1 //===-- X86TargetTransformInfo.cpp - X86 specific TTI pass ----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 /// \file
9 /// This file implements a TargetTransformInfo analysis pass specific to the
10 /// X86 target machine. It uses the target's detailed information to provide
11 /// more precise answers to certain TTI queries, while letting the target
12 /// independent and default TTI implementations handle the rest.
13 ///
14 //===----------------------------------------------------------------------===//
15 /// About Cost Model numbers used below it's necessary to say the following:
16 /// the numbers correspond to some "generic" X86 CPU instead of usage of
17 /// concrete CPU model. Usually the numbers correspond to CPU where the feature
18 /// apeared at the first time. For example, if we do Subtarget.hasSSE42() in
19 /// the lookups below the cost is based on Nehalem as that was the first CPU
20 /// to support that feature level and thus has most likely the worst case cost.
21 /// Some examples of other technologies/CPUs:
22 ///   SSE 3   - Pentium4 / Athlon64
23 ///   SSE 4.1 - Penryn
24 ///   SSE 4.2 - Nehalem
25 ///   AVX     - Sandy Bridge
26 ///   AVX2    - Haswell
27 ///   AVX-512 - Xeon Phi / Skylake
28 /// And some examples of instruction target dependent costs (latency)
29 ///                   divss     sqrtss          rsqrtss
30 ///   AMD K7            11-16     19              3
31 ///   Piledriver        9-24      13-15           5
32 ///   Jaguar            14        16              2
33 ///   Pentium II,III    18        30              2
34 ///   Nehalem           7-14      7-18            3
35 ///   Haswell           10-13     11              5
36 /// TODO: Develop and implement  the target dependent cost model and
37 /// specialize cost numbers for different Cost Model Targets such as throughput,
38 /// code size, latency and uop count.
39 //===----------------------------------------------------------------------===//
40 
41 #include "X86TargetTransformInfo.h"
42 #include "llvm/Analysis/TargetTransformInfo.h"
43 #include "llvm/CodeGen/BasicTTIImpl.h"
44 #include "llvm/CodeGen/CostTable.h"
45 #include "llvm/CodeGen/TargetLowering.h"
46 #include "llvm/IR/IntrinsicInst.h"
47 #include "llvm/Support/Debug.h"
48 
49 using namespace llvm;
50 
51 #define DEBUG_TYPE "x86tti"
52 
53 //===----------------------------------------------------------------------===//
54 //
55 // X86 cost model.
56 //
57 //===----------------------------------------------------------------------===//
58 
59 TargetTransformInfo::PopcntSupportKind
60 X86TTIImpl::getPopcntSupport(unsigned TyWidth) {
61   assert(isPowerOf2_32(TyWidth) && "Ty width must be power of 2");
62   // TODO: Currently the __builtin_popcount() implementation using SSE3
63   //   instructions is inefficient. Once the problem is fixed, we should
64   //   call ST->hasSSE3() instead of ST->hasPOPCNT().
65   return ST->hasPOPCNT() ? TTI::PSK_FastHardware : TTI::PSK_Software;
66 }
67 
68 llvm::Optional<unsigned> X86TTIImpl::getCacheSize(
69   TargetTransformInfo::CacheLevel Level) const {
70   switch (Level) {
71   case TargetTransformInfo::CacheLevel::L1D:
72     //   - Penryn
73     //   - Nehalem
74     //   - Westmere
75     //   - Sandy Bridge
76     //   - Ivy Bridge
77     //   - Haswell
78     //   - Broadwell
79     //   - Skylake
80     //   - Kabylake
81     return 32 * 1024;  //  32 KByte
82   case TargetTransformInfo::CacheLevel::L2D:
83     //   - Penryn
84     //   - Nehalem
85     //   - Westmere
86     //   - Sandy Bridge
87     //   - Ivy Bridge
88     //   - Haswell
89     //   - Broadwell
90     //   - Skylake
91     //   - Kabylake
92     return 256 * 1024; // 256 KByte
93   }
94 
95   llvm_unreachable("Unknown TargetTransformInfo::CacheLevel");
96 }
97 
98 llvm::Optional<unsigned> X86TTIImpl::getCacheAssociativity(
99   TargetTransformInfo::CacheLevel Level) const {
100   //   - Penryn
101   //   - Nehalem
102   //   - Westmere
103   //   - Sandy Bridge
104   //   - Ivy Bridge
105   //   - Haswell
106   //   - Broadwell
107   //   - Skylake
108   //   - Kabylake
109   switch (Level) {
110   case TargetTransformInfo::CacheLevel::L1D:
111     LLVM_FALLTHROUGH;
112   case TargetTransformInfo::CacheLevel::L2D:
113     return 8;
114   }
115 
116   llvm_unreachable("Unknown TargetTransformInfo::CacheLevel");
117 }
118 
119 unsigned X86TTIImpl::getNumberOfRegisters(unsigned ClassID) const {
120   bool Vector = (ClassID == 1);
121   if (Vector && !ST->hasSSE1())
122     return 0;
123 
124   if (ST->is64Bit()) {
125     if (Vector && ST->hasAVX512())
126       return 32;
127     return 16;
128   }
129   return 8;
130 }
131 
132 unsigned X86TTIImpl::getRegisterBitWidth(bool Vector) const {
133   unsigned PreferVectorWidth = ST->getPreferVectorWidth();
134   if (Vector) {
135     if (ST->hasAVX512() && PreferVectorWidth >= 512)
136       return 512;
137     if (ST->hasAVX() && PreferVectorWidth >= 256)
138       return 256;
139     if (ST->hasSSE1() && PreferVectorWidth >= 128)
140       return 128;
141     return 0;
142   }
143 
144   if (ST->is64Bit())
145     return 64;
146 
147   return 32;
148 }
149 
150 unsigned X86TTIImpl::getLoadStoreVecRegBitWidth(unsigned) const {
151   return getRegisterBitWidth(true);
152 }
153 
154 unsigned X86TTIImpl::getMaxInterleaveFactor(unsigned VF) {
155   // If the loop will not be vectorized, don't interleave the loop.
156   // Let regular unroll to unroll the loop, which saves the overflow
157   // check and memory check cost.
158   if (VF == 1)
159     return 1;
160 
161   if (ST->isAtom())
162     return 1;
163 
164   // Sandybridge and Haswell have multiple execution ports and pipelined
165   // vector units.
166   if (ST->hasAVX())
167     return 4;
168 
169   return 2;
170 }
171 
172 int X86TTIImpl::getArithmeticInstrCost(unsigned Opcode, Type *Ty,
173                                        TTI::OperandValueKind Op1Info,
174                                        TTI::OperandValueKind Op2Info,
175                                        TTI::OperandValueProperties Opd1PropInfo,
176                                        TTI::OperandValueProperties Opd2PropInfo,
177                                        ArrayRef<const Value *> Args,
178                                        const Instruction *CxtI) {
179   // Legalize the type.
180   std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Ty);
181 
182   int ISD = TLI->InstructionOpcodeToISD(Opcode);
183   assert(ISD && "Invalid opcode");
184 
185   static const CostTblEntry GLMCostTable[] = {
186     { ISD::FDIV,  MVT::f32,   18 }, // divss
187     { ISD::FDIV,  MVT::v4f32, 35 }, // divps
188     { ISD::FDIV,  MVT::f64,   33 }, // divsd
189     { ISD::FDIV,  MVT::v2f64, 65 }, // divpd
190   };
191 
192   if (ST->useGLMDivSqrtCosts())
193     if (const auto *Entry = CostTableLookup(GLMCostTable, ISD,
194                                             LT.second))
195       return LT.first * Entry->Cost;
196 
197   static const CostTblEntry SLMCostTable[] = {
198     { ISD::MUL,   MVT::v4i32, 11 }, // pmulld
199     { ISD::MUL,   MVT::v8i16, 2  }, // pmullw
200     { ISD::MUL,   MVT::v16i8, 14 }, // extend/pmullw/trunc sequence.
201     { ISD::FMUL,  MVT::f64,   2  }, // mulsd
202     { ISD::FMUL,  MVT::v2f64, 4  }, // mulpd
203     { ISD::FMUL,  MVT::v4f32, 2  }, // mulps
204     { ISD::FDIV,  MVT::f32,   17 }, // divss
205     { ISD::FDIV,  MVT::v4f32, 39 }, // divps
206     { ISD::FDIV,  MVT::f64,   32 }, // divsd
207     { ISD::FDIV,  MVT::v2f64, 69 }, // divpd
208     { ISD::FADD,  MVT::v2f64, 2  }, // addpd
209     { ISD::FSUB,  MVT::v2f64, 2  }, // subpd
210     // v2i64/v4i64 mul is custom lowered as a series of long:
211     // multiplies(3), shifts(3) and adds(2)
212     // slm muldq version throughput is 2 and addq throughput 4
213     // thus: 3X2 (muldq throughput) + 3X1 (shift throughput) +
214     //       3X4 (addq throughput) = 17
215     { ISD::MUL,   MVT::v2i64, 17 },
216     // slm addq\subq throughput is 4
217     { ISD::ADD,   MVT::v2i64, 4  },
218     { ISD::SUB,   MVT::v2i64, 4  },
219   };
220 
221   if (ST->isSLM()) {
222     if (Args.size() == 2 && ISD == ISD::MUL && LT.second == MVT::v4i32) {
223       // Check if the operands can be shrinked into a smaller datatype.
224       bool Op1Signed = false;
225       unsigned Op1MinSize = BaseT::minRequiredElementSize(Args[0], Op1Signed);
226       bool Op2Signed = false;
227       unsigned Op2MinSize = BaseT::minRequiredElementSize(Args[1], Op2Signed);
228 
229       bool signedMode = Op1Signed | Op2Signed;
230       unsigned OpMinSize = std::max(Op1MinSize, Op2MinSize);
231 
232       if (OpMinSize <= 7)
233         return LT.first * 3; // pmullw/sext
234       if (!signedMode && OpMinSize <= 8)
235         return LT.first * 3; // pmullw/zext
236       if (OpMinSize <= 15)
237         return LT.first * 5; // pmullw/pmulhw/pshuf
238       if (!signedMode && OpMinSize <= 16)
239         return LT.first * 5; // pmullw/pmulhw/pshuf
240     }
241 
242     if (const auto *Entry = CostTableLookup(SLMCostTable, ISD,
243                                             LT.second)) {
244       return LT.first * Entry->Cost;
245     }
246   }
247 
248   if ((ISD == ISD::SDIV || ISD == ISD::SREM || ISD == ISD::UDIV ||
249        ISD == ISD::UREM) &&
250       (Op2Info == TargetTransformInfo::OK_UniformConstantValue ||
251        Op2Info == TargetTransformInfo::OK_NonUniformConstantValue) &&
252       Opd2PropInfo == TargetTransformInfo::OP_PowerOf2) {
253     if (ISD == ISD::SDIV || ISD == ISD::SREM) {
254       // On X86, vector signed division by constants power-of-two are
255       // normally expanded to the sequence SRA + SRL + ADD + SRA.
256       // The OperandValue properties may not be the same as that of the previous
257       // operation; conservatively assume OP_None.
258       int Cost =
259           2 * getArithmeticInstrCost(Instruction::AShr, Ty, Op1Info, Op2Info,
260                                      TargetTransformInfo::OP_None,
261                                      TargetTransformInfo::OP_None);
262       Cost += getArithmeticInstrCost(Instruction::LShr, Ty, Op1Info, Op2Info,
263                                      TargetTransformInfo::OP_None,
264                                      TargetTransformInfo::OP_None);
265       Cost += getArithmeticInstrCost(Instruction::Add, Ty, Op1Info, Op2Info,
266                                      TargetTransformInfo::OP_None,
267                                      TargetTransformInfo::OP_None);
268 
269       if (ISD == ISD::SREM) {
270         // For SREM: (X % C) is the equivalent of (X - (X/C)*C)
271         Cost += getArithmeticInstrCost(Instruction::Mul, Ty, Op1Info, Op2Info);
272         Cost += getArithmeticInstrCost(Instruction::Sub, Ty, Op1Info, Op2Info);
273       }
274 
275       return Cost;
276     }
277 
278     // Vector unsigned division/remainder will be simplified to shifts/masks.
279     if (ISD == ISD::UDIV)
280       return getArithmeticInstrCost(Instruction::LShr, Ty, Op1Info, Op2Info,
281                                     TargetTransformInfo::OP_None,
282                                     TargetTransformInfo::OP_None);
283 
284     else // UREM
285       return getArithmeticInstrCost(Instruction::And, Ty, Op1Info, Op2Info,
286                                     TargetTransformInfo::OP_None,
287                                     TargetTransformInfo::OP_None);
288   }
289 
290   static const CostTblEntry AVX512BWUniformConstCostTable[] = {
291     { ISD::SHL,  MVT::v64i8,   2 }, // psllw + pand.
292     { ISD::SRL,  MVT::v64i8,   2 }, // psrlw + pand.
293     { ISD::SRA,  MVT::v64i8,   4 }, // psrlw, pand, pxor, psubb.
294   };
295 
296   if (Op2Info == TargetTransformInfo::OK_UniformConstantValue &&
297       ST->hasBWI()) {
298     if (const auto *Entry = CostTableLookup(AVX512BWUniformConstCostTable, ISD,
299                                             LT.second))
300       return LT.first * Entry->Cost;
301   }
302 
303   static const CostTblEntry AVX512UniformConstCostTable[] = {
304     { ISD::SRA,  MVT::v2i64,   1 },
305     { ISD::SRA,  MVT::v4i64,   1 },
306     { ISD::SRA,  MVT::v8i64,   1 },
307   };
308 
309   if (Op2Info == TargetTransformInfo::OK_UniformConstantValue &&
310       ST->hasAVX512()) {
311     if (const auto *Entry = CostTableLookup(AVX512UniformConstCostTable, ISD,
312                                             LT.second))
313       return LT.first * Entry->Cost;
314   }
315 
316   static const CostTblEntry AVX2UniformConstCostTable[] = {
317     { ISD::SHL,  MVT::v32i8,   2 }, // psllw + pand.
318     { ISD::SRL,  MVT::v32i8,   2 }, // psrlw + pand.
319     { ISD::SRA,  MVT::v32i8,   4 }, // psrlw, pand, pxor, psubb.
320 
321     { ISD::SRA,  MVT::v4i64,   4 }, // 2 x psrad + shuffle.
322   };
323 
324   if (Op2Info == TargetTransformInfo::OK_UniformConstantValue &&
325       ST->hasAVX2()) {
326     if (const auto *Entry = CostTableLookup(AVX2UniformConstCostTable, ISD,
327                                             LT.second))
328       return LT.first * Entry->Cost;
329   }
330 
331   static const CostTblEntry SSE2UniformConstCostTable[] = {
332     { ISD::SHL,  MVT::v16i8,     2 }, // psllw + pand.
333     { ISD::SRL,  MVT::v16i8,     2 }, // psrlw + pand.
334     { ISD::SRA,  MVT::v16i8,     4 }, // psrlw, pand, pxor, psubb.
335 
336     { ISD::SHL,  MVT::v32i8,   4+2 }, // 2*(psllw + pand) + split.
337     { ISD::SRL,  MVT::v32i8,   4+2 }, // 2*(psrlw + pand) + split.
338     { ISD::SRA,  MVT::v32i8,   8+2 }, // 2*(psrlw, pand, pxor, psubb) + split.
339   };
340 
341   // XOP has faster vXi8 shifts.
342   if (Op2Info == TargetTransformInfo::OK_UniformConstantValue &&
343       ST->hasSSE2() && !ST->hasXOP()) {
344     if (const auto *Entry =
345             CostTableLookup(SSE2UniformConstCostTable, ISD, LT.second))
346       return LT.first * Entry->Cost;
347   }
348 
349   static const CostTblEntry AVX512BWConstCostTable[] = {
350     { ISD::SDIV, MVT::v64i8,  14 }, // 2*ext+2*pmulhw sequence
351     { ISD::SREM, MVT::v64i8,  16 }, // 2*ext+2*pmulhw+mul+sub sequence
352     { ISD::UDIV, MVT::v64i8,  14 }, // 2*ext+2*pmulhw sequence
353     { ISD::UREM, MVT::v64i8,  16 }, // 2*ext+2*pmulhw+mul+sub sequence
354     { ISD::SDIV, MVT::v32i16,  6 }, // vpmulhw sequence
355     { ISD::SREM, MVT::v32i16,  8 }, // vpmulhw+mul+sub sequence
356     { ISD::UDIV, MVT::v32i16,  6 }, // vpmulhuw sequence
357     { ISD::UREM, MVT::v32i16,  8 }, // vpmulhuw+mul+sub sequence
358   };
359 
360   if ((Op2Info == TargetTransformInfo::OK_UniformConstantValue ||
361        Op2Info == TargetTransformInfo::OK_NonUniformConstantValue) &&
362       ST->hasBWI()) {
363     if (const auto *Entry =
364             CostTableLookup(AVX512BWConstCostTable, ISD, LT.second))
365       return LT.first * Entry->Cost;
366   }
367 
368   static const CostTblEntry AVX512ConstCostTable[] = {
369     { ISD::SDIV, MVT::v16i32, 15 }, // vpmuldq sequence
370     { ISD::SREM, MVT::v16i32, 17 }, // vpmuldq+mul+sub sequence
371     { ISD::UDIV, MVT::v16i32, 15 }, // vpmuludq sequence
372     { ISD::UREM, MVT::v16i32, 17 }, // vpmuludq+mul+sub sequence
373   };
374 
375   if ((Op2Info == TargetTransformInfo::OK_UniformConstantValue ||
376        Op2Info == TargetTransformInfo::OK_NonUniformConstantValue) &&
377       ST->hasAVX512()) {
378     if (const auto *Entry =
379             CostTableLookup(AVX512ConstCostTable, ISD, LT.second))
380       return LT.first * Entry->Cost;
381   }
382 
383   static const CostTblEntry AVX2ConstCostTable[] = {
384     { ISD::SDIV, MVT::v32i8,  14 }, // 2*ext+2*pmulhw sequence
385     { ISD::SREM, MVT::v32i8,  16 }, // 2*ext+2*pmulhw+mul+sub sequence
386     { ISD::UDIV, MVT::v32i8,  14 }, // 2*ext+2*pmulhw sequence
387     { ISD::UREM, MVT::v32i8,  16 }, // 2*ext+2*pmulhw+mul+sub sequence
388     { ISD::SDIV, MVT::v16i16,  6 }, // vpmulhw sequence
389     { ISD::SREM, MVT::v16i16,  8 }, // vpmulhw+mul+sub sequence
390     { ISD::UDIV, MVT::v16i16,  6 }, // vpmulhuw sequence
391     { ISD::UREM, MVT::v16i16,  8 }, // vpmulhuw+mul+sub sequence
392     { ISD::SDIV, MVT::v8i32,  15 }, // vpmuldq sequence
393     { ISD::SREM, MVT::v8i32,  19 }, // vpmuldq+mul+sub sequence
394     { ISD::UDIV, MVT::v8i32,  15 }, // vpmuludq sequence
395     { ISD::UREM, MVT::v8i32,  19 }, // vpmuludq+mul+sub sequence
396   };
397 
398   if ((Op2Info == TargetTransformInfo::OK_UniformConstantValue ||
399        Op2Info == TargetTransformInfo::OK_NonUniformConstantValue) &&
400       ST->hasAVX2()) {
401     if (const auto *Entry = CostTableLookup(AVX2ConstCostTable, ISD, LT.second))
402       return LT.first * Entry->Cost;
403   }
404 
405   static const CostTblEntry SSE2ConstCostTable[] = {
406     { ISD::SDIV, MVT::v32i8,  28+2 }, // 4*ext+4*pmulhw sequence + split.
407     { ISD::SREM, MVT::v32i8,  32+2 }, // 4*ext+4*pmulhw+mul+sub sequence + split.
408     { ISD::SDIV, MVT::v16i8,    14 }, // 2*ext+2*pmulhw sequence
409     { ISD::SREM, MVT::v16i8,    16 }, // 2*ext+2*pmulhw+mul+sub sequence
410     { ISD::UDIV, MVT::v32i8,  28+2 }, // 4*ext+4*pmulhw sequence + split.
411     { ISD::UREM, MVT::v32i8,  32+2 }, // 4*ext+4*pmulhw+mul+sub sequence + split.
412     { ISD::UDIV, MVT::v16i8,    14 }, // 2*ext+2*pmulhw sequence
413     { ISD::UREM, MVT::v16i8,    16 }, // 2*ext+2*pmulhw+mul+sub sequence
414     { ISD::SDIV, MVT::v16i16, 12+2 }, // 2*pmulhw sequence + split.
415     { ISD::SREM, MVT::v16i16, 16+2 }, // 2*pmulhw+mul+sub sequence + split.
416     { ISD::SDIV, MVT::v8i16,     6 }, // pmulhw sequence
417     { ISD::SREM, MVT::v8i16,     8 }, // pmulhw+mul+sub sequence
418     { ISD::UDIV, MVT::v16i16, 12+2 }, // 2*pmulhuw sequence + split.
419     { ISD::UREM, MVT::v16i16, 16+2 }, // 2*pmulhuw+mul+sub sequence + split.
420     { ISD::UDIV, MVT::v8i16,     6 }, // pmulhuw sequence
421     { ISD::UREM, MVT::v8i16,     8 }, // pmulhuw+mul+sub sequence
422     { ISD::SDIV, MVT::v8i32,  38+2 }, // 2*pmuludq sequence + split.
423     { ISD::SREM, MVT::v8i32,  48+2 }, // 2*pmuludq+mul+sub sequence + split.
424     { ISD::SDIV, MVT::v4i32,    19 }, // pmuludq sequence
425     { ISD::SREM, MVT::v4i32,    24 }, // pmuludq+mul+sub sequence
426     { ISD::UDIV, MVT::v8i32,  30+2 }, // 2*pmuludq sequence + split.
427     { ISD::UREM, MVT::v8i32,  40+2 }, // 2*pmuludq+mul+sub sequence + split.
428     { ISD::UDIV, MVT::v4i32,    15 }, // pmuludq sequence
429     { ISD::UREM, MVT::v4i32,    20 }, // pmuludq+mul+sub sequence
430   };
431 
432   if ((Op2Info == TargetTransformInfo::OK_UniformConstantValue ||
433        Op2Info == TargetTransformInfo::OK_NonUniformConstantValue) &&
434       ST->hasSSE2()) {
435     // pmuldq sequence.
436     if (ISD == ISD::SDIV && LT.second == MVT::v8i32 && ST->hasAVX())
437       return LT.first * 32;
438     if (ISD == ISD::SREM && LT.second == MVT::v8i32 && ST->hasAVX())
439       return LT.first * 38;
440     if (ISD == ISD::SDIV && LT.second == MVT::v4i32 && ST->hasSSE41())
441       return LT.first * 15;
442     if (ISD == ISD::SREM && LT.second == MVT::v4i32 && ST->hasSSE41())
443       return LT.first * 20;
444 
445     if (const auto *Entry = CostTableLookup(SSE2ConstCostTable, ISD, LT.second))
446       return LT.first * Entry->Cost;
447   }
448 
449   static const CostTblEntry AVX2UniformCostTable[] = {
450     // Uniform splats are cheaper for the following instructions.
451     { ISD::SHL,  MVT::v16i16, 1 }, // psllw.
452     { ISD::SRL,  MVT::v16i16, 1 }, // psrlw.
453     { ISD::SRA,  MVT::v16i16, 1 }, // psraw.
454   };
455 
456   if (ST->hasAVX2() &&
457       ((Op2Info == TargetTransformInfo::OK_UniformConstantValue) ||
458        (Op2Info == TargetTransformInfo::OK_UniformValue))) {
459     if (const auto *Entry =
460             CostTableLookup(AVX2UniformCostTable, ISD, LT.second))
461       return LT.first * Entry->Cost;
462   }
463 
464   static const CostTblEntry SSE2UniformCostTable[] = {
465     // Uniform splats are cheaper for the following instructions.
466     { ISD::SHL,  MVT::v8i16,  1 }, // psllw.
467     { ISD::SHL,  MVT::v4i32,  1 }, // pslld
468     { ISD::SHL,  MVT::v2i64,  1 }, // psllq.
469 
470     { ISD::SRL,  MVT::v8i16,  1 }, // psrlw.
471     { ISD::SRL,  MVT::v4i32,  1 }, // psrld.
472     { ISD::SRL,  MVT::v2i64,  1 }, // psrlq.
473 
474     { ISD::SRA,  MVT::v8i16,  1 }, // psraw.
475     { ISD::SRA,  MVT::v4i32,  1 }, // psrad.
476   };
477 
478   if (ST->hasSSE2() &&
479       ((Op2Info == TargetTransformInfo::OK_UniformConstantValue) ||
480        (Op2Info == TargetTransformInfo::OK_UniformValue))) {
481     if (const auto *Entry =
482             CostTableLookup(SSE2UniformCostTable, ISD, LT.second))
483       return LT.first * Entry->Cost;
484   }
485 
486   static const CostTblEntry AVX512DQCostTable[] = {
487     { ISD::MUL,  MVT::v2i64, 1 },
488     { ISD::MUL,  MVT::v4i64, 1 },
489     { ISD::MUL,  MVT::v8i64, 1 }
490   };
491 
492   // Look for AVX512DQ lowering tricks for custom cases.
493   if (ST->hasDQI())
494     if (const auto *Entry = CostTableLookup(AVX512DQCostTable, ISD, LT.second))
495       return LT.first * Entry->Cost;
496 
497   static const CostTblEntry AVX512BWCostTable[] = {
498     { ISD::SHL,   MVT::v8i16,      1 }, // vpsllvw
499     { ISD::SRL,   MVT::v8i16,      1 }, // vpsrlvw
500     { ISD::SRA,   MVT::v8i16,      1 }, // vpsravw
501 
502     { ISD::SHL,   MVT::v16i16,     1 }, // vpsllvw
503     { ISD::SRL,   MVT::v16i16,     1 }, // vpsrlvw
504     { ISD::SRA,   MVT::v16i16,     1 }, // vpsravw
505 
506     { ISD::SHL,   MVT::v32i16,     1 }, // vpsllvw
507     { ISD::SRL,   MVT::v32i16,     1 }, // vpsrlvw
508     { ISD::SRA,   MVT::v32i16,     1 }, // vpsravw
509 
510     { ISD::SHL,   MVT::v64i8,     11 }, // vpblendvb sequence.
511     { ISD::SRL,   MVT::v64i8,     11 }, // vpblendvb sequence.
512     { ISD::SRA,   MVT::v64i8,     24 }, // vpblendvb sequence.
513 
514     { ISD::MUL,   MVT::v64i8,     11 }, // extend/pmullw/trunc sequence.
515     { ISD::MUL,   MVT::v32i8,      4 }, // extend/pmullw/trunc sequence.
516     { ISD::MUL,   MVT::v16i8,      4 }, // extend/pmullw/trunc sequence.
517   };
518 
519   // Look for AVX512BW lowering tricks for custom cases.
520   if (ST->hasBWI())
521     if (const auto *Entry = CostTableLookup(AVX512BWCostTable, ISD, LT.second))
522       return LT.first * Entry->Cost;
523 
524   static const CostTblEntry AVX512CostTable[] = {
525     { ISD::SHL,     MVT::v16i32,     1 },
526     { ISD::SRL,     MVT::v16i32,     1 },
527     { ISD::SRA,     MVT::v16i32,     1 },
528 
529     { ISD::SHL,     MVT::v8i64,      1 },
530     { ISD::SRL,     MVT::v8i64,      1 },
531 
532     { ISD::SRA,     MVT::v2i64,      1 },
533     { ISD::SRA,     MVT::v4i64,      1 },
534     { ISD::SRA,     MVT::v8i64,      1 },
535 
536     { ISD::MUL,     MVT::v32i8,     13 }, // extend/pmullw/trunc sequence.
537     { ISD::MUL,     MVT::v16i8,      5 }, // extend/pmullw/trunc sequence.
538     { ISD::MUL,     MVT::v16i32,     1 }, // pmulld (Skylake from agner.org)
539     { ISD::MUL,     MVT::v8i32,      1 }, // pmulld (Skylake from agner.org)
540     { ISD::MUL,     MVT::v4i32,      1 }, // pmulld (Skylake from agner.org)
541     { ISD::MUL,     MVT::v8i64,      8 }, // 3*pmuludq/3*shift/2*add
542 
543     { ISD::FADD,    MVT::v8f64,      1 }, // Skylake from http://www.agner.org/
544     { ISD::FSUB,    MVT::v8f64,      1 }, // Skylake from http://www.agner.org/
545     { ISD::FMUL,    MVT::v8f64,      1 }, // Skylake from http://www.agner.org/
546 
547     { ISD::FADD,    MVT::v16f32,     1 }, // Skylake from http://www.agner.org/
548     { ISD::FSUB,    MVT::v16f32,     1 }, // Skylake from http://www.agner.org/
549     { ISD::FMUL,    MVT::v16f32,     1 }, // Skylake from http://www.agner.org/
550   };
551 
552   if (ST->hasAVX512())
553     if (const auto *Entry = CostTableLookup(AVX512CostTable, ISD, LT.second))
554       return LT.first * Entry->Cost;
555 
556   static const CostTblEntry AVX2ShiftCostTable[] = {
557     // Shifts on v4i64/v8i32 on AVX2 is legal even though we declare to
558     // customize them to detect the cases where shift amount is a scalar one.
559     { ISD::SHL,     MVT::v4i32,    1 },
560     { ISD::SRL,     MVT::v4i32,    1 },
561     { ISD::SRA,     MVT::v4i32,    1 },
562     { ISD::SHL,     MVT::v8i32,    1 },
563     { ISD::SRL,     MVT::v8i32,    1 },
564     { ISD::SRA,     MVT::v8i32,    1 },
565     { ISD::SHL,     MVT::v2i64,    1 },
566     { ISD::SRL,     MVT::v2i64,    1 },
567     { ISD::SHL,     MVT::v4i64,    1 },
568     { ISD::SRL,     MVT::v4i64,    1 },
569   };
570 
571   // Look for AVX2 lowering tricks.
572   if (ST->hasAVX2()) {
573     if (ISD == ISD::SHL && LT.second == MVT::v16i16 &&
574         (Op2Info == TargetTransformInfo::OK_UniformConstantValue ||
575          Op2Info == TargetTransformInfo::OK_NonUniformConstantValue))
576       // On AVX2, a packed v16i16 shift left by a constant build_vector
577       // is lowered into a vector multiply (vpmullw).
578       return getArithmeticInstrCost(Instruction::Mul, Ty, Op1Info, Op2Info,
579                                     TargetTransformInfo::OP_None,
580                                     TargetTransformInfo::OP_None);
581 
582     if (const auto *Entry = CostTableLookup(AVX2ShiftCostTable, ISD, LT.second))
583       return LT.first * Entry->Cost;
584   }
585 
586   static const CostTblEntry XOPShiftCostTable[] = {
587     // 128bit shifts take 1cy, but right shifts require negation beforehand.
588     { ISD::SHL,     MVT::v16i8,    1 },
589     { ISD::SRL,     MVT::v16i8,    2 },
590     { ISD::SRA,     MVT::v16i8,    2 },
591     { ISD::SHL,     MVT::v8i16,    1 },
592     { ISD::SRL,     MVT::v8i16,    2 },
593     { ISD::SRA,     MVT::v8i16,    2 },
594     { ISD::SHL,     MVT::v4i32,    1 },
595     { ISD::SRL,     MVT::v4i32,    2 },
596     { ISD::SRA,     MVT::v4i32,    2 },
597     { ISD::SHL,     MVT::v2i64,    1 },
598     { ISD::SRL,     MVT::v2i64,    2 },
599     { ISD::SRA,     MVT::v2i64,    2 },
600     // 256bit shifts require splitting if AVX2 didn't catch them above.
601     { ISD::SHL,     MVT::v32i8,  2+2 },
602     { ISD::SRL,     MVT::v32i8,  4+2 },
603     { ISD::SRA,     MVT::v32i8,  4+2 },
604     { ISD::SHL,     MVT::v16i16, 2+2 },
605     { ISD::SRL,     MVT::v16i16, 4+2 },
606     { ISD::SRA,     MVT::v16i16, 4+2 },
607     { ISD::SHL,     MVT::v8i32,  2+2 },
608     { ISD::SRL,     MVT::v8i32,  4+2 },
609     { ISD::SRA,     MVT::v8i32,  4+2 },
610     { ISD::SHL,     MVT::v4i64,  2+2 },
611     { ISD::SRL,     MVT::v4i64,  4+2 },
612     { ISD::SRA,     MVT::v4i64,  4+2 },
613   };
614 
615   // Look for XOP lowering tricks.
616   if (ST->hasXOP()) {
617     // If the right shift is constant then we'll fold the negation so
618     // it's as cheap as a left shift.
619     int ShiftISD = ISD;
620     if ((ShiftISD == ISD::SRL || ShiftISD == ISD::SRA) &&
621         (Op2Info == TargetTransformInfo::OK_UniformConstantValue ||
622          Op2Info == TargetTransformInfo::OK_NonUniformConstantValue))
623       ShiftISD = ISD::SHL;
624     if (const auto *Entry =
625             CostTableLookup(XOPShiftCostTable, ShiftISD, LT.second))
626       return LT.first * Entry->Cost;
627   }
628 
629   static const CostTblEntry SSE2UniformShiftCostTable[] = {
630     // Uniform splats are cheaper for the following instructions.
631     { ISD::SHL,  MVT::v16i16, 2+2 }, // 2*psllw + split.
632     { ISD::SHL,  MVT::v8i32,  2+2 }, // 2*pslld + split.
633     { ISD::SHL,  MVT::v4i64,  2+2 }, // 2*psllq + split.
634 
635     { ISD::SRL,  MVT::v16i16, 2+2 }, // 2*psrlw + split.
636     { ISD::SRL,  MVT::v8i32,  2+2 }, // 2*psrld + split.
637     { ISD::SRL,  MVT::v4i64,  2+2 }, // 2*psrlq + split.
638 
639     { ISD::SRA,  MVT::v16i16, 2+2 }, // 2*psraw + split.
640     { ISD::SRA,  MVT::v8i32,  2+2 }, // 2*psrad + split.
641     { ISD::SRA,  MVT::v2i64,    4 }, // 2*psrad + shuffle.
642     { ISD::SRA,  MVT::v4i64,  8+2 }, // 2*(2*psrad + shuffle) + split.
643   };
644 
645   if (ST->hasSSE2() &&
646       ((Op2Info == TargetTransformInfo::OK_UniformConstantValue) ||
647        (Op2Info == TargetTransformInfo::OK_UniformValue))) {
648 
649     // Handle AVX2 uniform v4i64 ISD::SRA, it's not worth a table.
650     if (ISD == ISD::SRA && LT.second == MVT::v4i64 && ST->hasAVX2())
651       return LT.first * 4; // 2*psrad + shuffle.
652 
653     if (const auto *Entry =
654             CostTableLookup(SSE2UniformShiftCostTable, ISD, LT.second))
655       return LT.first * Entry->Cost;
656   }
657 
658   if (ISD == ISD::SHL &&
659       Op2Info == TargetTransformInfo::OK_NonUniformConstantValue) {
660     MVT VT = LT.second;
661     // Vector shift left by non uniform constant can be lowered
662     // into vector multiply.
663     if (((VT == MVT::v8i16 || VT == MVT::v4i32) && ST->hasSSE2()) ||
664         ((VT == MVT::v16i16 || VT == MVT::v8i32) && ST->hasAVX()))
665       ISD = ISD::MUL;
666   }
667 
668   static const CostTblEntry AVX2CostTable[] = {
669     { ISD::SHL,  MVT::v32i8,     11 }, // vpblendvb sequence.
670     { ISD::SHL,  MVT::v16i16,    10 }, // extend/vpsrlvd/pack sequence.
671 
672     { ISD::SRL,  MVT::v32i8,     11 }, // vpblendvb sequence.
673     { ISD::SRL,  MVT::v16i16,    10 }, // extend/vpsrlvd/pack sequence.
674 
675     { ISD::SRA,  MVT::v32i8,     24 }, // vpblendvb sequence.
676     { ISD::SRA,  MVT::v16i16,    10 }, // extend/vpsravd/pack sequence.
677     { ISD::SRA,  MVT::v2i64,      4 }, // srl/xor/sub sequence.
678     { ISD::SRA,  MVT::v4i64,      4 }, // srl/xor/sub sequence.
679 
680     { ISD::SUB,  MVT::v32i8,      1 }, // psubb
681     { ISD::ADD,  MVT::v32i8,      1 }, // paddb
682     { ISD::SUB,  MVT::v16i16,     1 }, // psubw
683     { ISD::ADD,  MVT::v16i16,     1 }, // paddw
684     { ISD::SUB,  MVT::v8i32,      1 }, // psubd
685     { ISD::ADD,  MVT::v8i32,      1 }, // paddd
686     { ISD::SUB,  MVT::v4i64,      1 }, // psubq
687     { ISD::ADD,  MVT::v4i64,      1 }, // paddq
688 
689     { ISD::MUL,  MVT::v32i8,     17 }, // extend/pmullw/trunc sequence.
690     { ISD::MUL,  MVT::v16i8,      7 }, // extend/pmullw/trunc sequence.
691     { ISD::MUL,  MVT::v16i16,     1 }, // pmullw
692     { ISD::MUL,  MVT::v8i32,      2 }, // pmulld (Haswell from agner.org)
693     { ISD::MUL,  MVT::v4i64,      8 }, // 3*pmuludq/3*shift/2*add
694 
695     { ISD::FADD, MVT::v4f64,      1 }, // Haswell from http://www.agner.org/
696     { ISD::FADD, MVT::v8f32,      1 }, // Haswell from http://www.agner.org/
697     { ISD::FSUB, MVT::v4f64,      1 }, // Haswell from http://www.agner.org/
698     { ISD::FSUB, MVT::v8f32,      1 }, // Haswell from http://www.agner.org/
699     { ISD::FMUL, MVT::v4f64,      1 }, // Haswell from http://www.agner.org/
700     { ISD::FMUL, MVT::v8f32,      1 }, // Haswell from http://www.agner.org/
701 
702     { ISD::FDIV, MVT::f32,        7 }, // Haswell from http://www.agner.org/
703     { ISD::FDIV, MVT::v4f32,      7 }, // Haswell from http://www.agner.org/
704     { ISD::FDIV, MVT::v8f32,     14 }, // Haswell from http://www.agner.org/
705     { ISD::FDIV, MVT::f64,       14 }, // Haswell from http://www.agner.org/
706     { ISD::FDIV, MVT::v2f64,     14 }, // Haswell from http://www.agner.org/
707     { ISD::FDIV, MVT::v4f64,     28 }, // Haswell from http://www.agner.org/
708   };
709 
710   // Look for AVX2 lowering tricks for custom cases.
711   if (ST->hasAVX2())
712     if (const auto *Entry = CostTableLookup(AVX2CostTable, ISD, LT.second))
713       return LT.first * Entry->Cost;
714 
715   static const CostTblEntry AVX1CostTable[] = {
716     // We don't have to scalarize unsupported ops. We can issue two half-sized
717     // operations and we only need to extract the upper YMM half.
718     // Two ops + 1 extract + 1 insert = 4.
719     { ISD::MUL,     MVT::v16i16,     4 },
720     { ISD::MUL,     MVT::v8i32,      4 },
721     { ISD::SUB,     MVT::v32i8,      4 },
722     { ISD::ADD,     MVT::v32i8,      4 },
723     { ISD::SUB,     MVT::v16i16,     4 },
724     { ISD::ADD,     MVT::v16i16,     4 },
725     { ISD::SUB,     MVT::v8i32,      4 },
726     { ISD::ADD,     MVT::v8i32,      4 },
727     { ISD::SUB,     MVT::v4i64,      4 },
728     { ISD::ADD,     MVT::v4i64,      4 },
729 
730     // A v4i64 multiply is custom lowered as two split v2i64 vectors that then
731     // are lowered as a series of long multiplies(3), shifts(3) and adds(2)
732     // Because we believe v4i64 to be a legal type, we must also include the
733     // extract+insert in the cost table. Therefore, the cost here is 18
734     // instead of 8.
735     { ISD::MUL,     MVT::v4i64,     18 },
736 
737     { ISD::MUL,     MVT::v32i8,     26 }, // extend/pmullw/trunc sequence.
738 
739     { ISD::FDIV,    MVT::f32,       14 }, // SNB from http://www.agner.org/
740     { ISD::FDIV,    MVT::v4f32,     14 }, // SNB from http://www.agner.org/
741     { ISD::FDIV,    MVT::v8f32,     28 }, // SNB from http://www.agner.org/
742     { ISD::FDIV,    MVT::f64,       22 }, // SNB from http://www.agner.org/
743     { ISD::FDIV,    MVT::v2f64,     22 }, // SNB from http://www.agner.org/
744     { ISD::FDIV,    MVT::v4f64,     44 }, // SNB from http://www.agner.org/
745   };
746 
747   if (ST->hasAVX())
748     if (const auto *Entry = CostTableLookup(AVX1CostTable, ISD, LT.second))
749       return LT.first * Entry->Cost;
750 
751   static const CostTblEntry SSE42CostTable[] = {
752     { ISD::FADD, MVT::f64,     1 }, // Nehalem from http://www.agner.org/
753     { ISD::FADD, MVT::f32,     1 }, // Nehalem from http://www.agner.org/
754     { ISD::FADD, MVT::v2f64,   1 }, // Nehalem from http://www.agner.org/
755     { ISD::FADD, MVT::v4f32,   1 }, // Nehalem from http://www.agner.org/
756 
757     { ISD::FSUB, MVT::f64,     1 }, // Nehalem from http://www.agner.org/
758     { ISD::FSUB, MVT::f32 ,    1 }, // Nehalem from http://www.agner.org/
759     { ISD::FSUB, MVT::v2f64,   1 }, // Nehalem from http://www.agner.org/
760     { ISD::FSUB, MVT::v4f32,   1 }, // Nehalem from http://www.agner.org/
761 
762     { ISD::FMUL, MVT::f64,     1 }, // Nehalem from http://www.agner.org/
763     { ISD::FMUL, MVT::f32,     1 }, // Nehalem from http://www.agner.org/
764     { ISD::FMUL, MVT::v2f64,   1 }, // Nehalem from http://www.agner.org/
765     { ISD::FMUL, MVT::v4f32,   1 }, // Nehalem from http://www.agner.org/
766 
767     { ISD::FDIV,  MVT::f32,   14 }, // Nehalem from http://www.agner.org/
768     { ISD::FDIV,  MVT::v4f32, 14 }, // Nehalem from http://www.agner.org/
769     { ISD::FDIV,  MVT::f64,   22 }, // Nehalem from http://www.agner.org/
770     { ISD::FDIV,  MVT::v2f64, 22 }, // Nehalem from http://www.agner.org/
771   };
772 
773   if (ST->hasSSE42())
774     if (const auto *Entry = CostTableLookup(SSE42CostTable, ISD, LT.second))
775       return LT.first * Entry->Cost;
776 
777   static const CostTblEntry SSE41CostTable[] = {
778     { ISD::SHL,  MVT::v16i8,      11 }, // pblendvb sequence.
779     { ISD::SHL,  MVT::v32i8,  2*11+2 }, // pblendvb sequence + split.
780     { ISD::SHL,  MVT::v8i16,      14 }, // pblendvb sequence.
781     { ISD::SHL,  MVT::v16i16, 2*14+2 }, // pblendvb sequence + split.
782     { ISD::SHL,  MVT::v4i32,       4 }, // pslld/paddd/cvttps2dq/pmulld
783     { ISD::SHL,  MVT::v8i32,   2*4+2 }, // pslld/paddd/cvttps2dq/pmulld + split
784 
785     { ISD::SRL,  MVT::v16i8,      12 }, // pblendvb sequence.
786     { ISD::SRL,  MVT::v32i8,  2*12+2 }, // pblendvb sequence + split.
787     { ISD::SRL,  MVT::v8i16,      14 }, // pblendvb sequence.
788     { ISD::SRL,  MVT::v16i16, 2*14+2 }, // pblendvb sequence + split.
789     { ISD::SRL,  MVT::v4i32,      11 }, // Shift each lane + blend.
790     { ISD::SRL,  MVT::v8i32,  2*11+2 }, // Shift each lane + blend + split.
791 
792     { ISD::SRA,  MVT::v16i8,      24 }, // pblendvb sequence.
793     { ISD::SRA,  MVT::v32i8,  2*24+2 }, // pblendvb sequence + split.
794     { ISD::SRA,  MVT::v8i16,      14 }, // pblendvb sequence.
795     { ISD::SRA,  MVT::v16i16, 2*14+2 }, // pblendvb sequence + split.
796     { ISD::SRA,  MVT::v4i32,      12 }, // Shift each lane + blend.
797     { ISD::SRA,  MVT::v8i32,  2*12+2 }, // Shift each lane + blend + split.
798 
799     { ISD::MUL,  MVT::v4i32,       2 }  // pmulld (Nehalem from agner.org)
800   };
801 
802   if (ST->hasSSE41())
803     if (const auto *Entry = CostTableLookup(SSE41CostTable, ISD, LT.second))
804       return LT.first * Entry->Cost;
805 
806   static const CostTblEntry SSE2CostTable[] = {
807     // We don't correctly identify costs of casts because they are marked as
808     // custom.
809     { ISD::SHL,  MVT::v16i8,      26 }, // cmpgtb sequence.
810     { ISD::SHL,  MVT::v8i16,      32 }, // cmpgtb sequence.
811     { ISD::SHL,  MVT::v4i32,     2*5 }, // We optimized this using mul.
812     { ISD::SHL,  MVT::v2i64,       4 }, // splat+shuffle sequence.
813     { ISD::SHL,  MVT::v4i64,   2*4+2 }, // splat+shuffle sequence + split.
814 
815     { ISD::SRL,  MVT::v16i8,      26 }, // cmpgtb sequence.
816     { ISD::SRL,  MVT::v8i16,      32 }, // cmpgtb sequence.
817     { ISD::SRL,  MVT::v4i32,      16 }, // Shift each lane + blend.
818     { ISD::SRL,  MVT::v2i64,       4 }, // splat+shuffle sequence.
819     { ISD::SRL,  MVT::v4i64,   2*4+2 }, // splat+shuffle sequence + split.
820 
821     { ISD::SRA,  MVT::v16i8,      54 }, // unpacked cmpgtb sequence.
822     { ISD::SRA,  MVT::v8i16,      32 }, // cmpgtb sequence.
823     { ISD::SRA,  MVT::v4i32,      16 }, // Shift each lane + blend.
824     { ISD::SRA,  MVT::v2i64,      12 }, // srl/xor/sub sequence.
825     { ISD::SRA,  MVT::v4i64,  2*12+2 }, // srl/xor/sub sequence+split.
826 
827     { ISD::MUL,  MVT::v16i8,      12 }, // extend/pmullw/trunc sequence.
828     { ISD::MUL,  MVT::v8i16,       1 }, // pmullw
829     { ISD::MUL,  MVT::v4i32,       6 }, // 3*pmuludq/4*shuffle
830     { ISD::MUL,  MVT::v2i64,       8 }, // 3*pmuludq/3*shift/2*add
831 
832     { ISD::FDIV, MVT::f32,        23 }, // Pentium IV from http://www.agner.org/
833     { ISD::FDIV, MVT::v4f32,      39 }, // Pentium IV from http://www.agner.org/
834     { ISD::FDIV, MVT::f64,        38 }, // Pentium IV from http://www.agner.org/
835     { ISD::FDIV, MVT::v2f64,      69 }, // Pentium IV from http://www.agner.org/
836 
837     { ISD::FADD, MVT::f32,         2 }, // Pentium IV from http://www.agner.org/
838     { ISD::FADD, MVT::f64,         2 }, // Pentium IV from http://www.agner.org/
839 
840     { ISD::FSUB, MVT::f32,         2 }, // Pentium IV from http://www.agner.org/
841     { ISD::FSUB, MVT::f64,         2 }, // Pentium IV from http://www.agner.org/
842   };
843 
844   if (ST->hasSSE2())
845     if (const auto *Entry = CostTableLookup(SSE2CostTable, ISD, LT.second))
846       return LT.first * Entry->Cost;
847 
848   static const CostTblEntry SSE1CostTable[] = {
849     { ISD::FDIV, MVT::f32,   17 }, // Pentium III from http://www.agner.org/
850     { ISD::FDIV, MVT::v4f32, 34 }, // Pentium III from http://www.agner.org/
851 
852     { ISD::FADD, MVT::f32,    1 }, // Pentium III from http://www.agner.org/
853     { ISD::FADD, MVT::v4f32,  2 }, // Pentium III from http://www.agner.org/
854 
855     { ISD::FSUB, MVT::f32,    1 }, // Pentium III from http://www.agner.org/
856     { ISD::FSUB, MVT::v4f32,  2 }, // Pentium III from http://www.agner.org/
857 
858     { ISD::ADD, MVT::i8,      1 }, // Pentium III from http://www.agner.org/
859     { ISD::ADD, MVT::i16,     1 }, // Pentium III from http://www.agner.org/
860     { ISD::ADD, MVT::i32,     1 }, // Pentium III from http://www.agner.org/
861 
862     { ISD::SUB, MVT::i8,      1 }, // Pentium III from http://www.agner.org/
863     { ISD::SUB, MVT::i16,     1 }, // Pentium III from http://www.agner.org/
864     { ISD::SUB, MVT::i32,     1 }, // Pentium III from http://www.agner.org/
865   };
866 
867   if (ST->hasSSE1())
868     if (const auto *Entry = CostTableLookup(SSE1CostTable, ISD, LT.second))
869       return LT.first * Entry->Cost;
870 
871   // It is not a good idea to vectorize division. We have to scalarize it and
872   // in the process we will often end up having to spilling regular
873   // registers. The overhead of division is going to dominate most kernels
874   // anyways so try hard to prevent vectorization of division - it is
875   // generally a bad idea. Assume somewhat arbitrarily that we have to be able
876   // to hide "20 cycles" for each lane.
877   if (LT.second.isVector() && (ISD == ISD::SDIV || ISD == ISD::SREM ||
878                                ISD == ISD::UDIV || ISD == ISD::UREM)) {
879     int ScalarCost = getArithmeticInstrCost(
880         Opcode, Ty->getScalarType(), Op1Info, Op2Info,
881         TargetTransformInfo::OP_None, TargetTransformInfo::OP_None);
882     return 20 * LT.first * LT.second.getVectorNumElements() * ScalarCost;
883   }
884 
885   // Fallback to the default implementation.
886   return BaseT::getArithmeticInstrCost(Opcode, Ty, Op1Info, Op2Info);
887 }
888 
889 int X86TTIImpl::getShuffleCost(TTI::ShuffleKind Kind, Type *Tp, int Index,
890                                Type *SubTp) {
891   // 64-bit packed float vectors (v2f32) are widened to type v4f32.
892   // 64-bit packed integer vectors (v2i32) are widened to type v4i32.
893   std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Tp);
894 
895   // Treat Transpose as 2-op shuffles - there's no difference in lowering.
896   if (Kind == TTI::SK_Transpose)
897     Kind = TTI::SK_PermuteTwoSrc;
898 
899   // For Broadcasts we are splatting the first element from the first input
900   // register, so only need to reference that input and all the output
901   // registers are the same.
902   if (Kind == TTI::SK_Broadcast)
903     LT.first = 1;
904 
905   // Subvector extractions are free if they start at the beginning of a
906   // vector and cheap if the subvectors are aligned.
907   if (Kind == TTI::SK_ExtractSubvector && LT.second.isVector()) {
908     int NumElts = LT.second.getVectorNumElements();
909     if ((Index % NumElts) == 0)
910       return 0;
911     std::pair<int, MVT> SubLT = TLI->getTypeLegalizationCost(DL, SubTp);
912     if (SubLT.second.isVector()) {
913       int NumSubElts = SubLT.second.getVectorNumElements();
914       if ((Index % NumSubElts) == 0 && (NumElts % NumSubElts) == 0)
915         return SubLT.first;
916       // Handle some cases for widening legalization. For now we only handle
917       // cases where the original subvector was naturally aligned and evenly
918       // fit in its legalized subvector type.
919       // FIXME: Remove some of the alignment restrictions.
920       // FIXME: We can use permq for 64-bit or larger extracts from 256-bit
921       // vectors.
922       int OrigSubElts = SubTp->getVectorNumElements();
923       if (NumSubElts > OrigSubElts &&
924           (Index % OrigSubElts) == 0 && (NumSubElts % OrigSubElts) == 0 &&
925           LT.second.getVectorElementType() ==
926             SubLT.second.getVectorElementType() &&
927           LT.second.getVectorElementType().getSizeInBits() ==
928             Tp->getVectorElementType()->getPrimitiveSizeInBits()) {
929         assert(NumElts >= NumSubElts && NumElts > OrigSubElts &&
930                "Unexpected number of elements!");
931         Type *VecTy = VectorType::get(Tp->getVectorElementType(),
932                                       LT.second.getVectorNumElements());
933         Type *SubTy = VectorType::get(Tp->getVectorElementType(),
934                                       SubLT.second.getVectorNumElements());
935         int ExtractIndex = alignDown((Index % NumElts), NumSubElts);
936         int ExtractCost = getShuffleCost(TTI::SK_ExtractSubvector, VecTy,
937                                          ExtractIndex, SubTy);
938 
939         // If the original size is 32-bits or more, we can use pshufd. Otherwise
940         // if we have SSSE3 we can use pshufb.
941         if (SubTp->getPrimitiveSizeInBits() >= 32 || ST->hasSSSE3())
942           return ExtractCost + 1; // pshufd or pshufb
943 
944         assert(SubTp->getPrimitiveSizeInBits() == 16 &&
945                "Unexpected vector size");
946 
947         return ExtractCost + 2; // worst case pshufhw + pshufd
948       }
949     }
950   }
951 
952   // We are going to permute multiple sources and the result will be in multiple
953   // destinations. Providing an accurate cost only for splits where the element
954   // type remains the same.
955   if (Kind == TTI::SK_PermuteSingleSrc && LT.first != 1) {
956     MVT LegalVT = LT.second;
957     if (LegalVT.isVector() &&
958         LegalVT.getVectorElementType().getSizeInBits() ==
959             Tp->getVectorElementType()->getPrimitiveSizeInBits() &&
960         LegalVT.getVectorNumElements() < Tp->getVectorNumElements()) {
961 
962       unsigned VecTySize = DL.getTypeStoreSize(Tp);
963       unsigned LegalVTSize = LegalVT.getStoreSize();
964       // Number of source vectors after legalization:
965       unsigned NumOfSrcs = (VecTySize + LegalVTSize - 1) / LegalVTSize;
966       // Number of destination vectors after legalization:
967       unsigned NumOfDests = LT.first;
968 
969       Type *SingleOpTy = VectorType::get(Tp->getVectorElementType(),
970                                          LegalVT.getVectorNumElements());
971 
972       unsigned NumOfShuffles = (NumOfSrcs - 1) * NumOfDests;
973       return NumOfShuffles *
974              getShuffleCost(TTI::SK_PermuteTwoSrc, SingleOpTy, 0, nullptr);
975     }
976 
977     return BaseT::getShuffleCost(Kind, Tp, Index, SubTp);
978   }
979 
980   // For 2-input shuffles, we must account for splitting the 2 inputs into many.
981   if (Kind == TTI::SK_PermuteTwoSrc && LT.first != 1) {
982     // We assume that source and destination have the same vector type.
983     int NumOfDests = LT.first;
984     int NumOfShufflesPerDest = LT.first * 2 - 1;
985     LT.first = NumOfDests * NumOfShufflesPerDest;
986   }
987 
988   static const CostTblEntry AVX512VBMIShuffleTbl[] = {
989       {TTI::SK_Reverse, MVT::v64i8, 1}, // vpermb
990       {TTI::SK_Reverse, MVT::v32i8, 1}, // vpermb
991 
992       {TTI::SK_PermuteSingleSrc, MVT::v64i8, 1}, // vpermb
993       {TTI::SK_PermuteSingleSrc, MVT::v32i8, 1}, // vpermb
994 
995       {TTI::SK_PermuteTwoSrc, MVT::v64i8, 1}, // vpermt2b
996       {TTI::SK_PermuteTwoSrc, MVT::v32i8, 1}, // vpermt2b
997       {TTI::SK_PermuteTwoSrc, MVT::v16i8, 1}  // vpermt2b
998   };
999 
1000   if (ST->hasVBMI())
1001     if (const auto *Entry =
1002             CostTableLookup(AVX512VBMIShuffleTbl, Kind, LT.second))
1003       return LT.first * Entry->Cost;
1004 
1005   static const CostTblEntry AVX512BWShuffleTbl[] = {
1006       {TTI::SK_Broadcast, MVT::v32i16, 1}, // vpbroadcastw
1007       {TTI::SK_Broadcast, MVT::v64i8, 1},  // vpbroadcastb
1008 
1009       {TTI::SK_Reverse, MVT::v32i16, 1}, // vpermw
1010       {TTI::SK_Reverse, MVT::v16i16, 1}, // vpermw
1011       {TTI::SK_Reverse, MVT::v64i8, 2},  // pshufb + vshufi64x2
1012 
1013       {TTI::SK_PermuteSingleSrc, MVT::v32i16, 1}, // vpermw
1014       {TTI::SK_PermuteSingleSrc, MVT::v16i16, 1}, // vpermw
1015       {TTI::SK_PermuteSingleSrc, MVT::v8i16, 1},  // vpermw
1016       {TTI::SK_PermuteSingleSrc, MVT::v64i8, 8},  // extend to v32i16
1017       {TTI::SK_PermuteSingleSrc, MVT::v32i8, 3},  // vpermw + zext/trunc
1018 
1019       {TTI::SK_PermuteTwoSrc, MVT::v32i16, 1}, // vpermt2w
1020       {TTI::SK_PermuteTwoSrc, MVT::v16i16, 1}, // vpermt2w
1021       {TTI::SK_PermuteTwoSrc, MVT::v8i16, 1},  // vpermt2w
1022       {TTI::SK_PermuteTwoSrc, MVT::v32i8, 3},  // zext + vpermt2w + trunc
1023       {TTI::SK_PermuteTwoSrc, MVT::v64i8, 19}, // 6 * v32i8 + 1
1024       {TTI::SK_PermuteTwoSrc, MVT::v16i8, 3}   // zext + vpermt2w + trunc
1025   };
1026 
1027   if (ST->hasBWI())
1028     if (const auto *Entry =
1029             CostTableLookup(AVX512BWShuffleTbl, Kind, LT.second))
1030       return LT.first * Entry->Cost;
1031 
1032   static const CostTblEntry AVX512ShuffleTbl[] = {
1033       {TTI::SK_Broadcast, MVT::v8f64, 1},  // vbroadcastpd
1034       {TTI::SK_Broadcast, MVT::v16f32, 1}, // vbroadcastps
1035       {TTI::SK_Broadcast, MVT::v8i64, 1},  // vpbroadcastq
1036       {TTI::SK_Broadcast, MVT::v16i32, 1}, // vpbroadcastd
1037 
1038       {TTI::SK_Reverse, MVT::v8f64, 1},  // vpermpd
1039       {TTI::SK_Reverse, MVT::v16f32, 1}, // vpermps
1040       {TTI::SK_Reverse, MVT::v8i64, 1},  // vpermq
1041       {TTI::SK_Reverse, MVT::v16i32, 1}, // vpermd
1042 
1043       {TTI::SK_PermuteSingleSrc, MVT::v8f64, 1},  // vpermpd
1044       {TTI::SK_PermuteSingleSrc, MVT::v4f64, 1},  // vpermpd
1045       {TTI::SK_PermuteSingleSrc, MVT::v2f64, 1},  // vpermpd
1046       {TTI::SK_PermuteSingleSrc, MVT::v16f32, 1}, // vpermps
1047       {TTI::SK_PermuteSingleSrc, MVT::v8f32, 1},  // vpermps
1048       {TTI::SK_PermuteSingleSrc, MVT::v4f32, 1},  // vpermps
1049       {TTI::SK_PermuteSingleSrc, MVT::v8i64, 1},  // vpermq
1050       {TTI::SK_PermuteSingleSrc, MVT::v4i64, 1},  // vpermq
1051       {TTI::SK_PermuteSingleSrc, MVT::v2i64, 1},  // vpermq
1052       {TTI::SK_PermuteSingleSrc, MVT::v16i32, 1}, // vpermd
1053       {TTI::SK_PermuteSingleSrc, MVT::v8i32, 1},  // vpermd
1054       {TTI::SK_PermuteSingleSrc, MVT::v4i32, 1},  // vpermd
1055       {TTI::SK_PermuteSingleSrc, MVT::v16i8, 1},  // pshufb
1056 
1057       {TTI::SK_PermuteTwoSrc, MVT::v8f64, 1},  // vpermt2pd
1058       {TTI::SK_PermuteTwoSrc, MVT::v16f32, 1}, // vpermt2ps
1059       {TTI::SK_PermuteTwoSrc, MVT::v8i64, 1},  // vpermt2q
1060       {TTI::SK_PermuteTwoSrc, MVT::v16i32, 1}, // vpermt2d
1061       {TTI::SK_PermuteTwoSrc, MVT::v4f64, 1},  // vpermt2pd
1062       {TTI::SK_PermuteTwoSrc, MVT::v8f32, 1},  // vpermt2ps
1063       {TTI::SK_PermuteTwoSrc, MVT::v4i64, 1},  // vpermt2q
1064       {TTI::SK_PermuteTwoSrc, MVT::v8i32, 1},  // vpermt2d
1065       {TTI::SK_PermuteTwoSrc, MVT::v2f64, 1},  // vpermt2pd
1066       {TTI::SK_PermuteTwoSrc, MVT::v4f32, 1},  // vpermt2ps
1067       {TTI::SK_PermuteTwoSrc, MVT::v2i64, 1},  // vpermt2q
1068       {TTI::SK_PermuteTwoSrc, MVT::v4i32, 1}   // vpermt2d
1069   };
1070 
1071   if (ST->hasAVX512())
1072     if (const auto *Entry = CostTableLookup(AVX512ShuffleTbl, Kind, LT.second))
1073       return LT.first * Entry->Cost;
1074 
1075   static const CostTblEntry AVX2ShuffleTbl[] = {
1076       {TTI::SK_Broadcast, MVT::v4f64, 1},  // vbroadcastpd
1077       {TTI::SK_Broadcast, MVT::v8f32, 1},  // vbroadcastps
1078       {TTI::SK_Broadcast, MVT::v4i64, 1},  // vpbroadcastq
1079       {TTI::SK_Broadcast, MVT::v8i32, 1},  // vpbroadcastd
1080       {TTI::SK_Broadcast, MVT::v16i16, 1}, // vpbroadcastw
1081       {TTI::SK_Broadcast, MVT::v32i8, 1},  // vpbroadcastb
1082 
1083       {TTI::SK_Reverse, MVT::v4f64, 1},  // vpermpd
1084       {TTI::SK_Reverse, MVT::v8f32, 1},  // vpermps
1085       {TTI::SK_Reverse, MVT::v4i64, 1},  // vpermq
1086       {TTI::SK_Reverse, MVT::v8i32, 1},  // vpermd
1087       {TTI::SK_Reverse, MVT::v16i16, 2}, // vperm2i128 + pshufb
1088       {TTI::SK_Reverse, MVT::v32i8, 2},  // vperm2i128 + pshufb
1089 
1090       {TTI::SK_Select, MVT::v16i16, 1}, // vpblendvb
1091       {TTI::SK_Select, MVT::v32i8, 1},  // vpblendvb
1092 
1093       {TTI::SK_PermuteSingleSrc, MVT::v4f64, 1},  // vpermpd
1094       {TTI::SK_PermuteSingleSrc, MVT::v8f32, 1},  // vpermps
1095       {TTI::SK_PermuteSingleSrc, MVT::v4i64, 1},  // vpermq
1096       {TTI::SK_PermuteSingleSrc, MVT::v8i32, 1},  // vpermd
1097       {TTI::SK_PermuteSingleSrc, MVT::v16i16, 4}, // vperm2i128 + 2*vpshufb
1098                                                   // + vpblendvb
1099       {TTI::SK_PermuteSingleSrc, MVT::v32i8, 4},  // vperm2i128 + 2*vpshufb
1100                                                   // + vpblendvb
1101 
1102       {TTI::SK_PermuteTwoSrc, MVT::v4f64, 3},  // 2*vpermpd + vblendpd
1103       {TTI::SK_PermuteTwoSrc, MVT::v8f32, 3},  // 2*vpermps + vblendps
1104       {TTI::SK_PermuteTwoSrc, MVT::v4i64, 3},  // 2*vpermq + vpblendd
1105       {TTI::SK_PermuteTwoSrc, MVT::v8i32, 3},  // 2*vpermd + vpblendd
1106       {TTI::SK_PermuteTwoSrc, MVT::v16i16, 7}, // 2*vperm2i128 + 4*vpshufb
1107                                                // + vpblendvb
1108       {TTI::SK_PermuteTwoSrc, MVT::v32i8, 7},  // 2*vperm2i128 + 4*vpshufb
1109                                                // + vpblendvb
1110   };
1111 
1112   if (ST->hasAVX2())
1113     if (const auto *Entry = CostTableLookup(AVX2ShuffleTbl, Kind, LT.second))
1114       return LT.first * Entry->Cost;
1115 
1116   static const CostTblEntry XOPShuffleTbl[] = {
1117       {TTI::SK_PermuteSingleSrc, MVT::v4f64, 2},  // vperm2f128 + vpermil2pd
1118       {TTI::SK_PermuteSingleSrc, MVT::v8f32, 2},  // vperm2f128 + vpermil2ps
1119       {TTI::SK_PermuteSingleSrc, MVT::v4i64, 2},  // vperm2f128 + vpermil2pd
1120       {TTI::SK_PermuteSingleSrc, MVT::v8i32, 2},  // vperm2f128 + vpermil2ps
1121       {TTI::SK_PermuteSingleSrc, MVT::v16i16, 4}, // vextractf128 + 2*vpperm
1122                                                   // + vinsertf128
1123       {TTI::SK_PermuteSingleSrc, MVT::v32i8, 4},  // vextractf128 + 2*vpperm
1124                                                   // + vinsertf128
1125 
1126       {TTI::SK_PermuteTwoSrc, MVT::v16i16, 9}, // 2*vextractf128 + 6*vpperm
1127                                                // + vinsertf128
1128       {TTI::SK_PermuteTwoSrc, MVT::v8i16, 1},  // vpperm
1129       {TTI::SK_PermuteTwoSrc, MVT::v32i8, 9},  // 2*vextractf128 + 6*vpperm
1130                                                // + vinsertf128
1131       {TTI::SK_PermuteTwoSrc, MVT::v16i8, 1},  // vpperm
1132   };
1133 
1134   if (ST->hasXOP())
1135     if (const auto *Entry = CostTableLookup(XOPShuffleTbl, Kind, LT.second))
1136       return LT.first * Entry->Cost;
1137 
1138   static const CostTblEntry AVX1ShuffleTbl[] = {
1139       {TTI::SK_Broadcast, MVT::v4f64, 2},  // vperm2f128 + vpermilpd
1140       {TTI::SK_Broadcast, MVT::v8f32, 2},  // vperm2f128 + vpermilps
1141       {TTI::SK_Broadcast, MVT::v4i64, 2},  // vperm2f128 + vpermilpd
1142       {TTI::SK_Broadcast, MVT::v8i32, 2},  // vperm2f128 + vpermilps
1143       {TTI::SK_Broadcast, MVT::v16i16, 3}, // vpshuflw + vpshufd + vinsertf128
1144       {TTI::SK_Broadcast, MVT::v32i8, 2},  // vpshufb + vinsertf128
1145 
1146       {TTI::SK_Reverse, MVT::v4f64, 2},  // vperm2f128 + vpermilpd
1147       {TTI::SK_Reverse, MVT::v8f32, 2},  // vperm2f128 + vpermilps
1148       {TTI::SK_Reverse, MVT::v4i64, 2},  // vperm2f128 + vpermilpd
1149       {TTI::SK_Reverse, MVT::v8i32, 2},  // vperm2f128 + vpermilps
1150       {TTI::SK_Reverse, MVT::v16i16, 4}, // vextractf128 + 2*pshufb
1151                                          // + vinsertf128
1152       {TTI::SK_Reverse, MVT::v32i8, 4},  // vextractf128 + 2*pshufb
1153                                          // + vinsertf128
1154 
1155       {TTI::SK_Select, MVT::v4i64, 1},  // vblendpd
1156       {TTI::SK_Select, MVT::v4f64, 1},  // vblendpd
1157       {TTI::SK_Select, MVT::v8i32, 1},  // vblendps
1158       {TTI::SK_Select, MVT::v8f32, 1},  // vblendps
1159       {TTI::SK_Select, MVT::v16i16, 3}, // vpand + vpandn + vpor
1160       {TTI::SK_Select, MVT::v32i8, 3},  // vpand + vpandn + vpor
1161 
1162       {TTI::SK_PermuteSingleSrc, MVT::v4f64, 2},  // vperm2f128 + vshufpd
1163       {TTI::SK_PermuteSingleSrc, MVT::v4i64, 2},  // vperm2f128 + vshufpd
1164       {TTI::SK_PermuteSingleSrc, MVT::v8f32, 4},  // 2*vperm2f128 + 2*vshufps
1165       {TTI::SK_PermuteSingleSrc, MVT::v8i32, 4},  // 2*vperm2f128 + 2*vshufps
1166       {TTI::SK_PermuteSingleSrc, MVT::v16i16, 8}, // vextractf128 + 4*pshufb
1167                                                   // + 2*por + vinsertf128
1168       {TTI::SK_PermuteSingleSrc, MVT::v32i8, 8},  // vextractf128 + 4*pshufb
1169                                                   // + 2*por + vinsertf128
1170 
1171       {TTI::SK_PermuteTwoSrc, MVT::v4f64, 3},   // 2*vperm2f128 + vshufpd
1172       {TTI::SK_PermuteTwoSrc, MVT::v4i64, 3},   // 2*vperm2f128 + vshufpd
1173       {TTI::SK_PermuteTwoSrc, MVT::v8f32, 4},   // 2*vperm2f128 + 2*vshufps
1174       {TTI::SK_PermuteTwoSrc, MVT::v8i32, 4},   // 2*vperm2f128 + 2*vshufps
1175       {TTI::SK_PermuteTwoSrc, MVT::v16i16, 15}, // 2*vextractf128 + 8*pshufb
1176                                                 // + 4*por + vinsertf128
1177       {TTI::SK_PermuteTwoSrc, MVT::v32i8, 15},  // 2*vextractf128 + 8*pshufb
1178                                                 // + 4*por + vinsertf128
1179   };
1180 
1181   if (ST->hasAVX())
1182     if (const auto *Entry = CostTableLookup(AVX1ShuffleTbl, Kind, LT.second))
1183       return LT.first * Entry->Cost;
1184 
1185   static const CostTblEntry SSE41ShuffleTbl[] = {
1186       {TTI::SK_Select, MVT::v2i64, 1}, // pblendw
1187       {TTI::SK_Select, MVT::v2f64, 1}, // movsd
1188       {TTI::SK_Select, MVT::v4i32, 1}, // pblendw
1189       {TTI::SK_Select, MVT::v4f32, 1}, // blendps
1190       {TTI::SK_Select, MVT::v8i16, 1}, // pblendw
1191       {TTI::SK_Select, MVT::v16i8, 1}  // pblendvb
1192   };
1193 
1194   if (ST->hasSSE41())
1195     if (const auto *Entry = CostTableLookup(SSE41ShuffleTbl, Kind, LT.second))
1196       return LT.first * Entry->Cost;
1197 
1198   static const CostTblEntry SSSE3ShuffleTbl[] = {
1199       {TTI::SK_Broadcast, MVT::v8i16, 1}, // pshufb
1200       {TTI::SK_Broadcast, MVT::v16i8, 1}, // pshufb
1201 
1202       {TTI::SK_Reverse, MVT::v8i16, 1}, // pshufb
1203       {TTI::SK_Reverse, MVT::v16i8, 1}, // pshufb
1204 
1205       {TTI::SK_Select, MVT::v8i16, 3}, // 2*pshufb + por
1206       {TTI::SK_Select, MVT::v16i8, 3}, // 2*pshufb + por
1207 
1208       {TTI::SK_PermuteSingleSrc, MVT::v8i16, 1}, // pshufb
1209       {TTI::SK_PermuteSingleSrc, MVT::v16i8, 1}, // pshufb
1210 
1211       {TTI::SK_PermuteTwoSrc, MVT::v8i16, 3}, // 2*pshufb + por
1212       {TTI::SK_PermuteTwoSrc, MVT::v16i8, 3}, // 2*pshufb + por
1213   };
1214 
1215   if (ST->hasSSSE3())
1216     if (const auto *Entry = CostTableLookup(SSSE3ShuffleTbl, Kind, LT.second))
1217       return LT.first * Entry->Cost;
1218 
1219   static const CostTblEntry SSE2ShuffleTbl[] = {
1220       {TTI::SK_Broadcast, MVT::v2f64, 1}, // shufpd
1221       {TTI::SK_Broadcast, MVT::v2i64, 1}, // pshufd
1222       {TTI::SK_Broadcast, MVT::v4i32, 1}, // pshufd
1223       {TTI::SK_Broadcast, MVT::v8i16, 2}, // pshuflw + pshufd
1224       {TTI::SK_Broadcast, MVT::v16i8, 3}, // unpck + pshuflw + pshufd
1225 
1226       {TTI::SK_Reverse, MVT::v2f64, 1}, // shufpd
1227       {TTI::SK_Reverse, MVT::v2i64, 1}, // pshufd
1228       {TTI::SK_Reverse, MVT::v4i32, 1}, // pshufd
1229       {TTI::SK_Reverse, MVT::v8i16, 3}, // pshuflw + pshufhw + pshufd
1230       {TTI::SK_Reverse, MVT::v16i8, 9}, // 2*pshuflw + 2*pshufhw
1231                                         // + 2*pshufd + 2*unpck + packus
1232 
1233       {TTI::SK_Select, MVT::v2i64, 1}, // movsd
1234       {TTI::SK_Select, MVT::v2f64, 1}, // movsd
1235       {TTI::SK_Select, MVT::v4i32, 2}, // 2*shufps
1236       {TTI::SK_Select, MVT::v8i16, 3}, // pand + pandn + por
1237       {TTI::SK_Select, MVT::v16i8, 3}, // pand + pandn + por
1238 
1239       {TTI::SK_PermuteSingleSrc, MVT::v2f64, 1}, // shufpd
1240       {TTI::SK_PermuteSingleSrc, MVT::v2i64, 1}, // pshufd
1241       {TTI::SK_PermuteSingleSrc, MVT::v4i32, 1}, // pshufd
1242       {TTI::SK_PermuteSingleSrc, MVT::v8i16, 5}, // 2*pshuflw + 2*pshufhw
1243                                                   // + pshufd/unpck
1244     { TTI::SK_PermuteSingleSrc, MVT::v16i8, 10 }, // 2*pshuflw + 2*pshufhw
1245                                                   // + 2*pshufd + 2*unpck + 2*packus
1246 
1247     { TTI::SK_PermuteTwoSrc,    MVT::v2f64,  1 }, // shufpd
1248     { TTI::SK_PermuteTwoSrc,    MVT::v2i64,  1 }, // shufpd
1249     { TTI::SK_PermuteTwoSrc,    MVT::v4i32,  2 }, // 2*{unpck,movsd,pshufd}
1250     { TTI::SK_PermuteTwoSrc,    MVT::v8i16,  8 }, // blend+permute
1251     { TTI::SK_PermuteTwoSrc,    MVT::v16i8, 13 }, // blend+permute
1252   };
1253 
1254   if (ST->hasSSE2())
1255     if (const auto *Entry = CostTableLookup(SSE2ShuffleTbl, Kind, LT.second))
1256       return LT.first * Entry->Cost;
1257 
1258   static const CostTblEntry SSE1ShuffleTbl[] = {
1259     { TTI::SK_Broadcast,        MVT::v4f32, 1 }, // shufps
1260     { TTI::SK_Reverse,          MVT::v4f32, 1 }, // shufps
1261     { TTI::SK_Select,           MVT::v4f32, 2 }, // 2*shufps
1262     { TTI::SK_PermuteSingleSrc, MVT::v4f32, 1 }, // shufps
1263     { TTI::SK_PermuteTwoSrc,    MVT::v4f32, 2 }, // 2*shufps
1264   };
1265 
1266   if (ST->hasSSE1())
1267     if (const auto *Entry = CostTableLookup(SSE1ShuffleTbl, Kind, LT.second))
1268       return LT.first * Entry->Cost;
1269 
1270   return BaseT::getShuffleCost(Kind, Tp, Index, SubTp);
1271 }
1272 
1273 int X86TTIImpl::getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src,
1274                                  const Instruction *I) {
1275   int ISD = TLI->InstructionOpcodeToISD(Opcode);
1276   assert(ISD && "Invalid opcode");
1277 
1278   // FIXME: Need a better design of the cost table to handle non-simple types of
1279   // potential massive combinations (elem_num x src_type x dst_type).
1280 
1281   static const TypeConversionCostTblEntry AVX512BWConversionTbl[] {
1282     { ISD::SIGN_EXTEND, MVT::v32i16, MVT::v32i8, 1 },
1283     { ISD::ZERO_EXTEND, MVT::v32i16, MVT::v32i8, 1 },
1284 
1285     // Mask sign extend has an instruction.
1286     { ISD::SIGN_EXTEND, MVT::v8i16,  MVT::v8i1,  1 },
1287     { ISD::SIGN_EXTEND, MVT::v16i8,  MVT::v16i1, 1 },
1288     { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i1, 1 },
1289     { ISD::SIGN_EXTEND, MVT::v32i8,  MVT::v32i1, 1 },
1290     { ISD::SIGN_EXTEND, MVT::v32i16, MVT::v32i1, 1 },
1291     { ISD::SIGN_EXTEND, MVT::v64i8,  MVT::v64i1, 1 },
1292 
1293     // Mask zero extend is a load + broadcast.
1294     { ISD::ZERO_EXTEND, MVT::v8i16,  MVT::v8i1,  2 },
1295     { ISD::ZERO_EXTEND, MVT::v16i8,  MVT::v16i1, 2 },
1296     { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i1, 2 },
1297     { ISD::ZERO_EXTEND, MVT::v32i8,  MVT::v32i1, 2 },
1298     { ISD::ZERO_EXTEND, MVT::v32i16, MVT::v32i1, 2 },
1299     { ISD::ZERO_EXTEND, MVT::v64i8,  MVT::v64i1, 2 },
1300 
1301     { ISD::TRUNCATE,    MVT::v32i8,  MVT::v32i16, 1 },
1302   };
1303 
1304   static const TypeConversionCostTblEntry AVX512DQConversionTbl[] = {
1305     { ISD::SINT_TO_FP,  MVT::v2f32,  MVT::v2i64,  1 },
1306     { ISD::SINT_TO_FP,  MVT::v2f64,  MVT::v2i64,  1 },
1307     { ISD::SINT_TO_FP,  MVT::v4f32,  MVT::v4i64,  1 },
1308     { ISD::SINT_TO_FP,  MVT::v4f64,  MVT::v4i64,  1 },
1309     { ISD::SINT_TO_FP,  MVT::v8f32,  MVT::v8i64,  1 },
1310     { ISD::SINT_TO_FP,  MVT::v8f64,  MVT::v8i64,  1 },
1311 
1312     { ISD::UINT_TO_FP,  MVT::v2f32,  MVT::v2i64,  1 },
1313     { ISD::UINT_TO_FP,  MVT::v2f64,  MVT::v2i64,  1 },
1314     { ISD::UINT_TO_FP,  MVT::v4f32,  MVT::v4i64,  1 },
1315     { ISD::UINT_TO_FP,  MVT::v4f64,  MVT::v4i64,  1 },
1316     { ISD::UINT_TO_FP,  MVT::v8f32,  MVT::v8i64,  1 },
1317     { ISD::UINT_TO_FP,  MVT::v8f64,  MVT::v8i64,  1 },
1318 
1319     { ISD::FP_TO_SINT,  MVT::v2i64,  MVT::v2f32,  1 },
1320     { ISD::FP_TO_SINT,  MVT::v4i64,  MVT::v4f32,  1 },
1321     { ISD::FP_TO_SINT,  MVT::v8i64,  MVT::v8f32,  1 },
1322     { ISD::FP_TO_SINT,  MVT::v2i64,  MVT::v2f64,  1 },
1323     { ISD::FP_TO_SINT,  MVT::v4i64,  MVT::v4f64,  1 },
1324     { ISD::FP_TO_SINT,  MVT::v8i64,  MVT::v8f64,  1 },
1325 
1326     { ISD::FP_TO_UINT,  MVT::v2i64,  MVT::v2f32,  1 },
1327     { ISD::FP_TO_UINT,  MVT::v4i64,  MVT::v4f32,  1 },
1328     { ISD::FP_TO_UINT,  MVT::v8i64,  MVT::v8f32,  1 },
1329     { ISD::FP_TO_UINT,  MVT::v2i64,  MVT::v2f64,  1 },
1330     { ISD::FP_TO_UINT,  MVT::v4i64,  MVT::v4f64,  1 },
1331     { ISD::FP_TO_UINT,  MVT::v8i64,  MVT::v8f64,  1 },
1332   };
1333 
1334   // TODO: For AVX512DQ + AVX512VL, we also have cheap casts for 128-bit and
1335   // 256-bit wide vectors.
1336 
1337   static const TypeConversionCostTblEntry AVX512FConversionTbl[] = {
1338     { ISD::FP_EXTEND, MVT::v8f64,   MVT::v8f32,  1 },
1339     { ISD::FP_EXTEND, MVT::v8f64,   MVT::v16f32, 3 },
1340     { ISD::FP_ROUND,  MVT::v8f32,   MVT::v8f64,  1 },
1341 
1342     { ISD::TRUNCATE,  MVT::v16i8,   MVT::v16i32, 1 },
1343     { ISD::TRUNCATE,  MVT::v16i16,  MVT::v16i32, 1 },
1344     { ISD::TRUNCATE,  MVT::v8i16,   MVT::v8i64,  1 },
1345     { ISD::TRUNCATE,  MVT::v8i32,   MVT::v8i64,  1 },
1346 
1347     // v16i1 -> v16i32 - load + broadcast
1348     { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i1,  2 },
1349     { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i1,  2 },
1350     { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i8,  1 },
1351     { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i8,  1 },
1352     { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i16, 1 },
1353     { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i16, 1 },
1354     { ISD::SIGN_EXTEND, MVT::v8i64,  MVT::v8i8,   1 },
1355     { ISD::ZERO_EXTEND, MVT::v8i64,  MVT::v8i8,   1 },
1356     { ISD::SIGN_EXTEND, MVT::v8i64,  MVT::v8i16,  1 },
1357     { ISD::ZERO_EXTEND, MVT::v8i64,  MVT::v8i16,  1 },
1358     { ISD::SIGN_EXTEND, MVT::v8i64,  MVT::v8i32,  1 },
1359     { ISD::ZERO_EXTEND, MVT::v8i64,  MVT::v8i32,  1 },
1360 
1361     { ISD::SINT_TO_FP,  MVT::v8f64,  MVT::v8i1,   4 },
1362     { ISD::SINT_TO_FP,  MVT::v16f32, MVT::v16i1,  3 },
1363     { ISD::SINT_TO_FP,  MVT::v8f64,  MVT::v8i8,   2 },
1364     { ISD::SINT_TO_FP,  MVT::v16f32, MVT::v16i8,  2 },
1365     { ISD::SINT_TO_FP,  MVT::v8f64,  MVT::v8i16,  2 },
1366     { ISD::SINT_TO_FP,  MVT::v16f32, MVT::v16i16, 2 },
1367     { ISD::SINT_TO_FP,  MVT::v16f32, MVT::v16i32, 1 },
1368     { ISD::SINT_TO_FP,  MVT::v8f64,  MVT::v8i32,  1 },
1369 
1370     { ISD::UINT_TO_FP,  MVT::v8f64,  MVT::v8i1,   4 },
1371     { ISD::UINT_TO_FP,  MVT::v16f32, MVT::v16i1,  3 },
1372     { ISD::UINT_TO_FP,  MVT::v2f64,  MVT::v2i8,   2 },
1373     { ISD::UINT_TO_FP,  MVT::v4f64,  MVT::v4i8,   2 },
1374     { ISD::UINT_TO_FP,  MVT::v8f32,  MVT::v8i8,   2 },
1375     { ISD::UINT_TO_FP,  MVT::v8f64,  MVT::v8i8,   2 },
1376     { ISD::UINT_TO_FP,  MVT::v16f32, MVT::v16i8,  2 },
1377     { ISD::UINT_TO_FP,  MVT::v2f64,  MVT::v2i16,  5 },
1378     { ISD::UINT_TO_FP,  MVT::v4f64,  MVT::v4i16,  2 },
1379     { ISD::UINT_TO_FP,  MVT::v8f32,  MVT::v8i16,  2 },
1380     { ISD::UINT_TO_FP,  MVT::v8f64,  MVT::v8i16,  2 },
1381     { ISD::UINT_TO_FP,  MVT::v16f32, MVT::v16i16, 2 },
1382     { ISD::UINT_TO_FP,  MVT::v2f32,  MVT::v2i32,  2 },
1383     { ISD::UINT_TO_FP,  MVT::v2f64,  MVT::v2i32,  1 },
1384     { ISD::UINT_TO_FP,  MVT::v4f32,  MVT::v4i32,  1 },
1385     { ISD::UINT_TO_FP,  MVT::v4f64,  MVT::v4i32,  1 },
1386     { ISD::UINT_TO_FP,  MVT::v8f32,  MVT::v8i32,  1 },
1387     { ISD::UINT_TO_FP,  MVT::v8f64,  MVT::v8i32,  1 },
1388     { ISD::UINT_TO_FP,  MVT::v16f32, MVT::v16i32, 1 },
1389     { ISD::UINT_TO_FP,  MVT::v2f32,  MVT::v2i64,  5 },
1390     { ISD::UINT_TO_FP,  MVT::v8f32,  MVT::v8i64, 26 },
1391     { ISD::UINT_TO_FP,  MVT::v2f64,  MVT::v2i64,  5 },
1392     { ISD::UINT_TO_FP,  MVT::v4f64,  MVT::v4i64,  5 },
1393     { ISD::UINT_TO_FP,  MVT::v8f64,  MVT::v8i64,  5 },
1394 
1395     { ISD::UINT_TO_FP,  MVT::f32,    MVT::i64,    1 },
1396     { ISD::UINT_TO_FP,  MVT::f64,    MVT::i64,    1 },
1397     { ISD::FP_TO_UINT,  MVT::i64,    MVT::f32,    1 },
1398     { ISD::FP_TO_UINT,  MVT::i64,    MVT::f64,    1 },
1399 
1400     { ISD::FP_TO_UINT,  MVT::v2i32,  MVT::v2f32,  1 },
1401     { ISD::FP_TO_UINT,  MVT::v4i32,  MVT::v4f32,  1 },
1402     { ISD::FP_TO_UINT,  MVT::v4i32,  MVT::v4f64,  1 },
1403     { ISD::FP_TO_UINT,  MVT::v8i32,  MVT::v8f32,  1 },
1404     { ISD::FP_TO_UINT,  MVT::v8i32,  MVT::v8f64,  1 },
1405     { ISD::FP_TO_UINT,  MVT::v8i16,  MVT::v8f64,  2 },
1406     { ISD::FP_TO_UINT,  MVT::v8i8,   MVT::v8f64,  2 },
1407     { ISD::FP_TO_UINT,  MVT::v16i32, MVT::v16f32, 1 },
1408     { ISD::FP_TO_UINT,  MVT::v16i16, MVT::v16f32, 2 },
1409     { ISD::FP_TO_UINT,  MVT::v16i8,  MVT::v16f32, 2 },
1410   };
1411 
1412   static const TypeConversionCostTblEntry AVX2ConversionTbl[] = {
1413     { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v4i1,   3 },
1414     { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v4i1,   3 },
1415     { ISD::SIGN_EXTEND, MVT::v8i32,  MVT::v8i1,   3 },
1416     { ISD::ZERO_EXTEND, MVT::v8i32,  MVT::v8i1,   3 },
1417     { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v4i8,   1 },
1418     { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v4i8,   1 },
1419     { ISD::SIGN_EXTEND, MVT::v8i32,  MVT::v8i8,   1 },
1420     { ISD::ZERO_EXTEND, MVT::v8i32,  MVT::v8i8,   1 },
1421     { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i8,  1 },
1422     { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i8,  1 },
1423     { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v4i16,  1 },
1424     { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v4i16,  1 },
1425     { ISD::SIGN_EXTEND, MVT::v8i32,  MVT::v8i16,  1 },
1426     { ISD::ZERO_EXTEND, MVT::v8i32,  MVT::v8i16,  1 },
1427     { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v4i32,  1 },
1428     { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v4i32,  1 },
1429     { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i16, 3 },
1430     { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i16, 3 },
1431 
1432     { ISD::TRUNCATE,    MVT::v4i8,   MVT::v4i64,  2 },
1433     { ISD::TRUNCATE,    MVT::v4i16,  MVT::v4i64,  2 },
1434     { ISD::TRUNCATE,    MVT::v4i32,  MVT::v4i64,  2 },
1435     { ISD::TRUNCATE,    MVT::v8i8,   MVT::v8i32,  2 },
1436     { ISD::TRUNCATE,    MVT::v8i16,  MVT::v8i32,  2 },
1437     { ISD::TRUNCATE,    MVT::v8i32,  MVT::v8i64,  4 },
1438 
1439     { ISD::FP_EXTEND,   MVT::v8f64,  MVT::v8f32,  3 },
1440     { ISD::FP_ROUND,    MVT::v8f32,  MVT::v8f64,  3 },
1441 
1442     { ISD::UINT_TO_FP,  MVT::v8f32,  MVT::v8i32,  8 },
1443   };
1444 
1445   static const TypeConversionCostTblEntry AVXConversionTbl[] = {
1446     { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v4i1,  6 },
1447     { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v4i1,  4 },
1448     { ISD::SIGN_EXTEND, MVT::v8i32,  MVT::v8i1,  7 },
1449     { ISD::ZERO_EXTEND, MVT::v8i32,  MVT::v8i1,  4 },
1450     { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v4i8,  4 },
1451     { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v4i8,  4 },
1452     { ISD::SIGN_EXTEND, MVT::v8i32,  MVT::v8i8,  4 },
1453     { ISD::ZERO_EXTEND, MVT::v8i32,  MVT::v8i8,  4 },
1454     { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i8, 4 },
1455     { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i8, 4 },
1456     { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v4i16, 4 },
1457     { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v4i16, 3 },
1458     { ISD::SIGN_EXTEND, MVT::v8i32,  MVT::v8i16, 4 },
1459     { ISD::ZERO_EXTEND, MVT::v8i32,  MVT::v8i16, 4 },
1460     { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v4i32, 4 },
1461     { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v4i32, 4 },
1462 
1463     { ISD::TRUNCATE,    MVT::v16i8, MVT::v16i16, 4 },
1464     { ISD::TRUNCATE,    MVT::v8i8,  MVT::v8i32,  4 },
1465     { ISD::TRUNCATE,    MVT::v8i16, MVT::v8i32,  5 },
1466     { ISD::TRUNCATE,    MVT::v4i8,  MVT::v4i64,  4 },
1467     { ISD::TRUNCATE,    MVT::v4i16, MVT::v4i64,  4 },
1468     { ISD::TRUNCATE,    MVT::v4i32, MVT::v4i64,  4 },
1469     { ISD::TRUNCATE,    MVT::v8i8,  MVT::v8i64, 11 },
1470     { ISD::TRUNCATE,    MVT::v8i16, MVT::v8i64,  9 },
1471     { ISD::TRUNCATE,    MVT::v8i32, MVT::v8i64,  9 },
1472     { ISD::TRUNCATE,    MVT::v16i8, MVT::v16i64, 11 },
1473 
1474     { ISD::SINT_TO_FP,  MVT::v4f32, MVT::v4i1,  3 },
1475     { ISD::SINT_TO_FP,  MVT::v4f64, MVT::v4i1,  3 },
1476     { ISD::SINT_TO_FP,  MVT::v8f32, MVT::v8i1,  8 },
1477     { ISD::SINT_TO_FP,  MVT::v4f32, MVT::v4i8,  3 },
1478     { ISD::SINT_TO_FP,  MVT::v4f64, MVT::v4i8,  3 },
1479     { ISD::SINT_TO_FP,  MVT::v8f32, MVT::v8i8,  8 },
1480     { ISD::SINT_TO_FP,  MVT::v4f32, MVT::v4i16, 3 },
1481     { ISD::SINT_TO_FP,  MVT::v4f64, MVT::v4i16, 3 },
1482     { ISD::SINT_TO_FP,  MVT::v8f32, MVT::v8i16, 5 },
1483     { ISD::SINT_TO_FP,  MVT::v4f32, MVT::v4i32, 1 },
1484     { ISD::SINT_TO_FP,  MVT::v4f64, MVT::v4i32, 1 },
1485     { ISD::SINT_TO_FP,  MVT::v8f32, MVT::v8i32, 1 },
1486 
1487     { ISD::UINT_TO_FP,  MVT::v4f32, MVT::v4i1,  7 },
1488     { ISD::UINT_TO_FP,  MVT::v4f64, MVT::v4i1,  7 },
1489     { ISD::UINT_TO_FP,  MVT::v8f32, MVT::v8i1,  6 },
1490     { ISD::UINT_TO_FP,  MVT::v4f32, MVT::v4i8,  2 },
1491     { ISD::UINT_TO_FP,  MVT::v4f64, MVT::v4i8,  2 },
1492     { ISD::UINT_TO_FP,  MVT::v8f32, MVT::v8i8,  5 },
1493     { ISD::UINT_TO_FP,  MVT::v4f32, MVT::v4i16, 2 },
1494     { ISD::UINT_TO_FP,  MVT::v4f64, MVT::v4i16, 2 },
1495     { ISD::UINT_TO_FP,  MVT::v8f32, MVT::v8i16, 5 },
1496     { ISD::UINT_TO_FP,  MVT::v2f64, MVT::v2i32, 6 },
1497     { ISD::UINT_TO_FP,  MVT::v4f32, MVT::v4i32, 6 },
1498     { ISD::UINT_TO_FP,  MVT::v4f64, MVT::v4i32, 6 },
1499     { ISD::UINT_TO_FP,  MVT::v8f32, MVT::v8i32, 9 },
1500     { ISD::UINT_TO_FP,  MVT::v2f64, MVT::v2i64, 5 },
1501     { ISD::UINT_TO_FP,  MVT::v4f64, MVT::v4i64, 6 },
1502     // The generic code to compute the scalar overhead is currently broken.
1503     // Workaround this limitation by estimating the scalarization overhead
1504     // here. We have roughly 10 instructions per scalar element.
1505     // Multiply that by the vector width.
1506     // FIXME: remove that when PR19268 is fixed.
1507     { ISD::SINT_TO_FP,  MVT::v4f64, MVT::v4i64, 13 },
1508     { ISD::SINT_TO_FP,  MVT::v4f64, MVT::v4i64, 13 },
1509 
1510     { ISD::FP_TO_SINT,  MVT::v4i8,  MVT::v4f32, 1 },
1511     { ISD::FP_TO_SINT,  MVT::v8i8,  MVT::v8f32, 7 },
1512     // This node is expanded into scalarized operations but BasicTTI is overly
1513     // optimistic estimating its cost.  It computes 3 per element (one
1514     // vector-extract, one scalar conversion and one vector-insert).  The
1515     // problem is that the inserts form a read-modify-write chain so latency
1516     // should be factored in too.  Inflating the cost per element by 1.
1517     { ISD::FP_TO_UINT,  MVT::v8i32, MVT::v8f32, 8*4 },
1518     { ISD::FP_TO_UINT,  MVT::v4i32, MVT::v4f64, 4*4 },
1519 
1520     { ISD::FP_EXTEND,   MVT::v4f64,  MVT::v4f32,  1 },
1521     { ISD::FP_ROUND,    MVT::v4f32,  MVT::v4f64,  1 },
1522   };
1523 
1524   static const TypeConversionCostTblEntry SSE41ConversionTbl[] = {
1525     { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i8,    2 },
1526     { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i8,    2 },
1527     { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i16,   2 },
1528     { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i16,   2 },
1529     { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i32,   2 },
1530     { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i32,   2 },
1531 
1532     { ISD::ZERO_EXTEND, MVT::v4i16,  MVT::v4i8,   1 },
1533     { ISD::SIGN_EXTEND, MVT::v4i16,  MVT::v4i8,   2 },
1534     { ISD::ZERO_EXTEND, MVT::v4i32,  MVT::v4i8,   1 },
1535     { ISD::SIGN_EXTEND, MVT::v4i32,  MVT::v4i8,   1 },
1536     { ISD::ZERO_EXTEND, MVT::v8i16,  MVT::v8i8,   1 },
1537     { ISD::SIGN_EXTEND, MVT::v8i16,  MVT::v8i8,   1 },
1538     { ISD::ZERO_EXTEND, MVT::v8i32,  MVT::v8i8,   2 },
1539     { ISD::SIGN_EXTEND, MVT::v8i32,  MVT::v8i8,   2 },
1540     { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i8,  2 },
1541     { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i8,  2 },
1542     { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i8,  4 },
1543     { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i8,  4 },
1544     { ISD::ZERO_EXTEND, MVT::v4i32,  MVT::v4i16,  1 },
1545     { ISD::SIGN_EXTEND, MVT::v4i32,  MVT::v4i16,  1 },
1546     { ISD::ZERO_EXTEND, MVT::v8i32,  MVT::v8i16,  2 },
1547     { ISD::SIGN_EXTEND, MVT::v8i32,  MVT::v8i16,  2 },
1548     { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i16, 4 },
1549     { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i16, 4 },
1550 
1551     { ISD::TRUNCATE,    MVT::v4i8,   MVT::v4i16,  2 },
1552     { ISD::TRUNCATE,    MVT::v8i8,   MVT::v8i16,  1 },
1553     { ISD::TRUNCATE,    MVT::v4i8,   MVT::v4i32,  1 },
1554     { ISD::TRUNCATE,    MVT::v4i16,  MVT::v4i32,  1 },
1555     { ISD::TRUNCATE,    MVT::v8i8,   MVT::v8i32,  3 },
1556     { ISD::TRUNCATE,    MVT::v8i16,  MVT::v8i32,  3 },
1557     { ISD::TRUNCATE,    MVT::v16i16, MVT::v16i32, 6 },
1558     { ISD::TRUNCATE,    MVT::v2i8,   MVT::v2i64,  1 }, // PSHUFB
1559 
1560     { ISD::UINT_TO_FP,  MVT::f32,    MVT::i64,    4 },
1561     { ISD::UINT_TO_FP,  MVT::f64,    MVT::i64,    4 },
1562   };
1563 
1564   static const TypeConversionCostTblEntry SSE2ConversionTbl[] = {
1565     // These are somewhat magic numbers justified by looking at the output of
1566     // Intel's IACA, running some kernels and making sure when we take
1567     // legalization into account the throughput will be overestimated.
1568     { ISD::SINT_TO_FP, MVT::v4f32, MVT::v16i8, 8 },
1569     { ISD::SINT_TO_FP, MVT::v2f64, MVT::v16i8, 16*10 },
1570     { ISD::SINT_TO_FP, MVT::v4f32, MVT::v8i16, 15 },
1571     { ISD::SINT_TO_FP, MVT::v2f64, MVT::v8i16, 8*10 },
1572     { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i32, 5 },
1573     { ISD::SINT_TO_FP, MVT::v2f64, MVT::v4i32, 2*10 },
1574     { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i32, 2*10 },
1575     { ISD::SINT_TO_FP, MVT::v4f32, MVT::v2i64, 15 },
1576     { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i64, 2*10 },
1577 
1578     { ISD::UINT_TO_FP, MVT::v2f64, MVT::v16i8, 16*10 },
1579     { ISD::UINT_TO_FP, MVT::v4f32, MVT::v16i8, 8 },
1580     { ISD::UINT_TO_FP, MVT::v4f32, MVT::v8i16, 15 },
1581     { ISD::UINT_TO_FP, MVT::v2f64, MVT::v8i16, 8*10 },
1582     { ISD::UINT_TO_FP, MVT::v2f64, MVT::v4i32, 4*10 },
1583     { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i32, 8 },
1584     { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i64, 6 },
1585     { ISD::UINT_TO_FP, MVT::v4f32, MVT::v2i64, 15 },
1586 
1587     { ISD::FP_TO_SINT,  MVT::v4i16,  MVT::v4f32,  2 },
1588     { ISD::FP_TO_SINT,  MVT::v2i16,  MVT::v2f64,  2 },
1589 
1590     { ISD::FP_TO_SINT,  MVT::v2i32,  MVT::v2f64,  3 },
1591 
1592     { ISD::UINT_TO_FP,  MVT::f32,    MVT::i64,    6 },
1593     { ISD::UINT_TO_FP,  MVT::f64,    MVT::i64,    6 },
1594 
1595     { ISD::FP_TO_UINT,  MVT::i64,    MVT::f32,    4 },
1596     { ISD::FP_TO_UINT,  MVT::i64,    MVT::f64,    4 },
1597 
1598     { ISD::ZERO_EXTEND, MVT::v4i16,  MVT::v4i8,   1 },
1599     { ISD::SIGN_EXTEND, MVT::v4i16,  MVT::v4i8,   6 },
1600     { ISD::ZERO_EXTEND, MVT::v4i32,  MVT::v4i8,   2 },
1601     { ISD::SIGN_EXTEND, MVT::v4i32,  MVT::v4i8,   3 },
1602     { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v4i8,   4 },
1603     { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v4i8,   8 },
1604     { ISD::ZERO_EXTEND, MVT::v8i16,  MVT::v8i8,   1 },
1605     { ISD::SIGN_EXTEND, MVT::v8i16,  MVT::v8i8,   2 },
1606     { ISD::ZERO_EXTEND, MVT::v8i32,  MVT::v8i8,   6 },
1607     { ISD::SIGN_EXTEND, MVT::v8i32,  MVT::v8i8,   6 },
1608     { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i8,  3 },
1609     { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i8,  4 },
1610     { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i8,  9 },
1611     { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i8,  12 },
1612     { ISD::ZERO_EXTEND, MVT::v4i32,  MVT::v4i16,  1 },
1613     { ISD::SIGN_EXTEND, MVT::v4i32,  MVT::v4i16,  2 },
1614     { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v4i16,  3 },
1615     { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v4i16,  10 },
1616     { ISD::ZERO_EXTEND, MVT::v8i32,  MVT::v8i16,  3 },
1617     { ISD::SIGN_EXTEND, MVT::v8i32,  MVT::v8i16,  4 },
1618     { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i16, 6 },
1619     { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i16, 8 },
1620     { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v4i32,  3 },
1621     { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v4i32,  5 },
1622 
1623     { ISD::TRUNCATE,    MVT::v2i8,   MVT::v2i16,  2 }, // PAND+PACKUSWB
1624     { ISD::TRUNCATE,    MVT::v4i8,   MVT::v4i16,  4 },
1625     { ISD::TRUNCATE,    MVT::v8i8,   MVT::v8i16,  2 },
1626     { ISD::TRUNCATE,    MVT::v16i8,  MVT::v16i16, 3 },
1627     { ISD::TRUNCATE,    MVT::v2i8,   MVT::v2i32,  3 }, // PAND+3*PACKUSWB
1628     { ISD::TRUNCATE,    MVT::v2i16,  MVT::v2i32,  1 },
1629     { ISD::TRUNCATE,    MVT::v4i8,   MVT::v4i32,  3 },
1630     { ISD::TRUNCATE,    MVT::v4i16,  MVT::v4i32,  3 },
1631     { ISD::TRUNCATE,    MVT::v8i8,   MVT::v8i32,  4 },
1632     { ISD::TRUNCATE,    MVT::v16i8,  MVT::v16i32, 7 },
1633     { ISD::TRUNCATE,    MVT::v8i16,  MVT::v8i32,  5 },
1634     { ISD::TRUNCATE,    MVT::v16i16, MVT::v16i32, 10 },
1635     { ISD::TRUNCATE,    MVT::v2i8,   MVT::v2i64,  4 }, // PAND+3*PACKUSWB
1636     { ISD::TRUNCATE,    MVT::v2i16,  MVT::v2i64,  2 }, // PSHUFD+PSHUFLW
1637     { ISD::TRUNCATE,    MVT::v2i32,  MVT::v2i64,  1 }, // PSHUFD
1638   };
1639 
1640   std::pair<int, MVT> LTSrc = TLI->getTypeLegalizationCost(DL, Src);
1641   std::pair<int, MVT> LTDest = TLI->getTypeLegalizationCost(DL, Dst);
1642 
1643   if (ST->hasSSE2() && !ST->hasAVX()) {
1644     if (const auto *Entry = ConvertCostTableLookup(SSE2ConversionTbl, ISD,
1645                                                    LTDest.second, LTSrc.second))
1646       return LTSrc.first * Entry->Cost;
1647   }
1648 
1649   EVT SrcTy = TLI->getValueType(DL, Src);
1650   EVT DstTy = TLI->getValueType(DL, Dst);
1651 
1652   // The function getSimpleVT only handles simple value types.
1653   if (!SrcTy.isSimple() || !DstTy.isSimple())
1654     return BaseT::getCastInstrCost(Opcode, Dst, Src);
1655 
1656   MVT SimpleSrcTy = SrcTy.getSimpleVT();
1657   MVT SimpleDstTy = DstTy.getSimpleVT();
1658 
1659   // Make sure that neither type is going to be split before using the
1660   // AVX512 tables. This handles -mprefer-vector-width=256
1661   // with -min-legal-vector-width<=256
1662   if (TLI->getTypeAction(SimpleSrcTy) != TargetLowering::TypeSplitVector &&
1663       TLI->getTypeAction(SimpleDstTy) != TargetLowering::TypeSplitVector) {
1664     if (ST->hasBWI())
1665       if (const auto *Entry = ConvertCostTableLookup(AVX512BWConversionTbl, ISD,
1666                                                      SimpleDstTy, SimpleSrcTy))
1667         return Entry->Cost;
1668 
1669     if (ST->hasDQI())
1670       if (const auto *Entry = ConvertCostTableLookup(AVX512DQConversionTbl, ISD,
1671                                                      SimpleDstTy, SimpleSrcTy))
1672         return Entry->Cost;
1673 
1674     if (ST->hasAVX512())
1675       if (const auto *Entry = ConvertCostTableLookup(AVX512FConversionTbl, ISD,
1676                                                      SimpleDstTy, SimpleSrcTy))
1677         return Entry->Cost;
1678   }
1679 
1680   if (ST->hasAVX2()) {
1681     if (const auto *Entry = ConvertCostTableLookup(AVX2ConversionTbl, ISD,
1682                                                    SimpleDstTy, SimpleSrcTy))
1683       return Entry->Cost;
1684   }
1685 
1686   if (ST->hasAVX()) {
1687     if (const auto *Entry = ConvertCostTableLookup(AVXConversionTbl, ISD,
1688                                                    SimpleDstTy, SimpleSrcTy))
1689       return Entry->Cost;
1690   }
1691 
1692   if (ST->hasSSE41()) {
1693     if (const auto *Entry = ConvertCostTableLookup(SSE41ConversionTbl, ISD,
1694                                                    SimpleDstTy, SimpleSrcTy))
1695       return Entry->Cost;
1696   }
1697 
1698   if (ST->hasSSE2()) {
1699     if (const auto *Entry = ConvertCostTableLookup(SSE2ConversionTbl, ISD,
1700                                                    SimpleDstTy, SimpleSrcTy))
1701       return Entry->Cost;
1702   }
1703 
1704   return BaseT::getCastInstrCost(Opcode, Dst, Src, I);
1705 }
1706 
1707 int X86TTIImpl::getCmpSelInstrCost(unsigned Opcode, Type *ValTy, Type *CondTy,
1708                                    const Instruction *I) {
1709   // Legalize the type.
1710   std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, ValTy);
1711 
1712   MVT MTy = LT.second;
1713 
1714   int ISD = TLI->InstructionOpcodeToISD(Opcode);
1715   assert(ISD && "Invalid opcode");
1716 
1717   unsigned ExtraCost = 0;
1718   if (I && (Opcode == Instruction::ICmp || Opcode == Instruction::FCmp)) {
1719     // Some vector comparison predicates cost extra instructions.
1720     if (MTy.isVector() &&
1721         !((ST->hasXOP() && (!ST->hasAVX2() || MTy.is128BitVector())) ||
1722           (ST->hasAVX512() && 32 <= MTy.getScalarSizeInBits()) ||
1723           ST->hasBWI())) {
1724       switch (cast<CmpInst>(I)->getPredicate()) {
1725       case CmpInst::Predicate::ICMP_NE:
1726         // xor(cmpeq(x,y),-1)
1727         ExtraCost = 1;
1728         break;
1729       case CmpInst::Predicate::ICMP_SGE:
1730       case CmpInst::Predicate::ICMP_SLE:
1731         // xor(cmpgt(x,y),-1)
1732         ExtraCost = 1;
1733         break;
1734       case CmpInst::Predicate::ICMP_ULT:
1735       case CmpInst::Predicate::ICMP_UGT:
1736         // cmpgt(xor(x,signbit),xor(y,signbit))
1737         // xor(cmpeq(pmaxu(x,y),x),-1)
1738         ExtraCost = 2;
1739         break;
1740       case CmpInst::Predicate::ICMP_ULE:
1741       case CmpInst::Predicate::ICMP_UGE:
1742         if ((ST->hasSSE41() && MTy.getScalarSizeInBits() == 32) ||
1743             (ST->hasSSE2() && MTy.getScalarSizeInBits() < 32)) {
1744           // cmpeq(psubus(x,y),0)
1745           // cmpeq(pminu(x,y),x)
1746           ExtraCost = 1;
1747         } else {
1748           // xor(cmpgt(xor(x,signbit),xor(y,signbit)),-1)
1749           ExtraCost = 3;
1750         }
1751         break;
1752       default:
1753         break;
1754       }
1755     }
1756   }
1757 
1758   static const CostTblEntry SLMCostTbl[] = {
1759     // slm pcmpeq/pcmpgt throughput is 2
1760     { ISD::SETCC,   MVT::v2i64,   2 },
1761   };
1762 
1763   static const CostTblEntry AVX512BWCostTbl[] = {
1764     { ISD::SETCC,   MVT::v32i16,  1 },
1765     { ISD::SETCC,   MVT::v64i8,   1 },
1766 
1767     { ISD::SELECT,  MVT::v32i16,  1 },
1768     { ISD::SELECT,  MVT::v64i8,   1 },
1769   };
1770 
1771   static const CostTblEntry AVX512CostTbl[] = {
1772     { ISD::SETCC,   MVT::v8i64,   1 },
1773     { ISD::SETCC,   MVT::v16i32,  1 },
1774     { ISD::SETCC,   MVT::v8f64,   1 },
1775     { ISD::SETCC,   MVT::v16f32,  1 },
1776 
1777     { ISD::SELECT,  MVT::v8i64,   1 },
1778     { ISD::SELECT,  MVT::v16i32,  1 },
1779     { ISD::SELECT,  MVT::v8f64,   1 },
1780     { ISD::SELECT,  MVT::v16f32,  1 },
1781   };
1782 
1783   static const CostTblEntry AVX2CostTbl[] = {
1784     { ISD::SETCC,   MVT::v4i64,   1 },
1785     { ISD::SETCC,   MVT::v8i32,   1 },
1786     { ISD::SETCC,   MVT::v16i16,  1 },
1787     { ISD::SETCC,   MVT::v32i8,   1 },
1788 
1789     { ISD::SELECT,  MVT::v4i64,   1 }, // pblendvb
1790     { ISD::SELECT,  MVT::v8i32,   1 }, // pblendvb
1791     { ISD::SELECT,  MVT::v16i16,  1 }, // pblendvb
1792     { ISD::SELECT,  MVT::v32i8,   1 }, // pblendvb
1793   };
1794 
1795   static const CostTblEntry AVX1CostTbl[] = {
1796     { ISD::SETCC,   MVT::v4f64,   1 },
1797     { ISD::SETCC,   MVT::v8f32,   1 },
1798     // AVX1 does not support 8-wide integer compare.
1799     { ISD::SETCC,   MVT::v4i64,   4 },
1800     { ISD::SETCC,   MVT::v8i32,   4 },
1801     { ISD::SETCC,   MVT::v16i16,  4 },
1802     { ISD::SETCC,   MVT::v32i8,   4 },
1803 
1804     { ISD::SELECT,  MVT::v4f64,   1 }, // vblendvpd
1805     { ISD::SELECT,  MVT::v8f32,   1 }, // vblendvps
1806     { ISD::SELECT,  MVT::v4i64,   1 }, // vblendvpd
1807     { ISD::SELECT,  MVT::v8i32,   1 }, // vblendvps
1808     { ISD::SELECT,  MVT::v16i16,  3 }, // vandps + vandnps + vorps
1809     { ISD::SELECT,  MVT::v32i8,   3 }, // vandps + vandnps + vorps
1810   };
1811 
1812   static const CostTblEntry SSE42CostTbl[] = {
1813     { ISD::SETCC,   MVT::v2f64,   1 },
1814     { ISD::SETCC,   MVT::v4f32,   1 },
1815     { ISD::SETCC,   MVT::v2i64,   1 },
1816   };
1817 
1818   static const CostTblEntry SSE41CostTbl[] = {
1819     { ISD::SELECT,  MVT::v2f64,   1 }, // blendvpd
1820     { ISD::SELECT,  MVT::v4f32,   1 }, // blendvps
1821     { ISD::SELECT,  MVT::v2i64,   1 }, // pblendvb
1822     { ISD::SELECT,  MVT::v4i32,   1 }, // pblendvb
1823     { ISD::SELECT,  MVT::v8i16,   1 }, // pblendvb
1824     { ISD::SELECT,  MVT::v16i8,   1 }, // pblendvb
1825   };
1826 
1827   static const CostTblEntry SSE2CostTbl[] = {
1828     { ISD::SETCC,   MVT::v2f64,   2 },
1829     { ISD::SETCC,   MVT::f64,     1 },
1830     { ISD::SETCC,   MVT::v2i64,   8 },
1831     { ISD::SETCC,   MVT::v4i32,   1 },
1832     { ISD::SETCC,   MVT::v8i16,   1 },
1833     { ISD::SETCC,   MVT::v16i8,   1 },
1834 
1835     { ISD::SELECT,  MVT::v2f64,   3 }, // andpd + andnpd + orpd
1836     { ISD::SELECT,  MVT::v2i64,   3 }, // pand + pandn + por
1837     { ISD::SELECT,  MVT::v4i32,   3 }, // pand + pandn + por
1838     { ISD::SELECT,  MVT::v8i16,   3 }, // pand + pandn + por
1839     { ISD::SELECT,  MVT::v16i8,   3 }, // pand + pandn + por
1840   };
1841 
1842   static const CostTblEntry SSE1CostTbl[] = {
1843     { ISD::SETCC,   MVT::v4f32,   2 },
1844     { ISD::SETCC,   MVT::f32,     1 },
1845 
1846     { ISD::SELECT,  MVT::v4f32,   3 }, // andps + andnps + orps
1847   };
1848 
1849   if (ST->isSLM())
1850     if (const auto *Entry = CostTableLookup(SLMCostTbl, ISD, MTy))
1851       return LT.first * (ExtraCost + Entry->Cost);
1852 
1853   if (ST->hasBWI())
1854     if (const auto *Entry = CostTableLookup(AVX512BWCostTbl, ISD, MTy))
1855       return LT.first * (ExtraCost + Entry->Cost);
1856 
1857   if (ST->hasAVX512())
1858     if (const auto *Entry = CostTableLookup(AVX512CostTbl, ISD, MTy))
1859       return LT.first * (ExtraCost + Entry->Cost);
1860 
1861   if (ST->hasAVX2())
1862     if (const auto *Entry = CostTableLookup(AVX2CostTbl, ISD, MTy))
1863       return LT.first * (ExtraCost + Entry->Cost);
1864 
1865   if (ST->hasAVX())
1866     if (const auto *Entry = CostTableLookup(AVX1CostTbl, ISD, MTy))
1867       return LT.first * (ExtraCost + Entry->Cost);
1868 
1869   if (ST->hasSSE42())
1870     if (const auto *Entry = CostTableLookup(SSE42CostTbl, ISD, MTy))
1871       return LT.first * (ExtraCost + Entry->Cost);
1872 
1873   if (ST->hasSSE41())
1874     if (const auto *Entry = CostTableLookup(SSE41CostTbl, ISD, MTy))
1875       return LT.first * (ExtraCost + Entry->Cost);
1876 
1877   if (ST->hasSSE2())
1878     if (const auto *Entry = CostTableLookup(SSE2CostTbl, ISD, MTy))
1879       return LT.first * (ExtraCost + Entry->Cost);
1880 
1881   if (ST->hasSSE1())
1882     if (const auto *Entry = CostTableLookup(SSE1CostTbl, ISD, MTy))
1883       return LT.first * (ExtraCost + Entry->Cost);
1884 
1885   return BaseT::getCmpSelInstrCost(Opcode, ValTy, CondTy, I);
1886 }
1887 
1888 unsigned X86TTIImpl::getAtomicMemIntrinsicMaxElementSize() const { return 16; }
1889 
1890 int X86TTIImpl::getIntrinsicInstrCost(Intrinsic::ID IID, Type *RetTy,
1891                                       ArrayRef<Type *> Tys, FastMathFlags FMF,
1892                                       unsigned ScalarizationCostPassed,
1893                                       const Instruction *I) {
1894   // Costs should match the codegen from:
1895   // BITREVERSE: llvm\test\CodeGen\X86\vector-bitreverse.ll
1896   // BSWAP: llvm\test\CodeGen\X86\bswap-vector.ll
1897   // CTLZ: llvm\test\CodeGen\X86\vector-lzcnt-*.ll
1898   // CTPOP: llvm\test\CodeGen\X86\vector-popcnt-*.ll
1899   // CTTZ: llvm\test\CodeGen\X86\vector-tzcnt-*.ll
1900   static const CostTblEntry AVX512CDCostTbl[] = {
1901     { ISD::CTLZ,       MVT::v8i64,   1 },
1902     { ISD::CTLZ,       MVT::v16i32,  1 },
1903     { ISD::CTLZ,       MVT::v32i16,  8 },
1904     { ISD::CTLZ,       MVT::v64i8,  20 },
1905     { ISD::CTLZ,       MVT::v4i64,   1 },
1906     { ISD::CTLZ,       MVT::v8i32,   1 },
1907     { ISD::CTLZ,       MVT::v16i16,  4 },
1908     { ISD::CTLZ,       MVT::v32i8,  10 },
1909     { ISD::CTLZ,       MVT::v2i64,   1 },
1910     { ISD::CTLZ,       MVT::v4i32,   1 },
1911     { ISD::CTLZ,       MVT::v8i16,   4 },
1912     { ISD::CTLZ,       MVT::v16i8,   4 },
1913   };
1914   static const CostTblEntry AVX512BWCostTbl[] = {
1915     { ISD::BITREVERSE, MVT::v8i64,   5 },
1916     { ISD::BITREVERSE, MVT::v16i32,  5 },
1917     { ISD::BITREVERSE, MVT::v32i16,  5 },
1918     { ISD::BITREVERSE, MVT::v64i8,   5 },
1919     { ISD::CTLZ,       MVT::v8i64,  23 },
1920     { ISD::CTLZ,       MVT::v16i32, 22 },
1921     { ISD::CTLZ,       MVT::v32i16, 18 },
1922     { ISD::CTLZ,       MVT::v64i8,  17 },
1923     { ISD::CTPOP,      MVT::v8i64,   7 },
1924     { ISD::CTPOP,      MVT::v16i32, 11 },
1925     { ISD::CTPOP,      MVT::v32i16,  9 },
1926     { ISD::CTPOP,      MVT::v64i8,   6 },
1927     { ISD::CTTZ,       MVT::v8i64,  10 },
1928     { ISD::CTTZ,       MVT::v16i32, 14 },
1929     { ISD::CTTZ,       MVT::v32i16, 12 },
1930     { ISD::CTTZ,       MVT::v64i8,   9 },
1931     { ISD::SADDSAT,    MVT::v32i16,  1 },
1932     { ISD::SADDSAT,    MVT::v64i8,   1 },
1933     { ISD::SSUBSAT,    MVT::v32i16,  1 },
1934     { ISD::SSUBSAT,    MVT::v64i8,   1 },
1935     { ISD::UADDSAT,    MVT::v32i16,  1 },
1936     { ISD::UADDSAT,    MVT::v64i8,   1 },
1937     { ISD::USUBSAT,    MVT::v32i16,  1 },
1938     { ISD::USUBSAT,    MVT::v64i8,   1 },
1939   };
1940   static const CostTblEntry AVX512CostTbl[] = {
1941     { ISD::BITREVERSE, MVT::v8i64,  36 },
1942     { ISD::BITREVERSE, MVT::v16i32, 24 },
1943     { ISD::CTLZ,       MVT::v8i64,  29 },
1944     { ISD::CTLZ,       MVT::v16i32, 35 },
1945     { ISD::CTPOP,      MVT::v8i64,  16 },
1946     { ISD::CTPOP,      MVT::v16i32, 24 },
1947     { ISD::CTTZ,       MVT::v8i64,  20 },
1948     { ISD::CTTZ,       MVT::v16i32, 28 },
1949     { ISD::USUBSAT,    MVT::v16i32,  2 }, // pmaxud + psubd
1950     { ISD::USUBSAT,    MVT::v2i64,   2 }, // pmaxuq + psubq
1951     { ISD::USUBSAT,    MVT::v4i64,   2 }, // pmaxuq + psubq
1952     { ISD::USUBSAT,    MVT::v8i64,   2 }, // pmaxuq + psubq
1953     { ISD::UADDSAT,    MVT::v16i32,  3 }, // not + pminud + paddd
1954     { ISD::UADDSAT,    MVT::v2i64,   3 }, // not + pminuq + paddq
1955     { ISD::UADDSAT,    MVT::v4i64,   3 }, // not + pminuq + paddq
1956     { ISD::UADDSAT,    MVT::v8i64,   3 }, // not + pminuq + paddq
1957     { ISD::FMAXNUM,    MVT::f32,     2 },
1958     { ISD::FMAXNUM,    MVT::v4f32,   2 },
1959     { ISD::FMAXNUM,    MVT::v8f32,   2 },
1960     { ISD::FMAXNUM,    MVT::v16f32,  2 },
1961     { ISD::FMAXNUM,    MVT::f64,     2 },
1962     { ISD::FMAXNUM,    MVT::v2f64,   2 },
1963     { ISD::FMAXNUM,    MVT::v4f64,   2 },
1964     { ISD::FMAXNUM,    MVT::v8f64,   2 },
1965   };
1966   static const CostTblEntry XOPCostTbl[] = {
1967     { ISD::BITREVERSE, MVT::v4i64,   4 },
1968     { ISD::BITREVERSE, MVT::v8i32,   4 },
1969     { ISD::BITREVERSE, MVT::v16i16,  4 },
1970     { ISD::BITREVERSE, MVT::v32i8,   4 },
1971     { ISD::BITREVERSE, MVT::v2i64,   1 },
1972     { ISD::BITREVERSE, MVT::v4i32,   1 },
1973     { ISD::BITREVERSE, MVT::v8i16,   1 },
1974     { ISD::BITREVERSE, MVT::v16i8,   1 },
1975     { ISD::BITREVERSE, MVT::i64,     3 },
1976     { ISD::BITREVERSE, MVT::i32,     3 },
1977     { ISD::BITREVERSE, MVT::i16,     3 },
1978     { ISD::BITREVERSE, MVT::i8,      3 }
1979   };
1980   static const CostTblEntry AVX2CostTbl[] = {
1981     { ISD::BITREVERSE, MVT::v4i64,   5 },
1982     { ISD::BITREVERSE, MVT::v8i32,   5 },
1983     { ISD::BITREVERSE, MVT::v16i16,  5 },
1984     { ISD::BITREVERSE, MVT::v32i8,   5 },
1985     { ISD::BSWAP,      MVT::v4i64,   1 },
1986     { ISD::BSWAP,      MVT::v8i32,   1 },
1987     { ISD::BSWAP,      MVT::v16i16,  1 },
1988     { ISD::CTLZ,       MVT::v4i64,  23 },
1989     { ISD::CTLZ,       MVT::v8i32,  18 },
1990     { ISD::CTLZ,       MVT::v16i16, 14 },
1991     { ISD::CTLZ,       MVT::v32i8,   9 },
1992     { ISD::CTPOP,      MVT::v4i64,   7 },
1993     { ISD::CTPOP,      MVT::v8i32,  11 },
1994     { ISD::CTPOP,      MVT::v16i16,  9 },
1995     { ISD::CTPOP,      MVT::v32i8,   6 },
1996     { ISD::CTTZ,       MVT::v4i64,  10 },
1997     { ISD::CTTZ,       MVT::v8i32,  14 },
1998     { ISD::CTTZ,       MVT::v16i16, 12 },
1999     { ISD::CTTZ,       MVT::v32i8,   9 },
2000     { ISD::SADDSAT,    MVT::v16i16,  1 },
2001     { ISD::SADDSAT,    MVT::v32i8,   1 },
2002     { ISD::SSUBSAT,    MVT::v16i16,  1 },
2003     { ISD::SSUBSAT,    MVT::v32i8,   1 },
2004     { ISD::UADDSAT,    MVT::v16i16,  1 },
2005     { ISD::UADDSAT,    MVT::v32i8,   1 },
2006     { ISD::UADDSAT,    MVT::v8i32,   3 }, // not + pminud + paddd
2007     { ISD::USUBSAT,    MVT::v16i16,  1 },
2008     { ISD::USUBSAT,    MVT::v32i8,   1 },
2009     { ISD::USUBSAT,    MVT::v8i32,   2 }, // pmaxud + psubd
2010     { ISD::FSQRT,      MVT::f32,     7 }, // Haswell from http://www.agner.org/
2011     { ISD::FSQRT,      MVT::v4f32,   7 }, // Haswell from http://www.agner.org/
2012     { ISD::FSQRT,      MVT::v8f32,  14 }, // Haswell from http://www.agner.org/
2013     { ISD::FSQRT,      MVT::f64,    14 }, // Haswell from http://www.agner.org/
2014     { ISD::FSQRT,      MVT::v2f64,  14 }, // Haswell from http://www.agner.org/
2015     { ISD::FSQRT,      MVT::v4f64,  28 }, // Haswell from http://www.agner.org/
2016   };
2017   static const CostTblEntry AVX1CostTbl[] = {
2018     { ISD::BITREVERSE, MVT::v4i64,  12 }, // 2 x 128-bit Op + extract/insert
2019     { ISD::BITREVERSE, MVT::v8i32,  12 }, // 2 x 128-bit Op + extract/insert
2020     { ISD::BITREVERSE, MVT::v16i16, 12 }, // 2 x 128-bit Op + extract/insert
2021     { ISD::BITREVERSE, MVT::v32i8,  12 }, // 2 x 128-bit Op + extract/insert
2022     { ISD::BSWAP,      MVT::v4i64,   4 },
2023     { ISD::BSWAP,      MVT::v8i32,   4 },
2024     { ISD::BSWAP,      MVT::v16i16,  4 },
2025     { ISD::CTLZ,       MVT::v4i64,  48 }, // 2 x 128-bit Op + extract/insert
2026     { ISD::CTLZ,       MVT::v8i32,  38 }, // 2 x 128-bit Op + extract/insert
2027     { ISD::CTLZ,       MVT::v16i16, 30 }, // 2 x 128-bit Op + extract/insert
2028     { ISD::CTLZ,       MVT::v32i8,  20 }, // 2 x 128-bit Op + extract/insert
2029     { ISD::CTPOP,      MVT::v4i64,  16 }, // 2 x 128-bit Op + extract/insert
2030     { ISD::CTPOP,      MVT::v8i32,  24 }, // 2 x 128-bit Op + extract/insert
2031     { ISD::CTPOP,      MVT::v16i16, 20 }, // 2 x 128-bit Op + extract/insert
2032     { ISD::CTPOP,      MVT::v32i8,  14 }, // 2 x 128-bit Op + extract/insert
2033     { ISD::CTTZ,       MVT::v4i64,  22 }, // 2 x 128-bit Op + extract/insert
2034     { ISD::CTTZ,       MVT::v8i32,  30 }, // 2 x 128-bit Op + extract/insert
2035     { ISD::CTTZ,       MVT::v16i16, 26 }, // 2 x 128-bit Op + extract/insert
2036     { ISD::CTTZ,       MVT::v32i8,  20 }, // 2 x 128-bit Op + extract/insert
2037     { ISD::SADDSAT,    MVT::v16i16,  4 }, // 2 x 128-bit Op + extract/insert
2038     { ISD::SADDSAT,    MVT::v32i8,   4 }, // 2 x 128-bit Op + extract/insert
2039     { ISD::SSUBSAT,    MVT::v16i16,  4 }, // 2 x 128-bit Op + extract/insert
2040     { ISD::SSUBSAT,    MVT::v32i8,   4 }, // 2 x 128-bit Op + extract/insert
2041     { ISD::UADDSAT,    MVT::v16i16,  4 }, // 2 x 128-bit Op + extract/insert
2042     { ISD::UADDSAT,    MVT::v32i8,   4 }, // 2 x 128-bit Op + extract/insert
2043     { ISD::UADDSAT,    MVT::v8i32,   8 }, // 2 x 128-bit Op + extract/insert
2044     { ISD::USUBSAT,    MVT::v16i16,  4 }, // 2 x 128-bit Op + extract/insert
2045     { ISD::USUBSAT,    MVT::v32i8,   4 }, // 2 x 128-bit Op + extract/insert
2046     { ISD::USUBSAT,    MVT::v8i32,   6 }, // 2 x 128-bit Op + extract/insert
2047     { ISD::FMAXNUM,    MVT::f32,     3 },
2048     { ISD::FMAXNUM,    MVT::v4f32,   3 },
2049     { ISD::FMAXNUM,    MVT::v8f32,   5 },
2050     { ISD::FMAXNUM,    MVT::f64,     3 },
2051     { ISD::FMAXNUM,    MVT::v2f64,   3 },
2052     { ISD::FMAXNUM,    MVT::v4f64,   5 },
2053     { ISD::FSQRT,      MVT::f32,    14 }, // SNB from http://www.agner.org/
2054     { ISD::FSQRT,      MVT::v4f32,  14 }, // SNB from http://www.agner.org/
2055     { ISD::FSQRT,      MVT::v8f32,  28 }, // SNB from http://www.agner.org/
2056     { ISD::FSQRT,      MVT::f64,    21 }, // SNB from http://www.agner.org/
2057     { ISD::FSQRT,      MVT::v2f64,  21 }, // SNB from http://www.agner.org/
2058     { ISD::FSQRT,      MVT::v4f64,  43 }, // SNB from http://www.agner.org/
2059   };
2060   static const CostTblEntry GLMCostTbl[] = {
2061     { ISD::FSQRT, MVT::f32,   19 }, // sqrtss
2062     { ISD::FSQRT, MVT::v4f32, 37 }, // sqrtps
2063     { ISD::FSQRT, MVT::f64,   34 }, // sqrtsd
2064     { ISD::FSQRT, MVT::v2f64, 67 }, // sqrtpd
2065   };
2066   static const CostTblEntry SLMCostTbl[] = {
2067     { ISD::FSQRT, MVT::f32,   20 }, // sqrtss
2068     { ISD::FSQRT, MVT::v4f32, 40 }, // sqrtps
2069     { ISD::FSQRT, MVT::f64,   35 }, // sqrtsd
2070     { ISD::FSQRT, MVT::v2f64, 70 }, // sqrtpd
2071   };
2072   static const CostTblEntry SSE42CostTbl[] = {
2073     { ISD::USUBSAT,    MVT::v4i32,   2 }, // pmaxud + psubd
2074     { ISD::UADDSAT,    MVT::v4i32,   3 }, // not + pminud + paddd
2075     { ISD::FSQRT,      MVT::f32,    18 }, // Nehalem from http://www.agner.org/
2076     { ISD::FSQRT,      MVT::v4f32,  18 }, // Nehalem from http://www.agner.org/
2077   };
2078   static const CostTblEntry SSSE3CostTbl[] = {
2079     { ISD::BITREVERSE, MVT::v2i64,   5 },
2080     { ISD::BITREVERSE, MVT::v4i32,   5 },
2081     { ISD::BITREVERSE, MVT::v8i16,   5 },
2082     { ISD::BITREVERSE, MVT::v16i8,   5 },
2083     { ISD::BSWAP,      MVT::v2i64,   1 },
2084     { ISD::BSWAP,      MVT::v4i32,   1 },
2085     { ISD::BSWAP,      MVT::v8i16,   1 },
2086     { ISD::CTLZ,       MVT::v2i64,  23 },
2087     { ISD::CTLZ,       MVT::v4i32,  18 },
2088     { ISD::CTLZ,       MVT::v8i16,  14 },
2089     { ISD::CTLZ,       MVT::v16i8,   9 },
2090     { ISD::CTPOP,      MVT::v2i64,   7 },
2091     { ISD::CTPOP,      MVT::v4i32,  11 },
2092     { ISD::CTPOP,      MVT::v8i16,   9 },
2093     { ISD::CTPOP,      MVT::v16i8,   6 },
2094     { ISD::CTTZ,       MVT::v2i64,  10 },
2095     { ISD::CTTZ,       MVT::v4i32,  14 },
2096     { ISD::CTTZ,       MVT::v8i16,  12 },
2097     { ISD::CTTZ,       MVT::v16i8,   9 }
2098   };
2099   static const CostTblEntry SSE2CostTbl[] = {
2100     { ISD::BITREVERSE, MVT::v2i64,  29 },
2101     { ISD::BITREVERSE, MVT::v4i32,  27 },
2102     { ISD::BITREVERSE, MVT::v8i16,  27 },
2103     { ISD::BITREVERSE, MVT::v16i8,  20 },
2104     { ISD::BSWAP,      MVT::v2i64,   7 },
2105     { ISD::BSWAP,      MVT::v4i32,   7 },
2106     { ISD::BSWAP,      MVT::v8i16,   7 },
2107     { ISD::CTLZ,       MVT::v2i64,  25 },
2108     { ISD::CTLZ,       MVT::v4i32,  26 },
2109     { ISD::CTLZ,       MVT::v8i16,  20 },
2110     { ISD::CTLZ,       MVT::v16i8,  17 },
2111     { ISD::CTPOP,      MVT::v2i64,  12 },
2112     { ISD::CTPOP,      MVT::v4i32,  15 },
2113     { ISD::CTPOP,      MVT::v8i16,  13 },
2114     { ISD::CTPOP,      MVT::v16i8,  10 },
2115     { ISD::CTTZ,       MVT::v2i64,  14 },
2116     { ISD::CTTZ,       MVT::v4i32,  18 },
2117     { ISD::CTTZ,       MVT::v8i16,  16 },
2118     { ISD::CTTZ,       MVT::v16i8,  13 },
2119     { ISD::SADDSAT,    MVT::v8i16,   1 },
2120     { ISD::SADDSAT,    MVT::v16i8,   1 },
2121     { ISD::SSUBSAT,    MVT::v8i16,   1 },
2122     { ISD::SSUBSAT,    MVT::v16i8,   1 },
2123     { ISD::UADDSAT,    MVT::v8i16,   1 },
2124     { ISD::UADDSAT,    MVT::v16i8,   1 },
2125     { ISD::USUBSAT,    MVT::v8i16,   1 },
2126     { ISD::USUBSAT,    MVT::v16i8,   1 },
2127     { ISD::FMAXNUM,    MVT::f64,     4 },
2128     { ISD::FMAXNUM,    MVT::v2f64,   4 },
2129     { ISD::FSQRT,      MVT::f64,    32 }, // Nehalem from http://www.agner.org/
2130     { ISD::FSQRT,      MVT::v2f64,  32 }, // Nehalem from http://www.agner.org/
2131   };
2132   static const CostTblEntry SSE1CostTbl[] = {
2133     { ISD::FMAXNUM,    MVT::f32,     4 },
2134     { ISD::FMAXNUM,    MVT::v4f32,   4 },
2135     { ISD::FSQRT,      MVT::f32,    28 }, // Pentium III from http://www.agner.org/
2136     { ISD::FSQRT,      MVT::v4f32,  56 }, // Pentium III from http://www.agner.org/
2137   };
2138   static const CostTblEntry BMI64CostTbl[] = { // 64-bit targets
2139     { ISD::CTTZ,       MVT::i64,     1 },
2140   };
2141   static const CostTblEntry BMI32CostTbl[] = { // 32 or 64-bit targets
2142     { ISD::CTTZ,       MVT::i32,     1 },
2143     { ISD::CTTZ,       MVT::i16,     1 },
2144     { ISD::CTTZ,       MVT::i8,      1 },
2145   };
2146   static const CostTblEntry LZCNT64CostTbl[] = { // 64-bit targets
2147     { ISD::CTLZ,       MVT::i64,     1 },
2148   };
2149   static const CostTblEntry LZCNT32CostTbl[] = { // 32 or 64-bit targets
2150     { ISD::CTLZ,       MVT::i32,     1 },
2151     { ISD::CTLZ,       MVT::i16,     1 },
2152     { ISD::CTLZ,       MVT::i8,      1 },
2153   };
2154   static const CostTblEntry POPCNT64CostTbl[] = { // 64-bit targets
2155     { ISD::CTPOP,      MVT::i64,     1 },
2156   };
2157   static const CostTblEntry POPCNT32CostTbl[] = { // 32 or 64-bit targets
2158     { ISD::CTPOP,      MVT::i32,     1 },
2159     { ISD::CTPOP,      MVT::i16,     1 },
2160     { ISD::CTPOP,      MVT::i8,      1 },
2161   };
2162   static const CostTblEntry X64CostTbl[] = { // 64-bit targets
2163     { ISD::BITREVERSE, MVT::i64,    14 },
2164     { ISD::CTLZ,       MVT::i64,     4 }, // BSR+XOR or BSR+XOR+CMOV
2165     { ISD::CTTZ,       MVT::i64,     3 }, // TEST+BSF+CMOV/BRANCH
2166     { ISD::CTPOP,      MVT::i64,    10 },
2167     { ISD::SADDO,      MVT::i64,     1 },
2168     { ISD::UADDO,      MVT::i64,     1 },
2169   };
2170   static const CostTblEntry X86CostTbl[] = { // 32 or 64-bit targets
2171     { ISD::BITREVERSE, MVT::i32,    14 },
2172     { ISD::BITREVERSE, MVT::i16,    14 },
2173     { ISD::BITREVERSE, MVT::i8,     11 },
2174     { ISD::CTLZ,       MVT::i32,     4 }, // BSR+XOR or BSR+XOR+CMOV
2175     { ISD::CTLZ,       MVT::i16,     4 }, // BSR+XOR or BSR+XOR+CMOV
2176     { ISD::CTLZ,       MVT::i8,      4 }, // BSR+XOR or BSR+XOR+CMOV
2177     { ISD::CTTZ,       MVT::i32,     3 }, // TEST+BSF+CMOV/BRANCH
2178     { ISD::CTTZ,       MVT::i16,     3 }, // TEST+BSF+CMOV/BRANCH
2179     { ISD::CTTZ,       MVT::i8,      3 }, // TEST+BSF+CMOV/BRANCH
2180     { ISD::CTPOP,      MVT::i32,     8 },
2181     { ISD::CTPOP,      MVT::i16,     9 },
2182     { ISD::CTPOP,      MVT::i8,      7 },
2183     { ISD::SADDO,      MVT::i32,     1 },
2184     { ISD::SADDO,      MVT::i16,     1 },
2185     { ISD::SADDO,      MVT::i8,      1 },
2186     { ISD::UADDO,      MVT::i32,     1 },
2187     { ISD::UADDO,      MVT::i16,     1 },
2188     { ISD::UADDO,      MVT::i8,      1 },
2189   };
2190 
2191   Type *OpTy = RetTy;
2192   unsigned ISD = ISD::DELETED_NODE;
2193   switch (IID) {
2194   default:
2195     break;
2196   case Intrinsic::bitreverse:
2197     ISD = ISD::BITREVERSE;
2198     break;
2199   case Intrinsic::bswap:
2200     ISD = ISD::BSWAP;
2201     break;
2202   case Intrinsic::ctlz:
2203     ISD = ISD::CTLZ;
2204     break;
2205   case Intrinsic::ctpop:
2206     ISD = ISD::CTPOP;
2207     break;
2208   case Intrinsic::cttz:
2209     ISD = ISD::CTTZ;
2210     break;
2211   case Intrinsic::maxnum:
2212   case Intrinsic::minnum:
2213     // FMINNUM has same costs so don't duplicate.
2214     ISD = ISD::FMAXNUM;
2215     break;
2216   case Intrinsic::sadd_sat:
2217     ISD = ISD::SADDSAT;
2218     break;
2219   case Intrinsic::ssub_sat:
2220     ISD = ISD::SSUBSAT;
2221     break;
2222   case Intrinsic::uadd_sat:
2223     ISD = ISD::UADDSAT;
2224     break;
2225   case Intrinsic::usub_sat:
2226     ISD = ISD::USUBSAT;
2227     break;
2228   case Intrinsic::sqrt:
2229     ISD = ISD::FSQRT;
2230     break;
2231   case Intrinsic::sadd_with_overflow:
2232   case Intrinsic::ssub_with_overflow:
2233     // SSUBO has same costs so don't duplicate.
2234     ISD = ISD::SADDO;
2235     OpTy = RetTy->getContainedType(0);
2236     break;
2237   case Intrinsic::uadd_with_overflow:
2238   case Intrinsic::usub_with_overflow:
2239     // USUBO has same costs so don't duplicate.
2240     ISD = ISD::UADDO;
2241     OpTy = RetTy->getContainedType(0);
2242     break;
2243   }
2244 
2245   if (ISD != ISD::DELETED_NODE) {
2246     // Legalize the type.
2247     std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, OpTy);
2248     MVT MTy = LT.second;
2249 
2250     // Attempt to lookup cost.
2251     if (ST->useGLMDivSqrtCosts())
2252       if (const auto *Entry = CostTableLookup(GLMCostTbl, ISD, MTy))
2253         return LT.first * Entry->Cost;
2254 
2255     if (ST->isSLM())
2256       if (const auto *Entry = CostTableLookup(SLMCostTbl, ISD, MTy))
2257         return LT.first * Entry->Cost;
2258 
2259     if (ST->hasCDI())
2260       if (const auto *Entry = CostTableLookup(AVX512CDCostTbl, ISD, MTy))
2261         return LT.first * Entry->Cost;
2262 
2263     if (ST->hasBWI())
2264       if (const auto *Entry = CostTableLookup(AVX512BWCostTbl, ISD, MTy))
2265         return LT.first * Entry->Cost;
2266 
2267     if (ST->hasAVX512())
2268       if (const auto *Entry = CostTableLookup(AVX512CostTbl, ISD, MTy))
2269         return LT.first * Entry->Cost;
2270 
2271     if (ST->hasXOP())
2272       if (const auto *Entry = CostTableLookup(XOPCostTbl, ISD, MTy))
2273         return LT.first * Entry->Cost;
2274 
2275     if (ST->hasAVX2())
2276       if (const auto *Entry = CostTableLookup(AVX2CostTbl, ISD, MTy))
2277         return LT.first * Entry->Cost;
2278 
2279     if (ST->hasAVX())
2280       if (const auto *Entry = CostTableLookup(AVX1CostTbl, ISD, MTy))
2281         return LT.first * Entry->Cost;
2282 
2283     if (ST->hasSSE42())
2284       if (const auto *Entry = CostTableLookup(SSE42CostTbl, ISD, MTy))
2285         return LT.first * Entry->Cost;
2286 
2287     if (ST->hasSSSE3())
2288       if (const auto *Entry = CostTableLookup(SSSE3CostTbl, ISD, MTy))
2289         return LT.first * Entry->Cost;
2290 
2291     if (ST->hasSSE2())
2292       if (const auto *Entry = CostTableLookup(SSE2CostTbl, ISD, MTy))
2293         return LT.first * Entry->Cost;
2294 
2295     if (ST->hasSSE1())
2296       if (const auto *Entry = CostTableLookup(SSE1CostTbl, ISD, MTy))
2297         return LT.first * Entry->Cost;
2298 
2299     if (ST->hasBMI()) {
2300       if (ST->is64Bit())
2301         if (const auto *Entry = CostTableLookup(BMI64CostTbl, ISD, MTy))
2302           return LT.first * Entry->Cost;
2303 
2304       if (const auto *Entry = CostTableLookup(BMI32CostTbl, ISD, MTy))
2305         return LT.first * Entry->Cost;
2306     }
2307 
2308     if (ST->hasLZCNT()) {
2309       if (ST->is64Bit())
2310         if (const auto *Entry = CostTableLookup(LZCNT64CostTbl, ISD, MTy))
2311           return LT.first * Entry->Cost;
2312 
2313       if (const auto *Entry = CostTableLookup(LZCNT32CostTbl, ISD, MTy))
2314         return LT.first * Entry->Cost;
2315     }
2316 
2317     if (ST->hasPOPCNT()) {
2318       if (ST->is64Bit())
2319         if (const auto *Entry = CostTableLookup(POPCNT64CostTbl, ISD, MTy))
2320           return LT.first * Entry->Cost;
2321 
2322       if (const auto *Entry = CostTableLookup(POPCNT32CostTbl, ISD, MTy))
2323         return LT.first * Entry->Cost;
2324     }
2325 
2326     // TODO - add BMI (TZCNT) scalar handling
2327 
2328     if (ST->is64Bit())
2329       if (const auto *Entry = CostTableLookup(X64CostTbl, ISD, MTy))
2330         return LT.first * Entry->Cost;
2331 
2332     if (const auto *Entry = CostTableLookup(X86CostTbl, ISD, MTy))
2333       return LT.first * Entry->Cost;
2334   }
2335 
2336   return BaseT::getIntrinsicInstrCost(IID, RetTy, Tys, FMF,
2337                                       ScalarizationCostPassed, I);
2338 }
2339 
2340 int X86TTIImpl::getIntrinsicInstrCost(Intrinsic::ID IID, Type *RetTy,
2341                                       ArrayRef<Value *> Args, FastMathFlags FMF,
2342                                       unsigned VF, const Instruction *I) {
2343   static const CostTblEntry AVX512CostTbl[] = {
2344     { ISD::ROTL,       MVT::v8i64,   1 },
2345     { ISD::ROTL,       MVT::v4i64,   1 },
2346     { ISD::ROTL,       MVT::v2i64,   1 },
2347     { ISD::ROTL,       MVT::v16i32,  1 },
2348     { ISD::ROTL,       MVT::v8i32,   1 },
2349     { ISD::ROTL,       MVT::v4i32,   1 },
2350     { ISD::ROTR,       MVT::v8i64,   1 },
2351     { ISD::ROTR,       MVT::v4i64,   1 },
2352     { ISD::ROTR,       MVT::v2i64,   1 },
2353     { ISD::ROTR,       MVT::v16i32,  1 },
2354     { ISD::ROTR,       MVT::v8i32,   1 },
2355     { ISD::ROTR,       MVT::v4i32,   1 }
2356   };
2357   // XOP: ROTL = VPROT(X,Y), ROTR = VPROT(X,SUB(0,Y))
2358   static const CostTblEntry XOPCostTbl[] = {
2359     { ISD::ROTL,       MVT::v4i64,   4 },
2360     { ISD::ROTL,       MVT::v8i32,   4 },
2361     { ISD::ROTL,       MVT::v16i16,  4 },
2362     { ISD::ROTL,       MVT::v32i8,   4 },
2363     { ISD::ROTL,       MVT::v2i64,   1 },
2364     { ISD::ROTL,       MVT::v4i32,   1 },
2365     { ISD::ROTL,       MVT::v8i16,   1 },
2366     { ISD::ROTL,       MVT::v16i8,   1 },
2367     { ISD::ROTR,       MVT::v4i64,   6 },
2368     { ISD::ROTR,       MVT::v8i32,   6 },
2369     { ISD::ROTR,       MVT::v16i16,  6 },
2370     { ISD::ROTR,       MVT::v32i8,   6 },
2371     { ISD::ROTR,       MVT::v2i64,   2 },
2372     { ISD::ROTR,       MVT::v4i32,   2 },
2373     { ISD::ROTR,       MVT::v8i16,   2 },
2374     { ISD::ROTR,       MVT::v16i8,   2 }
2375   };
2376   static const CostTblEntry X64CostTbl[] = { // 64-bit targets
2377     { ISD::ROTL,       MVT::i64,     1 },
2378     { ISD::ROTR,       MVT::i64,     1 },
2379     { ISD::FSHL,       MVT::i64,     4 }
2380   };
2381   static const CostTblEntry X86CostTbl[] = { // 32 or 64-bit targets
2382     { ISD::ROTL,       MVT::i32,     1 },
2383     { ISD::ROTL,       MVT::i16,     1 },
2384     { ISD::ROTL,       MVT::i8,      1 },
2385     { ISD::ROTR,       MVT::i32,     1 },
2386     { ISD::ROTR,       MVT::i16,     1 },
2387     { ISD::ROTR,       MVT::i8,      1 },
2388     { ISD::FSHL,       MVT::i32,     4 },
2389     { ISD::FSHL,       MVT::i16,     4 },
2390     { ISD::FSHL,       MVT::i8,      4 }
2391   };
2392 
2393   unsigned ISD = ISD::DELETED_NODE;
2394   switch (IID) {
2395   default:
2396     break;
2397   case Intrinsic::fshl:
2398     ISD = ISD::FSHL;
2399     if (Args[0] == Args[1])
2400       ISD = ISD::ROTL;
2401     break;
2402   case Intrinsic::fshr:
2403     // FSHR has same costs so don't duplicate.
2404     ISD = ISD::FSHL;
2405     if (Args[0] == Args[1])
2406       ISD = ISD::ROTR;
2407     break;
2408   }
2409 
2410   if (ISD != ISD::DELETED_NODE) {
2411     // Legalize the type.
2412     std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, RetTy);
2413     MVT MTy = LT.second;
2414 
2415     // Attempt to lookup cost.
2416     if (ST->hasAVX512())
2417       if (const auto *Entry = CostTableLookup(AVX512CostTbl, ISD, MTy))
2418         return LT.first * Entry->Cost;
2419 
2420     if (ST->hasXOP())
2421       if (const auto *Entry = CostTableLookup(XOPCostTbl, ISD, MTy))
2422         return LT.first * Entry->Cost;
2423 
2424     if (ST->is64Bit())
2425       if (const auto *Entry = CostTableLookup(X64CostTbl, ISD, MTy))
2426         return LT.first * Entry->Cost;
2427 
2428     if (const auto *Entry = CostTableLookup(X86CostTbl, ISD, MTy))
2429       return LT.first * Entry->Cost;
2430   }
2431 
2432   return BaseT::getIntrinsicInstrCost(IID, RetTy, Args, FMF, VF, I);
2433 }
2434 
2435 int X86TTIImpl::getVectorInstrCost(unsigned Opcode, Type *Val, unsigned Index) {
2436   static const CostTblEntry SLMCostTbl[] = {
2437      { ISD::EXTRACT_VECTOR_ELT,       MVT::i8,      4 },
2438      { ISD::EXTRACT_VECTOR_ELT,       MVT::i16,     4 },
2439      { ISD::EXTRACT_VECTOR_ELT,       MVT::i32,     4 },
2440      { ISD::EXTRACT_VECTOR_ELT,       MVT::i64,     7 }
2441    };
2442 
2443   assert(Val->isVectorTy() && "This must be a vector type");
2444   Type *ScalarType = Val->getScalarType();
2445   int RegisterFileMoveCost = 0;
2446 
2447   if (Index != -1U && (Opcode == Instruction::ExtractElement ||
2448                        Opcode == Instruction::InsertElement)) {
2449     // Legalize the type.
2450     std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Val);
2451 
2452     // This type is legalized to a scalar type.
2453     if (!LT.second.isVector())
2454       return 0;
2455 
2456     // The type may be split. Normalize the index to the new type.
2457     unsigned NumElts = LT.second.getVectorNumElements();
2458     unsigned SubNumElts = NumElts;
2459     Index = Index % NumElts;
2460 
2461     // For >128-bit vectors, we need to extract higher 128-bit subvectors.
2462     // For inserts, we also need to insert the subvector back.
2463     if (LT.second.getSizeInBits() > 128) {
2464       assert((LT.second.getSizeInBits() % 128) == 0 && "Illegal vector");
2465       unsigned NumSubVecs = LT.second.getSizeInBits() / 128;
2466       SubNumElts = NumElts / NumSubVecs;
2467       if (SubNumElts <= Index) {
2468         RegisterFileMoveCost += (Opcode == Instruction::InsertElement ? 2 : 1);
2469         Index %= SubNumElts;
2470       }
2471     }
2472 
2473     if (Index == 0) {
2474       // Floating point scalars are already located in index #0.
2475       // Many insertions to #0 can fold away for scalar fp-ops, so let's assume
2476       // true for all.
2477       if (ScalarType->isFloatingPointTy())
2478         return RegisterFileMoveCost;
2479 
2480       // Assume movd/movq XMM -> GPR is relatively cheap on all targets.
2481       if (ScalarType->isIntegerTy() && Opcode == Instruction::ExtractElement)
2482         return 1 + RegisterFileMoveCost;
2483     }
2484 
2485     int ISD = TLI->InstructionOpcodeToISD(Opcode);
2486     assert(ISD && "Unexpected vector opcode");
2487     MVT MScalarTy = LT.second.getScalarType();
2488     if (ST->isSLM())
2489       if (auto *Entry = CostTableLookup(SLMCostTbl, ISD, MScalarTy))
2490         return Entry->Cost + RegisterFileMoveCost;
2491 
2492     // Assume pinsr/pextr XMM <-> GPR is relatively cheap on all targets.
2493     if ((MScalarTy == MVT::i16 && ST->hasSSE2()) ||
2494         (MScalarTy.isInteger() && ST->hasSSE41()))
2495       return 1 + RegisterFileMoveCost;
2496 
2497     // Assume insertps is relatively cheap on all targets.
2498     if (MScalarTy == MVT::f32 && ST->hasSSE41() &&
2499         Opcode == Instruction::InsertElement)
2500       return 1 + RegisterFileMoveCost;
2501 
2502     // For extractions we just need to shuffle the element to index 0, which
2503     // should be very cheap (assume cost = 1). For insertions we need to shuffle
2504     // the elements to its destination. In both cases we must handle the
2505     // subvector move(s).
2506     // TODO: Under what circumstances should we shuffle using the full width?
2507     int ShuffleCost = 1;
2508     if (Opcode == Instruction::InsertElement) {
2509       Type *SubTy = VectorType::get(Val->getVectorElementType(), SubNumElts);
2510       ShuffleCost = getShuffleCost(TTI::SK_PermuteTwoSrc, SubTy, 0, SubTy);
2511     }
2512     int IntOrFpCost = ScalarType->isFloatingPointTy() ? 0 : 1;
2513     return ShuffleCost + IntOrFpCost + RegisterFileMoveCost;
2514   }
2515 
2516   // Add to the base cost if we know that the extracted element of a vector is
2517   // destined to be moved to and used in the integer register file.
2518   if (Opcode == Instruction::ExtractElement && ScalarType->isPointerTy())
2519     RegisterFileMoveCost += 1;
2520 
2521   return BaseT::getVectorInstrCost(Opcode, Val, Index) + RegisterFileMoveCost;
2522 }
2523 
2524 int X86TTIImpl::getMemoryOpCost(unsigned Opcode, Type *Src,
2525                                 MaybeAlign Alignment, unsigned AddressSpace,
2526                                 const Instruction *I) {
2527   // Handle non-power-of-two vectors such as <3 x float>
2528   if (VectorType *VTy = dyn_cast<VectorType>(Src)) {
2529     unsigned NumElem = VTy->getVectorNumElements();
2530 
2531     // Handle a few common cases:
2532     // <3 x float>
2533     if (NumElem == 3 && VTy->getScalarSizeInBits() == 32)
2534       // Cost = 64 bit store + extract + 32 bit store.
2535       return 3;
2536 
2537     // <3 x double>
2538     if (NumElem == 3 && VTy->getScalarSizeInBits() == 64)
2539       // Cost = 128 bit store + unpack + 64 bit store.
2540       return 3;
2541 
2542     // Assume that all other non-power-of-two numbers are scalarized.
2543     if (!isPowerOf2_32(NumElem)) {
2544       int Cost = BaseT::getMemoryOpCost(Opcode, VTy->getScalarType(), Alignment,
2545                                         AddressSpace);
2546       int SplitCost = getScalarizationOverhead(Src, Opcode == Instruction::Load,
2547                                                Opcode == Instruction::Store);
2548       return NumElem * Cost + SplitCost;
2549     }
2550   }
2551 
2552   // Legalize the type.
2553   std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Src);
2554   assert((Opcode == Instruction::Load || Opcode == Instruction::Store) &&
2555          "Invalid Opcode");
2556 
2557   // Each load/store unit costs 1.
2558   int Cost = LT.first * 1;
2559 
2560   // This isn't exactly right. We're using slow unaligned 32-byte accesses as a
2561   // proxy for a double-pumped AVX memory interface such as on Sandybridge.
2562   if (LT.second.getStoreSize() == 32 && ST->isUnalignedMem32Slow())
2563     Cost *= 2;
2564 
2565   return Cost;
2566 }
2567 
2568 int X86TTIImpl::getMaskedMemoryOpCost(unsigned Opcode, Type *SrcTy,
2569                                       unsigned Alignment,
2570                                       unsigned AddressSpace) {
2571   bool IsLoad = (Instruction::Load == Opcode);
2572   bool IsStore = (Instruction::Store == Opcode);
2573 
2574   VectorType *SrcVTy = dyn_cast<VectorType>(SrcTy);
2575   if (!SrcVTy)
2576     // To calculate scalar take the regular cost, without mask
2577     return getMemoryOpCost(Opcode, SrcTy, MaybeAlign(Alignment), AddressSpace);
2578 
2579   unsigned NumElem = SrcVTy->getVectorNumElements();
2580   VectorType *MaskTy =
2581       VectorType::get(Type::getInt8Ty(SrcVTy->getContext()), NumElem);
2582   if ((IsLoad && !isLegalMaskedLoad(SrcVTy, MaybeAlign(Alignment))) ||
2583       (IsStore && !isLegalMaskedStore(SrcVTy, MaybeAlign(Alignment))) ||
2584       !isPowerOf2_32(NumElem)) {
2585     // Scalarization
2586     int MaskSplitCost = getScalarizationOverhead(MaskTy, false, true);
2587     int ScalarCompareCost = getCmpSelInstrCost(
2588         Instruction::ICmp, Type::getInt8Ty(SrcVTy->getContext()), nullptr);
2589     int BranchCost = getCFInstrCost(Instruction::Br);
2590     int MaskCmpCost = NumElem * (BranchCost + ScalarCompareCost);
2591 
2592     int ValueSplitCost = getScalarizationOverhead(SrcVTy, IsLoad, IsStore);
2593     int MemopCost =
2594         NumElem * BaseT::getMemoryOpCost(Opcode, SrcVTy->getScalarType(),
2595                                          MaybeAlign(Alignment), AddressSpace);
2596     return MemopCost + ValueSplitCost + MaskSplitCost + MaskCmpCost;
2597   }
2598 
2599   // Legalize the type.
2600   std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, SrcVTy);
2601   auto VT = TLI->getValueType(DL, SrcVTy);
2602   int Cost = 0;
2603   if (VT.isSimple() && LT.second != VT.getSimpleVT() &&
2604       LT.second.getVectorNumElements() == NumElem)
2605     // Promotion requires expand/truncate for data and a shuffle for mask.
2606     Cost += getShuffleCost(TTI::SK_PermuteTwoSrc, SrcVTy, 0, nullptr) +
2607             getShuffleCost(TTI::SK_PermuteTwoSrc, MaskTy, 0, nullptr);
2608 
2609   else if (LT.second.getVectorNumElements() > NumElem) {
2610     VectorType *NewMaskTy = VectorType::get(MaskTy->getVectorElementType(),
2611                                             LT.second.getVectorNumElements());
2612     // Expanding requires fill mask with zeroes
2613     Cost += getShuffleCost(TTI::SK_InsertSubvector, NewMaskTy, 0, MaskTy);
2614   }
2615 
2616   // Pre-AVX512 - each maskmov load costs 2 + store costs ~8.
2617   if (!ST->hasAVX512())
2618     return Cost + LT.first * (IsLoad ? 2 : 8);
2619 
2620   // AVX-512 masked load/store is cheapper
2621   return Cost + LT.first;
2622 }
2623 
2624 int X86TTIImpl::getAddressComputationCost(Type *Ty, ScalarEvolution *SE,
2625                                           const SCEV *Ptr) {
2626   // Address computations in vectorized code with non-consecutive addresses will
2627   // likely result in more instructions compared to scalar code where the
2628   // computation can more often be merged into the index mode. The resulting
2629   // extra micro-ops can significantly decrease throughput.
2630   const unsigned NumVectorInstToHideOverhead = 10;
2631 
2632   // Cost modeling of Strided Access Computation is hidden by the indexing
2633   // modes of X86 regardless of the stride value. We dont believe that there
2634   // is a difference between constant strided access in gerenal and constant
2635   // strided value which is less than or equal to 64.
2636   // Even in the case of (loop invariant) stride whose value is not known at
2637   // compile time, the address computation will not incur more than one extra
2638   // ADD instruction.
2639   if (Ty->isVectorTy() && SE) {
2640     if (!BaseT::isStridedAccess(Ptr))
2641       return NumVectorInstToHideOverhead;
2642     if (!BaseT::getConstantStrideStep(SE, Ptr))
2643       return 1;
2644   }
2645 
2646   return BaseT::getAddressComputationCost(Ty, SE, Ptr);
2647 }
2648 
2649 int X86TTIImpl::getArithmeticReductionCost(unsigned Opcode, Type *ValTy,
2650                                            bool IsPairwise) {
2651   // Just use the default implementation for pair reductions.
2652   if (IsPairwise)
2653     return BaseT::getArithmeticReductionCost(Opcode, ValTy, IsPairwise);
2654 
2655   // We use the Intel Architecture Code Analyzer(IACA) to measure the throughput
2656   // and make it as the cost.
2657 
2658   static const CostTblEntry SLMCostTblNoPairWise[] = {
2659     { ISD::FADD,  MVT::v2f64,   3 },
2660     { ISD::ADD,   MVT::v2i64,   5 },
2661   };
2662 
2663   static const CostTblEntry SSE2CostTblNoPairWise[] = {
2664     { ISD::FADD,  MVT::v2f64,   2 },
2665     { ISD::FADD,  MVT::v4f32,   4 },
2666     { ISD::ADD,   MVT::v2i64,   2 },      // The data reported by the IACA tool is "1.6".
2667     { ISD::ADD,   MVT::v2i32,   2 }, // FIXME: chosen to be less than v4i32
2668     { ISD::ADD,   MVT::v4i32,   3 },      // The data reported by the IACA tool is "3.3".
2669     { ISD::ADD,   MVT::v2i16,   2 },      // The data reported by the IACA tool is "4.3".
2670     { ISD::ADD,   MVT::v4i16,   3 },      // The data reported by the IACA tool is "4.3".
2671     { ISD::ADD,   MVT::v8i16,   4 },      // The data reported by the IACA tool is "4.3".
2672     { ISD::ADD,   MVT::v2i8,    2 },
2673     { ISD::ADD,   MVT::v4i8,    2 },
2674     { ISD::ADD,   MVT::v8i8,    2 },
2675     { ISD::ADD,   MVT::v16i8,   3 },
2676   };
2677 
2678   static const CostTblEntry AVX1CostTblNoPairWise[] = {
2679     { ISD::FADD,  MVT::v4f64,   3 },
2680     { ISD::FADD,  MVT::v4f32,   3 },
2681     { ISD::FADD,  MVT::v8f32,   4 },
2682     { ISD::ADD,   MVT::v2i64,   1 },      // The data reported by the IACA tool is "1.5".
2683     { ISD::ADD,   MVT::v4i64,   3 },
2684     { ISD::ADD,   MVT::v8i32,   5 },
2685     { ISD::ADD,   MVT::v16i16,  5 },
2686     { ISD::ADD,   MVT::v32i8,   4 },
2687   };
2688 
2689   int ISD = TLI->InstructionOpcodeToISD(Opcode);
2690   assert(ISD && "Invalid opcode");
2691 
2692   // Before legalizing the type, give a chance to look up illegal narrow types
2693   // in the table.
2694   // FIXME: Is there a better way to do this?
2695   EVT VT = TLI->getValueType(DL, ValTy);
2696   if (VT.isSimple()) {
2697     MVT MTy = VT.getSimpleVT();
2698     if (ST->isSLM())
2699       if (const auto *Entry = CostTableLookup(SLMCostTblNoPairWise, ISD, MTy))
2700         return Entry->Cost;
2701 
2702     if (ST->hasAVX())
2703       if (const auto *Entry = CostTableLookup(AVX1CostTblNoPairWise, ISD, MTy))
2704         return Entry->Cost;
2705 
2706     if (ST->hasSSE2())
2707       if (const auto *Entry = CostTableLookup(SSE2CostTblNoPairWise, ISD, MTy))
2708         return Entry->Cost;
2709   }
2710 
2711   std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, ValTy);
2712 
2713   MVT MTy = LT.second;
2714 
2715   unsigned ArithmeticCost = 0;
2716   if (LT.first != 1 && MTy.isVector() &&
2717       MTy.getVectorNumElements() < ValTy->getVectorNumElements()) {
2718     // Type needs to be split. We need LT.first - 1 arithmetic ops.
2719     Type *SingleOpTy = VectorType::get(ValTy->getVectorElementType(),
2720                                        MTy.getVectorNumElements());
2721     ArithmeticCost = getArithmeticInstrCost(Opcode, SingleOpTy);
2722     ArithmeticCost *= LT.first - 1;
2723   }
2724 
2725   if (ST->isSLM())
2726     if (const auto *Entry = CostTableLookup(SLMCostTblNoPairWise, ISD, MTy))
2727       return ArithmeticCost + Entry->Cost;
2728 
2729   if (ST->hasAVX())
2730     if (const auto *Entry = CostTableLookup(AVX1CostTblNoPairWise, ISD, MTy))
2731       return ArithmeticCost + Entry->Cost;
2732 
2733   if (ST->hasSSE2())
2734     if (const auto *Entry = CostTableLookup(SSE2CostTblNoPairWise, ISD, MTy))
2735       return ArithmeticCost + Entry->Cost;
2736 
2737   // FIXME: These assume a naive kshift+binop lowering, which is probably
2738   // conservative in most cases.
2739   static const CostTblEntry AVX512BoolReduction[] = {
2740     { ISD::AND,  MVT::v2i1,   3 },
2741     { ISD::AND,  MVT::v4i1,   5 },
2742     { ISD::AND,  MVT::v8i1,   7 },
2743     { ISD::AND,  MVT::v16i1,  9 },
2744     { ISD::AND,  MVT::v32i1, 11 },
2745     { ISD::AND,  MVT::v64i1, 13 },
2746     { ISD::OR,   MVT::v2i1,   3 },
2747     { ISD::OR,   MVT::v4i1,   5 },
2748     { ISD::OR,   MVT::v8i1,   7 },
2749     { ISD::OR,   MVT::v16i1,  9 },
2750     { ISD::OR,   MVT::v32i1, 11 },
2751     { ISD::OR,   MVT::v64i1, 13 },
2752   };
2753 
2754   static const CostTblEntry AVX2BoolReduction[] = {
2755     { ISD::AND,  MVT::v16i16,  2 }, // vpmovmskb + cmp
2756     { ISD::AND,  MVT::v32i8,   2 }, // vpmovmskb + cmp
2757     { ISD::OR,   MVT::v16i16,  2 }, // vpmovmskb + cmp
2758     { ISD::OR,   MVT::v32i8,   2 }, // vpmovmskb + cmp
2759   };
2760 
2761   static const CostTblEntry AVX1BoolReduction[] = {
2762     { ISD::AND,  MVT::v4i64,   2 }, // vmovmskpd + cmp
2763     { ISD::AND,  MVT::v8i32,   2 }, // vmovmskps + cmp
2764     { ISD::AND,  MVT::v16i16,  4 }, // vextractf128 + vpand + vpmovmskb + cmp
2765     { ISD::AND,  MVT::v32i8,   4 }, // vextractf128 + vpand + vpmovmskb + cmp
2766     { ISD::OR,   MVT::v4i64,   2 }, // vmovmskpd + cmp
2767     { ISD::OR,   MVT::v8i32,   2 }, // vmovmskps + cmp
2768     { ISD::OR,   MVT::v16i16,  4 }, // vextractf128 + vpor + vpmovmskb + cmp
2769     { ISD::OR,   MVT::v32i8,   4 }, // vextractf128 + vpor + vpmovmskb + cmp
2770   };
2771 
2772   static const CostTblEntry SSE2BoolReduction[] = {
2773     { ISD::AND,  MVT::v2i64,   2 }, // movmskpd + cmp
2774     { ISD::AND,  MVT::v4i32,   2 }, // movmskps + cmp
2775     { ISD::AND,  MVT::v8i16,   2 }, // pmovmskb + cmp
2776     { ISD::AND,  MVT::v16i8,   2 }, // pmovmskb + cmp
2777     { ISD::OR,   MVT::v2i64,   2 }, // movmskpd + cmp
2778     { ISD::OR,   MVT::v4i32,   2 }, // movmskps + cmp
2779     { ISD::OR,   MVT::v8i16,   2 }, // pmovmskb + cmp
2780     { ISD::OR,   MVT::v16i8,   2 }, // pmovmskb + cmp
2781   };
2782 
2783   // Handle bool allof/anyof patterns.
2784   if (ValTy->getVectorElementType()->isIntegerTy(1)) {
2785     unsigned ArithmeticCost = 0;
2786     if (LT.first != 1 && MTy.isVector() &&
2787         MTy.getVectorNumElements() < ValTy->getVectorNumElements()) {
2788       // Type needs to be split. We need LT.first - 1 arithmetic ops.
2789       Type *SingleOpTy = VectorType::get(ValTy->getVectorElementType(),
2790                                          MTy.getVectorNumElements());
2791       ArithmeticCost = getArithmeticInstrCost(Opcode, SingleOpTy);
2792       ArithmeticCost *= LT.first - 1;
2793     }
2794 
2795     if (ST->hasAVX512())
2796       if (const auto *Entry = CostTableLookup(AVX512BoolReduction, ISD, MTy))
2797         return ArithmeticCost + Entry->Cost;
2798     if (ST->hasAVX2())
2799       if (const auto *Entry = CostTableLookup(AVX2BoolReduction, ISD, MTy))
2800         return ArithmeticCost + Entry->Cost;
2801     if (ST->hasAVX())
2802       if (const auto *Entry = CostTableLookup(AVX1BoolReduction, ISD, MTy))
2803         return ArithmeticCost + Entry->Cost;
2804     if (ST->hasSSE2())
2805       if (const auto *Entry = CostTableLookup(SSE2BoolReduction, ISD, MTy))
2806         return ArithmeticCost + Entry->Cost;
2807 
2808     return BaseT::getArithmeticReductionCost(Opcode, ValTy, IsPairwise);
2809   }
2810 
2811   unsigned NumVecElts = ValTy->getVectorNumElements();
2812   unsigned ScalarSize = ValTy->getScalarSizeInBits();
2813 
2814   // Special case power of 2 reductions where the scalar type isn't changed
2815   // by type legalization.
2816   if (!isPowerOf2_32(NumVecElts) || ScalarSize != MTy.getScalarSizeInBits())
2817     return BaseT::getArithmeticReductionCost(Opcode, ValTy, IsPairwise);
2818 
2819   unsigned ReductionCost = 0;
2820 
2821   Type *Ty = ValTy;
2822   if (LT.first != 1 && MTy.isVector() &&
2823       MTy.getVectorNumElements() < ValTy->getVectorNumElements()) {
2824     // Type needs to be split. We need LT.first - 1 arithmetic ops.
2825     Ty = VectorType::get(ValTy->getVectorElementType(),
2826                          MTy.getVectorNumElements());
2827     ReductionCost = getArithmeticInstrCost(Opcode, Ty);
2828     ReductionCost *= LT.first - 1;
2829     NumVecElts = MTy.getVectorNumElements();
2830   }
2831 
2832   // Now handle reduction with the legal type, taking into account size changes
2833   // at each level.
2834   while (NumVecElts > 1) {
2835     // Determine the size of the remaining vector we need to reduce.
2836     unsigned Size = NumVecElts * ScalarSize;
2837     NumVecElts /= 2;
2838     // If we're reducing from 256/512 bits, use an extract_subvector.
2839     if (Size > 128) {
2840       Type *SubTy = VectorType::get(ValTy->getVectorElementType(), NumVecElts);
2841       ReductionCost +=
2842           getShuffleCost(TTI::SK_ExtractSubvector, Ty, NumVecElts, SubTy);
2843       Ty = SubTy;
2844     } else if (Size == 128) {
2845       // Reducing from 128 bits is a permute of v2f64/v2i64.
2846       Type *ShufTy;
2847       if (ValTy->isFloatingPointTy())
2848         ShufTy = VectorType::get(Type::getDoubleTy(ValTy->getContext()), 2);
2849       else
2850         ShufTy = VectorType::get(Type::getInt64Ty(ValTy->getContext()), 2);
2851       ReductionCost +=
2852           getShuffleCost(TTI::SK_PermuteSingleSrc, ShufTy, 0, nullptr);
2853     } else if (Size == 64) {
2854       // Reducing from 64 bits is a shuffle of v4f32/v4i32.
2855       Type *ShufTy;
2856       if (ValTy->isFloatingPointTy())
2857         ShufTy = VectorType::get(Type::getFloatTy(ValTy->getContext()), 4);
2858       else
2859         ShufTy = VectorType::get(Type::getInt32Ty(ValTy->getContext()), 4);
2860       ReductionCost +=
2861           getShuffleCost(TTI::SK_PermuteSingleSrc, ShufTy, 0, nullptr);
2862     } else {
2863       // Reducing from smaller size is a shift by immediate.
2864       Type *ShiftTy = VectorType::get(
2865           Type::getIntNTy(ValTy->getContext(), Size), 128 / Size);
2866       ReductionCost += getArithmeticInstrCost(
2867           Instruction::LShr, ShiftTy, TargetTransformInfo::OK_AnyValue,
2868           TargetTransformInfo::OK_UniformConstantValue,
2869           TargetTransformInfo::OP_None, TargetTransformInfo::OP_None);
2870     }
2871 
2872     // Add the arithmetic op for this level.
2873     ReductionCost += getArithmeticInstrCost(Opcode, Ty);
2874   }
2875 
2876   // Add the final extract element to the cost.
2877   return ReductionCost + getVectorInstrCost(Instruction::ExtractElement, Ty, 0);
2878 }
2879 
2880 int X86TTIImpl::getMinMaxReductionCost(Type *ValTy, Type *CondTy,
2881                                        bool IsPairwise, bool IsUnsigned) {
2882   std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, ValTy);
2883 
2884   MVT MTy = LT.second;
2885 
2886   int ISD;
2887   if (ValTy->isIntOrIntVectorTy()) {
2888     ISD = IsUnsigned ? ISD::UMIN : ISD::SMIN;
2889   } else {
2890     assert(ValTy->isFPOrFPVectorTy() &&
2891            "Expected float point or integer vector type.");
2892     ISD = ISD::FMINNUM;
2893   }
2894 
2895   // We use the Intel Architecture Code Analyzer(IACA) to measure the throughput
2896   // and make it as the cost.
2897 
2898   static const CostTblEntry SSE1CostTblPairWise[] = {
2899       {ISD::FMINNUM, MVT::v4f32, 4},
2900   };
2901 
2902   static const CostTblEntry SSE2CostTblPairWise[] = {
2903       {ISD::FMINNUM, MVT::v2f64, 3},
2904       {ISD::SMIN, MVT::v2i64, 6},
2905       {ISD::UMIN, MVT::v2i64, 8},
2906       {ISD::SMIN, MVT::v4i32, 6},
2907       {ISD::UMIN, MVT::v4i32, 8},
2908       {ISD::SMIN, MVT::v8i16, 4},
2909       {ISD::UMIN, MVT::v8i16, 6},
2910       {ISD::SMIN, MVT::v16i8, 8},
2911       {ISD::UMIN, MVT::v16i8, 6},
2912   };
2913 
2914   static const CostTblEntry SSE41CostTblPairWise[] = {
2915       {ISD::FMINNUM, MVT::v4f32, 2},
2916       {ISD::SMIN, MVT::v2i64, 9},
2917       {ISD::UMIN, MVT::v2i64,10},
2918       {ISD::SMIN, MVT::v4i32, 1}, // The data reported by the IACA is "1.5"
2919       {ISD::UMIN, MVT::v4i32, 2}, // The data reported by the IACA is "1.8"
2920       {ISD::SMIN, MVT::v8i16, 2},
2921       {ISD::UMIN, MVT::v8i16, 2},
2922       {ISD::SMIN, MVT::v16i8, 3},
2923       {ISD::UMIN, MVT::v16i8, 3},
2924   };
2925 
2926   static const CostTblEntry SSE42CostTblPairWise[] = {
2927       {ISD::SMIN, MVT::v2i64, 7}, // The data reported by the IACA is "6.8"
2928       {ISD::UMIN, MVT::v2i64, 8}, // The data reported by the IACA is "8.6"
2929   };
2930 
2931   static const CostTblEntry AVX1CostTblPairWise[] = {
2932       {ISD::FMINNUM, MVT::v4f32, 1},
2933       {ISD::FMINNUM, MVT::v4f64, 1},
2934       {ISD::FMINNUM, MVT::v8f32, 2},
2935       {ISD::SMIN, MVT::v2i64, 3},
2936       {ISD::UMIN, MVT::v2i64, 3},
2937       {ISD::SMIN, MVT::v4i32, 1},
2938       {ISD::UMIN, MVT::v4i32, 1},
2939       {ISD::SMIN, MVT::v8i16, 1},
2940       {ISD::UMIN, MVT::v8i16, 1},
2941       {ISD::SMIN, MVT::v16i8, 2},
2942       {ISD::UMIN, MVT::v16i8, 2},
2943       {ISD::SMIN, MVT::v4i64, 7},
2944       {ISD::UMIN, MVT::v4i64, 7},
2945       {ISD::SMIN, MVT::v8i32, 3},
2946       {ISD::UMIN, MVT::v8i32, 3},
2947       {ISD::SMIN, MVT::v16i16, 3},
2948       {ISD::UMIN, MVT::v16i16, 3},
2949       {ISD::SMIN, MVT::v32i8, 3},
2950       {ISD::UMIN, MVT::v32i8, 3},
2951   };
2952 
2953   static const CostTblEntry AVX2CostTblPairWise[] = {
2954       {ISD::SMIN, MVT::v4i64, 2},
2955       {ISD::UMIN, MVT::v4i64, 2},
2956       {ISD::SMIN, MVT::v8i32, 1},
2957       {ISD::UMIN, MVT::v8i32, 1},
2958       {ISD::SMIN, MVT::v16i16, 1},
2959       {ISD::UMIN, MVT::v16i16, 1},
2960       {ISD::SMIN, MVT::v32i8, 2},
2961       {ISD::UMIN, MVT::v32i8, 2},
2962   };
2963 
2964   static const CostTblEntry AVX512CostTblPairWise[] = {
2965       {ISD::FMINNUM, MVT::v8f64, 1},
2966       {ISD::FMINNUM, MVT::v16f32, 2},
2967       {ISD::SMIN, MVT::v8i64, 2},
2968       {ISD::UMIN, MVT::v8i64, 2},
2969       {ISD::SMIN, MVT::v16i32, 1},
2970       {ISD::UMIN, MVT::v16i32, 1},
2971   };
2972 
2973   static const CostTblEntry SSE1CostTblNoPairWise[] = {
2974       {ISD::FMINNUM, MVT::v4f32, 4},
2975   };
2976 
2977   static const CostTblEntry SSE2CostTblNoPairWise[] = {
2978       {ISD::FMINNUM, MVT::v2f64, 3},
2979       {ISD::SMIN, MVT::v2i64, 6},
2980       {ISD::UMIN, MVT::v2i64, 8},
2981       {ISD::SMIN, MVT::v4i32, 6},
2982       {ISD::UMIN, MVT::v4i32, 8},
2983       {ISD::SMIN, MVT::v8i16, 4},
2984       {ISD::UMIN, MVT::v8i16, 6},
2985       {ISD::SMIN, MVT::v16i8, 8},
2986       {ISD::UMIN, MVT::v16i8, 6},
2987   };
2988 
2989   static const CostTblEntry SSE41CostTblNoPairWise[] = {
2990       {ISD::FMINNUM, MVT::v4f32, 3},
2991       {ISD::SMIN, MVT::v2i64, 9},
2992       {ISD::UMIN, MVT::v2i64,11},
2993       {ISD::SMIN, MVT::v4i32, 1}, // The data reported by the IACA is "1.5"
2994       {ISD::UMIN, MVT::v4i32, 2}, // The data reported by the IACA is "1.8"
2995       {ISD::SMIN, MVT::v8i16, 1}, // The data reported by the IACA is "1.5"
2996       {ISD::UMIN, MVT::v8i16, 2}, // The data reported by the IACA is "1.8"
2997       {ISD::SMIN, MVT::v16i8, 3},
2998       {ISD::UMIN, MVT::v16i8, 3},
2999   };
3000 
3001   static const CostTblEntry SSE42CostTblNoPairWise[] = {
3002       {ISD::SMIN, MVT::v2i64, 7}, // The data reported by the IACA is "6.8"
3003       {ISD::UMIN, MVT::v2i64, 9}, // The data reported by the IACA is "8.6"
3004   };
3005 
3006   static const CostTblEntry AVX1CostTblNoPairWise[] = {
3007       {ISD::FMINNUM, MVT::v4f32, 1},
3008       {ISD::FMINNUM, MVT::v4f64, 1},
3009       {ISD::FMINNUM, MVT::v8f32, 1},
3010       {ISD::SMIN, MVT::v2i64, 3},
3011       {ISD::UMIN, MVT::v2i64, 3},
3012       {ISD::SMIN, MVT::v4i32, 1},
3013       {ISD::UMIN, MVT::v4i32, 1},
3014       {ISD::SMIN, MVT::v8i16, 1},
3015       {ISD::UMIN, MVT::v8i16, 1},
3016       {ISD::SMIN, MVT::v16i8, 2},
3017       {ISD::UMIN, MVT::v16i8, 2},
3018       {ISD::SMIN, MVT::v4i64, 7},
3019       {ISD::UMIN, MVT::v4i64, 7},
3020       {ISD::SMIN, MVT::v8i32, 2},
3021       {ISD::UMIN, MVT::v8i32, 2},
3022       {ISD::SMIN, MVT::v16i16, 2},
3023       {ISD::UMIN, MVT::v16i16, 2},
3024       {ISD::SMIN, MVT::v32i8, 2},
3025       {ISD::UMIN, MVT::v32i8, 2},
3026   };
3027 
3028   static const CostTblEntry AVX2CostTblNoPairWise[] = {
3029       {ISD::SMIN, MVT::v4i64, 1},
3030       {ISD::UMIN, MVT::v4i64, 1},
3031       {ISD::SMIN, MVT::v8i32, 1},
3032       {ISD::UMIN, MVT::v8i32, 1},
3033       {ISD::SMIN, MVT::v16i16, 1},
3034       {ISD::UMIN, MVT::v16i16, 1},
3035       {ISD::SMIN, MVT::v32i8, 1},
3036       {ISD::UMIN, MVT::v32i8, 1},
3037   };
3038 
3039   static const CostTblEntry AVX512CostTblNoPairWise[] = {
3040       {ISD::FMINNUM, MVT::v8f64, 1},
3041       {ISD::FMINNUM, MVT::v16f32, 2},
3042       {ISD::SMIN, MVT::v8i64, 1},
3043       {ISD::UMIN, MVT::v8i64, 1},
3044       {ISD::SMIN, MVT::v16i32, 1},
3045       {ISD::UMIN, MVT::v16i32, 1},
3046   };
3047 
3048   if (IsPairwise) {
3049     if (ST->hasAVX512())
3050       if (const auto *Entry = CostTableLookup(AVX512CostTblPairWise, ISD, MTy))
3051         return LT.first * Entry->Cost;
3052 
3053     if (ST->hasAVX2())
3054       if (const auto *Entry = CostTableLookup(AVX2CostTblPairWise, ISD, MTy))
3055         return LT.first * Entry->Cost;
3056 
3057     if (ST->hasAVX())
3058       if (const auto *Entry = CostTableLookup(AVX1CostTblPairWise, ISD, MTy))
3059         return LT.first * Entry->Cost;
3060 
3061     if (ST->hasSSE42())
3062       if (const auto *Entry = CostTableLookup(SSE42CostTblPairWise, ISD, MTy))
3063         return LT.first * Entry->Cost;
3064 
3065     if (ST->hasSSE41())
3066       if (const auto *Entry = CostTableLookup(SSE41CostTblPairWise, ISD, MTy))
3067         return LT.first * Entry->Cost;
3068 
3069     if (ST->hasSSE2())
3070       if (const auto *Entry = CostTableLookup(SSE2CostTblPairWise, ISD, MTy))
3071         return LT.first * Entry->Cost;
3072 
3073     if (ST->hasSSE1())
3074       if (const auto *Entry = CostTableLookup(SSE1CostTblPairWise, ISD, MTy))
3075         return LT.first * Entry->Cost;
3076   } else {
3077     if (ST->hasAVX512())
3078       if (const auto *Entry =
3079               CostTableLookup(AVX512CostTblNoPairWise, ISD, MTy))
3080         return LT.first * Entry->Cost;
3081 
3082     if (ST->hasAVX2())
3083       if (const auto *Entry = CostTableLookup(AVX2CostTblNoPairWise, ISD, MTy))
3084         return LT.first * Entry->Cost;
3085 
3086     if (ST->hasAVX())
3087       if (const auto *Entry = CostTableLookup(AVX1CostTblNoPairWise, ISD, MTy))
3088         return LT.first * Entry->Cost;
3089 
3090     if (ST->hasSSE42())
3091       if (const auto *Entry = CostTableLookup(SSE42CostTblNoPairWise, ISD, MTy))
3092         return LT.first * Entry->Cost;
3093 
3094     if (ST->hasSSE41())
3095       if (const auto *Entry = CostTableLookup(SSE41CostTblNoPairWise, ISD, MTy))
3096         return LT.first * Entry->Cost;
3097 
3098     if (ST->hasSSE2())
3099       if (const auto *Entry = CostTableLookup(SSE2CostTblNoPairWise, ISD, MTy))
3100         return LT.first * Entry->Cost;
3101 
3102     if (ST->hasSSE1())
3103       if (const auto *Entry = CostTableLookup(SSE1CostTblNoPairWise, ISD, MTy))
3104         return LT.first * Entry->Cost;
3105   }
3106 
3107   return BaseT::getMinMaxReductionCost(ValTy, CondTy, IsPairwise, IsUnsigned);
3108 }
3109 
3110 /// Calculate the cost of materializing a 64-bit value. This helper
3111 /// method might only calculate a fraction of a larger immediate. Therefore it
3112 /// is valid to return a cost of ZERO.
3113 int X86TTIImpl::getIntImmCost(int64_t Val) {
3114   if (Val == 0)
3115     return TTI::TCC_Free;
3116 
3117   if (isInt<32>(Val))
3118     return TTI::TCC_Basic;
3119 
3120   return 2 * TTI::TCC_Basic;
3121 }
3122 
3123 int X86TTIImpl::getIntImmCost(const APInt &Imm, Type *Ty) {
3124   assert(Ty->isIntegerTy());
3125 
3126   unsigned BitSize = Ty->getPrimitiveSizeInBits();
3127   if (BitSize == 0)
3128     return ~0U;
3129 
3130   // Never hoist constants larger than 128bit, because this might lead to
3131   // incorrect code generation or assertions in codegen.
3132   // Fixme: Create a cost model for types larger than i128 once the codegen
3133   // issues have been fixed.
3134   if (BitSize > 128)
3135     return TTI::TCC_Free;
3136 
3137   if (Imm == 0)
3138     return TTI::TCC_Free;
3139 
3140   // Sign-extend all constants to a multiple of 64-bit.
3141   APInt ImmVal = Imm;
3142   if (BitSize % 64 != 0)
3143     ImmVal = Imm.sext(alignTo(BitSize, 64));
3144 
3145   // Split the constant into 64-bit chunks and calculate the cost for each
3146   // chunk.
3147   int Cost = 0;
3148   for (unsigned ShiftVal = 0; ShiftVal < BitSize; ShiftVal += 64) {
3149     APInt Tmp = ImmVal.ashr(ShiftVal).sextOrTrunc(64);
3150     int64_t Val = Tmp.getSExtValue();
3151     Cost += getIntImmCost(Val);
3152   }
3153   // We need at least one instruction to materialize the constant.
3154   return std::max(1, Cost);
3155 }
3156 
3157 int X86TTIImpl::getIntImmCostInst(unsigned Opcode, unsigned Idx, const APInt &Imm,
3158                               Type *Ty) {
3159   assert(Ty->isIntegerTy());
3160 
3161   unsigned BitSize = Ty->getPrimitiveSizeInBits();
3162   // There is no cost model for constants with a bit size of 0. Return TCC_Free
3163   // here, so that constant hoisting will ignore this constant.
3164   if (BitSize == 0)
3165     return TTI::TCC_Free;
3166 
3167   unsigned ImmIdx = ~0U;
3168   switch (Opcode) {
3169   default:
3170     return TTI::TCC_Free;
3171   case Instruction::GetElementPtr:
3172     // Always hoist the base address of a GetElementPtr. This prevents the
3173     // creation of new constants for every base constant that gets constant
3174     // folded with the offset.
3175     if (Idx == 0)
3176       return 2 * TTI::TCC_Basic;
3177     return TTI::TCC_Free;
3178   case Instruction::Store:
3179     ImmIdx = 0;
3180     break;
3181   case Instruction::ICmp:
3182     // This is an imperfect hack to prevent constant hoisting of
3183     // compares that might be trying to check if a 64-bit value fits in
3184     // 32-bits. The backend can optimize these cases using a right shift by 32.
3185     // Ideally we would check the compare predicate here. There also other
3186     // similar immediates the backend can use shifts for.
3187     if (Idx == 1 && Imm.getBitWidth() == 64) {
3188       uint64_t ImmVal = Imm.getZExtValue();
3189       if (ImmVal == 0x100000000ULL || ImmVal == 0xffffffff)
3190         return TTI::TCC_Free;
3191     }
3192     ImmIdx = 1;
3193     break;
3194   case Instruction::And:
3195     // We support 64-bit ANDs with immediates with 32-bits of leading zeroes
3196     // by using a 32-bit operation with implicit zero extension. Detect such
3197     // immediates here as the normal path expects bit 31 to be sign extended.
3198     if (Idx == 1 && Imm.getBitWidth() == 64 && isUInt<32>(Imm.getZExtValue()))
3199       return TTI::TCC_Free;
3200     ImmIdx = 1;
3201     break;
3202   case Instruction::Add:
3203   case Instruction::Sub:
3204     // For add/sub, we can use the opposite instruction for INT32_MIN.
3205     if (Idx == 1 && Imm.getBitWidth() == 64 && Imm.getZExtValue() == 0x80000000)
3206       return TTI::TCC_Free;
3207     ImmIdx = 1;
3208     break;
3209   case Instruction::UDiv:
3210   case Instruction::SDiv:
3211   case Instruction::URem:
3212   case Instruction::SRem:
3213     // Division by constant is typically expanded later into a different
3214     // instruction sequence. This completely changes the constants.
3215     // Report them as "free" to stop ConstantHoist from marking them as opaque.
3216     return TTI::TCC_Free;
3217   case Instruction::Mul:
3218   case Instruction::Or:
3219   case Instruction::Xor:
3220     ImmIdx = 1;
3221     break;
3222   // Always return TCC_Free for the shift value of a shift instruction.
3223   case Instruction::Shl:
3224   case Instruction::LShr:
3225   case Instruction::AShr:
3226     if (Idx == 1)
3227       return TTI::TCC_Free;
3228     break;
3229   case Instruction::Trunc:
3230   case Instruction::ZExt:
3231   case Instruction::SExt:
3232   case Instruction::IntToPtr:
3233   case Instruction::PtrToInt:
3234   case Instruction::BitCast:
3235   case Instruction::PHI:
3236   case Instruction::Call:
3237   case Instruction::Select:
3238   case Instruction::Ret:
3239   case Instruction::Load:
3240     break;
3241   }
3242 
3243   if (Idx == ImmIdx) {
3244     int NumConstants = divideCeil(BitSize, 64);
3245     int Cost = X86TTIImpl::getIntImmCost(Imm, Ty);
3246     return (Cost <= NumConstants * TTI::TCC_Basic)
3247                ? static_cast<int>(TTI::TCC_Free)
3248                : Cost;
3249   }
3250 
3251   return X86TTIImpl::getIntImmCost(Imm, Ty);
3252 }
3253 
3254 int X86TTIImpl::getIntImmCostIntrin(Intrinsic::ID IID, unsigned Idx,
3255                                     const APInt &Imm, Type *Ty) {
3256   assert(Ty->isIntegerTy());
3257 
3258   unsigned BitSize = Ty->getPrimitiveSizeInBits();
3259   // There is no cost model for constants with a bit size of 0. Return TCC_Free
3260   // here, so that constant hoisting will ignore this constant.
3261   if (BitSize == 0)
3262     return TTI::TCC_Free;
3263 
3264   switch (IID) {
3265   default:
3266     return TTI::TCC_Free;
3267   case Intrinsic::sadd_with_overflow:
3268   case Intrinsic::uadd_with_overflow:
3269   case Intrinsic::ssub_with_overflow:
3270   case Intrinsic::usub_with_overflow:
3271   case Intrinsic::smul_with_overflow:
3272   case Intrinsic::umul_with_overflow:
3273     if ((Idx == 1) && Imm.getBitWidth() <= 64 && isInt<32>(Imm.getSExtValue()))
3274       return TTI::TCC_Free;
3275     break;
3276   case Intrinsic::experimental_stackmap:
3277     if ((Idx < 2) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue())))
3278       return TTI::TCC_Free;
3279     break;
3280   case Intrinsic::experimental_patchpoint_void:
3281   case Intrinsic::experimental_patchpoint_i64:
3282     if ((Idx < 4) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue())))
3283       return TTI::TCC_Free;
3284     break;
3285   }
3286   return X86TTIImpl::getIntImmCost(Imm, Ty);
3287 }
3288 
3289 unsigned X86TTIImpl::getUserCost(const User *U,
3290                                  ArrayRef<const Value *> Operands) {
3291   if (isa<StoreInst>(U)) {
3292     Value *Ptr = U->getOperand(1);
3293     // Store instruction with index and scale costs 2 Uops.
3294     // Check the preceding GEP to identify non-const indices.
3295     if (auto GEP = dyn_cast<GetElementPtrInst>(Ptr)) {
3296       if (!all_of(GEP->indices(), [](Value *V) { return isa<Constant>(V); }))
3297         return TTI::TCC_Basic * 2;
3298     }
3299     return TTI::TCC_Basic;
3300   }
3301   return BaseT::getUserCost(U, Operands);
3302 }
3303 
3304 // Return an average cost of Gather / Scatter instruction, maybe improved later
3305 int X86TTIImpl::getGSVectorCost(unsigned Opcode, Type *SrcVTy, Value *Ptr,
3306                                 unsigned Alignment, unsigned AddressSpace) {
3307 
3308   assert(isa<VectorType>(SrcVTy) && "Unexpected type in getGSVectorCost");
3309   unsigned VF = SrcVTy->getVectorNumElements();
3310 
3311   // Try to reduce index size from 64 bit (default for GEP)
3312   // to 32. It is essential for VF 16. If the index can't be reduced to 32, the
3313   // operation will use 16 x 64 indices which do not fit in a zmm and needs
3314   // to split. Also check that the base pointer is the same for all lanes,
3315   // and that there's at most one variable index.
3316   auto getIndexSizeInBits = [](Value *Ptr, const DataLayout& DL) {
3317     unsigned IndexSize = DL.getPointerSizeInBits();
3318     GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr);
3319     if (IndexSize < 64 || !GEP)
3320       return IndexSize;
3321 
3322     unsigned NumOfVarIndices = 0;
3323     Value *Ptrs = GEP->getPointerOperand();
3324     if (Ptrs->getType()->isVectorTy() && !getSplatValue(Ptrs))
3325       return IndexSize;
3326     for (unsigned i = 1; i < GEP->getNumOperands(); ++i) {
3327       if (isa<Constant>(GEP->getOperand(i)))
3328         continue;
3329       Type *IndxTy = GEP->getOperand(i)->getType();
3330       if (IndxTy->isVectorTy())
3331         IndxTy = IndxTy->getVectorElementType();
3332       if ((IndxTy->getPrimitiveSizeInBits() == 64 &&
3333           !isa<SExtInst>(GEP->getOperand(i))) ||
3334          ++NumOfVarIndices > 1)
3335         return IndexSize; // 64
3336     }
3337     return (unsigned)32;
3338   };
3339 
3340 
3341   // Trying to reduce IndexSize to 32 bits for vector 16.
3342   // By default the IndexSize is equal to pointer size.
3343   unsigned IndexSize = (ST->hasAVX512() && VF >= 16)
3344                            ? getIndexSizeInBits(Ptr, DL)
3345                            : DL.getPointerSizeInBits();
3346 
3347   Type *IndexVTy = VectorType::get(IntegerType::get(SrcVTy->getContext(),
3348                                                     IndexSize), VF);
3349   std::pair<int, MVT> IdxsLT = TLI->getTypeLegalizationCost(DL, IndexVTy);
3350   std::pair<int, MVT> SrcLT = TLI->getTypeLegalizationCost(DL, SrcVTy);
3351   int SplitFactor = std::max(IdxsLT.first, SrcLT.first);
3352   if (SplitFactor > 1) {
3353     // Handle splitting of vector of pointers
3354     Type *SplitSrcTy = VectorType::get(SrcVTy->getScalarType(), VF / SplitFactor);
3355     return SplitFactor * getGSVectorCost(Opcode, SplitSrcTy, Ptr, Alignment,
3356                                          AddressSpace);
3357   }
3358 
3359   // The gather / scatter cost is given by Intel architects. It is a rough
3360   // number since we are looking at one instruction in a time.
3361   const int GSOverhead = (Opcode == Instruction::Load)
3362                              ? ST->getGatherOverhead()
3363                              : ST->getScatterOverhead();
3364   return GSOverhead + VF * getMemoryOpCost(Opcode, SrcVTy->getScalarType(),
3365                                            MaybeAlign(Alignment), AddressSpace);
3366 }
3367 
3368 /// Return the cost of full scalarization of gather / scatter operation.
3369 ///
3370 /// Opcode - Load or Store instruction.
3371 /// SrcVTy - The type of the data vector that should be gathered or scattered.
3372 /// VariableMask - The mask is non-constant at compile time.
3373 /// Alignment - Alignment for one element.
3374 /// AddressSpace - pointer[s] address space.
3375 ///
3376 int X86TTIImpl::getGSScalarCost(unsigned Opcode, Type *SrcVTy,
3377                                 bool VariableMask, unsigned Alignment,
3378                                 unsigned AddressSpace) {
3379   unsigned VF = SrcVTy->getVectorNumElements();
3380 
3381   int MaskUnpackCost = 0;
3382   if (VariableMask) {
3383     VectorType *MaskTy =
3384       VectorType::get(Type::getInt1Ty(SrcVTy->getContext()), VF);
3385     MaskUnpackCost = getScalarizationOverhead(MaskTy, false, true);
3386     int ScalarCompareCost =
3387       getCmpSelInstrCost(Instruction::ICmp, Type::getInt1Ty(SrcVTy->getContext()),
3388                          nullptr);
3389     int BranchCost = getCFInstrCost(Instruction::Br);
3390     MaskUnpackCost += VF * (BranchCost + ScalarCompareCost);
3391   }
3392 
3393   // The cost of the scalar loads/stores.
3394   int MemoryOpCost = VF * getMemoryOpCost(Opcode, SrcVTy->getScalarType(),
3395                                           MaybeAlign(Alignment), AddressSpace);
3396 
3397   int InsertExtractCost = 0;
3398   if (Opcode == Instruction::Load)
3399     for (unsigned i = 0; i < VF; ++i)
3400       // Add the cost of inserting each scalar load into the vector
3401       InsertExtractCost +=
3402         getVectorInstrCost(Instruction::InsertElement, SrcVTy, i);
3403   else
3404     for (unsigned i = 0; i < VF; ++i)
3405       // Add the cost of extracting each element out of the data vector
3406       InsertExtractCost +=
3407         getVectorInstrCost(Instruction::ExtractElement, SrcVTy, i);
3408 
3409   return MemoryOpCost + MaskUnpackCost + InsertExtractCost;
3410 }
3411 
3412 /// Calculate the cost of Gather / Scatter operation
3413 int X86TTIImpl::getGatherScatterOpCost(unsigned Opcode, Type *SrcVTy,
3414                                        Value *Ptr, bool VariableMask,
3415                                        unsigned Alignment,
3416                                        const Instruction *I = nullptr) {
3417   assert(SrcVTy->isVectorTy() && "Unexpected data type for Gather/Scatter");
3418   unsigned VF = SrcVTy->getVectorNumElements();
3419   PointerType *PtrTy = dyn_cast<PointerType>(Ptr->getType());
3420   if (!PtrTy && Ptr->getType()->isVectorTy())
3421     PtrTy = dyn_cast<PointerType>(Ptr->getType()->getVectorElementType());
3422   assert(PtrTy && "Unexpected type for Ptr argument");
3423   unsigned AddressSpace = PtrTy->getAddressSpace();
3424 
3425   bool Scalarize = false;
3426   if ((Opcode == Instruction::Load &&
3427        !isLegalMaskedGather(SrcVTy, MaybeAlign(Alignment))) ||
3428       (Opcode == Instruction::Store &&
3429        !isLegalMaskedScatter(SrcVTy, MaybeAlign(Alignment))))
3430     Scalarize = true;
3431   // Gather / Scatter for vector 2 is not profitable on KNL / SKX
3432   // Vector-4 of gather/scatter instruction does not exist on KNL.
3433   // We can extend it to 8 elements, but zeroing upper bits of
3434   // the mask vector will add more instructions. Right now we give the scalar
3435   // cost of vector-4 for KNL. TODO: Check, maybe the gather/scatter instruction
3436   // is better in the VariableMask case.
3437   if (ST->hasAVX512() && (VF == 2 || (VF == 4 && !ST->hasVLX())))
3438     Scalarize = true;
3439 
3440   if (Scalarize)
3441     return getGSScalarCost(Opcode, SrcVTy, VariableMask, Alignment,
3442                            AddressSpace);
3443 
3444   return getGSVectorCost(Opcode, SrcVTy, Ptr, Alignment, AddressSpace);
3445 }
3446 
3447 bool X86TTIImpl::isLSRCostLess(TargetTransformInfo::LSRCost &C1,
3448                                TargetTransformInfo::LSRCost &C2) {
3449     // X86 specific here are "instruction number 1st priority".
3450     return std::tie(C1.Insns, C1.NumRegs, C1.AddRecCost,
3451                     C1.NumIVMuls, C1.NumBaseAdds,
3452                     C1.ScaleCost, C1.ImmCost, C1.SetupCost) <
3453            std::tie(C2.Insns, C2.NumRegs, C2.AddRecCost,
3454                     C2.NumIVMuls, C2.NumBaseAdds,
3455                     C2.ScaleCost, C2.ImmCost, C2.SetupCost);
3456 }
3457 
3458 bool X86TTIImpl::canMacroFuseCmp() {
3459   return ST->hasMacroFusion() || ST->hasBranchFusion();
3460 }
3461 
3462 bool X86TTIImpl::isLegalMaskedLoad(Type *DataTy, MaybeAlign Alignment) {
3463   if (!ST->hasAVX())
3464     return false;
3465 
3466   // The backend can't handle a single element vector.
3467   if (isa<VectorType>(DataTy) && DataTy->getVectorNumElements() == 1)
3468     return false;
3469   Type *ScalarTy = DataTy->getScalarType();
3470 
3471   if (ScalarTy->isPointerTy())
3472     return true;
3473 
3474   if (ScalarTy->isFloatTy() || ScalarTy->isDoubleTy())
3475     return true;
3476 
3477   if (!ScalarTy->isIntegerTy())
3478     return false;
3479 
3480   unsigned IntWidth = ScalarTy->getIntegerBitWidth();
3481   return IntWidth == 32 || IntWidth == 64 ||
3482          ((IntWidth == 8 || IntWidth == 16) && ST->hasBWI());
3483 }
3484 
3485 bool X86TTIImpl::isLegalMaskedStore(Type *DataType, MaybeAlign Alignment) {
3486   return isLegalMaskedLoad(DataType, Alignment);
3487 }
3488 
3489 bool X86TTIImpl::isLegalNTLoad(Type *DataType, Align Alignment) {
3490   unsigned DataSize = DL.getTypeStoreSize(DataType);
3491   // The only supported nontemporal loads are for aligned vectors of 16 or 32
3492   // bytes.  Note that 32-byte nontemporal vector loads are supported by AVX2
3493   // (the equivalent stores only require AVX).
3494   if (Alignment >= DataSize && (DataSize == 16 || DataSize == 32))
3495     return DataSize == 16 ?  ST->hasSSE1() : ST->hasAVX2();
3496 
3497   return false;
3498 }
3499 
3500 bool X86TTIImpl::isLegalNTStore(Type *DataType, Align Alignment) {
3501   unsigned DataSize = DL.getTypeStoreSize(DataType);
3502 
3503   // SSE4A supports nontemporal stores of float and double at arbitrary
3504   // alignment.
3505   if (ST->hasSSE4A() && (DataType->isFloatTy() || DataType->isDoubleTy()))
3506     return true;
3507 
3508   // Besides the SSE4A subtarget exception above, only aligned stores are
3509   // available nontemporaly on any other subtarget.  And only stores with a size
3510   // of 4..32 bytes (powers of 2, only) are permitted.
3511   if (Alignment < DataSize || DataSize < 4 || DataSize > 32 ||
3512       !isPowerOf2_32(DataSize))
3513     return false;
3514 
3515   // 32-byte vector nontemporal stores are supported by AVX (the equivalent
3516   // loads require AVX2).
3517   if (DataSize == 32)
3518     return ST->hasAVX();
3519   else if (DataSize == 16)
3520     return ST->hasSSE1();
3521   return true;
3522 }
3523 
3524 bool X86TTIImpl::isLegalMaskedExpandLoad(Type *DataTy) {
3525   if (!isa<VectorType>(DataTy))
3526     return false;
3527 
3528   if (!ST->hasAVX512())
3529     return false;
3530 
3531   // The backend can't handle a single element vector.
3532   if (DataTy->getVectorNumElements() == 1)
3533     return false;
3534 
3535   Type *ScalarTy = DataTy->getVectorElementType();
3536 
3537   if (ScalarTy->isFloatTy() || ScalarTy->isDoubleTy())
3538     return true;
3539 
3540   if (!ScalarTy->isIntegerTy())
3541     return false;
3542 
3543   unsigned IntWidth = ScalarTy->getIntegerBitWidth();
3544   return IntWidth == 32 || IntWidth == 64 ||
3545          ((IntWidth == 8 || IntWidth == 16) && ST->hasVBMI2());
3546 }
3547 
3548 bool X86TTIImpl::isLegalMaskedCompressStore(Type *DataTy) {
3549   return isLegalMaskedExpandLoad(DataTy);
3550 }
3551 
3552 bool X86TTIImpl::isLegalMaskedGather(Type *DataTy, MaybeAlign Alignment) {
3553   // Some CPUs have better gather performance than others.
3554   // TODO: Remove the explicit ST->hasAVX512()?, That would mean we would only
3555   // enable gather with a -march.
3556   if (!(ST->hasAVX512() || (ST->hasFastGather() && ST->hasAVX2())))
3557     return false;
3558 
3559   // This function is called now in two cases: from the Loop Vectorizer
3560   // and from the Scalarizer.
3561   // When the Loop Vectorizer asks about legality of the feature,
3562   // the vectorization factor is not calculated yet. The Loop Vectorizer
3563   // sends a scalar type and the decision is based on the width of the
3564   // scalar element.
3565   // Later on, the cost model will estimate usage this intrinsic based on
3566   // the vector type.
3567   // The Scalarizer asks again about legality. It sends a vector type.
3568   // In this case we can reject non-power-of-2 vectors.
3569   // We also reject single element vectors as the type legalizer can't
3570   // scalarize it.
3571   if (isa<VectorType>(DataTy)) {
3572     unsigned NumElts = DataTy->getVectorNumElements();
3573     if (NumElts == 1 || !isPowerOf2_32(NumElts))
3574       return false;
3575   }
3576   Type *ScalarTy = DataTy->getScalarType();
3577   if (ScalarTy->isPointerTy())
3578     return true;
3579 
3580   if (ScalarTy->isFloatTy() || ScalarTy->isDoubleTy())
3581     return true;
3582 
3583   if (!ScalarTy->isIntegerTy())
3584     return false;
3585 
3586   unsigned IntWidth = ScalarTy->getIntegerBitWidth();
3587   return IntWidth == 32 || IntWidth == 64;
3588 }
3589 
3590 bool X86TTIImpl::isLegalMaskedScatter(Type *DataType, MaybeAlign Alignment) {
3591   // AVX2 doesn't support scatter
3592   if (!ST->hasAVX512())
3593     return false;
3594   return isLegalMaskedGather(DataType, Alignment);
3595 }
3596 
3597 bool X86TTIImpl::hasDivRemOp(Type *DataType, bool IsSigned) {
3598   EVT VT = TLI->getValueType(DL, DataType);
3599   return TLI->isOperationLegal(IsSigned ? ISD::SDIVREM : ISD::UDIVREM, VT);
3600 }
3601 
3602 bool X86TTIImpl::isFCmpOrdCheaperThanFCmpZero(Type *Ty) {
3603   return false;
3604 }
3605 
3606 bool X86TTIImpl::areInlineCompatible(const Function *Caller,
3607                                      const Function *Callee) const {
3608   const TargetMachine &TM = getTLI()->getTargetMachine();
3609 
3610   // Work this as a subsetting of subtarget features.
3611   const FeatureBitset &CallerBits =
3612       TM.getSubtargetImpl(*Caller)->getFeatureBits();
3613   const FeatureBitset &CalleeBits =
3614       TM.getSubtargetImpl(*Callee)->getFeatureBits();
3615 
3616   FeatureBitset RealCallerBits = CallerBits & ~InlineFeatureIgnoreList;
3617   FeatureBitset RealCalleeBits = CalleeBits & ~InlineFeatureIgnoreList;
3618   return (RealCallerBits & RealCalleeBits) == RealCalleeBits;
3619 }
3620 
3621 bool X86TTIImpl::areFunctionArgsABICompatible(
3622     const Function *Caller, const Function *Callee,
3623     SmallPtrSetImpl<Argument *> &Args) const {
3624   if (!BaseT::areFunctionArgsABICompatible(Caller, Callee, Args))
3625     return false;
3626 
3627   // If we get here, we know the target features match. If one function
3628   // considers 512-bit vectors legal and the other does not, consider them
3629   // incompatible.
3630   // FIXME Look at the arguments and only consider 512 bit or larger vectors?
3631   const TargetMachine &TM = getTLI()->getTargetMachine();
3632 
3633   return TM.getSubtarget<X86Subtarget>(*Caller).useAVX512Regs() ==
3634          TM.getSubtarget<X86Subtarget>(*Callee).useAVX512Regs();
3635 }
3636 
3637 X86TTIImpl::TTI::MemCmpExpansionOptions
3638 X86TTIImpl::enableMemCmpExpansion(bool OptSize, bool IsZeroCmp) const {
3639   TTI::MemCmpExpansionOptions Options;
3640   Options.MaxNumLoads = TLI->getMaxExpandSizeMemcmp(OptSize);
3641   Options.NumLoadsPerBlock = 2;
3642   if (IsZeroCmp) {
3643     // Only enable vector loads for equality comparison. Right now the vector
3644     // version is not as fast for three way compare (see #33329).
3645     const unsigned PreferredWidth = ST->getPreferVectorWidth();
3646     if (PreferredWidth >= 512 && ST->hasAVX512()) Options.LoadSizes.push_back(64);
3647     if (PreferredWidth >= 256 && ST->hasAVX()) Options.LoadSizes.push_back(32);
3648     if (PreferredWidth >= 128 && ST->hasSSE2()) Options.LoadSizes.push_back(16);
3649     // All GPR and vector loads can be unaligned.
3650     Options.AllowOverlappingLoads = true;
3651   }
3652   if (ST->is64Bit()) {
3653     Options.LoadSizes.push_back(8);
3654   }
3655   Options.LoadSizes.push_back(4);
3656   Options.LoadSizes.push_back(2);
3657   Options.LoadSizes.push_back(1);
3658   return Options;
3659 }
3660 
3661 bool X86TTIImpl::enableInterleavedAccessVectorization() {
3662   // TODO: We expect this to be beneficial regardless of arch,
3663   // but there are currently some unexplained performance artifacts on Atom.
3664   // As a temporary solution, disable on Atom.
3665   return !(ST->isAtom());
3666 }
3667 
3668 // Get estimation for interleaved load/store operations for AVX2.
3669 // \p Factor is the interleaved-access factor (stride) - number of
3670 // (interleaved) elements in the group.
3671 // \p Indices contains the indices for a strided load: when the
3672 // interleaved load has gaps they indicate which elements are used.
3673 // If Indices is empty (or if the number of indices is equal to the size
3674 // of the interleaved-access as given in \p Factor) the access has no gaps.
3675 //
3676 // As opposed to AVX-512, AVX2 does not have generic shuffles that allow
3677 // computing the cost using a generic formula as a function of generic
3678 // shuffles. We therefore use a lookup table instead, filled according to
3679 // the instruction sequences that codegen currently generates.
3680 int X86TTIImpl::getInterleavedMemoryOpCostAVX2(unsigned Opcode, Type *VecTy,
3681                                                unsigned Factor,
3682                                                ArrayRef<unsigned> Indices,
3683                                                unsigned Alignment,
3684                                                unsigned AddressSpace,
3685                                                bool UseMaskForCond,
3686                                                bool UseMaskForGaps) {
3687 
3688   if (UseMaskForCond || UseMaskForGaps)
3689     return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices,
3690                                              Alignment, AddressSpace,
3691                                              UseMaskForCond, UseMaskForGaps);
3692 
3693   // We currently Support only fully-interleaved groups, with no gaps.
3694   // TODO: Support also strided loads (interleaved-groups with gaps).
3695   if (Indices.size() && Indices.size() != Factor)
3696     return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices,
3697                                              Alignment, AddressSpace);
3698 
3699   // VecTy for interleave memop is <VF*Factor x Elt>.
3700   // So, for VF=4, Interleave Factor = 3, Element type = i32 we have
3701   // VecTy = <12 x i32>.
3702   MVT LegalVT = getTLI()->getTypeLegalizationCost(DL, VecTy).second;
3703 
3704   // This function can be called with VecTy=<6xi128>, Factor=3, in which case
3705   // the VF=2, while v2i128 is an unsupported MVT vector type
3706   // (see MachineValueType.h::getVectorVT()).
3707   if (!LegalVT.isVector())
3708     return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices,
3709                                              Alignment, AddressSpace);
3710 
3711   unsigned VF = VecTy->getVectorNumElements() / Factor;
3712   Type *ScalarTy = VecTy->getVectorElementType();
3713 
3714   // Calculate the number of memory operations (NumOfMemOps), required
3715   // for load/store the VecTy.
3716   unsigned VecTySize = DL.getTypeStoreSize(VecTy);
3717   unsigned LegalVTSize = LegalVT.getStoreSize();
3718   unsigned NumOfMemOps = (VecTySize + LegalVTSize - 1) / LegalVTSize;
3719 
3720   // Get the cost of one memory operation.
3721   Type *SingleMemOpTy = VectorType::get(VecTy->getVectorElementType(),
3722                                         LegalVT.getVectorNumElements());
3723   unsigned MemOpCost = getMemoryOpCost(Opcode, SingleMemOpTy,
3724                                        MaybeAlign(Alignment), AddressSpace);
3725 
3726   VectorType *VT = VectorType::get(ScalarTy, VF);
3727   EVT ETy = TLI->getValueType(DL, VT);
3728   if (!ETy.isSimple())
3729     return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices,
3730                                              Alignment, AddressSpace);
3731 
3732   // TODO: Complete for other data-types and strides.
3733   // Each combination of Stride, ElementTy and VF results in a different
3734   // sequence; The cost tables are therefore accessed with:
3735   // Factor (stride) and VectorType=VFxElemType.
3736   // The Cost accounts only for the shuffle sequence;
3737   // The cost of the loads/stores is accounted for separately.
3738   //
3739   static const CostTblEntry AVX2InterleavedLoadTbl[] = {
3740     { 2, MVT::v4i64, 6 }, //(load 8i64 and) deinterleave into 2 x 4i64
3741     { 2, MVT::v4f64, 6 }, //(load 8f64 and) deinterleave into 2 x 4f64
3742 
3743     { 3, MVT::v2i8,  10 }, //(load 6i8 and)  deinterleave into 3 x 2i8
3744     { 3, MVT::v4i8,  4 },  //(load 12i8 and) deinterleave into 3 x 4i8
3745     { 3, MVT::v8i8,  9 },  //(load 24i8 and) deinterleave into 3 x 8i8
3746     { 3, MVT::v16i8, 11},  //(load 48i8 and) deinterleave into 3 x 16i8
3747     { 3, MVT::v32i8, 13},  //(load 96i8 and) deinterleave into 3 x 32i8
3748     { 3, MVT::v8f32, 17 }, //(load 24f32 and)deinterleave into 3 x 8f32
3749 
3750     { 4, MVT::v2i8,  12 }, //(load 8i8 and)   deinterleave into 4 x 2i8
3751     { 4, MVT::v4i8,  4 },  //(load 16i8 and)  deinterleave into 4 x 4i8
3752     { 4, MVT::v8i8,  20 }, //(load 32i8 and)  deinterleave into 4 x 8i8
3753     { 4, MVT::v16i8, 39 }, //(load 64i8 and)  deinterleave into 4 x 16i8
3754     { 4, MVT::v32i8, 80 }, //(load 128i8 and) deinterleave into 4 x 32i8
3755 
3756     { 8, MVT::v8f32, 40 }  //(load 64f32 and)deinterleave into 8 x 8f32
3757   };
3758 
3759   static const CostTblEntry AVX2InterleavedStoreTbl[] = {
3760     { 2, MVT::v4i64, 6 }, //interleave into 2 x 4i64 into 8i64 (and store)
3761     { 2, MVT::v4f64, 6 }, //interleave into 2 x 4f64 into 8f64 (and store)
3762 
3763     { 3, MVT::v2i8,  7 },  //interleave 3 x 2i8  into 6i8 (and store)
3764     { 3, MVT::v4i8,  8 },  //interleave 3 x 4i8  into 12i8 (and store)
3765     { 3, MVT::v8i8,  11 }, //interleave 3 x 8i8  into 24i8 (and store)
3766     { 3, MVT::v16i8, 11 }, //interleave 3 x 16i8 into 48i8 (and store)
3767     { 3, MVT::v32i8, 13 }, //interleave 3 x 32i8 into 96i8 (and store)
3768 
3769     { 4, MVT::v2i8,  12 }, //interleave 4 x 2i8  into 8i8 (and store)
3770     { 4, MVT::v4i8,  9 },  //interleave 4 x 4i8  into 16i8 (and store)
3771     { 4, MVT::v8i8,  10 }, //interleave 4 x 8i8  into 32i8 (and store)
3772     { 4, MVT::v16i8, 10 }, //interleave 4 x 16i8 into 64i8 (and store)
3773     { 4, MVT::v32i8, 12 }  //interleave 4 x 32i8 into 128i8 (and store)
3774   };
3775 
3776   if (Opcode == Instruction::Load) {
3777     if (const auto *Entry =
3778             CostTableLookup(AVX2InterleavedLoadTbl, Factor, ETy.getSimpleVT()))
3779       return NumOfMemOps * MemOpCost + Entry->Cost;
3780   } else {
3781     assert(Opcode == Instruction::Store &&
3782            "Expected Store Instruction at this  point");
3783     if (const auto *Entry =
3784             CostTableLookup(AVX2InterleavedStoreTbl, Factor, ETy.getSimpleVT()))
3785       return NumOfMemOps * MemOpCost + Entry->Cost;
3786   }
3787 
3788   return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices,
3789                                            Alignment, AddressSpace);
3790 }
3791 
3792 // Get estimation for interleaved load/store operations and strided load.
3793 // \p Indices contains indices for strided load.
3794 // \p Factor - the factor of interleaving.
3795 // AVX-512 provides 3-src shuffles that significantly reduces the cost.
3796 int X86TTIImpl::getInterleavedMemoryOpCostAVX512(unsigned Opcode, Type *VecTy,
3797                                                  unsigned Factor,
3798                                                  ArrayRef<unsigned> Indices,
3799                                                  unsigned Alignment,
3800                                                  unsigned AddressSpace,
3801                                                  bool UseMaskForCond,
3802                                                  bool UseMaskForGaps) {
3803 
3804   if (UseMaskForCond || UseMaskForGaps)
3805     return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices,
3806                                              Alignment, AddressSpace,
3807                                              UseMaskForCond, UseMaskForGaps);
3808 
3809   // VecTy for interleave memop is <VF*Factor x Elt>.
3810   // So, for VF=4, Interleave Factor = 3, Element type = i32 we have
3811   // VecTy = <12 x i32>.
3812 
3813   // Calculate the number of memory operations (NumOfMemOps), required
3814   // for load/store the VecTy.
3815   MVT LegalVT = getTLI()->getTypeLegalizationCost(DL, VecTy).second;
3816   unsigned VecTySize = DL.getTypeStoreSize(VecTy);
3817   unsigned LegalVTSize = LegalVT.getStoreSize();
3818   unsigned NumOfMemOps = (VecTySize + LegalVTSize - 1) / LegalVTSize;
3819 
3820   // Get the cost of one memory operation.
3821   Type *SingleMemOpTy = VectorType::get(VecTy->getVectorElementType(),
3822                                         LegalVT.getVectorNumElements());
3823   unsigned MemOpCost = getMemoryOpCost(Opcode, SingleMemOpTy,
3824                                        MaybeAlign(Alignment), AddressSpace);
3825 
3826   unsigned VF = VecTy->getVectorNumElements() / Factor;
3827   MVT VT = MVT::getVectorVT(MVT::getVT(VecTy->getScalarType()), VF);
3828 
3829   if (Opcode == Instruction::Load) {
3830     // The tables (AVX512InterleavedLoadTbl and AVX512InterleavedStoreTbl)
3831     // contain the cost of the optimized shuffle sequence that the
3832     // X86InterleavedAccess pass will generate.
3833     // The cost of loads and stores are computed separately from the table.
3834 
3835     // X86InterleavedAccess support only the following interleaved-access group.
3836     static const CostTblEntry AVX512InterleavedLoadTbl[] = {
3837         {3, MVT::v16i8, 12}, //(load 48i8 and) deinterleave into 3 x 16i8
3838         {3, MVT::v32i8, 14}, //(load 96i8 and) deinterleave into 3 x 32i8
3839         {3, MVT::v64i8, 22}, //(load 96i8 and) deinterleave into 3 x 32i8
3840     };
3841 
3842     if (const auto *Entry =
3843             CostTableLookup(AVX512InterleavedLoadTbl, Factor, VT))
3844       return NumOfMemOps * MemOpCost + Entry->Cost;
3845     //If an entry does not exist, fallback to the default implementation.
3846 
3847     // Kind of shuffle depends on number of loaded values.
3848     // If we load the entire data in one register, we can use a 1-src shuffle.
3849     // Otherwise, we'll merge 2 sources in each operation.
3850     TTI::ShuffleKind ShuffleKind =
3851         (NumOfMemOps > 1) ? TTI::SK_PermuteTwoSrc : TTI::SK_PermuteSingleSrc;
3852 
3853     unsigned ShuffleCost =
3854         getShuffleCost(ShuffleKind, SingleMemOpTy, 0, nullptr);
3855 
3856     unsigned NumOfLoadsInInterleaveGrp =
3857         Indices.size() ? Indices.size() : Factor;
3858     Type *ResultTy = VectorType::get(VecTy->getVectorElementType(),
3859                                      VecTy->getVectorNumElements() / Factor);
3860     unsigned NumOfResults =
3861         getTLI()->getTypeLegalizationCost(DL, ResultTy).first *
3862         NumOfLoadsInInterleaveGrp;
3863 
3864     // About a half of the loads may be folded in shuffles when we have only
3865     // one result. If we have more than one result, we do not fold loads at all.
3866     unsigned NumOfUnfoldedLoads =
3867         NumOfResults > 1 ? NumOfMemOps : NumOfMemOps / 2;
3868 
3869     // Get a number of shuffle operations per result.
3870     unsigned NumOfShufflesPerResult =
3871         std::max((unsigned)1, (unsigned)(NumOfMemOps - 1));
3872 
3873     // The SK_MergeTwoSrc shuffle clobbers one of src operands.
3874     // When we have more than one destination, we need additional instructions
3875     // to keep sources.
3876     unsigned NumOfMoves = 0;
3877     if (NumOfResults > 1 && ShuffleKind == TTI::SK_PermuteTwoSrc)
3878       NumOfMoves = NumOfResults * NumOfShufflesPerResult / 2;
3879 
3880     int Cost = NumOfResults * NumOfShufflesPerResult * ShuffleCost +
3881                NumOfUnfoldedLoads * MemOpCost + NumOfMoves;
3882 
3883     return Cost;
3884   }
3885 
3886   // Store.
3887   assert(Opcode == Instruction::Store &&
3888          "Expected Store Instruction at this  point");
3889   // X86InterleavedAccess support only the following interleaved-access group.
3890   static const CostTblEntry AVX512InterleavedStoreTbl[] = {
3891       {3, MVT::v16i8, 12}, // interleave 3 x 16i8 into 48i8 (and store)
3892       {3, MVT::v32i8, 14}, // interleave 3 x 32i8 into 96i8 (and store)
3893       {3, MVT::v64i8, 26}, // interleave 3 x 64i8 into 96i8 (and store)
3894 
3895       {4, MVT::v8i8, 10},  // interleave 4 x 8i8  into 32i8  (and store)
3896       {4, MVT::v16i8, 11}, // interleave 4 x 16i8 into 64i8  (and store)
3897       {4, MVT::v32i8, 14}, // interleave 4 x 32i8 into 128i8 (and store)
3898       {4, MVT::v64i8, 24}  // interleave 4 x 32i8 into 256i8 (and store)
3899   };
3900 
3901   if (const auto *Entry =
3902           CostTableLookup(AVX512InterleavedStoreTbl, Factor, VT))
3903     return NumOfMemOps * MemOpCost + Entry->Cost;
3904   //If an entry does not exist, fallback to the default implementation.
3905 
3906   // There is no strided stores meanwhile. And store can't be folded in
3907   // shuffle.
3908   unsigned NumOfSources = Factor; // The number of values to be merged.
3909   unsigned ShuffleCost =
3910       getShuffleCost(TTI::SK_PermuteTwoSrc, SingleMemOpTy, 0, nullptr);
3911   unsigned NumOfShufflesPerStore = NumOfSources - 1;
3912 
3913   // The SK_MergeTwoSrc shuffle clobbers one of src operands.
3914   // We need additional instructions to keep sources.
3915   unsigned NumOfMoves = NumOfMemOps * NumOfShufflesPerStore / 2;
3916   int Cost = NumOfMemOps * (MemOpCost + NumOfShufflesPerStore * ShuffleCost) +
3917              NumOfMoves;
3918   return Cost;
3919 }
3920 
3921 int X86TTIImpl::getInterleavedMemoryOpCost(unsigned Opcode, Type *VecTy,
3922                                            unsigned Factor,
3923                                            ArrayRef<unsigned> Indices,
3924                                            unsigned Alignment,
3925                                            unsigned AddressSpace,
3926                                            bool UseMaskForCond,
3927                                            bool UseMaskForGaps) {
3928   auto isSupportedOnAVX512 = [](Type *VecTy, bool HasBW) {
3929     Type *EltTy = VecTy->getVectorElementType();
3930     if (EltTy->isFloatTy() || EltTy->isDoubleTy() || EltTy->isIntegerTy(64) ||
3931         EltTy->isIntegerTy(32) || EltTy->isPointerTy())
3932       return true;
3933     if (EltTy->isIntegerTy(16) || EltTy->isIntegerTy(8))
3934       return HasBW;
3935     return false;
3936   };
3937   if (ST->hasAVX512() && isSupportedOnAVX512(VecTy, ST->hasBWI()))
3938     return getInterleavedMemoryOpCostAVX512(Opcode, VecTy, Factor, Indices,
3939                                             Alignment, AddressSpace,
3940                                             UseMaskForCond, UseMaskForGaps);
3941   if (ST->hasAVX2())
3942     return getInterleavedMemoryOpCostAVX2(Opcode, VecTy, Factor, Indices,
3943                                           Alignment, AddressSpace,
3944                                           UseMaskForCond, UseMaskForGaps);
3945 
3946   return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices,
3947                                            Alignment, AddressSpace,
3948                                            UseMaskForCond, UseMaskForGaps);
3949 }
3950