + cmp
3201     { ISD::AND,  MVT::v32i8,   4 }, // vextractf128 + vpand + vpmovmskb + cmp
3202     { ISD::OR,   MVT::v4i64,   2 }, // vmovmskpd + cmp
3203     { ISD::OR,   MVT::v8i32,   2 }, // vmovmskps + cmp
3204     { ISD::OR,   MVT::v16i16,  4 }, // vextractf128 + vpor + vpmovmskb + cmp
3205     { ISD::OR,   MVT::v32i8,   4 }, // vextractf128 + vpor + vpmovmskb + cmp
3206   };
3207 
3208   static const CostTblEntry SSE2BoolReduction[] = {
3209     { ISD::AND,  MVT::v2i64,   2 }, // movmskpd + cmp
3210     { ISD::AND,  MVT::v4i32,   2 }, // movmskps + cmp
3211     { ISD::AND,  MVT::v8i16,   2 }, // pmovmskb + cmp
3212     { ISD::AND,  MVT::v16i8,   2 }, // pmovmskb + cmp
3213     { ISD::OR,   MVT::v2i64,   2 }, // movmskpd + cmp
3214     { ISD::OR,   MVT::v4i32,   2 }, // movmskps + cmp
3215     { ISD::OR,   MVT::v8i16,   2 }, // pmovmskb + cmp
3216     { ISD::OR,   MVT::v16i8,   2 }, // pmovmskb + cmp
3217   };
3218 
3219   // Handle bool allof/anyof patterns.
3220   if (ValVTy->getElementType()->isIntegerTy(1)) {
3221     unsigned ArithmeticCost = 0;
3222     if (LT.first != 1 && MTy.isVector() &&
3223         MTy.getVectorNumElements() < ValVTy->getNumElements()) {
3224       // Type needs to be split. We need LT.first - 1 arithmetic ops.
3225       Type *SingleOpTy =
3226           VectorType::get(ValVTy->getElementType(), MTy.getVectorNumElements());
3227       ArithmeticCost = getArithmeticInstrCost(Opcode, SingleOpTy, CostKind);
3228       ArithmeticCost *= LT.first - 1;
3229     }
3230 
3231     if (ST->hasAVX512())
3232       if (const auto *Entry = CostTableLookup(AVX512BoolReduction, ISD, MTy))
3233         return ArithmeticCost + Entry->Cost;
3234     if (ST->hasAVX2())
3235       if (const auto *Entry = CostTableLookup(AVX2BoolReduction, ISD, MTy))
3236         return ArithmeticCost + Entry->Cost;
3237     if (ST->hasAVX())
3238       if (const auto *Entry = CostTableLookup(AVX1BoolReduction, ISD, MTy))
3239         return ArithmeticCost + Entry->Cost;
3240     if (ST->hasSSE2())
3241       if (const auto *Entry = CostTableLookup(SSE2BoolReduction, ISD, MTy))
3242         return ArithmeticCost + Entry->Cost;
3243 
3244     return BaseT::getArithmeticReductionCost(Opcode, ValVTy, IsPairwise,
3245                                              CostKind);
3246   }
3247 
3248   unsigned NumVecElts = ValVTy->getNumElements();
3249   unsigned ScalarSize = ValVTy->getScalarSizeInBits();
3250 
3251   // Special case power of 2 reductions where the scalar type isn't changed
3252   // by type legalization.
3253   if (!isPowerOf2_32(NumVecElts) || ScalarSize != MTy.getScalarSizeInBits())
3254     return BaseT::getArithmeticReductionCost(Opcode, ValVTy, IsPairwise,
3255                                              CostKind);
3256 
3257   unsigned ReductionCost = 0;
3258 
3259   auto *Ty = ValVTy;
3260   if (LT.first != 1 && MTy.isVector() &&
3261       MTy.getVectorNumElements() < ValVTy->getNumElements()) {
3262     // Type needs to be split. We need LT.first - 1 arithmetic ops.
3263     Ty = VectorType::get(ValVTy->getElementType(), MTy.getVectorNumElements());
3264     ReductionCost = getArithmeticInstrCost(Opcode, Ty, CostKind);
3265     ReductionCost *= LT.first - 1;
3266     NumVecElts = MTy.getVectorNumElements();
3267   }
3268 
3269   // Now handle reduction with the legal type, taking into account size changes
3270   // at each level.
3271   while (NumVecElts > 1) {
3272     // Determine the size of the remaining vector we need to reduce.
3273     unsigned Size = NumVecElts * ScalarSize;
3274     NumVecElts /= 2;
3275     // If we're reducing from 256/512 bits, use an extract_subvector.
3276     if (Size > 128) {
3277       auto *SubTy = VectorType::get(ValVTy->getElementType(), NumVecElts);
3278       ReductionCost +=
3279           getShuffleCost(TTI::SK_ExtractSubvector, Ty, NumVecElts, SubTy);
3280       Ty = SubTy;
3281     } else if (Size == 128) {
3282       // Reducing from 128 bits is a permute of v2f64/v2i64.
3283       VectorType *ShufTy;
3284       if (ValVTy->isFloatingPointTy())
3285         ShufTy = VectorType::get(Type::getDoubleTy(ValVTy->getContext()), 2);
3286       else
3287         ShufTy = VectorType::get(Type::getInt64Ty(ValVTy->getContext()), 2);
3288       ReductionCost +=
3289           getShuffleCost(TTI::SK_PermuteSingleSrc, ShufTy, 0, nullptr);
3290     } else if (Size == 64) {
3291       // Reducing from 64 bits is a shuffle of v4f32/v4i32.
3292       VectorType *ShufTy;
3293       if (ValVTy->isFloatingPointTy())
3294         ShufTy = VectorType::get(Type::getFloatTy(ValVTy->getContext()), 4);
3295       else
3296         ShufTy = VectorType::get(Type::getInt32Ty(ValVTy->getContext()), 4);
3297       ReductionCost +=
3298           getShuffleCost(TTI::SK_PermuteSingleSrc, ShufTy, 0, nullptr);
3299     } else {
3300       // Reducing from smaller size is a shift by immediate.
3301       auto *ShiftTy = VectorType::get(
3302           Type::getIntNTy(ValVTy->getContext(), Size), 128 / Size);
3303       ReductionCost += getArithmeticInstrCost(
3304           Instruction::LShr, ShiftTy, CostKind,
3305           TargetTransformInfo::OK_AnyValue,
3306           TargetTransformInfo::OK_UniformConstantValue,
3307           TargetTransformInfo::OP_None, TargetTransformInfo::OP_None);
3308     }
3309 
3310     // Add the arithmetic op for this level.
3311     ReductionCost += getArithmeticInstrCost(Opcode, Ty, CostKind);
3312   }
3313 
3314   // Add the final extract element to the cost.
3315   return ReductionCost + getVectorInstrCost(Instruction::ExtractElement, Ty, 0);
3316 }
3317 
3318 int X86TTIImpl::getMinMaxCost(Type *Ty, Type *CondTy, bool IsUnsigned) {
3319   std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Ty);
3320 
3321   MVT MTy = LT.second;
3322 
3323   int ISD;
3324   if (Ty->isIntOrIntVectorTy()) {
3325     ISD = IsUnsigned ? ISD::UMIN : ISD::SMIN;
3326   } else {
3327     assert(Ty->isFPOrFPVectorTy() &&
3328            "Expected float point or integer vector type.");
3329     ISD = ISD::FMINNUM;
3330   }
3331 
3332   static const CostTblEntry SSE1CostTbl[] = {
3333     {ISD::FMINNUM, MVT::v4f32, 1},
3334   };
3335 
3336   static const CostTblEntry SSE2CostTbl[] = {
3337     {ISD::FMINNUM, MVT::v2f64, 1},
3338     {ISD::SMIN,    MVT::v8i16, 1},
3339     {ISD::UMIN,    MVT::v16i8, 1},
3340   };
3341 
3342   static const CostTblEntry SSE41CostTbl[] = {
3343     {ISD::SMIN,    MVT::v4i32, 1},
3344     {ISD::UMIN,    MVT::v4i32, 1},
3345     {ISD::UMIN,    MVT::v8i16, 1},
3346     {ISD::SMIN,    MVT::v16i8, 1},
3347   };
3348 
3349   static const CostTblEntry SSE42CostTbl[] = {
3350     {ISD::UMIN,    MVT::v2i64, 3}, // xor+pcmpgtq+blendvpd
3351   };
3352 
3353   static const CostTblEntry AVX1CostTbl[] = {
3354     {ISD::FMINNUM, MVT::v8f32,  1},
3355     {ISD::FMINNUM, MVT::v4f64,  1},
3356     {ISD::SMIN,    MVT::v8i32,  3},
3357     {ISD::UMIN,    MVT::v8i32,  3},
3358     {ISD::SMIN,    MVT::v16i16, 3},
3359     {ISD::UMIN,    MVT::v16i16, 3},
3360     {ISD::SMIN,    MVT::v32i8,  3},
3361     {ISD::UMIN,    MVT::v32i8,  3},
3362   };
3363 
3364   static const CostTblEntry AVX2CostTbl[] = {
3365     {ISD::SMIN,    MVT::v8i32,  1},
3366     {ISD::UMIN,    MVT::v8i32,  1},
3367     {ISD::SMIN,    MVT::v16i16, 1},
3368     {ISD::UMIN,    MVT::v16i16, 1},
3369     {ISD::SMIN,    MVT::v32i8,  1},
3370     {ISD::UMIN,    MVT::v32i8,  1},
3371   };
3372 
3373   static const CostTblEntry AVX512CostTbl[] = {
3374     {ISD::FMINNUM, MVT::v16f32, 1},
3375     {ISD::FMINNUM, MVT::v8f64,  1},
3376     {ISD::SMIN,    MVT::v2i64,  1},
3377     {ISD::UMIN,    MVT::v2i64,  1},
3378     {ISD::SMIN,    MVT::v4i64,  1},
3379     {ISD::UMIN,    MVT::v4i64,  1},
3380     {ISD::SMIN,    MVT::v8i64,  1},
3381     {ISD::UMIN,    MVT::v8i64,  1},
3382     {ISD::SMIN,    MVT::v16i32, 1},
3383     {ISD::UMIN,    MVT::v16i32, 1},
3384   };
3385 
3386   static const CostTblEntry AVX512BWCostTbl[] = {
3387     {ISD::SMIN,    MVT::v32i16, 1},
3388     {ISD::UMIN,    MVT::v32i16, 1},
3389     {ISD::SMIN,    MVT::v64i8,  1},
3390     {ISD::UMIN,    MVT::v64i8,  1},
3391   };
3392 
3393   // If we have a native MIN/MAX instruction for this type, use it.
3394   if (ST->hasBWI())
3395     if (const auto *Entry = CostTableLookup(AVX512BWCostTbl, ISD, MTy))
3396       return LT.first * Entry->Cost;
3397 
3398   if (ST->hasAVX512())
3399     if (const auto *Entry = CostTableLookup(AVX512CostTbl, ISD, MTy))
3400       return LT.first * Entry->Cost;
3401 
3402   if (ST->hasAVX2())
3403     if (const auto *Entry = CostTableLookup(AVX2CostTbl, ISD, MTy))
3404       return LT.first * Entry->Cost;
3405 
3406   if (ST->hasAVX())
3407     if (const auto *Entry = CostTableLookup(AVX1CostTbl, ISD, MTy))
3408       return LT.first * Entry->Cost;
3409 
3410   if (ST->hasSSE42())
3411     if (const auto *Entry = CostTableLookup(SSE42CostTbl, ISD, MTy))
3412       return LT.first * Entry->Cost;
3413 
3414   if (ST->hasSSE41())
3415     if (const auto *Entry = CostTableLookup(SSE41CostTbl, ISD, MTy))
3416       return LT.first * Entry->Cost;
3417 
3418   if (ST->hasSSE2())
3419     if (const auto *Entry = CostTableLookup(SSE2CostTbl, ISD, MTy))
3420       return LT.first * Entry->Cost;
3421 
3422   if (ST->hasSSE1())
3423     if (const auto *Entry = CostTableLookup(SSE1CostTbl, ISD, MTy))
3424       return LT.first * Entry->Cost;
3425 
3426   unsigned CmpOpcode;
3427   if (Ty->isFPOrFPVectorTy()) {
3428     CmpOpcode = Instruction::FCmp;
3429   } else {
3430     assert(Ty->isIntOrIntVectorTy() &&
3431            "expecting floating point or integer type for min/max reduction");
3432     CmpOpcode = Instruction::ICmp;
3433   }
3434 
3435   TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
3436   // Otherwise fall back to cmp+select.
3437   return getCmpSelInstrCost(CmpOpcode, Ty, CondTy, CostKind) +
3438          getCmpSelInstrCost(Instruction::Select, Ty, CondTy, CostKind);
3439 }
3440 
3441 int X86TTIImpl::getMinMaxReductionCost(VectorType *ValTy, VectorType *CondTy,
3442                                        bool IsPairwise, bool IsUnsigned,
3443                                        TTI::TargetCostKind CostKind) {
3444   // Just use the default implementation for pair reductions.
3445   if (IsPairwise)
3446     return BaseT::getMinMaxReductionCost(ValTy, CondTy, IsPairwise, IsUnsigned,
3447                                          CostKind);
3448 
3449   std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, ValTy);
3450 
3451   MVT MTy = LT.second;
3452 
3453   int ISD;
3454   if (ValTy->isIntOrIntVectorTy()) {
3455     ISD = IsUnsigned ? ISD::UMIN : ISD::SMIN;
3456   } else {
3457     assert(ValTy->isFPOrFPVectorTy() &&
3458            "Expected float point or integer vector type.");
3459     ISD = ISD::FMINNUM;
3460   }
3461 
3462   // We use the Intel Architecture Code Analyzer(IACA) to measure the throughput
3463   // and make it as the cost.
3464 
3465   static const CostTblEntry SSE2CostTblNoPairWise[] = {
3466       {ISD::UMIN, MVT::v2i16, 5}, // need pxors to use pminsw/pmaxsw
3467       {ISD::UMIN, MVT::v4i16, 7}, // need pxors to use pminsw/pmaxsw
3468       {ISD::UMIN, MVT::v8i16, 9}, // need pxors to use pminsw/pmaxsw
3469   };
3470 
3471   static const CostTblEntry SSE41CostTblNoPairWise[] = {
3472       {ISD::SMIN, MVT::v2i16, 3}, // same as sse2
3473       {ISD::SMIN, MVT::v4i16, 5}, // same as sse2
3474       {ISD::UMIN, MVT::v2i16, 5}, // same as sse2
3475       {ISD::UMIN, MVT::v4i16, 7}, // same as sse2
3476       {ISD::SMIN, MVT::v8i16, 4}, // phminposuw+xor
3477       {ISD::UMIN, MVT::v8i16, 4}, // FIXME: umin is cheaper than umax
3478       {ISD::SMIN, MVT::v2i8,  3}, // pminsb
3479       {ISD::SMIN, MVT::v4i8,  5}, // pminsb
3480       {ISD::SMIN, MVT::v8i8,  7}, // pminsb
3481       {ISD::SMIN, MVT::v16i8, 6},
3482       {ISD::UMIN, MVT::v2i8,  3}, // same as sse2
3483       {ISD::UMIN, MVT::v4i8,  5}, // same as sse2
3484       {ISD::UMIN, MVT::v8i8,  7}, // same as sse2
3485       {ISD::UMIN, MVT::v16i8, 6}, // FIXME: umin is cheaper than umax
3486   };
3487 
3488   static const CostTblEntry AVX1CostTblNoPairWise[] = {
3489       {ISD::SMIN, MVT::v16i16, 6},
3490       {ISD::UMIN, MVT::v16i16, 6}, // FIXME: umin is cheaper than umax
3491       {ISD::SMIN, MVT::v32i8, 8},
3492       {ISD::UMIN, MVT::v32i8, 8},
3493   };
3494 
3495   static const CostTblEntry AVX512BWCostTblNoPairWise[] = {
3496       {ISD::SMIN, MVT::v32i16, 8},
3497       {ISD::UMIN, MVT::v32i16, 8}, // FIXME: umin is cheaper than umax
3498       {ISD::SMIN, MVT::v64i8, 10},
3499       {ISD::UMIN, MVT::v64i8, 10},
3500   };
3501 
3502   // Before legalizing the type, give a chance to look up illegal narrow types
3503   // in the table.
3504   // FIXME: Is there a better way to do this?
3505   EVT VT = TLI->getValueType(DL, ValTy);
3506   if (VT.isSimple()) {
3507     MVT MTy = VT.getSimpleVT();
3508     if (ST->hasBWI())
3509       if (const auto *Entry = CostTableLookup(AVX512BWCostTblNoPairWise, ISD, MTy))
3510         return Entry->Cost;
3511 
3512     if (ST->hasAVX())
3513       if (const auto *Entry = CostTableLookup(AVX1CostTblNoPairWise, ISD, MTy))
3514         return Entry->Cost;
3515 
3516     if (ST->hasSSE41())
3517       if (const auto *Entry = CostTableLookup(SSE41CostTblNoPairWise, ISD, MTy))
3518         return Entry->Cost;
3519 
3520     if (ST->hasSSE2())
3521       if (const auto *Entry = CostTableLookup(SSE2CostTblNoPairWise, ISD, MTy))
3522         return Entry->Cost;
3523   }
3524 
3525   auto *ValVTy = cast<VectorType>(ValTy);
3526   unsigned NumVecElts = ValVTy->getNumElements();
3527 
3528   auto *Ty = ValVTy;
3529   unsigned MinMaxCost = 0;
3530   if (LT.first != 1 && MTy.isVector() &&
3531       MTy.getVectorNumElements() < ValVTy->getNumElements()) {
3532     // Type needs to be split. We need LT.first - 1 operations ops.
3533     Ty = VectorType::get(ValVTy->getElementType(), MTy.getVectorNumElements());
3534     auto *SubCondTy = VectorType::get(
3535         cast<VectorType>(CondTy)->getElementType(), MTy.getVectorNumElements());
3536     MinMaxCost = getMinMaxCost(Ty, SubCondTy, IsUnsigned);
3537     MinMaxCost *= LT.first - 1;
3538     NumVecElts = MTy.getVectorNumElements();
3539   }
3540 
3541   if (ST->hasBWI())
3542     if (const auto *Entry = CostTableLookup(AVX512BWCostTblNoPairWise, ISD, MTy))
3543       return MinMaxCost + Entry->Cost;
3544 
3545   if (ST->hasAVX())
3546     if (const auto *Entry = CostTableLookup(AVX1CostTblNoPairWise, ISD, MTy))
3547       return MinMaxCost + Entry->Cost;
3548 
3549   if (ST->hasSSE41())
3550     if (const auto *Entry = CostTableLookup(SSE41CostTblNoPairWise, ISD, MTy))
3551       return MinMaxCost + Entry->Cost;
3552 
3553   if (ST->hasSSE2())
3554     if (const auto *Entry = CostTableLookup(SSE2CostTblNoPairWise, ISD, MTy))
3555       return MinMaxCost + Entry->Cost;
3556 
3557   unsigned ScalarSize = ValTy->getScalarSizeInBits();
3558 
3559   // Special case power of 2 reductions where the scalar type isn't changed
3560   // by type legalization.
3561   if (!isPowerOf2_32(ValVTy->getNumElements()) ||
3562       ScalarSize != MTy.getScalarSizeInBits())
3563     return BaseT::getMinMaxReductionCost(ValTy, CondTy, IsPairwise, IsUnsigned,
3564                                          CostKind);
3565 
3566   // Now handle reduction with the legal type, taking into account size changes
3567   // at each level.
3568   while (NumVecElts > 1) {
3569     // Determine the size of the remaining vector we need to reduce.
3570     unsigned Size = NumVecElts * ScalarSize;
3571     NumVecElts /= 2;
3572     // If we're reducing from 256/512 bits, use an extract_subvector.
3573     if (Size > 128) {
3574       auto *SubTy = VectorType::get(ValVTy->getElementType(), NumVecElts);
3575       MinMaxCost +=
3576           getShuffleCost(TTI::SK_ExtractSubvector, Ty, NumVecElts, SubTy);
3577       Ty = SubTy;
3578     } else if (Size == 128) {
3579       // Reducing from 128 bits is a permute of v2f64/v2i64.
3580       VectorType *ShufTy;
3581       if (ValTy->isFloatingPointTy())
3582         ShufTy = VectorType::get(Type::getDoubleTy(ValTy->getContext()), 2);
3583       else
3584         ShufTy = VectorType::get(Type::getInt64Ty(ValTy->getContext()), 2);
3585       MinMaxCost +=
3586           getShuffleCost(TTI::SK_PermuteSingleSrc, ShufTy, 0, nullptr);
3587     } else if (Size == 64) {
3588       // Reducing from 64 bits is a shuffle of v4f32/v4i32.
3589       VectorType *ShufTy;
3590       if (ValTy->isFloatingPointTy())
3591         ShufTy = VectorType::get(Type::getFloatTy(ValTy->getContext()), 4);
3592       else
3593         ShufTy = VectorType::get(Type::getInt32Ty(ValTy->getContext()), 4);
3594       MinMaxCost +=
3595           getShuffleCost(TTI::SK_PermuteSingleSrc, ShufTy, 0, nullptr);
3596     } else {
3597       // Reducing from smaller size is a shift by immediate.
3598       VectorType *ShiftTy = VectorType::get(
3599           Type::getIntNTy(ValTy->getContext(), Size), 128 / Size);
3600       MinMaxCost += getArithmeticInstrCost(
3601           Instruction::LShr, ShiftTy, TTI::TCK_RecipThroughput,
3602           TargetTransformInfo::OK_AnyValue,
3603           TargetTransformInfo::OK_UniformConstantValue,
3604           TargetTransformInfo::OP_None, TargetTransformInfo::OP_None);
3605     }
3606 
3607     // Add the arithmetic op for this level.
3608     auto *SubCondTy = VectorType::get(CondTy->getElementType(),
3609                                       Ty->getNumElements());
3610     MinMaxCost += getMinMaxCost(Ty, SubCondTy, IsUnsigned);
3611   }
3612 
3613   // Add the final extract element to the cost.
3614   return MinMaxCost + getVectorInstrCost(Instruction::ExtractElement, Ty, 0);
3615 }
3616 
3617 /// Calculate the cost of materializing a 64-bit value. This helper
3618 /// method might only calculate a fraction of a larger immediate. Therefore it
3619 /// is valid to return a cost of ZERO.
3620 int X86TTIImpl::getIntImmCost(int64_t Val) {
3621   if (Val == 0)
3622     return TTI::TCC_Free;
3623 
3624   if (isInt<32>(Val))
3625     return TTI::TCC_Basic;
3626 
3627   return 2 * TTI::TCC_Basic;
3628 }
3629 
3630 int X86TTIImpl::getIntImmCost(const APInt &Imm, Type *Ty,
3631                               TTI::TargetCostKind CostKind) {
3632   assert(Ty->isIntegerTy());
3633 
3634   unsigned BitSize = Ty->getPrimitiveSizeInBits();
3635   if (BitSize == 0)
3636     return ~0U;
3637 
3638   // Never hoist constants larger than 128bit, because this might lead to
3639   // incorrect code generation or assertions in codegen.
3640   // Fixme: Create a cost model for types larger than i128 once the codegen
3641   // issues have been fixed.
3642   if (BitSize > 128)
3643     return TTI::TCC_Free;
3644 
3645   if (Imm == 0)
3646     return TTI::TCC_Free;
3647 
3648   // Sign-extend all constants to a multiple of 64-bit.
3649   APInt ImmVal = Imm;
3650   if (BitSize % 64 != 0)
3651     ImmVal = Imm.sext(alignTo(BitSize, 64));
3652 
3653   // Split the constant into 64-bit chunks and calculate the cost for each
3654   // chunk.
3655   int Cost = 0;
3656   for (unsigned ShiftVal = 0; ShiftVal < BitSize; ShiftVal += 64) {
3657     APInt Tmp = ImmVal.ashr(ShiftVal).sextOrTrunc(64);
3658     int64_t Val = Tmp.getSExtValue();
3659     Cost += getIntImmCost(Val);
3660   }
3661   // We need at least one instruction to materialize the constant.
3662   return std::max(1, Cost);
3663 }
3664 
3665 int X86TTIImpl::getIntImmCostInst(unsigned Opcode, unsigned Idx, const APInt &Imm,
3666                                   Type *Ty, TTI::TargetCostKind CostKind) {
3667   assert(Ty->isIntegerTy());
3668 
3669   unsigned BitSize = Ty->getPrimitiveSizeInBits();
3670   // There is no cost model for constants with a bit size of 0. Return TCC_Free
3671   // here, so that constant hoisting will ignore this constant.
3672   if (BitSize == 0)
3673     return TTI::TCC_Free;
3674 
3675   unsigned ImmIdx = ~0U;
3676   switch (Opcode) {
3677   default:
3678     return TTI::TCC_Free;
3679   case Instruction::GetElementPtr:
3680     // Always hoist the base address of a GetElementPtr. This prevents the
3681     // creation of new constants for every base constant that gets constant
3682     // folded with the offset.
3683     if (Idx == 0)
3684       return 2 * TTI::TCC_Basic;
3685     return TTI::TCC_Free;
3686   case Instruction::Store:
3687     ImmIdx = 0;
3688     break;
3689   case Instruction::ICmp:
3690     // This is an imperfect hack to prevent constant hoisting of
3691     // compares that might be trying to check if a 64-bit value fits in
3692     // 32-bits. The backend can optimize these cases using a right shift by 32.
3693     // Ideally we would check the compare predicate here. There also other
3694     // similar immediates the backend can use shifts for.
3695     if (Idx == 1 && Imm.getBitWidth() == 64) {
3696       uint64_t ImmVal = Imm.getZExtValue();
3697       if (ImmVal == 0x100000000ULL || ImmVal == 0xffffffff)
3698         return TTI::TCC_Free;
3699     }
3700     ImmIdx = 1;
3701     break;
3702   case Instruction::And:
3703     // We support 64-bit ANDs with immediates with 32-bits of leading zeroes
3704     // by using a 32-bit operation with implicit zero extension. Detect such
3705     // immediates here as the normal path expects bit 31 to be sign extended.
3706     if (Idx == 1 && Imm.getBitWidth() == 64 && isUInt<32>(Imm.getZExtValue()))
3707       return TTI::TCC_Free;
3708     ImmIdx = 1;
3709     break;
3710   case Instruction::Add:
3711   case Instruction::Sub:
3712     // For add/sub, we can use the opposite instruction for INT32_MIN.
3713     if (Idx == 1 && Imm.getBitWidth() == 64 && Imm.getZExtValue() == 0x80000000)
3714       return TTI::TCC_Free;
3715     ImmIdx = 1;
3716     break;
3717   case Instruction::UDiv:
3718   case Instruction::SDiv:
3719   case Instruction::URem:
3720   case Instruction::SRem:
3721     // Division by constant is typically expanded later into a different
3722     // instruction sequence. This completely changes the constants.
3723     // Report them as "free" to stop ConstantHoist from marking them as opaque.
3724     return TTI::TCC_Free;
3725   case Instruction::Mul:
3726   case Instruction::Or:
3727   case Instruction::Xor:
3728     ImmIdx = 1;
3729     break;
3730   // Always return TCC_Free for the shift value of a shift instruction.
3731   case Instruction::Shl:
3732   case Instruction::LShr:
3733   case Instruction::AShr:
3734     if (Idx == 1)
3735       return TTI::TCC_Free;
3736     break;
3737   case Instruction::Trunc:
3738   case Instruction::ZExt:
3739   case Instruction::SExt:
3740   case Instruction::IntToPtr:
3741   case Instruction::PtrToInt:
3742   case Instruction::BitCast:
3743   case Instruction::PHI:
3744   case Instruction::Call:
3745   case Instruction::Select:
3746   case Instruction::Ret:
3747   case Instruction::Load:
3748     break;
3749   }
3750 
3751   if (Idx == ImmIdx) {
3752     int NumConstants = divideCeil(BitSize, 64);
3753     int Cost = X86TTIImpl::getIntImmCost(Imm, Ty, CostKind);
3754     return (Cost <= NumConstants * TTI::TCC_Basic)
3755                ? static_cast<int>(TTI::TCC_Free)
3756                : Cost;
3757   }
3758 
3759   return X86TTIImpl::getIntImmCost(Imm, Ty, CostKind);
3760 }
3761 
3762 int X86TTIImpl::getIntImmCostIntrin(Intrinsic::ID IID, unsigned Idx,
3763                                     const APInt &Imm, Type *Ty,
3764                                     TTI::TargetCostKind CostKind) {
3765   assert(Ty->isIntegerTy());
3766 
3767   unsigned BitSize = Ty->getPrimitiveSizeInBits();
3768   // There is no cost model for constants with a bit size of 0. Return TCC_Free
3769   // here, so that constant hoisting will ignore this constant.
3770   if (BitSize == 0)
3771     return TTI::TCC_Free;
3772 
3773   switch (IID) {
3774   default:
3775     return TTI::TCC_Free;
3776   case Intrinsic::sadd_with_overflow:
3777   case Intrinsic::uadd_with_overflow:
3778   case Intrinsic::ssub_with_overflow:
3779   case Intrinsic::usub_with_overflow:
3780   case Intrinsic::smul_with_overflow:
3781   case Intrinsic::umul_with_overflow:
3782     if ((Idx == 1) && Imm.getBitWidth() <= 64 && isInt<32>(Imm.getSExtValue()))
3783       return TTI::TCC_Free;
3784     break;
3785   case Intrinsic::experimental_stackmap:
3786     if ((Idx < 2) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue())))
3787       return TTI::TCC_Free;
3788     break;
3789   case Intrinsic::experimental_patchpoint_void:
3790   case Intrinsic::experimental_patchpoint_i64:
3791     if ((Idx < 4) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue())))
3792       return TTI::TCC_Free;
3793     break;
3794   }
3795   return X86TTIImpl::getIntImmCost(Imm, Ty, CostKind);
3796 }
3797 
3798 unsigned
3799 X86TTIImpl::getUserCost(const User *U, ArrayRef<const Value *> Operands,
3800                         TTI::TargetCostKind CostKind) {
3801   if (isa<StoreInst>(U)) {
3802     Value *Ptr = U->getOperand(1);
3803     // Store instruction with index and scale costs 2 Uops.
3804     // Check the preceding GEP to identify non-const indices.
3805     if (auto GEP = dyn_cast<GetElementPtrInst>(Ptr)) {
3806       if (!all_of(GEP->indices(), [](Value *V) { return isa<Constant>(V); }))
3807         return TTI::TCC_Basic * 2;
3808     }
3809     return TTI::TCC_Basic;
3810   }
3811   return BaseT::getUserCost(U, Operands, CostKind);
3812 }
3813 
3814 // Return an average cost of Gather / Scatter instruction, maybe improved later
3815 int X86TTIImpl::getGSVectorCost(unsigned Opcode, Type *SrcVTy, Value *Ptr,
3816                                 unsigned Alignment, unsigned AddressSpace) {
3817 
3818   assert(isa<VectorType>(SrcVTy) && "Unexpected type in getGSVectorCost");
3819   unsigned VF = cast<VectorType>(SrcVTy)->getNumElements();
3820 
3821   // Try to reduce index size from 64 bit (default for GEP)
3822   // to 32. It is essential for VF 16. If the index can't be reduced to 32, the
3823   // operation will use 16 x 64 indices which do not fit in a zmm and needs
3824   // to split. Also check that the base pointer is the same for all lanes,
3825   // and that there's at most one variable index.
3826   auto getIndexSizeInBits = [](Value *Ptr, const DataLayout& DL) {
3827     unsigned IndexSize = DL.getPointerSizeInBits();
3828     GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr);
3829     if (IndexSize < 64 || !GEP)
3830       return IndexSize;
3831 
3832     unsigned NumOfVarIndices = 0;
3833     Value *Ptrs = GEP->getPointerOperand();
3834     if (Ptrs->getType()->isVectorTy() && !getSplatValue(Ptrs))
3835       return IndexSize;
3836     for (unsigned i = 1; i < GEP->getNumOperands(); ++i) {
3837       if (isa<Constant>(GEP->getOperand(i)))
3838         continue;
3839       Type *IndxTy = GEP->getOperand(i)->getType();
3840       if (auto *IndexVTy = dyn_cast<VectorType>(IndxTy))
3841         IndxTy = IndexVTy->getElementType();
3842       if ((IndxTy->getPrimitiveSizeInBits() == 64 &&
3843           !isa<SExtInst>(GEP->getOperand(i))) ||
3844          ++NumOfVarIndices > 1)
3845         return IndexSize; // 64
3846     }
3847     return (unsigned)32;
3848   };
3849 
3850 
3851   // Trying to reduce IndexSize to 32 bits for vector 16.
3852   // By default the IndexSize is equal to pointer size.
3853   unsigned IndexSize = (ST->hasAVX512() && VF >= 16)
3854                            ? getIndexSizeInBits(Ptr, DL)
3855                            : DL.getPointerSizeInBits();
3856 
3857   Type *IndexVTy = VectorType::get(IntegerType::get(SrcVTy->getContext(),
3858                                                     IndexSize), VF);
3859   std::pair<int, MVT> IdxsLT = TLI->getTypeLegalizationCost(DL, IndexVTy);
3860   std::pair<int, MVT> SrcLT = TLI->getTypeLegalizationCost(DL, SrcVTy);
3861   int SplitFactor = std::max(IdxsLT.first, SrcLT.first);
3862   if (SplitFactor > 1) {
3863     // Handle splitting of vector of pointers
3864     Type *SplitSrcTy = VectorType::get(SrcVTy->getScalarType(), VF / SplitFactor);
3865     return SplitFactor * getGSVectorCost(Opcode, SplitSrcTy, Ptr, Alignment,
3866                                          AddressSpace);
3867   }
3868 
3869   // The gather / scatter cost is given by Intel architects. It is a rough
3870   // number since we are looking at one instruction in a time.
3871   const int GSOverhead = (Opcode == Instruction::Load)
3872                              ? ST->getGatherOverhead()
3873                              : ST->getScatterOverhead();
3874   return GSOverhead + VF * getMemoryOpCost(Opcode, SrcVTy->getScalarType(),
3875                                            MaybeAlign(Alignment), AddressSpace,
3876                                            TTI::TCK_RecipThroughput);
3877 }
3878 
3879 /// Return the cost of full scalarization of gather / scatter operation.
3880 ///
3881 /// Opcode - Load or Store instruction.
3882 /// SrcVTy - The type of the data vector that should be gathered or scattered.
3883 /// VariableMask - The mask is non-constant at compile time.
3884 /// Alignment - Alignment for one element.
3885 /// AddressSpace - pointer[s] address space.
3886 ///
3887 int X86TTIImpl::getGSScalarCost(unsigned Opcode, Type *SrcVTy,
3888                                 bool VariableMask, unsigned Alignment,
3889                                 unsigned AddressSpace) {
3890   unsigned VF = cast<VectorType>(SrcVTy)->getNumElements();
3891   APInt DemandedElts = APInt::getAllOnesValue(VF);
3892   TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
3893 
3894   int MaskUnpackCost = 0;
3895   if (VariableMask) {
3896     VectorType *MaskTy =
3897       VectorType::get(Type::getInt1Ty(SrcVTy->getContext()), VF);
3898     MaskUnpackCost =
3899         getScalarizationOverhead(MaskTy, DemandedElts, false, true);
3900     int ScalarCompareCost =
3901       getCmpSelInstrCost(Instruction::ICmp, Type::getInt1Ty(SrcVTy->getContext()),
3902                          nullptr, CostKind);
3903     int BranchCost = getCFInstrCost(Instruction::Br, CostKind);
3904     MaskUnpackCost += VF * (BranchCost + ScalarCompareCost);
3905   }
3906 
3907   // The cost of the scalar loads/stores.
3908   int MemoryOpCost = VF * getMemoryOpCost(Opcode, SrcVTy->getScalarType(),
3909                                           MaybeAlign(Alignment), AddressSpace,
3910                                           CostKind);
3911 
3912   int InsertExtractCost = 0;
3913   if (Opcode == Instruction::Load)
3914     for (unsigned i = 0; i < VF; ++i)
3915       // Add the cost of inserting each scalar load into the vector
3916       InsertExtractCost +=
3917         getVectorInstrCost(Instruction::InsertElement, SrcVTy, i);
3918   else
3919     for (unsigned i = 0; i < VF; ++i)
3920       // Add the cost of extracting each element out of the data vector
3921       InsertExtractCost +=
3922         getVectorInstrCost(Instruction::ExtractElement, SrcVTy, i);
3923 
3924   return MemoryOpCost + MaskUnpackCost + InsertExtractCost;
3925 }
3926 
3927 /// Calculate the cost of Gather / Scatter operation
3928 int X86TTIImpl::getGatherScatterOpCost(
3929     unsigned Opcode, Type *SrcVTy, Value *Ptr, bool VariableMask,
3930     unsigned Alignment, TTI::TargetCostKind CostKind,
3931     const Instruction *I = nullptr) {
3932 
3933   assert(SrcVTy->isVectorTy() && "Unexpected data type for Gather/Scatter");
3934   unsigned VF = cast<VectorType>(SrcVTy)->getNumElements();
3935   PointerType *PtrTy = dyn_cast<PointerType>(Ptr->getType());
3936   if (!PtrTy && Ptr->getType()->isVectorTy())
3937     PtrTy = dyn_cast<PointerType>(
3938         cast<VectorType>(Ptr->getType())->getElementType());
3939   assert(PtrTy && "Unexpected type for Ptr argument");
3940   unsigned AddressSpace = PtrTy->getAddressSpace();
3941 
3942   bool Scalarize = false;
3943   if ((Opcode == Instruction::Load &&
3944        !isLegalMaskedGather(SrcVTy, MaybeAlign(Alignment))) ||
3945       (Opcode == Instruction::Store &&
3946        !isLegalMaskedScatter(SrcVTy, MaybeAlign(Alignment))))
3947     Scalarize = true;
3948   // Gather / Scatter for vector 2 is not profitable on KNL / SKX
3949   // Vector-4 of gather/scatter instruction does not exist on KNL.
3950   // We can extend it to 8 elements, but zeroing upper bits of
3951   // the mask vector will add more instructions. Right now we give the scalar
3952   // cost of vector-4 for KNL. TODO: Check, maybe the gather/scatter instruction
3953   // is better in the VariableMask case.
3954   if (ST->hasAVX512() && (VF == 2 || (VF == 4 && !ST->hasVLX())))
3955     Scalarize = true;
3956 
3957   if (Scalarize)
3958     return getGSScalarCost(Opcode, SrcVTy, VariableMask, Alignment,
3959                            AddressSpace);
3960 
3961   return getGSVectorCost(Opcode, SrcVTy, Ptr, Alignment, AddressSpace);
3962 }
3963 
3964 bool X86TTIImpl::isLSRCostLess(TargetTransformInfo::LSRCost &C1,
3965                                TargetTransformInfo::LSRCost &C2) {
3966     // X86 specific here are "instruction number 1st priority".
3967     return std::tie(C1.Insns, C1.NumRegs, C1.AddRecCost,
3968                     C1.NumIVMuls, C1.NumBaseAdds,
3969                     C1.ScaleCost, C1.ImmCost, C1.SetupCost) <
3970            std::tie(C2.Insns, C2.NumRegs, C2.AddRecCost,
3971                     C2.NumIVMuls, C2.NumBaseAdds,
3972                     C2.ScaleCost, C2.ImmCost, C2.SetupCost);
3973 }
3974 
3975 bool X86TTIImpl::canMacroFuseCmp() {
3976   return ST->hasMacroFusion() || ST->hasBranchFusion();
3977 }
3978 
3979 bool X86TTIImpl::isLegalMaskedLoad(Type *DataTy, MaybeAlign Alignment) {
3980   if (!ST->hasAVX())
3981     return false;
3982 
3983   // The backend can't handle a single element vector.
3984   if (isa<VectorType>(DataTy) &&
3985       cast<VectorType>(DataTy)->getNumElements() == 1)
3986     return false;
3987   Type *ScalarTy = DataTy->getScalarType();
3988 
3989   if (ScalarTy->isPointerTy())
3990     return true;
3991 
3992   if (ScalarTy->isFloatTy() || ScalarTy->isDoubleTy())
3993     return true;
3994 
3995   if (!ScalarTy->isIntegerTy())
3996     return false;
3997 
3998   unsigned IntWidth = ScalarTy->getIntegerBitWidth();
3999   return IntWidth == 32 || IntWidth == 64 ||
4000          ((IntWidth == 8 || IntWidth == 16) && ST->hasBWI());
4001 }
4002 
4003 bool X86TTIImpl::isLegalMaskedStore(Type *DataType, MaybeAlign Alignment) {
4004   return isLegalMaskedLoad(DataType, Alignment);
4005 }
4006 
4007 bool X86TTIImpl::isLegalNTLoad(Type *DataType, Align Alignment) {
4008   unsigned DataSize = DL.getTypeStoreSize(DataType);
4009   // The only supported nontemporal loads are for aligned vectors of 16 or 32
4010   // bytes.  Note that 32-byte nontemporal vector loads are supported by AVX2
4011   // (the equivalent stores only require AVX).
4012   if (Alignment >= DataSize && (DataSize == 16 || DataSize == 32))
4013     return DataSize == 16 ?  ST->hasSSE1() : ST->hasAVX2();
4014 
4015   return false;
4016 }
4017 
4018 bool X86TTIImpl::isLegalNTStore(Type *DataType, Align Alignment) {
4019   unsigned DataSize = DL.getTypeStoreSize(DataType);
4020 
4021   // SSE4A supports nontemporal stores of float and double at arbitrary
4022   // alignment.
4023   if (ST->hasSSE4A() && (DataType->isFloatTy() || DataType->isDoubleTy()))
4024     return true;
4025 
4026   // Besides the SSE4A subtarget exception above, only aligned stores are
4027   // available nontemporaly on any other subtarget.  And only stores with a size
4028   // of 4..32 bytes (powers of 2, only) are permitted.
4029   if (Alignment < DataSize || DataSize < 4 || DataSize > 32 ||
4030       !isPowerOf2_32(DataSize))
4031     return false;
4032 
4033   // 32-byte vector nontemporal stores are supported by AVX (the equivalent
4034   // loads require AVX2).
4035   if (DataSize == 32)
4036     return ST->hasAVX();
4037   else if (DataSize == 16)
4038     return ST->hasSSE1();
4039   return true;
4040 }
4041 
4042 bool X86TTIImpl::isLegalMaskedExpandLoad(Type *DataTy) {
4043   if (!isa<VectorType>(DataTy))
4044     return false;
4045 
4046   if (!ST->hasAVX512())
4047     return false;
4048 
4049   // The backend can't handle a single element vector.
4050   if (cast<VectorType>(DataTy)->getNumElements() == 1)
4051     return false;
4052 
4053   Type *ScalarTy = cast<VectorType>(DataTy)->getElementType();
4054 
4055   if (ScalarTy->isFloatTy() || ScalarTy->isDoubleTy())
4056     return true;
4057 
4058   if (!ScalarTy->isIntegerTy())
4059     return false;
4060 
4061   unsigned IntWidth = ScalarTy->getIntegerBitWidth();
4062   return IntWidth == 32 || IntWidth == 64 ||
4063          ((IntWidth == 8 || IntWidth == 16) && ST->hasVBMI2());
4064 }
4065 
4066 bool X86TTIImpl::isLegalMaskedCompressStore(Type *DataTy) {
4067   return isLegalMaskedExpandLoad(DataTy);
4068 }
4069 
4070 bool X86TTIImpl::isLegalMaskedGather(Type *DataTy, MaybeAlign Alignment) {
4071   // Some CPUs have better gather performance than others.
4072   // TODO: Remove the explicit ST->hasAVX512()?, That would mean we would only
4073   // enable gather with a -march.
4074   if (!(ST->hasAVX512() || (ST->hasFastGather() && ST->hasAVX2())))
4075     return false;
4076 
4077   // This function is called now in two cases: from the Loop Vectorizer
4078   // and from the Scalarizer.
4079   // When the Loop Vectorizer asks about legality of the feature,
4080   // the vectorization factor is not calculated yet. The Loop Vectorizer
4081   // sends a scalar type and the decision is based on the width of the
4082   // scalar element.
4083   // Later on, the cost model will estimate usage this intrinsic based on
4084   // the vector type.
4085   // The Scalarizer asks again about legality. It sends a vector type.
4086   // In this case we can reject non-power-of-2 vectors.
4087   // We also reject single element vectors as the type legalizer can't
4088   // scalarize it.
4089   if (auto *DataVTy = dyn_cast<VectorType>(DataTy)) {
4090     unsigned NumElts = DataVTy->getNumElements();
4091     if (NumElts == 1 || !isPowerOf2_32(NumElts))
4092       return false;
4093   }
4094   Type *ScalarTy = DataTy->getScalarType();
4095   if (ScalarTy->isPointerTy())
4096     return true;
4097 
4098   if (ScalarTy->isFloatTy() || ScalarTy->isDoubleTy())
4099     return true;
4100 
4101   if (!ScalarTy->isIntegerTy())
4102     return false;
4103 
4104   unsigned IntWidth = ScalarTy->getIntegerBitWidth();
4105   return IntWidth == 32 || IntWidth == 64;
4106 }
4107 
4108 bool X86TTIImpl::isLegalMaskedScatter(Type *DataType, MaybeAlign Alignment) {
4109   // AVX2 doesn't support scatter
4110   if (!ST->hasAVX512())
4111     return false;
4112   return isLegalMaskedGather(DataType, Alignment);
4113 }
4114 
4115 bool X86TTIImpl::hasDivRemOp(Type *DataType, bool IsSigned) {
4116   EVT VT = TLI->getValueType(DL, DataType);
4117   return TLI->isOperationLegal(IsSigned ? ISD::SDIVREM : ISD::UDIVREM, VT);
4118 }
4119 
4120 bool X86TTIImpl::isFCmpOrdCheaperThanFCmpZero(Type *Ty) {
4121   return false;
4122 }
4123 
4124 bool X86TTIImpl::areInlineCompatible(const Function *Caller,
4125                                      const Function *Callee) const {
4126   const TargetMachine &TM = getTLI()->getTargetMachine();
4127 
4128   // Work this as a subsetting of subtarget features.
4129   const FeatureBitset &CallerBits =
4130       TM.getSubtargetImpl(*Caller)->getFeatureBits();
4131   const FeatureBitset &CalleeBits =
4132       TM.getSubtargetImpl(*Callee)->getFeatureBits();
4133 
4134   FeatureBitset RealCallerBits = CallerBits & ~InlineFeatureIgnoreList;
4135   FeatureBitset RealCalleeBits = CalleeBits & ~InlineFeatureIgnoreList;
4136   return (RealCallerBits & RealCalleeBits) == RealCalleeBits;
4137 }
4138 
4139 bool X86TTIImpl::areFunctionArgsABICompatible(
4140     const Function *Caller, const Function *Callee,
4141     SmallPtrSetImpl<Argument *> &Args) const {
4142   if (!BaseT::areFunctionArgsABICompatible(Caller, Callee, Args))
4143     return false;
4144 
4145   // If we get here, we know the target features match. If one function
4146   // considers 512-bit vectors legal and the other does not, consider them
4147   // incompatible.
4148   const TargetMachine &TM = getTLI()->getTargetMachine();
4149 
4150   if (TM.getSubtarget<X86Subtarget>(*Caller).useAVX512Regs() ==
4151       TM.getSubtarget<X86Subtarget>(*Callee).useAVX512Regs())
4152     return true;
4153 
4154   // Consider the arguments compatible if they aren't vectors or aggregates.
4155   // FIXME: Look at the size of vectors.
4156   // FIXME: Look at the element types of aggregates to see if there are vectors.
4157   // FIXME: The API of this function seems intended to allow arguments
4158   // to be removed from the set, but the caller doesn't check if the set
4159   // becomes empty so that may not work in practice.
4160   return llvm::none_of(Args, [](Argument *A) {
4161     auto *EltTy = cast<PointerType>(A->getType())->getElementType();
4162     return EltTy->isVectorTy() || EltTy->isAggregateType();
4163   });
4164 }
4165 
4166 X86TTIImpl::TTI::MemCmpExpansionOptions
4167 X86TTIImpl::enableMemCmpExpansion(bool OptSize, bool IsZeroCmp) const {
4168   TTI::MemCmpExpansionOptions Options;
4169   Options.MaxNumLoads = TLI->getMaxExpandSizeMemcmp(OptSize);
4170   Options.NumLoadsPerBlock = 2;
4171   // All GPR and vector loads can be unaligned.
4172   Options.AllowOverlappingLoads = true;
4173   if (IsZeroCmp) {
4174     // Only enable vector loads for equality comparison. Right now the vector
4175     // version is not as fast for three way compare (see #33329).
4176     const unsigned PreferredWidth = ST->getPreferVectorWidth();
4177     if (PreferredWidth >= 512 && ST->hasAVX512()) Options.LoadSizes.push_back(64);
4178     if (PreferredWidth >= 256 && ST->hasAVX()) Options.LoadSizes.push_back(32);
4179     if (PreferredWidth >= 128 && ST->hasSSE2()) Options.LoadSizes.push_back(16);
4180   }
4181   if (ST->is64Bit()) {
4182     Options.LoadSizes.push_back(8);
4183   }
4184   Options.LoadSizes.push_back(4);
4185   Options.LoadSizes.push_back(2);
4186   Options.LoadSizes.push_back(1);
4187   return Options;
4188 }
4189 
4190 bool X86TTIImpl::enableInterleavedAccessVectorization() {
4191   // TODO: We expect this to be beneficial regardless of arch,
4192   // but there are currently some unexplained performance artifacts on Atom.
4193   // As a temporary solution, disable on Atom.
4194   return !(ST->isAtom());
4195 }
4196 
4197 // Get estimation for interleaved load/store operations for AVX2.
4198 // \p Factor is the interleaved-access factor (stride) - number of
4199 // (interleaved) elements in the group.
4200 // \p Indices contains the indices for a strided load: when the
4201 // interleaved load has gaps they indicate which elements are used.
4202 // If Indices is empty (or if the number of indices is equal to the size
4203 // of the interleaved-access as given in \p Factor) the access has no gaps.
4204 //
4205 // As opposed to AVX-512, AVX2 does not have generic shuffles that allow
4206 // computing the cost using a generic formula as a function of generic
4207 // shuffles. We therefore use a lookup table instead, filled according to
4208 // the instruction sequences that codegen currently generates.
4209 int X86TTIImpl::getInterleavedMemoryOpCostAVX2(unsigned Opcode, Type *VecTy,
4210                                                unsigned Factor,
4211                                                ArrayRef<unsigned> Indices,
4212                                                unsigned Alignment,
4213                                                unsigned AddressSpace,
4214                                                TTI::TargetCostKind CostKind,
4215                                                bool UseMaskForCond,
4216                                                bool UseMaskForGaps) {
4217 
4218   if (UseMaskForCond || UseMaskForGaps)
4219     return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices,
4220                                              Alignment, AddressSpace, CostKind,
4221                                              UseMaskForCond, UseMaskForGaps);
4222 
4223   // We currently Support only fully-interleaved groups, with no gaps.
4224   // TODO: Support also strided loads (interleaved-groups with gaps).
4225   if (Indices.size() && Indices.size() != Factor)
4226     return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices,
4227                                              Alignment, AddressSpace,
4228                                              CostKind);
4229 
4230   // VecTy for interleave memop is <VF*Factor x Elt>.
4231   // So, for VF=4, Interleave Factor = 3, Element type = i32 we have
4232   // VecTy = <12 x i32>.
4233   MVT LegalVT = getTLI()->getTypeLegalizationCost(DL, VecTy).second;
4234 
4235   // This function can be called with VecTy=<6xi128>, Factor=3, in which case
4236   // the VF=2, while v2i128 is an unsupported MVT vector type
4237   // (see MachineValueType.h::getVectorVT()).
4238   if (!LegalVT.isVector())
4239     return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices,
4240                                              Alignment, AddressSpace,
4241                                              CostKind);
4242 
4243   unsigned VF = cast<VectorType>(VecTy)->getNumElements() / Factor;
4244   Type *ScalarTy = cast<VectorType>(VecTy)->getElementType();
4245 
4246   // Calculate the number of memory operations (NumOfMemOps), required
4247   // for load/store the VecTy.
4248   unsigned VecTySize = DL.getTypeStoreSize(VecTy);
4249   unsigned LegalVTSize = LegalVT.getStoreSize();
4250   unsigned NumOfMemOps = (VecTySize + LegalVTSize - 1) / LegalVTSize;
4251 
4252   // Get the cost of one memory operation.
4253   Type *SingleMemOpTy =
4254       VectorType::get(cast<VectorType>(VecTy)->getElementType(),
4255                       LegalVT.getVectorNumElements());
4256   unsigned MemOpCost = getMemoryOpCost(Opcode, SingleMemOpTy,
4257                                        MaybeAlign(Alignment), AddressSpace,
4258                                        CostKind);
4259 
4260   VectorType *VT = VectorType::get(ScalarTy, VF);
4261   EVT ETy = TLI->getValueType(DL, VT);
4262   if (!ETy.isSimple())
4263     return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices,
4264                                              Alignment, AddressSpace,
4265                                              CostKind);
4266 
4267   // TODO: Complete for other data-types and strides.
4268   // Each combination of Stride, ElementTy and VF results in a different
4269   // sequence; The cost tables are therefore accessed with:
4270   // Factor (stride) and VectorType=VFxElemType.
4271   // The Cost accounts only for the shuffle sequence;
4272   // The cost of the loads/stores is accounted for separately.
4273   //
4274   static const CostTblEntry AVX2InterleavedLoadTbl[] = {
4275     { 2, MVT::v4i64, 6 }, //(load 8i64 and) deinterleave into 2 x 4i64
4276     { 2, MVT::v4f64, 6 }, //(load 8f64 and) deinterleave into 2 x 4f64
4277 
4278     { 3, MVT::v2i8,  10 }, //(load 6i8 and)  deinterleave into 3 x 2i8
4279     { 3, MVT::v4i8,  4 },  //(load 12i8 and) deinterleave into 3 x 4i8
4280     { 3, MVT::v8i8,  9 },  //(load 24i8 and) deinterleave into 3 x 8i8
4281     { 3, MVT::v16i8, 11},  //(load 48i8 and) deinterleave into 3 x 16i8
4282     { 3, MVT::v32i8, 13},  //(load 96i8 and) deinterleave into 3 x 32i8
4283     { 3, MVT::v8f32, 17 }, //(load 24f32 and)deinterleave into 3 x 8f32
4284 
4285     { 4, MVT::v2i8,  12 }, //(load 8i8 and)   deinterleave into 4 x 2i8
4286     { 4, MVT::v4i8,  4 },  //(load 16i8 and)  deinterleave into 4 x 4i8
4287     { 4, MVT::v8i8,  20 }, //(load 32i8 and)  deinterleave into 4 x 8i8
4288     { 4, MVT::v16i8, 39 }, //(load 64i8 and)  deinterleave into 4 x 16i8
4289     { 4, MVT::v32i8, 80 }, //(load 128i8 and) deinterleave into 4 x 32i8
4290 
4291     { 8, MVT::v8f32, 40 }  //(load 64f32 and)deinterleave into 8 x 8f32
4292   };
4293 
4294   static const CostTblEntry AVX2InterleavedStoreTbl[] = {
4295     { 2, MVT::v4i64, 6 }, //interleave into 2 x 4i64 into 8i64 (and store)
4296     { 2, MVT::v4f64, 6 }, //interleave into 2 x 4f64 into 8f64 (and store)
4297 
4298     { 3, MVT::v2i8,  7 },  //interleave 3 x 2i8  into 6i8 (and store)
4299     { 3, MVT::v4i8,  8 },  //interleave 3 x 4i8  into 12i8 (and store)
4300     { 3, MVT::v8i8,  11 }, //interleave 3 x 8i8  into 24i8 (and store)
4301     { 3, MVT::v16i8, 11 }, //interleave 3 x 16i8 into 48i8 (and store)
4302     { 3, MVT::v32i8, 13 }, //interleave 3 x 32i8 into 96i8 (and store)
4303 
4304     { 4, MVT::v2i8,  12 }, //interleave 4 x 2i8  into 8i8 (and store)
4305     { 4, MVT::v4i8,  9 },  //interleave 4 x 4i8  into 16i8 (and store)
4306     { 4, MVT::v8i8,  10 }, //interleave 4 x 8i8  into 32i8 (and store)
4307     { 4, MVT::v16i8, 10 }, //interleave 4 x 16i8 into 64i8 (and store)
4308     { 4, MVT::v32i8, 12 }  //interleave 4 x 32i8 into 128i8 (and store)
4309   };
4310 
4311   if (Opcode == Instruction::Load) {
4312     if (const auto *Entry =
4313             CostTableLookup(AVX2InterleavedLoadTbl, Factor, ETy.getSimpleVT()))
4314       return NumOfMemOps * MemOpCost + Entry->Cost;
4315   } else {
4316     assert(Opcode == Instruction::Store &&
4317            "Expected Store Instruction at this  point");
4318     if (const auto *Entry =
4319             CostTableLookup(AVX2InterleavedStoreTbl, Factor, ETy.getSimpleVT()))
4320       return NumOfMemOps * MemOpCost + Entry->Cost;
4321   }
4322 
4323   return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices,
4324                                            Alignment, AddressSpace, CostKind);
4325 }
4326 
4327 // Get estimation for interleaved load/store operations and strided load.
4328 // \p Indices contains indices for strided load.
4329 // \p Factor - the factor of interleaving.
4330 // AVX-512 provides 3-src shuffles that significantly reduces the cost.
4331 int X86TTIImpl::getInterleavedMemoryOpCostAVX512(unsigned Opcode, Type *VecTy,
4332                                                  unsigned Factor,
4333                                                  ArrayRef<unsigned> Indices,
4334                                                  unsigned Alignment,
4335                                                  unsigned AddressSpace,
4336                                                  TTI::TargetCostKind CostKind,
4337                                                  bool UseMaskForCond,
4338                                                  bool UseMaskForGaps) {
4339 
4340   if (UseMaskForCond || UseMaskForGaps)
4341     return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices,
4342                                              Alignment, AddressSpace, CostKind,
4343                                              UseMaskForCond, UseMaskForGaps);
4344 
4345   // VecTy for interleave memop is <VF*Factor x Elt>.
4346   // So, for VF=4, Interleave Factor = 3, Element type = i32 we have
4347   // VecTy = <12 x i32>.
4348 
4349   // Calculate the number of memory operations (NumOfMemOps), required
4350   // for load/store the VecTy.
4351   MVT LegalVT = getTLI()->getTypeLegalizationCost(DL, VecTy).second;
4352   unsigned VecTySize = DL.getTypeStoreSize(VecTy);
4353   unsigned LegalVTSize = LegalVT.getStoreSize();
4354   unsigned NumOfMemOps = (VecTySize + LegalVTSize - 1) / LegalVTSize;
4355 
4356   // Get the cost of one memory operation.
4357   auto *SingleMemOpTy =
4358       VectorType::get(cast<VectorType>(VecTy)->getElementType(),
4359                       LegalVT.getVectorNumElements());
4360   unsigned MemOpCost = getMemoryOpCost(Opcode, SingleMemOpTy,
4361                                        MaybeAlign(Alignment), AddressSpace,
4362                                        CostKind);
4363 
4364   unsigned VF = cast<VectorType>(VecTy)->getNumElements() / Factor;
4365   MVT VT = MVT::getVectorVT(MVT::getVT(VecTy->getScalarType()), VF);
4366 
4367   if (Opcode == Instruction::Load) {
4368     // The tables (AVX512InterleavedLoadTbl and AVX512InterleavedStoreTbl)
4369     // contain the cost of the optimized shuffle sequence that the
4370     // X86InterleavedAccess pass will generate.
4371     // The cost of loads and stores are computed separately from the table.
4372 
4373     // X86InterleavedAccess support only the following interleaved-access group.
4374     static const CostTblEntry AVX512InterleavedLoadTbl[] = {
4375         {3, MVT::v16i8, 12}, //(load 48i8 and) deinterleave into 3 x 16i8
4376         {3, MVT::v32i8, 14}, //(load 96i8 and) deinterleave into 3 x 32i8
4377         {3, MVT::v64i8, 22}, //(load 96i8 and) deinterleave into 3 x 32i8
4378     };
4379 
4380     if (const auto *Entry =
4381             CostTableLookup(AVX512InterleavedLoadTbl, Factor, VT))
4382       return NumOfMemOps * MemOpCost + Entry->Cost;
4383     //If an entry does not exist, fallback to the default implementation.
4384 
4385     // Kind of shuffle depends on number of loaded values.
4386     // If we load the entire data in one register, we can use a 1-src shuffle.
4387     // Otherwise, we'll merge 2 sources in each operation.
4388     TTI::ShuffleKind ShuffleKind =
4389         (NumOfMemOps > 1) ? TTI::SK_PermuteTwoSrc : TTI::SK_PermuteSingleSrc;
4390 
4391     unsigned ShuffleCost =
4392         getShuffleCost(ShuffleKind, SingleMemOpTy, 0, nullptr);
4393 
4394     unsigned NumOfLoadsInInterleaveGrp =
4395         Indices.size() ? Indices.size() : Factor;
4396     Type *ResultTy =
4397         VectorType::get(cast<VectorType>(VecTy)->getElementType(),
4398                         cast<VectorType>(VecTy)->getNumElements() / Factor);
4399     unsigned NumOfResults =
4400         getTLI()->getTypeLegalizationCost(DL, ResultTy).first *
4401         NumOfLoadsInInterleaveGrp;
4402 
4403     // About a half of the loads may be folded in shuffles when we have only
4404     // one result. If we have more than one result, we do not fold loads at all.
4405     unsigned NumOfUnfoldedLoads =
4406         NumOfResults > 1 ? NumOfMemOps : NumOfMemOps / 2;
4407 
4408     // Get a number of shuffle operations per result.
4409     unsigned NumOfShufflesPerResult =
4410         std::max((unsigned)1, (unsigned)(NumOfMemOps - 1));
4411 
4412     // The SK_MergeTwoSrc shuffle clobbers one of src operands.
4413     // When we have more than one destination, we need additional instructions
4414     // to keep sources.
4415     unsigned NumOfMoves = 0;
4416     if (NumOfResults > 1 && ShuffleKind == TTI::SK_PermuteTwoSrc)
4417       NumOfMoves = NumOfResults * NumOfShufflesPerResult / 2;
4418 
4419     int Cost = NumOfResults * NumOfShufflesPerResult * ShuffleCost +
4420                NumOfUnfoldedLoads * MemOpCost + NumOfMoves;
4421 
4422     return Cost;
4423   }
4424 
4425   // Store.
4426   assert(Opcode == Instruction::Store &&
4427          "Expected Store Instruction at this  point");
4428   // X86InterleavedAccess support only the following interleaved-access group.
4429   static const CostTblEntry AVX512InterleavedStoreTbl[] = {
4430       {3, MVT::v16i8, 12}, // interleave 3 x 16i8 into 48i8 (and store)
4431       {3, MVT::v32i8, 14}, // interleave 3 x 32i8 into 96i8 (and store)
4432       {3, MVT::v64i8, 26}, // interleave 3 x 64i8 into 96i8 (and store)
4433 
4434       {4, MVT::v8i8, 10},  // interleave 4 x 8i8  into 32i8  (and store)
4435       {4, MVT::v16i8, 11}, // interleave 4 x 16i8 into 64i8  (and store)
4436       {4, MVT::v32i8, 14}, // interleave 4 x 32i8 into 128i8 (and store)
4437       {4, MVT::v64i8, 24}  // interleave 4 x 32i8 into 256i8 (and store)
4438   };
4439 
4440   if (const auto *Entry =
4441           CostTableLookup(AVX512InterleavedStoreTbl, Factor, VT))
4442     return NumOfMemOps * MemOpCost + Entry->Cost;
4443   //If an entry does not exist, fallback to the default implementation.
4444 
4445   // There is no strided stores meanwhile. And store can't be folded in
4446   // shuffle.
4447   unsigned NumOfSources = Factor; // The number of values to be merged.
4448   unsigned ShuffleCost =
4449       getShuffleCost(TTI::SK_PermuteTwoSrc, SingleMemOpTy, 0, nullptr);
4450   unsigned NumOfShufflesPerStore = NumOfSources - 1;
4451 
4452   // The SK_MergeTwoSrc shuffle clobbers one of src operands.
4453   // We need additional instructions to keep sources.
4454   unsigned NumOfMoves = NumOfMemOps * NumOfShufflesPerStore / 2;
4455   int Cost = NumOfMemOps * (MemOpCost + NumOfShufflesPerStore * ShuffleCost) +
4456              NumOfMoves;
4457   return Cost;
4458 }
4459 
4460 int X86TTIImpl::getInterleavedMemoryOpCost(unsigned Opcode, Type *VecTy,
4461                                            unsigned Factor,
4462                                            ArrayRef<unsigned> Indices,
4463                                            unsigned Alignment,
4464                                            unsigned AddressSpace,
4465                                            TTI::TargetCostKind CostKind,
4466                                            bool UseMaskForCond,
4467                                            bool UseMaskForGaps) {
4468   auto isSupportedOnAVX512 = [](Type *VecTy, bool HasBW) {
4469     Type *EltTy = cast<VectorType>(VecTy)->getElementType();
4470     if (EltTy->isFloatTy() || EltTy->isDoubleTy() || EltTy->isIntegerTy(64) ||
4471         EltTy->isIntegerTy(32) || EltTy->isPointerTy())
4472       return true;
4473     if (EltTy->isIntegerTy(16) || EltTy->isIntegerTy(8))
4474       return HasBW;
4475     return false;
4476   };
4477   if (ST->hasAVX512() && isSupportedOnAVX512(VecTy, ST->hasBWI()))
4478     return getInterleavedMemoryOpCostAVX512(Opcode, VecTy, Factor, Indices,
4479                                             Alignment, AddressSpace, CostKind,
4480                                             UseMaskForCond, UseMaskForGaps);
4481   if (ST->hasAVX2())
4482     return getInterleavedMemoryOpCostAVX2(Opcode, VecTy, Factor, Indices,
4483                                           Alignment, AddressSpace, CostKind,
4484                                           UseMaskForCond, UseMaskForGaps);
4485 
4486   return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices,
4487                                            Alignment, AddressSpace, CostKind,
4488                                            UseMaskForCond, UseMaskForGaps);
4489 }
4490