1 //===-- X86TargetTransformInfo.cpp - X86 specific TTI pass ----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 /// \file
9 /// This file implements a TargetTransformInfo analysis pass specific to the
10 /// X86 target machine. It uses the target's detailed information to provide
11 /// more precise answers to certain TTI queries, while letting the target
12 /// independent and default TTI implementations handle the rest.
13 ///
14 //===----------------------------------------------------------------------===//
15 /// About Cost Model numbers used below it's necessary to say the following:
16 /// the numbers correspond to some "generic" X86 CPU instead of usage of
17 /// concrete CPU model. Usually the numbers correspond to CPU where the feature
18 /// apeared at the first time. For example, if we do Subtarget.hasSSE42() in
19 /// the lookups below the cost is based on Nehalem as that was the first CPU
20 /// to support that feature level and thus has most likely the worst case cost.
21 /// Some examples of other technologies/CPUs:
22 ///   SSE 3   - Pentium4 / Athlon64
23 ///   SSE 4.1 - Penryn
24 ///   SSE 4.2 - Nehalem
25 ///   AVX     - Sandy Bridge
26 ///   AVX2    - Haswell
27 ///   AVX-512 - Xeon Phi / Skylake
28 /// And some examples of instruction target dependent costs (latency)
29 ///                   divss     sqrtss          rsqrtss
30 ///   AMD K7            11-16     19              3
31 ///   Piledriver        9-24      13-15           5
32 ///   Jaguar            14        16              2
33 ///   Pentium II,III    18        30              2
34 ///   Nehalem           7-14      7-18            3
35 ///   Haswell           10-13     11              5
36 /// TODO: Develop and implement  the target dependent cost model and
37 /// specialize cost numbers for different Cost Model Targets such as throughput,
38 /// code size, latency and uop count.
39 //===----------------------------------------------------------------------===//
40 
41 #include "X86TargetTransformInfo.h"
42 #include "llvm/Analysis/TargetTransformInfo.h"
43 #include "llvm/CodeGen/BasicTTIImpl.h"
44 #include "llvm/CodeGen/CostTable.h"
45 #include "llvm/CodeGen/TargetLowering.h"
46 #include "llvm/IR/IntrinsicInst.h"
47 #include "llvm/Support/Debug.h"
48 
49 using namespace llvm;
50 
51 #define DEBUG_TYPE "x86tti"
52 
53 //===----------------------------------------------------------------------===//
54 //
55 // X86 cost model.
56 //
57 //===----------------------------------------------------------------------===//
58 
59 TargetTransformInfo::PopcntSupportKind
60 X86TTIImpl::getPopcntSupport(unsigned TyWidth) {
61   assert(isPowerOf2_32(TyWidth) && "Ty width must be power of 2");
62   // TODO: Currently the __builtin_popcount() implementation using SSE3
63   //   instructions is inefficient. Once the problem is fixed, we should
64   //   call ST->hasSSE3() instead of ST->hasPOPCNT().
65   return ST->hasPOPCNT() ? TTI::PSK_FastHardware : TTI::PSK_Software;
66 }
67 
68 llvm::Optional<unsigned> X86TTIImpl::getCacheSize(
69   TargetTransformInfo::CacheLevel Level) const {
70   switch (Level) {
71   case TargetTransformInfo::CacheLevel::L1D:
72     //   - Penryn
73     //   - Nehalem
74     //   - Westmere
75     //   - Sandy Bridge
76     //   - Ivy Bridge
77     //   - Haswell
78     //   - Broadwell
79     //   - Skylake
80     //   - Kabylake
81     return 32 * 1024;  //  32 KByte
82   case TargetTransformInfo::CacheLevel::L2D:
83     //   - Penryn
84     //   - Nehalem
85     //   - Westmere
86     //   - Sandy Bridge
87     //   - Ivy Bridge
88     //   - Haswell
89     //   - Broadwell
90     //   - Skylake
91     //   - Kabylake
92     return 256 * 1024; // 256 KByte
93   }
94 
95   llvm_unreachable("Unknown TargetTransformInfo::CacheLevel");
96 }
97 
98 llvm::Optional<unsigned> X86TTIImpl::getCacheAssociativity(
99   TargetTransformInfo::CacheLevel Level) const {
100   //   - Penryn
101   //   - Nehalem
102   //   - Westmere
103   //   - Sandy Bridge
104   //   - Ivy Bridge
105   //   - Haswell
106   //   - Broadwell
107   //   - Skylake
108   //   - Kabylake
109   switch (Level) {
110   case TargetTransformInfo::CacheLevel::L1D:
111     LLVM_FALLTHROUGH;
112   case TargetTransformInfo::CacheLevel::L2D:
113     return 8;
114   }
115 
116   llvm_unreachable("Unknown TargetTransformInfo::CacheLevel");
117 }
118 
119 unsigned X86TTIImpl::getNumberOfRegisters(unsigned ClassID) const {
120   bool Vector = (ClassID == 1);
121   if (Vector && !ST->hasSSE1())
122     return 0;
123 
124   if (ST->is64Bit()) {
125     if (Vector && ST->hasAVX512())
126       return 32;
127     return 16;
128   }
129   return 8;
130 }
131 
132 unsigned X86TTIImpl::getRegisterBitWidth(bool Vector) const {
133   unsigned PreferVectorWidth = ST->getPreferVectorWidth();
134   if (Vector) {
135     if (ST->hasAVX512() && PreferVectorWidth >= 512)
136       return 512;
137     if (ST->hasAVX() && PreferVectorWidth >= 256)
138       return 256;
139     if (ST->hasSSE1() && PreferVectorWidth >= 128)
140       return 128;
141     return 0;
142   }
143 
144   if (ST->is64Bit())
145     return 64;
146 
147   return 32;
148 }
149 
150 unsigned X86TTIImpl::getLoadStoreVecRegBitWidth(unsigned) const {
151   return getRegisterBitWidth(true);
152 }
153 
154 unsigned X86TTIImpl::getMaxInterleaveFactor(unsigned VF) {
155   // If the loop will not be vectorized, don't interleave the loop.
156   // Let regular unroll to unroll the loop, which saves the overflow
157   // check and memory check cost.
158   if (VF == 1)
159     return 1;
160 
161   if (ST->isAtom())
162     return 1;
163 
164   // Sandybridge and Haswell have multiple execution ports and pipelined
165   // vector units.
166   if (ST->hasAVX())
167     return 4;
168 
169   return 2;
170 }
171 
172 int X86TTIImpl::getArithmeticInstrCost(unsigned Opcode, Type *Ty,
173                                        TTI::TargetCostKind CostKind,
174                                        TTI::OperandValueKind Op1Info,
175                                        TTI::OperandValueKind Op2Info,
176                                        TTI::OperandValueProperties Opd1PropInfo,
177                                        TTI::OperandValueProperties Opd2PropInfo,
178                                        ArrayRef<const Value *> Args,
179                                        const Instruction *CxtI) {
180   // TODO: Handle more cost kinds.
181   if (CostKind != TTI::TCK_RecipThroughput)
182     return BaseT::getArithmeticInstrCost(Opcode, Ty, CostKind, Op1Info,
183                                          Op2Info, Opd1PropInfo,
184                                          Opd2PropInfo, Args, CxtI);
185   // Legalize the type.
186   std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Ty);
187 
188   int ISD = TLI->InstructionOpcodeToISD(Opcode);
189   assert(ISD && "Invalid opcode");
190 
191   static const CostTblEntry GLMCostTable[] = {
192     { ISD::FDIV,  MVT::f32,   18 }, // divss
193     { ISD::FDIV,  MVT::v4f32, 35 }, // divps
194     { ISD::FDIV,  MVT::f64,   33 }, // divsd
195     { ISD::FDIV,  MVT::v2f64, 65 }, // divpd
196   };
197 
198   if (ST->useGLMDivSqrtCosts())
199     if (const auto *Entry = CostTableLookup(GLMCostTable, ISD,
200                                             LT.second))
201       return LT.first * Entry->Cost;
202 
203   static const CostTblEntry SLMCostTable[] = {
204     { ISD::MUL,   MVT::v4i32, 11 }, // pmulld
205     { ISD::MUL,   MVT::v8i16, 2  }, // pmullw
206     { ISD::MUL,   MVT::v16i8, 14 }, // extend/pmullw/trunc sequence.
207     { ISD::FMUL,  MVT::f64,   2  }, // mulsd
208     { ISD::FMUL,  MVT::v2f64, 4  }, // mulpd
209     { ISD::FMUL,  MVT::v4f32, 2  }, // mulps
210     { ISD::FDIV,  MVT::f32,   17 }, // divss
211     { ISD::FDIV,  MVT::v4f32, 39 }, // divps
212     { ISD::FDIV,  MVT::f64,   32 }, // divsd
213     { ISD::FDIV,  MVT::v2f64, 69 }, // divpd
214     { ISD::FADD,  MVT::v2f64, 2  }, // addpd
215     { ISD::FSUB,  MVT::v2f64, 2  }, // subpd
216     // v2i64/v4i64 mul is custom lowered as a series of long:
217     // multiplies(3), shifts(3) and adds(2)
218     // slm muldq version throughput is 2 and addq throughput 4
219     // thus: 3X2 (muldq throughput) + 3X1 (shift throughput) +
220     //       3X4 (addq throughput) = 17
221     { ISD::MUL,   MVT::v2i64, 17 },
222     // slm addq\subq throughput is 4
223     { ISD::ADD,   MVT::v2i64, 4  },
224     { ISD::SUB,   MVT::v2i64, 4  },
225   };
226 
227   if (ST->isSLM()) {
228     if (Args.size() == 2 && ISD == ISD::MUL && LT.second == MVT::v4i32) {
229       // Check if the operands can be shrinked into a smaller datatype.
230       bool Op1Signed = false;
231       unsigned Op1MinSize = BaseT::minRequiredElementSize(Args[0], Op1Signed);
232       bool Op2Signed = false;
233       unsigned Op2MinSize = BaseT::minRequiredElementSize(Args[1], Op2Signed);
234 
235       bool signedMode = Op1Signed | Op2Signed;
236       unsigned OpMinSize = std::max(Op1MinSize, Op2MinSize);
237 
238       if (OpMinSize <= 7)
239         return LT.first * 3; // pmullw/sext
240       if (!signedMode && OpMinSize <= 8)
241         return LT.first * 3; // pmullw/zext
242       if (OpMinSize <= 15)
243         return LT.first * 5; // pmullw/pmulhw/pshuf
244       if (!signedMode && OpMinSize <= 16)
245         return LT.first * 5; // pmullw/pmulhw/pshuf
246     }
247 
248     if (const auto *Entry = CostTableLookup(SLMCostTable, ISD,
249                                             LT.second)) {
250       return LT.first * Entry->Cost;
251     }
252   }
253 
254   if ((ISD == ISD::SDIV || ISD == ISD::SREM || ISD == ISD::UDIV ||
255        ISD == ISD::UREM) &&
256       (Op2Info == TargetTransformInfo::OK_UniformConstantValue ||
257        Op2Info == TargetTransformInfo::OK_NonUniformConstantValue) &&
258       Opd2PropInfo == TargetTransformInfo::OP_PowerOf2) {
259     if (ISD == ISD::SDIV || ISD == ISD::SREM) {
260       // On X86, vector signed division by constants power-of-two are
261       // normally expanded to the sequence SRA + SRL + ADD + SRA.
262       // The OperandValue properties may not be the same as that of the previous
263       // operation; conservatively assume OP_None.
264       int Cost =
265           2 * getArithmeticInstrCost(Instruction::AShr, Ty, CostKind, Op1Info,
266                                      Op2Info,
267                                      TargetTransformInfo::OP_None,
268                                      TargetTransformInfo::OP_None);
269       Cost += getArithmeticInstrCost(Instruction::LShr, Ty, CostKind, Op1Info,
270                                      Op2Info,
271                                      TargetTransformInfo::OP_None,
272                                      TargetTransformInfo::OP_None);
273       Cost += getArithmeticInstrCost(Instruction::Add, Ty, CostKind, Op1Info,
274                                      Op2Info,
275                                      TargetTransformInfo::OP_None,
276                                      TargetTransformInfo::OP_None);
277 
278       if (ISD == ISD::SREM) {
279         // For SREM: (X % C) is the equivalent of (X - (X/C)*C)
280         Cost += getArithmeticInstrCost(Instruction::Mul, Ty, CostKind, Op1Info,
281                                        Op2Info);
282         Cost += getArithmeticInstrCost(Instruction::Sub, Ty, CostKind, Op1Info,
283                                        Op2Info);
284       }
285 
286       return Cost;
287     }
288 
289     // Vector unsigned division/remainder will be simplified to shifts/masks.
290     if (ISD == ISD::UDIV)
291       return getArithmeticInstrCost(Instruction::LShr, Ty, CostKind,
292                                     Op1Info, Op2Info,
293                                     TargetTransformInfo::OP_None,
294                                     TargetTransformInfo::OP_None);
295 
296     else // UREM
297       return getArithmeticInstrCost(Instruction::And, Ty, CostKind,
298                                     Op1Info, Op2Info,
299                                     TargetTransformInfo::OP_None,
300                                     TargetTransformInfo::OP_None);
301   }
302 
303   static const CostTblEntry AVX512BWUniformConstCostTable[] = {
304     { ISD::SHL,  MVT::v64i8,   2 }, // psllw + pand.
305     { ISD::SRL,  MVT::v64i8,   2 }, // psrlw + pand.
306     { ISD::SRA,  MVT::v64i8,   4 }, // psrlw, pand, pxor, psubb.
307   };
308 
309   if (Op2Info == TargetTransformInfo::OK_UniformConstantValue &&
310       ST->hasBWI()) {
311     if (const auto *Entry = CostTableLookup(AVX512BWUniformConstCostTable, ISD,
312                                             LT.second))
313       return LT.first * Entry->Cost;
314   }
315 
316   static const CostTblEntry AVX512UniformConstCostTable[] = {
317     { ISD::SRA,  MVT::v2i64,   1 },
318     { ISD::SRA,  MVT::v4i64,   1 },
319     { ISD::SRA,  MVT::v8i64,   1 },
320 
321     { ISD::SHL,  MVT::v64i8,   4 }, // psllw + pand.
322     { ISD::SRL,  MVT::v64i8,   4 }, // psrlw + pand.
323     { ISD::SRA,  MVT::v64i8,   8 }, // psrlw, pand, pxor, psubb.
324 
325     { ISD::SDIV, MVT::v16i32,  6 }, // pmuludq sequence
326     { ISD::SREM, MVT::v16i32,  8 }, // pmuludq+mul+sub sequence
327     { ISD::UDIV, MVT::v16i32,  5 }, // pmuludq sequence
328     { ISD::UREM, MVT::v16i32,  7 }, // pmuludq+mul+sub sequence
329   };
330 
331   if (Op2Info == TargetTransformInfo::OK_UniformConstantValue &&
332       ST->hasAVX512()) {
333     if (const auto *Entry = CostTableLookup(AVX512UniformConstCostTable, ISD,
334                                             LT.second))
335       return LT.first * Entry->Cost;
336   }
337 
338   static const CostTblEntry AVX2UniformConstCostTable[] = {
339     { ISD::SHL,  MVT::v32i8,   2 }, // psllw + pand.
340     { ISD::SRL,  MVT::v32i8,   2 }, // psrlw + pand.
341     { ISD::SRA,  MVT::v32i8,   4 }, // psrlw, pand, pxor, psubb.
342 
343     { ISD::SRA,  MVT::v4i64,   4 }, // 2 x psrad + shuffle.
344 
345     { ISD::SDIV, MVT::v8i32,   6 }, // pmuludq sequence
346     { ISD::SREM, MVT::v8i32,   8 }, // pmuludq+mul+sub sequence
347     { ISD::UDIV, MVT::v8i32,   5 }, // pmuludq sequence
348     { ISD::UREM, MVT::v8i32,   7 }, // pmuludq+mul+sub sequence
349   };
350 
351   if (Op2Info == TargetTransformInfo::OK_UniformConstantValue &&
352       ST->hasAVX2()) {
353     if (const auto *Entry = CostTableLookup(AVX2UniformConstCostTable, ISD,
354                                             LT.second))
355       return LT.first * Entry->Cost;
356   }
357 
358   static const CostTblEntry SSE2UniformConstCostTable[] = {
359     { ISD::SHL,  MVT::v16i8,     2 }, // psllw + pand.
360     { ISD::SRL,  MVT::v16i8,     2 }, // psrlw + pand.
361     { ISD::SRA,  MVT::v16i8,     4 }, // psrlw, pand, pxor, psubb.
362 
363     { ISD::SHL,  MVT::v32i8,   4+2 }, // 2*(psllw + pand) + split.
364     { ISD::SRL,  MVT::v32i8,   4+2 }, // 2*(psrlw + pand) + split.
365     { ISD::SRA,  MVT::v32i8,   8+2 }, // 2*(psrlw, pand, pxor, psubb) + split.
366 
367     { ISD::SDIV, MVT::v8i32,  12+2 }, // 2*pmuludq sequence + split.
368     { ISD::SREM, MVT::v8i32,  16+2 }, // 2*pmuludq+mul+sub sequence + split.
369     { ISD::SDIV, MVT::v4i32,     6 }, // pmuludq sequence
370     { ISD::SREM, MVT::v4i32,     8 }, // pmuludq+mul+sub sequence
371     { ISD::UDIV, MVT::v8i32,  10+2 }, // 2*pmuludq sequence + split.
372     { ISD::UREM, MVT::v8i32,  14+2 }, // 2*pmuludq+mul+sub sequence + split.
373     { ISD::UDIV, MVT::v4i32,     5 }, // pmuludq sequence
374     { ISD::UREM, MVT::v4i32,     7 }, // pmuludq+mul+sub sequence
375   };
376 
377   // XOP has faster vXi8 shifts.
378   if (Op2Info == TargetTransformInfo::OK_UniformConstantValue &&
379       ST->hasSSE2() && !ST->hasXOP()) {
380     if (const auto *Entry =
381             CostTableLookup(SSE2UniformConstCostTable, ISD, LT.second))
382       return LT.first * Entry->Cost;
383   }
384 
385   static const CostTblEntry AVX512BWConstCostTable[] = {
386     { ISD::SDIV, MVT::v64i8,  14 }, // 2*ext+2*pmulhw sequence
387     { ISD::SREM, MVT::v64i8,  16 }, // 2*ext+2*pmulhw+mul+sub sequence
388     { ISD::UDIV, MVT::v64i8,  14 }, // 2*ext+2*pmulhw sequence
389     { ISD::UREM, MVT::v64i8,  16 }, // 2*ext+2*pmulhw+mul+sub sequence
390     { ISD::SDIV, MVT::v32i16,  6 }, // vpmulhw sequence
391     { ISD::SREM, MVT::v32i16,  8 }, // vpmulhw+mul+sub sequence
392     { ISD::UDIV, MVT::v32i16,  6 }, // vpmulhuw sequence
393     { ISD::UREM, MVT::v32i16,  8 }, // vpmulhuw+mul+sub sequence
394   };
395 
396   if ((Op2Info == TargetTransformInfo::OK_UniformConstantValue ||
397        Op2Info == TargetTransformInfo::OK_NonUniformConstantValue) &&
398       ST->hasBWI()) {
399     if (const auto *Entry =
400             CostTableLookup(AVX512BWConstCostTable, ISD, LT.second))
401       return LT.first * Entry->Cost;
402   }
403 
404   static const CostTblEntry AVX512ConstCostTable[] = {
405     { ISD::SDIV, MVT::v16i32, 15 }, // vpmuldq sequence
406     { ISD::SREM, MVT::v16i32, 17 }, // vpmuldq+mul+sub sequence
407     { ISD::UDIV, MVT::v16i32, 15 }, // vpmuludq sequence
408     { ISD::UREM, MVT::v16i32, 17 }, // vpmuludq+mul+sub sequence
409     { ISD::SDIV, MVT::v64i8,  28 }, // 4*ext+4*pmulhw sequence
410     { ISD::SREM, MVT::v64i8,  32 }, // 4*ext+4*pmulhw+mul+sub sequence
411     { ISD::UDIV, MVT::v64i8,  28 }, // 4*ext+4*pmulhw sequence
412     { ISD::UREM, MVT::v64i8,  32 }, // 4*ext+4*pmulhw+mul+sub sequence
413     { ISD::SDIV, MVT::v32i16, 12 }, // 2*vpmulhw sequence
414     { ISD::SREM, MVT::v32i16, 16 }, // 2*vpmulhw+mul+sub sequence
415     { ISD::UDIV, MVT::v32i16, 12 }, // 2*vpmulhuw sequence
416     { ISD::UREM, MVT::v32i16, 16 }, // 2*vpmulhuw+mul+sub sequence
417   };
418 
419   if ((Op2Info == TargetTransformInfo::OK_UniformConstantValue ||
420        Op2Info == TargetTransformInfo::OK_NonUniformConstantValue) &&
421       ST->hasAVX512()) {
422     if (const auto *Entry =
423             CostTableLookup(AVX512ConstCostTable, ISD, LT.second))
424       return LT.first * Entry->Cost;
425   }
426 
427   static const CostTblEntry AVX2ConstCostTable[] = {
428     { ISD::SDIV, MVT::v32i8,  14 }, // 2*ext+2*pmulhw sequence
429     { ISD::SREM, MVT::v32i8,  16 }, // 2*ext+2*pmulhw+mul+sub sequence
430     { ISD::UDIV, MVT::v32i8,  14 }, // 2*ext+2*pmulhw sequence
431     { ISD::UREM, MVT::v32i8,  16 }, // 2*ext+2*pmulhw+mul+sub sequence
432     { ISD::SDIV, MVT::v16i16,  6 }, // vpmulhw sequence
433     { ISD::SREM, MVT::v16i16,  8 }, // vpmulhw+mul+sub sequence
434     { ISD::UDIV, MVT::v16i16,  6 }, // vpmulhuw sequence
435     { ISD::UREM, MVT::v16i16,  8 }, // vpmulhuw+mul+sub sequence
436     { ISD::SDIV, MVT::v8i32,  15 }, // vpmuldq sequence
437     { ISD::SREM, MVT::v8i32,  19 }, // vpmuldq+mul+sub sequence
438     { ISD::UDIV, MVT::v8i32,  15 }, // vpmuludq sequence
439     { ISD::UREM, MVT::v8i32,  19 }, // vpmuludq+mul+sub sequence
440   };
441 
442   if ((Op2Info == TargetTransformInfo::OK_UniformConstantValue ||
443        Op2Info == TargetTransformInfo::OK_NonUniformConstantValue) &&
444       ST->hasAVX2()) {
445     if (const auto *Entry = CostTableLookup(AVX2ConstCostTable, ISD, LT.second))
446       return LT.first * Entry->Cost;
447   }
448 
449   static const CostTblEntry SSE2ConstCostTable[] = {
450     { ISD::SDIV, MVT::v32i8,  28+2 }, // 4*ext+4*pmulhw sequence + split.
451     { ISD::SREM, MVT::v32i8,  32+2 }, // 4*ext+4*pmulhw+mul+sub sequence + split.
452     { ISD::SDIV, MVT::v16i8,    14 }, // 2*ext+2*pmulhw sequence
453     { ISD::SREM, MVT::v16i8,    16 }, // 2*ext+2*pmulhw+mul+sub sequence
454     { ISD::UDIV, MVT::v32i8,  28+2 }, // 4*ext+4*pmulhw sequence + split.
455     { ISD::UREM, MVT::v32i8,  32+2 }, // 4*ext+4*pmulhw+mul+sub sequence + split.
456     { ISD::UDIV, MVT::v16i8,    14 }, // 2*ext+2*pmulhw sequence
457     { ISD::UREM, MVT::v16i8,    16 }, // 2*ext+2*pmulhw+mul+sub sequence
458     { ISD::SDIV, MVT::v16i16, 12+2 }, // 2*pmulhw sequence + split.
459     { ISD::SREM, MVT::v16i16, 16+2 }, // 2*pmulhw+mul+sub sequence + split.
460     { ISD::SDIV, MVT::v8i16,     6 }, // pmulhw sequence
461     { ISD::SREM, MVT::v8i16,     8 }, // pmulhw+mul+sub sequence
462     { ISD::UDIV, MVT::v16i16, 12+2 }, // 2*pmulhuw sequence + split.
463     { ISD::UREM, MVT::v16i16, 16+2 }, // 2*pmulhuw+mul+sub sequence + split.
464     { ISD::UDIV, MVT::v8i16,     6 }, // pmulhuw sequence
465     { ISD::UREM, MVT::v8i16,     8 }, // pmulhuw+mul+sub sequence
466     { ISD::SDIV, MVT::v8i32,  38+2 }, // 2*pmuludq sequence + split.
467     { ISD::SREM, MVT::v8i32,  48+2 }, // 2*pmuludq+mul+sub sequence + split.
468     { ISD::SDIV, MVT::v4i32,    19 }, // pmuludq sequence
469     { ISD::SREM, MVT::v4i32,    24 }, // pmuludq+mul+sub sequence
470     { ISD::UDIV, MVT::v8i32,  30+2 }, // 2*pmuludq sequence + split.
471     { ISD::UREM, MVT::v8i32,  40+2 }, // 2*pmuludq+mul+sub sequence + split.
472     { ISD::UDIV, MVT::v4i32,    15 }, // pmuludq sequence
473     { ISD::UREM, MVT::v4i32,    20 }, // pmuludq+mul+sub sequence
474   };
475 
476   if ((Op2Info == TargetTransformInfo::OK_UniformConstantValue ||
477        Op2Info == TargetTransformInfo::OK_NonUniformConstantValue) &&
478       ST->hasSSE2()) {
479     // pmuldq sequence.
480     if (ISD == ISD::SDIV && LT.second == MVT::v8i32 && ST->hasAVX())
481       return LT.first * 32;
482     if (ISD == ISD::SREM && LT.second == MVT::v8i32 && ST->hasAVX())
483       return LT.first * 38;
484     if (ISD == ISD::SDIV && LT.second == MVT::v4i32 && ST->hasSSE41())
485       return LT.first * 15;
486     if (ISD == ISD::SREM && LT.second == MVT::v4i32 && ST->hasSSE41())
487       return LT.first * 20;
488 
489     if (const auto *Entry = CostTableLookup(SSE2ConstCostTable, ISD, LT.second))
490       return LT.first * Entry->Cost;
491   }
492 
493   static const CostTblEntry AVX512BWShiftCostTable[] = {
494     { ISD::SHL,   MVT::v8i16,      1 }, // vpsllvw
495     { ISD::SRL,   MVT::v8i16,      1 }, // vpsrlvw
496     { ISD::SRA,   MVT::v8i16,      1 }, // vpsravw
497 
498     { ISD::SHL,   MVT::v16i16,     1 }, // vpsllvw
499     { ISD::SRL,   MVT::v16i16,     1 }, // vpsrlvw
500     { ISD::SRA,   MVT::v16i16,     1 }, // vpsravw
501 
502     { ISD::SHL,   MVT::v32i16,     1 }, // vpsllvw
503     { ISD::SRL,   MVT::v32i16,     1 }, // vpsrlvw
504     { ISD::SRA,   MVT::v32i16,     1 }, // vpsravw
505   };
506 
507   if (ST->hasBWI())
508     if (const auto *Entry = CostTableLookup(AVX512BWShiftCostTable, ISD, LT.second))
509       return LT.first * Entry->Cost;
510 
511   static const CostTblEntry AVX2UniformCostTable[] = {
512     // Uniform splats are cheaper for the following instructions.
513     { ISD::SHL,  MVT::v16i16, 1 }, // psllw.
514     { ISD::SRL,  MVT::v16i16, 1 }, // psrlw.
515     { ISD::SRA,  MVT::v16i16, 1 }, // psraw.
516     { ISD::SHL,  MVT::v32i16, 2 }, // 2*psllw.
517     { ISD::SRL,  MVT::v32i16, 2 }, // 2*psrlw.
518     { ISD::SRA,  MVT::v32i16, 2 }, // 2*psraw.
519   };
520 
521   if (ST->hasAVX2() &&
522       ((Op2Info == TargetTransformInfo::OK_UniformConstantValue) ||
523        (Op2Info == TargetTransformInfo::OK_UniformValue))) {
524     if (const auto *Entry =
525             CostTableLookup(AVX2UniformCostTable, ISD, LT.second))
526       return LT.first * Entry->Cost;
527   }
528 
529   static const CostTblEntry SSE2UniformCostTable[] = {
530     // Uniform splats are cheaper for the following instructions.
531     { ISD::SHL,  MVT::v8i16,  1 }, // psllw.
532     { ISD::SHL,  MVT::v4i32,  1 }, // pslld
533     { ISD::SHL,  MVT::v2i64,  1 }, // psllq.
534 
535     { ISD::SRL,  MVT::v8i16,  1 }, // psrlw.
536     { ISD::SRL,  MVT::v4i32,  1 }, // psrld.
537     { ISD::SRL,  MVT::v2i64,  1 }, // psrlq.
538 
539     { ISD::SRA,  MVT::v8i16,  1 }, // psraw.
540     { ISD::SRA,  MVT::v4i32,  1 }, // psrad.
541   };
542 
543   if (ST->hasSSE2() &&
544       ((Op2Info == TargetTransformInfo::OK_UniformConstantValue) ||
545        (Op2Info == TargetTransformInfo::OK_UniformValue))) {
546     if (const auto *Entry =
547             CostTableLookup(SSE2UniformCostTable, ISD, LT.second))
548       return LT.first * Entry->Cost;
549   }
550 
551   static const CostTblEntry AVX512DQCostTable[] = {
552     { ISD::MUL,  MVT::v2i64, 1 },
553     { ISD::MUL,  MVT::v4i64, 1 },
554     { ISD::MUL,  MVT::v8i64, 1 }
555   };
556 
557   // Look for AVX512DQ lowering tricks for custom cases.
558   if (ST->hasDQI())
559     if (const auto *Entry = CostTableLookup(AVX512DQCostTable, ISD, LT.second))
560       return LT.first * Entry->Cost;
561 
562   static const CostTblEntry AVX512BWCostTable[] = {
563     { ISD::SHL,   MVT::v64i8,     11 }, // vpblendvb sequence.
564     { ISD::SRL,   MVT::v64i8,     11 }, // vpblendvb sequence.
565     { ISD::SRA,   MVT::v64i8,     24 }, // vpblendvb sequence.
566 
567     { ISD::MUL,   MVT::v64i8,     11 }, // extend/pmullw/trunc sequence.
568     { ISD::MUL,   MVT::v32i8,      4 }, // extend/pmullw/trunc sequence.
569     { ISD::MUL,   MVT::v16i8,      4 }, // extend/pmullw/trunc sequence.
570   };
571 
572   // Look for AVX512BW lowering tricks for custom cases.
573   if (ST->hasBWI())
574     if (const auto *Entry = CostTableLookup(AVX512BWCostTable, ISD, LT.second))
575       return LT.first * Entry->Cost;
576 
577   static const CostTblEntry AVX512CostTable[] = {
578     { ISD::SHL,     MVT::v16i32,     1 },
579     { ISD::SRL,     MVT::v16i32,     1 },
580     { ISD::SRA,     MVT::v16i32,     1 },
581 
582     { ISD::SHL,     MVT::v8i64,      1 },
583     { ISD::SRL,     MVT::v8i64,      1 },
584 
585     { ISD::SRA,     MVT::v2i64,      1 },
586     { ISD::SRA,     MVT::v4i64,      1 },
587     { ISD::SRA,     MVT::v8i64,      1 },
588 
589     { ISD::MUL,     MVT::v64i8,     26 }, // extend/pmullw/trunc sequence.
590     { ISD::MUL,     MVT::v32i8,     13 }, // extend/pmullw/trunc sequence.
591     { ISD::MUL,     MVT::v16i8,      5 }, // extend/pmullw/trunc sequence.
592     { ISD::MUL,     MVT::v16i32,     1 }, // pmulld (Skylake from agner.org)
593     { ISD::MUL,     MVT::v8i32,      1 }, // pmulld (Skylake from agner.org)
594     { ISD::MUL,     MVT::v4i32,      1 }, // pmulld (Skylake from agner.org)
595     { ISD::MUL,     MVT::v8i64,      8 }, // 3*pmuludq/3*shift/2*add
596 
597     { ISD::FADD,    MVT::v8f64,      1 }, // Skylake from http://www.agner.org/
598     { ISD::FSUB,    MVT::v8f64,      1 }, // Skylake from http://www.agner.org/
599     { ISD::FMUL,    MVT::v8f64,      1 }, // Skylake from http://www.agner.org/
600 
601     { ISD::FADD,    MVT::v16f32,     1 }, // Skylake from http://www.agner.org/
602     { ISD::FSUB,    MVT::v16f32,     1 }, // Skylake from http://www.agner.org/
603     { ISD::FMUL,    MVT::v16f32,     1 }, // Skylake from http://www.agner.org/
604   };
605 
606   if (ST->hasAVX512())
607     if (const auto *Entry = CostTableLookup(AVX512CostTable, ISD, LT.second))
608       return LT.first * Entry->Cost;
609 
610   static const CostTblEntry AVX2ShiftCostTable[] = {
611     // Shifts on v4i64/v8i32 on AVX2 is legal even though we declare to
612     // customize them to detect the cases where shift amount is a scalar one.
613     { ISD::SHL,     MVT::v4i32,    1 },
614     { ISD::SRL,     MVT::v4i32,    1 },
615     { ISD::SRA,     MVT::v4i32,    1 },
616     { ISD::SHL,     MVT::v8i32,    1 },
617     { ISD::SRL,     MVT::v8i32,    1 },
618     { ISD::SRA,     MVT::v8i32,    1 },
619     { ISD::SHL,     MVT::v2i64,    1 },
620     { ISD::SRL,     MVT::v2i64,    1 },
621     { ISD::SHL,     MVT::v4i64,    1 },
622     { ISD::SRL,     MVT::v4i64,    1 },
623   };
624 
625   if (ST->hasAVX512()) {
626     if (ISD == ISD::SHL && LT.second == MVT::v32i16 &&
627         (Op2Info == TargetTransformInfo::OK_UniformConstantValue ||
628          Op2Info == TargetTransformInfo::OK_NonUniformConstantValue))
629       // On AVX512, a packed v32i16 shift left by a constant build_vector
630       // is lowered into a vector multiply (vpmullw).
631       return getArithmeticInstrCost(Instruction::Mul, Ty, CostKind,
632                                     Op1Info, Op2Info,
633                                     TargetTransformInfo::OP_None,
634                                     TargetTransformInfo::OP_None);
635   }
636 
637   // Look for AVX2 lowering tricks.
638   if (ST->hasAVX2()) {
639     if (ISD == ISD::SHL && LT.second == MVT::v16i16 &&
640         (Op2Info == TargetTransformInfo::OK_UniformConstantValue ||
641          Op2Info == TargetTransformInfo::OK_NonUniformConstantValue))
642       // On AVX2, a packed v16i16 shift left by a constant build_vector
643       // is lowered into a vector multiply (vpmullw).
644       return getArithmeticInstrCost(Instruction::Mul, Ty, CostKind,
645                                     Op1Info, Op2Info,
646                                     TargetTransformInfo::OP_None,
647                                     TargetTransformInfo::OP_None);
648 
649     if (const auto *Entry = CostTableLookup(AVX2ShiftCostTable, ISD, LT.second))
650       return LT.first * Entry->Cost;
651   }
652 
653   static const CostTblEntry XOPShiftCostTable[] = {
654     // 128bit shifts take 1cy, but right shifts require negation beforehand.
655     { ISD::SHL,     MVT::v16i8,    1 },
656     { ISD::SRL,     MVT::v16i8,    2 },
657     { ISD::SRA,     MVT::v16i8,    2 },
658     { ISD::SHL,     MVT::v8i16,    1 },
659     { ISD::SRL,     MVT::v8i16,    2 },
660     { ISD::SRA,     MVT::v8i16,    2 },
661     { ISD::SHL,     MVT::v4i32,    1 },
662     { ISD::SRL,     MVT::v4i32,    2 },
663     { ISD::SRA,     MVT::v4i32,    2 },
664     { ISD::SHL,     MVT::v2i64,    1 },
665     { ISD::SRL,     MVT::v2i64,    2 },
666     { ISD::SRA,     MVT::v2i64,    2 },
667     // 256bit shifts require splitting if AVX2 didn't catch them above.
668     { ISD::SHL,     MVT::v32i8,  2+2 },
669     { ISD::SRL,     MVT::v32i8,  4+2 },
670     { ISD::SRA,     MVT::v32i8,  4+2 },
671     { ISD::SHL,     MVT::v16i16, 2+2 },
672     { ISD::SRL,     MVT::v16i16, 4+2 },
673     { ISD::SRA,     MVT::v16i16, 4+2 },
674     { ISD::SHL,     MVT::v8i32,  2+2 },
675     { ISD::SRL,     MVT::v8i32,  4+2 },
676     { ISD::SRA,     MVT::v8i32,  4+2 },
677     { ISD::SHL,     MVT::v4i64,  2+2 },
678     { ISD::SRL,     MVT::v4i64,  4+2 },
679     { ISD::SRA,     MVT::v4i64,  4+2 },
680   };
681 
682   // Look for XOP lowering tricks.
683   if (ST->hasXOP()) {
684     // If the right shift is constant then we'll fold the negation so
685     // it's as cheap as a left shift.
686     int ShiftISD = ISD;
687     if ((ShiftISD == ISD::SRL || ShiftISD == ISD::SRA) &&
688         (Op2Info == TargetTransformInfo::OK_UniformConstantValue ||
689          Op2Info == TargetTransformInfo::OK_NonUniformConstantValue))
690       ShiftISD = ISD::SHL;
691     if (const auto *Entry =
692             CostTableLookup(XOPShiftCostTable, ShiftISD, LT.second))
693       return LT.first * Entry->Cost;
694   }
695 
696   static const CostTblEntry SSE2UniformShiftCostTable[] = {
697     // Uniform splats are cheaper for the following instructions.
698     { ISD::SHL,  MVT::v16i16, 2+2 }, // 2*psllw + split.
699     { ISD::SHL,  MVT::v8i32,  2+2 }, // 2*pslld + split.
700     { ISD::SHL,  MVT::v4i64,  2+2 }, // 2*psllq + split.
701 
702     { ISD::SRL,  MVT::v16i16, 2+2 }, // 2*psrlw + split.
703     { ISD::SRL,  MVT::v8i32,  2+2 }, // 2*psrld + split.
704     { ISD::SRL,  MVT::v4i64,  2+2 }, // 2*psrlq + split.
705 
706     { ISD::SRA,  MVT::v16i16, 2+2 }, // 2*psraw + split.
707     { ISD::SRA,  MVT::v8i32,  2+2 }, // 2*psrad + split.
708     { ISD::SRA,  MVT::v2i64,    4 }, // 2*psrad + shuffle.
709     { ISD::SRA,  MVT::v4i64,  8+2 }, // 2*(2*psrad + shuffle) + split.
710   };
711 
712   if (ST->hasSSE2() &&
713       ((Op2Info == TargetTransformInfo::OK_UniformConstantValue) ||
714        (Op2Info == TargetTransformInfo::OK_UniformValue))) {
715 
716     // Handle AVX2 uniform v4i64 ISD::SRA, it's not worth a table.
717     if (ISD == ISD::SRA && LT.second == MVT::v4i64 && ST->hasAVX2())
718       return LT.first * 4; // 2*psrad + shuffle.
719 
720     if (const auto *Entry =
721             CostTableLookup(SSE2UniformShiftCostTable, ISD, LT.second))
722       return LT.first * Entry->Cost;
723   }
724 
725   if (ISD == ISD::SHL &&
726       Op2Info == TargetTransformInfo::OK_NonUniformConstantValue) {
727     MVT VT = LT.second;
728     // Vector shift left by non uniform constant can be lowered
729     // into vector multiply.
730     if (((VT == MVT::v8i16 || VT == MVT::v4i32) && ST->hasSSE2()) ||
731         ((VT == MVT::v16i16 || VT == MVT::v8i32) && ST->hasAVX()))
732       ISD = ISD::MUL;
733   }
734 
735   static const CostTblEntry AVX2CostTable[] = {
736     { ISD::SHL,  MVT::v32i8,     11 }, // vpblendvb sequence.
737     { ISD::SHL,  MVT::v64i8,     22 }, // 2*vpblendvb sequence.
738     { ISD::SHL,  MVT::v16i16,    10 }, // extend/vpsrlvd/pack sequence.
739     { ISD::SHL,  MVT::v32i16,    20 }, // 2*extend/vpsrlvd/pack sequence.
740 
741     { ISD::SRL,  MVT::v32i8,     11 }, // vpblendvb sequence.
742     { ISD::SRL,  MVT::v64i8,     22 }, // 2*vpblendvb sequence.
743     { ISD::SRL,  MVT::v16i16,    10 }, // extend/vpsrlvd/pack sequence.
744     { ISD::SRL,  MVT::v32i16,    20 }, // 2*extend/vpsrlvd/pack sequence.
745 
746     { ISD::SRA,  MVT::v32i8,     24 }, // vpblendvb sequence.
747     { ISD::SRA,  MVT::v64i8,     48 }, // 2*vpblendvb sequence.
748     { ISD::SRA,  MVT::v16i16,    10 }, // extend/vpsravd/pack sequence.
749     { ISD::SRA,  MVT::v32i16,    20 }, // 2*extend/vpsravd/pack sequence.
750     { ISD::SRA,  MVT::v2i64,      4 }, // srl/xor/sub sequence.
751     { ISD::SRA,  MVT::v4i64,      4 }, // srl/xor/sub sequence.
752 
753     { ISD::SUB,  MVT::v32i8,      1 }, // psubb
754     { ISD::ADD,  MVT::v32i8,      1 }, // paddb
755     { ISD::SUB,  MVT::v16i16,     1 }, // psubw
756     { ISD::ADD,  MVT::v16i16,     1 }, // paddw
757     { ISD::SUB,  MVT::v8i32,      1 }, // psubd
758     { ISD::ADD,  MVT::v8i32,      1 }, // paddd
759     { ISD::SUB,  MVT::v4i64,      1 }, // psubq
760     { ISD::ADD,  MVT::v4i64,      1 }, // paddq
761 
762     { ISD::MUL,  MVT::v32i8,     17 }, // extend/pmullw/trunc sequence.
763     { ISD::MUL,  MVT::v16i8,      7 }, // extend/pmullw/trunc sequence.
764     { ISD::MUL,  MVT::v16i16,     1 }, // pmullw
765     { ISD::MUL,  MVT::v8i32,      2 }, // pmulld (Haswell from agner.org)
766     { ISD::MUL,  MVT::v4i64,      8 }, // 3*pmuludq/3*shift/2*add
767 
768     { ISD::FADD, MVT::v4f64,      1 }, // Haswell from http://www.agner.org/
769     { ISD::FADD, MVT::v8f32,      1 }, // Haswell from http://www.agner.org/
770     { ISD::FSUB, MVT::v4f64,      1 }, // Haswell from http://www.agner.org/
771     { ISD::FSUB, MVT::v8f32,      1 }, // Haswell from http://www.agner.org/
772     { ISD::FMUL, MVT::v4f64,      1 }, // Haswell from http://www.agner.org/
773     { ISD::FMUL, MVT::v8f32,      1 }, // Haswell from http://www.agner.org/
774 
775     { ISD::FDIV, MVT::f32,        7 }, // Haswell from http://www.agner.org/
776     { ISD::FDIV, MVT::v4f32,      7 }, // Haswell from http://www.agner.org/
777     { ISD::FDIV, MVT::v8f32,     14 }, // Haswell from http://www.agner.org/
778     { ISD::FDIV, MVT::f64,       14 }, // Haswell from http://www.agner.org/
779     { ISD::FDIV, MVT::v2f64,     14 }, // Haswell from http://www.agner.org/
780     { ISD::FDIV, MVT::v4f64,     28 }, // Haswell from http://www.agner.org/
781   };
782 
783   // Look for AVX2 lowering tricks for custom cases.
784   if (ST->hasAVX2())
785     if (const auto *Entry = CostTableLookup(AVX2CostTable, ISD, LT.second))
786       return LT.first * Entry->Cost;
787 
788   static const CostTblEntry AVX1CostTable[] = {
789     // We don't have to scalarize unsupported ops. We can issue two half-sized
790     // operations and we only need to extract the upper YMM half.
791     // Two ops + 1 extract + 1 insert = 4.
792     { ISD::MUL,     MVT::v16i16,     4 },
793     { ISD::MUL,     MVT::v8i32,      4 },
794     { ISD::SUB,     MVT::v32i8,      4 },
795     { ISD::ADD,     MVT::v32i8,      4 },
796     { ISD::SUB,     MVT::v16i16,     4 },
797     { ISD::ADD,     MVT::v16i16,     4 },
798     { ISD::SUB,     MVT::v8i32,      4 },
799     { ISD::ADD,     MVT::v8i32,      4 },
800     { ISD::SUB,     MVT::v4i64,      4 },
801     { ISD::ADD,     MVT::v4i64,      4 },
802 
803     // A v4i64 multiply is custom lowered as two split v2i64 vectors that then
804     // are lowered as a series of long multiplies(3), shifts(3) and adds(2)
805     // Because we believe v4i64 to be a legal type, we must also include the
806     // extract+insert in the cost table. Therefore, the cost here is 18
807     // instead of 8.
808     { ISD::MUL,     MVT::v4i64,     18 },
809 
810     { ISD::MUL,     MVT::v32i8,     26 }, // extend/pmullw/trunc sequence.
811 
812     { ISD::FDIV,    MVT::f32,       14 }, // SNB from http://www.agner.org/
813     { ISD::FDIV,    MVT::v4f32,     14 }, // SNB from http://www.agner.org/
814     { ISD::FDIV,    MVT::v8f32,     28 }, // SNB from http://www.agner.org/
815     { ISD::FDIV,    MVT::f64,       22 }, // SNB from http://www.agner.org/
816     { ISD::FDIV,    MVT::v2f64,     22 }, // SNB from http://www.agner.org/
817     { ISD::FDIV,    MVT::v4f64,     44 }, // SNB from http://www.agner.org/
818   };
819 
820   if (ST->hasAVX())
821     if (const auto *Entry = CostTableLookup(AVX1CostTable, ISD, LT.second))
822       return LT.first * Entry->Cost;
823 
824   static const CostTblEntry SSE42CostTable[] = {
825     { ISD::FADD, MVT::f64,     1 }, // Nehalem from http://www.agner.org/
826     { ISD::FADD, MVT::f32,     1 }, // Nehalem from http://www.agner.org/
827     { ISD::FADD, MVT::v2f64,   1 }, // Nehalem from http://www.agner.org/
828     { ISD::FADD, MVT::v4f32,   1 }, // Nehalem from http://www.agner.org/
829 
830     { ISD::FSUB, MVT::f64,     1 }, // Nehalem from http://www.agner.org/
831     { ISD::FSUB, MVT::f32 ,    1 }, // Nehalem from http://www.agner.org/
832     { ISD::FSUB, MVT::v2f64,   1 }, // Nehalem from http://www.agner.org/
833     { ISD::FSUB, MVT::v4f32,   1 }, // Nehalem from http://www.agner.org/
834 
835     { ISD::FMUL, MVT::f64,     1 }, // Nehalem from http://www.agner.org/
836     { ISD::FMUL, MVT::f32,     1 }, // Nehalem from http://www.agner.org/
837     { ISD::FMUL, MVT::v2f64,   1 }, // Nehalem from http://www.agner.org/
838     { ISD::FMUL, MVT::v4f32,   1 }, // Nehalem from http://www.agner.org/
839 
840     { ISD::FDIV,  MVT::f32,   14 }, // Nehalem from http://www.agner.org/
841     { ISD::FDIV,  MVT::v4f32, 14 }, // Nehalem from http://www.agner.org/
842     { ISD::FDIV,  MVT::f64,   22 }, // Nehalem from http://www.agner.org/
843     { ISD::FDIV,  MVT::v2f64, 22 }, // Nehalem from http://www.agner.org/
844   };
845 
846   if (ST->hasSSE42())
847     if (const auto *Entry = CostTableLookup(SSE42CostTable, ISD, LT.second))
848       return LT.first * Entry->Cost;
849 
850   static const CostTblEntry SSE41CostTable[] = {
851     { ISD::SHL,  MVT::v16i8,      11 }, // pblendvb sequence.
852     { ISD::SHL,  MVT::v32i8,  2*11+2 }, // pblendvb sequence + split.
853     { ISD::SHL,  MVT::v8i16,      14 }, // pblendvb sequence.
854     { ISD::SHL,  MVT::v16i16, 2*14+2 }, // pblendvb sequence + split.
855     { ISD::SHL,  MVT::v4i32,       4 }, // pslld/paddd/cvttps2dq/pmulld
856     { ISD::SHL,  MVT::v8i32,   2*4+2 }, // pslld/paddd/cvttps2dq/pmulld + split
857 
858     { ISD::SRL,  MVT::v16i8,      12 }, // pblendvb sequence.
859     { ISD::SRL,  MVT::v32i8,  2*12+2 }, // pblendvb sequence + split.
860     { ISD::SRL,  MVT::v8i16,      14 }, // pblendvb sequence.
861     { ISD::SRL,  MVT::v16i16, 2*14+2 }, // pblendvb sequence + split.
862     { ISD::SRL,  MVT::v4i32,      11 }, // Shift each lane + blend.
863     { ISD::SRL,  MVT::v8i32,  2*11+2 }, // Shift each lane + blend + split.
864 
865     { ISD::SRA,  MVT::v16i8,      24 }, // pblendvb sequence.
866     { ISD::SRA,  MVT::v32i8,  2*24+2 }, // pblendvb sequence + split.
867     { ISD::SRA,  MVT::v8i16,      14 }, // pblendvb sequence.
868     { ISD::SRA,  MVT::v16i16, 2*14+2 }, // pblendvb sequence + split.
869     { ISD::SRA,  MVT::v4i32,      12 }, // Shift each lane + blend.
870     { ISD::SRA,  MVT::v8i32,  2*12+2 }, // Shift each lane + blend + split.
871 
872     { ISD::MUL,  MVT::v4i32,       2 }  // pmulld (Nehalem from agner.org)
873   };
874 
875   if (ST->hasSSE41())
876     if (const auto *Entry = CostTableLookup(SSE41CostTable, ISD, LT.second))
877       return LT.first * Entry->Cost;
878 
879   static const CostTblEntry SSE2CostTable[] = {
880     // We don't correctly identify costs of casts because they are marked as
881     // custom.
882     { ISD::SHL,  MVT::v16i8,      26 }, // cmpgtb sequence.
883     { ISD::SHL,  MVT::v8i16,      32 }, // cmpgtb sequence.
884     { ISD::SHL,  MVT::v4i32,     2*5 }, // We optimized this using mul.
885     { ISD::SHL,  MVT::v2i64,       4 }, // splat+shuffle sequence.
886     { ISD::SHL,  MVT::v4i64,   2*4+2 }, // splat+shuffle sequence + split.
887 
888     { ISD::SRL,  MVT::v16i8,      26 }, // cmpgtb sequence.
889     { ISD::SRL,  MVT::v8i16,      32 }, // cmpgtb sequence.
890     { ISD::SRL,  MVT::v4i32,      16 }, // Shift each lane + blend.
891     { ISD::SRL,  MVT::v2i64,       4 }, // splat+shuffle sequence.
892     { ISD::SRL,  MVT::v4i64,   2*4+2 }, // splat+shuffle sequence + split.
893 
894     { ISD::SRA,  MVT::v16i8,      54 }, // unpacked cmpgtb sequence.
895     { ISD::SRA,  MVT::v8i16,      32 }, // cmpgtb sequence.
896     { ISD::SRA,  MVT::v4i32,      16 }, // Shift each lane + blend.
897     { ISD::SRA,  MVT::v2i64,      12 }, // srl/xor/sub sequence.
898     { ISD::SRA,  MVT::v4i64,  2*12+2 }, // srl/xor/sub sequence+split.
899 
900     { ISD::MUL,  MVT::v16i8,      12 }, // extend/pmullw/trunc sequence.
901     { ISD::MUL,  MVT::v8i16,       1 }, // pmullw
902     { ISD::MUL,  MVT::v4i32,       6 }, // 3*pmuludq/4*shuffle
903     { ISD::MUL,  MVT::v2i64,       8 }, // 3*pmuludq/3*shift/2*add
904 
905     { ISD::FDIV, MVT::f32,        23 }, // Pentium IV from http://www.agner.org/
906     { ISD::FDIV, MVT::v4f32,      39 }, // Pentium IV from http://www.agner.org/
907     { ISD::FDIV, MVT::f64,        38 }, // Pentium IV from http://www.agner.org/
908     { ISD::FDIV, MVT::v2f64,      69 }, // Pentium IV from http://www.agner.org/
909 
910     { ISD::FADD, MVT::f32,         2 }, // Pentium IV from http://www.agner.org/
911     { ISD::FADD, MVT::f64,         2 }, // Pentium IV from http://www.agner.org/
912 
913     { ISD::FSUB, MVT::f32,         2 }, // Pentium IV from http://www.agner.org/
914     { ISD::FSUB, MVT::f64,         2 }, // Pentium IV from http://www.agner.org/
915   };
916 
917   if (ST->hasSSE2())
918     if (const auto *Entry = CostTableLookup(SSE2CostTable, ISD, LT.second))
919       return LT.first * Entry->Cost;
920 
921   static const CostTblEntry SSE1CostTable[] = {
922     { ISD::FDIV, MVT::f32,   17 }, // Pentium III from http://www.agner.org/
923     { ISD::FDIV, MVT::v4f32, 34 }, // Pentium III from http://www.agner.org/
924 
925     { ISD::FADD, MVT::f32,    1 }, // Pentium III from http://www.agner.org/
926     { ISD::FADD, MVT::v4f32,  2 }, // Pentium III from http://www.agner.org/
927 
928     { ISD::FSUB, MVT::f32,    1 }, // Pentium III from http://www.agner.org/
929     { ISD::FSUB, MVT::v4f32,  2 }, // Pentium III from http://www.agner.org/
930 
931     { ISD::ADD, MVT::i8,      1 }, // Pentium III from http://www.agner.org/
932     { ISD::ADD, MVT::i16,     1 }, // Pentium III from http://www.agner.org/
933     { ISD::ADD, MVT::i32,     1 }, // Pentium III from http://www.agner.org/
934 
935     { ISD::SUB, MVT::i8,      1 }, // Pentium III from http://www.agner.org/
936     { ISD::SUB, MVT::i16,     1 }, // Pentium III from http://www.agner.org/
937     { ISD::SUB, MVT::i32,     1 }, // Pentium III from http://www.agner.org/
938   };
939 
940   if (ST->hasSSE1())
941     if (const auto *Entry = CostTableLookup(SSE1CostTable, ISD, LT.second))
942       return LT.first * Entry->Cost;
943 
944   // It is not a good idea to vectorize division. We have to scalarize it and
945   // in the process we will often end up having to spilling regular
946   // registers. The overhead of division is going to dominate most kernels
947   // anyways so try hard to prevent vectorization of division - it is
948   // generally a bad idea. Assume somewhat arbitrarily that we have to be able
949   // to hide "20 cycles" for each lane.
950   if (LT.second.isVector() && (ISD == ISD::SDIV || ISD == ISD::SREM ||
951                                ISD == ISD::UDIV || ISD == ISD::UREM)) {
952     int ScalarCost = getArithmeticInstrCost(
953         Opcode, Ty->getScalarType(), CostKind, Op1Info, Op2Info,
954         TargetTransformInfo::OP_None, TargetTransformInfo::OP_None);
955     return 20 * LT.first * LT.second.getVectorNumElements() * ScalarCost;
956   }
957 
958   // Fallback to the default implementation.
959   return BaseT::getArithmeticInstrCost(Opcode, Ty, CostKind, Op1Info, Op2Info);
960 }
961 
962 int X86TTIImpl::getShuffleCost(TTI::ShuffleKind Kind, VectorType *BaseTp,
963                                int Index, VectorType *SubTp) {
964   // 64-bit packed float vectors (v2f32) are widened to type v4f32.
965   // 64-bit packed integer vectors (v2i32) are widened to type v4i32.
966   std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, BaseTp);
967 
968   // Treat Transpose as 2-op shuffles - there's no difference in lowering.
969   if (Kind == TTI::SK_Transpose)
970     Kind = TTI::SK_PermuteTwoSrc;
971 
972   // For Broadcasts we are splatting the first element from the first input
973   // register, so only need to reference that input and all the output
974   // registers are the same.
975   if (Kind == TTI::SK_Broadcast)
976     LT.first = 1;
977 
978   // Subvector extractions are free if they start at the beginning of a
979   // vector and cheap if the subvectors are aligned.
980   if (Kind == TTI::SK_ExtractSubvector && LT.second.isVector()) {
981     int NumElts = LT.second.getVectorNumElements();
982     if ((Index % NumElts) == 0)
983       return 0;
984     std::pair<int, MVT> SubLT = TLI->getTypeLegalizationCost(DL, SubTp);
985     if (SubLT.second.isVector()) {
986       int NumSubElts = SubLT.second.getVectorNumElements();
987       if ((Index % NumSubElts) == 0 && (NumElts % NumSubElts) == 0)
988         return SubLT.first;
989       // Handle some cases for widening legalization. For now we only handle
990       // cases where the original subvector was naturally aligned and evenly
991       // fit in its legalized subvector type.
992       // FIXME: Remove some of the alignment restrictions.
993       // FIXME: We can use permq for 64-bit or larger extracts from 256-bit
994       // vectors.
995       int OrigSubElts = cast<FixedVectorType>(SubTp)->getNumElements();
996       if (NumSubElts > OrigSubElts && (Index % OrigSubElts) == 0 &&
997           (NumSubElts % OrigSubElts) == 0 &&
998           LT.second.getVectorElementType() ==
999               SubLT.second.getVectorElementType() &&
1000           LT.second.getVectorElementType().getSizeInBits() ==
1001               BaseTp->getElementType()->getPrimitiveSizeInBits()) {
1002         assert(NumElts >= NumSubElts && NumElts > OrigSubElts &&
1003                "Unexpected number of elements!");
1004         auto *VecTy = FixedVectorType::get(BaseTp->getElementType(),
1005                                            LT.second.getVectorNumElements());
1006         auto *SubTy = FixedVectorType::get(BaseTp->getElementType(),
1007                                            SubLT.second.getVectorNumElements());
1008         int ExtractIndex = alignDown((Index % NumElts), NumSubElts);
1009         int ExtractCost = getShuffleCost(TTI::SK_ExtractSubvector, VecTy,
1010                                          ExtractIndex, SubTy);
1011 
1012         // If the original size is 32-bits or more, we can use pshufd. Otherwise
1013         // if we have SSSE3 we can use pshufb.
1014         if (SubTp->getPrimitiveSizeInBits() >= 32 || ST->hasSSSE3())
1015           return ExtractCost + 1; // pshufd or pshufb
1016 
1017         assert(SubTp->getPrimitiveSizeInBits() == 16 &&
1018                "Unexpected vector size");
1019 
1020         return ExtractCost + 2; // worst case pshufhw + pshufd
1021       }
1022     }
1023   }
1024 
1025   // Handle some common (illegal) sub-vector types as they are often very cheap
1026   // to shuffle even on targets without PSHUFB.
1027   EVT VT = TLI->getValueType(DL, BaseTp);
1028   if (VT.isSimple() && VT.isVector() && VT.getSizeInBits() < 128 &&
1029       !ST->hasSSSE3()) {
1030      static const CostTblEntry SSE2SubVectorShuffleTbl[] = {
1031       {TTI::SK_Broadcast,        MVT::v4i16, 1}, // pshuflw
1032       {TTI::SK_Broadcast,        MVT::v2i16, 1}, // pshuflw
1033       {TTI::SK_Broadcast,        MVT::v8i8,  2}, // punpck/pshuflw
1034       {TTI::SK_Broadcast,        MVT::v4i8,  2}, // punpck/pshuflw
1035       {TTI::SK_Broadcast,        MVT::v2i8,  1}, // punpck
1036 
1037       {TTI::SK_Reverse,          MVT::v4i16, 1}, // pshuflw
1038       {TTI::SK_Reverse,          MVT::v2i16, 1}, // pshuflw
1039       {TTI::SK_Reverse,          MVT::v4i8,  3}, // punpck/pshuflw/packus
1040       {TTI::SK_Reverse,          MVT::v2i8,  1}, // punpck
1041 
1042       {TTI::SK_PermuteTwoSrc,    MVT::v4i16, 2}, // punpck/pshuflw
1043       {TTI::SK_PermuteTwoSrc,    MVT::v2i16, 2}, // punpck/pshuflw
1044       {TTI::SK_PermuteTwoSrc,    MVT::v8i8,  7}, // punpck/pshuflw
1045       {TTI::SK_PermuteTwoSrc,    MVT::v4i8,  4}, // punpck/pshuflw
1046       {TTI::SK_PermuteTwoSrc,    MVT::v2i8,  2}, // punpck
1047 
1048       {TTI::SK_PermuteSingleSrc, MVT::v4i16, 1}, // pshuflw
1049       {TTI::SK_PermuteSingleSrc, MVT::v2i16, 1}, // pshuflw
1050       {TTI::SK_PermuteSingleSrc, MVT::v8i8,  5}, // punpck/pshuflw
1051       {TTI::SK_PermuteSingleSrc, MVT::v4i8,  3}, // punpck/pshuflw
1052       {TTI::SK_PermuteSingleSrc, MVT::v2i8,  1}, // punpck
1053     };
1054 
1055     if (ST->hasSSE2())
1056       if (const auto *Entry =
1057               CostTableLookup(SSE2SubVectorShuffleTbl, Kind, VT.getSimpleVT()))
1058         return Entry->Cost;
1059   }
1060 
1061   // We are going to permute multiple sources and the result will be in multiple
1062   // destinations. Providing an accurate cost only for splits where the element
1063   // type remains the same.
1064   if (Kind == TTI::SK_PermuteSingleSrc && LT.first != 1) {
1065     MVT LegalVT = LT.second;
1066     if (LegalVT.isVector() &&
1067         LegalVT.getVectorElementType().getSizeInBits() ==
1068             BaseTp->getElementType()->getPrimitiveSizeInBits() &&
1069         LegalVT.getVectorNumElements() <
1070             cast<FixedVectorType>(BaseTp)->getNumElements()) {
1071 
1072       unsigned VecTySize = DL.getTypeStoreSize(BaseTp);
1073       unsigned LegalVTSize = LegalVT.getStoreSize();
1074       // Number of source vectors after legalization:
1075       unsigned NumOfSrcs = (VecTySize + LegalVTSize - 1) / LegalVTSize;
1076       // Number of destination vectors after legalization:
1077       unsigned NumOfDests = LT.first;
1078 
1079       auto *SingleOpTy = FixedVectorType::get(BaseTp->getElementType(),
1080                                               LegalVT.getVectorNumElements());
1081 
1082       unsigned NumOfShuffles = (NumOfSrcs - 1) * NumOfDests;
1083       return NumOfShuffles *
1084              getShuffleCost(TTI::SK_PermuteTwoSrc, SingleOpTy, 0, nullptr);
1085     }
1086 
1087     return BaseT::getShuffleCost(Kind, BaseTp, Index, SubTp);
1088   }
1089 
1090   // For 2-input shuffles, we must account for splitting the 2 inputs into many.
1091   if (Kind == TTI::SK_PermuteTwoSrc && LT.first != 1) {
1092     // We assume that source and destination have the same vector type.
1093     int NumOfDests = LT.first;
1094     int NumOfShufflesPerDest = LT.first * 2 - 1;
1095     LT.first = NumOfDests * NumOfShufflesPerDest;
1096   }
1097 
1098   static const CostTblEntry AVX512VBMIShuffleTbl[] = {
1099       {TTI::SK_Reverse, MVT::v64i8, 1}, // vpermb
1100       {TTI::SK_Reverse, MVT::v32i8, 1}, // vpermb
1101 
1102       {TTI::SK_PermuteSingleSrc, MVT::v64i8, 1}, // vpermb
1103       {TTI::SK_PermuteSingleSrc, MVT::v32i8, 1}, // vpermb
1104 
1105       {TTI::SK_PermuteTwoSrc, MVT::v64i8, 2}, // vpermt2b
1106       {TTI::SK_PermuteTwoSrc, MVT::v32i8, 2}, // vpermt2b
1107       {TTI::SK_PermuteTwoSrc, MVT::v16i8, 2}  // vpermt2b
1108   };
1109 
1110   if (ST->hasVBMI())
1111     if (const auto *Entry =
1112             CostTableLookup(AVX512VBMIShuffleTbl, Kind, LT.second))
1113       return LT.first * Entry->Cost;
1114 
1115   static const CostTblEntry AVX512BWShuffleTbl[] = {
1116       {TTI::SK_Broadcast, MVT::v32i16, 1}, // vpbroadcastw
1117       {TTI::SK_Broadcast, MVT::v64i8, 1},  // vpbroadcastb
1118 
1119       {TTI::SK_Reverse, MVT::v32i16, 2}, // vpermw
1120       {TTI::SK_Reverse, MVT::v16i16, 2}, // vpermw
1121       {TTI::SK_Reverse, MVT::v64i8, 2},  // pshufb + vshufi64x2
1122 
1123       {TTI::SK_PermuteSingleSrc, MVT::v32i16, 2}, // vpermw
1124       {TTI::SK_PermuteSingleSrc, MVT::v16i16, 2}, // vpermw
1125       {TTI::SK_PermuteSingleSrc, MVT::v64i8, 8},  // extend to v32i16
1126 
1127       {TTI::SK_PermuteTwoSrc, MVT::v32i16, 2}, // vpermt2w
1128       {TTI::SK_PermuteTwoSrc, MVT::v16i16, 2}, // vpermt2w
1129       {TTI::SK_PermuteTwoSrc, MVT::v8i16, 2},  // vpermt2w
1130       {TTI::SK_PermuteTwoSrc, MVT::v64i8, 19}, // 6 * v32i8 + 1
1131   };
1132 
1133   if (ST->hasBWI())
1134     if (const auto *Entry =
1135             CostTableLookup(AVX512BWShuffleTbl, Kind, LT.second))
1136       return LT.first * Entry->Cost;
1137 
1138   static const CostTblEntry AVX512ShuffleTbl[] = {
1139       {TTI::SK_Broadcast, MVT::v8f64, 1},  // vbroadcastpd
1140       {TTI::SK_Broadcast, MVT::v16f32, 1}, // vbroadcastps
1141       {TTI::SK_Broadcast, MVT::v8i64, 1},  // vpbroadcastq
1142       {TTI::SK_Broadcast, MVT::v16i32, 1}, // vpbroadcastd
1143       {TTI::SK_Broadcast, MVT::v32i16, 1}, // vpbroadcastw
1144       {TTI::SK_Broadcast, MVT::v64i8, 1},  // vpbroadcastb
1145 
1146       {TTI::SK_Reverse, MVT::v8f64, 1},  // vpermpd
1147       {TTI::SK_Reverse, MVT::v16f32, 1}, // vpermps
1148       {TTI::SK_Reverse, MVT::v8i64, 1},  // vpermq
1149       {TTI::SK_Reverse, MVT::v16i32, 1}, // vpermd
1150 
1151       {TTI::SK_PermuteSingleSrc, MVT::v8f64, 1},  // vpermpd
1152       {TTI::SK_PermuteSingleSrc, MVT::v4f64, 1},  // vpermpd
1153       {TTI::SK_PermuteSingleSrc, MVT::v2f64, 1},  // vpermpd
1154       {TTI::SK_PermuteSingleSrc, MVT::v16f32, 1}, // vpermps
1155       {TTI::SK_PermuteSingleSrc, MVT::v8f32, 1},  // vpermps
1156       {TTI::SK_PermuteSingleSrc, MVT::v4f32, 1},  // vpermps
1157       {TTI::SK_PermuteSingleSrc, MVT::v8i64, 1},  // vpermq
1158       {TTI::SK_PermuteSingleSrc, MVT::v4i64, 1},  // vpermq
1159       {TTI::SK_PermuteSingleSrc, MVT::v2i64, 1},  // vpermq
1160       {TTI::SK_PermuteSingleSrc, MVT::v16i32, 1}, // vpermd
1161       {TTI::SK_PermuteSingleSrc, MVT::v8i32, 1},  // vpermd
1162       {TTI::SK_PermuteSingleSrc, MVT::v4i32, 1},  // vpermd
1163       {TTI::SK_PermuteSingleSrc, MVT::v16i8, 1},  // pshufb
1164 
1165       {TTI::SK_PermuteTwoSrc, MVT::v8f64, 1},  // vpermt2pd
1166       {TTI::SK_PermuteTwoSrc, MVT::v16f32, 1}, // vpermt2ps
1167       {TTI::SK_PermuteTwoSrc, MVT::v8i64, 1},  // vpermt2q
1168       {TTI::SK_PermuteTwoSrc, MVT::v16i32, 1}, // vpermt2d
1169       {TTI::SK_PermuteTwoSrc, MVT::v4f64, 1},  // vpermt2pd
1170       {TTI::SK_PermuteTwoSrc, MVT::v8f32, 1},  // vpermt2ps
1171       {TTI::SK_PermuteTwoSrc, MVT::v4i64, 1},  // vpermt2q
1172       {TTI::SK_PermuteTwoSrc, MVT::v8i32, 1},  // vpermt2d
1173       {TTI::SK_PermuteTwoSrc, MVT::v2f64, 1},  // vpermt2pd
1174       {TTI::SK_PermuteTwoSrc, MVT::v4f32, 1},  // vpermt2ps
1175       {TTI::SK_PermuteTwoSrc, MVT::v2i64, 1},  // vpermt2q
1176       {TTI::SK_PermuteTwoSrc, MVT::v4i32, 1},  // vpermt2d
1177 
1178       // FIXME: This just applies the type legalization cost rules above
1179       // assuming these completely split.
1180       {TTI::SK_PermuteSingleSrc, MVT::v32i16, 14},
1181       {TTI::SK_PermuteSingleSrc, MVT::v64i8,  14},
1182       {TTI::SK_PermuteTwoSrc,    MVT::v32i16, 42},
1183       {TTI::SK_PermuteTwoSrc,    MVT::v64i8,  42},
1184   };
1185 
1186   if (ST->hasAVX512())
1187     if (const auto *Entry = CostTableLookup(AVX512ShuffleTbl, Kind, LT.second))
1188       return LT.first * Entry->Cost;
1189 
1190   static const CostTblEntry AVX2ShuffleTbl[] = {
1191       {TTI::SK_Broadcast, MVT::v4f64, 1},  // vbroadcastpd
1192       {TTI::SK_Broadcast, MVT::v8f32, 1},  // vbroadcastps
1193       {TTI::SK_Broadcast, MVT::v4i64, 1},  // vpbroadcastq
1194       {TTI::SK_Broadcast, MVT::v8i32, 1},  // vpbroadcastd
1195       {TTI::SK_Broadcast, MVT::v16i16, 1}, // vpbroadcastw
1196       {TTI::SK_Broadcast, MVT::v32i8, 1},  // vpbroadcastb
1197 
1198       {TTI::SK_Reverse, MVT::v4f64, 1},  // vpermpd
1199       {TTI::SK_Reverse, MVT::v8f32, 1},  // vpermps
1200       {TTI::SK_Reverse, MVT::v4i64, 1},  // vpermq
1201       {TTI::SK_Reverse, MVT::v8i32, 1},  // vpermd
1202       {TTI::SK_Reverse, MVT::v16i16, 2}, // vperm2i128 + pshufb
1203       {TTI::SK_Reverse, MVT::v32i8, 2},  // vperm2i128 + pshufb
1204 
1205       {TTI::SK_Select, MVT::v16i16, 1}, // vpblendvb
1206       {TTI::SK_Select, MVT::v32i8, 1},  // vpblendvb
1207 
1208       {TTI::SK_PermuteSingleSrc, MVT::v4f64, 1},  // vpermpd
1209       {TTI::SK_PermuteSingleSrc, MVT::v8f32, 1},  // vpermps
1210       {TTI::SK_PermuteSingleSrc, MVT::v4i64, 1},  // vpermq
1211       {TTI::SK_PermuteSingleSrc, MVT::v8i32, 1},  // vpermd
1212       {TTI::SK_PermuteSingleSrc, MVT::v16i16, 4}, // vperm2i128 + 2*vpshufb
1213                                                   // + vpblendvb
1214       {TTI::SK_PermuteSingleSrc, MVT::v32i8, 4},  // vperm2i128 + 2*vpshufb
1215                                                   // + vpblendvb
1216 
1217       {TTI::SK_PermuteTwoSrc, MVT::v4f64, 3},  // 2*vpermpd + vblendpd
1218       {TTI::SK_PermuteTwoSrc, MVT::v8f32, 3},  // 2*vpermps + vblendps
1219       {TTI::SK_PermuteTwoSrc, MVT::v4i64, 3},  // 2*vpermq + vpblendd
1220       {TTI::SK_PermuteTwoSrc, MVT::v8i32, 3},  // 2*vpermd + vpblendd
1221       {TTI::SK_PermuteTwoSrc, MVT::v16i16, 7}, // 2*vperm2i128 + 4*vpshufb
1222                                                // + vpblendvb
1223       {TTI::SK_PermuteTwoSrc, MVT::v32i8, 7},  // 2*vperm2i128 + 4*vpshufb
1224                                                // + vpblendvb
1225   };
1226 
1227   if (ST->hasAVX2())
1228     if (const auto *Entry = CostTableLookup(AVX2ShuffleTbl, Kind, LT.second))
1229       return LT.first * Entry->Cost;
1230 
1231   static const CostTblEntry XOPShuffleTbl[] = {
1232       {TTI::SK_PermuteSingleSrc, MVT::v4f64, 2},  // vperm2f128 + vpermil2pd
1233       {TTI::SK_PermuteSingleSrc, MVT::v8f32, 2},  // vperm2f128 + vpermil2ps
1234       {TTI::SK_PermuteSingleSrc, MVT::v4i64, 2},  // vperm2f128 + vpermil2pd
1235       {TTI::SK_PermuteSingleSrc, MVT::v8i32, 2},  // vperm2f128 + vpermil2ps
1236       {TTI::SK_PermuteSingleSrc, MVT::v16i16, 4}, // vextractf128 + 2*vpperm
1237                                                   // + vinsertf128
1238       {TTI::SK_PermuteSingleSrc, MVT::v32i8, 4},  // vextractf128 + 2*vpperm
1239                                                   // + vinsertf128
1240 
1241       {TTI::SK_PermuteTwoSrc, MVT::v16i16, 9}, // 2*vextractf128 + 6*vpperm
1242                                                // + vinsertf128
1243       {TTI::SK_PermuteTwoSrc, MVT::v8i16, 1},  // vpperm
1244       {TTI::SK_PermuteTwoSrc, MVT::v32i8, 9},  // 2*vextractf128 + 6*vpperm
1245                                                // + vinsertf128
1246       {TTI::SK_PermuteTwoSrc, MVT::v16i8, 1},  // vpperm
1247   };
1248 
1249   if (ST->hasXOP())
1250     if (const auto *Entry = CostTableLookup(XOPShuffleTbl, Kind, LT.second))
1251       return LT.first * Entry->Cost;
1252 
1253   static const CostTblEntry AVX1ShuffleTbl[] = {
1254       {TTI::SK_Broadcast, MVT::v4f64, 2},  // vperm2f128 + vpermilpd
1255       {TTI::SK_Broadcast, MVT::v8f32, 2},  // vperm2f128 + vpermilps
1256       {TTI::SK_Broadcast, MVT::v4i64, 2},  // vperm2f128 + vpermilpd
1257       {TTI::SK_Broadcast, MVT::v8i32, 2},  // vperm2f128 + vpermilps
1258       {TTI::SK_Broadcast, MVT::v16i16, 3}, // vpshuflw + vpshufd + vinsertf128
1259       {TTI::SK_Broadcast, MVT::v32i8, 2},  // vpshufb + vinsertf128
1260 
1261       {TTI::SK_Reverse, MVT::v4f64, 2},  // vperm2f128 + vpermilpd
1262       {TTI::SK_Reverse, MVT::v8f32, 2},  // vperm2f128 + vpermilps
1263       {TTI::SK_Reverse, MVT::v4i64, 2},  // vperm2f128 + vpermilpd
1264       {TTI::SK_Reverse, MVT::v8i32, 2},  // vperm2f128 + vpermilps
1265       {TTI::SK_Reverse, MVT::v16i16, 4}, // vextractf128 + 2*pshufb
1266                                          // + vinsertf128
1267       {TTI::SK_Reverse, MVT::v32i8, 4},  // vextractf128 + 2*pshufb
1268                                          // + vinsertf128
1269 
1270       {TTI::SK_Select, MVT::v4i64, 1},  // vblendpd
1271       {TTI::SK_Select, MVT::v4f64, 1},  // vblendpd
1272       {TTI::SK_Select, MVT::v8i32, 1},  // vblendps
1273       {TTI::SK_Select, MVT::v8f32, 1},  // vblendps
1274       {TTI::SK_Select, MVT::v16i16, 3}, // vpand + vpandn + vpor
1275       {TTI::SK_Select, MVT::v32i8, 3},  // vpand + vpandn + vpor
1276 
1277       {TTI::SK_PermuteSingleSrc, MVT::v4f64, 2},  // vperm2f128 + vshufpd
1278       {TTI::SK_PermuteSingleSrc, MVT::v4i64, 2},  // vperm2f128 + vshufpd
1279       {TTI::SK_PermuteSingleSrc, MVT::v8f32, 4},  // 2*vperm2f128 + 2*vshufps
1280       {TTI::SK_PermuteSingleSrc, MVT::v8i32, 4},  // 2*vperm2f128 + 2*vshufps
1281       {TTI::SK_PermuteSingleSrc, MVT::v16i16, 8}, // vextractf128 + 4*pshufb
1282                                                   // + 2*por + vinsertf128
1283       {TTI::SK_PermuteSingleSrc, MVT::v32i8, 8},  // vextractf128 + 4*pshufb
1284                                                   // + 2*por + vinsertf128
1285 
1286       {TTI::SK_PermuteTwoSrc, MVT::v4f64, 3},   // 2*vperm2f128 + vshufpd
1287       {TTI::SK_PermuteTwoSrc, MVT::v4i64, 3},   // 2*vperm2f128 + vshufpd
1288       {TTI::SK_PermuteTwoSrc, MVT::v8f32, 4},   // 2*vperm2f128 + 2*vshufps
1289       {TTI::SK_PermuteTwoSrc, MVT::v8i32, 4},   // 2*vperm2f128 + 2*vshufps
1290       {TTI::SK_PermuteTwoSrc, MVT::v16i16, 15}, // 2*vextractf128 + 8*pshufb
1291                                                 // + 4*por + vinsertf128
1292       {TTI::SK_PermuteTwoSrc, MVT::v32i8, 15},  // 2*vextractf128 + 8*pshufb
1293                                                 // + 4*por + vinsertf128
1294   };
1295 
1296   if (ST->hasAVX())
1297     if (const auto *Entry = CostTableLookup(AVX1ShuffleTbl, Kind, LT.second))
1298       return LT.first * Entry->Cost;
1299 
1300   static const CostTblEntry SSE41ShuffleTbl[] = {
1301       {TTI::SK_Select, MVT::v2i64, 1}, // pblendw
1302       {TTI::SK_Select, MVT::v2f64, 1}, // movsd
1303       {TTI::SK_Select, MVT::v4i32, 1}, // pblendw
1304       {TTI::SK_Select, MVT::v4f32, 1}, // blendps
1305       {TTI::SK_Select, MVT::v8i16, 1}, // pblendw
1306       {TTI::SK_Select, MVT::v16i8, 1}  // pblendvb
1307   };
1308 
1309   if (ST->hasSSE41())
1310     if (const auto *Entry = CostTableLookup(SSE41ShuffleTbl, Kind, LT.second))
1311       return LT.first * Entry->Cost;
1312 
1313   static const CostTblEntry SSSE3ShuffleTbl[] = {
1314       {TTI::SK_Broadcast, MVT::v8i16, 1}, // pshufb
1315       {TTI::SK_Broadcast, MVT::v16i8, 1}, // pshufb
1316 
1317       {TTI::SK_Reverse, MVT::v8i16, 1}, // pshufb
1318       {TTI::SK_Reverse, MVT::v16i8, 1}, // pshufb
1319 
1320       {TTI::SK_Select, MVT::v8i16, 3}, // 2*pshufb + por
1321       {TTI::SK_Select, MVT::v16i8, 3}, // 2*pshufb + por
1322 
1323       {TTI::SK_PermuteSingleSrc, MVT::v8i16, 1}, // pshufb
1324       {TTI::SK_PermuteSingleSrc, MVT::v16i8, 1}, // pshufb
1325 
1326       {TTI::SK_PermuteTwoSrc, MVT::v8i16, 3}, // 2*pshufb + por
1327       {TTI::SK_PermuteTwoSrc, MVT::v16i8, 3}, // 2*pshufb + por
1328   };
1329 
1330   if (ST->hasSSSE3())
1331     if (const auto *Entry = CostTableLookup(SSSE3ShuffleTbl, Kind, LT.second))
1332       return LT.first * Entry->Cost;
1333 
1334   static const CostTblEntry SSE2ShuffleTbl[] = {
1335       {TTI::SK_Broadcast, MVT::v2f64, 1}, // shufpd
1336       {TTI::SK_Broadcast, MVT::v2i64, 1}, // pshufd
1337       {TTI::SK_Broadcast, MVT::v4i32, 1}, // pshufd
1338       {TTI::SK_Broadcast, MVT::v8i16, 2}, // pshuflw + pshufd
1339       {TTI::SK_Broadcast, MVT::v16i8, 3}, // unpck + pshuflw + pshufd
1340 
1341       {TTI::SK_Reverse, MVT::v2f64, 1}, // shufpd
1342       {TTI::SK_Reverse, MVT::v2i64, 1}, // pshufd
1343       {TTI::SK_Reverse, MVT::v4i32, 1}, // pshufd
1344       {TTI::SK_Reverse, MVT::v8i16, 3}, // pshuflw + pshufhw + pshufd
1345       {TTI::SK_Reverse, MVT::v16i8, 9}, // 2*pshuflw + 2*pshufhw
1346                                         // + 2*pshufd + 2*unpck + packus
1347 
1348       {TTI::SK_Select, MVT::v2i64, 1}, // movsd
1349       {TTI::SK_Select, MVT::v2f64, 1}, // movsd
1350       {TTI::SK_Select, MVT::v4i32, 2}, // 2*shufps
1351       {TTI::SK_Select, MVT::v8i16, 3}, // pand + pandn + por
1352       {TTI::SK_Select, MVT::v16i8, 3}, // pand + pandn + por
1353 
1354       {TTI::SK_PermuteSingleSrc, MVT::v2f64, 1}, // shufpd
1355       {TTI::SK_PermuteSingleSrc, MVT::v2i64, 1}, // pshufd
1356       {TTI::SK_PermuteSingleSrc, MVT::v4i32, 1}, // pshufd
1357       {TTI::SK_PermuteSingleSrc, MVT::v8i16, 5}, // 2*pshuflw + 2*pshufhw
1358                                                   // + pshufd/unpck
1359     { TTI::SK_PermuteSingleSrc, MVT::v16i8, 10 }, // 2*pshuflw + 2*pshufhw
1360                                                   // + 2*pshufd + 2*unpck + 2*packus
1361 
1362     { TTI::SK_PermuteTwoSrc,    MVT::v2f64,  1 }, // shufpd
1363     { TTI::SK_PermuteTwoSrc,    MVT::v2i64,  1 }, // shufpd
1364     { TTI::SK_PermuteTwoSrc,    MVT::v4i32,  2 }, // 2*{unpck,movsd,pshufd}
1365     { TTI::SK_PermuteTwoSrc,    MVT::v8i16,  8 }, // blend+permute
1366     { TTI::SK_PermuteTwoSrc,    MVT::v16i8, 13 }, // blend+permute
1367   };
1368 
1369   if (ST->hasSSE2())
1370     if (const auto *Entry = CostTableLookup(SSE2ShuffleTbl, Kind, LT.second))
1371       return LT.first * Entry->Cost;
1372 
1373   static const CostTblEntry SSE1ShuffleTbl[] = {
1374     { TTI::SK_Broadcast,        MVT::v4f32, 1 }, // shufps
1375     { TTI::SK_Reverse,          MVT::v4f32, 1 }, // shufps
1376     { TTI::SK_Select,           MVT::v4f32, 2 }, // 2*shufps
1377     { TTI::SK_PermuteSingleSrc, MVT::v4f32, 1 }, // shufps
1378     { TTI::SK_PermuteTwoSrc,    MVT::v4f32, 2 }, // 2*shufps
1379   };
1380 
1381   if (ST->hasSSE1())
1382     if (const auto *Entry = CostTableLookup(SSE1ShuffleTbl, Kind, LT.second))
1383       return LT.first * Entry->Cost;
1384 
1385   return BaseT::getShuffleCost(Kind, BaseTp, Index, SubTp);
1386 }
1387 
1388 int X86TTIImpl::getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src,
1389                                  TTI::CastContextHint CCH,
1390                                  TTI::TargetCostKind CostKind,
1391                                  const Instruction *I) {
1392   int ISD = TLI->InstructionOpcodeToISD(Opcode);
1393   assert(ISD && "Invalid opcode");
1394 
1395   // TODO: Allow non-throughput costs that aren't binary.
1396   auto AdjustCost = [&CostKind](int Cost) {
1397     if (CostKind != TTI::TCK_RecipThroughput)
1398       return Cost == 0 ? 0 : 1;
1399     return Cost;
1400   };
1401 
1402   // FIXME: Need a better design of the cost table to handle non-simple types of
1403   // potential massive combinations (elem_num x src_type x dst_type).
1404 
1405   static const TypeConversionCostTblEntry AVX512BWConversionTbl[] {
1406     { ISD::SIGN_EXTEND, MVT::v32i16, MVT::v32i8, 1 },
1407     { ISD::ZERO_EXTEND, MVT::v32i16, MVT::v32i8, 1 },
1408 
1409     // Mask sign extend has an instruction.
1410     { ISD::SIGN_EXTEND, MVT::v2i8,   MVT::v2i1,  1 },
1411     { ISD::SIGN_EXTEND, MVT::v2i16,  MVT::v2i1,  1 },
1412     { ISD::SIGN_EXTEND, MVT::v4i8,   MVT::v4i1,  1 },
1413     { ISD::SIGN_EXTEND, MVT::v4i16,  MVT::v4i1,  1 },
1414     { ISD::SIGN_EXTEND, MVT::v8i8,   MVT::v8i1,  1 },
1415     { ISD::SIGN_EXTEND, MVT::v8i16,  MVT::v8i1,  1 },
1416     { ISD::SIGN_EXTEND, MVT::v16i8,  MVT::v16i1, 1 },
1417     { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i1, 1 },
1418     { ISD::SIGN_EXTEND, MVT::v32i8,  MVT::v32i1, 1 },
1419     { ISD::SIGN_EXTEND, MVT::v32i16, MVT::v32i1, 1 },
1420     { ISD::SIGN_EXTEND, MVT::v64i8,  MVT::v64i1, 1 },
1421 
1422     // Mask zero extend is a sext + shift.
1423     { ISD::ZERO_EXTEND, MVT::v2i8,   MVT::v2i1,  2 },
1424     { ISD::ZERO_EXTEND, MVT::v2i16,  MVT::v2i1,  2 },
1425     { ISD::ZERO_EXTEND, MVT::v4i8,   MVT::v4i1,  2 },
1426     { ISD::ZERO_EXTEND, MVT::v4i16,  MVT::v4i1,  2 },
1427     { ISD::ZERO_EXTEND, MVT::v8i8,   MVT::v8i1,  2 },
1428     { ISD::ZERO_EXTEND, MVT::v8i16,  MVT::v8i1,  2 },
1429     { ISD::ZERO_EXTEND, MVT::v16i8,  MVT::v16i1, 2 },
1430     { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i1, 2 },
1431     { ISD::ZERO_EXTEND, MVT::v32i8,  MVT::v32i1, 2 },
1432     { ISD::ZERO_EXTEND, MVT::v32i16, MVT::v32i1, 2 },
1433     { ISD::ZERO_EXTEND, MVT::v64i8,  MVT::v64i1, 2 },
1434 
1435     { ISD::TRUNCATE,    MVT::v32i8,  MVT::v32i16, 2 },
1436     { ISD::TRUNCATE,    MVT::v16i8,  MVT::v16i16, 2 }, // widen to zmm
1437     { ISD::TRUNCATE,    MVT::v2i1,   MVT::v2i8,   2 }, // widen to zmm
1438     { ISD::TRUNCATE,    MVT::v2i1,   MVT::v2i16,  2 }, // widen to zmm
1439     { ISD::TRUNCATE,    MVT::v4i1,   MVT::v4i8,   2 }, // widen to zmm
1440     { ISD::TRUNCATE,    MVT::v4i1,   MVT::v4i16,  2 }, // widen to zmm
1441     { ISD::TRUNCATE,    MVT::v8i1,   MVT::v8i8,   2 }, // widen to zmm
1442     { ISD::TRUNCATE,    MVT::v8i1,   MVT::v8i16,  2 }, // widen to zmm
1443     { ISD::TRUNCATE,    MVT::v16i1,  MVT::v16i8,  2 }, // widen to zmm
1444     { ISD::TRUNCATE,    MVT::v16i1,  MVT::v16i16, 2 }, // widen to zmm
1445     { ISD::TRUNCATE,    MVT::v32i1,  MVT::v32i8,  2 }, // widen to zmm
1446     { ISD::TRUNCATE,    MVT::v32i1,  MVT::v32i16, 2 },
1447     { ISD::TRUNCATE,    MVT::v64i1,  MVT::v64i8,  2 },
1448   };
1449 
1450   static const TypeConversionCostTblEntry AVX512DQConversionTbl[] = {
1451     { ISD::SINT_TO_FP,  MVT::v8f32,  MVT::v8i64,  1 },
1452     { ISD::SINT_TO_FP,  MVT::v8f64,  MVT::v8i64,  1 },
1453 
1454     { ISD::UINT_TO_FP,  MVT::v8f32,  MVT::v8i64,  1 },
1455     { ISD::UINT_TO_FP,  MVT::v8f64,  MVT::v8i64,  1 },
1456 
1457     { ISD::FP_TO_SINT,  MVT::v8i64,  MVT::v8f32,  1 },
1458     { ISD::FP_TO_SINT,  MVT::v8i64,  MVT::v8f64,  1 },
1459 
1460     { ISD::FP_TO_UINT,  MVT::v8i64,  MVT::v8f32,  1 },
1461     { ISD::FP_TO_UINT,  MVT::v8i64,  MVT::v8f64,  1 },
1462   };
1463 
1464   // TODO: For AVX512DQ + AVX512VL, we also have cheap casts for 128-bit and
1465   // 256-bit wide vectors.
1466 
1467   static const TypeConversionCostTblEntry AVX512FConversionTbl[] = {
1468     { ISD::FP_EXTEND, MVT::v8f64,   MVT::v8f32,  1 },
1469     { ISD::FP_EXTEND, MVT::v8f64,   MVT::v16f32, 3 },
1470     { ISD::FP_ROUND,  MVT::v8f32,   MVT::v8f64,  1 },
1471 
1472     { ISD::TRUNCATE,  MVT::v2i1,    MVT::v2i8,   3 }, // sext+vpslld+vptestmd
1473     { ISD::TRUNCATE,  MVT::v4i1,    MVT::v4i8,   3 }, // sext+vpslld+vptestmd
1474     { ISD::TRUNCATE,  MVT::v8i1,    MVT::v8i8,   3 }, // sext+vpslld+vptestmd
1475     { ISD::TRUNCATE,  MVT::v16i1,   MVT::v16i8,  3 }, // sext+vpslld+vptestmd
1476     { ISD::TRUNCATE,  MVT::v2i1,    MVT::v2i16,  3 }, // sext+vpsllq+vptestmq
1477     { ISD::TRUNCATE,  MVT::v4i1,    MVT::v4i16,  3 }, // sext+vpsllq+vptestmq
1478     { ISD::TRUNCATE,  MVT::v8i1,    MVT::v8i16,  3 }, // sext+vpsllq+vptestmq
1479     { ISD::TRUNCATE,  MVT::v16i1,   MVT::v16i16, 3 }, // sext+vpslld+vptestmd
1480     { ISD::TRUNCATE,  MVT::v2i1,    MVT::v2i32,  2 }, // zmm vpslld+vptestmd
1481     { ISD::TRUNCATE,  MVT::v4i1,    MVT::v4i32,  2 }, // zmm vpslld+vptestmd
1482     { ISD::TRUNCATE,  MVT::v8i1,    MVT::v8i32,  2 }, // zmm vpslld+vptestmd
1483     { ISD::TRUNCATE,  MVT::v16i1,   MVT::v16i32, 2 }, // vpslld+vptestmd
1484     { ISD::TRUNCATE,  MVT::v2i1,    MVT::v2i64,  2 }, // zmm vpsllq+vptestmq
1485     { ISD::TRUNCATE,  MVT::v4i1,    MVT::v4i64,  2 }, // zmm vpsllq+vptestmq
1486     { ISD::TRUNCATE,  MVT::v8i1,    MVT::v8i64,  2 }, // vpsllq+vptestmq
1487     { ISD::TRUNCATE,  MVT::v16i8,   MVT::v16i32, 2 },
1488     { ISD::TRUNCATE,  MVT::v16i16,  MVT::v16i32, 2 },
1489     { ISD::TRUNCATE,  MVT::v8i8,    MVT::v8i64,  2 },
1490     { ISD::TRUNCATE,  MVT::v8i16,   MVT::v8i64,  2 },
1491     { ISD::TRUNCATE,  MVT::v8i32,   MVT::v8i64,  1 },
1492     { ISD::TRUNCATE,  MVT::v4i32,   MVT::v4i64,  1 }, // zmm vpmovqd
1493     { ISD::TRUNCATE,  MVT::v16i8,   MVT::v16i64, 5 },// 2*vpmovqd+concat+vpmovdb
1494 
1495     { ISD::TRUNCATE,  MVT::v16i8,  MVT::v16i16,  3 }, // extend to v16i32
1496     { ISD::TRUNCATE,  MVT::v32i8,  MVT::v32i16,  8 },
1497 
1498     // Sign extend is zmm vpternlogd+vptruncdb.
1499     // Zero extend is zmm broadcast load+vptruncdw.
1500     { ISD::SIGN_EXTEND, MVT::v2i8,   MVT::v2i1,   3 },
1501     { ISD::ZERO_EXTEND, MVT::v2i8,   MVT::v2i1,   4 },
1502     { ISD::SIGN_EXTEND, MVT::v4i8,   MVT::v4i1,   3 },
1503     { ISD::ZERO_EXTEND, MVT::v4i8,   MVT::v4i1,   4 },
1504     { ISD::SIGN_EXTEND, MVT::v8i8,   MVT::v8i1,   3 },
1505     { ISD::ZERO_EXTEND, MVT::v8i8,   MVT::v8i1,   4 },
1506     { ISD::SIGN_EXTEND, MVT::v16i8,  MVT::v16i1,  3 },
1507     { ISD::ZERO_EXTEND, MVT::v16i8,  MVT::v16i1,  4 },
1508 
1509     // Sign extend is zmm vpternlogd+vptruncdw.
1510     // Zero extend is zmm vpternlogd+vptruncdw+vpsrlw.
1511     { ISD::SIGN_EXTEND, MVT::v2i16,  MVT::v2i1,   3 },
1512     { ISD::ZERO_EXTEND, MVT::v2i16,  MVT::v2i1,   4 },
1513     { ISD::SIGN_EXTEND, MVT::v4i16,  MVT::v4i1,   3 },
1514     { ISD::ZERO_EXTEND, MVT::v4i16,  MVT::v4i1,   4 },
1515     { ISD::SIGN_EXTEND, MVT::v8i16,  MVT::v8i1,   3 },
1516     { ISD::ZERO_EXTEND, MVT::v8i16,  MVT::v8i1,   4 },
1517     { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i1,  3 },
1518     { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i1,  4 },
1519 
1520     { ISD::SIGN_EXTEND, MVT::v2i32,  MVT::v2i1,   1 }, // zmm vpternlogd
1521     { ISD::ZERO_EXTEND, MVT::v2i32,  MVT::v2i1,   2 }, // zmm vpternlogd+psrld
1522     { ISD::SIGN_EXTEND, MVT::v4i32,  MVT::v4i1,   1 }, // zmm vpternlogd
1523     { ISD::ZERO_EXTEND, MVT::v4i32,  MVT::v4i1,   2 }, // zmm vpternlogd+psrld
1524     { ISD::SIGN_EXTEND, MVT::v8i32,  MVT::v8i1,   1 }, // zmm vpternlogd
1525     { ISD::ZERO_EXTEND, MVT::v8i32,  MVT::v8i1,   2 }, // zmm vpternlogd+psrld
1526     { ISD::SIGN_EXTEND, MVT::v2i64,  MVT::v2i1,   1 }, // zmm vpternlogq
1527     { ISD::ZERO_EXTEND, MVT::v2i64,  MVT::v2i1,   2 }, // zmm vpternlogq+psrlq
1528     { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v4i1,   1 }, // zmm vpternlogq
1529     { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v4i1,   2 }, // zmm vpternlogq+psrlq
1530 
1531     { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i1,  1 }, // vpternlogd
1532     { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i1,  2 }, // vpternlogd+psrld
1533     { ISD::SIGN_EXTEND, MVT::v8i64,  MVT::v8i1,   1 }, // vpternlogq
1534     { ISD::ZERO_EXTEND, MVT::v8i64,  MVT::v8i1,   2 }, // vpternlogq+psrlq
1535 
1536     { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i8,  1 },
1537     { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i8,  1 },
1538     { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i16, 1 },
1539     { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i16, 1 },
1540     { ISD::SIGN_EXTEND, MVT::v8i64,  MVT::v8i8,   1 },
1541     { ISD::ZERO_EXTEND, MVT::v8i64,  MVT::v8i8,   1 },
1542     { ISD::SIGN_EXTEND, MVT::v8i64,  MVT::v8i16,  1 },
1543     { ISD::ZERO_EXTEND, MVT::v8i64,  MVT::v8i16,  1 },
1544     { ISD::SIGN_EXTEND, MVT::v8i64,  MVT::v8i32,  1 },
1545     { ISD::ZERO_EXTEND, MVT::v8i64,  MVT::v8i32,  1 },
1546 
1547     { ISD::SIGN_EXTEND, MVT::v32i16, MVT::v32i8, 3 }, // FIXME: May not be right
1548     { ISD::ZERO_EXTEND, MVT::v32i16, MVT::v32i8, 3 }, // FIXME: May not be right
1549 
1550     { ISD::SINT_TO_FP,  MVT::v8f64,  MVT::v8i1,   4 },
1551     { ISD::SINT_TO_FP,  MVT::v16f32, MVT::v16i1,  3 },
1552     { ISD::SINT_TO_FP,  MVT::v8f64,  MVT::v8i8,   2 },
1553     { ISD::SINT_TO_FP,  MVT::v16f32, MVT::v16i8,  2 },
1554     { ISD::SINT_TO_FP,  MVT::v8f64,  MVT::v8i16,  2 },
1555     { ISD::SINT_TO_FP,  MVT::v16f32, MVT::v16i16, 2 },
1556     { ISD::SINT_TO_FP,  MVT::v16f32, MVT::v16i32, 1 },
1557     { ISD::SINT_TO_FP,  MVT::v8f64,  MVT::v8i32,  1 },
1558 
1559     { ISD::UINT_TO_FP,  MVT::v8f64,  MVT::v8i1,   4 },
1560     { ISD::UINT_TO_FP,  MVT::v16f32, MVT::v16i1,  3 },
1561     { ISD::UINT_TO_FP,  MVT::v8f64,  MVT::v8i8,   2 },
1562     { ISD::UINT_TO_FP,  MVT::v16f32, MVT::v16i8,  2 },
1563     { ISD::UINT_TO_FP,  MVT::v8f64,  MVT::v8i16,  2 },
1564     { ISD::UINT_TO_FP,  MVT::v16f32, MVT::v16i16, 2 },
1565     { ISD::UINT_TO_FP,  MVT::v8f64,  MVT::v8i32,  1 },
1566     { ISD::UINT_TO_FP,  MVT::v16f32, MVT::v16i32, 1 },
1567     { ISD::UINT_TO_FP,  MVT::v8f32,  MVT::v8i64, 26 },
1568     { ISD::UINT_TO_FP,  MVT::v8f64,  MVT::v8i64,  5 },
1569 
1570     { ISD::FP_TO_SINT,  MVT::v8i8,   MVT::v8f64,  3 },
1571     { ISD::FP_TO_SINT,  MVT::v8i16,  MVT::v8f64,  3 },
1572     { ISD::FP_TO_SINT,  MVT::v16i8,  MVT::v16f32, 3 },
1573     { ISD::FP_TO_SINT,  MVT::v16i16, MVT::v16f32, 3 },
1574 
1575     { ISD::FP_TO_UINT,  MVT::v8i32,  MVT::v8f64,  1 },
1576     { ISD::FP_TO_UINT,  MVT::v8i16,  MVT::v8f64,  3 },
1577     { ISD::FP_TO_UINT,  MVT::v8i8,   MVT::v8f64,  3 },
1578     { ISD::FP_TO_UINT,  MVT::v16i32, MVT::v16f32, 1 },
1579     { ISD::FP_TO_UINT,  MVT::v16i16, MVT::v16f32, 3 },
1580     { ISD::FP_TO_UINT,  MVT::v16i8,  MVT::v16f32, 3 },
1581   };
1582 
1583   static const TypeConversionCostTblEntry AVX512BWVLConversionTbl[] {
1584     // Mask sign extend has an instruction.
1585     { ISD::SIGN_EXTEND, MVT::v2i8,   MVT::v2i1,  1 },
1586     { ISD::SIGN_EXTEND, MVT::v2i16,  MVT::v2i1,  1 },
1587     { ISD::SIGN_EXTEND, MVT::v4i8,   MVT::v4i1,  1 },
1588     { ISD::SIGN_EXTEND, MVT::v4i16,  MVT::v4i1,  1 },
1589     { ISD::SIGN_EXTEND, MVT::v8i8,   MVT::v8i1,  1 },
1590     { ISD::SIGN_EXTEND, MVT::v8i16,  MVT::v8i1,  1 },
1591     { ISD::SIGN_EXTEND, MVT::v16i8,  MVT::v16i1, 1 },
1592     { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i1, 1 },
1593     { ISD::SIGN_EXTEND, MVT::v32i8,  MVT::v32i1, 1 },
1594 
1595     // Mask zero extend is a sext + shift.
1596     { ISD::ZERO_EXTEND, MVT::v2i8,   MVT::v2i1,  2 },
1597     { ISD::ZERO_EXTEND, MVT::v2i16,  MVT::v2i1,  2 },
1598     { ISD::ZERO_EXTEND, MVT::v4i8,   MVT::v4i1,  2 },
1599     { ISD::ZERO_EXTEND, MVT::v4i16,  MVT::v4i1,  2 },
1600     { ISD::ZERO_EXTEND, MVT::v8i8,   MVT::v8i1,  2 },
1601     { ISD::ZERO_EXTEND, MVT::v8i16,  MVT::v8i1,  2 },
1602     { ISD::ZERO_EXTEND, MVT::v16i8,  MVT::v16i1, 2 },
1603     { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i1, 2 },
1604     { ISD::ZERO_EXTEND, MVT::v32i8,  MVT::v32i1, 2 },
1605 
1606     { ISD::TRUNCATE,    MVT::v16i8,  MVT::v16i16, 2 },
1607     { ISD::TRUNCATE,    MVT::v2i1,   MVT::v2i8,   2 }, // vpsllw+vptestmb
1608     { ISD::TRUNCATE,    MVT::v2i1,   MVT::v2i16,  2 }, // vpsllw+vptestmw
1609     { ISD::TRUNCATE,    MVT::v4i1,   MVT::v4i8,   2 }, // vpsllw+vptestmb
1610     { ISD::TRUNCATE,    MVT::v4i1,   MVT::v4i16,  2 }, // vpsllw+vptestmw
1611     { ISD::TRUNCATE,    MVT::v8i1,   MVT::v8i8,   2 }, // vpsllw+vptestmb
1612     { ISD::TRUNCATE,    MVT::v8i1,   MVT::v8i16,  2 }, // vpsllw+vptestmw
1613     { ISD::TRUNCATE,    MVT::v16i1,  MVT::v16i8,  2 }, // vpsllw+vptestmb
1614     { ISD::TRUNCATE,    MVT::v16i1,  MVT::v16i16, 2 }, // vpsllw+vptestmw
1615     { ISD::TRUNCATE,    MVT::v32i1,  MVT::v32i8,  2 }, // vpsllw+vptestmb
1616   };
1617 
1618   static const TypeConversionCostTblEntry AVX512DQVLConversionTbl[] = {
1619     { ISD::SINT_TO_FP,  MVT::v2f32,  MVT::v2i64,  1 },
1620     { ISD::SINT_TO_FP,  MVT::v2f64,  MVT::v2i64,  1 },
1621     { ISD::SINT_TO_FP,  MVT::v4f32,  MVT::v4i64,  1 },
1622     { ISD::SINT_TO_FP,  MVT::v4f64,  MVT::v4i64,  1 },
1623 
1624     { ISD::UINT_TO_FP,  MVT::v2f32,  MVT::v2i64,  1 },
1625     { ISD::UINT_TO_FP,  MVT::v2f64,  MVT::v2i64,  1 },
1626     { ISD::UINT_TO_FP,  MVT::v4f32,  MVT::v4i64,  1 },
1627     { ISD::UINT_TO_FP,  MVT::v4f64,  MVT::v4i64,  1 },
1628 
1629     { ISD::FP_TO_SINT,  MVT::v2i64,  MVT::v2f32,  1 },
1630     { ISD::FP_TO_SINT,  MVT::v4i64,  MVT::v4f32,  1 },
1631     { ISD::FP_TO_SINT,  MVT::v2i64,  MVT::v2f64,  1 },
1632     { ISD::FP_TO_SINT,  MVT::v4i64,  MVT::v4f64,  1 },
1633 
1634     { ISD::FP_TO_UINT,  MVT::v2i64,  MVT::v2f32,  1 },
1635     { ISD::FP_TO_UINT,  MVT::v4i64,  MVT::v4f32,  1 },
1636     { ISD::FP_TO_UINT,  MVT::v2i64,  MVT::v2f64,  1 },
1637     { ISD::FP_TO_UINT,  MVT::v4i64,  MVT::v4f64,  1 },
1638   };
1639 
1640   static const TypeConversionCostTblEntry AVX512VLConversionTbl[] = {
1641     { ISD::TRUNCATE,  MVT::v2i1,    MVT::v2i8,   3 }, // sext+vpslld+vptestmd
1642     { ISD::TRUNCATE,  MVT::v4i1,    MVT::v4i8,   3 }, // sext+vpslld+vptestmd
1643     { ISD::TRUNCATE,  MVT::v8i1,    MVT::v8i8,   3 }, // sext+vpslld+vptestmd
1644     { ISD::TRUNCATE,  MVT::v16i1,   MVT::v16i8,  8 }, // split+2*v8i8
1645     { ISD::TRUNCATE,  MVT::v2i1,    MVT::v2i16,  3 }, // sext+vpsllq+vptestmq
1646     { ISD::TRUNCATE,  MVT::v4i1,    MVT::v4i16,  3 }, // sext+vpsllq+vptestmq
1647     { ISD::TRUNCATE,  MVT::v8i1,    MVT::v8i16,  3 }, // sext+vpsllq+vptestmq
1648     { ISD::TRUNCATE,  MVT::v16i1,   MVT::v16i16, 8 }, // split+2*v8i16
1649     { ISD::TRUNCATE,  MVT::v2i1,    MVT::v2i32,  2 }, // vpslld+vptestmd
1650     { ISD::TRUNCATE,  MVT::v4i1,    MVT::v4i32,  2 }, // vpslld+vptestmd
1651     { ISD::TRUNCATE,  MVT::v8i1,    MVT::v8i32,  2 }, // vpslld+vptestmd
1652     { ISD::TRUNCATE,  MVT::v2i1,    MVT::v2i64,  2 }, // vpsllq+vptestmq
1653     { ISD::TRUNCATE,  MVT::v4i1,    MVT::v4i64,  2 }, // vpsllq+vptestmq
1654     { ISD::TRUNCATE,  MVT::v4i32,   MVT::v4i64,  1 }, // vpmovqd
1655 
1656     // sign extend is vpcmpeq+maskedmove+vpmovdw+vpacksswb
1657     // zero extend is vpcmpeq+maskedmove+vpmovdw+vpsrlw+vpackuswb
1658     { ISD::SIGN_EXTEND, MVT::v2i8,   MVT::v2i1,   5 },
1659     { ISD::ZERO_EXTEND, MVT::v2i8,   MVT::v2i1,   6 },
1660     { ISD::SIGN_EXTEND, MVT::v4i8,   MVT::v4i1,   5 },
1661     { ISD::ZERO_EXTEND, MVT::v4i8,   MVT::v4i1,   6 },
1662     { ISD::SIGN_EXTEND, MVT::v8i8,   MVT::v8i1,   5 },
1663     { ISD::ZERO_EXTEND, MVT::v8i8,   MVT::v8i1,   6 },
1664     { ISD::SIGN_EXTEND, MVT::v16i8,  MVT::v16i1, 10 },
1665     { ISD::ZERO_EXTEND, MVT::v16i8,  MVT::v16i1, 12 },
1666 
1667     // sign extend is vpcmpeq+maskedmove+vpmovdw
1668     // zero extend is vpcmpeq+maskedmove+vpmovdw+vpsrlw
1669     { ISD::SIGN_EXTEND, MVT::v2i16,  MVT::v2i1,   4 },
1670     { ISD::ZERO_EXTEND, MVT::v2i16,  MVT::v2i1,   5 },
1671     { ISD::SIGN_EXTEND, MVT::v4i16,  MVT::v4i1,   4 },
1672     { ISD::ZERO_EXTEND, MVT::v4i16,  MVT::v4i1,   5 },
1673     { ISD::SIGN_EXTEND, MVT::v8i16,  MVT::v8i1,   4 },
1674     { ISD::ZERO_EXTEND, MVT::v8i16,  MVT::v8i1,   5 },
1675     { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i1, 10 },
1676     { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i1, 12 },
1677 
1678     { ISD::SIGN_EXTEND, MVT::v2i32,  MVT::v2i1,   1 }, // vpternlogd
1679     { ISD::ZERO_EXTEND, MVT::v2i32,  MVT::v2i1,   2 }, // vpternlogd+psrld
1680     { ISD::SIGN_EXTEND, MVT::v4i32,  MVT::v4i1,   1 }, // vpternlogd
1681     { ISD::ZERO_EXTEND, MVT::v4i32,  MVT::v4i1,   2 }, // vpternlogd+psrld
1682     { ISD::SIGN_EXTEND, MVT::v8i32,  MVT::v8i1,   1 }, // vpternlogd
1683     { ISD::ZERO_EXTEND, MVT::v8i32,  MVT::v8i1,   2 }, // vpternlogd+psrld
1684     { ISD::SIGN_EXTEND, MVT::v2i64,  MVT::v2i1,   1 }, // vpternlogq
1685     { ISD::ZERO_EXTEND, MVT::v2i64,  MVT::v2i1,   2 }, // vpternlogq+psrlq
1686     { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v4i1,   1 }, // vpternlogq
1687     { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v4i1,   2 }, // vpternlogq+psrlq
1688 
1689     { ISD::UINT_TO_FP,  MVT::v2f64,  MVT::v2i8,   2 },
1690     { ISD::UINT_TO_FP,  MVT::v4f64,  MVT::v4i8,   2 },
1691     { ISD::UINT_TO_FP,  MVT::v8f32,  MVT::v8i8,   2 },
1692     { ISD::UINT_TO_FP,  MVT::v2f64,  MVT::v2i16,  5 },
1693     { ISD::UINT_TO_FP,  MVT::v4f64,  MVT::v4i16,  2 },
1694     { ISD::UINT_TO_FP,  MVT::v8f32,  MVT::v8i16,  2 },
1695     { ISD::UINT_TO_FP,  MVT::v2f32,  MVT::v2i32,  2 },
1696     { ISD::UINT_TO_FP,  MVT::v2f64,  MVT::v2i32,  1 },
1697     { ISD::UINT_TO_FP,  MVT::v4f32,  MVT::v4i32,  1 },
1698     { ISD::UINT_TO_FP,  MVT::v4f64,  MVT::v4i32,  1 },
1699     { ISD::UINT_TO_FP,  MVT::v8f32,  MVT::v8i32,  1 },
1700     { ISD::UINT_TO_FP,  MVT::v2f32,  MVT::v2i64,  5 },
1701     { ISD::UINT_TO_FP,  MVT::v2f64,  MVT::v2i64,  5 },
1702     { ISD::UINT_TO_FP,  MVT::v4f64,  MVT::v4i64,  5 },
1703 
1704     { ISD::UINT_TO_FP,  MVT::f32,    MVT::i64,    1 },
1705     { ISD::UINT_TO_FP,  MVT::f64,    MVT::i64,    1 },
1706 
1707     { ISD::FP_TO_SINT,  MVT::v8i8,   MVT::v8f32,  3 },
1708     { ISD::FP_TO_UINT,  MVT::v8i8,   MVT::v8f32,  3 },
1709 
1710     { ISD::FP_TO_UINT,  MVT::i64,    MVT::f32,    1 },
1711     { ISD::FP_TO_UINT,  MVT::i64,    MVT::f64,    1 },
1712 
1713     { ISD::FP_TO_UINT,  MVT::v2i32,  MVT::v2f32,  1 },
1714     { ISD::FP_TO_UINT,  MVT::v4i32,  MVT::v4f32,  1 },
1715     { ISD::FP_TO_UINT,  MVT::v2i32,  MVT::v2f64,  1 },
1716     { ISD::FP_TO_UINT,  MVT::v4i32,  MVT::v4f64,  1 },
1717     { ISD::FP_TO_UINT,  MVT::v8i32,  MVT::v8f32,  1 },
1718   };
1719 
1720   static const TypeConversionCostTblEntry AVX2ConversionTbl[] = {
1721     { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v4i1,   3 },
1722     { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v4i1,   3 },
1723     { ISD::SIGN_EXTEND, MVT::v8i32,  MVT::v8i1,   3 },
1724     { ISD::ZERO_EXTEND, MVT::v8i32,  MVT::v8i1,   3 },
1725     { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v4i8,   1 },
1726     { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v4i8,   1 },
1727     { ISD::SIGN_EXTEND, MVT::v8i32,  MVT::v8i8,   1 },
1728     { ISD::ZERO_EXTEND, MVT::v8i32,  MVT::v8i8,   1 },
1729     { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i1,  1 },
1730     { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i1,  1 },
1731     { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i8,  1 },
1732     { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i8,  1 },
1733     { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v4i16,  1 },
1734     { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v4i16,  1 },
1735     { ISD::SIGN_EXTEND, MVT::v8i32,  MVT::v8i16,  1 },
1736     { ISD::ZERO_EXTEND, MVT::v8i32,  MVT::v8i16,  1 },
1737     { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v4i32,  1 },
1738     { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v4i32,  1 },
1739     { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i16, 3 },
1740     { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i16, 3 },
1741 
1742     { ISD::TRUNCATE,    MVT::v4i32,  MVT::v4i64,  2 },
1743     { ISD::TRUNCATE,    MVT::v8i1,   MVT::v8i32,  2 },
1744 
1745     { ISD::TRUNCATE,    MVT::v4i8,   MVT::v4i64,  2 },
1746     { ISD::TRUNCATE,    MVT::v4i16,  MVT::v4i64,  2 },
1747     { ISD::TRUNCATE,    MVT::v8i8,   MVT::v8i32,  2 },
1748     { ISD::TRUNCATE,    MVT::v8i16,  MVT::v8i32,  2 },
1749 
1750     { ISD::FP_EXTEND,   MVT::v8f64,  MVT::v8f32,  3 },
1751     { ISD::FP_ROUND,    MVT::v8f32,  MVT::v8f64,  3 },
1752 
1753     { ISD::UINT_TO_FP,  MVT::v8f32,  MVT::v8i32,  8 },
1754   };
1755 
1756   static const TypeConversionCostTblEntry AVXConversionTbl[] = {
1757     { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v4i1,  6 },
1758     { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v4i1,  4 },
1759     { ISD::SIGN_EXTEND, MVT::v8i32,  MVT::v8i1,  7 },
1760     { ISD::ZERO_EXTEND, MVT::v8i32,  MVT::v8i1,  4 },
1761     { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v4i8,  4 },
1762     { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v4i8,  4 },
1763     { ISD::SIGN_EXTEND, MVT::v8i32,  MVT::v8i8,  4 },
1764     { ISD::ZERO_EXTEND, MVT::v8i32,  MVT::v8i8,  4 },
1765     { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i1, 4 },
1766     { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i1, 4 },
1767     { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i8, 4 },
1768     { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i8, 4 },
1769     { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v4i16, 4 },
1770     { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v4i16, 3 },
1771     { ISD::SIGN_EXTEND, MVT::v8i32,  MVT::v8i16, 4 },
1772     { ISD::ZERO_EXTEND, MVT::v8i32,  MVT::v8i16, 4 },
1773     { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v4i32, 4 },
1774     { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v4i32, 4 },
1775 
1776     { ISD::TRUNCATE,    MVT::v4i1,  MVT::v4i64,  4 },
1777     { ISD::TRUNCATE,    MVT::v8i1,  MVT::v8i32,  5 },
1778     { ISD::TRUNCATE,    MVT::v16i1, MVT::v16i16, 4 },
1779     { ISD::TRUNCATE,    MVT::v8i1,  MVT::v8i64,  9 },
1780     { ISD::TRUNCATE,    MVT::v16i1, MVT::v16i64, 11 },
1781 
1782     { ISD::TRUNCATE,    MVT::v16i8, MVT::v16i16, 4 },
1783     { ISD::TRUNCATE,    MVT::v8i8,  MVT::v8i32,  4 },
1784     { ISD::TRUNCATE,    MVT::v8i16, MVT::v8i32,  5 },
1785     { ISD::TRUNCATE,    MVT::v4i8,  MVT::v4i64,  4 },
1786     { ISD::TRUNCATE,    MVT::v4i16, MVT::v4i64,  4 },
1787     { ISD::TRUNCATE,    MVT::v4i32, MVT::v4i64,  2 },
1788     { ISD::TRUNCATE,    MVT::v8i8,  MVT::v8i64, 11 },
1789     { ISD::TRUNCATE,    MVT::v8i16, MVT::v8i64,  9 },
1790     { ISD::TRUNCATE,    MVT::v8i32, MVT::v8i64,  3 },
1791     { ISD::TRUNCATE,    MVT::v16i8, MVT::v16i64, 11 },
1792 
1793     { ISD::SINT_TO_FP,  MVT::v4f32, MVT::v4i1,  3 },
1794     { ISD::SINT_TO_FP,  MVT::v4f64, MVT::v4i1,  3 },
1795     { ISD::SINT_TO_FP,  MVT::v8f32, MVT::v8i1,  8 },
1796     { ISD::SINT_TO_FP,  MVT::v4f32, MVT::v4i8,  3 },
1797     { ISD::SINT_TO_FP,  MVT::v4f64, MVT::v4i8,  3 },
1798     { ISD::SINT_TO_FP,  MVT::v8f32, MVT::v8i8,  8 },
1799     { ISD::SINT_TO_FP,  MVT::v4f32, MVT::v4i16, 3 },
1800     { ISD::SINT_TO_FP,  MVT::v4f64, MVT::v4i16, 3 },
1801     { ISD::SINT_TO_FP,  MVT::v8f32, MVT::v8i16, 5 },
1802     { ISD::SINT_TO_FP,  MVT::v4f32, MVT::v4i32, 1 },
1803     { ISD::SINT_TO_FP,  MVT::v4f64, MVT::v4i32, 1 },
1804     { ISD::SINT_TO_FP,  MVT::v8f32, MVT::v8i32, 1 },
1805 
1806     { ISD::UINT_TO_FP,  MVT::v4f32, MVT::v4i1,  7 },
1807     { ISD::UINT_TO_FP,  MVT::v4f64, MVT::v4i1,  7 },
1808     { ISD::UINT_TO_FP,  MVT::v8f32, MVT::v8i1,  6 },
1809     { ISD::UINT_TO_FP,  MVT::v4f32, MVT::v4i8,  2 },
1810     { ISD::UINT_TO_FP,  MVT::v4f64, MVT::v4i8,  2 },
1811     { ISD::UINT_TO_FP,  MVT::v8f32, MVT::v8i8,  5 },
1812     { ISD::UINT_TO_FP,  MVT::v4f32, MVT::v4i16, 2 },
1813     { ISD::UINT_TO_FP,  MVT::v4f64, MVT::v4i16, 2 },
1814     { ISD::UINT_TO_FP,  MVT::v8f32, MVT::v8i16, 5 },
1815     { ISD::UINT_TO_FP,  MVT::v2f64, MVT::v2i32, 6 },
1816     { ISD::UINT_TO_FP,  MVT::v4f32, MVT::v4i32, 6 },
1817     { ISD::UINT_TO_FP,  MVT::v4f64, MVT::v4i32, 6 },
1818     { ISD::UINT_TO_FP,  MVT::v8f32, MVT::v8i32, 9 },
1819     { ISD::UINT_TO_FP,  MVT::v2f64, MVT::v2i64, 5 },
1820     { ISD::UINT_TO_FP,  MVT::v4f64, MVT::v4i64, 6 },
1821     // The generic code to compute the scalar overhead is currently broken.
1822     // Workaround this limitation by estimating the scalarization overhead
1823     // here. We have roughly 10 instructions per scalar element.
1824     // Multiply that by the vector width.
1825     // FIXME: remove that when PR19268 is fixed.
1826     { ISD::SINT_TO_FP,  MVT::v4f64, MVT::v4i64, 13 },
1827     { ISD::SINT_TO_FP,  MVT::v4f64, MVT::v4i64, 13 },
1828 
1829     { ISD::FP_TO_SINT,  MVT::v8i8,  MVT::v8f32, 4 },
1830     { ISD::FP_TO_SINT,  MVT::v4i8,  MVT::v4f64, 3 },
1831     { ISD::FP_TO_SINT,  MVT::v4i16, MVT::v4f64, 2 },
1832     { ISD::FP_TO_SINT,  MVT::v8i16, MVT::v8f32, 3 },
1833 
1834     { ISD::FP_TO_UINT,  MVT::v4i8,  MVT::v4f64, 3 },
1835     { ISD::FP_TO_UINT,  MVT::v4i16, MVT::v4f64, 2 },
1836     { ISD::FP_TO_UINT,  MVT::v8i8,  MVT::v8f32, 4 },
1837     { ISD::FP_TO_UINT,  MVT::v8i16, MVT::v8f32, 3 },
1838     // This node is expanded into scalarized operations but BasicTTI is overly
1839     // optimistic estimating its cost.  It computes 3 per element (one
1840     // vector-extract, one scalar conversion and one vector-insert).  The
1841     // problem is that the inserts form a read-modify-write chain so latency
1842     // should be factored in too.  Inflating the cost per element by 1.
1843     { ISD::FP_TO_UINT,  MVT::v8i32, MVT::v8f32, 8*4 },
1844     { ISD::FP_TO_UINT,  MVT::v4i32, MVT::v4f64, 4*4 },
1845 
1846     { ISD::FP_EXTEND,   MVT::v4f64,  MVT::v4f32,  1 },
1847     { ISD::FP_ROUND,    MVT::v4f32,  MVT::v4f64,  1 },
1848   };
1849 
1850   static const TypeConversionCostTblEntry SSE41ConversionTbl[] = {
1851     { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i8,    2 },
1852     { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i8,    2 },
1853     { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i16,   2 },
1854     { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i16,   2 },
1855     { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i32,   2 },
1856     { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i32,   2 },
1857 
1858     { ISD::ZERO_EXTEND, MVT::v4i16,  MVT::v4i8,   1 },
1859     { ISD::SIGN_EXTEND, MVT::v4i16,  MVT::v4i8,   2 },
1860     { ISD::ZERO_EXTEND, MVT::v4i32,  MVT::v4i8,   1 },
1861     { ISD::SIGN_EXTEND, MVT::v4i32,  MVT::v4i8,   1 },
1862     { ISD::ZERO_EXTEND, MVT::v8i16,  MVT::v8i8,   1 },
1863     { ISD::SIGN_EXTEND, MVT::v8i16,  MVT::v8i8,   1 },
1864     { ISD::ZERO_EXTEND, MVT::v8i32,  MVT::v8i8,   2 },
1865     { ISD::SIGN_EXTEND, MVT::v8i32,  MVT::v8i8,   2 },
1866     { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i8,  2 },
1867     { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i8,  2 },
1868     { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i8,  4 },
1869     { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i8,  4 },
1870     { ISD::ZERO_EXTEND, MVT::v4i32,  MVT::v4i16,  1 },
1871     { ISD::SIGN_EXTEND, MVT::v4i32,  MVT::v4i16,  1 },
1872     { ISD::ZERO_EXTEND, MVT::v8i32,  MVT::v8i16,  2 },
1873     { ISD::SIGN_EXTEND, MVT::v8i32,  MVT::v8i16,  2 },
1874     { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i16, 4 },
1875     { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i16, 4 },
1876 
1877     // These truncates end up widening elements.
1878     { ISD::TRUNCATE,    MVT::v2i1,   MVT::v2i8,   1 }, // PMOVXZBQ
1879     { ISD::TRUNCATE,    MVT::v2i1,   MVT::v2i16,  1 }, // PMOVXZWQ
1880     { ISD::TRUNCATE,    MVT::v4i1,   MVT::v4i8,   1 }, // PMOVXZBD
1881 
1882     { ISD::TRUNCATE,    MVT::v2i8,   MVT::v2i16,  1 },
1883     { ISD::TRUNCATE,    MVT::v4i8,   MVT::v4i16,  1 },
1884     { ISD::TRUNCATE,    MVT::v8i8,   MVT::v8i16,  1 },
1885     { ISD::TRUNCATE,    MVT::v4i8,   MVT::v4i32,  1 },
1886     { ISD::TRUNCATE,    MVT::v4i16,  MVT::v4i32,  1 },
1887     { ISD::TRUNCATE,    MVT::v8i8,   MVT::v8i32,  3 },
1888     { ISD::TRUNCATE,    MVT::v8i16,  MVT::v8i32,  3 },
1889     { ISD::TRUNCATE,    MVT::v16i16, MVT::v16i32, 6 },
1890     { ISD::TRUNCATE,    MVT::v2i8,   MVT::v2i64,  1 }, // PSHUFB
1891 
1892     { ISD::UINT_TO_FP,  MVT::f32,    MVT::i64,    4 },
1893     { ISD::UINT_TO_FP,  MVT::f64,    MVT::i64,    4 },
1894 
1895     { ISD::FP_TO_SINT,  MVT::v2i8,   MVT::v2f32,  3 },
1896     { ISD::FP_TO_SINT,  MVT::v2i8,   MVT::v2f64,  3 },
1897 
1898     { ISD::FP_TO_UINT,  MVT::v2i8,   MVT::v2f32,  3 },
1899     { ISD::FP_TO_UINT,  MVT::v2i8,   MVT::v2f64,  3 },
1900     { ISD::FP_TO_UINT,  MVT::v4i16,  MVT::v4f32,  2 },
1901   };
1902 
1903   static const TypeConversionCostTblEntry SSE2ConversionTbl[] = {
1904     // These are somewhat magic numbers justified by looking at the output of
1905     // Intel's IACA, running some kernels and making sure when we take
1906     // legalization into account the throughput will be overestimated.
1907     { ISD::SINT_TO_FP, MVT::v4f32, MVT::v16i8, 8 },
1908     { ISD::SINT_TO_FP, MVT::v2f64, MVT::v16i8, 16*10 },
1909     { ISD::SINT_TO_FP, MVT::v4f32, MVT::v8i16, 15 },
1910     { ISD::SINT_TO_FP, MVT::v2f64, MVT::v8i16, 8*10 },
1911     { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i32, 5 },
1912     { ISD::SINT_TO_FP, MVT::v2f64, MVT::v4i32, 2*10 },
1913     { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i32, 2*10 },
1914     { ISD::SINT_TO_FP, MVT::v4f32, MVT::v2i64, 15 },
1915     { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i64, 2*10 },
1916 
1917     { ISD::UINT_TO_FP, MVT::v2f64, MVT::v16i8, 16*10 },
1918     { ISD::UINT_TO_FP, MVT::v4f32, MVT::v16i8, 8 },
1919     { ISD::UINT_TO_FP, MVT::v4f32, MVT::v8i16, 15 },
1920     { ISD::UINT_TO_FP, MVT::v2f64, MVT::v8i16, 8*10 },
1921     { ISD::UINT_TO_FP, MVT::v2f64, MVT::v4i32, 4*10 },
1922     { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i32, 8 },
1923     { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i64, 6 },
1924     { ISD::UINT_TO_FP, MVT::v4f32, MVT::v2i64, 15 },
1925 
1926     { ISD::FP_TO_SINT,  MVT::v2i8,   MVT::v2f32,  4 },
1927     { ISD::FP_TO_SINT,  MVT::v2i16,  MVT::v2f32,  2 },
1928     { ISD::FP_TO_SINT,  MVT::v4i8,   MVT::v4f32,  3 },
1929     { ISD::FP_TO_SINT,  MVT::v4i16,  MVT::v4f32,  2 },
1930     { ISD::FP_TO_SINT,  MVT::v2i16,  MVT::v2f64,  2 },
1931     { ISD::FP_TO_SINT,  MVT::v2i8,   MVT::v2f64,  4 },
1932 
1933     { ISD::FP_TO_SINT,  MVT::v2i32,  MVT::v2f64,  1 },
1934 
1935     { ISD::UINT_TO_FP,  MVT::f32,    MVT::i64,    6 },
1936     { ISD::UINT_TO_FP,  MVT::f64,    MVT::i64,    6 },
1937 
1938     { ISD::FP_TO_UINT,  MVT::i64,    MVT::f32,    4 },
1939     { ISD::FP_TO_UINT,  MVT::i64,    MVT::f64,    4 },
1940     { ISD::FP_TO_UINT,  MVT::v2i8,   MVT::v2f32,  4 },
1941     { ISD::FP_TO_UINT,  MVT::v2i8,   MVT::v2f64,  4 },
1942     { ISD::FP_TO_UINT,  MVT::v4i8,   MVT::v4f32,  3 },
1943     { ISD::FP_TO_UINT,  MVT::v2i16,  MVT::v2f32,  2 },
1944     { ISD::FP_TO_UINT,  MVT::v2i16,  MVT::v2f64,  2 },
1945     { ISD::FP_TO_UINT,  MVT::v4i16,  MVT::v4f32,  4 },
1946 
1947     { ISD::ZERO_EXTEND, MVT::v4i16,  MVT::v4i8,   1 },
1948     { ISD::SIGN_EXTEND, MVT::v4i16,  MVT::v4i8,   6 },
1949     { ISD::ZERO_EXTEND, MVT::v4i32,  MVT::v4i8,   2 },
1950     { ISD::SIGN_EXTEND, MVT::v4i32,  MVT::v4i8,   3 },
1951     { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v4i8,   4 },
1952     { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v4i8,   8 },
1953     { ISD::ZERO_EXTEND, MVT::v8i16,  MVT::v8i8,   1 },
1954     { ISD::SIGN_EXTEND, MVT::v8i16,  MVT::v8i8,   2 },
1955     { ISD::ZERO_EXTEND, MVT::v8i32,  MVT::v8i8,   6 },
1956     { ISD::SIGN_EXTEND, MVT::v8i32,  MVT::v8i8,   6 },
1957     { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i8,  3 },
1958     { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i8,  4 },
1959     { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i8,  9 },
1960     { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i8,  12 },
1961     { ISD::ZERO_EXTEND, MVT::v4i32,  MVT::v4i16,  1 },
1962     { ISD::SIGN_EXTEND, MVT::v4i32,  MVT::v4i16,  2 },
1963     { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v4i16,  3 },
1964     { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v4i16,  10 },
1965     { ISD::ZERO_EXTEND, MVT::v8i32,  MVT::v8i16,  3 },
1966     { ISD::SIGN_EXTEND, MVT::v8i32,  MVT::v8i16,  4 },
1967     { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i16, 6 },
1968     { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i16, 8 },
1969     { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v4i32,  3 },
1970     { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v4i32,  5 },
1971 
1972     // These truncates are really widening elements.
1973     { ISD::TRUNCATE,    MVT::v2i1,   MVT::v2i32,  1 }, // PSHUFD
1974     { ISD::TRUNCATE,    MVT::v2i1,   MVT::v2i16,  2 }, // PUNPCKLWD+DQ
1975     { ISD::TRUNCATE,    MVT::v2i1,   MVT::v2i8,   3 }, // PUNPCKLBW+WD+PSHUFD
1976     { ISD::TRUNCATE,    MVT::v4i1,   MVT::v4i16,  1 }, // PUNPCKLWD
1977     { ISD::TRUNCATE,    MVT::v4i1,   MVT::v4i8,   2 }, // PUNPCKLBW+WD
1978     { ISD::TRUNCATE,    MVT::v8i1,   MVT::v8i8,   1 }, // PUNPCKLBW
1979 
1980     { ISD::TRUNCATE,    MVT::v2i8,   MVT::v2i16,  2 }, // PAND+PACKUSWB
1981     { ISD::TRUNCATE,    MVT::v4i8,   MVT::v4i16,  2 }, // PAND+PACKUSWB
1982     { ISD::TRUNCATE,    MVT::v8i8,   MVT::v8i16,  2 }, // PAND+PACKUSWB
1983     { ISD::TRUNCATE,    MVT::v16i8,  MVT::v16i16, 3 },
1984     { ISD::TRUNCATE,    MVT::v2i8,   MVT::v2i32,  3 }, // PAND+2*PACKUSWB
1985     { ISD::TRUNCATE,    MVT::v2i16,  MVT::v2i32,  1 },
1986     { ISD::TRUNCATE,    MVT::v4i8,   MVT::v4i32,  3 },
1987     { ISD::TRUNCATE,    MVT::v4i16,  MVT::v4i32,  3 },
1988     { ISD::TRUNCATE,    MVT::v8i8,   MVT::v8i32,  4 },
1989     { ISD::TRUNCATE,    MVT::v16i8,  MVT::v16i32, 7 },
1990     { ISD::TRUNCATE,    MVT::v8i16,  MVT::v8i32,  5 },
1991     { ISD::TRUNCATE,    MVT::v16i16, MVT::v16i32, 10 },
1992     { ISD::TRUNCATE,    MVT::v2i8,   MVT::v2i64,  4 }, // PAND+3*PACKUSWB
1993     { ISD::TRUNCATE,    MVT::v2i16,  MVT::v2i64,  2 }, // PSHUFD+PSHUFLW
1994     { ISD::TRUNCATE,    MVT::v2i32,  MVT::v2i64,  1 }, // PSHUFD
1995   };
1996 
1997   std::pair<int, MVT> LTSrc = TLI->getTypeLegalizationCost(DL, Src);
1998   std::pair<int, MVT> LTDest = TLI->getTypeLegalizationCost(DL, Dst);
1999 
2000   if (ST->hasSSE2() && !ST->hasAVX()) {
2001     if (const auto *Entry = ConvertCostTableLookup(SSE2ConversionTbl, ISD,
2002                                                    LTDest.second, LTSrc.second))
2003       return AdjustCost(LTSrc.first * Entry->Cost);
2004   }
2005 
2006   EVT SrcTy = TLI->getValueType(DL, Src);
2007   EVT DstTy = TLI->getValueType(DL, Dst);
2008 
2009   // The function getSimpleVT only handles simple value types.
2010   if (!SrcTy.isSimple() || !DstTy.isSimple())
2011     return AdjustCost(BaseT::getCastInstrCost(Opcode, Dst, Src, CCH, CostKind));
2012 
2013   MVT SimpleSrcTy = SrcTy.getSimpleVT();
2014   MVT SimpleDstTy = DstTy.getSimpleVT();
2015 
2016   if (ST->useAVX512Regs()) {
2017     if (ST->hasBWI())
2018       if (const auto *Entry = ConvertCostTableLookup(AVX512BWConversionTbl, ISD,
2019                                                      SimpleDstTy, SimpleSrcTy))
2020         return AdjustCost(Entry->Cost);
2021 
2022     if (ST->hasDQI())
2023       if (const auto *Entry = ConvertCostTableLookup(AVX512DQConversionTbl, ISD,
2024                                                      SimpleDstTy, SimpleSrcTy))
2025         return AdjustCost(Entry->Cost);
2026 
2027     if (ST->hasAVX512())
2028       if (const auto *Entry = ConvertCostTableLookup(AVX512FConversionTbl, ISD,
2029                                                      SimpleDstTy, SimpleSrcTy))
2030         return AdjustCost(Entry->Cost);
2031   }
2032 
2033   if (ST->hasBWI())
2034     if (const auto *Entry = ConvertCostTableLookup(AVX512BWVLConversionTbl, ISD,
2035                                                    SimpleDstTy, SimpleSrcTy))
2036       return AdjustCost(Entry->Cost);
2037 
2038   if (ST->hasDQI())
2039     if (const auto *Entry = ConvertCostTableLookup(AVX512DQVLConversionTbl, ISD,
2040                                                    SimpleDstTy, SimpleSrcTy))
2041       return AdjustCost(Entry->Cost);
2042 
2043   if (ST->hasAVX512())
2044     if (const auto *Entry = ConvertCostTableLookup(AVX512VLConversionTbl, ISD,
2045                                                    SimpleDstTy, SimpleSrcTy))
2046       return AdjustCost(Entry->Cost);
2047 
2048   if (ST->hasAVX2()) {
2049     if (const auto *Entry = ConvertCostTableLookup(AVX2ConversionTbl, ISD,
2050                                                    SimpleDstTy, SimpleSrcTy))
2051       return AdjustCost(Entry->Cost);
2052   }
2053 
2054   if (ST->hasAVX()) {
2055     if (const auto *Entry = ConvertCostTableLookup(AVXConversionTbl, ISD,
2056                                                    SimpleDstTy, SimpleSrcTy))
2057       return AdjustCost(Entry->Cost);
2058   }
2059 
2060   if (ST->hasSSE41()) {
2061     if (const auto *Entry = ConvertCostTableLookup(SSE41ConversionTbl, ISD,
2062                                                    SimpleDstTy, SimpleSrcTy))
2063       return AdjustCost(Entry->Cost);
2064   }
2065 
2066   if (ST->hasSSE2()) {
2067     if (const auto *Entry = ConvertCostTableLookup(SSE2ConversionTbl, ISD,
2068                                                    SimpleDstTy, SimpleSrcTy))
2069       return AdjustCost(Entry->Cost);
2070   }
2071 
2072   return AdjustCost(
2073       BaseT::getCastInstrCost(Opcode, Dst, Src, CCH, CostKind, I));
2074 }
2075 
2076 int X86TTIImpl::getCmpSelInstrCost(unsigned Opcode, Type *ValTy, Type *CondTy,
2077                                    TTI::TargetCostKind CostKind,
2078                                    const Instruction *I) {
2079   // TODO: Handle other cost kinds.
2080   if (CostKind != TTI::TCK_RecipThroughput)
2081     return BaseT::getCmpSelInstrCost(Opcode, ValTy, CondTy, CostKind, I);
2082 
2083   // Legalize the type.
2084   std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, ValTy);
2085 
2086   MVT MTy = LT.second;
2087 
2088   int ISD = TLI->InstructionOpcodeToISD(Opcode);
2089   assert(ISD && "Invalid opcode");
2090 
2091   unsigned ExtraCost = 0;
2092   if (I && (Opcode == Instruction::ICmp || Opcode == Instruction::FCmp)) {
2093     // Some vector comparison predicates cost extra instructions.
2094     if (MTy.isVector() &&
2095         !((ST->hasXOP() && (!ST->hasAVX2() || MTy.is128BitVector())) ||
2096           (ST->hasAVX512() && 32 <= MTy.getScalarSizeInBits()) ||
2097           ST->hasBWI())) {
2098       switch (cast<CmpInst>(I)->getPredicate()) {
2099       case CmpInst::Predicate::ICMP_NE:
2100         // xor(cmpeq(x,y),-1)
2101         ExtraCost = 1;
2102         break;
2103       case CmpInst::Predicate::ICMP_SGE:
2104       case CmpInst::Predicate::ICMP_SLE:
2105         // xor(cmpgt(x,y),-1)
2106         ExtraCost = 1;
2107         break;
2108       case CmpInst::Predicate::ICMP_ULT:
2109       case CmpInst::Predicate::ICMP_UGT:
2110         // cmpgt(xor(x,signbit),xor(y,signbit))
2111         // xor(cmpeq(pmaxu(x,y),x),-1)
2112         ExtraCost = 2;
2113         break;
2114       case CmpInst::Predicate::ICMP_ULE:
2115       case CmpInst::Predicate::ICMP_UGE:
2116         if ((ST->hasSSE41() && MTy.getScalarSizeInBits() == 32) ||
2117             (ST->hasSSE2() && MTy.getScalarSizeInBits() < 32)) {
2118           // cmpeq(psubus(x,y),0)
2119           // cmpeq(pminu(x,y),x)
2120           ExtraCost = 1;
2121         } else {
2122           // xor(cmpgt(xor(x,signbit),xor(y,signbit)),-1)
2123           ExtraCost = 3;
2124         }
2125         break;
2126       default:
2127         break;
2128       }
2129     }
2130   }
2131 
2132   static const CostTblEntry SLMCostTbl[] = {
2133     // slm pcmpeq/pcmpgt throughput is 2
2134     { ISD::SETCC,   MVT::v2i64,   2 },
2135   };
2136 
2137   static const CostTblEntry AVX512BWCostTbl[] = {
2138     { ISD::SETCC,   MVT::v32i16,  1 },
2139     { ISD::SETCC,   MVT::v64i8,   1 },
2140 
2141     { ISD::SELECT,  MVT::v32i16,  1 },
2142     { ISD::SELECT,  MVT::v64i8,   1 },
2143   };
2144 
2145   static const CostTblEntry AVX512CostTbl[] = {
2146     { ISD::SETCC,   MVT::v8i64,   1 },
2147     { ISD::SETCC,   MVT::v16i32,  1 },
2148     { ISD::SETCC,   MVT::v8f64,   1 },
2149     { ISD::SETCC,   MVT::v16f32,  1 },
2150 
2151     { ISD::SELECT,  MVT::v8i64,   1 },
2152     { ISD::SELECT,  MVT::v16i32,  1 },
2153     { ISD::SELECT,  MVT::v8f64,   1 },
2154     { ISD::SELECT,  MVT::v16f32,  1 },
2155 
2156     { ISD::SETCC,   MVT::v32i16,  2 }, // FIXME: should probably be 4
2157     { ISD::SETCC,   MVT::v64i8,   2 }, // FIXME: should probably be 4
2158 
2159     { ISD::SELECT,  MVT::v32i16,  2 }, // FIXME: should be 3
2160     { ISD::SELECT,  MVT::v64i8,   2 }, // FIXME: should be 3
2161   };
2162 
2163   static const CostTblEntry AVX2CostTbl[] = {
2164     { ISD::SETCC,   MVT::v4i64,   1 },
2165     { ISD::SETCC,   MVT::v8i32,   1 },
2166     { ISD::SETCC,   MVT::v16i16,  1 },
2167     { ISD::SETCC,   MVT::v32i8,   1 },
2168 
2169     { ISD::SELECT,  MVT::v4i64,   1 }, // pblendvb
2170     { ISD::SELECT,  MVT::v8i32,   1 }, // pblendvb
2171     { ISD::SELECT,  MVT::v16i16,  1 }, // pblendvb
2172     { ISD::SELECT,  MVT::v32i8,   1 }, // pblendvb
2173   };
2174 
2175   static const CostTblEntry AVX1CostTbl[] = {
2176     { ISD::SETCC,   MVT::v4f64,   1 },
2177     { ISD::SETCC,   MVT::v8f32,   1 },
2178     // AVX1 does not support 8-wide integer compare.
2179     { ISD::SETCC,   MVT::v4i64,   4 },
2180     { ISD::SETCC,   MVT::v8i32,   4 },
2181     { ISD::SETCC,   MVT::v16i16,  4 },
2182     { ISD::SETCC,   MVT::v32i8,   4 },
2183 
2184     { ISD::SELECT,  MVT::v4f64,   1 }, // vblendvpd
2185     { ISD::SELECT,  MVT::v8f32,   1 }, // vblendvps
2186     { ISD::SELECT,  MVT::v4i64,   1 }, // vblendvpd
2187     { ISD::SELECT,  MVT::v8i32,   1 }, // vblendvps
2188     { ISD::SELECT,  MVT::v16i16,  3 }, // vandps + vandnps + vorps
2189     { ISD::SELECT,  MVT::v32i8,   3 }, // vandps + vandnps + vorps
2190   };
2191 
2192   static const CostTblEntry SSE42CostTbl[] = {
2193     { ISD::SETCC,   MVT::v2f64,   1 },
2194     { ISD::SETCC,   MVT::v4f32,   1 },
2195     { ISD::SETCC,   MVT::v2i64,   1 },
2196   };
2197 
2198   static const CostTblEntry SSE41CostTbl[] = {
2199     { ISD::SELECT,  MVT::v2f64,   1 }, // blendvpd
2200     { ISD::SELECT,  MVT::v4f32,   1 }, // blendvps
2201     { ISD::SELECT,  MVT::v2i64,   1 }, // pblendvb
2202     { ISD::SELECT,  MVT::v4i32,   1 }, // pblendvb
2203     { ISD::SELECT,  MVT::v8i16,   1 }, // pblendvb
2204     { ISD::SELECT,  MVT::v16i8,   1 }, // pblendvb
2205   };
2206 
2207   static const CostTblEntry SSE2CostTbl[] = {
2208     { ISD::SETCC,   MVT::v2f64,   2 },
2209     { ISD::SETCC,   MVT::f64,     1 },
2210     { ISD::SETCC,   MVT::v2i64,   8 },
2211     { ISD::SETCC,   MVT::v4i32,   1 },
2212     { ISD::SETCC,   MVT::v8i16,   1 },
2213     { ISD::SETCC,   MVT::v16i8,   1 },
2214 
2215     { ISD::SELECT,  MVT::v2f64,   3 }, // andpd + andnpd + orpd
2216     { ISD::SELECT,  MVT::v2i64,   3 }, // pand + pandn + por
2217     { ISD::SELECT,  MVT::v4i32,   3 }, // pand + pandn + por
2218     { ISD::SELECT,  MVT::v8i16,   3 }, // pand + pandn + por
2219     { ISD::SELECT,  MVT::v16i8,   3 }, // pand + pandn + por
2220   };
2221 
2222   static const CostTblEntry SSE1CostTbl[] = {
2223     { ISD::SETCC,   MVT::v4f32,   2 },
2224     { ISD::SETCC,   MVT::f32,     1 },
2225 
2226     { ISD::SELECT,  MVT::v4f32,   3 }, // andps + andnps + orps
2227   };
2228 
2229   if (ST->isSLM())
2230     if (const auto *Entry = CostTableLookup(SLMCostTbl, ISD, MTy))
2231       return LT.first * (ExtraCost + Entry->Cost);
2232 
2233   if (ST->hasBWI())
2234     if (const auto *Entry = CostTableLookup(AVX512BWCostTbl, ISD, MTy))
2235       return LT.first * (ExtraCost + Entry->Cost);
2236 
2237   if (ST->hasAVX512())
2238     if (const auto *Entry = CostTableLookup(AVX512CostTbl, ISD, MTy))
2239       return LT.first * (ExtraCost + Entry->Cost);
2240 
2241   if (ST->hasAVX2())
2242     if (const auto *Entry = CostTableLookup(AVX2CostTbl, ISD, MTy))
2243       return LT.first * (ExtraCost + Entry->Cost);
2244 
2245   if (ST->hasAVX())
2246     if (const auto *Entry = CostTableLookup(AVX1CostTbl, ISD, MTy))
2247       return LT.first * (ExtraCost + Entry->Cost);
2248 
2249   if (ST->hasSSE42())
2250     if (const auto *Entry = CostTableLookup(SSE42CostTbl, ISD, MTy))
2251       return LT.first * (ExtraCost + Entry->Cost);
2252 
2253   if (ST->hasSSE41())
2254     if (const auto *Entry = CostTableLookup(SSE41CostTbl, ISD, MTy))
2255       return LT.first * (ExtraCost + Entry->Cost);
2256 
2257   if (ST->hasSSE2())
2258     if (const auto *Entry = CostTableLookup(SSE2CostTbl, ISD, MTy))
2259       return LT.first * (ExtraCost + Entry->Cost);
2260 
2261   if (ST->hasSSE1())
2262     if (const auto *Entry = CostTableLookup(SSE1CostTbl, ISD, MTy))
2263       return LT.first * (ExtraCost + Entry->Cost);
2264 
2265   return BaseT::getCmpSelInstrCost(Opcode, ValTy, CondTy, CostKind, I);
2266 }
2267 
2268 unsigned X86TTIImpl::getAtomicMemIntrinsicMaxElementSize() const { return 16; }
2269 
2270 int X86TTIImpl::getTypeBasedIntrinsicInstrCost(
2271   const IntrinsicCostAttributes &ICA, TTI::TargetCostKind CostKind) {
2272 
2273   // Costs should match the codegen from:
2274   // BITREVERSE: llvm\test\CodeGen\X86\vector-bitreverse.ll
2275   // BSWAP: llvm\test\CodeGen\X86\bswap-vector.ll
2276   // CTLZ: llvm\test\CodeGen\X86\vector-lzcnt-*.ll
2277   // CTPOP: llvm\test\CodeGen\X86\vector-popcnt-*.ll
2278   // CTTZ: llvm\test\CodeGen\X86\vector-tzcnt-*.ll
2279   static const CostTblEntry AVX512CDCostTbl[] = {
2280     { ISD::CTLZ,       MVT::v8i64,   1 },
2281     { ISD::CTLZ,       MVT::v16i32,  1 },
2282     { ISD::CTLZ,       MVT::v32i16,  8 },
2283     { ISD::CTLZ,       MVT::v64i8,  20 },
2284     { ISD::CTLZ,       MVT::v4i64,   1 },
2285     { ISD::CTLZ,       MVT::v8i32,   1 },
2286     { ISD::CTLZ,       MVT::v16i16,  4 },
2287     { ISD::CTLZ,       MVT::v32i8,  10 },
2288     { ISD::CTLZ,       MVT::v2i64,   1 },
2289     { ISD::CTLZ,       MVT::v4i32,   1 },
2290     { ISD::CTLZ,       MVT::v8i16,   4 },
2291     { ISD::CTLZ,       MVT::v16i8,   4 },
2292   };
2293   static const CostTblEntry AVX512BWCostTbl[] = {
2294     { ISD::ABS,        MVT::v32i16,  1 },
2295     { ISD::ABS,        MVT::v64i8,   1 },
2296     { ISD::BITREVERSE, MVT::v8i64,   5 },
2297     { ISD::BITREVERSE, MVT::v16i32,  5 },
2298     { ISD::BITREVERSE, MVT::v32i16,  5 },
2299     { ISD::BITREVERSE, MVT::v64i8,   5 },
2300     { ISD::CTLZ,       MVT::v8i64,  23 },
2301     { ISD::CTLZ,       MVT::v16i32, 22 },
2302     { ISD::CTLZ,       MVT::v32i16, 18 },
2303     { ISD::CTLZ,       MVT::v64i8,  17 },
2304     { ISD::CTPOP,      MVT::v8i64,   7 },
2305     { ISD::CTPOP,      MVT::v16i32, 11 },
2306     { ISD::CTPOP,      MVT::v32i16,  9 },
2307     { ISD::CTPOP,      MVT::v64i8,   6 },
2308     { ISD::CTTZ,       MVT::v8i64,  10 },
2309     { ISD::CTTZ,       MVT::v16i32, 14 },
2310     { ISD::CTTZ,       MVT::v32i16, 12 },
2311     { ISD::CTTZ,       MVT::v64i8,   9 },
2312     { ISD::SADDSAT,    MVT::v32i16,  1 },
2313     { ISD::SADDSAT,    MVT::v64i8,   1 },
2314     { ISD::SMAX,       MVT::v32i16,  1 },
2315     { ISD::SMAX,       MVT::v64i8,   1 },
2316     { ISD::SMIN,       MVT::v32i16,  1 },
2317     { ISD::SMIN,       MVT::v64i8,   1 },
2318     { ISD::SSUBSAT,    MVT::v32i16,  1 },
2319     { ISD::SSUBSAT,    MVT::v64i8,   1 },
2320     { ISD::UADDSAT,    MVT::v32i16,  1 },
2321     { ISD::UADDSAT,    MVT::v64i8,   1 },
2322     { ISD::UMAX,       MVT::v32i16,  1 },
2323     { ISD::UMAX,       MVT::v64i8,   1 },
2324     { ISD::UMIN,       MVT::v32i16,  1 },
2325     { ISD::UMIN,       MVT::v64i8,   1 },
2326     { ISD::USUBSAT,    MVT::v32i16,  1 },
2327     { ISD::USUBSAT,    MVT::v64i8,   1 },
2328   };
2329   static const CostTblEntry AVX512CostTbl[] = {
2330     { ISD::ABS,        MVT::v8i64,   1 },
2331     { ISD::ABS,        MVT::v16i32,  1 },
2332     { ISD::ABS,        MVT::v32i16,  2 }, // FIXME: include split
2333     { ISD::ABS,        MVT::v64i8,   2 }, // FIXME: include split
2334     { ISD::ABS,        MVT::v4i64,   1 },
2335     { ISD::ABS,        MVT::v2i64,   1 },
2336     { ISD::BITREVERSE, MVT::v8i64,  36 },
2337     { ISD::BITREVERSE, MVT::v16i32, 24 },
2338     { ISD::BITREVERSE, MVT::v32i16, 10 },
2339     { ISD::BITREVERSE, MVT::v64i8,  10 },
2340     { ISD::CTLZ,       MVT::v8i64,  29 },
2341     { ISD::CTLZ,       MVT::v16i32, 35 },
2342     { ISD::CTLZ,       MVT::v32i16, 28 },
2343     { ISD::CTLZ,       MVT::v64i8,  18 },
2344     { ISD::CTPOP,      MVT::v8i64,  16 },
2345     { ISD::CTPOP,      MVT::v16i32, 24 },
2346     { ISD::CTPOP,      MVT::v32i16, 18 },
2347     { ISD::CTPOP,      MVT::v64i8,  12 },
2348     { ISD::CTTZ,       MVT::v8i64,  20 },
2349     { ISD::CTTZ,       MVT::v16i32, 28 },
2350     { ISD::CTTZ,       MVT::v32i16, 24 },
2351     { ISD::CTTZ,       MVT::v64i8,  18 },
2352     { ISD::SMAX,       MVT::v8i64,   1 },
2353     { ISD::SMAX,       MVT::v16i32,  1 },
2354     { ISD::SMAX,       MVT::v32i16,  2 }, // FIXME: include split
2355     { ISD::SMAX,       MVT::v64i8,   2 }, // FIXME: include split
2356     { ISD::SMAX,       MVT::v4i64,   1 },
2357     { ISD::SMAX,       MVT::v2i64,   1 },
2358     { ISD::SMIN,       MVT::v8i64,   1 },
2359     { ISD::SMIN,       MVT::v16i32,  1 },
2360     { ISD::SMIN,       MVT::v32i16,  2 }, // FIXME: include split
2361     { ISD::SMIN,       MVT::v64i8,   2 }, // FIXME: include split
2362     { ISD::SMIN,       MVT::v4i64,   1 },
2363     { ISD::SMIN,       MVT::v2i64,   1 },
2364     { ISD::UMAX,       MVT::v8i64,   1 },
2365     { ISD::UMAX,       MVT::v16i32,  1 },
2366     { ISD::UMAX,       MVT::v32i16,  2 }, // FIXME: include split
2367     { ISD::UMAX,       MVT::v64i8,   2 }, // FIXME: include split
2368     { ISD::UMAX,       MVT::v4i64,   1 },
2369     { ISD::UMAX,       MVT::v2i64,   1 },
2370     { ISD::UMIN,       MVT::v8i64,   1 },
2371     { ISD::UMIN,       MVT::v16i32,  1 },
2372     { ISD::UMIN,       MVT::v32i16,  2 }, // FIXME: include split
2373     { ISD::UMIN,       MVT::v64i8,   2 }, // FIXME: include split
2374     { ISD::UMIN,       MVT::v4i64,   1 },
2375     { ISD::UMIN,       MVT::v2i64,   1 },
2376     { ISD::USUBSAT,    MVT::v16i32,  2 }, // pmaxud + psubd
2377     { ISD::USUBSAT,    MVT::v2i64,   2 }, // pmaxuq + psubq
2378     { ISD::USUBSAT,    MVT::v4i64,   2 }, // pmaxuq + psubq
2379     { ISD::USUBSAT,    MVT::v8i64,   2 }, // pmaxuq + psubq
2380     { ISD::UADDSAT,    MVT::v16i32,  3 }, // not + pminud + paddd
2381     { ISD::UADDSAT,    MVT::v2i64,   3 }, // not + pminuq + paddq
2382     { ISD::UADDSAT,    MVT::v4i64,   3 }, // not + pminuq + paddq
2383     { ISD::UADDSAT,    MVT::v8i64,   3 }, // not + pminuq + paddq
2384     { ISD::SADDSAT,    MVT::v32i16,  2 }, // FIXME: include split
2385     { ISD::SADDSAT,    MVT::v64i8,   2 }, // FIXME: include split
2386     { ISD::SSUBSAT,    MVT::v32i16,  2 }, // FIXME: include split
2387     { ISD::SSUBSAT,    MVT::v64i8,   2 }, // FIXME: include split
2388     { ISD::UADDSAT,    MVT::v32i16,  2 }, // FIXME: include split
2389     { ISD::UADDSAT,    MVT::v64i8,   2 }, // FIXME: include split
2390     { ISD::USUBSAT,    MVT::v32i16,  2 }, // FIXME: include split
2391     { ISD::USUBSAT,    MVT::v64i8,   2 }, // FIXME: include split
2392     { ISD::FMAXNUM,    MVT::f32,     2 },
2393     { ISD::FMAXNUM,    MVT::v4f32,   2 },
2394     { ISD::FMAXNUM,    MVT::v8f32,   2 },
2395     { ISD::FMAXNUM,    MVT::v16f32,  2 },
2396     { ISD::FMAXNUM,    MVT::f64,     2 },
2397     { ISD::FMAXNUM,    MVT::v2f64,   2 },
2398     { ISD::FMAXNUM,    MVT::v4f64,   2 },
2399     { ISD::FMAXNUM,    MVT::v8f64,   2 },
2400   };
2401   static const CostTblEntry XOPCostTbl[] = {
2402     { ISD::BITREVERSE, MVT::v4i64,   4 },
2403     { ISD::BITREVERSE, MVT::v8i32,   4 },
2404     { ISD::BITREVERSE, MVT::v16i16,  4 },
2405     { ISD::BITREVERSE, MVT::v32i8,   4 },
2406     { ISD::BITREVERSE, MVT::v2i64,   1 },
2407     { ISD::BITREVERSE, MVT::v4i32,   1 },
2408     { ISD::BITREVERSE, MVT::v8i16,   1 },
2409     { ISD::BITREVERSE, MVT::v16i8,   1 },
2410     { ISD::BITREVERSE, MVT::i64,     3 },
2411     { ISD::BITREVERSE, MVT::i32,     3 },
2412     { ISD::BITREVERSE, MVT::i16,     3 },
2413     { ISD::BITREVERSE, MVT::i8,      3 }
2414   };
2415   static const CostTblEntry AVX2CostTbl[] = {
2416     { ISD::ABS,        MVT::v4i64,   2 }, // VBLENDVPD(X,VPSUBQ(0,X),X)
2417     { ISD::ABS,        MVT::v8i32,   1 },
2418     { ISD::ABS,        MVT::v16i16,  1 },
2419     { ISD::ABS,        MVT::v32i8,   1 },
2420     { ISD::BITREVERSE, MVT::v4i64,   5 },
2421     { ISD::BITREVERSE, MVT::v8i32,   5 },
2422     { ISD::BITREVERSE, MVT::v16i16,  5 },
2423     { ISD::BITREVERSE, MVT::v32i8,   5 },
2424     { ISD::BSWAP,      MVT::v4i64,   1 },
2425     { ISD::BSWAP,      MVT::v8i32,   1 },
2426     { ISD::BSWAP,      MVT::v16i16,  1 },
2427     { ISD::CTLZ,       MVT::v4i64,  23 },
2428     { ISD::CTLZ,       MVT::v8i32,  18 },
2429     { ISD::CTLZ,       MVT::v16i16, 14 },
2430     { ISD::CTLZ,       MVT::v32i8,   9 },
2431     { ISD::CTPOP,      MVT::v4i64,   7 },
2432     { ISD::CTPOP,      MVT::v8i32,  11 },
2433     { ISD::CTPOP,      MVT::v16i16,  9 },
2434     { ISD::CTPOP,      MVT::v32i8,   6 },
2435     { ISD::CTTZ,       MVT::v4i64,  10 },
2436     { ISD::CTTZ,       MVT::v8i32,  14 },
2437     { ISD::CTTZ,       MVT::v16i16, 12 },
2438     { ISD::CTTZ,       MVT::v32i8,   9 },
2439     { ISD::SADDSAT,    MVT::v16i16,  1 },
2440     { ISD::SADDSAT,    MVT::v32i8,   1 },
2441     { ISD::SMAX,       MVT::v8i32,   1 },
2442     { ISD::SMAX,       MVT::v16i16,  1 },
2443     { ISD::SMAX,       MVT::v32i8,   1 },
2444     { ISD::SMIN,       MVT::v8i32,   1 },
2445     { ISD::SMIN,       MVT::v16i16,  1 },
2446     { ISD::SMIN,       MVT::v32i8,   1 },
2447     { ISD::SSUBSAT,    MVT::v16i16,  1 },
2448     { ISD::SSUBSAT,    MVT::v32i8,   1 },
2449     { ISD::UADDSAT,    MVT::v16i16,  1 },
2450     { ISD::UADDSAT,    MVT::v32i8,   1 },
2451     { ISD::UADDSAT,    MVT::v8i32,   3 }, // not + pminud + paddd
2452     { ISD::UMAX,       MVT::v8i32,   1 },
2453     { ISD::UMAX,       MVT::v16i16,  1 },
2454     { ISD::UMAX,       MVT::v32i8,   1 },
2455     { ISD::UMIN,       MVT::v8i32,   1 },
2456     { ISD::UMIN,       MVT::v16i16,  1 },
2457     { ISD::UMIN,       MVT::v32i8,   1 },
2458     { ISD::USUBSAT,    MVT::v16i16,  1 },
2459     { ISD::USUBSAT,    MVT::v32i8,   1 },
2460     { ISD::USUBSAT,    MVT::v8i32,   2 }, // pmaxud + psubd
2461     { ISD::FSQRT,      MVT::f32,     7 }, // Haswell from http://www.agner.org/
2462     { ISD::FSQRT,      MVT::v4f32,   7 }, // Haswell from http://www.agner.org/
2463     { ISD::FSQRT,      MVT::v8f32,  14 }, // Haswell from http://www.agner.org/
2464     { ISD::FSQRT,      MVT::f64,    14 }, // Haswell from http://www.agner.org/
2465     { ISD::FSQRT,      MVT::v2f64,  14 }, // Haswell from http://www.agner.org/
2466     { ISD::FSQRT,      MVT::v4f64,  28 }, // Haswell from http://www.agner.org/
2467   };
2468   static const CostTblEntry AVX1CostTbl[] = {
2469     { ISD::ABS,        MVT::v4i64,   6 }, // VBLENDVPD(X,VPSUBQ(0,X),X)
2470     { ISD::ABS,        MVT::v8i32,   3 },
2471     { ISD::ABS,        MVT::v16i16,  3 },
2472     { ISD::ABS,        MVT::v32i8,   3 },
2473     { ISD::BITREVERSE, MVT::v4i64,  12 }, // 2 x 128-bit Op + extract/insert
2474     { ISD::BITREVERSE, MVT::v8i32,  12 }, // 2 x 128-bit Op + extract/insert
2475     { ISD::BITREVERSE, MVT::v16i16, 12 }, // 2 x 128-bit Op + extract/insert
2476     { ISD::BITREVERSE, MVT::v32i8,  12 }, // 2 x 128-bit Op + extract/insert
2477     { ISD::BSWAP,      MVT::v4i64,   4 },
2478     { ISD::BSWAP,      MVT::v8i32,   4 },
2479     { ISD::BSWAP,      MVT::v16i16,  4 },
2480     { ISD::CTLZ,       MVT::v4i64,  48 }, // 2 x 128-bit Op + extract/insert
2481     { ISD::CTLZ,       MVT::v8i32,  38 }, // 2 x 128-bit Op + extract/insert
2482     { ISD::CTLZ,       MVT::v16i16, 30 }, // 2 x 128-bit Op + extract/insert
2483     { ISD::CTLZ,       MVT::v32i8,  20 }, // 2 x 128-bit Op + extract/insert
2484     { ISD::CTPOP,      MVT::v4i64,  16 }, // 2 x 128-bit Op + extract/insert
2485     { ISD::CTPOP,      MVT::v8i32,  24 }, // 2 x 128-bit Op + extract/insert
2486     { ISD::CTPOP,      MVT::v16i16, 20 }, // 2 x 128-bit Op + extract/insert
2487     { ISD::CTPOP,      MVT::v32i8,  14 }, // 2 x 128-bit Op + extract/insert
2488     { ISD::CTTZ,       MVT::v4i64,  22 }, // 2 x 128-bit Op + extract/insert
2489     { ISD::CTTZ,       MVT::v8i32,  30 }, // 2 x 128-bit Op + extract/insert
2490     { ISD::CTTZ,       MVT::v16i16, 26 }, // 2 x 128-bit Op + extract/insert
2491     { ISD::CTTZ,       MVT::v32i8,  20 }, // 2 x 128-bit Op + extract/insert
2492     { ISD::SADDSAT,    MVT::v16i16,  4 }, // 2 x 128-bit Op + extract/insert
2493     { ISD::SADDSAT,    MVT::v32i8,   4 }, // 2 x 128-bit Op + extract/insert
2494     { ISD::SMAX,       MVT::v8i32,   4 }, // 2 x 128-bit Op + extract/insert
2495     { ISD::SMAX,       MVT::v16i16,  4 }, // 2 x 128-bit Op + extract/insert
2496     { ISD::SMAX,       MVT::v32i8,   4 }, // 2 x 128-bit Op + extract/insert
2497     { ISD::SMIN,       MVT::v8i32,   4 }, // 2 x 128-bit Op + extract/insert
2498     { ISD::SMIN,       MVT::v16i16,  4 }, // 2 x 128-bit Op + extract/insert
2499     { ISD::SMIN,       MVT::v32i8,   4 }, // 2 x 128-bit Op + extract/insert
2500     { ISD::SSUBSAT,    MVT::v16i16,  4 }, // 2 x 128-bit Op + extract/insert
2501     { ISD::SSUBSAT,    MVT::v32i8,   4 }, // 2 x 128-bit Op + extract/insert
2502     { ISD::UADDSAT,    MVT::v16i16,  4 }, // 2 x 128-bit Op + extract/insert
2503     { ISD::UADDSAT,    MVT::v32i8,   4 }, // 2 x 128-bit Op + extract/insert
2504     { ISD::UADDSAT,    MVT::v8i32,   8 }, // 2 x 128-bit Op + extract/insert
2505     { ISD::UMAX,       MVT::v8i32,   4 }, // 2 x 128-bit Op + extract/insert
2506     { ISD::UMAX,       MVT::v16i16,  4 }, // 2 x 128-bit Op + extract/insert
2507     { ISD::UMAX,       MVT::v32i8,   4 }, // 2 x 128-bit Op + extract/insert
2508     { ISD::UMIN,       MVT::v8i32,   4 }, // 2 x 128-bit Op + extract/insert
2509     { ISD::UMIN,       MVT::v16i16,  4 }, // 2 x 128-bit Op + extract/insert
2510     { ISD::UMIN,       MVT::v32i8,   4 }, // 2 x 128-bit Op + extract/insert
2511     { ISD::USUBSAT,    MVT::v16i16,  4 }, // 2 x 128-bit Op + extract/insert
2512     { ISD::USUBSAT,    MVT::v32i8,   4 }, // 2 x 128-bit Op + extract/insert
2513     { ISD::USUBSAT,    MVT::v8i32,   6 }, // 2 x 128-bit Op + extract/insert
2514     { ISD::FMAXNUM,    MVT::f32,     3 },
2515     { ISD::FMAXNUM,    MVT::v4f32,   3 },
2516     { ISD::FMAXNUM,    MVT::v8f32,   5 },
2517     { ISD::FMAXNUM,    MVT::f64,     3 },
2518     { ISD::FMAXNUM,    MVT::v2f64,   3 },
2519     { ISD::FMAXNUM,    MVT::v4f64,   5 },
2520     { ISD::FSQRT,      MVT::f32,    14 }, // SNB from http://www.agner.org/
2521     { ISD::FSQRT,      MVT::v4f32,  14 }, // SNB from http://www.agner.org/
2522     { ISD::FSQRT,      MVT::v8f32,  28 }, // SNB from http://www.agner.org/
2523     { ISD::FSQRT,      MVT::f64,    21 }, // SNB from http://www.agner.org/
2524     { ISD::FSQRT,      MVT::v2f64,  21 }, // SNB from http://www.agner.org/
2525     { ISD::FSQRT,      MVT::v4f64,  43 }, // SNB from http://www.agner.org/
2526   };
2527   static const CostTblEntry GLMCostTbl[] = {
2528     { ISD::FSQRT, MVT::f32,   19 }, // sqrtss
2529     { ISD::FSQRT, MVT::v4f32, 37 }, // sqrtps
2530     { ISD::FSQRT, MVT::f64,   34 }, // sqrtsd
2531     { ISD::FSQRT, MVT::v2f64, 67 }, // sqrtpd
2532   };
2533   static const CostTblEntry SLMCostTbl[] = {
2534     { ISD::FSQRT, MVT::f32,   20 }, // sqrtss
2535     { ISD::FSQRT, MVT::v4f32, 40 }, // sqrtps
2536     { ISD::FSQRT, MVT::f64,   35 }, // sqrtsd
2537     { ISD::FSQRT, MVT::v2f64, 70 }, // sqrtpd
2538   };
2539   static const CostTblEntry SSE42CostTbl[] = {
2540     { ISD::ABS,        MVT::v2i64,   3 }, // BLENDVPD(X,PSUBQ(0,X),X)
2541     { ISD::USUBSAT,    MVT::v4i32,   2 }, // pmaxud + psubd
2542     { ISD::UADDSAT,    MVT::v4i32,   3 }, // not + pminud + paddd
2543     { ISD::FSQRT,      MVT::f32,    18 }, // Nehalem from http://www.agner.org/
2544     { ISD::FSQRT,      MVT::v4f32,  18 }, // Nehalem from http://www.agner.org/
2545   };
2546   static const CostTblEntry SSE41CostTbl[] = {
2547     { ISD::SMAX,       MVT::v4i32,   1 },
2548     { ISD::SMAX,       MVT::v16i8,   1 },
2549     { ISD::SMIN,       MVT::v4i32,   1 },
2550     { ISD::SMIN,       MVT::v16i8,   1 },
2551     { ISD::UMAX,       MVT::v4i32,   1 },
2552     { ISD::UMAX,       MVT::v8i16,   1 },
2553     { ISD::UMIN,       MVT::v4i32,   1 },
2554     { ISD::UMIN,       MVT::v8i16,   1 },
2555   };
2556   static const CostTblEntry SSSE3CostTbl[] = {
2557     { ISD::ABS,        MVT::v4i32,   1 },
2558     { ISD::ABS,        MVT::v8i16,   1 },
2559     { ISD::ABS,        MVT::v16i8,   1 },
2560     { ISD::BITREVERSE, MVT::v2i64,   5 },
2561     { ISD::BITREVERSE, MVT::v4i32,   5 },
2562     { ISD::BITREVERSE, MVT::v8i16,   5 },
2563     { ISD::BITREVERSE, MVT::v16i8,   5 },
2564     { ISD::BSWAP,      MVT::v2i64,   1 },
2565     { ISD::BSWAP,      MVT::v4i32,   1 },
2566     { ISD::BSWAP,      MVT::v8i16,   1 },
2567     { ISD::CTLZ,       MVT::v2i64,  23 },
2568     { ISD::CTLZ,       MVT::v4i32,  18 },
2569     { ISD::CTLZ,       MVT::v8i16,  14 },
2570     { ISD::CTLZ,       MVT::v16i8,   9 },
2571     { ISD::CTPOP,      MVT::v2i64,   7 },
2572     { ISD::CTPOP,      MVT::v4i32,  11 },
2573     { ISD::CTPOP,      MVT::v8i16,   9 },
2574     { ISD::CTPOP,      MVT::v16i8,   6 },
2575     { ISD::CTTZ,       MVT::v2i64,  10 },
2576     { ISD::CTTZ,       MVT::v4i32,  14 },
2577     { ISD::CTTZ,       MVT::v8i16,  12 },
2578     { ISD::CTTZ,       MVT::v16i8,   9 }
2579   };
2580   static const CostTblEntry SSE2CostTbl[] = {
2581     { ISD::ABS,        MVT::v2i64,   4 },
2582     { ISD::ABS,        MVT::v4i32,   3 },
2583     { ISD::ABS,        MVT::v8i16,   3 },
2584     { ISD::ABS,        MVT::v16i8,   3 },
2585     { ISD::BITREVERSE, MVT::v2i64,  29 },
2586     { ISD::BITREVERSE, MVT::v4i32,  27 },
2587     { ISD::BITREVERSE, MVT::v8i16,  27 },
2588     { ISD::BITREVERSE, MVT::v16i8,  20 },
2589     { ISD::BSWAP,      MVT::v2i64,   7 },
2590     { ISD::BSWAP,      MVT::v4i32,   7 },
2591     { ISD::BSWAP,      MVT::v8i16,   7 },
2592     { ISD::CTLZ,       MVT::v2i64,  25 },
2593     { ISD::CTLZ,       MVT::v4i32,  26 },
2594     { ISD::CTLZ,       MVT::v8i16,  20 },
2595     { ISD::CTLZ,       MVT::v16i8,  17 },
2596     { ISD::CTPOP,      MVT::v2i64,  12 },
2597     { ISD::CTPOP,      MVT::v4i32,  15 },
2598     { ISD::CTPOP,      MVT::v8i16,  13 },
2599     { ISD::CTPOP,      MVT::v16i8,  10 },
2600     { ISD::CTTZ,       MVT::v2i64,  14 },
2601     { ISD::CTTZ,       MVT::v4i32,  18 },
2602     { ISD::CTTZ,       MVT::v8i16,  16 },
2603     { ISD::CTTZ,       MVT::v16i8,  13 },
2604     { ISD::SADDSAT,    MVT::v8i16,   1 },
2605     { ISD::SADDSAT,    MVT::v16i8,   1 },
2606     { ISD::SMAX,       MVT::v8i16,   1 },
2607     { ISD::SMIN,       MVT::v8i16,   1 },
2608     { ISD::SSUBSAT,    MVT::v8i16,   1 },
2609     { ISD::SSUBSAT,    MVT::v16i8,   1 },
2610     { ISD::UADDSAT,    MVT::v8i16,   1 },
2611     { ISD::UADDSAT,    MVT::v16i8,   1 },
2612     { ISD::UMAX,       MVT::v16i8,   1 },
2613     { ISD::UMIN,       MVT::v16i8,   1 },
2614     { ISD::USUBSAT,    MVT::v8i16,   1 },
2615     { ISD::USUBSAT,    MVT::v16i8,   1 },
2616     { ISD::FMAXNUM,    MVT::f64,     4 },
2617     { ISD::FMAXNUM,    MVT::v2f64,   4 },
2618     { ISD::FSQRT,      MVT::f64,    32 }, // Nehalem from http://www.agner.org/
2619     { ISD::FSQRT,      MVT::v2f64,  32 }, // Nehalem from http://www.agner.org/
2620   };
2621   static const CostTblEntry SSE1CostTbl[] = {
2622     { ISD::FMAXNUM,    MVT::f32,     4 },
2623     { ISD::FMAXNUM,    MVT::v4f32,   4 },
2624     { ISD::FSQRT,      MVT::f32,    28 }, // Pentium III from http://www.agner.org/
2625     { ISD::FSQRT,      MVT::v4f32,  56 }, // Pentium III from http://www.agner.org/
2626   };
2627   static const CostTblEntry BMI64CostTbl[] = { // 64-bit targets
2628     { ISD::CTTZ,       MVT::i64,     1 },
2629   };
2630   static const CostTblEntry BMI32CostTbl[] = { // 32 or 64-bit targets
2631     { ISD::CTTZ,       MVT::i32,     1 },
2632     { ISD::CTTZ,       MVT::i16,     1 },
2633     { ISD::CTTZ,       MVT::i8,      1 },
2634   };
2635   static const CostTblEntry LZCNT64CostTbl[] = { // 64-bit targets
2636     { ISD::CTLZ,       MVT::i64,     1 },
2637   };
2638   static const CostTblEntry LZCNT32CostTbl[] = { // 32 or 64-bit targets
2639     { ISD::CTLZ,       MVT::i32,     1 },
2640     { ISD::CTLZ,       MVT::i16,     1 },
2641     { ISD::CTLZ,       MVT::i8,      1 },
2642   };
2643   static const CostTblEntry POPCNT64CostTbl[] = { // 64-bit targets
2644     { ISD::CTPOP,      MVT::i64,     1 },
2645   };
2646   static const CostTblEntry POPCNT32CostTbl[] = { // 32 or 64-bit targets
2647     { ISD::CTPOP,      MVT::i32,     1 },
2648     { ISD::CTPOP,      MVT::i16,     1 },
2649     { ISD::CTPOP,      MVT::i8,      1 },
2650   };
2651   static const CostTblEntry X64CostTbl[] = { // 64-bit targets
2652     { ISD::BITREVERSE, MVT::i64,    14 },
2653     { ISD::CTLZ,       MVT::i64,     4 }, // BSR+XOR or BSR+XOR+CMOV
2654     { ISD::CTTZ,       MVT::i64,     3 }, // TEST+BSF+CMOV/BRANCH
2655     { ISD::CTPOP,      MVT::i64,    10 },
2656     { ISD::SADDO,      MVT::i64,     1 },
2657     { ISD::UADDO,      MVT::i64,     1 },
2658   };
2659   static const CostTblEntry X86CostTbl[] = { // 32 or 64-bit targets
2660     { ISD::BITREVERSE, MVT::i32,    14 },
2661     { ISD::BITREVERSE, MVT::i16,    14 },
2662     { ISD::BITREVERSE, MVT::i8,     11 },
2663     { ISD::CTLZ,       MVT::i32,     4 }, // BSR+XOR or BSR+XOR+CMOV
2664     { ISD::CTLZ,       MVT::i16,     4 }, // BSR+XOR or BSR+XOR+CMOV
2665     { ISD::CTLZ,       MVT::i8,      4 }, // BSR+XOR or BSR+XOR+CMOV
2666     { ISD::CTTZ,       MVT::i32,     3 }, // TEST+BSF+CMOV/BRANCH
2667     { ISD::CTTZ,       MVT::i16,     3 }, // TEST+BSF+CMOV/BRANCH
2668     { ISD::CTTZ,       MVT::i8,      3 }, // TEST+BSF+CMOV/BRANCH
2669     { ISD::CTPOP,      MVT::i32,     8 },
2670     { ISD::CTPOP,      MVT::i16,     9 },
2671     { ISD::CTPOP,      MVT::i8,      7 },
2672     { ISD::SADDO,      MVT::i32,     1 },
2673     { ISD::SADDO,      MVT::i16,     1 },
2674     { ISD::SADDO,      MVT::i8,      1 },
2675     { ISD::UADDO,      MVT::i32,     1 },
2676     { ISD::UADDO,      MVT::i16,     1 },
2677     { ISD::UADDO,      MVT::i8,      1 },
2678   };
2679 
2680   Type *RetTy = ICA.getReturnType();
2681   Type *OpTy = RetTy;
2682   Intrinsic::ID IID = ICA.getID();
2683   unsigned ISD = ISD::DELETED_NODE;
2684   switch (IID) {
2685   default:
2686     break;
2687   case Intrinsic::abs:
2688     ISD = ISD::ABS;
2689     break;
2690   case Intrinsic::bitreverse:
2691     ISD = ISD::BITREVERSE;
2692     break;
2693   case Intrinsic::bswap:
2694     ISD = ISD::BSWAP;
2695     break;
2696   case Intrinsic::ctlz:
2697     ISD = ISD::CTLZ;
2698     break;
2699   case Intrinsic::ctpop:
2700     ISD = ISD::CTPOP;
2701     break;
2702   case Intrinsic::cttz:
2703     ISD = ISD::CTTZ;
2704     break;
2705   case Intrinsic::maxnum:
2706   case Intrinsic::minnum:
2707     // FMINNUM has same costs so don't duplicate.
2708     ISD = ISD::FMAXNUM;
2709     break;
2710   case Intrinsic::sadd_sat:
2711     ISD = ISD::SADDSAT;
2712     break;
2713   case Intrinsic::smax:
2714     ISD = ISD::SMAX;
2715     break;
2716   case Intrinsic::smin:
2717     ISD = ISD::SMIN;
2718     break;
2719   case Intrinsic::ssub_sat:
2720     ISD = ISD::SSUBSAT;
2721     break;
2722   case Intrinsic::uadd_sat:
2723     ISD = ISD::UADDSAT;
2724     break;
2725   case Intrinsic::umax:
2726     ISD = ISD::UMAX;
2727     break;
2728   case Intrinsic::umin:
2729     ISD = ISD::UMIN;
2730     break;
2731   case Intrinsic::usub_sat:
2732     ISD = ISD::USUBSAT;
2733     break;
2734   case Intrinsic::sqrt:
2735     ISD = ISD::FSQRT;
2736     break;
2737   case Intrinsic::sadd_with_overflow:
2738   case Intrinsic::ssub_with_overflow:
2739     // SSUBO has same costs so don't duplicate.
2740     ISD = ISD::SADDO;
2741     OpTy = RetTy->getContainedType(0);
2742     break;
2743   case Intrinsic::uadd_with_overflow:
2744   case Intrinsic::usub_with_overflow:
2745     // USUBO has same costs so don't duplicate.
2746     ISD = ISD::UADDO;
2747     OpTy = RetTy->getContainedType(0);
2748     break;
2749   }
2750 
2751   if (ISD != ISD::DELETED_NODE) {
2752     // Legalize the type.
2753     std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, OpTy);
2754     MVT MTy = LT.second;
2755 
2756     // Attempt to lookup cost.
2757     if (ST->useGLMDivSqrtCosts())
2758       if (const auto *Entry = CostTableLookup(GLMCostTbl, ISD, MTy))
2759         return LT.first * Entry->Cost;
2760 
2761     if (ST->isSLM())
2762       if (const auto *Entry = CostTableLookup(SLMCostTbl, ISD, MTy))
2763         return LT.first * Entry->Cost;
2764 
2765     if (ST->hasCDI())
2766       if (const auto *Entry = CostTableLookup(AVX512CDCostTbl, ISD, MTy))
2767         return LT.first * Entry->Cost;
2768 
2769     if (ST->hasBWI())
2770       if (const auto *Entry = CostTableLookup(AVX512BWCostTbl, ISD, MTy))
2771         return LT.first * Entry->Cost;
2772 
2773     if (ST->hasAVX512())
2774       if (const auto *Entry = CostTableLookup(AVX512CostTbl, ISD, MTy))
2775         return LT.first * Entry->Cost;
2776 
2777     if (ST->hasXOP())
2778       if (const auto *Entry = CostTableLookup(XOPCostTbl, ISD, MTy))
2779         return LT.first * Entry->Cost;
2780 
2781     if (ST->hasAVX2())
2782       if (const auto *Entry = CostTableLookup(AVX2CostTbl, ISD, MTy))
2783         return LT.first * Entry->Cost;
2784 
2785     if (ST->hasAVX())
2786       if (const auto *Entry = CostTableLookup(AVX1CostTbl, ISD, MTy))
2787         return LT.first * Entry->Cost;
2788 
2789     if (ST->hasSSE42())
2790       if (const auto *Entry = CostTableLookup(SSE42CostTbl, ISD, MTy))
2791         return LT.first * Entry->Cost;
2792 
2793     if (ST->hasSSE41())
2794       if (const auto *Entry = CostTableLookup(SSE41CostTbl, ISD, MTy))
2795         return LT.first * Entry->Cost;
2796 
2797     if (ST->hasSSSE3())
2798       if (const auto *Entry = CostTableLookup(SSSE3CostTbl, ISD, MTy))
2799         return LT.first * Entry->Cost;
2800 
2801     if (ST->hasSSE2())
2802       if (const auto *Entry = CostTableLookup(SSE2CostTbl, ISD, MTy))
2803         return LT.first * Entry->Cost;
2804 
2805     if (ST->hasSSE1())
2806       if (const auto *Entry = CostTableLookup(SSE1CostTbl, ISD, MTy))
2807         return LT.first * Entry->Cost;
2808 
2809     if (ST->hasBMI()) {
2810       if (ST->is64Bit())
2811         if (const auto *Entry = CostTableLookup(BMI64CostTbl, ISD, MTy))
2812           return LT.first * Entry->Cost;
2813 
2814       if (const auto *Entry = CostTableLookup(BMI32CostTbl, ISD, MTy))
2815         return LT.first * Entry->Cost;
2816     }
2817 
2818     if (ST->hasLZCNT()) {
2819       if (ST->is64Bit())
2820         if (const auto *Entry = CostTableLookup(LZCNT64CostTbl, ISD, MTy))
2821           return LT.first * Entry->Cost;
2822 
2823       if (const auto *Entry = CostTableLookup(LZCNT32CostTbl, ISD, MTy))
2824         return LT.first * Entry->Cost;
2825     }
2826 
2827     if (ST->hasPOPCNT()) {
2828       if (ST->is64Bit())
2829         if (const auto *Entry = CostTableLookup(POPCNT64CostTbl, ISD, MTy))
2830           return LT.first * Entry->Cost;
2831 
2832       if (const auto *Entry = CostTableLookup(POPCNT32CostTbl, ISD, MTy))
2833         return LT.first * Entry->Cost;
2834     }
2835 
2836     // TODO - add BMI (TZCNT) scalar handling
2837 
2838     if (ST->is64Bit())
2839       if (const auto *Entry = CostTableLookup(X64CostTbl, ISD, MTy))
2840         return LT.first * Entry->Cost;
2841 
2842     if (const auto *Entry = CostTableLookup(X86CostTbl, ISD, MTy))
2843       return LT.first * Entry->Cost;
2844   }
2845 
2846   return BaseT::getIntrinsicInstrCost(ICA, CostKind);
2847 }
2848 
2849 int X86TTIImpl::getIntrinsicInstrCost(const IntrinsicCostAttributes &ICA,
2850                                       TTI::TargetCostKind CostKind) {
2851   if (CostKind != TTI::TCK_RecipThroughput)
2852     return BaseT::getIntrinsicInstrCost(ICA, CostKind);
2853 
2854   if (ICA.isTypeBasedOnly())
2855     return getTypeBasedIntrinsicInstrCost(ICA, CostKind);
2856 
2857   static const CostTblEntry AVX512CostTbl[] = {
2858     { ISD::ROTL,       MVT::v8i64,   1 },
2859     { ISD::ROTL,       MVT::v4i64,   1 },
2860     { ISD::ROTL,       MVT::v2i64,   1 },
2861     { ISD::ROTL,       MVT::v16i32,  1 },
2862     { ISD::ROTL,       MVT::v8i32,   1 },
2863     { ISD::ROTL,       MVT::v4i32,   1 },
2864     { ISD::ROTR,       MVT::v8i64,   1 },
2865     { ISD::ROTR,       MVT::v4i64,   1 },
2866     { ISD::ROTR,       MVT::v2i64,   1 },
2867     { ISD::ROTR,       MVT::v16i32,  1 },
2868     { ISD::ROTR,       MVT::v8i32,   1 },
2869     { ISD::ROTR,       MVT::v4i32,   1 }
2870   };
2871   // XOP: ROTL = VPROT(X,Y), ROTR = VPROT(X,SUB(0,Y))
2872   static const CostTblEntry XOPCostTbl[] = {
2873     { ISD::ROTL,       MVT::v4i64,   4 },
2874     { ISD::ROTL,       MVT::v8i32,   4 },
2875     { ISD::ROTL,       MVT::v16i16,  4 },
2876     { ISD::ROTL,       MVT::v32i8,   4 },
2877     { ISD::ROTL,       MVT::v2i64,   1 },
2878     { ISD::ROTL,       MVT::v4i32,   1 },
2879     { ISD::ROTL,       MVT::v8i16,   1 },
2880     { ISD::ROTL,       MVT::v16i8,   1 },
2881     { ISD::ROTR,       MVT::v4i64,   6 },
2882     { ISD::ROTR,       MVT::v8i32,   6 },
2883     { ISD::ROTR,       MVT::v16i16,  6 },
2884     { ISD::ROTR,       MVT::v32i8,   6 },
2885     { ISD::ROTR,       MVT::v2i64,   2 },
2886     { ISD::ROTR,       MVT::v4i32,   2 },
2887     { ISD::ROTR,       MVT::v8i16,   2 },
2888     { ISD::ROTR,       MVT::v16i8,   2 }
2889   };
2890   static const CostTblEntry X64CostTbl[] = { // 64-bit targets
2891     { ISD::ROTL,       MVT::i64,     1 },
2892     { ISD::ROTR,       MVT::i64,     1 },
2893     { ISD::FSHL,       MVT::i64,     4 }
2894   };
2895   static const CostTblEntry X86CostTbl[] = { // 32 or 64-bit targets
2896     { ISD::ROTL,       MVT::i32,     1 },
2897     { ISD::ROTL,       MVT::i16,     1 },
2898     { ISD::ROTL,       MVT::i8,      1 },
2899     { ISD::ROTR,       MVT::i32,     1 },
2900     { ISD::ROTR,       MVT::i16,     1 },
2901     { ISD::ROTR,       MVT::i8,      1 },
2902     { ISD::FSHL,       MVT::i32,     4 },
2903     { ISD::FSHL,       MVT::i16,     4 },
2904     { ISD::FSHL,       MVT::i8,      4 }
2905   };
2906 
2907   Intrinsic::ID IID = ICA.getID();
2908   Type *RetTy = ICA.getReturnType();
2909   const SmallVectorImpl<const Value *> &Args = ICA.getArgs();
2910   unsigned ISD = ISD::DELETED_NODE;
2911   switch (IID) {
2912   default:
2913     break;
2914   case Intrinsic::fshl:
2915     ISD = ISD::FSHL;
2916     if (Args[0] == Args[1])
2917       ISD = ISD::ROTL;
2918     break;
2919   case Intrinsic::fshr:
2920     // FSHR has same costs so don't duplicate.
2921     ISD = ISD::FSHL;
2922     if (Args[0] == Args[1])
2923       ISD = ISD::ROTR;
2924     break;
2925   }
2926 
2927   if (ISD != ISD::DELETED_NODE) {
2928     // Legalize the type.
2929     std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, RetTy);
2930     MVT MTy = LT.second;
2931 
2932     // Attempt to lookup cost.
2933     if (ST->hasAVX512())
2934       if (const auto *Entry = CostTableLookup(AVX512CostTbl, ISD, MTy))
2935         return LT.first * Entry->Cost;
2936 
2937     if (ST->hasXOP())
2938       if (const auto *Entry = CostTableLookup(XOPCostTbl, ISD, MTy))
2939         return LT.first * Entry->Cost;
2940 
2941     if (ST->is64Bit())
2942       if (const auto *Entry = CostTableLookup(X64CostTbl, ISD, MTy))
2943         return LT.first * Entry->Cost;
2944 
2945     if (const auto *Entry = CostTableLookup(X86CostTbl, ISD, MTy))
2946       return LT.first * Entry->Cost;
2947   }
2948 
2949   return BaseT::getIntrinsicInstrCost(ICA, CostKind);
2950 }
2951 
2952 int X86TTIImpl::getVectorInstrCost(unsigned Opcode, Type *Val, unsigned Index) {
2953   static const CostTblEntry SLMCostTbl[] = {
2954      { ISD::EXTRACT_VECTOR_ELT,       MVT::i8,      4 },
2955      { ISD::EXTRACT_VECTOR_ELT,       MVT::i16,     4 },
2956      { ISD::EXTRACT_VECTOR_ELT,       MVT::i32,     4 },
2957      { ISD::EXTRACT_VECTOR_ELT,       MVT::i64,     7 }
2958    };
2959 
2960   assert(Val->isVectorTy() && "This must be a vector type");
2961   Type *ScalarType = Val->getScalarType();
2962   int RegisterFileMoveCost = 0;
2963 
2964   if (Index != -1U && (Opcode == Instruction::ExtractElement ||
2965                        Opcode == Instruction::InsertElement)) {
2966     // Legalize the type.
2967     std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Val);
2968 
2969     // This type is legalized to a scalar type.
2970     if (!LT.second.isVector())
2971       return 0;
2972 
2973     // The type may be split. Normalize the index to the new type.
2974     unsigned NumElts = LT.second.getVectorNumElements();
2975     unsigned SubNumElts = NumElts;
2976     Index = Index % NumElts;
2977 
2978     // For >128-bit vectors, we need to extract higher 128-bit subvectors.
2979     // For inserts, we also need to insert the subvector back.
2980     if (LT.second.getSizeInBits() > 128) {
2981       assert((LT.second.getSizeInBits() % 128) == 0 && "Illegal vector");
2982       unsigned NumSubVecs = LT.second.getSizeInBits() / 128;
2983       SubNumElts = NumElts / NumSubVecs;
2984       if (SubNumElts <= Index) {
2985         RegisterFileMoveCost += (Opcode == Instruction::InsertElement ? 2 : 1);
2986         Index %= SubNumElts;
2987       }
2988     }
2989 
2990     if (Index == 0) {
2991       // Floating point scalars are already located in index #0.
2992       // Many insertions to #0 can fold away for scalar fp-ops, so let's assume
2993       // true for all.
2994       if (ScalarType->isFloatingPointTy())
2995         return RegisterFileMoveCost;
2996 
2997       // Assume movd/movq XMM -> GPR is relatively cheap on all targets.
2998       if (ScalarType->isIntegerTy() && Opcode == Instruction::ExtractElement)
2999         return 1 + RegisterFileMoveCost;
3000     }
3001 
3002     int ISD = TLI->InstructionOpcodeToISD(Opcode);
3003     assert(ISD && "Unexpected vector opcode");
3004     MVT MScalarTy = LT.second.getScalarType();
3005     if (ST->isSLM())
3006       if (auto *Entry = CostTableLookup(SLMCostTbl, ISD, MScalarTy))
3007         return Entry->Cost + RegisterFileMoveCost;
3008 
3009     // Assume pinsr/pextr XMM <-> GPR is relatively cheap on all targets.
3010     if ((MScalarTy == MVT::i16 && ST->hasSSE2()) ||
3011         (MScalarTy.isInteger() && ST->hasSSE41()))
3012       return 1 + RegisterFileMoveCost;
3013 
3014     // Assume insertps is relatively cheap on all targets.
3015     if (MScalarTy == MVT::f32 && ST->hasSSE41() &&
3016         Opcode == Instruction::InsertElement)
3017       return 1 + RegisterFileMoveCost;
3018 
3019     // For extractions we just need to shuffle the element to index 0, which
3020     // should be very cheap (assume cost = 1). For insertions we need to shuffle
3021     // the elements to its destination. In both cases we must handle the
3022     // subvector move(s).
3023     // If the vector type is already less than 128-bits then don't reduce it.
3024     // TODO: Under what circumstances should we shuffle using the full width?
3025     int ShuffleCost = 1;
3026     if (Opcode == Instruction::InsertElement) {
3027       auto *SubTy = cast<VectorType>(Val);
3028       EVT VT = TLI->getValueType(DL, Val);
3029       if (VT.getScalarType() != MScalarTy || VT.getSizeInBits() >= 128)
3030         SubTy = FixedVectorType::get(ScalarType, SubNumElts);
3031       ShuffleCost = getShuffleCost(TTI::SK_PermuteTwoSrc, SubTy, 0, SubTy);
3032     }
3033     int IntOrFpCost = ScalarType->isFloatingPointTy() ? 0 : 1;
3034     return ShuffleCost + IntOrFpCost + RegisterFileMoveCost;
3035   }
3036 
3037   // Add to the base cost if we know that the extracted element of a vector is
3038   // destined to be moved to and used in the integer register file.
3039   if (Opcode == Instruction::ExtractElement && ScalarType->isPointerTy())
3040     RegisterFileMoveCost += 1;
3041 
3042   return BaseT::getVectorInstrCost(Opcode, Val, Index) + RegisterFileMoveCost;
3043 }
3044 
3045 unsigned X86TTIImpl::getScalarizationOverhead(VectorType *Ty,
3046                                               const APInt &DemandedElts,
3047                                               bool Insert, bool Extract) {
3048   unsigned Cost = 0;
3049 
3050   // For insertions, a ISD::BUILD_VECTOR style vector initialization can be much
3051   // cheaper than an accumulation of ISD::INSERT_VECTOR_ELT.
3052   if (Insert) {
3053     std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Ty);
3054     MVT MScalarTy = LT.second.getScalarType();
3055 
3056     if ((MScalarTy == MVT::i16 && ST->hasSSE2()) ||
3057         (MScalarTy.isInteger() && ST->hasSSE41()) ||
3058         (MScalarTy == MVT::f32 && ST->hasSSE41())) {
3059       // For types we can insert directly, insertion into 128-bit sub vectors is
3060       // cheap, followed by a cheap chain of concatenations.
3061       if (LT.second.getSizeInBits() <= 128) {
3062         Cost +=
3063             BaseT::getScalarizationOverhead(Ty, DemandedElts, Insert, false);
3064       } else {
3065         unsigned NumSubVecs = LT.second.getSizeInBits() / 128;
3066         Cost += (PowerOf2Ceil(NumSubVecs) - 1) * LT.first;
3067         Cost += DemandedElts.countPopulation();
3068 
3069         // For vXf32 cases, insertion into the 0'th index in each v4f32
3070         // 128-bit vector is free.
3071         // NOTE: This assumes legalization widens vXf32 vectors.
3072         if (MScalarTy == MVT::f32)
3073           for (unsigned i = 0, e = cast<FixedVectorType>(Ty)->getNumElements();
3074                i < e; i += 4)
3075             if (DemandedElts[i])
3076               Cost--;
3077       }
3078     } else if (LT.second.isVector()) {
3079       // Without fast insertion, we need to use MOVD/MOVQ to pass each demanded
3080       // integer element as a SCALAR_TO_VECTOR, then we build the vector as a
3081       // series of UNPCK followed by CONCAT_VECTORS - all of these can be
3082       // considered cheap.
3083       if (Ty->isIntOrIntVectorTy())
3084         Cost += DemandedElts.countPopulation();
3085 
3086       // Get the smaller of the legalized or original pow2-extended number of
3087       // vector elements, which represents the number of unpacks we'll end up
3088       // performing.
3089       unsigned NumElts = LT.second.getVectorNumElements();
3090       unsigned Pow2Elts =
3091           PowerOf2Ceil(cast<FixedVectorType>(Ty)->getNumElements());
3092       Cost += (std::min<unsigned>(NumElts, Pow2Elts) - 1) * LT.first;
3093     }
3094   }
3095 
3096   // TODO: Use default extraction for now, but we should investigate extending this
3097   // to handle repeated subvector extraction.
3098   if (Extract)
3099     Cost += BaseT::getScalarizationOverhead(Ty, DemandedElts, false, Extract);
3100 
3101   return Cost;
3102 }
3103 
3104 int X86TTIImpl::getMemoryOpCost(unsigned Opcode, Type *Src,
3105                                 MaybeAlign Alignment, unsigned AddressSpace,
3106                                 TTI::TargetCostKind CostKind,
3107                                 const Instruction *I) {
3108   // TODO: Handle other cost kinds.
3109   if (CostKind != TTI::TCK_RecipThroughput) {
3110     if (isa_and_nonnull<StoreInst>(I)) {
3111       Value *Ptr = I->getOperand(1);
3112       // Store instruction with index and scale costs 2 Uops.
3113       // Check the preceding GEP to identify non-const indices.
3114       if (auto *GEP = dyn_cast<GetElementPtrInst>(Ptr)) {
3115         if (!all_of(GEP->indices(), [](Value *V) { return isa<Constant>(V); }))
3116           return TTI::TCC_Basic * 2;
3117       }
3118     }
3119     return TTI::TCC_Basic;
3120   }
3121 
3122   // Handle non-power-of-two vectors such as <3 x float>
3123   if (auto *VTy = dyn_cast<FixedVectorType>(Src)) {
3124     unsigned NumElem = VTy->getNumElements();
3125 
3126     // Handle a few common cases:
3127     // <3 x float>
3128     if (NumElem == 3 && VTy->getScalarSizeInBits() == 32)
3129       // Cost = 64 bit store + extract + 32 bit store.
3130       return 3;
3131 
3132     // <3 x double>
3133     if (NumElem == 3 && VTy->getScalarSizeInBits() == 64)
3134       // Cost = 128 bit store + unpack + 64 bit store.
3135       return 3;
3136 
3137     // Assume that all other non-power-of-two numbers are scalarized.
3138     if (!isPowerOf2_32(NumElem)) {
3139       APInt DemandedElts = APInt::getAllOnesValue(NumElem);
3140       int Cost = BaseT::getMemoryOpCost(Opcode, VTy->getScalarType(), Alignment,
3141                                         AddressSpace, CostKind);
3142       int SplitCost = getScalarizationOverhead(VTy, DemandedElts,
3143                                                Opcode == Instruction::Load,
3144                                                Opcode == Instruction::Store);
3145       return NumElem * Cost + SplitCost;
3146     }
3147   }
3148 
3149   // Type legalization can't handle structs
3150   if (TLI->getValueType(DL, Src,  true) == MVT::Other)
3151     return BaseT::getMemoryOpCost(Opcode, Src, Alignment, AddressSpace,
3152                                   CostKind);
3153 
3154   // Legalize the type.
3155   std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Src);
3156   assert((Opcode == Instruction::Load || Opcode == Instruction::Store) &&
3157          "Invalid Opcode");
3158 
3159   // Each load/store unit costs 1.
3160   int Cost = LT.first * 1;
3161 
3162   // This isn't exactly right. We're using slow unaligned 32-byte accesses as a
3163   // proxy for a double-pumped AVX memory interface such as on Sandybridge.
3164   if (LT.second.getStoreSize() == 32 && ST->isUnalignedMem32Slow())
3165     Cost *= 2;
3166 
3167   return Cost;
3168 }
3169 
3170 int X86TTIImpl::getMaskedMemoryOpCost(unsigned Opcode, Type *SrcTy,
3171                                       Align Alignment, unsigned AddressSpace,
3172                                       TTI::TargetCostKind CostKind) {
3173   bool IsLoad = (Instruction::Load == Opcode);
3174   bool IsStore = (Instruction::Store == Opcode);
3175 
3176   auto *SrcVTy = dyn_cast<FixedVectorType>(SrcTy);
3177   if (!SrcVTy)
3178     // To calculate scalar take the regular cost, without mask
3179     return getMemoryOpCost(Opcode, SrcTy, Alignment, AddressSpace, CostKind);
3180 
3181   unsigned NumElem = SrcVTy->getNumElements();
3182   auto *MaskTy =
3183       FixedVectorType::get(Type::getInt8Ty(SrcVTy->getContext()), NumElem);
3184   if ((IsLoad && !isLegalMaskedLoad(SrcVTy, Alignment)) ||
3185       (IsStore && !isLegalMaskedStore(SrcVTy, Alignment)) ||
3186       !isPowerOf2_32(NumElem)) {
3187     // Scalarization
3188     APInt DemandedElts = APInt::getAllOnesValue(NumElem);
3189     int MaskSplitCost =
3190         getScalarizationOverhead(MaskTy, DemandedElts, false, true);
3191     int ScalarCompareCost = getCmpSelInstrCost(
3192         Instruction::ICmp, Type::getInt8Ty(SrcVTy->getContext()), nullptr,
3193         CostKind);
3194     int BranchCost = getCFInstrCost(Instruction::Br, CostKind);
3195     int MaskCmpCost = NumElem * (BranchCost + ScalarCompareCost);
3196     int ValueSplitCost =
3197         getScalarizationOverhead(SrcVTy, DemandedElts, IsLoad, IsStore);
3198     int MemopCost =
3199         NumElem * BaseT::getMemoryOpCost(Opcode, SrcVTy->getScalarType(),
3200                                          Alignment, AddressSpace, CostKind);
3201     return MemopCost + ValueSplitCost + MaskSplitCost + MaskCmpCost;
3202   }
3203 
3204   // Legalize the type.
3205   std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, SrcVTy);
3206   auto VT = TLI->getValueType(DL, SrcVTy);
3207   int Cost = 0;
3208   if (VT.isSimple() && LT.second != VT.getSimpleVT() &&
3209       LT.second.getVectorNumElements() == NumElem)
3210     // Promotion requires expand/truncate for data and a shuffle for mask.
3211     Cost += getShuffleCost(TTI::SK_PermuteTwoSrc, SrcVTy, 0, nullptr) +
3212             getShuffleCost(TTI::SK_PermuteTwoSrc, MaskTy, 0, nullptr);
3213 
3214   else if (LT.second.getVectorNumElements() > NumElem) {
3215     auto *NewMaskTy = FixedVectorType::get(MaskTy->getElementType(),
3216                                            LT.second.getVectorNumElements());
3217     // Expanding requires fill mask with zeroes
3218     Cost += getShuffleCost(TTI::SK_InsertSubvector, NewMaskTy, 0, MaskTy);
3219   }
3220 
3221   // Pre-AVX512 - each maskmov load costs 2 + store costs ~8.
3222   if (!ST->hasAVX512())
3223     return Cost + LT.first * (IsLoad ? 2 : 8);
3224 
3225   // AVX-512 masked load/store is cheapper
3226   return Cost + LT.first;
3227 }
3228 
3229 int X86TTIImpl::getAddressComputationCost(Type *Ty, ScalarEvolution *SE,
3230                                           const SCEV *Ptr) {
3231   // Address computations in vectorized code with non-consecutive addresses will
3232   // likely result in more instructions compared to scalar code where the
3233   // computation can more often be merged into the index mode. The resulting
3234   // extra micro-ops can significantly decrease throughput.
3235   const unsigned NumVectorInstToHideOverhead = 10;
3236 
3237   // Cost modeling of Strided Access Computation is hidden by the indexing
3238   // modes of X86 regardless of the stride value. We dont believe that there
3239   // is a difference between constant strided access in gerenal and constant
3240   // strided value which is less than or equal to 64.
3241   // Even in the case of (loop invariant) stride whose value is not known at
3242   // compile time, the address computation will not incur more than one extra
3243   // ADD instruction.
3244   if (Ty->isVectorTy() && SE) {
3245     if (!BaseT::isStridedAccess(Ptr))
3246       return NumVectorInstToHideOverhead;
3247     if (!BaseT::getConstantStrideStep(SE, Ptr))
3248       return 1;
3249   }
3250 
3251   return BaseT::getAddressComputationCost(Ty, SE, Ptr);
3252 }
3253 
3254 int X86TTIImpl::getArithmeticReductionCost(unsigned Opcode, VectorType *ValTy,
3255                                            bool IsPairwise,
3256                                            TTI::TargetCostKind CostKind) {
3257   // Just use the default implementation for pair reductions.
3258   if (IsPairwise)
3259     return BaseT::getArithmeticReductionCost(Opcode, ValTy, IsPairwise, CostKind);
3260 
3261   // We use the Intel Architecture Code Analyzer(IACA) to measure the throughput
3262   // and make it as the cost.
3263 
3264   static const CostTblEntry SLMCostTblNoPairWise[] = {
3265     { ISD::FADD,  MVT::v2f64,   3 },
3266     { ISD::ADD,   MVT::v2i64,   5 },
3267   };
3268 
3269   static const CostTblEntry SSE2CostTblNoPairWise[] = {
3270     { ISD::FADD,  MVT::v2f64,   2 },
3271     { ISD::FADD,  MVT::v4f32,   4 },
3272     { ISD::ADD,   MVT::v2i64,   2 },      // The data reported by the IACA tool is "1.6".
3273     { ISD::ADD,   MVT::v2i32,   2 }, // FIXME: chosen to be less than v4i32
3274     { ISD::ADD,   MVT::v4i32,   3 },      // The data reported by the IACA tool is "3.3".
3275     { ISD::ADD,   MVT::v2i16,   2 },      // The data reported by the IACA tool is "4.3".
3276     { ISD::ADD,   MVT::v4i16,   3 },      // The data reported by the IACA tool is "4.3".
3277     { ISD::ADD,   MVT::v8i16,   4 },      // The data reported by the IACA tool is "4.3".
3278     { ISD::ADD,   MVT::v2i8,    2 },
3279     { ISD::ADD,   MVT::v4i8,    2 },
3280     { ISD::ADD,   MVT::v8i8,    2 },
3281     { ISD::ADD,   MVT::v16i8,   3 },
3282   };
3283 
3284   static const CostTblEntry AVX1CostTblNoPairWise[] = {
3285     { ISD::FADD,  MVT::v4f64,   3 },
3286     { ISD::FADD,  MVT::v4f32,   3 },
3287     { ISD::FADD,  MVT::v8f32,   4 },
3288     { ISD::ADD,   MVT::v2i64,   1 },      // The data reported by the IACA tool is "1.5".
3289     { ISD::ADD,   MVT::v4i64,   3 },
3290     { ISD::ADD,   MVT::v8i32,   5 },
3291     { ISD::ADD,   MVT::v16i16,  5 },
3292     { ISD::ADD,   MVT::v32i8,   4 },
3293   };
3294 
3295   int ISD = TLI->InstructionOpcodeToISD(Opcode);
3296   assert(ISD && "Invalid opcode");
3297 
3298   // Before legalizing the type, give a chance to look up illegal narrow types
3299   // in the table.
3300   // FIXME: Is there a better way to do this?
3301   EVT VT = TLI->getValueType(DL, ValTy);
3302   if (VT.isSimple()) {
3303     MVT MTy = VT.getSimpleVT();
3304     if (ST->isSLM())
3305       if (const auto *Entry = CostTableLookup(SLMCostTblNoPairWise, ISD, MTy))
3306         return Entry->Cost;
3307 
3308     if (ST->hasAVX())
3309       if (const auto *Entry = CostTableLookup(AVX1CostTblNoPairWise, ISD, MTy))
3310         return Entry->Cost;
3311 
3312     if (ST->hasSSE2())
3313       if (const auto *Entry = CostTableLookup(SSE2CostTblNoPairWise, ISD, MTy))
3314         return Entry->Cost;
3315   }
3316 
3317   std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, ValTy);
3318 
3319   MVT MTy = LT.second;
3320 
3321   auto *ValVTy = cast<FixedVectorType>(ValTy);
3322 
3323   unsigned ArithmeticCost = 0;
3324   if (LT.first != 1 && MTy.isVector() &&
3325       MTy.getVectorNumElements() < ValVTy->getNumElements()) {
3326     // Type needs to be split. We need LT.first - 1 arithmetic ops.
3327     auto *SingleOpTy = FixedVectorType::get(ValVTy->getElementType(),
3328                                             MTy.getVectorNumElements());
3329     ArithmeticCost = getArithmeticInstrCost(Opcode, SingleOpTy, CostKind);
3330     ArithmeticCost *= LT.first - 1;
3331   }
3332 
3333   if (ST->isSLM())
3334     if (const auto *Entry = CostTableLookup(SLMCostTblNoPairWise, ISD, MTy))
3335       return ArithmeticCost + Entry->Cost;
3336 
3337   if (ST->hasAVX())
3338     if (const auto *Entry = CostTableLookup(AVX1CostTblNoPairWise, ISD, MTy))
3339       return ArithmeticCost + Entry->Cost;
3340 
3341   if (ST->hasSSE2())
3342     if (const auto *Entry = CostTableLookup(SSE2CostTblNoPairWise, ISD, MTy))
3343       return ArithmeticCost + Entry->Cost;
3344 
3345   // FIXME: These assume a naive kshift+binop lowering, which is probably
3346   // conservative in most cases.
3347   static const CostTblEntry AVX512BoolReduction[] = {
3348     { ISD::AND,  MVT::v2i1,   3 },
3349     { ISD::AND,  MVT::v4i1,   5 },
3350     { ISD::AND,  MVT::v8i1,   7 },
3351     { ISD::AND,  MVT::v16i1,  9 },
3352     { ISD::AND,  MVT::v32i1, 11 },
3353     { ISD::AND,  MVT::v64i1, 13 },
3354     { ISD::OR,   MVT::v2i1,   3 },
3355     { ISD::OR,   MVT::v4i1,   5 },
3356     { ISD::OR,   MVT::v8i1,   7 },
3357     { ISD::OR,   MVT::v16i1,  9 },
3358     { ISD::OR,   MVT::v32i1, 11 },
3359     { ISD::OR,   MVT::v64i1, 13 },
3360   };
3361 
3362   static const CostTblEntry AVX2BoolReduction[] = {
3363     { ISD::AND,  MVT::v16i16,  2 }, // vpmovmskb + cmp
3364     { ISD::AND,  MVT::v32i8,   2 }, // vpmovmskb + cmp
3365     { ISD::OR,   MVT::v16i16,  2 }, // vpmovmskb + cmp
3366     { ISD::OR,   MVT::v32i8,   2 }, // vpmovmskb + cmp
3367   };
3368 
3369   static const CostTblEntry AVX1BoolReduction[] = {
3370     { ISD::AND,  MVT::v4i64,   2 }, // vmovmskpd + cmp
3371     { ISD::AND,  MVT::v8i32,   2 }, // vmovmskps + cmp
3372     { ISD::AND,  MVT::v16i16,  4 }, // vextractf128 + vpand + vpmovmskb + cmp
3373     { ISD::AND,  MVT::v32i8,   4 }, // vextractf128 + vpand + vpmovmskb + cmp
3374     { ISD::OR,   MVT::v4i64,   2 }, // vmovmskpd + cmp
3375     { ISD::OR,   MVT::v8i32,   2 }, // vmovmskps + cmp
3376     { ISD::OR,   MVT::v16i16,  4 }, // vextractf128 + vpor + vpmovmskb + cmp
3377     { ISD::OR,   MVT::v32i8,   4 }, // vextractf128 + vpor + vpmovmskb + cmp
3378   };
3379 
3380   static const CostTblEntry SSE2BoolReduction[] = {
3381     { ISD::AND,  MVT::v2i64,   2 }, // movmskpd + cmp
3382     { ISD::AND,  MVT::v4i32,   2 }, // movmskps + cmp
3383     { ISD::AND,  MVT::v8i16,   2 }, // pmovmskb + cmp
3384     { ISD::AND,  MVT::v16i8,   2 }, // pmovmskb + cmp
3385     { ISD::OR,   MVT::v2i64,   2 }, // movmskpd + cmp
3386     { ISD::OR,   MVT::v4i32,   2 }, // movmskps + cmp
3387     { ISD::OR,   MVT::v8i16,   2 }, // pmovmskb + cmp
3388     { ISD::OR,   MVT::v16i8,   2 }, // pmovmskb + cmp
3389   };
3390 
3391   // Handle bool allof/anyof patterns.
3392   if (ValVTy->getElementType()->isIntegerTy(1)) {
3393     unsigned ArithmeticCost = 0;
3394     if (LT.first != 1 && MTy.isVector() &&
3395         MTy.getVectorNumElements() < ValVTy->getNumElements()) {
3396       // Type needs to be split. We need LT.first - 1 arithmetic ops.
3397       auto *SingleOpTy = FixedVectorType::get(ValVTy->getElementType(),
3398                                               MTy.getVectorNumElements());
3399       ArithmeticCost = getArithmeticInstrCost(Opcode, SingleOpTy, CostKind);
3400       ArithmeticCost *= LT.first - 1;
3401     }
3402 
3403     if (ST->hasAVX512())
3404       if (const auto *Entry = CostTableLookup(AVX512BoolReduction, ISD, MTy))
3405         return ArithmeticCost + Entry->Cost;
3406     if (ST->hasAVX2())
3407       if (const auto *Entry = CostTableLookup(AVX2BoolReduction, ISD, MTy))
3408         return ArithmeticCost + Entry->Cost;
3409     if (ST->hasAVX())
3410       if (const auto *Entry = CostTableLookup(AVX1BoolReduction, ISD, MTy))
3411         return ArithmeticCost + Entry->Cost;
3412     if (ST->hasSSE2())
3413       if (const auto *Entry = CostTableLookup(SSE2BoolReduction, ISD, MTy))
3414         return ArithmeticCost + Entry->Cost;
3415 
3416     return BaseT::getArithmeticReductionCost(Opcode, ValVTy, IsPairwise,
3417                                              CostKind);
3418   }
3419 
3420   unsigned NumVecElts = ValVTy->getNumElements();
3421   unsigned ScalarSize = ValVTy->getScalarSizeInBits();
3422 
3423   // Special case power of 2 reductions where the scalar type isn't changed
3424   // by type legalization.
3425   if (!isPowerOf2_32(NumVecElts) || ScalarSize != MTy.getScalarSizeInBits())
3426     return BaseT::getArithmeticReductionCost(Opcode, ValVTy, IsPairwise,
3427                                              CostKind);
3428 
3429   unsigned ReductionCost = 0;
3430 
3431   auto *Ty = ValVTy;
3432   if (LT.first != 1 && MTy.isVector() &&
3433       MTy.getVectorNumElements() < ValVTy->getNumElements()) {
3434     // Type needs to be split. We need LT.first - 1 arithmetic ops.
3435     Ty = FixedVectorType::get(ValVTy->getElementType(),
3436                               MTy.getVectorNumElements());
3437     ReductionCost = getArithmeticInstrCost(Opcode, Ty, CostKind);
3438     ReductionCost *= LT.first - 1;
3439     NumVecElts = MTy.getVectorNumElements();
3440   }
3441 
3442   // Now handle reduction with the legal type, taking into account size changes
3443   // at each level.
3444   while (NumVecElts > 1) {
3445     // Determine the size of the remaining vector we need to reduce.
3446     unsigned Size = NumVecElts * ScalarSize;
3447     NumVecElts /= 2;
3448     // If we're reducing from 256/512 bits, use an extract_subvector.
3449     if (Size > 128) {
3450       auto *SubTy = FixedVectorType::get(ValVTy->getElementType(), NumVecElts);
3451       ReductionCost +=
3452           getShuffleCost(TTI::SK_ExtractSubvector, Ty, NumVecElts, SubTy);
3453       Ty = SubTy;
3454     } else if (Size == 128) {
3455       // Reducing from 128 bits is a permute of v2f64/v2i64.
3456       FixedVectorType *ShufTy;
3457       if (ValVTy->isFloatingPointTy())
3458         ShufTy =
3459             FixedVectorType::get(Type::getDoubleTy(ValVTy->getContext()), 2);
3460       else
3461         ShufTy =
3462             FixedVectorType::get(Type::getInt64Ty(ValVTy->getContext()), 2);
3463       ReductionCost +=
3464           getShuffleCost(TTI::SK_PermuteSingleSrc, ShufTy, 0, nullptr);
3465     } else if (Size == 64) {
3466       // Reducing from 64 bits is a shuffle of v4f32/v4i32.
3467       FixedVectorType *ShufTy;
3468       if (ValVTy->isFloatingPointTy())
3469         ShufTy =
3470             FixedVectorType::get(Type::getFloatTy(ValVTy->getContext()), 4);
3471       else
3472         ShufTy =
3473             FixedVectorType::get(Type::getInt32Ty(ValVTy->getContext()), 4);
3474       ReductionCost +=
3475           getShuffleCost(TTI::SK_PermuteSingleSrc, ShufTy, 0, nullptr);
3476     } else {
3477       // Reducing from smaller size is a shift by immediate.
3478       auto *ShiftTy = FixedVectorType::get(
3479           Type::getIntNTy(ValVTy->getContext(), Size), 128 / Size);
3480       ReductionCost += getArithmeticInstrCost(
3481           Instruction::LShr, ShiftTy, CostKind,
3482           TargetTransformInfo::OK_AnyValue,
3483           TargetTransformInfo::OK_UniformConstantValue,
3484           TargetTransformInfo::OP_None, TargetTransformInfo::OP_None);
3485     }
3486 
3487     // Add the arithmetic op for this level.
3488     ReductionCost += getArithmeticInstrCost(Opcode, Ty, CostKind);
3489   }
3490 
3491   // Add the final extract element to the cost.
3492   return ReductionCost + getVectorInstrCost(Instruction::ExtractElement, Ty, 0);
3493 }
3494 
3495 int X86TTIImpl::getMinMaxCost(Type *Ty, Type *CondTy, bool IsUnsigned) {
3496   std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Ty);
3497 
3498   MVT MTy = LT.second;
3499 
3500   int ISD;
3501   if (Ty->isIntOrIntVectorTy()) {
3502     ISD = IsUnsigned ? ISD::UMIN : ISD::SMIN;
3503   } else {
3504     assert(Ty->isFPOrFPVectorTy() &&
3505            "Expected float point or integer vector type.");
3506     ISD = ISD::FMINNUM;
3507   }
3508 
3509   static const CostTblEntry SSE1CostTbl[] = {
3510     {ISD::FMINNUM, MVT::v4f32, 1},
3511   };
3512 
3513   static const CostTblEntry SSE2CostTbl[] = {
3514     {ISD::FMINNUM, MVT::v2f64, 1},
3515     {ISD::SMIN,    MVT::v8i16, 1},
3516     {ISD::UMIN,    MVT::v16i8, 1},
3517   };
3518 
3519   static const CostTblEntry SSE41CostTbl[] = {
3520     {ISD::SMIN,    MVT::v4i32, 1},
3521     {ISD::UMIN,    MVT::v4i32, 1},
3522     {ISD::UMIN,    MVT::v8i16, 1},
3523     {ISD::SMIN,    MVT::v16i8, 1},
3524   };
3525 
3526   static const CostTblEntry SSE42CostTbl[] = {
3527     {ISD::UMIN,    MVT::v2i64, 3}, // xor+pcmpgtq+blendvpd
3528   };
3529 
3530   static const CostTblEntry AVX1CostTbl[] = {
3531     {ISD::FMINNUM, MVT::v8f32,  1},
3532     {ISD::FMINNUM, MVT::v4f64,  1},
3533     {ISD::SMIN,    MVT::v8i32,  3},
3534     {ISD::UMIN,    MVT::v8i32,  3},
3535     {ISD::SMIN,    MVT::v16i16, 3},
3536     {ISD::UMIN,    MVT::v16i16, 3},
3537     {ISD::SMIN,    MVT::v32i8,  3},
3538     {ISD::UMIN,    MVT::v32i8,  3},
3539   };
3540 
3541   static const CostTblEntry AVX2CostTbl[] = {
3542     {ISD::SMIN,    MVT::v8i32,  1},
3543     {ISD::UMIN,    MVT::v8i32,  1},
3544     {ISD::SMIN,    MVT::v16i16, 1},
3545     {ISD::UMIN,    MVT::v16i16, 1},
3546     {ISD::SMIN,    MVT::v32i8,  1},
3547     {ISD::UMIN,    MVT::v32i8,  1},
3548   };
3549 
3550   static const CostTblEntry AVX512CostTbl[] = {
3551     {ISD::FMINNUM, MVT::v16f32, 1},
3552     {ISD::FMINNUM, MVT::v8f64,  1},
3553     {ISD::SMIN,    MVT::v2i64,  1},
3554     {ISD::UMIN,    MVT::v2i64,  1},
3555     {ISD::SMIN,    MVT::v4i64,  1},
3556     {ISD::UMIN,    MVT::v4i64,  1},
3557     {ISD::SMIN,    MVT::v8i64,  1},
3558     {ISD::UMIN,    MVT::v8i64,  1},
3559     {ISD::SMIN,    MVT::v16i32, 1},
3560     {ISD::UMIN,    MVT::v16i32, 1},
3561   };
3562 
3563   static const CostTblEntry AVX512BWCostTbl[] = {
3564     {ISD::SMIN,    MVT::v32i16, 1},
3565     {ISD::UMIN,    MVT::v32i16, 1},
3566     {ISD::SMIN,    MVT::v64i8,  1},
3567     {ISD::UMIN,    MVT::v64i8,  1},
3568   };
3569 
3570   // If we have a native MIN/MAX instruction for this type, use it.
3571   if (ST->hasBWI())
3572     if (const auto *Entry = CostTableLookup(AVX512BWCostTbl, ISD, MTy))
3573       return LT.first * Entry->Cost;
3574 
3575   if (ST->hasAVX512())
3576     if (const auto *Entry = CostTableLookup(AVX512CostTbl, ISD, MTy))
3577       return LT.first * Entry->Cost;
3578 
3579   if (ST->hasAVX2())
3580     if (const auto *Entry = CostTableLookup(AVX2CostTbl, ISD, MTy))
3581       return LT.first * Entry->Cost;
3582 
3583   if (ST->hasAVX())
3584     if (const auto *Entry = CostTableLookup(AVX1CostTbl, ISD, MTy))
3585       return LT.first * Entry->Cost;
3586 
3587   if (ST->hasSSE42())
3588     if (const auto *Entry = CostTableLookup(SSE42CostTbl, ISD, MTy))
3589       return LT.first * Entry->Cost;
3590 
3591   if (ST->hasSSE41())
3592     if (const auto *Entry = CostTableLookup(SSE41CostTbl, ISD, MTy))
3593       return LT.first * Entry->Cost;
3594 
3595   if (ST->hasSSE2())
3596     if (const auto *Entry = CostTableLookup(SSE2CostTbl, ISD, MTy))
3597       return LT.first * Entry->Cost;
3598 
3599   if (ST->hasSSE1())
3600     if (const auto *Entry = CostTableLookup(SSE1CostTbl, ISD, MTy))
3601       return LT.first * Entry->Cost;
3602 
3603   unsigned CmpOpcode;
3604   if (Ty->isFPOrFPVectorTy()) {
3605     CmpOpcode = Instruction::FCmp;
3606   } else {
3607     assert(Ty->isIntOrIntVectorTy() &&
3608            "expecting floating point or integer type for min/max reduction");
3609     CmpOpcode = Instruction::ICmp;
3610   }
3611 
3612   TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
3613   // Otherwise fall back to cmp+select.
3614   return getCmpSelInstrCost(CmpOpcode, Ty, CondTy, CostKind) +
3615          getCmpSelInstrCost(Instruction::Select, Ty, CondTy, CostKind);
3616 }
3617 
3618 int X86TTIImpl::getMinMaxReductionCost(VectorType *ValTy, VectorType *CondTy,
3619                                        bool IsPairwise, bool IsUnsigned,
3620                                        TTI::TargetCostKind CostKind) {
3621   // Just use the default implementation for pair reductions.
3622   if (IsPairwise)
3623     return BaseT::getMinMaxReductionCost(ValTy, CondTy, IsPairwise, IsUnsigned,
3624                                          CostKind);
3625 
3626   std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, ValTy);
3627 
3628   MVT MTy = LT.second;
3629 
3630   int ISD;
3631   if (ValTy->isIntOrIntVectorTy()) {
3632     ISD = IsUnsigned ? ISD::UMIN : ISD::SMIN;
3633   } else {
3634     assert(ValTy->isFPOrFPVectorTy() &&
3635            "Expected float point or integer vector type.");
3636     ISD = ISD::FMINNUM;
3637   }
3638 
3639   // We use the Intel Architecture Code Analyzer(IACA) to measure the throughput
3640   // and make it as the cost.
3641 
3642   static const CostTblEntry SSE2CostTblNoPairWise[] = {
3643       {ISD::UMIN, MVT::v2i16, 5}, // need pxors to use pminsw/pmaxsw
3644       {ISD::UMIN, MVT::v4i16, 7}, // need pxors to use pminsw/pmaxsw
3645       {ISD::UMIN, MVT::v8i16, 9}, // need pxors to use pminsw/pmaxsw
3646   };
3647 
3648   static const CostTblEntry SSE41CostTblNoPairWise[] = {
3649       {ISD::SMIN, MVT::v2i16, 3}, // same as sse2
3650       {ISD::SMIN, MVT::v4i16, 5}, // same as sse2
3651       {ISD::UMIN, MVT::v2i16, 5}, // same as sse2
3652       {ISD::UMIN, MVT::v4i16, 7}, // same as sse2
3653       {ISD::SMIN, MVT::v8i16, 4}, // phminposuw+xor
3654       {ISD::UMIN, MVT::v8i16, 4}, // FIXME: umin is cheaper than umax
3655       {ISD::SMIN, MVT::v2i8,  3}, // pminsb
3656       {ISD::SMIN, MVT::v4i8,  5}, // pminsb
3657       {ISD::SMIN, MVT::v8i8,  7}, // pminsb
3658       {ISD::SMIN, MVT::v16i8, 6},
3659       {ISD::UMIN, MVT::v2i8,  3}, // same as sse2
3660       {ISD::UMIN, MVT::v4i8,  5}, // same as sse2
3661       {ISD::UMIN, MVT::v8i8,  7}, // same as sse2
3662       {ISD::UMIN, MVT::v16i8, 6}, // FIXME: umin is cheaper than umax
3663   };
3664 
3665   static const CostTblEntry AVX1CostTblNoPairWise[] = {
3666       {ISD::SMIN, MVT::v16i16, 6},
3667       {ISD::UMIN, MVT::v16i16, 6}, // FIXME: umin is cheaper than umax
3668       {ISD::SMIN, MVT::v32i8, 8},
3669       {ISD::UMIN, MVT::v32i8, 8},
3670   };
3671 
3672   static const CostTblEntry AVX512BWCostTblNoPairWise[] = {
3673       {ISD::SMIN, MVT::v32i16, 8},
3674       {ISD::UMIN, MVT::v32i16, 8}, // FIXME: umin is cheaper than umax
3675       {ISD::SMIN, MVT::v64i8, 10},
3676       {ISD::UMIN, MVT::v64i8, 10},
3677   };
3678 
3679   // Before legalizing the type, give a chance to look up illegal narrow types
3680   // in the table.
3681   // FIXME: Is there a better way to do this?
3682   EVT VT = TLI->getValueType(DL, ValTy);
3683   if (VT.isSimple()) {
3684     MVT MTy = VT.getSimpleVT();
3685     if (ST->hasBWI())
3686       if (const auto *Entry = CostTableLookup(AVX512BWCostTblNoPairWise, ISD, MTy))
3687         return Entry->Cost;
3688 
3689     if (ST->hasAVX())
3690       if (const auto *Entry = CostTableLookup(AVX1CostTblNoPairWise, ISD, MTy))
3691         return Entry->Cost;
3692 
3693     if (ST->hasSSE41())
3694       if (const auto *Entry = CostTableLookup(SSE41CostTblNoPairWise, ISD, MTy))
3695         return Entry->Cost;
3696 
3697     if (ST->hasSSE2())
3698       if (const auto *Entry = CostTableLookup(SSE2CostTblNoPairWise, ISD, MTy))
3699         return Entry->Cost;
3700   }
3701 
3702   auto *ValVTy = cast<FixedVectorType>(ValTy);
3703   unsigned NumVecElts = ValVTy->getNumElements();
3704 
3705   auto *Ty = ValVTy;
3706   unsigned MinMaxCost = 0;
3707   if (LT.first != 1 && MTy.isVector() &&
3708       MTy.getVectorNumElements() < ValVTy->getNumElements()) {
3709     // Type needs to be split. We need LT.first - 1 operations ops.
3710     Ty = FixedVectorType::get(ValVTy->getElementType(),
3711                               MTy.getVectorNumElements());
3712     auto *SubCondTy = FixedVectorType::get(CondTy->getElementType(),
3713                                            MTy.getVectorNumElements());
3714     MinMaxCost = getMinMaxCost(Ty, SubCondTy, IsUnsigned);
3715     MinMaxCost *= LT.first - 1;
3716     NumVecElts = MTy.getVectorNumElements();
3717   }
3718 
3719   if (ST->hasBWI())
3720     if (const auto *Entry = CostTableLookup(AVX512BWCostTblNoPairWise, ISD, MTy))
3721       return MinMaxCost + Entry->Cost;
3722 
3723   if (ST->hasAVX())
3724     if (const auto *Entry = CostTableLookup(AVX1CostTblNoPairWise, ISD, MTy))
3725       return MinMaxCost + Entry->Cost;
3726 
3727   if (ST->hasSSE41())
3728     if (const auto *Entry = CostTableLookup(SSE41CostTblNoPairWise, ISD, MTy))
3729       return MinMaxCost + Entry->Cost;
3730 
3731   if (ST->hasSSE2())
3732     if (const auto *Entry = CostTableLookup(SSE2CostTblNoPairWise, ISD, MTy))
3733       return MinMaxCost + Entry->Cost;
3734 
3735   unsigned ScalarSize = ValTy->getScalarSizeInBits();
3736 
3737   // Special case power of 2 reductions where the scalar type isn't changed
3738   // by type legalization.
3739   if (!isPowerOf2_32(ValVTy->getNumElements()) ||
3740       ScalarSize != MTy.getScalarSizeInBits())
3741     return BaseT::getMinMaxReductionCost(ValTy, CondTy, IsPairwise, IsUnsigned,
3742                                          CostKind);
3743 
3744   // Now handle reduction with the legal type, taking into account size changes
3745   // at each level.
3746   while (NumVecElts > 1) {
3747     // Determine the size of the remaining vector we need to reduce.
3748     unsigned Size = NumVecElts * ScalarSize;
3749     NumVecElts /= 2;
3750     // If we're reducing from 256/512 bits, use an extract_subvector.
3751     if (Size > 128) {
3752       auto *SubTy = FixedVectorType::get(ValVTy->getElementType(), NumVecElts);
3753       MinMaxCost +=
3754           getShuffleCost(TTI::SK_ExtractSubvector, Ty, NumVecElts, SubTy);
3755       Ty = SubTy;
3756     } else if (Size == 128) {
3757       // Reducing from 128 bits is a permute of v2f64/v2i64.
3758       VectorType *ShufTy;
3759       if (ValTy->isFloatingPointTy())
3760         ShufTy =
3761             FixedVectorType::get(Type::getDoubleTy(ValTy->getContext()), 2);
3762       else
3763         ShufTy = FixedVectorType::get(Type::getInt64Ty(ValTy->getContext()), 2);
3764       MinMaxCost +=
3765           getShuffleCost(TTI::SK_PermuteSingleSrc, ShufTy, 0, nullptr);
3766     } else if (Size == 64) {
3767       // Reducing from 64 bits is a shuffle of v4f32/v4i32.
3768       FixedVectorType *ShufTy;
3769       if (ValTy->isFloatingPointTy())
3770         ShufTy = FixedVectorType::get(Type::getFloatTy(ValTy->getContext()), 4);
3771       else
3772         ShufTy = FixedVectorType::get(Type::getInt32Ty(ValTy->getContext()), 4);
3773       MinMaxCost +=
3774           getShuffleCost(TTI::SK_PermuteSingleSrc, ShufTy, 0, nullptr);
3775     } else {
3776       // Reducing from smaller size is a shift by immediate.
3777       auto *ShiftTy = FixedVectorType::get(
3778           Type::getIntNTy(ValTy->getContext(), Size), 128 / Size);
3779       MinMaxCost += getArithmeticInstrCost(
3780           Instruction::LShr, ShiftTy, TTI::TCK_RecipThroughput,
3781           TargetTransformInfo::OK_AnyValue,
3782           TargetTransformInfo::OK_UniformConstantValue,
3783           TargetTransformInfo::OP_None, TargetTransformInfo::OP_None);
3784     }
3785 
3786     // Add the arithmetic op for this level.
3787     auto *SubCondTy =
3788         FixedVectorType::get(CondTy->getElementType(), Ty->getNumElements());
3789     MinMaxCost += getMinMaxCost(Ty, SubCondTy, IsUnsigned);
3790   }
3791 
3792   // Add the final extract element to the cost.
3793   return MinMaxCost + getVectorInstrCost(Instruction::ExtractElement, Ty, 0);
3794 }
3795 
3796 /// Calculate the cost of materializing a 64-bit value. This helper
3797 /// method might only calculate a fraction of a larger immediate. Therefore it
3798 /// is valid to return a cost of ZERO.
3799 int X86TTIImpl::getIntImmCost(int64_t Val) {
3800   if (Val == 0)
3801     return TTI::TCC_Free;
3802 
3803   if (isInt<32>(Val))
3804     return TTI::TCC_Basic;
3805 
3806   return 2 * TTI::TCC_Basic;
3807 }
3808 
3809 int X86TTIImpl::getIntImmCost(const APInt &Imm, Type *Ty,
3810                               TTI::TargetCostKind CostKind) {
3811   assert(Ty->isIntegerTy());
3812 
3813   unsigned BitSize = Ty->getPrimitiveSizeInBits();
3814   if (BitSize == 0)
3815     return ~0U;
3816 
3817   // Never hoist constants larger than 128bit, because this might lead to
3818   // incorrect code generation or assertions in codegen.
3819   // Fixme: Create a cost model for types larger than i128 once the codegen
3820   // issues have been fixed.
3821   if (BitSize > 128)
3822     return TTI::TCC_Free;
3823 
3824   if (Imm == 0)
3825     return TTI::TCC_Free;
3826 
3827   // Sign-extend all constants to a multiple of 64-bit.
3828   APInt ImmVal = Imm;
3829   if (BitSize % 64 != 0)
3830     ImmVal = Imm.sext(alignTo(BitSize, 64));
3831 
3832   // Split the constant into 64-bit chunks and calculate the cost for each
3833   // chunk.
3834   int Cost = 0;
3835   for (unsigned ShiftVal = 0; ShiftVal < BitSize; ShiftVal += 64) {
3836     APInt Tmp = ImmVal.ashr(ShiftVal).sextOrTrunc(64);
3837     int64_t Val = Tmp.getSExtValue();
3838     Cost += getIntImmCost(Val);
3839   }
3840   // We need at least one instruction to materialize the constant.
3841   return std::max(1, Cost);
3842 }
3843 
3844 int X86TTIImpl::getIntImmCostInst(unsigned Opcode, unsigned Idx, const APInt &Imm,
3845                                   Type *Ty, TTI::TargetCostKind CostKind) {
3846   assert(Ty->isIntegerTy());
3847 
3848   unsigned BitSize = Ty->getPrimitiveSizeInBits();
3849   // There is no cost model for constants with a bit size of 0. Return TCC_Free
3850   // here, so that constant hoisting will ignore this constant.
3851   if (BitSize == 0)
3852     return TTI::TCC_Free;
3853 
3854   unsigned ImmIdx = ~0U;
3855   switch (Opcode) {
3856   default:
3857     return TTI::TCC_Free;
3858   case Instruction::GetElementPtr:
3859     // Always hoist the base address of a GetElementPtr. This prevents the
3860     // creation of new constants for every base constant that gets constant
3861     // folded with the offset.
3862     if (Idx == 0)
3863       return 2 * TTI::TCC_Basic;
3864     return TTI::TCC_Free;
3865   case Instruction::Store:
3866     ImmIdx = 0;
3867     break;
3868   case Instruction::ICmp:
3869     // This is an imperfect hack to prevent constant hoisting of
3870     // compares that might be trying to check if a 64-bit value fits in
3871     // 32-bits. The backend can optimize these cases using a right shift by 32.
3872     // Ideally we would check the compare predicate here. There also other
3873     // similar immediates the backend can use shifts for.
3874     if (Idx == 1 && Imm.getBitWidth() == 64) {
3875       uint64_t ImmVal = Imm.getZExtValue();
3876       if (ImmVal == 0x100000000ULL || ImmVal == 0xffffffff)
3877         return TTI::TCC_Free;
3878     }
3879     ImmIdx = 1;
3880     break;
3881   case Instruction::And:
3882     // We support 64-bit ANDs with immediates with 32-bits of leading zeroes
3883     // by using a 32-bit operation with implicit zero extension. Detect such
3884     // immediates here as the normal path expects bit 31 to be sign extended.
3885     if (Idx == 1 && Imm.getBitWidth() == 64 && isUInt<32>(Imm.getZExtValue()))
3886       return TTI::TCC_Free;
3887     ImmIdx = 1;
3888     break;
3889   case Instruction::Add:
3890   case Instruction::Sub:
3891     // For add/sub, we can use the opposite instruction for INT32_MIN.
3892     if (Idx == 1 && Imm.getBitWidth() == 64 && Imm.getZExtValue() == 0x80000000)
3893       return TTI::TCC_Free;
3894     ImmIdx = 1;
3895     break;
3896   case Instruction::UDiv:
3897   case Instruction::SDiv:
3898   case Instruction::URem:
3899   case Instruction::SRem:
3900     // Division by constant is typically expanded later into a different
3901     // instruction sequence. This completely changes the constants.
3902     // Report them as "free" to stop ConstantHoist from marking them as opaque.
3903     return TTI::TCC_Free;
3904   case Instruction::Mul:
3905   case Instruction::Or:
3906   case Instruction::Xor:
3907     ImmIdx = 1;
3908     break;
3909   // Always return TCC_Free for the shift value of a shift instruction.
3910   case Instruction::Shl:
3911   case Instruction::LShr:
3912   case Instruction::AShr:
3913     if (Idx == 1)
3914       return TTI::TCC_Free;
3915     break;
3916   case Instruction::Trunc:
3917   case Instruction::ZExt:
3918   case Instruction::SExt:
3919   case Instruction::IntToPtr:
3920   case Instruction::PtrToInt:
3921   case Instruction::BitCast:
3922   case Instruction::PHI:
3923   case Instruction::Call:
3924   case Instruction::Select:
3925   case Instruction::Ret:
3926   case Instruction::Load:
3927     break;
3928   }
3929 
3930   if (Idx == ImmIdx) {
3931     int NumConstants = divideCeil(BitSize, 64);
3932     int Cost = X86TTIImpl::getIntImmCost(Imm, Ty, CostKind);
3933     return (Cost <= NumConstants * TTI::TCC_Basic)
3934                ? static_cast<int>(TTI::TCC_Free)
3935                : Cost;
3936   }
3937 
3938   return X86TTIImpl::getIntImmCost(Imm, Ty, CostKind);
3939 }
3940 
3941 int X86TTIImpl::getIntImmCostIntrin(Intrinsic::ID IID, unsigned Idx,
3942                                     const APInt &Imm, Type *Ty,
3943                                     TTI::TargetCostKind CostKind) {
3944   assert(Ty->isIntegerTy());
3945 
3946   unsigned BitSize = Ty->getPrimitiveSizeInBits();
3947   // There is no cost model for constants with a bit size of 0. Return TCC_Free
3948   // here, so that constant hoisting will ignore this constant.
3949   if (BitSize == 0)
3950     return TTI::TCC_Free;
3951 
3952   switch (IID) {
3953   default:
3954     return TTI::TCC_Free;
3955   case Intrinsic::sadd_with_overflow:
3956   case Intrinsic::uadd_with_overflow:
3957   case Intrinsic::ssub_with_overflow:
3958   case Intrinsic::usub_with_overflow:
3959   case Intrinsic::smul_with_overflow:
3960   case Intrinsic::umul_with_overflow:
3961     if ((Idx == 1) && Imm.getBitWidth() <= 64 && isInt<32>(Imm.getSExtValue()))
3962       return TTI::TCC_Free;
3963     break;
3964   case Intrinsic::experimental_stackmap:
3965     if ((Idx < 2) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue())))
3966       return TTI::TCC_Free;
3967     break;
3968   case Intrinsic::experimental_patchpoint_void:
3969   case Intrinsic::experimental_patchpoint_i64:
3970     if ((Idx < 4) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue())))
3971       return TTI::TCC_Free;
3972     break;
3973   }
3974   return X86TTIImpl::getIntImmCost(Imm, Ty, CostKind);
3975 }
3976 
3977 unsigned
3978 X86TTIImpl::getCFInstrCost(unsigned Opcode, TTI::TargetCostKind CostKind) {
3979   if (CostKind != TTI::TCK_RecipThroughput)
3980     return Opcode == Instruction::PHI ? 0 : 1;
3981   // Branches are assumed to be predicted.
3982   return CostKind == TTI::TCK_RecipThroughput ? 0 : 1;
3983 }
3984 
3985 int X86TTIImpl::getGatherOverhead() const {
3986   // Some CPUs have more overhead for gather. The specified overhead is relative
3987   // to the Load operation. "2" is the number provided by Intel architects. This
3988   // parameter is used for cost estimation of Gather Op and comparison with
3989   // other alternatives.
3990   // TODO: Remove the explicit hasAVX512()?, That would mean we would only
3991   // enable gather with a -march.
3992   if (ST->hasAVX512() || (ST->hasAVX2() && ST->hasFastGather()))
3993     return 2;
3994 
3995   return 1024;
3996 }
3997 
3998 int X86TTIImpl::getScatterOverhead() const {
3999   if (ST->hasAVX512())
4000     return 2;
4001 
4002   return 1024;
4003 }
4004 
4005 // Return an average cost of Gather / Scatter instruction, maybe improved later
4006 int X86TTIImpl::getGSVectorCost(unsigned Opcode, Type *SrcVTy, const Value *Ptr,
4007                                 Align Alignment, unsigned AddressSpace) {
4008 
4009   assert(isa<VectorType>(SrcVTy) && "Unexpected type in getGSVectorCost");
4010   unsigned VF = cast<FixedVectorType>(SrcVTy)->getNumElements();
4011 
4012   // Try to reduce index size from 64 bit (default for GEP)
4013   // to 32. It is essential for VF 16. If the index can't be reduced to 32, the
4014   // operation will use 16 x 64 indices which do not fit in a zmm and needs
4015   // to split. Also check that the base pointer is the same for all lanes,
4016   // and that there's at most one variable index.
4017   auto getIndexSizeInBits = [](const Value *Ptr, const DataLayout &DL) {
4018     unsigned IndexSize = DL.getPointerSizeInBits();
4019     const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr);
4020     if (IndexSize < 64 || !GEP)
4021       return IndexSize;
4022 
4023     unsigned NumOfVarIndices = 0;
4024     const Value *Ptrs = GEP->getPointerOperand();
4025     if (Ptrs->getType()->isVectorTy() && !getSplatValue(Ptrs))
4026       return IndexSize;
4027     for (unsigned i = 1; i < GEP->getNumOperands(); ++i) {
4028       if (isa<Constant>(GEP->getOperand(i)))
4029         continue;
4030       Type *IndxTy = GEP->getOperand(i)->getType();
4031       if (auto *IndexVTy = dyn_cast<VectorType>(IndxTy))
4032         IndxTy = IndexVTy->getElementType();
4033       if ((IndxTy->getPrimitiveSizeInBits() == 64 &&
4034           !isa<SExtInst>(GEP->getOperand(i))) ||
4035          ++NumOfVarIndices > 1)
4036         return IndexSize; // 64
4037     }
4038     return (unsigned)32;
4039   };
4040 
4041   // Trying to reduce IndexSize to 32 bits for vector 16.
4042   // By default the IndexSize is equal to pointer size.
4043   unsigned IndexSize = (ST->hasAVX512() && VF >= 16)
4044                            ? getIndexSizeInBits(Ptr, DL)
4045                            : DL.getPointerSizeInBits();
4046 
4047   auto *IndexVTy = FixedVectorType::get(
4048       IntegerType::get(SrcVTy->getContext(), IndexSize), VF);
4049   std::pair<int, MVT> IdxsLT = TLI->getTypeLegalizationCost(DL, IndexVTy);
4050   std::pair<int, MVT> SrcLT = TLI->getTypeLegalizationCost(DL, SrcVTy);
4051   int SplitFactor = std::max(IdxsLT.first, SrcLT.first);
4052   if (SplitFactor > 1) {
4053     // Handle splitting of vector of pointers
4054     auto *SplitSrcTy =
4055         FixedVectorType::get(SrcVTy->getScalarType(), VF / SplitFactor);
4056     return SplitFactor * getGSVectorCost(Opcode, SplitSrcTy, Ptr, Alignment,
4057                                          AddressSpace);
4058   }
4059 
4060   // The gather / scatter cost is given by Intel architects. It is a rough
4061   // number since we are looking at one instruction in a time.
4062   const int GSOverhead = (Opcode == Instruction::Load)
4063                              ? getGatherOverhead()
4064                              : getScatterOverhead();
4065   return GSOverhead + VF * getMemoryOpCost(Opcode, SrcVTy->getScalarType(),
4066                                            MaybeAlign(Alignment), AddressSpace,
4067                                            TTI::TCK_RecipThroughput);
4068 }
4069 
4070 /// Return the cost of full scalarization of gather / scatter operation.
4071 ///
4072 /// Opcode - Load or Store instruction.
4073 /// SrcVTy - The type of the data vector that should be gathered or scattered.
4074 /// VariableMask - The mask is non-constant at compile time.
4075 /// Alignment - Alignment for one element.
4076 /// AddressSpace - pointer[s] address space.
4077 ///
4078 int X86TTIImpl::getGSScalarCost(unsigned Opcode, Type *SrcVTy,
4079                                 bool VariableMask, Align Alignment,
4080                                 unsigned AddressSpace) {
4081   unsigned VF = cast<FixedVectorType>(SrcVTy)->getNumElements();
4082   APInt DemandedElts = APInt::getAllOnesValue(VF);
4083   TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
4084 
4085   int MaskUnpackCost = 0;
4086   if (VariableMask) {
4087     auto *MaskTy =
4088         FixedVectorType::get(Type::getInt1Ty(SrcVTy->getContext()), VF);
4089     MaskUnpackCost =
4090         getScalarizationOverhead(MaskTy, DemandedElts, false, true);
4091     int ScalarCompareCost =
4092       getCmpSelInstrCost(Instruction::ICmp, Type::getInt1Ty(SrcVTy->getContext()),
4093                          nullptr, CostKind);
4094     int BranchCost = getCFInstrCost(Instruction::Br, CostKind);
4095     MaskUnpackCost += VF * (BranchCost + ScalarCompareCost);
4096   }
4097 
4098   // The cost of the scalar loads/stores.
4099   int MemoryOpCost = VF * getMemoryOpCost(Opcode, SrcVTy->getScalarType(),
4100                                           MaybeAlign(Alignment), AddressSpace,
4101                                           CostKind);
4102 
4103   int InsertExtractCost = 0;
4104   if (Opcode == Instruction::Load)
4105     for (unsigned i = 0; i < VF; ++i)
4106       // Add the cost of inserting each scalar load into the vector
4107       InsertExtractCost +=
4108         getVectorInstrCost(Instruction::InsertElement, SrcVTy, i);
4109   else
4110     for (unsigned i = 0; i < VF; ++i)
4111       // Add the cost of extracting each element out of the data vector
4112       InsertExtractCost +=
4113         getVectorInstrCost(Instruction::ExtractElement, SrcVTy, i);
4114 
4115   return MemoryOpCost + MaskUnpackCost + InsertExtractCost;
4116 }
4117 
4118 /// Calculate the cost of Gather / Scatter operation
4119 int X86TTIImpl::getGatherScatterOpCost(unsigned Opcode, Type *SrcVTy,
4120                                        const Value *Ptr, bool VariableMask,
4121                                        Align Alignment,
4122                                        TTI::TargetCostKind CostKind,
4123                                        const Instruction *I = nullptr) {
4124 
4125   if (CostKind != TTI::TCK_RecipThroughput)
4126     return 1;
4127 
4128   assert(SrcVTy->isVectorTy() && "Unexpected data type for Gather/Scatter");
4129   unsigned VF = cast<FixedVectorType>(SrcVTy)->getNumElements();
4130   PointerType *PtrTy = dyn_cast<PointerType>(Ptr->getType());
4131   if (!PtrTy && Ptr->getType()->isVectorTy())
4132     PtrTy = dyn_cast<PointerType>(
4133         cast<VectorType>(Ptr->getType())->getElementType());
4134   assert(PtrTy && "Unexpected type for Ptr argument");
4135   unsigned AddressSpace = PtrTy->getAddressSpace();
4136 
4137   bool Scalarize = false;
4138   if ((Opcode == Instruction::Load &&
4139        !isLegalMaskedGather(SrcVTy, Align(Alignment))) ||
4140       (Opcode == Instruction::Store &&
4141        !isLegalMaskedScatter(SrcVTy, Align(Alignment))))
4142     Scalarize = true;
4143   // Gather / Scatter for vector 2 is not profitable on KNL / SKX
4144   // Vector-4 of gather/scatter instruction does not exist on KNL.
4145   // We can extend it to 8 elements, but zeroing upper bits of
4146   // the mask vector will add more instructions. Right now we give the scalar
4147   // cost of vector-4 for KNL. TODO: Check, maybe the gather/scatter instruction
4148   // is better in the VariableMask case.
4149   if (ST->hasAVX512() && (VF == 2 || (VF == 4 && !ST->hasVLX())))
4150     Scalarize = true;
4151 
4152   if (Scalarize)
4153     return getGSScalarCost(Opcode, SrcVTy, VariableMask, Alignment,
4154                            AddressSpace);
4155 
4156   return getGSVectorCost(Opcode, SrcVTy, Ptr, Alignment, AddressSpace);
4157 }
4158 
4159 bool X86TTIImpl::isLSRCostLess(TargetTransformInfo::LSRCost &C1,
4160                                TargetTransformInfo::LSRCost &C2) {
4161     // X86 specific here are "instruction number 1st priority".
4162     return std::tie(C1.Insns, C1.NumRegs, C1.AddRecCost,
4163                     C1.NumIVMuls, C1.NumBaseAdds,
4164                     C1.ScaleCost, C1.ImmCost, C1.SetupCost) <
4165            std::tie(C2.Insns, C2.NumRegs, C2.AddRecCost,
4166                     C2.NumIVMuls, C2.NumBaseAdds,
4167                     C2.ScaleCost, C2.ImmCost, C2.SetupCost);
4168 }
4169 
4170 bool X86TTIImpl::canMacroFuseCmp() {
4171   return ST->hasMacroFusion() || ST->hasBranchFusion();
4172 }
4173 
4174 bool X86TTIImpl::isLegalMaskedLoad(Type *DataTy, Align Alignment) {
4175   if (!ST->hasAVX())
4176     return false;
4177 
4178   // The backend can't handle a single element vector.
4179   if (isa<VectorType>(DataTy) &&
4180       cast<FixedVectorType>(DataTy)->getNumElements() == 1)
4181     return false;
4182   Type *ScalarTy = DataTy->getScalarType();
4183 
4184   if (ScalarTy->isPointerTy())
4185     return true;
4186 
4187   if (ScalarTy->isFloatTy() || ScalarTy->isDoubleTy())
4188     return true;
4189 
4190   if (!ScalarTy->isIntegerTy())
4191     return false;
4192 
4193   unsigned IntWidth = ScalarTy->getIntegerBitWidth();
4194   return IntWidth == 32 || IntWidth == 64 ||
4195          ((IntWidth == 8 || IntWidth == 16) && ST->hasBWI());
4196 }
4197 
4198 bool X86TTIImpl::isLegalMaskedStore(Type *DataType, Align Alignment) {
4199   return isLegalMaskedLoad(DataType, Alignment);
4200 }
4201 
4202 bool X86TTIImpl::isLegalNTLoad(Type *DataType, Align Alignment) {
4203   unsigned DataSize = DL.getTypeStoreSize(DataType);
4204   // The only supported nontemporal loads are for aligned vectors of 16 or 32
4205   // bytes.  Note that 32-byte nontemporal vector loads are supported by AVX2
4206   // (the equivalent stores only require AVX).
4207   if (Alignment >= DataSize && (DataSize == 16 || DataSize == 32))
4208     return DataSize == 16 ?  ST->hasSSE1() : ST->hasAVX2();
4209 
4210   return false;
4211 }
4212 
4213 bool X86TTIImpl::isLegalNTStore(Type *DataType, Align Alignment) {
4214   unsigned DataSize = DL.getTypeStoreSize(DataType);
4215 
4216   // SSE4A supports nontemporal stores of float and double at arbitrary
4217   // alignment.
4218   if (ST->hasSSE4A() && (DataType->isFloatTy() || DataType->isDoubleTy()))
4219     return true;
4220 
4221   // Besides the SSE4A subtarget exception above, only aligned stores are
4222   // available nontemporaly on any other subtarget.  And only stores with a size
4223   // of 4..32 bytes (powers of 2, only) are permitted.
4224   if (Alignment < DataSize || DataSize < 4 || DataSize > 32 ||
4225       !isPowerOf2_32(DataSize))
4226     return false;
4227 
4228   // 32-byte vector nontemporal stores are supported by AVX (the equivalent
4229   // loads require AVX2).
4230   if (DataSize == 32)
4231     return ST->hasAVX();
4232   else if (DataSize == 16)
4233     return ST->hasSSE1();
4234   return true;
4235 }
4236 
4237 bool X86TTIImpl::isLegalMaskedExpandLoad(Type *DataTy) {
4238   if (!isa<VectorType>(DataTy))
4239     return false;
4240 
4241   if (!ST->hasAVX512())
4242     return false;
4243 
4244   // The backend can't handle a single element vector.
4245   if (cast<FixedVectorType>(DataTy)->getNumElements() == 1)
4246     return false;
4247 
4248   Type *ScalarTy = cast<VectorType>(DataTy)->getElementType();
4249 
4250   if (ScalarTy->isFloatTy() || ScalarTy->isDoubleTy())
4251     return true;
4252 
4253   if (!ScalarTy->isIntegerTy())
4254     return false;
4255 
4256   unsigned IntWidth = ScalarTy->getIntegerBitWidth();
4257   return IntWidth == 32 || IntWidth == 64 ||
4258          ((IntWidth == 8 || IntWidth == 16) && ST->hasVBMI2());
4259 }
4260 
4261 bool X86TTIImpl::isLegalMaskedCompressStore(Type *DataTy) {
4262   return isLegalMaskedExpandLoad(DataTy);
4263 }
4264 
4265 bool X86TTIImpl::isLegalMaskedGather(Type *DataTy, Align Alignment) {
4266   // Some CPUs have better gather performance than others.
4267   // TODO: Remove the explicit ST->hasAVX512()?, That would mean we would only
4268   // enable gather with a -march.
4269   if (!(ST->hasAVX512() || (ST->hasFastGather() && ST->hasAVX2())))
4270     return false;
4271 
4272   // This function is called now in two cases: from the Loop Vectorizer
4273   // and from the Scalarizer.
4274   // When the Loop Vectorizer asks about legality of the feature,
4275   // the vectorization factor is not calculated yet. The Loop Vectorizer
4276   // sends a scalar type and the decision is based on the width of the
4277   // scalar element.
4278   // Later on, the cost model will estimate usage this intrinsic based on
4279   // the vector type.
4280   // The Scalarizer asks again about legality. It sends a vector type.
4281   // In this case we can reject non-power-of-2 vectors.
4282   // We also reject single element vectors as the type legalizer can't
4283   // scalarize it.
4284   if (auto *DataVTy = dyn_cast<FixedVectorType>(DataTy)) {
4285     unsigned NumElts = DataVTy->getNumElements();
4286     if (NumElts == 1)
4287       return false;
4288   }
4289   Type *ScalarTy = DataTy->getScalarType();
4290   if (ScalarTy->isPointerTy())
4291     return true;
4292 
4293   if (ScalarTy->isFloatTy() || ScalarTy->isDoubleTy())
4294     return true;
4295 
4296   if (!ScalarTy->isIntegerTy())
4297     return false;
4298 
4299   unsigned IntWidth = ScalarTy->getIntegerBitWidth();
4300   return IntWidth == 32 || IntWidth == 64;
4301 }
4302 
4303 bool X86TTIImpl::isLegalMaskedScatter(Type *DataType, Align Alignment) {
4304   // AVX2 doesn't support scatter
4305   if (!ST->hasAVX512())
4306     return false;
4307   return isLegalMaskedGather(DataType, Alignment);
4308 }
4309 
4310 bool X86TTIImpl::hasDivRemOp(Type *DataType, bool IsSigned) {
4311   EVT VT = TLI->getValueType(DL, DataType);
4312   return TLI->isOperationLegal(IsSigned ? ISD::SDIVREM : ISD::UDIVREM, VT);
4313 }
4314 
4315 bool X86TTIImpl::isFCmpOrdCheaperThanFCmpZero(Type *Ty) {
4316   return false;
4317 }
4318 
4319 bool X86TTIImpl::areInlineCompatible(const Function *Caller,
4320                                      const Function *Callee) const {
4321   const TargetMachine &TM = getTLI()->getTargetMachine();
4322 
4323   // Work this as a subsetting of subtarget features.
4324   const FeatureBitset &CallerBits =
4325       TM.getSubtargetImpl(*Caller)->getFeatureBits();
4326   const FeatureBitset &CalleeBits =
4327       TM.getSubtargetImpl(*Callee)->getFeatureBits();
4328 
4329   FeatureBitset RealCallerBits = CallerBits & ~InlineFeatureIgnoreList;
4330   FeatureBitset RealCalleeBits = CalleeBits & ~InlineFeatureIgnoreList;
4331   return (RealCallerBits & RealCalleeBits) == RealCalleeBits;
4332 }
4333 
4334 bool X86TTIImpl::areFunctionArgsABICompatible(
4335     const Function *Caller, const Function *Callee,
4336     SmallPtrSetImpl<Argument *> &Args) const {
4337   if (!BaseT::areFunctionArgsABICompatible(Caller, Callee, Args))
4338     return false;
4339 
4340   // If we get here, we know the target features match. If one function
4341   // considers 512-bit vectors legal and the other does not, consider them
4342   // incompatible.
4343   const TargetMachine &TM = getTLI()->getTargetMachine();
4344 
4345   if (TM.getSubtarget<X86Subtarget>(*Caller).useAVX512Regs() ==
4346       TM.getSubtarget<X86Subtarget>(*Callee).useAVX512Regs())
4347     return true;
4348 
4349   // Consider the arguments compatible if they aren't vectors or aggregates.
4350   // FIXME: Look at the size of vectors.
4351   // FIXME: Look at the element types of aggregates to see if there are vectors.
4352   // FIXME: The API of this function seems intended to allow arguments
4353   // to be removed from the set, but the caller doesn't check if the set
4354   // becomes empty so that may not work in practice.
4355   return llvm::none_of(Args, [](Argument *A) {
4356     auto *EltTy = cast<PointerType>(A->getType())->getElementType();
4357     return EltTy->isVectorTy() || EltTy->isAggregateType();
4358   });
4359 }
4360 
4361 X86TTIImpl::TTI::MemCmpExpansionOptions
4362 X86TTIImpl::enableMemCmpExpansion(bool OptSize, bool IsZeroCmp) const {
4363   TTI::MemCmpExpansionOptions Options;
4364   Options.MaxNumLoads = TLI->getMaxExpandSizeMemcmp(OptSize);
4365   Options.NumLoadsPerBlock = 2;
4366   // All GPR and vector loads can be unaligned.
4367   Options.AllowOverlappingLoads = true;
4368   if (IsZeroCmp) {
4369     // Only enable vector loads for equality comparison. Right now the vector
4370     // version is not as fast for three way compare (see #33329).
4371     const unsigned PreferredWidth = ST->getPreferVectorWidth();
4372     if (PreferredWidth >= 512 && ST->hasAVX512()) Options.LoadSizes.push_back(64);
4373     if (PreferredWidth >= 256 && ST->hasAVX()) Options.LoadSizes.push_back(32);
4374     if (PreferredWidth >= 128 && ST->hasSSE2()) Options.LoadSizes.push_back(16);
4375   }
4376   if (ST->is64Bit()) {
4377     Options.LoadSizes.push_back(8);
4378   }
4379   Options.LoadSizes.push_back(4);
4380   Options.LoadSizes.push_back(2);
4381   Options.LoadSizes.push_back(1);
4382   return Options;
4383 }
4384 
4385 bool X86TTIImpl::enableInterleavedAccessVectorization() {
4386   // TODO: We expect this to be beneficial regardless of arch,
4387   // but there are currently some unexplained performance artifacts on Atom.
4388   // As a temporary solution, disable on Atom.
4389   return !(ST->isAtom());
4390 }
4391 
4392 // Get estimation for interleaved load/store operations for AVX2.
4393 // \p Factor is the interleaved-access factor (stride) - number of
4394 // (interleaved) elements in the group.
4395 // \p Indices contains the indices for a strided load: when the
4396 // interleaved load has gaps they indicate which elements are used.
4397 // If Indices is empty (or if the number of indices is equal to the size
4398 // of the interleaved-access as given in \p Factor) the access has no gaps.
4399 //
4400 // As opposed to AVX-512, AVX2 does not have generic shuffles that allow
4401 // computing the cost using a generic formula as a function of generic
4402 // shuffles. We therefore use a lookup table instead, filled according to
4403 // the instruction sequences that codegen currently generates.
4404 int X86TTIImpl::getInterleavedMemoryOpCostAVX2(
4405     unsigned Opcode, FixedVectorType *VecTy, unsigned Factor,
4406     ArrayRef<unsigned> Indices, Align Alignment, unsigned AddressSpace,
4407     TTI::TargetCostKind CostKind, bool UseMaskForCond, bool UseMaskForGaps) {
4408 
4409   if (UseMaskForCond || UseMaskForGaps)
4410     return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices,
4411                                              Alignment, AddressSpace, CostKind,
4412                                              UseMaskForCond, UseMaskForGaps);
4413 
4414   // We currently Support only fully-interleaved groups, with no gaps.
4415   // TODO: Support also strided loads (interleaved-groups with gaps).
4416   if (Indices.size() && Indices.size() != Factor)
4417     return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices,
4418                                              Alignment, AddressSpace,
4419                                              CostKind);
4420 
4421   // VecTy for interleave memop is <VF*Factor x Elt>.
4422   // So, for VF=4, Interleave Factor = 3, Element type = i32 we have
4423   // VecTy = <12 x i32>.
4424   MVT LegalVT = getTLI()->getTypeLegalizationCost(DL, VecTy).second;
4425 
4426   // This function can be called with VecTy=<6xi128>, Factor=3, in which case
4427   // the VF=2, while v2i128 is an unsupported MVT vector type
4428   // (see MachineValueType.h::getVectorVT()).
4429   if (!LegalVT.isVector())
4430     return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices,
4431                                              Alignment, AddressSpace,
4432                                              CostKind);
4433 
4434   unsigned VF = VecTy->getNumElements() / Factor;
4435   Type *ScalarTy = VecTy->getElementType();
4436 
4437   // Calculate the number of memory operations (NumOfMemOps), required
4438   // for load/store the VecTy.
4439   unsigned VecTySize = DL.getTypeStoreSize(VecTy);
4440   unsigned LegalVTSize = LegalVT.getStoreSize();
4441   unsigned NumOfMemOps = (VecTySize + LegalVTSize - 1) / LegalVTSize;
4442 
4443   // Get the cost of one memory operation.
4444   auto *SingleMemOpTy = FixedVectorType::get(VecTy->getElementType(),
4445                                              LegalVT.getVectorNumElements());
4446   unsigned MemOpCost = getMemoryOpCost(Opcode, SingleMemOpTy,
4447                                        MaybeAlign(Alignment), AddressSpace,
4448                                        CostKind);
4449 
4450   auto *VT = FixedVectorType::get(ScalarTy, VF);
4451   EVT ETy = TLI->getValueType(DL, VT);
4452   if (!ETy.isSimple())
4453     return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices,
4454                                              Alignment, AddressSpace,
4455                                              CostKind);
4456 
4457   // TODO: Complete for other data-types and strides.
4458   // Each combination of Stride, ElementTy and VF results in a different
4459   // sequence; The cost tables are therefore accessed with:
4460   // Factor (stride) and VectorType=VFxElemType.
4461   // The Cost accounts only for the shuffle sequence;
4462   // The cost of the loads/stores is accounted for separately.
4463   //
4464   static const CostTblEntry AVX2InterleavedLoadTbl[] = {
4465     { 2, MVT::v4i64, 6 }, //(load 8i64 and) deinterleave into 2 x 4i64
4466     { 2, MVT::v4f64, 6 }, //(load 8f64 and) deinterleave into 2 x 4f64
4467 
4468     { 3, MVT::v2i8,  10 }, //(load 6i8 and)  deinterleave into 3 x 2i8
4469     { 3, MVT::v4i8,  4 },  //(load 12i8 and) deinterleave into 3 x 4i8
4470     { 3, MVT::v8i8,  9 },  //(load 24i8 and) deinterleave into 3 x 8i8
4471     { 3, MVT::v16i8, 11},  //(load 48i8 and) deinterleave into 3 x 16i8
4472     { 3, MVT::v32i8, 13},  //(load 96i8 and) deinterleave into 3 x 32i8
4473     { 3, MVT::v8f32, 17 }, //(load 24f32 and)deinterleave into 3 x 8f32
4474 
4475     { 4, MVT::v2i8,  12 }, //(load 8i8 and)   deinterleave into 4 x 2i8
4476     { 4, MVT::v4i8,  4 },  //(load 16i8 and)  deinterleave into 4 x 4i8
4477     { 4, MVT::v8i8,  20 }, //(load 32i8 and)  deinterleave into 4 x 8i8
4478     { 4, MVT::v16i8, 39 }, //(load 64i8 and)  deinterleave into 4 x 16i8
4479     { 4, MVT::v32i8, 80 }, //(load 128i8 and) deinterleave into 4 x 32i8
4480 
4481     { 8, MVT::v8f32, 40 }  //(load 64f32 and)deinterleave into 8 x 8f32
4482   };
4483 
4484   static const CostTblEntry AVX2InterleavedStoreTbl[] = {
4485     { 2, MVT::v4i64, 6 }, //interleave into 2 x 4i64 into 8i64 (and store)
4486     { 2, MVT::v4f64, 6 }, //interleave into 2 x 4f64 into 8f64 (and store)
4487 
4488     { 3, MVT::v2i8,  7 },  //interleave 3 x 2i8  into 6i8 (and store)
4489     { 3, MVT::v4i8,  8 },  //interleave 3 x 4i8  into 12i8 (and store)
4490     { 3, MVT::v8i8,  11 }, //interleave 3 x 8i8  into 24i8 (and store)
4491     { 3, MVT::v16i8, 11 }, //interleave 3 x 16i8 into 48i8 (and store)
4492     { 3, MVT::v32i8, 13 }, //interleave 3 x 32i8 into 96i8 (and store)
4493 
4494     { 4, MVT::v2i8,  12 }, //interleave 4 x 2i8  into 8i8 (and store)
4495     { 4, MVT::v4i8,  9 },  //interleave 4 x 4i8  into 16i8 (and store)
4496     { 4, MVT::v8i8,  10 }, //interleave 4 x 8i8  into 32i8 (and store)
4497     { 4, MVT::v16i8, 10 }, //interleave 4 x 16i8 into 64i8 (and store)
4498     { 4, MVT::v32i8, 12 }  //interleave 4 x 32i8 into 128i8 (and store)
4499   };
4500 
4501   if (Opcode == Instruction::Load) {
4502     if (const auto *Entry =
4503             CostTableLookup(AVX2InterleavedLoadTbl, Factor, ETy.getSimpleVT()))
4504       return NumOfMemOps * MemOpCost + Entry->Cost;
4505   } else {
4506     assert(Opcode == Instruction::Store &&
4507            "Expected Store Instruction at this  point");
4508     if (const auto *Entry =
4509             CostTableLookup(AVX2InterleavedStoreTbl, Factor, ETy.getSimpleVT()))
4510       return NumOfMemOps * MemOpCost + Entry->Cost;
4511   }
4512 
4513   return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices,
4514                                            Alignment, AddressSpace, CostKind);
4515 }
4516 
4517 // Get estimation for interleaved load/store operations and strided load.
4518 // \p Indices contains indices for strided load.
4519 // \p Factor - the factor of interleaving.
4520 // AVX-512 provides 3-src shuffles that significantly reduces the cost.
4521 int X86TTIImpl::getInterleavedMemoryOpCostAVX512(
4522     unsigned Opcode, FixedVectorType *VecTy, unsigned Factor,
4523     ArrayRef<unsigned> Indices, Align Alignment, unsigned AddressSpace,
4524     TTI::TargetCostKind CostKind, bool UseMaskForCond, bool UseMaskForGaps) {
4525 
4526   if (UseMaskForCond || UseMaskForGaps)
4527     return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices,
4528                                              Alignment, AddressSpace, CostKind,
4529                                              UseMaskForCond, UseMaskForGaps);
4530 
4531   // VecTy for interleave memop is <VF*Factor x Elt>.
4532   // So, for VF=4, Interleave Factor = 3, Element type = i32 we have
4533   // VecTy = <12 x i32>.
4534 
4535   // Calculate the number of memory operations (NumOfMemOps), required
4536   // for load/store the VecTy.
4537   MVT LegalVT = getTLI()->getTypeLegalizationCost(DL, VecTy).second;
4538   unsigned VecTySize = DL.getTypeStoreSize(VecTy);
4539   unsigned LegalVTSize = LegalVT.getStoreSize();
4540   unsigned NumOfMemOps = (VecTySize + LegalVTSize - 1) / LegalVTSize;
4541 
4542   // Get the cost of one memory operation.
4543   auto *SingleMemOpTy = FixedVectorType::get(VecTy->getElementType(),
4544                                              LegalVT.getVectorNumElements());
4545   unsigned MemOpCost = getMemoryOpCost(Opcode, SingleMemOpTy,
4546                                        MaybeAlign(Alignment), AddressSpace,
4547                                        CostKind);
4548 
4549   unsigned VF = VecTy->getNumElements() / Factor;
4550   MVT VT = MVT::getVectorVT(MVT::getVT(VecTy->getScalarType()), VF);
4551 
4552   if (Opcode == Instruction::Load) {
4553     // The tables (AVX512InterleavedLoadTbl and AVX512InterleavedStoreTbl)
4554     // contain the cost of the optimized shuffle sequence that the
4555     // X86InterleavedAccess pass will generate.
4556     // The cost of loads and stores are computed separately from the table.
4557 
4558     // X86InterleavedAccess support only the following interleaved-access group.
4559     static const CostTblEntry AVX512InterleavedLoadTbl[] = {
4560         {3, MVT::v16i8, 12}, //(load 48i8 and) deinterleave into 3 x 16i8
4561         {3, MVT::v32i8, 14}, //(load 96i8 and) deinterleave into 3 x 32i8
4562         {3, MVT::v64i8, 22}, //(load 96i8 and) deinterleave into 3 x 32i8
4563     };
4564 
4565     if (const auto *Entry =
4566             CostTableLookup(AVX512InterleavedLoadTbl, Factor, VT))
4567       return NumOfMemOps * MemOpCost + Entry->Cost;
4568     //If an entry does not exist, fallback to the default implementation.
4569 
4570     // Kind of shuffle depends on number of loaded values.
4571     // If we load the entire data in one register, we can use a 1-src shuffle.
4572     // Otherwise, we'll merge 2 sources in each operation.
4573     TTI::ShuffleKind ShuffleKind =
4574         (NumOfMemOps > 1) ? TTI::SK_PermuteTwoSrc : TTI::SK_PermuteSingleSrc;
4575 
4576     unsigned ShuffleCost =
4577         getShuffleCost(ShuffleKind, SingleMemOpTy, 0, nullptr);
4578 
4579     unsigned NumOfLoadsInInterleaveGrp =
4580         Indices.size() ? Indices.size() : Factor;
4581     auto *ResultTy = FixedVectorType::get(VecTy->getElementType(),
4582                                           VecTy->getNumElements() / Factor);
4583     unsigned NumOfResults =
4584         getTLI()->getTypeLegalizationCost(DL, ResultTy).first *
4585         NumOfLoadsInInterleaveGrp;
4586 
4587     // About a half of the loads may be folded in shuffles when we have only
4588     // one result. If we have more than one result, we do not fold loads at all.
4589     unsigned NumOfUnfoldedLoads =
4590         NumOfResults > 1 ? NumOfMemOps : NumOfMemOps / 2;
4591 
4592     // Get a number of shuffle operations per result.
4593     unsigned NumOfShufflesPerResult =
4594         std::max((unsigned)1, (unsigned)(NumOfMemOps - 1));
4595 
4596     // The SK_MergeTwoSrc shuffle clobbers one of src operands.
4597     // When we have more than one destination, we need additional instructions
4598     // to keep sources.
4599     unsigned NumOfMoves = 0;
4600     if (NumOfResults > 1 && ShuffleKind == TTI::SK_PermuteTwoSrc)
4601       NumOfMoves = NumOfResults * NumOfShufflesPerResult / 2;
4602 
4603     int Cost = NumOfResults * NumOfShufflesPerResult * ShuffleCost +
4604                NumOfUnfoldedLoads * MemOpCost + NumOfMoves;
4605 
4606     return Cost;
4607   }
4608 
4609   // Store.
4610   assert(Opcode == Instruction::Store &&
4611          "Expected Store Instruction at this  point");
4612   // X86InterleavedAccess support only the following interleaved-access group.
4613   static const CostTblEntry AVX512InterleavedStoreTbl[] = {
4614       {3, MVT::v16i8, 12}, // interleave 3 x 16i8 into 48i8 (and store)
4615       {3, MVT::v32i8, 14}, // interleave 3 x 32i8 into 96i8 (and store)
4616       {3, MVT::v64i8, 26}, // interleave 3 x 64i8 into 96i8 (and store)
4617 
4618       {4, MVT::v8i8, 10},  // interleave 4 x 8i8  into 32i8  (and store)
4619       {4, MVT::v16i8, 11}, // interleave 4 x 16i8 into 64i8  (and store)
4620       {4, MVT::v32i8, 14}, // interleave 4 x 32i8 into 128i8 (and store)
4621       {4, MVT::v64i8, 24}  // interleave 4 x 32i8 into 256i8 (and store)
4622   };
4623 
4624   if (const auto *Entry =
4625           CostTableLookup(AVX512InterleavedStoreTbl, Factor, VT))
4626     return NumOfMemOps * MemOpCost + Entry->Cost;
4627   //If an entry does not exist, fallback to the default implementation.
4628 
4629   // There is no strided stores meanwhile. And store can't be folded in
4630   // shuffle.
4631   unsigned NumOfSources = Factor; // The number of values to be merged.
4632   unsigned ShuffleCost =
4633       getShuffleCost(TTI::SK_PermuteTwoSrc, SingleMemOpTy, 0, nullptr);
4634   unsigned NumOfShufflesPerStore = NumOfSources - 1;
4635 
4636   // The SK_MergeTwoSrc shuffle clobbers one of src operands.
4637   // We need additional instructions to keep sources.
4638   unsigned NumOfMoves = NumOfMemOps * NumOfShufflesPerStore / 2;
4639   int Cost = NumOfMemOps * (MemOpCost + NumOfShufflesPerStore * ShuffleCost) +
4640              NumOfMoves;
4641   return Cost;
4642 }
4643 
4644 int X86TTIImpl::getInterleavedMemoryOpCost(
4645     unsigned Opcode, Type *VecTy, unsigned Factor, ArrayRef<unsigned> Indices,
4646     Align Alignment, unsigned AddressSpace, TTI::TargetCostKind CostKind,
4647     bool UseMaskForCond, bool UseMaskForGaps) {
4648   auto isSupportedOnAVX512 = [](Type *VecTy, bool HasBW) {
4649     Type *EltTy = cast<VectorType>(VecTy)->getElementType();
4650     if (EltTy->isFloatTy() || EltTy->isDoubleTy() || EltTy->isIntegerTy(64) ||
4651         EltTy->isIntegerTy(32) || EltTy->isPointerTy())
4652       return true;
4653     if (EltTy->isIntegerTy(16) || EltTy->isIntegerTy(8))
4654       return HasBW;
4655     return false;
4656   };
4657   if (ST->hasAVX512() && isSupportedOnAVX512(VecTy, ST->hasBWI()))
4658     return getInterleavedMemoryOpCostAVX512(
4659         Opcode, cast<FixedVectorType>(VecTy), Factor, Indices, Alignment,
4660         AddressSpace, CostKind, UseMaskForCond, UseMaskForGaps);
4661   if (ST->hasAVX2())
4662     return getInterleavedMemoryOpCostAVX2(
4663         Opcode, cast<FixedVectorType>(VecTy), Factor, Indices, Alignment,
4664         AddressSpace, CostKind, UseMaskForCond, UseMaskForGaps);
4665 
4666   return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices,
4667                                            Alignment, AddressSpace, CostKind,
4668                                            UseMaskForCond, UseMaskForGaps);
4669 }
4670