1 //===-- X86TargetTransformInfo.cpp - X86 specific TTI pass ----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 /// \file
9 /// This file implements a TargetTransformInfo analysis pass specific to the
10 /// X86 target machine. It uses the target's detailed information to provide
11 /// more precise answers to certain TTI queries, while letting the target
12 /// independent and default TTI implementations handle the rest.
13 ///
14 //===----------------------------------------------------------------------===//
15 /// About Cost Model numbers used below it's necessary to say the following:
16 /// the numbers correspond to some "generic" X86 CPU instead of usage of
17 /// concrete CPU model. Usually the numbers correspond to CPU where the feature
18 /// apeared at the first time. For example, if we do Subtarget.hasSSE42() in
19 /// the lookups below the cost is based on Nehalem as that was the first CPU
20 /// to support that feature level and thus has most likely the worst case cost.
21 /// Some examples of other technologies/CPUs:
22 ///   SSE 3   - Pentium4 / Athlon64
23 ///   SSE 4.1 - Penryn
24 ///   SSE 4.2 - Nehalem
25 ///   AVX     - Sandy Bridge
26 ///   AVX2    - Haswell
27 ///   AVX-512 - Xeon Phi / Skylake
28 /// And some examples of instruction target dependent costs (latency)
29 ///                   divss     sqrtss          rsqrtss
30 ///   AMD K7            11-16     19              3
31 ///   Piledriver        9-24      13-15           5
32 ///   Jaguar            14        16              2
33 ///   Pentium II,III    18        30              2
34 ///   Nehalem           7-14      7-18            3
35 ///   Haswell           10-13     11              5
36 /// TODO: Develop and implement  the target dependent cost model and
37 /// specialize cost numbers for different Cost Model Targets such as throughput,
38 /// code size, latency and uop count.
39 //===----------------------------------------------------------------------===//
40 
41 #include "X86TargetTransformInfo.h"
42 #include "llvm/Analysis/TargetTransformInfo.h"
43 #include "llvm/CodeGen/BasicTTIImpl.h"
44 #include "llvm/CodeGen/CostTable.h"
45 #include "llvm/CodeGen/TargetLowering.h"
46 #include "llvm/IR/IntrinsicInst.h"
47 #include "llvm/Support/Debug.h"
48 
49 using namespace llvm;
50 
51 #define DEBUG_TYPE "x86tti"
52 
53 //===----------------------------------------------------------------------===//
54 //
55 // X86 cost model.
56 //
57 //===----------------------------------------------------------------------===//
58 
59 TargetTransformInfo::PopcntSupportKind
60 X86TTIImpl::getPopcntSupport(unsigned TyWidth) {
61   assert(isPowerOf2_32(TyWidth) && "Ty width must be power of 2");
62   // TODO: Currently the __builtin_popcount() implementation using SSE3
63   //   instructions is inefficient. Once the problem is fixed, we should
64   //   call ST->hasSSE3() instead of ST->hasPOPCNT().
65   return ST->hasPOPCNT() ? TTI::PSK_FastHardware : TTI::PSK_Software;
66 }
67 
68 llvm::Optional<unsigned> X86TTIImpl::getCacheSize(
69   TargetTransformInfo::CacheLevel Level) const {
70   switch (Level) {
71   case TargetTransformInfo::CacheLevel::L1D:
72     //   - Penryn
73     //   - Nehalem
74     //   - Westmere
75     //   - Sandy Bridge
76     //   - Ivy Bridge
77     //   - Haswell
78     //   - Broadwell
79     //   - Skylake
80     //   - Kabylake
81     return 32 * 1024;  //  32 KByte
82   case TargetTransformInfo::CacheLevel::L2D:
83     //   - Penryn
84     //   - Nehalem
85     //   - Westmere
86     //   - Sandy Bridge
87     //   - Ivy Bridge
88     //   - Haswell
89     //   - Broadwell
90     //   - Skylake
91     //   - Kabylake
92     return 256 * 1024; // 256 KByte
93   }
94 
95   llvm_unreachable("Unknown TargetTransformInfo::CacheLevel");
96 }
97 
98 llvm::Optional<unsigned> X86TTIImpl::getCacheAssociativity(
99   TargetTransformInfo::CacheLevel Level) const {
100   //   - Penryn
101   //   - Nehalem
102   //   - Westmere
103   //   - Sandy Bridge
104   //   - Ivy Bridge
105   //   - Haswell
106   //   - Broadwell
107   //   - Skylake
108   //   - Kabylake
109   switch (Level) {
110   case TargetTransformInfo::CacheLevel::L1D:
111     LLVM_FALLTHROUGH;
112   case TargetTransformInfo::CacheLevel::L2D:
113     return 8;
114   }
115 
116   llvm_unreachable("Unknown TargetTransformInfo::CacheLevel");
117 }
118 
119 unsigned X86TTIImpl::getNumberOfRegisters(unsigned ClassID) const {
120   bool Vector = (ClassID == 1);
121   if (Vector && !ST->hasSSE1())
122     return 0;
123 
124   if (ST->is64Bit()) {
125     if (Vector && ST->hasAVX512())
126       return 32;
127     return 16;
128   }
129   return 8;
130 }
131 
132 unsigned X86TTIImpl::getRegisterBitWidth(bool Vector) const {
133   unsigned PreferVectorWidth = ST->getPreferVectorWidth();
134   if (Vector) {
135     if (ST->hasAVX512() && PreferVectorWidth >= 512)
136       return 512;
137     if (ST->hasAVX() && PreferVectorWidth >= 256)
138       return 256;
139     if (ST->hasSSE1() && PreferVectorWidth >= 128)
140       return 128;
141     return 0;
142   }
143 
144   if (ST->is64Bit())
145     return 64;
146 
147   return 32;
148 }
149 
150 unsigned X86TTIImpl::getLoadStoreVecRegBitWidth(unsigned) const {
151   return getRegisterBitWidth(true);
152 }
153 
154 unsigned X86TTIImpl::getMaxInterleaveFactor(unsigned VF) {
155   // If the loop will not be vectorized, don't interleave the loop.
156   // Let regular unroll to unroll the loop, which saves the overflow
157   // check and memory check cost.
158   if (VF == 1)
159     return 1;
160 
161   if (ST->isAtom())
162     return 1;
163 
164   // Sandybridge and Haswell have multiple execution ports and pipelined
165   // vector units.
166   if (ST->hasAVX())
167     return 4;
168 
169   return 2;
170 }
171 
172 int X86TTIImpl::getArithmeticInstrCost(unsigned Opcode, Type *Ty,
173                                        TTI::TargetCostKind CostKind,
174                                        TTI::OperandValueKind Op1Info,
175                                        TTI::OperandValueKind Op2Info,
176                                        TTI::OperandValueProperties Opd1PropInfo,
177                                        TTI::OperandValueProperties Opd2PropInfo,
178                                        ArrayRef<const Value *> Args,
179                                        const Instruction *CxtI) {
180   // Legalize the type.
181   std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Ty);
182 
183   int ISD = TLI->InstructionOpcodeToISD(Opcode);
184   assert(ISD && "Invalid opcode");
185 
186   static const CostTblEntry GLMCostTable[] = {
187     { ISD::FDIV,  MVT::f32,   18 }, // divss
188     { ISD::FDIV,  MVT::v4f32, 35 }, // divps
189     { ISD::FDIV,  MVT::f64,   33 }, // divsd
190     { ISD::FDIV,  MVT::v2f64, 65 }, // divpd
191   };
192 
193   if (ST->useGLMDivSqrtCosts())
194     if (const auto *Entry = CostTableLookup(GLMCostTable, ISD,
195                                             LT.second))
196       return LT.first * Entry->Cost;
197 
198   static const CostTblEntry SLMCostTable[] = {
199     { ISD::MUL,   MVT::v4i32, 11 }, // pmulld
200     { ISD::MUL,   MVT::v8i16, 2  }, // pmullw
201     { ISD::MUL,   MVT::v16i8, 14 }, // extend/pmullw/trunc sequence.
202     { ISD::FMUL,  MVT::f64,   2  }, // mulsd
203     { ISD::FMUL,  MVT::v2f64, 4  }, // mulpd
204     { ISD::FMUL,  MVT::v4f32, 2  }, // mulps
205     { ISD::FDIV,  MVT::f32,   17 }, // divss
206     { ISD::FDIV,  MVT::v4f32, 39 }, // divps
207     { ISD::FDIV,  MVT::f64,   32 }, // divsd
208     { ISD::FDIV,  MVT::v2f64, 69 }, // divpd
209     { ISD::FADD,  MVT::v2f64, 2  }, // addpd
210     { ISD::FSUB,  MVT::v2f64, 2  }, // subpd
211     // v2i64/v4i64 mul is custom lowered as a series of long:
212     // multiplies(3), shifts(3) and adds(2)
213     // slm muldq version throughput is 2 and addq throughput 4
214     // thus: 3X2 (muldq throughput) + 3X1 (shift throughput) +
215     //       3X4 (addq throughput) = 17
216     { ISD::MUL,   MVT::v2i64, 17 },
217     // slm addq\subq throughput is 4
218     { ISD::ADD,   MVT::v2i64, 4  },
219     { ISD::SUB,   MVT::v2i64, 4  },
220   };
221 
222   if (ST->isSLM()) {
223     if (Args.size() == 2 && ISD == ISD::MUL && LT.second == MVT::v4i32) {
224       // Check if the operands can be shrinked into a smaller datatype.
225       bool Op1Signed = false;
226       unsigned Op1MinSize = BaseT::minRequiredElementSize(Args[0], Op1Signed);
227       bool Op2Signed = false;
228       unsigned Op2MinSize = BaseT::minRequiredElementSize(Args[1], Op2Signed);
229 
230       bool signedMode = Op1Signed | Op2Signed;
231       unsigned OpMinSize = std::max(Op1MinSize, Op2MinSize);
232 
233       if (OpMinSize <= 7)
234         return LT.first * 3; // pmullw/sext
235       if (!signedMode && OpMinSize <= 8)
236         return LT.first * 3; // pmullw/zext
237       if (OpMinSize <= 15)
238         return LT.first * 5; // pmullw/pmulhw/pshuf
239       if (!signedMode && OpMinSize <= 16)
240         return LT.first * 5; // pmullw/pmulhw/pshuf
241     }
242 
243     if (const auto *Entry = CostTableLookup(SLMCostTable, ISD,
244                                             LT.second)) {
245       return LT.first * Entry->Cost;
246     }
247   }
248 
249   if ((ISD == ISD::SDIV || ISD == ISD::SREM || ISD == ISD::UDIV ||
250        ISD == ISD::UREM) &&
251       (Op2Info == TargetTransformInfo::OK_UniformConstantValue ||
252        Op2Info == TargetTransformInfo::OK_NonUniformConstantValue) &&
253       Opd2PropInfo == TargetTransformInfo::OP_PowerOf2) {
254     if (ISD == ISD::SDIV || ISD == ISD::SREM) {
255       // On X86, vector signed division by constants power-of-two are
256       // normally expanded to the sequence SRA + SRL + ADD + SRA.
257       // The OperandValue properties may not be the same as that of the previous
258       // operation; conservatively assume OP_None.
259       int Cost =
260           2 * getArithmeticInstrCost(Instruction::AShr, Ty, CostKind, Op1Info,
261                                      Op2Info,
262                                      TargetTransformInfo::OP_None,
263                                      TargetTransformInfo::OP_None);
264       Cost += getArithmeticInstrCost(Instruction::LShr, Ty, CostKind, Op1Info,
265                                      Op2Info,
266                                      TargetTransformInfo::OP_None,
267                                      TargetTransformInfo::OP_None);
268       Cost += getArithmeticInstrCost(Instruction::Add, Ty, CostKind, Op1Info,
269                                      Op2Info,
270                                      TargetTransformInfo::OP_None,
271                                      TargetTransformInfo::OP_None);
272 
273       if (ISD == ISD::SREM) {
274         // For SREM: (X % C) is the equivalent of (X - (X/C)*C)
275         Cost += getArithmeticInstrCost(Instruction::Mul, Ty, CostKind, Op1Info,
276                                        Op2Info);
277         Cost += getArithmeticInstrCost(Instruction::Sub, Ty, CostKind, Op1Info,
278                                        Op2Info);
279       }
280 
281       return Cost;
282     }
283 
284     // Vector unsigned division/remainder will be simplified to shifts/masks.
285     if (ISD == ISD::UDIV)
286       return getArithmeticInstrCost(Instruction::LShr, Ty, CostKind,
287                                     Op1Info, Op2Info,
288                                     TargetTransformInfo::OP_None,
289                                     TargetTransformInfo::OP_None);
290 
291     else // UREM
292       return getArithmeticInstrCost(Instruction::And, Ty, CostKind,
293                                     Op1Info, Op2Info,
294                                     TargetTransformInfo::OP_None,
295                                     TargetTransformInfo::OP_None);
296   }
297 
298   static const CostTblEntry AVX512BWUniformConstCostTable[] = {
299     { ISD::SHL,  MVT::v64i8,   2 }, // psllw + pand.
300     { ISD::SRL,  MVT::v64i8,   2 }, // psrlw + pand.
301     { ISD::SRA,  MVT::v64i8,   4 }, // psrlw, pand, pxor, psubb.
302   };
303 
304   if (Op2Info == TargetTransformInfo::OK_UniformConstantValue &&
305       ST->hasBWI()) {
306     if (const auto *Entry = CostTableLookup(AVX512BWUniformConstCostTable, ISD,
307                                             LT.second))
308       return LT.first * Entry->Cost;
309   }
310 
311   static const CostTblEntry AVX512UniformConstCostTable[] = {
312     { ISD::SRA,  MVT::v2i64,   1 },
313     { ISD::SRA,  MVT::v4i64,   1 },
314     { ISD::SRA,  MVT::v8i64,   1 },
315 
316     { ISD::SHL,  MVT::v64i8,   4 }, // psllw + pand.
317     { ISD::SRL,  MVT::v64i8,   4 }, // psrlw + pand.
318     { ISD::SRA,  MVT::v64i8,   8 }, // psrlw, pand, pxor, psubb.
319   };
320 
321   if (Op2Info == TargetTransformInfo::OK_UniformConstantValue &&
322       ST->hasAVX512()) {
323     if (const auto *Entry = CostTableLookup(AVX512UniformConstCostTable, ISD,
324                                             LT.second))
325       return LT.first * Entry->Cost;
326   }
327 
328   static const CostTblEntry AVX2UniformConstCostTable[] = {
329     { ISD::SHL,  MVT::v32i8,   2 }, // psllw + pand.
330     { ISD::SRL,  MVT::v32i8,   2 }, // psrlw + pand.
331     { ISD::SRA,  MVT::v32i8,   4 }, // psrlw, pand, pxor, psubb.
332 
333     { ISD::SRA,  MVT::v4i64,   4 }, // 2 x psrad + shuffle.
334   };
335 
336   if (Op2Info == TargetTransformInfo::OK_UniformConstantValue &&
337       ST->hasAVX2()) {
338     if (const auto *Entry = CostTableLookup(AVX2UniformConstCostTable, ISD,
339                                             LT.second))
340       return LT.first * Entry->Cost;
341   }
342 
343   static const CostTblEntry SSE2UniformConstCostTable[] = {
344     { ISD::SHL,  MVT::v16i8,     2 }, // psllw + pand.
345     { ISD::SRL,  MVT::v16i8,     2 }, // psrlw + pand.
346     { ISD::SRA,  MVT::v16i8,     4 }, // psrlw, pand, pxor, psubb.
347 
348     { ISD::SHL,  MVT::v32i8,   4+2 }, // 2*(psllw + pand) + split.
349     { ISD::SRL,  MVT::v32i8,   4+2 }, // 2*(psrlw + pand) + split.
350     { ISD::SRA,  MVT::v32i8,   8+2 }, // 2*(psrlw, pand, pxor, psubb) + split.
351   };
352 
353   // XOP has faster vXi8 shifts.
354   if (Op2Info == TargetTransformInfo::OK_UniformConstantValue &&
355       ST->hasSSE2() && !ST->hasXOP()) {
356     if (const auto *Entry =
357             CostTableLookup(SSE2UniformConstCostTable, ISD, LT.second))
358       return LT.first * Entry->Cost;
359   }
360 
361   static const CostTblEntry AVX512BWConstCostTable[] = {
362     { ISD::SDIV, MVT::v64i8,  14 }, // 2*ext+2*pmulhw sequence
363     { ISD::SREM, MVT::v64i8,  16 }, // 2*ext+2*pmulhw+mul+sub sequence
364     { ISD::UDIV, MVT::v64i8,  14 }, // 2*ext+2*pmulhw sequence
365     { ISD::UREM, MVT::v64i8,  16 }, // 2*ext+2*pmulhw+mul+sub sequence
366     { ISD::SDIV, MVT::v32i16,  6 }, // vpmulhw sequence
367     { ISD::SREM, MVT::v32i16,  8 }, // vpmulhw+mul+sub sequence
368     { ISD::UDIV, MVT::v32i16,  6 }, // vpmulhuw sequence
369     { ISD::UREM, MVT::v32i16,  8 }, // vpmulhuw+mul+sub sequence
370   };
371 
372   if ((Op2Info == TargetTransformInfo::OK_UniformConstantValue ||
373        Op2Info == TargetTransformInfo::OK_NonUniformConstantValue) &&
374       ST->hasBWI()) {
375     if (const auto *Entry =
376             CostTableLookup(AVX512BWConstCostTable, ISD, LT.second))
377       return LT.first * Entry->Cost;
378   }
379 
380   static const CostTblEntry AVX512ConstCostTable[] = {
381     { ISD::SDIV, MVT::v16i32, 15 }, // vpmuldq sequence
382     { ISD::SREM, MVT::v16i32, 17 }, // vpmuldq+mul+sub sequence
383     { ISD::UDIV, MVT::v16i32, 15 }, // vpmuludq sequence
384     { ISD::UREM, MVT::v16i32, 17 }, // vpmuludq+mul+sub sequence
385     { ISD::SDIV, MVT::v64i8,  28 }, // 4*ext+4*pmulhw sequence
386     { ISD::SREM, MVT::v64i8,  32 }, // 4*ext+4*pmulhw+mul+sub sequence
387     { ISD::UDIV, MVT::v64i8,  28 }, // 4*ext+4*pmulhw sequence
388     { ISD::UREM, MVT::v64i8,  32 }, // 4*ext+4*pmulhw+mul+sub sequence
389     { ISD::SDIV, MVT::v32i16, 12 }, // 2*vpmulhw sequence
390     { ISD::SREM, MVT::v32i16, 16 }, // 2*vpmulhw+mul+sub sequence
391     { ISD::UDIV, MVT::v32i16, 12 }, // 2*vpmulhuw sequence
392     { ISD::UREM, MVT::v32i16, 16 }, // 2*vpmulhuw+mul+sub sequence
393   };
394 
395   if ((Op2Info == TargetTransformInfo::OK_UniformConstantValue ||
396        Op2Info == TargetTransformInfo::OK_NonUniformConstantValue) &&
397       ST->hasAVX512()) {
398     if (const auto *Entry =
399             CostTableLookup(AVX512ConstCostTable, ISD, LT.second))
400       return LT.first * Entry->Cost;
401   }
402 
403   static const CostTblEntry AVX2ConstCostTable[] = {
404     { ISD::SDIV, MVT::v32i8,  14 }, // 2*ext+2*pmulhw sequence
405     { ISD::SREM, MVT::v32i8,  16 }, // 2*ext+2*pmulhw+mul+sub sequence
406     { ISD::UDIV, MVT::v32i8,  14 }, // 2*ext+2*pmulhw sequence
407     { ISD::UREM, MVT::v32i8,  16 }, // 2*ext+2*pmulhw+mul+sub sequence
408     { ISD::SDIV, MVT::v16i16,  6 }, // vpmulhw sequence
409     { ISD::SREM, MVT::v16i16,  8 }, // vpmulhw+mul+sub sequence
410     { ISD::UDIV, MVT::v16i16,  6 }, // vpmulhuw sequence
411     { ISD::UREM, MVT::v16i16,  8 }, // vpmulhuw+mul+sub sequence
412     { ISD::SDIV, MVT::v8i32,  15 }, // vpmuldq sequence
413     { ISD::SREM, MVT::v8i32,  19 }, // vpmuldq+mul+sub sequence
414     { ISD::UDIV, MVT::v8i32,  15 }, // vpmuludq sequence
415     { ISD::UREM, MVT::v8i32,  19 }, // vpmuludq+mul+sub sequence
416   };
417 
418   if ((Op2Info == TargetTransformInfo::OK_UniformConstantValue ||
419        Op2Info == TargetTransformInfo::OK_NonUniformConstantValue) &&
420       ST->hasAVX2()) {
421     if (const auto *Entry = CostTableLookup(AVX2ConstCostTable, ISD, LT.second))
422       return LT.first * Entry->Cost;
423   }
424 
425   static const CostTblEntry SSE2ConstCostTable[] = {
426     { ISD::SDIV, MVT::v32i8,  28+2 }, // 4*ext+4*pmulhw sequence + split.
427     { ISD::SREM, MVT::v32i8,  32+2 }, // 4*ext+4*pmulhw+mul+sub sequence + split.
428     { ISD::SDIV, MVT::v16i8,    14 }, // 2*ext+2*pmulhw sequence
429     { ISD::SREM, MVT::v16i8,    16 }, // 2*ext+2*pmulhw+mul+sub sequence
430     { ISD::UDIV, MVT::v32i8,  28+2 }, // 4*ext+4*pmulhw sequence + split.
431     { ISD::UREM, MVT::v32i8,  32+2 }, // 4*ext+4*pmulhw+mul+sub sequence + split.
432     { ISD::UDIV, MVT::v16i8,    14 }, // 2*ext+2*pmulhw sequence
433     { ISD::UREM, MVT::v16i8,    16 }, // 2*ext+2*pmulhw+mul+sub sequence
434     { ISD::SDIV, MVT::v16i16, 12+2 }, // 2*pmulhw sequence + split.
435     { ISD::SREM, MVT::v16i16, 16+2 }, // 2*pmulhw+mul+sub sequence + split.
436     { ISD::SDIV, MVT::v8i16,     6 }, // pmulhw sequence
437     { ISD::SREM, MVT::v8i16,     8 }, // pmulhw+mul+sub sequence
438     { ISD::UDIV, MVT::v16i16, 12+2 }, // 2*pmulhuw sequence + split.
439     { ISD::UREM, MVT::v16i16, 16+2 }, // 2*pmulhuw+mul+sub sequence + split.
440     { ISD::UDIV, MVT::v8i16,     6 }, // pmulhuw sequence
441     { ISD::UREM, MVT::v8i16,     8 }, // pmulhuw+mul+sub sequence
442     { ISD::SDIV, MVT::v8i32,  38+2 }, // 2*pmuludq sequence + split.
443     { ISD::SREM, MVT::v8i32,  48+2 }, // 2*pmuludq+mul+sub sequence + split.
444     { ISD::SDIV, MVT::v4i32,    19 }, // pmuludq sequence
445     { ISD::SREM, MVT::v4i32,    24 }, // pmuludq+mul+sub sequence
446     { ISD::UDIV, MVT::v8i32,  30+2 }, // 2*pmuludq sequence + split.
447     { ISD::UREM, MVT::v8i32,  40+2 }, // 2*pmuludq+mul+sub sequence + split.
448     { ISD::UDIV, MVT::v4i32,    15 }, // pmuludq sequence
449     { ISD::UREM, MVT::v4i32,    20 }, // pmuludq+mul+sub sequence
450   };
451 
452   if ((Op2Info == TargetTransformInfo::OK_UniformConstantValue ||
453        Op2Info == TargetTransformInfo::OK_NonUniformConstantValue) &&
454       ST->hasSSE2()) {
455     // pmuldq sequence.
456     if (ISD == ISD::SDIV && LT.second == MVT::v8i32 && ST->hasAVX())
457       return LT.first * 32;
458     if (ISD == ISD::SREM && LT.second == MVT::v8i32 && ST->hasAVX())
459       return LT.first * 38;
460     if (ISD == ISD::SDIV && LT.second == MVT::v4i32 && ST->hasSSE41())
461       return LT.first * 15;
462     if (ISD == ISD::SREM && LT.second == MVT::v4i32 && ST->hasSSE41())
463       return LT.first * 20;
464 
465     if (const auto *Entry = CostTableLookup(SSE2ConstCostTable, ISD, LT.second))
466       return LT.first * Entry->Cost;
467   }
468 
469   static const CostTblEntry AVX512BWShiftCostTable[] = {
470     { ISD::SHL,   MVT::v8i16,      1 }, // vpsllvw
471     { ISD::SRL,   MVT::v8i16,      1 }, // vpsrlvw
472     { ISD::SRA,   MVT::v8i16,      1 }, // vpsravw
473 
474     { ISD::SHL,   MVT::v16i16,     1 }, // vpsllvw
475     { ISD::SRL,   MVT::v16i16,     1 }, // vpsrlvw
476     { ISD::SRA,   MVT::v16i16,     1 }, // vpsravw
477 
478     { ISD::SHL,   MVT::v32i16,     1 }, // vpsllvw
479     { ISD::SRL,   MVT::v32i16,     1 }, // vpsrlvw
480     { ISD::SRA,   MVT::v32i16,     1 }, // vpsravw
481   };
482 
483   if (ST->hasBWI())
484     if (const auto *Entry = CostTableLookup(AVX512BWShiftCostTable, ISD, LT.second))
485       return LT.first * Entry->Cost;
486 
487   static const CostTblEntry AVX2UniformCostTable[] = {
488     // Uniform splats are cheaper for the following instructions.
489     { ISD::SHL,  MVT::v16i16, 1 }, // psllw.
490     { ISD::SRL,  MVT::v16i16, 1 }, // psrlw.
491     { ISD::SRA,  MVT::v16i16, 1 }, // psraw.
492     { ISD::SHL,  MVT::v32i16, 2 }, // 2*psllw.
493     { ISD::SRL,  MVT::v32i16, 2 }, // 2*psrlw.
494     { ISD::SRA,  MVT::v32i16, 2 }, // 2*psraw.
495   };
496 
497   if (ST->hasAVX2() &&
498       ((Op2Info == TargetTransformInfo::OK_UniformConstantValue) ||
499        (Op2Info == TargetTransformInfo::OK_UniformValue))) {
500     if (const auto *Entry =
501             CostTableLookup(AVX2UniformCostTable, ISD, LT.second))
502       return LT.first * Entry->Cost;
503   }
504 
505   static const CostTblEntry SSE2UniformCostTable[] = {
506     // Uniform splats are cheaper for the following instructions.
507     { ISD::SHL,  MVT::v8i16,  1 }, // psllw.
508     { ISD::SHL,  MVT::v4i32,  1 }, // pslld
509     { ISD::SHL,  MVT::v2i64,  1 }, // psllq.
510 
511     { ISD::SRL,  MVT::v8i16,  1 }, // psrlw.
512     { ISD::SRL,  MVT::v4i32,  1 }, // psrld.
513     { ISD::SRL,  MVT::v2i64,  1 }, // psrlq.
514 
515     { ISD::SRA,  MVT::v8i16,  1 }, // psraw.
516     { ISD::SRA,  MVT::v4i32,  1 }, // psrad.
517   };
518 
519   if (ST->hasSSE2() &&
520       ((Op2Info == TargetTransformInfo::OK_UniformConstantValue) ||
521        (Op2Info == TargetTransformInfo::OK_UniformValue))) {
522     if (const auto *Entry =
523             CostTableLookup(SSE2UniformCostTable, ISD, LT.second))
524       return LT.first * Entry->Cost;
525   }
526 
527   static const CostTblEntry AVX512DQCostTable[] = {
528     { ISD::MUL,  MVT::v2i64, 1 },
529     { ISD::MUL,  MVT::v4i64, 1 },
530     { ISD::MUL,  MVT::v8i64, 1 }
531   };
532 
533   // Look for AVX512DQ lowering tricks for custom cases.
534   if (ST->hasDQI())
535     if (const auto *Entry = CostTableLookup(AVX512DQCostTable, ISD, LT.second))
536       return LT.first * Entry->Cost;
537 
538   static const CostTblEntry AVX512BWCostTable[] = {
539     { ISD::SHL,   MVT::v64i8,     11 }, // vpblendvb sequence.
540     { ISD::SRL,   MVT::v64i8,     11 }, // vpblendvb sequence.
541     { ISD::SRA,   MVT::v64i8,     24 }, // vpblendvb sequence.
542 
543     { ISD::MUL,   MVT::v64i8,     11 }, // extend/pmullw/trunc sequence.
544     { ISD::MUL,   MVT::v32i8,      4 }, // extend/pmullw/trunc sequence.
545     { ISD::MUL,   MVT::v16i8,      4 }, // extend/pmullw/trunc sequence.
546   };
547 
548   // Look for AVX512BW lowering tricks for custom cases.
549   if (ST->hasBWI())
550     if (const auto *Entry = CostTableLookup(AVX512BWCostTable, ISD, LT.second))
551       return LT.first * Entry->Cost;
552 
553   static const CostTblEntry AVX512CostTable[] = {
554     { ISD::SHL,     MVT::v16i32,     1 },
555     { ISD::SRL,     MVT::v16i32,     1 },
556     { ISD::SRA,     MVT::v16i32,     1 },
557 
558     { ISD::SHL,     MVT::v8i64,      1 },
559     { ISD::SRL,     MVT::v8i64,      1 },
560 
561     { ISD::SRA,     MVT::v2i64,      1 },
562     { ISD::SRA,     MVT::v4i64,      1 },
563     { ISD::SRA,     MVT::v8i64,      1 },
564 
565     { ISD::MUL,     MVT::v64i8,     26 }, // extend/pmullw/trunc sequence.
566     { ISD::MUL,     MVT::v32i8,     13 }, // extend/pmullw/trunc sequence.
567     { ISD::MUL,     MVT::v16i8,      5 }, // extend/pmullw/trunc sequence.
568     { ISD::MUL,     MVT::v16i32,     1 }, // pmulld (Skylake from agner.org)
569     { ISD::MUL,     MVT::v8i32,      1 }, // pmulld (Skylake from agner.org)
570     { ISD::MUL,     MVT::v4i32,      1 }, // pmulld (Skylake from agner.org)
571     { ISD::MUL,     MVT::v8i64,      8 }, // 3*pmuludq/3*shift/2*add
572 
573     { ISD::FADD,    MVT::v8f64,      1 }, // Skylake from http://www.agner.org/
574     { ISD::FSUB,    MVT::v8f64,      1 }, // Skylake from http://www.agner.org/
575     { ISD::FMUL,    MVT::v8f64,      1 }, // Skylake from http://www.agner.org/
576 
577     { ISD::FADD,    MVT::v16f32,     1 }, // Skylake from http://www.agner.org/
578     { ISD::FSUB,    MVT::v16f32,     1 }, // Skylake from http://www.agner.org/
579     { ISD::FMUL,    MVT::v16f32,     1 }, // Skylake from http://www.agner.org/
580   };
581 
582   if (ST->hasAVX512())
583     if (const auto *Entry = CostTableLookup(AVX512CostTable, ISD, LT.second))
584       return LT.first * Entry->Cost;
585 
586   static const CostTblEntry AVX2ShiftCostTable[] = {
587     // Shifts on v4i64/v8i32 on AVX2 is legal even though we declare to
588     // customize them to detect the cases where shift amount is a scalar one.
589     { ISD::SHL,     MVT::v4i32,    1 },
590     { ISD::SRL,     MVT::v4i32,    1 },
591     { ISD::SRA,     MVT::v4i32,    1 },
592     { ISD::SHL,     MVT::v8i32,    1 },
593     { ISD::SRL,     MVT::v8i32,    1 },
594     { ISD::SRA,     MVT::v8i32,    1 },
595     { ISD::SHL,     MVT::v2i64,    1 },
596     { ISD::SRL,     MVT::v2i64,    1 },
597     { ISD::SHL,     MVT::v4i64,    1 },
598     { ISD::SRL,     MVT::v4i64,    1 },
599   };
600 
601   if (ST->hasAVX512()) {
602     if (ISD == ISD::SHL && LT.second == MVT::v32i16 &&
603         (Op2Info == TargetTransformInfo::OK_UniformConstantValue ||
604          Op2Info == TargetTransformInfo::OK_NonUniformConstantValue))
605       // On AVX512, a packed v32i16 shift left by a constant build_vector
606       // is lowered into a vector multiply (vpmullw).
607       return getArithmeticInstrCost(Instruction::Mul, Ty, CostKind,
608                                     Op1Info, Op2Info,
609                                     TargetTransformInfo::OP_None,
610                                     TargetTransformInfo::OP_None);
611   }
612 
613   // Look for AVX2 lowering tricks.
614   if (ST->hasAVX2()) {
615     if (ISD == ISD::SHL && LT.second == MVT::v16i16 &&
616         (Op2Info == TargetTransformInfo::OK_UniformConstantValue ||
617          Op2Info == TargetTransformInfo::OK_NonUniformConstantValue))
618       // On AVX2, a packed v16i16 shift left by a constant build_vector
619       // is lowered into a vector multiply (vpmullw).
620       return getArithmeticInstrCost(Instruction::Mul, Ty, CostKind,
621                                     Op1Info, Op2Info,
622                                     TargetTransformInfo::OP_None,
623                                     TargetTransformInfo::OP_None);
624 
625     if (const auto *Entry = CostTableLookup(AVX2ShiftCostTable, ISD, LT.second))
626       return LT.first * Entry->Cost;
627   }
628 
629   static const CostTblEntry XOPShiftCostTable[] = {
630     // 128bit shifts take 1cy, but right shifts require negation beforehand.
631     { ISD::SHL,     MVT::v16i8,    1 },
632     { ISD::SRL,     MVT::v16i8,    2 },
633     { ISD::SRA,     MVT::v16i8,    2 },
634     { ISD::SHL,     MVT::v8i16,    1 },
635     { ISD::SRL,     MVT::v8i16,    2 },
636     { ISD::SRA,     MVT::v8i16,    2 },
637     { ISD::SHL,     MVT::v4i32,    1 },
638     { ISD::SRL,     MVT::v4i32,    2 },
639     { ISD::SRA,     MVT::v4i32,    2 },
640     { ISD::SHL,     MVT::v2i64,    1 },
641     { ISD::SRL,     MVT::v2i64,    2 },
642     { ISD::SRA,     MVT::v2i64,    2 },
643     // 256bit shifts require splitting if AVX2 didn't catch them above.
644     { ISD::SHL,     MVT::v32i8,  2+2 },
645     { ISD::SRL,     MVT::v32i8,  4+2 },
646     { ISD::SRA,     MVT::v32i8,  4+2 },
647     { ISD::SHL,     MVT::v16i16, 2+2 },
648     { ISD::SRL,     MVT::v16i16, 4+2 },
649     { ISD::SRA,     MVT::v16i16, 4+2 },
650     { ISD::SHL,     MVT::v8i32,  2+2 },
651     { ISD::SRL,     MVT::v8i32,  4+2 },
652     { ISD::SRA,     MVT::v8i32,  4+2 },
653     { ISD::SHL,     MVT::v4i64,  2+2 },
654     { ISD::SRL,     MVT::v4i64,  4+2 },
655     { ISD::SRA,     MVT::v4i64,  4+2 },
656   };
657 
658   // Look for XOP lowering tricks.
659   if (ST->hasXOP()) {
660     // If the right shift is constant then we'll fold the negation so
661     // it's as cheap as a left shift.
662     int ShiftISD = ISD;
663     if ((ShiftISD == ISD::SRL || ShiftISD == ISD::SRA) &&
664         (Op2Info == TargetTransformInfo::OK_UniformConstantValue ||
665          Op2Info == TargetTransformInfo::OK_NonUniformConstantValue))
666       ShiftISD = ISD::SHL;
667     if (const auto *Entry =
668             CostTableLookup(XOPShiftCostTable, ShiftISD, LT.second))
669       return LT.first * Entry->Cost;
670   }
671 
672   static const CostTblEntry SSE2UniformShiftCostTable[] = {
673     // Uniform splats are cheaper for the following instructions.
674     { ISD::SHL,  MVT::v16i16, 2+2 }, // 2*psllw + split.
675     { ISD::SHL,  MVT::v8i32,  2+2 }, // 2*pslld + split.
676     { ISD::SHL,  MVT::v4i64,  2+2 }, // 2*psllq + split.
677 
678     { ISD::SRL,  MVT::v16i16, 2+2 }, // 2*psrlw + split.
679     { ISD::SRL,  MVT::v8i32,  2+2 }, // 2*psrld + split.
680     { ISD::SRL,  MVT::v4i64,  2+2 }, // 2*psrlq + split.
681 
682     { ISD::SRA,  MVT::v16i16, 2+2 }, // 2*psraw + split.
683     { ISD::SRA,  MVT::v8i32,  2+2 }, // 2*psrad + split.
684     { ISD::SRA,  MVT::v2i64,    4 }, // 2*psrad + shuffle.
685     { ISD::SRA,  MVT::v4i64,  8+2 }, // 2*(2*psrad + shuffle) + split.
686   };
687 
688   if (ST->hasSSE2() &&
689       ((Op2Info == TargetTransformInfo::OK_UniformConstantValue) ||
690        (Op2Info == TargetTransformInfo::OK_UniformValue))) {
691 
692     // Handle AVX2 uniform v4i64 ISD::SRA, it's not worth a table.
693     if (ISD == ISD::SRA && LT.second == MVT::v4i64 && ST->hasAVX2())
694       return LT.first * 4; // 2*psrad + shuffle.
695 
696     if (const auto *Entry =
697             CostTableLookup(SSE2UniformShiftCostTable, ISD, LT.second))
698       return LT.first * Entry->Cost;
699   }
700 
701   if (ISD == ISD::SHL &&
702       Op2Info == TargetTransformInfo::OK_NonUniformConstantValue) {
703     MVT VT = LT.second;
704     // Vector shift left by non uniform constant can be lowered
705     // into vector multiply.
706     if (((VT == MVT::v8i16 || VT == MVT::v4i32) && ST->hasSSE2()) ||
707         ((VT == MVT::v16i16 || VT == MVT::v8i32) && ST->hasAVX()))
708       ISD = ISD::MUL;
709   }
710 
711   static const CostTblEntry AVX2CostTable[] = {
712     { ISD::SHL,  MVT::v32i8,     11 }, // vpblendvb sequence.
713     { ISD::SHL,  MVT::v64i8,     22 }, // 2*vpblendvb sequence.
714     { ISD::SHL,  MVT::v16i16,    10 }, // extend/vpsrlvd/pack sequence.
715     { ISD::SHL,  MVT::v32i16,    20 }, // 2*extend/vpsrlvd/pack sequence.
716 
717     { ISD::SRL,  MVT::v32i8,     11 }, // vpblendvb sequence.
718     { ISD::SRL,  MVT::v64i8,     22 }, // 2*vpblendvb sequence.
719     { ISD::SRL,  MVT::v16i16,    10 }, // extend/vpsrlvd/pack sequence.
720     { ISD::SRL,  MVT::v32i16,    20 }, // 2*extend/vpsrlvd/pack sequence.
721 
722     { ISD::SRA,  MVT::v32i8,     24 }, // vpblendvb sequence.
723     { ISD::SRA,  MVT::v64i8,     48 }, // 2*vpblendvb sequence.
724     { ISD::SRA,  MVT::v16i16,    10 }, // extend/vpsravd/pack sequence.
725     { ISD::SRA,  MVT::v32i16,    20 }, // 2*extend/vpsravd/pack sequence.
726     { ISD::SRA,  MVT::v2i64,      4 }, // srl/xor/sub sequence.
727     { ISD::SRA,  MVT::v4i64,      4 }, // srl/xor/sub sequence.
728 
729     { ISD::SUB,  MVT::v32i8,      1 }, // psubb
730     { ISD::ADD,  MVT::v32i8,      1 }, // paddb
731     { ISD::SUB,  MVT::v16i16,     1 }, // psubw
732     { ISD::ADD,  MVT::v16i16,     1 }, // paddw
733     { ISD::SUB,  MVT::v8i32,      1 }, // psubd
734     { ISD::ADD,  MVT::v8i32,      1 }, // paddd
735     { ISD::SUB,  MVT::v4i64,      1 }, // psubq
736     { ISD::ADD,  MVT::v4i64,      1 }, // paddq
737 
738     { ISD::MUL,  MVT::v32i8,     17 }, // extend/pmullw/trunc sequence.
739     { ISD::MUL,  MVT::v16i8,      7 }, // extend/pmullw/trunc sequence.
740     { ISD::MUL,  MVT::v16i16,     1 }, // pmullw
741     { ISD::MUL,  MVT::v8i32,      2 }, // pmulld (Haswell from agner.org)
742     { ISD::MUL,  MVT::v4i64,      8 }, // 3*pmuludq/3*shift/2*add
743 
744     { ISD::FADD, MVT::v4f64,      1 }, // Haswell from http://www.agner.org/
745     { ISD::FADD, MVT::v8f32,      1 }, // Haswell from http://www.agner.org/
746     { ISD::FSUB, MVT::v4f64,      1 }, // Haswell from http://www.agner.org/
747     { ISD::FSUB, MVT::v8f32,      1 }, // Haswell from http://www.agner.org/
748     { ISD::FMUL, MVT::v4f64,      1 }, // Haswell from http://www.agner.org/
749     { ISD::FMUL, MVT::v8f32,      1 }, // Haswell from http://www.agner.org/
750 
751     { ISD::FDIV, MVT::f32,        7 }, // Haswell from http://www.agner.org/
752     { ISD::FDIV, MVT::v4f32,      7 }, // Haswell from http://www.agner.org/
753     { ISD::FDIV, MVT::v8f32,     14 }, // Haswell from http://www.agner.org/
754     { ISD::FDIV, MVT::f64,       14 }, // Haswell from http://www.agner.org/
755     { ISD::FDIV, MVT::v2f64,     14 }, // Haswell from http://www.agner.org/
756     { ISD::FDIV, MVT::v4f64,     28 }, // Haswell from http://www.agner.org/
757   };
758 
759   // Look for AVX2 lowering tricks for custom cases.
760   if (ST->hasAVX2())
761     if (const auto *Entry = CostTableLookup(AVX2CostTable, ISD, LT.second))
762       return LT.first * Entry->Cost;
763 
764   static const CostTblEntry AVX1CostTable[] = {
765     // We don't have to scalarize unsupported ops. We can issue two half-sized
766     // operations and we only need to extract the upper YMM half.
767     // Two ops + 1 extract + 1 insert = 4.
768     { ISD::MUL,     MVT::v16i16,     4 },
769     { ISD::MUL,     MVT::v8i32,      4 },
770     { ISD::SUB,     MVT::v32i8,      4 },
771     { ISD::ADD,     MVT::v32i8,      4 },
772     { ISD::SUB,     MVT::v16i16,     4 },
773     { ISD::ADD,     MVT::v16i16,     4 },
774     { ISD::SUB,     MVT::v8i32,      4 },
775     { ISD::ADD,     MVT::v8i32,      4 },
776     { ISD::SUB,     MVT::v4i64,      4 },
777     { ISD::ADD,     MVT::v4i64,      4 },
778 
779     // A v4i64 multiply is custom lowered as two split v2i64 vectors that then
780     // are lowered as a series of long multiplies(3), shifts(3) and adds(2)
781     // Because we believe v4i64 to be a legal type, we must also include the
782     // extract+insert in the cost table. Therefore, the cost here is 18
783     // instead of 8.
784     { ISD::MUL,     MVT::v4i64,     18 },
785 
786     { ISD::MUL,     MVT::v32i8,     26 }, // extend/pmullw/trunc sequence.
787 
788     { ISD::FDIV,    MVT::f32,       14 }, // SNB from http://www.agner.org/
789     { ISD::FDIV,    MVT::v4f32,     14 }, // SNB from http://www.agner.org/
790     { ISD::FDIV,    MVT::v8f32,     28 }, // SNB from http://www.agner.org/
791     { ISD::FDIV,    MVT::f64,       22 }, // SNB from http://www.agner.org/
792     { ISD::FDIV,    MVT::v2f64,     22 }, // SNB from http://www.agner.org/
793     { ISD::FDIV,    MVT::v4f64,     44 }, // SNB from http://www.agner.org/
794   };
795 
796   if (ST->hasAVX())
797     if (const auto *Entry = CostTableLookup(AVX1CostTable, ISD, LT.second))
798       return LT.first * Entry->Cost;
799 
800   static const CostTblEntry SSE42CostTable[] = {
801     { ISD::FADD, MVT::f64,     1 }, // Nehalem from http://www.agner.org/
802     { ISD::FADD, MVT::f32,     1 }, // Nehalem from http://www.agner.org/
803     { ISD::FADD, MVT::v2f64,   1 }, // Nehalem from http://www.agner.org/
804     { ISD::FADD, MVT::v4f32,   1 }, // Nehalem from http://www.agner.org/
805 
806     { ISD::FSUB, MVT::f64,     1 }, // Nehalem from http://www.agner.org/
807     { ISD::FSUB, MVT::f32 ,    1 }, // Nehalem from http://www.agner.org/
808     { ISD::FSUB, MVT::v2f64,   1 }, // Nehalem from http://www.agner.org/
809     { ISD::FSUB, MVT::v4f32,   1 }, // Nehalem from http://www.agner.org/
810 
811     { ISD::FMUL, MVT::f64,     1 }, // Nehalem from http://www.agner.org/
812     { ISD::FMUL, MVT::f32,     1 }, // Nehalem from http://www.agner.org/
813     { ISD::FMUL, MVT::v2f64,   1 }, // Nehalem from http://www.agner.org/
814     { ISD::FMUL, MVT::v4f32,   1 }, // Nehalem from http://www.agner.org/
815 
816     { ISD::FDIV,  MVT::f32,   14 }, // Nehalem from http://www.agner.org/
817     { ISD::FDIV,  MVT::v4f32, 14 }, // Nehalem from http://www.agner.org/
818     { ISD::FDIV,  MVT::f64,   22 }, // Nehalem from http://www.agner.org/
819     { ISD::FDIV,  MVT::v2f64, 22 }, // Nehalem from http://www.agner.org/
820   };
821 
822   if (ST->hasSSE42())
823     if (const auto *Entry = CostTableLookup(SSE42CostTable, ISD, LT.second))
824       return LT.first * Entry->Cost;
825 
826   static const CostTblEntry SSE41CostTable[] = {
827     { ISD::SHL,  MVT::v16i8,      11 }, // pblendvb sequence.
828     { ISD::SHL,  MVT::v32i8,  2*11+2 }, // pblendvb sequence + split.
829     { ISD::SHL,  MVT::v8i16,      14 }, // pblendvb sequence.
830     { ISD::SHL,  MVT::v16i16, 2*14+2 }, // pblendvb sequence + split.
831     { ISD::SHL,  MVT::v4i32,       4 }, // pslld/paddd/cvttps2dq/pmulld
832     { ISD::SHL,  MVT::v8i32,   2*4+2 }, // pslld/paddd/cvttps2dq/pmulld + split
833 
834     { ISD::SRL,  MVT::v16i8,      12 }, // pblendvb sequence.
835     { ISD::SRL,  MVT::v32i8,  2*12+2 }, // pblendvb sequence + split.
836     { ISD::SRL,  MVT::v8i16,      14 }, // pblendvb sequence.
837     { ISD::SRL,  MVT::v16i16, 2*14+2 }, // pblendvb sequence + split.
838     { ISD::SRL,  MVT::v4i32,      11 }, // Shift each lane + blend.
839     { ISD::SRL,  MVT::v8i32,  2*11+2 }, // Shift each lane + blend + split.
840 
841     { ISD::SRA,  MVT::v16i8,      24 }, // pblendvb sequence.
842     { ISD::SRA,  MVT::v32i8,  2*24+2 }, // pblendvb sequence + split.
843     { ISD::SRA,  MVT::v8i16,      14 }, // pblendvb sequence.
844     { ISD::SRA,  MVT::v16i16, 2*14+2 }, // pblendvb sequence + split.
845     { ISD::SRA,  MVT::v4i32,      12 }, // Shift each lane + blend.
846     { ISD::SRA,  MVT::v8i32,  2*12+2 }, // Shift each lane + blend + split.
847 
848     { ISD::MUL,  MVT::v4i32,       2 }  // pmulld (Nehalem from agner.org)
849   };
850 
851   if (ST->hasSSE41())
852     if (const auto *Entry = CostTableLookup(SSE41CostTable, ISD, LT.second))
853       return LT.first * Entry->Cost;
854 
855   static const CostTblEntry SSE2CostTable[] = {
856     // We don't correctly identify costs of casts because they are marked as
857     // custom.
858     { ISD::SHL,  MVT::v16i8,      26 }, // cmpgtb sequence.
859     { ISD::SHL,  MVT::v8i16,      32 }, // cmpgtb sequence.
860     { ISD::SHL,  MVT::v4i32,     2*5 }, // We optimized this using mul.
861     { ISD::SHL,  MVT::v2i64,       4 }, // splat+shuffle sequence.
862     { ISD::SHL,  MVT::v4i64,   2*4+2 }, // splat+shuffle sequence + split.
863 
864     { ISD::SRL,  MVT::v16i8,      26 }, // cmpgtb sequence.
865     { ISD::SRL,  MVT::v8i16,      32 }, // cmpgtb sequence.
866     { ISD::SRL,  MVT::v4i32,      16 }, // Shift each lane + blend.
867     { ISD::SRL,  MVT::v2i64,       4 }, // splat+shuffle sequence.
868     { ISD::SRL,  MVT::v4i64,   2*4+2 }, // splat+shuffle sequence + split.
869 
870     { ISD::SRA,  MVT::v16i8,      54 }, // unpacked cmpgtb sequence.
871     { ISD::SRA,  MVT::v8i16,      32 }, // cmpgtb sequence.
872     { ISD::SRA,  MVT::v4i32,      16 }, // Shift each lane + blend.
873     { ISD::SRA,  MVT::v2i64,      12 }, // srl/xor/sub sequence.
874     { ISD::SRA,  MVT::v4i64,  2*12+2 }, // srl/xor/sub sequence+split.
875 
876     { ISD::MUL,  MVT::v16i8,      12 }, // extend/pmullw/trunc sequence.
877     { ISD::MUL,  MVT::v8i16,       1 }, // pmullw
878     { ISD::MUL,  MVT::v4i32,       6 }, // 3*pmuludq/4*shuffle
879     { ISD::MUL,  MVT::v2i64,       8 }, // 3*pmuludq/3*shift/2*add
880 
881     { ISD::FDIV, MVT::f32,        23 }, // Pentium IV from http://www.agner.org/
882     { ISD::FDIV, MVT::v4f32,      39 }, // Pentium IV from http://www.agner.org/
883     { ISD::FDIV, MVT::f64,        38 }, // Pentium IV from http://www.agner.org/
884     { ISD::FDIV, MVT::v2f64,      69 }, // Pentium IV from http://www.agner.org/
885 
886     { ISD::FADD, MVT::f32,         2 }, // Pentium IV from http://www.agner.org/
887     { ISD::FADD, MVT::f64,         2 }, // Pentium IV from http://www.agner.org/
888 
889     { ISD::FSUB, MVT::f32,         2 }, // Pentium IV from http://www.agner.org/
890     { ISD::FSUB, MVT::f64,         2 }, // Pentium IV from http://www.agner.org/
891   };
892 
893   if (ST->hasSSE2())
894     if (const auto *Entry = CostTableLookup(SSE2CostTable, ISD, LT.second))
895       return LT.first * Entry->Cost;
896 
897   static const CostTblEntry SSE1CostTable[] = {
898     { ISD::FDIV, MVT::f32,   17 }, // Pentium III from http://www.agner.org/
899     { ISD::FDIV, MVT::v4f32, 34 }, // Pentium III from http://www.agner.org/
900 
901     { ISD::FADD, MVT::f32,    1 }, // Pentium III from http://www.agner.org/
902     { ISD::FADD, MVT::v4f32,  2 }, // Pentium III from http://www.agner.org/
903 
904     { ISD::FSUB, MVT::f32,    1 }, // Pentium III from http://www.agner.org/
905     { ISD::FSUB, MVT::v4f32,  2 }, // Pentium III from http://www.agner.org/
906 
907     { ISD::ADD, MVT::i8,      1 }, // Pentium III from http://www.agner.org/
908     { ISD::ADD, MVT::i16,     1 }, // Pentium III from http://www.agner.org/
909     { ISD::ADD, MVT::i32,     1 }, // Pentium III from http://www.agner.org/
910 
911     { ISD::SUB, MVT::i8,      1 }, // Pentium III from http://www.agner.org/
912     { ISD::SUB, MVT::i16,     1 }, // Pentium III from http://www.agner.org/
913     { ISD::SUB, MVT::i32,     1 }, // Pentium III from http://www.agner.org/
914   };
915 
916   if (ST->hasSSE1())
917     if (const auto *Entry = CostTableLookup(SSE1CostTable, ISD, LT.second))
918       return LT.first * Entry->Cost;
919 
920   // It is not a good idea to vectorize division. We have to scalarize it and
921   // in the process we will often end up having to spilling regular
922   // registers. The overhead of division is going to dominate most kernels
923   // anyways so try hard to prevent vectorization of division - it is
924   // generally a bad idea. Assume somewhat arbitrarily that we have to be able
925   // to hide "20 cycles" for each lane.
926   if (LT.second.isVector() && (ISD == ISD::SDIV || ISD == ISD::SREM ||
927                                ISD == ISD::UDIV || ISD == ISD::UREM)) {
928     int ScalarCost = getArithmeticInstrCost(
929         Opcode, Ty->getScalarType(), CostKind, Op1Info, Op2Info,
930         TargetTransformInfo::OP_None, TargetTransformInfo::OP_None);
931     return 20 * LT.first * LT.second.getVectorNumElements() * ScalarCost;
932   }
933 
934   // Fallback to the default implementation.
935   return BaseT::getArithmeticInstrCost(Opcode, Ty, CostKind, Op1Info, Op2Info);
936 }
937 
938 int X86TTIImpl::getShuffleCost(TTI::ShuffleKind Kind, VectorType *BaseTp,
939                                int Index, VectorType *SubTp) {
940   // 64-bit packed float vectors (v2f32) are widened to type v4f32.
941   // 64-bit packed integer vectors (v2i32) are widened to type v4i32.
942   std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, BaseTp);
943 
944   // Treat Transpose as 2-op shuffles - there's no difference in lowering.
945   if (Kind == TTI::SK_Transpose)
946     Kind = TTI::SK_PermuteTwoSrc;
947 
948   // For Broadcasts we are splatting the first element from the first input
949   // register, so only need to reference that input and all the output
950   // registers are the same.
951   if (Kind == TTI::SK_Broadcast)
952     LT.first = 1;
953 
954   // Subvector extractions are free if they start at the beginning of a
955   // vector and cheap if the subvectors are aligned.
956   if (Kind == TTI::SK_ExtractSubvector && LT.second.isVector()) {
957     int NumElts = LT.second.getVectorNumElements();
958     if ((Index % NumElts) == 0)
959       return 0;
960     std::pair<int, MVT> SubLT = TLI->getTypeLegalizationCost(DL, SubTp);
961     if (SubLT.second.isVector()) {
962       int NumSubElts = SubLT.second.getVectorNumElements();
963       if ((Index % NumSubElts) == 0 && (NumElts % NumSubElts) == 0)
964         return SubLT.first;
965       // Handle some cases for widening legalization. For now we only handle
966       // cases where the original subvector was naturally aligned and evenly
967       // fit in its legalized subvector type.
968       // FIXME: Remove some of the alignment restrictions.
969       // FIXME: We can use permq for 64-bit or larger extracts from 256-bit
970       // vectors.
971       int OrigSubElts = cast<VectorType>(SubTp)->getNumElements();
972       if (NumSubElts > OrigSubElts && (Index % OrigSubElts) == 0 &&
973           (NumSubElts % OrigSubElts) == 0 &&
974           LT.second.getVectorElementType() ==
975               SubLT.second.getVectorElementType() &&
976           LT.second.getVectorElementType().getSizeInBits() ==
977               BaseTp->getElementType()->getPrimitiveSizeInBits()) {
978         assert(NumElts >= NumSubElts && NumElts > OrigSubElts &&
979                "Unexpected number of elements!");
980         VectorType *VecTy = VectorType::get(BaseTp->getElementType(),
981                                             LT.second.getVectorNumElements());
982         VectorType *SubTy =
983           VectorType::get(BaseTp->getElementType(),
984                           SubLT.second.getVectorNumElements());
985         int ExtractIndex = alignDown((Index % NumElts), NumSubElts);
986         int ExtractCost = getShuffleCost(TTI::SK_ExtractSubvector, VecTy,
987                                          ExtractIndex, SubTy);
988 
989         // If the original size is 32-bits or more, we can use pshufd. Otherwise
990         // if we have SSSE3 we can use pshufb.
991         if (SubTp->getPrimitiveSizeInBits() >= 32 || ST->hasSSSE3())
992           return ExtractCost + 1; // pshufd or pshufb
993 
994         assert(SubTp->getPrimitiveSizeInBits() == 16 &&
995                "Unexpected vector size");
996 
997         return ExtractCost + 2; // worst case pshufhw + pshufd
998       }
999     }
1000   }
1001 
1002   // Handle some common (illegal) sub-vector types as they are often very cheap
1003   // to shuffle even on targets without PSHUFB.
1004   EVT VT = TLI->getValueType(DL, BaseTp);
1005   if (VT.isSimple() && VT.isVector() && VT.getSizeInBits() < 128 &&
1006       !ST->hasSSSE3()) {
1007      static const CostTblEntry SSE2SubVectorShuffleTbl[] = {
1008       {TTI::SK_Broadcast,        MVT::v4i16, 1}, // pshuflw
1009       {TTI::SK_Broadcast,        MVT::v2i16, 1}, // pshuflw
1010       {TTI::SK_Broadcast,        MVT::v8i8,  2}, // punpck/pshuflw
1011       {TTI::SK_Broadcast,        MVT::v4i8,  2}, // punpck/pshuflw
1012       {TTI::SK_Broadcast,        MVT::v2i8,  1}, // punpck
1013 
1014       {TTI::SK_Reverse,          MVT::v4i16, 1}, // pshuflw
1015       {TTI::SK_Reverse,          MVT::v2i16, 1}, // pshuflw
1016       {TTI::SK_Reverse,          MVT::v4i8,  3}, // punpck/pshuflw/packus
1017       {TTI::SK_Reverse,          MVT::v2i8,  1}, // punpck
1018 
1019       {TTI::SK_PermuteTwoSrc,    MVT::v4i16, 2}, // punpck/pshuflw
1020       {TTI::SK_PermuteTwoSrc,    MVT::v2i16, 2}, // punpck/pshuflw
1021       {TTI::SK_PermuteTwoSrc,    MVT::v8i8,  7}, // punpck/pshuflw
1022       {TTI::SK_PermuteTwoSrc,    MVT::v4i8,  4}, // punpck/pshuflw
1023       {TTI::SK_PermuteTwoSrc,    MVT::v2i8,  2}, // punpck
1024 
1025       {TTI::SK_PermuteSingleSrc, MVT::v4i16, 1}, // pshuflw
1026       {TTI::SK_PermuteSingleSrc, MVT::v2i16, 1}, // pshuflw
1027       {TTI::SK_PermuteSingleSrc, MVT::v8i8,  5}, // punpck/pshuflw
1028       {TTI::SK_PermuteSingleSrc, MVT::v4i8,  3}, // punpck/pshuflw
1029       {TTI::SK_PermuteSingleSrc, MVT::v2i8,  1}, // punpck
1030     };
1031 
1032     if (ST->hasSSE2())
1033       if (const auto *Entry =
1034               CostTableLookup(SSE2SubVectorShuffleTbl, Kind, VT.getSimpleVT()))
1035         return Entry->Cost;
1036   }
1037 
1038   // We are going to permute multiple sources and the result will be in multiple
1039   // destinations. Providing an accurate cost only for splits where the element
1040   // type remains the same.
1041   if (Kind == TTI::SK_PermuteSingleSrc && LT.first != 1) {
1042     MVT LegalVT = LT.second;
1043     if (LegalVT.isVector() &&
1044         LegalVT.getVectorElementType().getSizeInBits() ==
1045             BaseTp->getElementType()->getPrimitiveSizeInBits() &&
1046         LegalVT.getVectorNumElements() < BaseTp->getNumElements()) {
1047 
1048       unsigned VecTySize = DL.getTypeStoreSize(BaseTp);
1049       unsigned LegalVTSize = LegalVT.getStoreSize();
1050       // Number of source vectors after legalization:
1051       unsigned NumOfSrcs = (VecTySize + LegalVTSize - 1) / LegalVTSize;
1052       // Number of destination vectors after legalization:
1053       unsigned NumOfDests = LT.first;
1054 
1055       VectorType *SingleOpTy =
1056         VectorType::get(BaseTp->getElementType(),
1057                         LegalVT.getVectorNumElements());
1058 
1059       unsigned NumOfShuffles = (NumOfSrcs - 1) * NumOfDests;
1060       return NumOfShuffles *
1061              getShuffleCost(TTI::SK_PermuteTwoSrc, SingleOpTy, 0, nullptr);
1062     }
1063 
1064     return BaseT::getShuffleCost(Kind, BaseTp, Index, SubTp);
1065   }
1066 
1067   // For 2-input shuffles, we must account for splitting the 2 inputs into many.
1068   if (Kind == TTI::SK_PermuteTwoSrc && LT.first != 1) {
1069     // We assume that source and destination have the same vector type.
1070     int NumOfDests = LT.first;
1071     int NumOfShufflesPerDest = LT.first * 2 - 1;
1072     LT.first = NumOfDests * NumOfShufflesPerDest;
1073   }
1074 
1075   static const CostTblEntry AVX512VBMIShuffleTbl[] = {
1076       {TTI::SK_Reverse, MVT::v64i8, 1}, // vpermb
1077       {TTI::SK_Reverse, MVT::v32i8, 1}, // vpermb
1078 
1079       {TTI::SK_PermuteSingleSrc, MVT::v64i8, 1}, // vpermb
1080       {TTI::SK_PermuteSingleSrc, MVT::v32i8, 1}, // vpermb
1081 
1082       {TTI::SK_PermuteTwoSrc, MVT::v64i8, 2}, // vpermt2b
1083       {TTI::SK_PermuteTwoSrc, MVT::v32i8, 2}, // vpermt2b
1084       {TTI::SK_PermuteTwoSrc, MVT::v16i8, 2}  // vpermt2b
1085   };
1086 
1087   if (ST->hasVBMI())
1088     if (const auto *Entry =
1089             CostTableLookup(AVX512VBMIShuffleTbl, Kind, LT.second))
1090       return LT.first * Entry->Cost;
1091 
1092   static const CostTblEntry AVX512BWShuffleTbl[] = {
1093       {TTI::SK_Broadcast, MVT::v32i16, 1}, // vpbroadcastw
1094       {TTI::SK_Broadcast, MVT::v64i8, 1},  // vpbroadcastb
1095 
1096       {TTI::SK_Reverse, MVT::v32i16, 2}, // vpermw
1097       {TTI::SK_Reverse, MVT::v16i16, 2}, // vpermw
1098       {TTI::SK_Reverse, MVT::v64i8, 2},  // pshufb + vshufi64x2
1099 
1100       {TTI::SK_PermuteSingleSrc, MVT::v32i16, 2}, // vpermw
1101       {TTI::SK_PermuteSingleSrc, MVT::v16i16, 2}, // vpermw
1102       {TTI::SK_PermuteSingleSrc, MVT::v64i8, 8},  // extend to v32i16
1103 
1104       {TTI::SK_PermuteTwoSrc, MVT::v32i16, 2}, // vpermt2w
1105       {TTI::SK_PermuteTwoSrc, MVT::v16i16, 2}, // vpermt2w
1106       {TTI::SK_PermuteTwoSrc, MVT::v8i16, 2},  // vpermt2w
1107       {TTI::SK_PermuteTwoSrc, MVT::v64i8, 19}, // 6 * v32i8 + 1
1108   };
1109 
1110   if (ST->hasBWI())
1111     if (const auto *Entry =
1112             CostTableLookup(AVX512BWShuffleTbl, Kind, LT.second))
1113       return LT.first * Entry->Cost;
1114 
1115   static const CostTblEntry AVX512ShuffleTbl[] = {
1116       {TTI::SK_Broadcast, MVT::v8f64, 1},  // vbroadcastpd
1117       {TTI::SK_Broadcast, MVT::v16f32, 1}, // vbroadcastps
1118       {TTI::SK_Broadcast, MVT::v8i64, 1},  // vpbroadcastq
1119       {TTI::SK_Broadcast, MVT::v16i32, 1}, // vpbroadcastd
1120       {TTI::SK_Broadcast, MVT::v32i16, 1}, // vpbroadcastw
1121       {TTI::SK_Broadcast, MVT::v64i8, 1},  // vpbroadcastb
1122 
1123       {TTI::SK_Reverse, MVT::v8f64, 1},  // vpermpd
1124       {TTI::SK_Reverse, MVT::v16f32, 1}, // vpermps
1125       {TTI::SK_Reverse, MVT::v8i64, 1},  // vpermq
1126       {TTI::SK_Reverse, MVT::v16i32, 1}, // vpermd
1127 
1128       {TTI::SK_PermuteSingleSrc, MVT::v8f64, 1},  // vpermpd
1129       {TTI::SK_PermuteSingleSrc, MVT::v4f64, 1},  // vpermpd
1130       {TTI::SK_PermuteSingleSrc, MVT::v2f64, 1},  // vpermpd
1131       {TTI::SK_PermuteSingleSrc, MVT::v16f32, 1}, // vpermps
1132       {TTI::SK_PermuteSingleSrc, MVT::v8f32, 1},  // vpermps
1133       {TTI::SK_PermuteSingleSrc, MVT::v4f32, 1},  // vpermps
1134       {TTI::SK_PermuteSingleSrc, MVT::v8i64, 1},  // vpermq
1135       {TTI::SK_PermuteSingleSrc, MVT::v4i64, 1},  // vpermq
1136       {TTI::SK_PermuteSingleSrc, MVT::v2i64, 1},  // vpermq
1137       {TTI::SK_PermuteSingleSrc, MVT::v16i32, 1}, // vpermd
1138       {TTI::SK_PermuteSingleSrc, MVT::v8i32, 1},  // vpermd
1139       {TTI::SK_PermuteSingleSrc, MVT::v4i32, 1},  // vpermd
1140       {TTI::SK_PermuteSingleSrc, MVT::v16i8, 1},  // pshufb
1141 
1142       {TTI::SK_PermuteTwoSrc, MVT::v8f64, 1},  // vpermt2pd
1143       {TTI::SK_PermuteTwoSrc, MVT::v16f32, 1}, // vpermt2ps
1144       {TTI::SK_PermuteTwoSrc, MVT::v8i64, 1},  // vpermt2q
1145       {TTI::SK_PermuteTwoSrc, MVT::v16i32, 1}, // vpermt2d
1146       {TTI::SK_PermuteTwoSrc, MVT::v4f64, 1},  // vpermt2pd
1147       {TTI::SK_PermuteTwoSrc, MVT::v8f32, 1},  // vpermt2ps
1148       {TTI::SK_PermuteTwoSrc, MVT::v4i64, 1},  // vpermt2q
1149       {TTI::SK_PermuteTwoSrc, MVT::v8i32, 1},  // vpermt2d
1150       {TTI::SK_PermuteTwoSrc, MVT::v2f64, 1},  // vpermt2pd
1151       {TTI::SK_PermuteTwoSrc, MVT::v4f32, 1},  // vpermt2ps
1152       {TTI::SK_PermuteTwoSrc, MVT::v2i64, 1},  // vpermt2q
1153       {TTI::SK_PermuteTwoSrc, MVT::v4i32, 1},  // vpermt2d
1154 
1155       // FIXME: This just applies the type legalization cost rules above
1156       // assuming these completely split.
1157       {TTI::SK_PermuteSingleSrc, MVT::v32i16, 14},
1158       {TTI::SK_PermuteSingleSrc, MVT::v64i8,  14},
1159       {TTI::SK_PermuteTwoSrc,    MVT::v32i16, 42},
1160       {TTI::SK_PermuteTwoSrc,    MVT::v64i8,  42},
1161   };
1162 
1163   if (ST->hasAVX512())
1164     if (const auto *Entry = CostTableLookup(AVX512ShuffleTbl, Kind, LT.second))
1165       return LT.first * Entry->Cost;
1166 
1167   static const CostTblEntry AVX2ShuffleTbl[] = {
1168       {TTI::SK_Broadcast, MVT::v4f64, 1},  // vbroadcastpd
1169       {TTI::SK_Broadcast, MVT::v8f32, 1},  // vbroadcastps
1170       {TTI::SK_Broadcast, MVT::v4i64, 1},  // vpbroadcastq
1171       {TTI::SK_Broadcast, MVT::v8i32, 1},  // vpbroadcastd
1172       {TTI::SK_Broadcast, MVT::v16i16, 1}, // vpbroadcastw
1173       {TTI::SK_Broadcast, MVT::v32i8, 1},  // vpbroadcastb
1174 
1175       {TTI::SK_Reverse, MVT::v4f64, 1},  // vpermpd
1176       {TTI::SK_Reverse, MVT::v8f32, 1},  // vpermps
1177       {TTI::SK_Reverse, MVT::v4i64, 1},  // vpermq
1178       {TTI::SK_Reverse, MVT::v8i32, 1},  // vpermd
1179       {TTI::SK_Reverse, MVT::v16i16, 2}, // vperm2i128 + pshufb
1180       {TTI::SK_Reverse, MVT::v32i8, 2},  // vperm2i128 + pshufb
1181 
1182       {TTI::SK_Select, MVT::v16i16, 1}, // vpblendvb
1183       {TTI::SK_Select, MVT::v32i8, 1},  // vpblendvb
1184 
1185       {TTI::SK_PermuteSingleSrc, MVT::v4f64, 1},  // vpermpd
1186       {TTI::SK_PermuteSingleSrc, MVT::v8f32, 1},  // vpermps
1187       {TTI::SK_PermuteSingleSrc, MVT::v4i64, 1},  // vpermq
1188       {TTI::SK_PermuteSingleSrc, MVT::v8i32, 1},  // vpermd
1189       {TTI::SK_PermuteSingleSrc, MVT::v16i16, 4}, // vperm2i128 + 2*vpshufb
1190                                                   // + vpblendvb
1191       {TTI::SK_PermuteSingleSrc, MVT::v32i8, 4},  // vperm2i128 + 2*vpshufb
1192                                                   // + vpblendvb
1193 
1194       {TTI::SK_PermuteTwoSrc, MVT::v4f64, 3},  // 2*vpermpd + vblendpd
1195       {TTI::SK_PermuteTwoSrc, MVT::v8f32, 3},  // 2*vpermps + vblendps
1196       {TTI::SK_PermuteTwoSrc, MVT::v4i64, 3},  // 2*vpermq + vpblendd
1197       {TTI::SK_PermuteTwoSrc, MVT::v8i32, 3},  // 2*vpermd + vpblendd
1198       {TTI::SK_PermuteTwoSrc, MVT::v16i16, 7}, // 2*vperm2i128 + 4*vpshufb
1199                                                // + vpblendvb
1200       {TTI::SK_PermuteTwoSrc, MVT::v32i8, 7},  // 2*vperm2i128 + 4*vpshufb
1201                                                // + vpblendvb
1202   };
1203 
1204   if (ST->hasAVX2())
1205     if (const auto *Entry = CostTableLookup(AVX2ShuffleTbl, Kind, LT.second))
1206       return LT.first * Entry->Cost;
1207 
1208   static const CostTblEntry XOPShuffleTbl[] = {
1209       {TTI::SK_PermuteSingleSrc, MVT::v4f64, 2},  // vperm2f128 + vpermil2pd
1210       {TTI::SK_PermuteSingleSrc, MVT::v8f32, 2},  // vperm2f128 + vpermil2ps
1211       {TTI::SK_PermuteSingleSrc, MVT::v4i64, 2},  // vperm2f128 + vpermil2pd
1212       {TTI::SK_PermuteSingleSrc, MVT::v8i32, 2},  // vperm2f128 + vpermil2ps
1213       {TTI::SK_PermuteSingleSrc, MVT::v16i16, 4}, // vextractf128 + 2*vpperm
1214                                                   // + vinsertf128
1215       {TTI::SK_PermuteSingleSrc, MVT::v32i8, 4},  // vextractf128 + 2*vpperm
1216                                                   // + vinsertf128
1217 
1218       {TTI::SK_PermuteTwoSrc, MVT::v16i16, 9}, // 2*vextractf128 + 6*vpperm
1219                                                // + vinsertf128
1220       {TTI::SK_PermuteTwoSrc, MVT::v8i16, 1},  // vpperm
1221       {TTI::SK_PermuteTwoSrc, MVT::v32i8, 9},  // 2*vextractf128 + 6*vpperm
1222                                                // + vinsertf128
1223       {TTI::SK_PermuteTwoSrc, MVT::v16i8, 1},  // vpperm
1224   };
1225 
1226   if (ST->hasXOP())
1227     if (const auto *Entry = CostTableLookup(XOPShuffleTbl, Kind, LT.second))
1228       return LT.first * Entry->Cost;
1229 
1230   static const CostTblEntry AVX1ShuffleTbl[] = {
1231       {TTI::SK_Broadcast, MVT::v4f64, 2},  // vperm2f128 + vpermilpd
1232       {TTI::SK_Broadcast, MVT::v8f32, 2},  // vperm2f128 + vpermilps
1233       {TTI::SK_Broadcast, MVT::v4i64, 2},  // vperm2f128 + vpermilpd
1234       {TTI::SK_Broadcast, MVT::v8i32, 2},  // vperm2f128 + vpermilps
1235       {TTI::SK_Broadcast, MVT::v16i16, 3}, // vpshuflw + vpshufd + vinsertf128
1236       {TTI::SK_Broadcast, MVT::v32i8, 2},  // vpshufb + vinsertf128
1237 
1238       {TTI::SK_Reverse, MVT::v4f64, 2},  // vperm2f128 + vpermilpd
1239       {TTI::SK_Reverse, MVT::v8f32, 2},  // vperm2f128 + vpermilps
1240       {TTI::SK_Reverse, MVT::v4i64, 2},  // vperm2f128 + vpermilpd
1241       {TTI::SK_Reverse, MVT::v8i32, 2},  // vperm2f128 + vpermilps
1242       {TTI::SK_Reverse, MVT::v16i16, 4}, // vextractf128 + 2*pshufb
1243                                          // + vinsertf128
1244       {TTI::SK_Reverse, MVT::v32i8, 4},  // vextractf128 + 2*pshufb
1245                                          // + vinsertf128
1246 
1247       {TTI::SK_Select, MVT::v4i64, 1},  // vblendpd
1248       {TTI::SK_Select, MVT::v4f64, 1},  // vblendpd
1249       {TTI::SK_Select, MVT::v8i32, 1},  // vblendps
1250       {TTI::SK_Select, MVT::v8f32, 1},  // vblendps
1251       {TTI::SK_Select, MVT::v16i16, 3}, // vpand + vpandn + vpor
1252       {TTI::SK_Select, MVT::v32i8, 3},  // vpand + vpandn + vpor
1253 
1254       {TTI::SK_PermuteSingleSrc, MVT::v4f64, 2},  // vperm2f128 + vshufpd
1255       {TTI::SK_PermuteSingleSrc, MVT::v4i64, 2},  // vperm2f128 + vshufpd
1256       {TTI::SK_PermuteSingleSrc, MVT::v8f32, 4},  // 2*vperm2f128 + 2*vshufps
1257       {TTI::SK_PermuteSingleSrc, MVT::v8i32, 4},  // 2*vperm2f128 + 2*vshufps
1258       {TTI::SK_PermuteSingleSrc, MVT::v16i16, 8}, // vextractf128 + 4*pshufb
1259                                                   // + 2*por + vinsertf128
1260       {TTI::SK_PermuteSingleSrc, MVT::v32i8, 8},  // vextractf128 + 4*pshufb
1261                                                   // + 2*por + vinsertf128
1262 
1263       {TTI::SK_PermuteTwoSrc, MVT::v4f64, 3},   // 2*vperm2f128 + vshufpd
1264       {TTI::SK_PermuteTwoSrc, MVT::v4i64, 3},   // 2*vperm2f128 + vshufpd
1265       {TTI::SK_PermuteTwoSrc, MVT::v8f32, 4},   // 2*vperm2f128 + 2*vshufps
1266       {TTI::SK_PermuteTwoSrc, MVT::v8i32, 4},   // 2*vperm2f128 + 2*vshufps
1267       {TTI::SK_PermuteTwoSrc, MVT::v16i16, 15}, // 2*vextractf128 + 8*pshufb
1268                                                 // + 4*por + vinsertf128
1269       {TTI::SK_PermuteTwoSrc, MVT::v32i8, 15},  // 2*vextractf128 + 8*pshufb
1270                                                 // + 4*por + vinsertf128
1271   };
1272 
1273   if (ST->hasAVX())
1274     if (const auto *Entry = CostTableLookup(AVX1ShuffleTbl, Kind, LT.second))
1275       return LT.first * Entry->Cost;
1276 
1277   static const CostTblEntry SSE41ShuffleTbl[] = {
1278       {TTI::SK_Select, MVT::v2i64, 1}, // pblendw
1279       {TTI::SK_Select, MVT::v2f64, 1}, // movsd
1280       {TTI::SK_Select, MVT::v4i32, 1}, // pblendw
1281       {TTI::SK_Select, MVT::v4f32, 1}, // blendps
1282       {TTI::SK_Select, MVT::v8i16, 1}, // pblendw
1283       {TTI::SK_Select, MVT::v16i8, 1}  // pblendvb
1284   };
1285 
1286   if (ST->hasSSE41())
1287     if (const auto *Entry = CostTableLookup(SSE41ShuffleTbl, Kind, LT.second))
1288       return LT.first * Entry->Cost;
1289 
1290   static const CostTblEntry SSSE3ShuffleTbl[] = {
1291       {TTI::SK_Broadcast, MVT::v8i16, 1}, // pshufb
1292       {TTI::SK_Broadcast, MVT::v16i8, 1}, // pshufb
1293 
1294       {TTI::SK_Reverse, MVT::v8i16, 1}, // pshufb
1295       {TTI::SK_Reverse, MVT::v16i8, 1}, // pshufb
1296 
1297       {TTI::SK_Select, MVT::v8i16, 3}, // 2*pshufb + por
1298       {TTI::SK_Select, MVT::v16i8, 3}, // 2*pshufb + por
1299 
1300       {TTI::SK_PermuteSingleSrc, MVT::v8i16, 1}, // pshufb
1301       {TTI::SK_PermuteSingleSrc, MVT::v16i8, 1}, // pshufb
1302 
1303       {TTI::SK_PermuteTwoSrc, MVT::v8i16, 3}, // 2*pshufb + por
1304       {TTI::SK_PermuteTwoSrc, MVT::v16i8, 3}, // 2*pshufb + por
1305   };
1306 
1307   if (ST->hasSSSE3())
1308     if (const auto *Entry = CostTableLookup(SSSE3ShuffleTbl, Kind, LT.second))
1309       return LT.first * Entry->Cost;
1310 
1311   static const CostTblEntry SSE2ShuffleTbl[] = {
1312       {TTI::SK_Broadcast, MVT::v2f64, 1}, // shufpd
1313       {TTI::SK_Broadcast, MVT::v2i64, 1}, // pshufd
1314       {TTI::SK_Broadcast, MVT::v4i32, 1}, // pshufd
1315       {TTI::SK_Broadcast, MVT::v8i16, 2}, // pshuflw + pshufd
1316       {TTI::SK_Broadcast, MVT::v16i8, 3}, // unpck + pshuflw + pshufd
1317 
1318       {TTI::SK_Reverse, MVT::v2f64, 1}, // shufpd
1319       {TTI::SK_Reverse, MVT::v2i64, 1}, // pshufd
1320       {TTI::SK_Reverse, MVT::v4i32, 1}, // pshufd
1321       {TTI::SK_Reverse, MVT::v8i16, 3}, // pshuflw + pshufhw + pshufd
1322       {TTI::SK_Reverse, MVT::v16i8, 9}, // 2*pshuflw + 2*pshufhw
1323                                         // + 2*pshufd + 2*unpck + packus
1324 
1325       {TTI::SK_Select, MVT::v2i64, 1}, // movsd
1326       {TTI::SK_Select, MVT::v2f64, 1}, // movsd
1327       {TTI::SK_Select, MVT::v4i32, 2}, // 2*shufps
1328       {TTI::SK_Select, MVT::v8i16, 3}, // pand + pandn + por
1329       {TTI::SK_Select, MVT::v16i8, 3}, // pand + pandn + por
1330 
1331       {TTI::SK_PermuteSingleSrc, MVT::v2f64, 1}, // shufpd
1332       {TTI::SK_PermuteSingleSrc, MVT::v2i64, 1}, // pshufd
1333       {TTI::SK_PermuteSingleSrc, MVT::v4i32, 1}, // pshufd
1334       {TTI::SK_PermuteSingleSrc, MVT::v8i16, 5}, // 2*pshuflw + 2*pshufhw
1335                                                   // + pshufd/unpck
1336     { TTI::SK_PermuteSingleSrc, MVT::v16i8, 10 }, // 2*pshuflw + 2*pshufhw
1337                                                   // + 2*pshufd + 2*unpck + 2*packus
1338 
1339     { TTI::SK_PermuteTwoSrc,    MVT::v2f64,  1 }, // shufpd
1340     { TTI::SK_PermuteTwoSrc,    MVT::v2i64,  1 }, // shufpd
1341     { TTI::SK_PermuteTwoSrc,    MVT::v4i32,  2 }, // 2*{unpck,movsd,pshufd}
1342     { TTI::SK_PermuteTwoSrc,    MVT::v8i16,  8 }, // blend+permute
1343     { TTI::SK_PermuteTwoSrc,    MVT::v16i8, 13 }, // blend+permute
1344   };
1345 
1346   if (ST->hasSSE2())
1347     if (const auto *Entry = CostTableLookup(SSE2ShuffleTbl, Kind, LT.second))
1348       return LT.first * Entry->Cost;
1349 
1350   static const CostTblEntry SSE1ShuffleTbl[] = {
1351     { TTI::SK_Broadcast,        MVT::v4f32, 1 }, // shufps
1352     { TTI::SK_Reverse,          MVT::v4f32, 1 }, // shufps
1353     { TTI::SK_Select,           MVT::v4f32, 2 }, // 2*shufps
1354     { TTI::SK_PermuteSingleSrc, MVT::v4f32, 1 }, // shufps
1355     { TTI::SK_PermuteTwoSrc,    MVT::v4f32, 2 }, // 2*shufps
1356   };
1357 
1358   if (ST->hasSSE1())
1359     if (const auto *Entry = CostTableLookup(SSE1ShuffleTbl, Kind, LT.second))
1360       return LT.first * Entry->Cost;
1361 
1362   return BaseT::getShuffleCost(Kind, BaseTp, Index, SubTp);
1363 }
1364 
1365 int X86TTIImpl::getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src,
1366                                  TTI::TargetCostKind CostKind,
1367                                  const Instruction *I) {
1368   int ISD = TLI->InstructionOpcodeToISD(Opcode);
1369   assert(ISD && "Invalid opcode");
1370 
1371   // FIXME: Need a better design of the cost table to handle non-simple types of
1372   // potential massive combinations (elem_num x src_type x dst_type).
1373 
1374   static const TypeConversionCostTblEntry AVX512BWConversionTbl[] {
1375     { ISD::SIGN_EXTEND, MVT::v32i16, MVT::v32i8, 1 },
1376     { ISD::ZERO_EXTEND, MVT::v32i16, MVT::v32i8, 1 },
1377 
1378     // Mask sign extend has an instruction.
1379     { ISD::SIGN_EXTEND, MVT::v2i8,   MVT::v2i1,  1 },
1380     { ISD::SIGN_EXTEND, MVT::v2i16,  MVT::v2i1,  1 },
1381     { ISD::SIGN_EXTEND, MVT::v4i8,   MVT::v4i1,  1 },
1382     { ISD::SIGN_EXTEND, MVT::v4i16,  MVT::v4i1,  1 },
1383     { ISD::SIGN_EXTEND, MVT::v8i8,   MVT::v8i1,  1 },
1384     { ISD::SIGN_EXTEND, MVT::v8i16,  MVT::v8i1,  1 },
1385     { ISD::SIGN_EXTEND, MVT::v16i8,  MVT::v16i1, 1 },
1386     { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i1, 1 },
1387     { ISD::SIGN_EXTEND, MVT::v32i8,  MVT::v32i1, 1 },
1388     { ISD::SIGN_EXTEND, MVT::v32i16, MVT::v32i1, 1 },
1389     { ISD::SIGN_EXTEND, MVT::v64i8,  MVT::v64i1, 1 },
1390 
1391     // Mask zero extend is a sext + shift.
1392     { ISD::ZERO_EXTEND, MVT::v2i8,   MVT::v2i1,  2 },
1393     { ISD::ZERO_EXTEND, MVT::v2i16,  MVT::v2i1,  2 },
1394     { ISD::ZERO_EXTEND, MVT::v4i8,   MVT::v4i1,  2 },
1395     { ISD::ZERO_EXTEND, MVT::v4i16,  MVT::v4i1,  2 },
1396     { ISD::ZERO_EXTEND, MVT::v8i8,   MVT::v8i1,  2 },
1397     { ISD::ZERO_EXTEND, MVT::v8i16,  MVT::v8i1,  2 },
1398     { ISD::ZERO_EXTEND, MVT::v16i8,  MVT::v16i1, 2 },
1399     { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i1, 2 },
1400     { ISD::ZERO_EXTEND, MVT::v32i8,  MVT::v32i1, 2 },
1401     { ISD::ZERO_EXTEND, MVT::v32i16, MVT::v32i1, 2 },
1402     { ISD::ZERO_EXTEND, MVT::v64i8,  MVT::v64i1, 2 },
1403 
1404     { ISD::TRUNCATE,    MVT::v32i8,  MVT::v32i16, 2 },
1405     { ISD::TRUNCATE,    MVT::v16i8,  MVT::v16i16, 2 }, // widen to zmm
1406     { ISD::TRUNCATE,    MVT::v2i1,   MVT::v2i8,   2 }, // widen to zmm
1407     { ISD::TRUNCATE,    MVT::v2i1,   MVT::v2i16,  2 }, // widen to zmm
1408     { ISD::TRUNCATE,    MVT::v4i1,   MVT::v4i8,   2 }, // widen to zmm
1409     { ISD::TRUNCATE,    MVT::v4i1,   MVT::v4i16,  2 }, // widen to zmm
1410     { ISD::TRUNCATE,    MVT::v8i1,   MVT::v8i8,   2 }, // widen to zmm
1411     { ISD::TRUNCATE,    MVT::v8i1,   MVT::v8i16,  2 }, // widen to zmm
1412     { ISD::TRUNCATE,    MVT::v16i1,  MVT::v16i8,  2 }, // widen to zmm
1413     { ISD::TRUNCATE,    MVT::v16i1,  MVT::v16i16, 2 }, // widen to zmm
1414     { ISD::TRUNCATE,    MVT::v32i1,  MVT::v32i8,  2 }, // widen to zmm
1415     { ISD::TRUNCATE,    MVT::v32i1,  MVT::v32i16, 2 },
1416     { ISD::TRUNCATE,    MVT::v64i1,  MVT::v64i8,  2 },
1417   };
1418 
1419   static const TypeConversionCostTblEntry AVX512DQConversionTbl[] = {
1420     { ISD::SINT_TO_FP,  MVT::v8f32,  MVT::v8i64,  1 },
1421     { ISD::SINT_TO_FP,  MVT::v8f64,  MVT::v8i64,  1 },
1422 
1423     { ISD::UINT_TO_FP,  MVT::v8f32,  MVT::v8i64,  1 },
1424     { ISD::UINT_TO_FP,  MVT::v8f64,  MVT::v8i64,  1 },
1425 
1426     { ISD::FP_TO_SINT,  MVT::v8i64,  MVT::v8f32,  1 },
1427     { ISD::FP_TO_SINT,  MVT::v8i64,  MVT::v8f64,  1 },
1428 
1429     { ISD::FP_TO_UINT,  MVT::v8i64,  MVT::v8f32,  1 },
1430     { ISD::FP_TO_UINT,  MVT::v8i64,  MVT::v8f64,  1 },
1431   };
1432 
1433   // TODO: For AVX512DQ + AVX512VL, we also have cheap casts for 128-bit and
1434   // 256-bit wide vectors.
1435 
1436   static const TypeConversionCostTblEntry AVX512FConversionTbl[] = {
1437     { ISD::FP_EXTEND, MVT::v8f64,   MVT::v8f32,  1 },
1438     { ISD::FP_EXTEND, MVT::v8f64,   MVT::v16f32, 3 },
1439     { ISD::FP_ROUND,  MVT::v8f32,   MVT::v8f64,  1 },
1440 
1441     { ISD::TRUNCATE,  MVT::v2i1,    MVT::v2i8,   3 }, // sext+vpslld+vptestmd
1442     { ISD::TRUNCATE,  MVT::v4i1,    MVT::v4i8,   3 }, // sext+vpslld+vptestmd
1443     { ISD::TRUNCATE,  MVT::v8i1,    MVT::v8i8,   3 }, // sext+vpslld+vptestmd
1444     { ISD::TRUNCATE,  MVT::v16i1,   MVT::v16i8,  3 }, // sext+vpslld+vptestmd
1445     { ISD::TRUNCATE,  MVT::v2i1,    MVT::v2i16,  3 }, // sext+vpsllq+vptestmq
1446     { ISD::TRUNCATE,  MVT::v4i1,    MVT::v4i16,  3 }, // sext+vpsllq+vptestmq
1447     { ISD::TRUNCATE,  MVT::v8i1,    MVT::v8i16,  3 }, // sext+vpsllq+vptestmq
1448     { ISD::TRUNCATE,  MVT::v16i1,   MVT::v16i16, 3 }, // sext+vpslld+vptestmd
1449     { ISD::TRUNCATE,  MVT::v2i1,    MVT::v2i32,  2 }, // zmm vpslld+vptestmd
1450     { ISD::TRUNCATE,  MVT::v4i1,    MVT::v4i32,  2 }, // zmm vpslld+vptestmd
1451     { ISD::TRUNCATE,  MVT::v8i1,    MVT::v8i32,  2 }, // zmm vpslld+vptestmd
1452     { ISD::TRUNCATE,  MVT::v16i1,   MVT::v16i32, 2 }, // vpslld+vptestmd
1453     { ISD::TRUNCATE,  MVT::v2i1,    MVT::v2i64,  2 }, // zmm vpsllq+vptestmq
1454     { ISD::TRUNCATE,  MVT::v4i1,    MVT::v4i64,  2 }, // zmm vpsllq+vptestmq
1455     { ISD::TRUNCATE,  MVT::v8i1,    MVT::v8i64,  2 }, // vpsllq+vptestmq
1456     { ISD::TRUNCATE,  MVT::v16i8,   MVT::v16i32, 2 },
1457     { ISD::TRUNCATE,  MVT::v16i16,  MVT::v16i32, 2 },
1458     { ISD::TRUNCATE,  MVT::v8i8,    MVT::v8i64,  2 },
1459     { ISD::TRUNCATE,  MVT::v8i16,   MVT::v8i64,  2 },
1460     { ISD::TRUNCATE,  MVT::v8i32,   MVT::v8i64,  1 },
1461     { ISD::TRUNCATE,  MVT::v4i32,   MVT::v4i64,  1 }, // zmm vpmovqd
1462     { ISD::TRUNCATE,  MVT::v16i8,   MVT::v16i64, 5 },// 2*vpmovqd+concat+vpmovdb
1463 
1464     { ISD::TRUNCATE,  MVT::v16i8,  MVT::v16i16,  3 }, // extend to v16i32
1465     { ISD::TRUNCATE,  MVT::v32i8,  MVT::v32i16,  8 },
1466 
1467     // Sign extend is zmm vpternlogd+vptruncdb.
1468     // Zero extend is zmm broadcast load+vptruncdw.
1469     { ISD::SIGN_EXTEND, MVT::v2i8,   MVT::v2i1,   3 },
1470     { ISD::ZERO_EXTEND, MVT::v2i8,   MVT::v2i1,   4 },
1471     { ISD::SIGN_EXTEND, MVT::v4i8,   MVT::v4i1,   3 },
1472     { ISD::ZERO_EXTEND, MVT::v4i8,   MVT::v4i1,   4 },
1473     { ISD::SIGN_EXTEND, MVT::v8i8,   MVT::v8i1,   3 },
1474     { ISD::ZERO_EXTEND, MVT::v8i8,   MVT::v8i1,   4 },
1475     { ISD::SIGN_EXTEND, MVT::v16i8,  MVT::v16i1,  3 },
1476     { ISD::ZERO_EXTEND, MVT::v16i8,  MVT::v16i1,  4 },
1477 
1478     // Sign extend is zmm vpternlogd+vptruncdw.
1479     // Zero extend is zmm vpternlogd+vptruncdw+vpsrlw.
1480     { ISD::SIGN_EXTEND, MVT::v2i16,  MVT::v2i1,   3 },
1481     { ISD::ZERO_EXTEND, MVT::v2i16,  MVT::v2i1,   4 },
1482     { ISD::SIGN_EXTEND, MVT::v4i16,  MVT::v4i1,   3 },
1483     { ISD::ZERO_EXTEND, MVT::v4i16,  MVT::v4i1,   4 },
1484     { ISD::SIGN_EXTEND, MVT::v8i16,  MVT::v8i1,   3 },
1485     { ISD::ZERO_EXTEND, MVT::v8i16,  MVT::v8i1,   4 },
1486     { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i1,  3 },
1487     { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i1,  4 },
1488 
1489     { ISD::SIGN_EXTEND, MVT::v2i32,  MVT::v2i1,   1 }, // zmm vpternlogd
1490     { ISD::ZERO_EXTEND, MVT::v2i32,  MVT::v2i1,   2 }, // zmm vpternlogd+psrld
1491     { ISD::SIGN_EXTEND, MVT::v4i32,  MVT::v4i1,   1 }, // zmm vpternlogd
1492     { ISD::ZERO_EXTEND, MVT::v4i32,  MVT::v4i1,   2 }, // zmm vpternlogd+psrld
1493     { ISD::SIGN_EXTEND, MVT::v8i32,  MVT::v8i1,   1 }, // zmm vpternlogd
1494     { ISD::ZERO_EXTEND, MVT::v8i32,  MVT::v8i1,   2 }, // zmm vpternlogd+psrld
1495     { ISD::SIGN_EXTEND, MVT::v2i64,  MVT::v2i1,   1 }, // zmm vpternlogq
1496     { ISD::ZERO_EXTEND, MVT::v2i64,  MVT::v2i1,   2 }, // zmm vpternlogq+psrlq
1497     { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v4i1,   1 }, // zmm vpternlogq
1498     { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v4i1,   2 }, // zmm vpternlogq+psrlq
1499 
1500     { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i1,  1 }, // vpternlogd
1501     { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i1,  2 }, // vpternlogd+psrld
1502     { ISD::SIGN_EXTEND, MVT::v8i64,  MVT::v8i1,   1 }, // vpternlogq
1503     { ISD::ZERO_EXTEND, MVT::v8i64,  MVT::v8i1,   2 }, // vpternlogq+psrlq
1504 
1505     { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i8,  1 },
1506     { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i8,  1 },
1507     { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i16, 1 },
1508     { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i16, 1 },
1509     { ISD::SIGN_EXTEND, MVT::v8i64,  MVT::v8i8,   1 },
1510     { ISD::ZERO_EXTEND, MVT::v8i64,  MVT::v8i8,   1 },
1511     { ISD::SIGN_EXTEND, MVT::v8i64,  MVT::v8i16,  1 },
1512     { ISD::ZERO_EXTEND, MVT::v8i64,  MVT::v8i16,  1 },
1513     { ISD::SIGN_EXTEND, MVT::v8i64,  MVT::v8i32,  1 },
1514     { ISD::ZERO_EXTEND, MVT::v8i64,  MVT::v8i32,  1 },
1515 
1516     { ISD::SIGN_EXTEND, MVT::v32i16, MVT::v32i8, 3 }, // FIXME: May not be right
1517     { ISD::ZERO_EXTEND, MVT::v32i16, MVT::v32i8, 3 }, // FIXME: May not be right
1518 
1519     { ISD::SINT_TO_FP,  MVT::v8f64,  MVT::v8i1,   4 },
1520     { ISD::SINT_TO_FP,  MVT::v16f32, MVT::v16i1,  3 },
1521     { ISD::SINT_TO_FP,  MVT::v8f64,  MVT::v8i8,   2 },
1522     { ISD::SINT_TO_FP,  MVT::v16f32, MVT::v16i8,  2 },
1523     { ISD::SINT_TO_FP,  MVT::v8f64,  MVT::v8i16,  2 },
1524     { ISD::SINT_TO_FP,  MVT::v16f32, MVT::v16i16, 2 },
1525     { ISD::SINT_TO_FP,  MVT::v16f32, MVT::v16i32, 1 },
1526     { ISD::SINT_TO_FP,  MVT::v8f64,  MVT::v8i32,  1 },
1527 
1528     { ISD::UINT_TO_FP,  MVT::v8f64,  MVT::v8i1,   4 },
1529     { ISD::UINT_TO_FP,  MVT::v16f32, MVT::v16i1,  3 },
1530     { ISD::UINT_TO_FP,  MVT::v8f64,  MVT::v8i8,   2 },
1531     { ISD::UINT_TO_FP,  MVT::v16f32, MVT::v16i8,  2 },
1532     { ISD::UINT_TO_FP,  MVT::v8f64,  MVT::v8i16,  2 },
1533     { ISD::UINT_TO_FP,  MVT::v16f32, MVT::v16i16, 2 },
1534     { ISD::UINT_TO_FP,  MVT::v8f64,  MVT::v8i32,  1 },
1535     { ISD::UINT_TO_FP,  MVT::v16f32, MVT::v16i32, 1 },
1536     { ISD::UINT_TO_FP,  MVT::v8f32,  MVT::v8i64, 26 },
1537     { ISD::UINT_TO_FP,  MVT::v8f64,  MVT::v8i64,  5 },
1538 
1539     { ISD::FP_TO_SINT,  MVT::v8i8,   MVT::v8f64,  3 },
1540     { ISD::FP_TO_SINT,  MVT::v8i16,  MVT::v8f64,  3 },
1541     { ISD::FP_TO_SINT,  MVT::v16i8,  MVT::v16f32, 3 },
1542     { ISD::FP_TO_SINT,  MVT::v16i16, MVT::v16f32, 3 },
1543 
1544     { ISD::FP_TO_UINT,  MVT::v8i32,  MVT::v8f64,  1 },
1545     { ISD::FP_TO_UINT,  MVT::v8i16,  MVT::v8f64,  3 },
1546     { ISD::FP_TO_UINT,  MVT::v8i8,   MVT::v8f64,  3 },
1547     { ISD::FP_TO_UINT,  MVT::v16i32, MVT::v16f32, 1 },
1548     { ISD::FP_TO_UINT,  MVT::v16i16, MVT::v16f32, 3 },
1549     { ISD::FP_TO_UINT,  MVT::v16i8,  MVT::v16f32, 3 },
1550   };
1551 
1552   static const TypeConversionCostTblEntry AVX512BWVLConversionTbl[] {
1553     // Mask sign extend has an instruction.
1554     { ISD::SIGN_EXTEND, MVT::v2i8,   MVT::v2i1,  1 },
1555     { ISD::SIGN_EXTEND, MVT::v2i16,  MVT::v2i1,  1 },
1556     { ISD::SIGN_EXTEND, MVT::v4i8,   MVT::v4i1,  1 },
1557     { ISD::SIGN_EXTEND, MVT::v4i16,  MVT::v4i1,  1 },
1558     { ISD::SIGN_EXTEND, MVT::v8i8,   MVT::v8i1,  1 },
1559     { ISD::SIGN_EXTEND, MVT::v8i16,  MVT::v8i1,  1 },
1560     { ISD::SIGN_EXTEND, MVT::v16i8,  MVT::v16i1, 1 },
1561     { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i1, 1 },
1562     { ISD::SIGN_EXTEND, MVT::v32i8,  MVT::v32i1, 1 },
1563 
1564     // Mask zero extend is a sext + shift.
1565     { ISD::ZERO_EXTEND, MVT::v2i8,   MVT::v2i1,  2 },
1566     { ISD::ZERO_EXTEND, MVT::v2i16,  MVT::v2i1,  2 },
1567     { ISD::ZERO_EXTEND, MVT::v4i8,   MVT::v4i1,  2 },
1568     { ISD::ZERO_EXTEND, MVT::v4i16,  MVT::v4i1,  2 },
1569     { ISD::ZERO_EXTEND, MVT::v8i8,   MVT::v8i1,  2 },
1570     { ISD::ZERO_EXTEND, MVT::v8i16,  MVT::v8i1,  2 },
1571     { ISD::ZERO_EXTEND, MVT::v16i8,  MVT::v16i1, 2 },
1572     { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i1, 2 },
1573     { ISD::ZERO_EXTEND, MVT::v32i8,  MVT::v32i1, 2 },
1574 
1575     { ISD::TRUNCATE,    MVT::v16i8,  MVT::v16i16, 2 },
1576     { ISD::TRUNCATE,    MVT::v2i1,   MVT::v2i8,   2 }, // vpsllw+vptestmb
1577     { ISD::TRUNCATE,    MVT::v2i1,   MVT::v2i16,  2 }, // vpsllw+vptestmw
1578     { ISD::TRUNCATE,    MVT::v4i1,   MVT::v4i8,   2 }, // vpsllw+vptestmb
1579     { ISD::TRUNCATE,    MVT::v4i1,   MVT::v4i16,  2 }, // vpsllw+vptestmw
1580     { ISD::TRUNCATE,    MVT::v8i1,   MVT::v8i8,   2 }, // vpsllw+vptestmb
1581     { ISD::TRUNCATE,    MVT::v8i1,   MVT::v8i16,  2 }, // vpsllw+vptestmw
1582     { ISD::TRUNCATE,    MVT::v16i1,  MVT::v16i8,  2 }, // vpsllw+vptestmb
1583     { ISD::TRUNCATE,    MVT::v16i1,  MVT::v16i16, 2 }, // vpsllw+vptestmw
1584     { ISD::TRUNCATE,    MVT::v32i1,  MVT::v32i8,  2 }, // vpsllw+vptestmb
1585   };
1586 
1587   static const TypeConversionCostTblEntry AVX512DQVLConversionTbl[] = {
1588     { ISD::SINT_TO_FP,  MVT::v2f32,  MVT::v2i64,  1 },
1589     { ISD::SINT_TO_FP,  MVT::v2f64,  MVT::v2i64,  1 },
1590     { ISD::SINT_TO_FP,  MVT::v4f32,  MVT::v4i64,  1 },
1591     { ISD::SINT_TO_FP,  MVT::v4f64,  MVT::v4i64,  1 },
1592 
1593     { ISD::UINT_TO_FP,  MVT::v2f32,  MVT::v2i64,  1 },
1594     { ISD::UINT_TO_FP,  MVT::v2f64,  MVT::v2i64,  1 },
1595     { ISD::UINT_TO_FP,  MVT::v4f32,  MVT::v4i64,  1 },
1596     { ISD::UINT_TO_FP,  MVT::v4f64,  MVT::v4i64,  1 },
1597 
1598     { ISD::FP_TO_SINT,  MVT::v2i64,  MVT::v2f32,  1 },
1599     { ISD::FP_TO_SINT,  MVT::v4i64,  MVT::v4f32,  1 },
1600     { ISD::FP_TO_SINT,  MVT::v2i64,  MVT::v2f64,  1 },
1601     { ISD::FP_TO_SINT,  MVT::v4i64,  MVT::v4f64,  1 },
1602 
1603     { ISD::FP_TO_UINT,  MVT::v2i64,  MVT::v2f32,  1 },
1604     { ISD::FP_TO_UINT,  MVT::v4i64,  MVT::v4f32,  1 },
1605     { ISD::FP_TO_UINT,  MVT::v2i64,  MVT::v2f64,  1 },
1606     { ISD::FP_TO_UINT,  MVT::v4i64,  MVT::v4f64,  1 },
1607   };
1608 
1609   static const TypeConversionCostTblEntry AVX512VLConversionTbl[] = {
1610     { ISD::TRUNCATE,  MVT::v2i1,    MVT::v2i8,   3 }, // sext+vpslld+vptestmd
1611     { ISD::TRUNCATE,  MVT::v4i1,    MVT::v4i8,   3 }, // sext+vpslld+vptestmd
1612     { ISD::TRUNCATE,  MVT::v8i1,    MVT::v8i8,   3 }, // sext+vpslld+vptestmd
1613     { ISD::TRUNCATE,  MVT::v16i1,   MVT::v16i8,  8 }, // split+2*v8i8
1614     { ISD::TRUNCATE,  MVT::v2i1,    MVT::v2i16,  3 }, // sext+vpsllq+vptestmq
1615     { ISD::TRUNCATE,  MVT::v4i1,    MVT::v4i16,  3 }, // sext+vpsllq+vptestmq
1616     { ISD::TRUNCATE,  MVT::v8i1,    MVT::v8i16,  3 }, // sext+vpsllq+vptestmq
1617     { ISD::TRUNCATE,  MVT::v16i1,   MVT::v16i16, 8 }, // split+2*v8i16
1618     { ISD::TRUNCATE,  MVT::v2i1,    MVT::v2i32,  2 }, // vpslld+vptestmd
1619     { ISD::TRUNCATE,  MVT::v4i1,    MVT::v4i32,  2 }, // vpslld+vptestmd
1620     { ISD::TRUNCATE,  MVT::v8i1,    MVT::v8i32,  2 }, // vpslld+vptestmd
1621     { ISD::TRUNCATE,  MVT::v2i1,    MVT::v2i64,  2 }, // vpsllq+vptestmq
1622     { ISD::TRUNCATE,  MVT::v4i1,    MVT::v4i64,  2 }, // vpsllq+vptestmq
1623     { ISD::TRUNCATE,  MVT::v4i32,   MVT::v4i64,  1 }, // vpmovqd
1624 
1625     // sign extend is vpcmpeq+maskedmove+vpmovdw+vpacksswb
1626     // zero extend is vpcmpeq+maskedmove+vpmovdw+vpsrlw+vpackuswb
1627     { ISD::SIGN_EXTEND, MVT::v2i8,   MVT::v2i1,   5 },
1628     { ISD::ZERO_EXTEND, MVT::v2i8,   MVT::v2i1,   6 },
1629     { ISD::SIGN_EXTEND, MVT::v4i8,   MVT::v4i1,   5 },
1630     { ISD::ZERO_EXTEND, MVT::v4i8,   MVT::v4i1,   6 },
1631     { ISD::SIGN_EXTEND, MVT::v8i8,   MVT::v8i1,   5 },
1632     { ISD::ZERO_EXTEND, MVT::v8i8,   MVT::v8i1,   6 },
1633     { ISD::SIGN_EXTEND, MVT::v16i8,  MVT::v16i1, 10 },
1634     { ISD::ZERO_EXTEND, MVT::v16i8,  MVT::v16i1, 12 },
1635 
1636     // sign extend is vpcmpeq+maskedmove+vpmovdw
1637     // zero extend is vpcmpeq+maskedmove+vpmovdw+vpsrlw
1638     { ISD::SIGN_EXTEND, MVT::v2i16,  MVT::v2i1,   4 },
1639     { ISD::ZERO_EXTEND, MVT::v2i16,  MVT::v2i1,   5 },
1640     { ISD::SIGN_EXTEND, MVT::v4i16,  MVT::v4i1,   4 },
1641     { ISD::ZERO_EXTEND, MVT::v4i16,  MVT::v4i1,   5 },
1642     { ISD::SIGN_EXTEND, MVT::v8i16,  MVT::v8i1,   4 },
1643     { ISD::ZERO_EXTEND, MVT::v8i16,  MVT::v8i1,   5 },
1644     { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i1, 10 },
1645     { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i1, 12 },
1646 
1647     { ISD::SIGN_EXTEND, MVT::v2i32,  MVT::v2i1,   1 }, // vpternlogd
1648     { ISD::ZERO_EXTEND, MVT::v2i32,  MVT::v2i1,   2 }, // vpternlogd+psrld
1649     { ISD::SIGN_EXTEND, MVT::v4i32,  MVT::v4i1,   1 }, // vpternlogd
1650     { ISD::ZERO_EXTEND, MVT::v4i32,  MVT::v4i1,   2 }, // vpternlogd+psrld
1651     { ISD::SIGN_EXTEND, MVT::v8i32,  MVT::v8i1,   1 }, // vpternlogd
1652     { ISD::ZERO_EXTEND, MVT::v8i32,  MVT::v8i1,   2 }, // vpternlogd+psrld
1653     { ISD::SIGN_EXTEND, MVT::v2i64,  MVT::v2i1,   1 }, // vpternlogq
1654     { ISD::ZERO_EXTEND, MVT::v2i64,  MVT::v2i1,   2 }, // vpternlogq+psrlq
1655     { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v4i1,   1 }, // vpternlogq
1656     { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v4i1,   2 }, // vpternlogq+psrlq
1657 
1658     { ISD::UINT_TO_FP,  MVT::v2f64,  MVT::v2i8,   2 },
1659     { ISD::UINT_TO_FP,  MVT::v4f64,  MVT::v4i8,   2 },
1660     { ISD::UINT_TO_FP,  MVT::v8f32,  MVT::v8i8,   2 },
1661     { ISD::UINT_TO_FP,  MVT::v2f64,  MVT::v2i16,  5 },
1662     { ISD::UINT_TO_FP,  MVT::v4f64,  MVT::v4i16,  2 },
1663     { ISD::UINT_TO_FP,  MVT::v8f32,  MVT::v8i16,  2 },
1664     { ISD::UINT_TO_FP,  MVT::v2f32,  MVT::v2i32,  2 },
1665     { ISD::UINT_TO_FP,  MVT::v2f64,  MVT::v2i32,  1 },
1666     { ISD::UINT_TO_FP,  MVT::v4f32,  MVT::v4i32,  1 },
1667     { ISD::UINT_TO_FP,  MVT::v4f64,  MVT::v4i32,  1 },
1668     { ISD::UINT_TO_FP,  MVT::v8f32,  MVT::v8i32,  1 },
1669     { ISD::UINT_TO_FP,  MVT::v2f32,  MVT::v2i64,  5 },
1670     { ISD::UINT_TO_FP,  MVT::v2f64,  MVT::v2i64,  5 },
1671     { ISD::UINT_TO_FP,  MVT::v4f64,  MVT::v4i64,  5 },
1672 
1673     { ISD::UINT_TO_FP,  MVT::f32,    MVT::i64,    1 },
1674     { ISD::UINT_TO_FP,  MVT::f64,    MVT::i64,    1 },
1675 
1676     { ISD::FP_TO_SINT,  MVT::v8i8,   MVT::v8f32,  3 },
1677     { ISD::FP_TO_UINT,  MVT::v8i8,   MVT::v8f32,  3 },
1678 
1679     { ISD::FP_TO_UINT,  MVT::i64,    MVT::f32,    1 },
1680     { ISD::FP_TO_UINT,  MVT::i64,    MVT::f64,    1 },
1681 
1682     { ISD::FP_TO_UINT,  MVT::v2i32,  MVT::v2f32,  1 },
1683     { ISD::FP_TO_UINT,  MVT::v4i32,  MVT::v4f32,  1 },
1684     { ISD::FP_TO_UINT,  MVT::v2i32,  MVT::v2f64,  1 },
1685     { ISD::FP_TO_UINT,  MVT::v4i32,  MVT::v4f64,  1 },
1686     { ISD::FP_TO_UINT,  MVT::v8i32,  MVT::v8f32,  1 },
1687   };
1688 
1689   static const TypeConversionCostTblEntry AVX2ConversionTbl[] = {
1690     { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v4i1,   3 },
1691     { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v4i1,   3 },
1692     { ISD::SIGN_EXTEND, MVT::v8i32,  MVT::v8i1,   3 },
1693     { ISD::ZERO_EXTEND, MVT::v8i32,  MVT::v8i1,   3 },
1694     { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v4i8,   1 },
1695     { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v4i8,   1 },
1696     { ISD::SIGN_EXTEND, MVT::v8i32,  MVT::v8i8,   1 },
1697     { ISD::ZERO_EXTEND, MVT::v8i32,  MVT::v8i8,   1 },
1698     { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i1,  1 },
1699     { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i1,  1 },
1700     { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i8,  1 },
1701     { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i8,  1 },
1702     { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v4i16,  1 },
1703     { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v4i16,  1 },
1704     { ISD::SIGN_EXTEND, MVT::v8i32,  MVT::v8i16,  1 },
1705     { ISD::ZERO_EXTEND, MVT::v8i32,  MVT::v8i16,  1 },
1706     { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v4i32,  1 },
1707     { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v4i32,  1 },
1708     { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i16, 3 },
1709     { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i16, 3 },
1710 
1711     { ISD::TRUNCATE,    MVT::v4i32,  MVT::v4i64,  2 },
1712     { ISD::TRUNCATE,    MVT::v8i1,   MVT::v8i32,  2 },
1713 
1714     { ISD::TRUNCATE,    MVT::v4i8,   MVT::v4i64,  2 },
1715     { ISD::TRUNCATE,    MVT::v4i16,  MVT::v4i64,  2 },
1716     { ISD::TRUNCATE,    MVT::v8i8,   MVT::v8i32,  2 },
1717     { ISD::TRUNCATE,    MVT::v8i16,  MVT::v8i32,  2 },
1718 
1719     { ISD::FP_EXTEND,   MVT::v8f64,  MVT::v8f32,  3 },
1720     { ISD::FP_ROUND,    MVT::v8f32,  MVT::v8f64,  3 },
1721 
1722     { ISD::UINT_TO_FP,  MVT::v8f32,  MVT::v8i32,  8 },
1723   };
1724 
1725   static const TypeConversionCostTblEntry AVXConversionTbl[] = {
1726     { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v4i1,  6 },
1727     { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v4i1,  4 },
1728     { ISD::SIGN_EXTEND, MVT::v8i32,  MVT::v8i1,  7 },
1729     { ISD::ZERO_EXTEND, MVT::v8i32,  MVT::v8i1,  4 },
1730     { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v4i8,  4 },
1731     { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v4i8,  4 },
1732     { ISD::SIGN_EXTEND, MVT::v8i32,  MVT::v8i8,  4 },
1733     { ISD::ZERO_EXTEND, MVT::v8i32,  MVT::v8i8,  4 },
1734     { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i1, 4 },
1735     { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i1, 4 },
1736     { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i8, 4 },
1737     { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i8, 4 },
1738     { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v4i16, 4 },
1739     { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v4i16, 3 },
1740     { ISD::SIGN_EXTEND, MVT::v8i32,  MVT::v8i16, 4 },
1741     { ISD::ZERO_EXTEND, MVT::v8i32,  MVT::v8i16, 4 },
1742     { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v4i32, 4 },
1743     { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v4i32, 4 },
1744 
1745     { ISD::TRUNCATE,    MVT::v4i1,  MVT::v4i64,  4 },
1746     { ISD::TRUNCATE,    MVT::v8i1,  MVT::v8i32,  5 },
1747     { ISD::TRUNCATE,    MVT::v16i1, MVT::v16i16, 4 },
1748     { ISD::TRUNCATE,    MVT::v8i1,  MVT::v8i64,  9 },
1749     { ISD::TRUNCATE,    MVT::v16i1, MVT::v16i64, 11 },
1750 
1751     { ISD::TRUNCATE,    MVT::v16i8, MVT::v16i16, 4 },
1752     { ISD::TRUNCATE,    MVT::v8i8,  MVT::v8i32,  4 },
1753     { ISD::TRUNCATE,    MVT::v8i16, MVT::v8i32,  5 },
1754     { ISD::TRUNCATE,    MVT::v4i8,  MVT::v4i64,  4 },
1755     { ISD::TRUNCATE,    MVT::v4i16, MVT::v4i64,  4 },
1756     { ISD::TRUNCATE,    MVT::v4i32, MVT::v4i64,  2 },
1757     { ISD::TRUNCATE,    MVT::v8i8,  MVT::v8i64, 11 },
1758     { ISD::TRUNCATE,    MVT::v8i16, MVT::v8i64,  9 },
1759     { ISD::TRUNCATE,    MVT::v8i32, MVT::v8i64,  3 },
1760     { ISD::TRUNCATE,    MVT::v16i8, MVT::v16i64, 11 },
1761 
1762     { ISD::SINT_TO_FP,  MVT::v4f32, MVT::v4i1,  3 },
1763     { ISD::SINT_TO_FP,  MVT::v4f64, MVT::v4i1,  3 },
1764     { ISD::SINT_TO_FP,  MVT::v8f32, MVT::v8i1,  8 },
1765     { ISD::SINT_TO_FP,  MVT::v4f32, MVT::v4i8,  3 },
1766     { ISD::SINT_TO_FP,  MVT::v4f64, MVT::v4i8,  3 },
1767     { ISD::SINT_TO_FP,  MVT::v8f32, MVT::v8i8,  8 },
1768     { ISD::SINT_TO_FP,  MVT::v4f32, MVT::v4i16, 3 },
1769     { ISD::SINT_TO_FP,  MVT::v4f64, MVT::v4i16, 3 },
1770     { ISD::SINT_TO_FP,  MVT::v8f32, MVT::v8i16, 5 },
1771     { ISD::SINT_TO_FP,  MVT::v4f32, MVT::v4i32, 1 },
1772     { ISD::SINT_TO_FP,  MVT::v4f64, MVT::v4i32, 1 },
1773     { ISD::SINT_TO_FP,  MVT::v8f32, MVT::v8i32, 1 },
1774 
1775     { ISD::UINT_TO_FP,  MVT::v4f32, MVT::v4i1,  7 },
1776     { ISD::UINT_TO_FP,  MVT::v4f64, MVT::v4i1,  7 },
1777     { ISD::UINT_TO_FP,  MVT::v8f32, MVT::v8i1,  6 },
1778     { ISD::UINT_TO_FP,  MVT::v4f32, MVT::v4i8,  2 },
1779     { ISD::UINT_TO_FP,  MVT::v4f64, MVT::v4i8,  2 },
1780     { ISD::UINT_TO_FP,  MVT::v8f32, MVT::v8i8,  5 },
1781     { ISD::UINT_TO_FP,  MVT::v4f32, MVT::v4i16, 2 },
1782     { ISD::UINT_TO_FP,  MVT::v4f64, MVT::v4i16, 2 },
1783     { ISD::UINT_TO_FP,  MVT::v8f32, MVT::v8i16, 5 },
1784     { ISD::UINT_TO_FP,  MVT::v2f64, MVT::v2i32, 6 },
1785     { ISD::UINT_TO_FP,  MVT::v4f32, MVT::v4i32, 6 },
1786     { ISD::UINT_TO_FP,  MVT::v4f64, MVT::v4i32, 6 },
1787     { ISD::UINT_TO_FP,  MVT::v8f32, MVT::v8i32, 9 },
1788     { ISD::UINT_TO_FP,  MVT::v2f64, MVT::v2i64, 5 },
1789     { ISD::UINT_TO_FP,  MVT::v4f64, MVT::v4i64, 6 },
1790     // The generic code to compute the scalar overhead is currently broken.
1791     // Workaround this limitation by estimating the scalarization overhead
1792     // here. We have roughly 10 instructions per scalar element.
1793     // Multiply that by the vector width.
1794     // FIXME: remove that when PR19268 is fixed.
1795     { ISD::SINT_TO_FP,  MVT::v4f64, MVT::v4i64, 13 },
1796     { ISD::SINT_TO_FP,  MVT::v4f64, MVT::v4i64, 13 },
1797 
1798     { ISD::FP_TO_SINT,  MVT::v8i8,  MVT::v8f32, 4 },
1799     { ISD::FP_TO_SINT,  MVT::v4i8,  MVT::v4f64, 3 },
1800     { ISD::FP_TO_SINT,  MVT::v4i16, MVT::v4f64, 2 },
1801     { ISD::FP_TO_SINT,  MVT::v8i16, MVT::v8f32, 3 },
1802 
1803     { ISD::FP_TO_UINT,  MVT::v4i8,  MVT::v4f64, 3 },
1804     { ISD::FP_TO_UINT,  MVT::v4i16, MVT::v4f64, 2 },
1805     { ISD::FP_TO_UINT,  MVT::v8i8,  MVT::v8f32, 4 },
1806     { ISD::FP_TO_UINT,  MVT::v8i16, MVT::v8f32, 3 },
1807     // This node is expanded into scalarized operations but BasicTTI is overly
1808     // optimistic estimating its cost.  It computes 3 per element (one
1809     // vector-extract, one scalar conversion and one vector-insert).  The
1810     // problem is that the inserts form a read-modify-write chain so latency
1811     // should be factored in too.  Inflating the cost per element by 1.
1812     { ISD::FP_TO_UINT,  MVT::v8i32, MVT::v8f32, 8*4 },
1813     { ISD::FP_TO_UINT,  MVT::v4i32, MVT::v4f64, 4*4 },
1814 
1815     { ISD::FP_EXTEND,   MVT::v4f64,  MVT::v4f32,  1 },
1816     { ISD::FP_ROUND,    MVT::v4f32,  MVT::v4f64,  1 },
1817   };
1818 
1819   static const TypeConversionCostTblEntry SSE41ConversionTbl[] = {
1820     { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i8,    2 },
1821     { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i8,    2 },
1822     { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i16,   2 },
1823     { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i16,   2 },
1824     { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i32,   2 },
1825     { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i32,   2 },
1826 
1827     { ISD::ZERO_EXTEND, MVT::v4i16,  MVT::v4i8,   1 },
1828     { ISD::SIGN_EXTEND, MVT::v4i16,  MVT::v4i8,   2 },
1829     { ISD::ZERO_EXTEND, MVT::v4i32,  MVT::v4i8,   1 },
1830     { ISD::SIGN_EXTEND, MVT::v4i32,  MVT::v4i8,   1 },
1831     { ISD::ZERO_EXTEND, MVT::v8i16,  MVT::v8i8,   1 },
1832     { ISD::SIGN_EXTEND, MVT::v8i16,  MVT::v8i8,   1 },
1833     { ISD::ZERO_EXTEND, MVT::v8i32,  MVT::v8i8,   2 },
1834     { ISD::SIGN_EXTEND, MVT::v8i32,  MVT::v8i8,   2 },
1835     { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i8,  2 },
1836     { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i8,  2 },
1837     { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i8,  4 },
1838     { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i8,  4 },
1839     { ISD::ZERO_EXTEND, MVT::v4i32,  MVT::v4i16,  1 },
1840     { ISD::SIGN_EXTEND, MVT::v4i32,  MVT::v4i16,  1 },
1841     { ISD::ZERO_EXTEND, MVT::v8i32,  MVT::v8i16,  2 },
1842     { ISD::SIGN_EXTEND, MVT::v8i32,  MVT::v8i16,  2 },
1843     { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i16, 4 },
1844     { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i16, 4 },
1845 
1846     // These truncates end up widening elements.
1847     { ISD::TRUNCATE,    MVT::v2i1,   MVT::v2i8,   1 }, // PMOVXZBQ
1848     { ISD::TRUNCATE,    MVT::v2i1,   MVT::v2i16,  1 }, // PMOVXZWQ
1849     { ISD::TRUNCATE,    MVT::v4i1,   MVT::v4i8,   1 }, // PMOVXZBD
1850 
1851     { ISD::TRUNCATE,    MVT::v2i8,   MVT::v2i16,  1 },
1852     { ISD::TRUNCATE,    MVT::v4i8,   MVT::v4i16,  1 },
1853     { ISD::TRUNCATE,    MVT::v8i8,   MVT::v8i16,  1 },
1854     { ISD::TRUNCATE,    MVT::v4i8,   MVT::v4i32,  1 },
1855     { ISD::TRUNCATE,    MVT::v4i16,  MVT::v4i32,  1 },
1856     { ISD::TRUNCATE,    MVT::v8i8,   MVT::v8i32,  3 },
1857     { ISD::TRUNCATE,    MVT::v8i16,  MVT::v8i32,  3 },
1858     { ISD::TRUNCATE,    MVT::v16i16, MVT::v16i32, 6 },
1859     { ISD::TRUNCATE,    MVT::v2i8,   MVT::v2i64,  1 }, // PSHUFB
1860 
1861     { ISD::UINT_TO_FP,  MVT::f32,    MVT::i64,    4 },
1862     { ISD::UINT_TO_FP,  MVT::f64,    MVT::i64,    4 },
1863 
1864     { ISD::FP_TO_SINT,  MVT::v2i8,   MVT::v2f32,  3 },
1865     { ISD::FP_TO_SINT,  MVT::v2i8,   MVT::v2f64,  3 },
1866 
1867     { ISD::FP_TO_UINT,  MVT::v2i8,   MVT::v2f32,  3 },
1868     { ISD::FP_TO_UINT,  MVT::v2i8,   MVT::v2f64,  3 },
1869     { ISD::FP_TO_UINT,  MVT::v4i16,  MVT::v4f32,  2 },
1870   };
1871 
1872   static const TypeConversionCostTblEntry SSE2ConversionTbl[] = {
1873     // These are somewhat magic numbers justified by looking at the output of
1874     // Intel's IACA, running some kernels and making sure when we take
1875     // legalization into account the throughput will be overestimated.
1876     { ISD::SINT_TO_FP, MVT::v4f32, MVT::v16i8, 8 },
1877     { ISD::SINT_TO_FP, MVT::v2f64, MVT::v16i8, 16*10 },
1878     { ISD::SINT_TO_FP, MVT::v4f32, MVT::v8i16, 15 },
1879     { ISD::SINT_TO_FP, MVT::v2f64, MVT::v8i16, 8*10 },
1880     { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i32, 5 },
1881     { ISD::SINT_TO_FP, MVT::v2f64, MVT::v4i32, 2*10 },
1882     { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i32, 2*10 },
1883     { ISD::SINT_TO_FP, MVT::v4f32, MVT::v2i64, 15 },
1884     { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i64, 2*10 },
1885 
1886     { ISD::UINT_TO_FP, MVT::v2f64, MVT::v16i8, 16*10 },
1887     { ISD::UINT_TO_FP, MVT::v4f32, MVT::v16i8, 8 },
1888     { ISD::UINT_TO_FP, MVT::v4f32, MVT::v8i16, 15 },
1889     { ISD::UINT_TO_FP, MVT::v2f64, MVT::v8i16, 8*10 },
1890     { ISD::UINT_TO_FP, MVT::v2f64, MVT::v4i32, 4*10 },
1891     { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i32, 8 },
1892     { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i64, 6 },
1893     { ISD::UINT_TO_FP, MVT::v4f32, MVT::v2i64, 15 },
1894 
1895     { ISD::FP_TO_SINT,  MVT::v2i8,   MVT::v2f32,  4 },
1896     { ISD::FP_TO_SINT,  MVT::v2i16,  MVT::v2f32,  2 },
1897     { ISD::FP_TO_SINT,  MVT::v4i8,   MVT::v4f32,  3 },
1898     { ISD::FP_TO_SINT,  MVT::v4i16,  MVT::v4f32,  2 },
1899     { ISD::FP_TO_SINT,  MVT::v2i16,  MVT::v2f64,  2 },
1900     { ISD::FP_TO_SINT,  MVT::v2i8,   MVT::v2f64,  4 },
1901 
1902     { ISD::FP_TO_SINT,  MVT::v2i32,  MVT::v2f64,  1 },
1903 
1904     { ISD::UINT_TO_FP,  MVT::f32,    MVT::i64,    6 },
1905     { ISD::UINT_TO_FP,  MVT::f64,    MVT::i64,    6 },
1906 
1907     { ISD::FP_TO_UINT,  MVT::i64,    MVT::f32,    4 },
1908     { ISD::FP_TO_UINT,  MVT::i64,    MVT::f64,    4 },
1909     { ISD::FP_TO_UINT,  MVT::v2i8,   MVT::v2f32,  4 },
1910     { ISD::FP_TO_UINT,  MVT::v2i8,   MVT::v2f64,  4 },
1911     { ISD::FP_TO_UINT,  MVT::v4i8,   MVT::v4f32,  3 },
1912     { ISD::FP_TO_UINT,  MVT::v2i16,  MVT::v2f32,  2 },
1913     { ISD::FP_TO_UINT,  MVT::v2i16,  MVT::v2f64,  2 },
1914     { ISD::FP_TO_UINT,  MVT::v4i16,  MVT::v4f32,  4 },
1915 
1916     { ISD::ZERO_EXTEND, MVT::v4i16,  MVT::v4i8,   1 },
1917     { ISD::SIGN_EXTEND, MVT::v4i16,  MVT::v4i8,   6 },
1918     { ISD::ZERO_EXTEND, MVT::v4i32,  MVT::v4i8,   2 },
1919     { ISD::SIGN_EXTEND, MVT::v4i32,  MVT::v4i8,   3 },
1920     { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v4i8,   4 },
1921     { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v4i8,   8 },
1922     { ISD::ZERO_EXTEND, MVT::v8i16,  MVT::v8i8,   1 },
1923     { ISD::SIGN_EXTEND, MVT::v8i16,  MVT::v8i8,   2 },
1924     { ISD::ZERO_EXTEND, MVT::v8i32,  MVT::v8i8,   6 },
1925     { ISD::SIGN_EXTEND, MVT::v8i32,  MVT::v8i8,   6 },
1926     { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i8,  3 },
1927     { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i8,  4 },
1928     { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i8,  9 },
1929     { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i8,  12 },
1930     { ISD::ZERO_EXTEND, MVT::v4i32,  MVT::v4i16,  1 },
1931     { ISD::SIGN_EXTEND, MVT::v4i32,  MVT::v4i16,  2 },
1932     { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v4i16,  3 },
1933     { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v4i16,  10 },
1934     { ISD::ZERO_EXTEND, MVT::v8i32,  MVT::v8i16,  3 },
1935     { ISD::SIGN_EXTEND, MVT::v8i32,  MVT::v8i16,  4 },
1936     { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i16, 6 },
1937     { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i16, 8 },
1938     { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v4i32,  3 },
1939     { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v4i32,  5 },
1940 
1941     // These truncates are really widening elements.
1942     { ISD::TRUNCATE,    MVT::v2i1,   MVT::v2i32,  1 }, // PSHUFD
1943     { ISD::TRUNCATE,    MVT::v2i1,   MVT::v2i16,  2 }, // PUNPCKLWD+DQ
1944     { ISD::TRUNCATE,    MVT::v2i1,   MVT::v2i8,   3 }, // PUNPCKLBW+WD+PSHUFD
1945     { ISD::TRUNCATE,    MVT::v4i1,   MVT::v4i16,  1 }, // PUNPCKLWD
1946     { ISD::TRUNCATE,    MVT::v4i1,   MVT::v4i8,   2 }, // PUNPCKLBW+WD
1947     { ISD::TRUNCATE,    MVT::v8i1,   MVT::v8i8,   1 }, // PUNPCKLBW
1948 
1949     { ISD::TRUNCATE,    MVT::v2i8,   MVT::v2i16,  2 }, // PAND+PACKUSWB
1950     { ISD::TRUNCATE,    MVT::v4i8,   MVT::v4i16,  2 }, // PAND+PACKUSWB
1951     { ISD::TRUNCATE,    MVT::v8i8,   MVT::v8i16,  2 }, // PAND+PACKUSWB
1952     { ISD::TRUNCATE,    MVT::v16i8,  MVT::v16i16, 3 },
1953     { ISD::TRUNCATE,    MVT::v2i8,   MVT::v2i32,  3 }, // PAND+2*PACKUSWB
1954     { ISD::TRUNCATE,    MVT::v2i16,  MVT::v2i32,  1 },
1955     { ISD::TRUNCATE,    MVT::v4i8,   MVT::v4i32,  3 },
1956     { ISD::TRUNCATE,    MVT::v4i16,  MVT::v4i32,  3 },
1957     { ISD::TRUNCATE,    MVT::v8i8,   MVT::v8i32,  4 },
1958     { ISD::TRUNCATE,    MVT::v16i8,  MVT::v16i32, 7 },
1959     { ISD::TRUNCATE,    MVT::v8i16,  MVT::v8i32,  5 },
1960     { ISD::TRUNCATE,    MVT::v16i16, MVT::v16i32, 10 },
1961     { ISD::TRUNCATE,    MVT::v2i8,   MVT::v2i64,  4 }, // PAND+3*PACKUSWB
1962     { ISD::TRUNCATE,    MVT::v2i16,  MVT::v2i64,  2 }, // PSHUFD+PSHUFLW
1963     { ISD::TRUNCATE,    MVT::v2i32,  MVT::v2i64,  1 }, // PSHUFD
1964   };
1965 
1966   std::pair<int, MVT> LTSrc = TLI->getTypeLegalizationCost(DL, Src);
1967   std::pair<int, MVT> LTDest = TLI->getTypeLegalizationCost(DL, Dst);
1968 
1969   if (ST->hasSSE2() && !ST->hasAVX()) {
1970     if (const auto *Entry = ConvertCostTableLookup(SSE2ConversionTbl, ISD,
1971                                                    LTDest.second, LTSrc.second))
1972       return LTSrc.first * Entry->Cost;
1973   }
1974 
1975   EVT SrcTy = TLI->getValueType(DL, Src);
1976   EVT DstTy = TLI->getValueType(DL, Dst);
1977 
1978   // The function getSimpleVT only handles simple value types.
1979   if (!SrcTy.isSimple() || !DstTy.isSimple())
1980     return BaseT::getCastInstrCost(Opcode, Dst, Src, CostKind);
1981 
1982   MVT SimpleSrcTy = SrcTy.getSimpleVT();
1983   MVT SimpleDstTy = DstTy.getSimpleVT();
1984 
1985   if (ST->useAVX512Regs()) {
1986     if (ST->hasBWI())
1987       if (const auto *Entry = ConvertCostTableLookup(AVX512BWConversionTbl, ISD,
1988                                                      SimpleDstTy, SimpleSrcTy))
1989         return Entry->Cost;
1990 
1991     if (ST->hasDQI())
1992       if (const auto *Entry = ConvertCostTableLookup(AVX512DQConversionTbl, ISD,
1993                                                      SimpleDstTy, SimpleSrcTy))
1994         return Entry->Cost;
1995 
1996     if (ST->hasAVX512())
1997       if (const auto *Entry = ConvertCostTableLookup(AVX512FConversionTbl, ISD,
1998                                                      SimpleDstTy, SimpleSrcTy))
1999         return Entry->Cost;
2000   }
2001 
2002   if (ST->hasBWI())
2003     if (const auto *Entry = ConvertCostTableLookup(AVX512BWVLConversionTbl, ISD,
2004                                                    SimpleDstTy, SimpleSrcTy))
2005       return Entry->Cost;
2006 
2007   if (ST->hasDQI())
2008     if (const auto *Entry = ConvertCostTableLookup(AVX512DQVLConversionTbl, ISD,
2009                                                    SimpleDstTy, SimpleSrcTy))
2010       return Entry->Cost;
2011 
2012   if (ST->hasAVX512())
2013     if (const auto *Entry = ConvertCostTableLookup(AVX512VLConversionTbl, ISD,
2014                                                    SimpleDstTy, SimpleSrcTy))
2015       return Entry->Cost;
2016 
2017   if (ST->hasAVX2()) {
2018     if (const auto *Entry = ConvertCostTableLookup(AVX2ConversionTbl, ISD,
2019                                                    SimpleDstTy, SimpleSrcTy))
2020       return Entry->Cost;
2021   }
2022 
2023   if (ST->hasAVX()) {
2024     if (const auto *Entry = ConvertCostTableLookup(AVXConversionTbl, ISD,
2025                                                    SimpleDstTy, SimpleSrcTy))
2026       return Entry->Cost;
2027   }
2028 
2029   if (ST->hasSSE41()) {
2030     if (const auto *Entry = ConvertCostTableLookup(SSE41ConversionTbl, ISD,
2031                                                    SimpleDstTy, SimpleSrcTy))
2032       return Entry->Cost;
2033   }
2034 
2035   if (ST->hasSSE2()) {
2036     if (const auto *Entry = ConvertCostTableLookup(SSE2ConversionTbl, ISD,
2037                                                    SimpleDstTy, SimpleSrcTy))
2038       return Entry->Cost;
2039   }
2040 
2041   return BaseT::getCastInstrCost(Opcode, Dst, Src, CostKind, I);
2042 }
2043 
2044 int X86TTIImpl::getCmpSelInstrCost(unsigned Opcode, Type *ValTy, Type *CondTy,
2045                                    TTI::TargetCostKind CostKind,
2046                                    const Instruction *I) {
2047   // Legalize the type.
2048   std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, ValTy);
2049 
2050   MVT MTy = LT.second;
2051 
2052   int ISD = TLI->InstructionOpcodeToISD(Opcode);
2053   assert(ISD && "Invalid opcode");
2054 
2055   unsigned ExtraCost = 0;
2056   if (I && (Opcode == Instruction::ICmp || Opcode == Instruction::FCmp)) {
2057     // Some vector comparison predicates cost extra instructions.
2058     if (MTy.isVector() &&
2059         !((ST->hasXOP() && (!ST->hasAVX2() || MTy.is128BitVector())) ||
2060           (ST->hasAVX512() && 32 <= MTy.getScalarSizeInBits()) ||
2061           ST->hasBWI())) {
2062       switch (cast<CmpInst>(I)->getPredicate()) {
2063       case CmpInst::Predicate::ICMP_NE:
2064         // xor(cmpeq(x,y),-1)
2065         ExtraCost = 1;
2066         break;
2067       case CmpInst::Predicate::ICMP_SGE:
2068       case CmpInst::Predicate::ICMP_SLE:
2069         // xor(cmpgt(x,y),-1)
2070         ExtraCost = 1;
2071         break;
2072       case CmpInst::Predicate::ICMP_ULT:
2073       case CmpInst::Predicate::ICMP_UGT:
2074         // cmpgt(xor(x,signbit),xor(y,signbit))
2075         // xor(cmpeq(pmaxu(x,y),x),-1)
2076         ExtraCost = 2;
2077         break;
2078       case CmpInst::Predicate::ICMP_ULE:
2079       case CmpInst::Predicate::ICMP_UGE:
2080         if ((ST->hasSSE41() && MTy.getScalarSizeInBits() == 32) ||
2081             (ST->hasSSE2() && MTy.getScalarSizeInBits() < 32)) {
2082           // cmpeq(psubus(x,y),0)
2083           // cmpeq(pminu(x,y),x)
2084           ExtraCost = 1;
2085         } else {
2086           // xor(cmpgt(xor(x,signbit),xor(y,signbit)),-1)
2087           ExtraCost = 3;
2088         }
2089         break;
2090       default:
2091         break;
2092       }
2093     }
2094   }
2095 
2096   static const CostTblEntry SLMCostTbl[] = {
2097     // slm pcmpeq/pcmpgt throughput is 2
2098     { ISD::SETCC,   MVT::v2i64,   2 },
2099   };
2100 
2101   static const CostTblEntry AVX512BWCostTbl[] = {
2102     { ISD::SETCC,   MVT::v32i16,  1 },
2103     { ISD::SETCC,   MVT::v64i8,   1 },
2104 
2105     { ISD::SELECT,  MVT::v32i16,  1 },
2106     { ISD::SELECT,  MVT::v64i8,   1 },
2107   };
2108 
2109   static const CostTblEntry AVX512CostTbl[] = {
2110     { ISD::SETCC,   MVT::v8i64,   1 },
2111     { ISD::SETCC,   MVT::v16i32,  1 },
2112     { ISD::SETCC,   MVT::v8f64,   1 },
2113     { ISD::SETCC,   MVT::v16f32,  1 },
2114 
2115     { ISD::SELECT,  MVT::v8i64,   1 },
2116     { ISD::SELECT,  MVT::v16i32,  1 },
2117     { ISD::SELECT,  MVT::v8f64,   1 },
2118     { ISD::SELECT,  MVT::v16f32,  1 },
2119 
2120     { ISD::SETCC,   MVT::v32i16,  2 }, // FIXME: should probably be 4
2121     { ISD::SETCC,   MVT::v64i8,   2 }, // FIXME: should probably be 4
2122 
2123     { ISD::SELECT,  MVT::v32i16,  2 }, // FIXME: should be 3
2124     { ISD::SELECT,  MVT::v64i8,   2 }, // FIXME: should be 3
2125   };
2126 
2127   static const CostTblEntry AVX2CostTbl[] = {
2128     { ISD::SETCC,   MVT::v4i64,   1 },
2129     { ISD::SETCC,   MVT::v8i32,   1 },
2130     { ISD::SETCC,   MVT::v16i16,  1 },
2131     { ISD::SETCC,   MVT::v32i8,   1 },
2132 
2133     { ISD::SELECT,  MVT::v4i64,   1 }, // pblendvb
2134     { ISD::SELECT,  MVT::v8i32,   1 }, // pblendvb
2135     { ISD::SELECT,  MVT::v16i16,  1 }, // pblendvb
2136     { ISD::SELECT,  MVT::v32i8,   1 }, // pblendvb
2137   };
2138 
2139   static const CostTblEntry AVX1CostTbl[] = {
2140     { ISD::SETCC,   MVT::v4f64,   1 },
2141     { ISD::SETCC,   MVT::v8f32,   1 },
2142     // AVX1 does not support 8-wide integer compare.
2143     { ISD::SETCC,   MVT::v4i64,   4 },
2144     { ISD::SETCC,   MVT::v8i32,   4 },
2145     { ISD::SETCC,   MVT::v16i16,  4 },
2146     { ISD::SETCC,   MVT::v32i8,   4 },
2147 
2148     { ISD::SELECT,  MVT::v4f64,   1 }, // vblendvpd
2149     { ISD::SELECT,  MVT::v8f32,   1 }, // vblendvps
2150     { ISD::SELECT,  MVT::v4i64,   1 }, // vblendvpd
2151     { ISD::SELECT,  MVT::v8i32,   1 }, // vblendvps
2152     { ISD::SELECT,  MVT::v16i16,  3 }, // vandps + vandnps + vorps
2153     { ISD::SELECT,  MVT::v32i8,   3 }, // vandps + vandnps + vorps
2154   };
2155 
2156   static const CostTblEntry SSE42CostTbl[] = {
2157     { ISD::SETCC,   MVT::v2f64,   1 },
2158     { ISD::SETCC,   MVT::v4f32,   1 },
2159     { ISD::SETCC,   MVT::v2i64,   1 },
2160   };
2161 
2162   static const CostTblEntry SSE41CostTbl[] = {
2163     { ISD::SELECT,  MVT::v2f64,   1 }, // blendvpd
2164     { ISD::SELECT,  MVT::v4f32,   1 }, // blendvps
2165     { ISD::SELECT,  MVT::v2i64,   1 }, // pblendvb
2166     { ISD::SELECT,  MVT::v4i32,   1 }, // pblendvb
2167     { ISD::SELECT,  MVT::v8i16,   1 }, // pblendvb
2168     { ISD::SELECT,  MVT::v16i8,   1 }, // pblendvb
2169   };
2170 
2171   static const CostTblEntry SSE2CostTbl[] = {
2172     { ISD::SETCC,   MVT::v2f64,   2 },
2173     { ISD::SETCC,   MVT::f64,     1 },
2174     { ISD::SETCC,   MVT::v2i64,   8 },
2175     { ISD::SETCC,   MVT::v4i32,   1 },
2176     { ISD::SETCC,   MVT::v8i16,   1 },
2177     { ISD::SETCC,   MVT::v16i8,   1 },
2178 
2179     { ISD::SELECT,  MVT::v2f64,   3 }, // andpd + andnpd + orpd
2180     { ISD::SELECT,  MVT::v2i64,   3 }, // pand + pandn + por
2181     { ISD::SELECT,  MVT::v4i32,   3 }, // pand + pandn + por
2182     { ISD::SELECT,  MVT::v8i16,   3 }, // pand + pandn + por
2183     { ISD::SELECT,  MVT::v16i8,   3 }, // pand + pandn + por
2184   };
2185 
2186   static const CostTblEntry SSE1CostTbl[] = {
2187     { ISD::SETCC,   MVT::v4f32,   2 },
2188     { ISD::SETCC,   MVT::f32,     1 },
2189 
2190     { ISD::SELECT,  MVT::v4f32,   3 }, // andps + andnps + orps
2191   };
2192 
2193   if (ST->isSLM())
2194     if (const auto *Entry = CostTableLookup(SLMCostTbl, ISD, MTy))
2195       return LT.first * (ExtraCost + Entry->Cost);
2196 
2197   if (ST->hasBWI())
2198     if (const auto *Entry = CostTableLookup(AVX512BWCostTbl, ISD, MTy))
2199       return LT.first * (ExtraCost + Entry->Cost);
2200 
2201   if (ST->hasAVX512())
2202     if (const auto *Entry = CostTableLookup(AVX512CostTbl, ISD, MTy))
2203       return LT.first * (ExtraCost + Entry->Cost);
2204 
2205   if (ST->hasAVX2())
2206     if (const auto *Entry = CostTableLookup(AVX2CostTbl, ISD, MTy))
2207       return LT.first * (ExtraCost + Entry->Cost);
2208 
2209   if (ST->hasAVX())
2210     if (const auto *Entry = CostTableLookup(AVX1CostTbl, ISD, MTy))
2211       return LT.first * (ExtraCost + Entry->Cost);
2212 
2213   if (ST->hasSSE42())
2214     if (const auto *Entry = CostTableLookup(SSE42CostTbl, ISD, MTy))
2215       return LT.first * (ExtraCost + Entry->Cost);
2216 
2217   if (ST->hasSSE41())
2218     if (const auto *Entry = CostTableLookup(SSE41CostTbl, ISD, MTy))
2219       return LT.first * (ExtraCost + Entry->Cost);
2220 
2221   if (ST->hasSSE2())
2222     if (const auto *Entry = CostTableLookup(SSE2CostTbl, ISD, MTy))
2223       return LT.first * (ExtraCost + Entry->Cost);
2224 
2225   if (ST->hasSSE1())
2226     if (const auto *Entry = CostTableLookup(SSE1CostTbl, ISD, MTy))
2227       return LT.first * (ExtraCost + Entry->Cost);
2228 
2229   return BaseT::getCmpSelInstrCost(Opcode, ValTy, CondTy, CostKind, I);
2230 }
2231 
2232 unsigned X86TTIImpl::getAtomicMemIntrinsicMaxElementSize() const { return 16; }
2233 
2234 int X86TTIImpl::getTypeBasedIntrinsicInstrCost(
2235   const IntrinsicCostAttributes &ICA, TTI::TargetCostKind CostKind) {
2236 
2237   // Costs should match the codegen from:
2238   // BITREVERSE: llvm\test\CodeGen\X86\vector-bitreverse.ll
2239   // BSWAP: llvm\test\CodeGen\X86\bswap-vector.ll
2240   // CTLZ: llvm\test\CodeGen\X86\vector-lzcnt-*.ll
2241   // CTPOP: llvm\test\CodeGen\X86\vector-popcnt-*.ll
2242   // CTTZ: llvm\test\CodeGen\X86\vector-tzcnt-*.ll
2243   static const CostTblEntry AVX512CDCostTbl[] = {
2244     { ISD::CTLZ,       MVT::v8i64,   1 },
2245     { ISD::CTLZ,       MVT::v16i32,  1 },
2246     { ISD::CTLZ,       MVT::v32i16,  8 },
2247     { ISD::CTLZ,       MVT::v64i8,  20 },
2248     { ISD::CTLZ,       MVT::v4i64,   1 },
2249     { ISD::CTLZ,       MVT::v8i32,   1 },
2250     { ISD::CTLZ,       MVT::v16i16,  4 },
2251     { ISD::CTLZ,       MVT::v32i8,  10 },
2252     { ISD::CTLZ,       MVT::v2i64,   1 },
2253     { ISD::CTLZ,       MVT::v4i32,   1 },
2254     { ISD::CTLZ,       MVT::v8i16,   4 },
2255     { ISD::CTLZ,       MVT::v16i8,   4 },
2256   };
2257   static const CostTblEntry AVX512BWCostTbl[] = {
2258     { ISD::BITREVERSE, MVT::v8i64,   5 },
2259     { ISD::BITREVERSE, MVT::v16i32,  5 },
2260     { ISD::BITREVERSE, MVT::v32i16,  5 },
2261     { ISD::BITREVERSE, MVT::v64i8,   5 },
2262     { ISD::CTLZ,       MVT::v8i64,  23 },
2263     { ISD::CTLZ,       MVT::v16i32, 22 },
2264     { ISD::CTLZ,       MVT::v32i16, 18 },
2265     { ISD::CTLZ,       MVT::v64i8,  17 },
2266     { ISD::CTPOP,      MVT::v8i64,   7 },
2267     { ISD::CTPOP,      MVT::v16i32, 11 },
2268     { ISD::CTPOP,      MVT::v32i16,  9 },
2269     { ISD::CTPOP,      MVT::v64i8,   6 },
2270     { ISD::CTTZ,       MVT::v8i64,  10 },
2271     { ISD::CTTZ,       MVT::v16i32, 14 },
2272     { ISD::CTTZ,       MVT::v32i16, 12 },
2273     { ISD::CTTZ,       MVT::v64i8,   9 },
2274     { ISD::SADDSAT,    MVT::v32i16,  1 },
2275     { ISD::SADDSAT,    MVT::v64i8,   1 },
2276     { ISD::SSUBSAT,    MVT::v32i16,  1 },
2277     { ISD::SSUBSAT,    MVT::v64i8,   1 },
2278     { ISD::UADDSAT,    MVT::v32i16,  1 },
2279     { ISD::UADDSAT,    MVT::v64i8,   1 },
2280     { ISD::USUBSAT,    MVT::v32i16,  1 },
2281     { ISD::USUBSAT,    MVT::v64i8,   1 },
2282   };
2283   static const CostTblEntry AVX512CostTbl[] = {
2284     { ISD::BITREVERSE, MVT::v8i64,  36 },
2285     { ISD::BITREVERSE, MVT::v16i32, 24 },
2286     { ISD::BITREVERSE, MVT::v32i16, 10 },
2287     { ISD::BITREVERSE, MVT::v64i8,  10 },
2288     { ISD::CTLZ,       MVT::v8i64,  29 },
2289     { ISD::CTLZ,       MVT::v16i32, 35 },
2290     { ISD::CTLZ,       MVT::v32i16, 28 },
2291     { ISD::CTLZ,       MVT::v64i8,  18 },
2292     { ISD::CTPOP,      MVT::v8i64,  16 },
2293     { ISD::CTPOP,      MVT::v16i32, 24 },
2294     { ISD::CTPOP,      MVT::v32i16, 18 },
2295     { ISD::CTPOP,      MVT::v64i8,  12 },
2296     { ISD::CTTZ,       MVT::v8i64,  20 },
2297     { ISD::CTTZ,       MVT::v16i32, 28 },
2298     { ISD::CTTZ,       MVT::v32i16, 24 },
2299     { ISD::CTTZ,       MVT::v64i8,  18 },
2300     { ISD::USUBSAT,    MVT::v16i32,  2 }, // pmaxud + psubd
2301     { ISD::USUBSAT,    MVT::v2i64,   2 }, // pmaxuq + psubq
2302     { ISD::USUBSAT,    MVT::v4i64,   2 }, // pmaxuq + psubq
2303     { ISD::USUBSAT,    MVT::v8i64,   2 }, // pmaxuq + psubq
2304     { ISD::UADDSAT,    MVT::v16i32,  3 }, // not + pminud + paddd
2305     { ISD::UADDSAT,    MVT::v2i64,   3 }, // not + pminuq + paddq
2306     { ISD::UADDSAT,    MVT::v4i64,   3 }, // not + pminuq + paddq
2307     { ISD::UADDSAT,    MVT::v8i64,   3 }, // not + pminuq + paddq
2308     { ISD::SADDSAT,    MVT::v32i16,  2 }, // FIXME: include split
2309     { ISD::SADDSAT,    MVT::v64i8,   2 }, // FIXME: include split
2310     { ISD::SSUBSAT,    MVT::v32i16,  2 }, // FIXME: include split
2311     { ISD::SSUBSAT,    MVT::v64i8,   2 }, // FIXME: include split
2312     { ISD::UADDSAT,    MVT::v32i16,  2 }, // FIXME: include split
2313     { ISD::UADDSAT,    MVT::v64i8,   2 }, // FIXME: include split
2314     { ISD::USUBSAT,    MVT::v32i16,  2 }, // FIXME: include split
2315     { ISD::USUBSAT,    MVT::v64i8,   2 }, // FIXME: include split
2316     { ISD::FMAXNUM,    MVT::f32,     2 },
2317     { ISD::FMAXNUM,    MVT::v4f32,   2 },
2318     { ISD::FMAXNUM,    MVT::v8f32,   2 },
2319     { ISD::FMAXNUM,    MVT::v16f32,  2 },
2320     { ISD::FMAXNUM,    MVT::f64,     2 },
2321     { ISD::FMAXNUM,    MVT::v2f64,   2 },
2322     { ISD::FMAXNUM,    MVT::v4f64,   2 },
2323     { ISD::FMAXNUM,    MVT::v8f64,   2 },
2324   };
2325   static const CostTblEntry XOPCostTbl[] = {
2326     { ISD::BITREVERSE, MVT::v4i64,   4 },
2327     { ISD::BITREVERSE, MVT::v8i32,   4 },
2328     { ISD::BITREVERSE, MVT::v16i16,  4 },
2329     { ISD::BITREVERSE, MVT::v32i8,   4 },
2330     { ISD::BITREVERSE, MVT::v2i64,   1 },
2331     { ISD::BITREVERSE, MVT::v4i32,   1 },
2332     { ISD::BITREVERSE, MVT::v8i16,   1 },
2333     { ISD::BITREVERSE, MVT::v16i8,   1 },
2334     { ISD::BITREVERSE, MVT::i64,     3 },
2335     { ISD::BITREVERSE, MVT::i32,     3 },
2336     { ISD::BITREVERSE, MVT::i16,     3 },
2337     { ISD::BITREVERSE, MVT::i8,      3 }
2338   };
2339   static const CostTblEntry AVX2CostTbl[] = {
2340     { ISD::BITREVERSE, MVT::v4i64,   5 },
2341     { ISD::BITREVERSE, MVT::v8i32,   5 },
2342     { ISD::BITREVERSE, MVT::v16i16,  5 },
2343     { ISD::BITREVERSE, MVT::v32i8,   5 },
2344     { ISD::BSWAP,      MVT::v4i64,   1 },
2345     { ISD::BSWAP,      MVT::v8i32,   1 },
2346     { ISD::BSWAP,      MVT::v16i16,  1 },
2347     { ISD::CTLZ,       MVT::v4i64,  23 },
2348     { ISD::CTLZ,       MVT::v8i32,  18 },
2349     { ISD::CTLZ,       MVT::v16i16, 14 },
2350     { ISD::CTLZ,       MVT::v32i8,   9 },
2351     { ISD::CTPOP,      MVT::v4i64,   7 },
2352     { ISD::CTPOP,      MVT::v8i32,  11 },
2353     { ISD::CTPOP,      MVT::v16i16,  9 },
2354     { ISD::CTPOP,      MVT::v32i8,   6 },
2355     { ISD::CTTZ,       MVT::v4i64,  10 },
2356     { ISD::CTTZ,       MVT::v8i32,  14 },
2357     { ISD::CTTZ,       MVT::v16i16, 12 },
2358     { ISD::CTTZ,       MVT::v32i8,   9 },
2359     { ISD::SADDSAT,    MVT::v16i16,  1 },
2360     { ISD::SADDSAT,    MVT::v32i8,   1 },
2361     { ISD::SSUBSAT,    MVT::v16i16,  1 },
2362     { ISD::SSUBSAT,    MVT::v32i8,   1 },
2363     { ISD::UADDSAT,    MVT::v16i16,  1 },
2364     { ISD::UADDSAT,    MVT::v32i8,   1 },
2365     { ISD::UADDSAT,    MVT::v8i32,   3 }, // not + pminud + paddd
2366     { ISD::USUBSAT,    MVT::v16i16,  1 },
2367     { ISD::USUBSAT,    MVT::v32i8,   1 },
2368     { ISD::USUBSAT,    MVT::v8i32,   2 }, // pmaxud + psubd
2369     { ISD::FSQRT,      MVT::f32,     7 }, // Haswell from http://www.agner.org/
2370     { ISD::FSQRT,      MVT::v4f32,   7 }, // Haswell from http://www.agner.org/
2371     { ISD::FSQRT,      MVT::v8f32,  14 }, // Haswell from http://www.agner.org/
2372     { ISD::FSQRT,      MVT::f64,    14 }, // Haswell from http://www.agner.org/
2373     { ISD::FSQRT,      MVT::v2f64,  14 }, // Haswell from http://www.agner.org/
2374     { ISD::FSQRT,      MVT::v4f64,  28 }, // Haswell from http://www.agner.org/
2375   };
2376   static const CostTblEntry AVX1CostTbl[] = {
2377     { ISD::BITREVERSE, MVT::v4i64,  12 }, // 2 x 128-bit Op + extract/insert
2378     { ISD::BITREVERSE, MVT::v8i32,  12 }, // 2 x 128-bit Op + extract/insert
2379     { ISD::BITREVERSE, MVT::v16i16, 12 }, // 2 x 128-bit Op + extract/insert
2380     { ISD::BITREVERSE, MVT::v32i8,  12 }, // 2 x 128-bit Op + extract/insert
2381     { ISD::BSWAP,      MVT::v4i64,   4 },
2382     { ISD::BSWAP,      MVT::v8i32,   4 },
2383     { ISD::BSWAP,      MVT::v16i16,  4 },
2384     { ISD::CTLZ,       MVT::v4i64,  48 }, // 2 x 128-bit Op + extract/insert
2385     { ISD::CTLZ,       MVT::v8i32,  38 }, // 2 x 128-bit Op + extract/insert
2386     { ISD::CTLZ,       MVT::v16i16, 30 }, // 2 x 128-bit Op + extract/insert
2387     { ISD::CTLZ,       MVT::v32i8,  20 }, // 2 x 128-bit Op + extract/insert
2388     { ISD::CTPOP,      MVT::v4i64,  16 }, // 2 x 128-bit Op + extract/insert
2389     { ISD::CTPOP,      MVT::v8i32,  24 }, // 2 x 128-bit Op + extract/insert
2390     { ISD::CTPOP,      MVT::v16i16, 20 }, // 2 x 128-bit Op + extract/insert
2391     { ISD::CTPOP,      MVT::v32i8,  14 }, // 2 x 128-bit Op + extract/insert
2392     { ISD::CTTZ,       MVT::v4i64,  22 }, // 2 x 128-bit Op + extract/insert
2393     { ISD::CTTZ,       MVT::v8i32,  30 }, // 2 x 128-bit Op + extract/insert
2394     { ISD::CTTZ,       MVT::v16i16, 26 }, // 2 x 128-bit Op + extract/insert
2395     { ISD::CTTZ,       MVT::v32i8,  20 }, // 2 x 128-bit Op + extract/insert
2396     { ISD::SADDSAT,    MVT::v16i16,  4 }, // 2 x 128-bit Op + extract/insert
2397     { ISD::SADDSAT,    MVT::v32i8,   4 }, // 2 x 128-bit Op + extract/insert
2398     { ISD::SSUBSAT,    MVT::v16i16,  4 }, // 2 x 128-bit Op + extract/insert
2399     { ISD::SSUBSAT,    MVT::v32i8,   4 }, // 2 x 128-bit Op + extract/insert
2400     { ISD::UADDSAT,    MVT::v16i16,  4 }, // 2 x 128-bit Op + extract/insert
2401     { ISD::UADDSAT,    MVT::v32i8,   4 }, // 2 x 128-bit Op + extract/insert
2402     { ISD::UADDSAT,    MVT::v8i32,   8 }, // 2 x 128-bit Op + extract/insert
2403     { ISD::USUBSAT,    MVT::v16i16,  4 }, // 2 x 128-bit Op + extract/insert
2404     { ISD::USUBSAT,    MVT::v32i8,   4 }, // 2 x 128-bit Op + extract/insert
2405     { ISD::USUBSAT,    MVT::v8i32,   6 }, // 2 x 128-bit Op + extract/insert
2406     { ISD::FMAXNUM,    MVT::f32,     3 },
2407     { ISD::FMAXNUM,    MVT::v4f32,   3 },
2408     { ISD::FMAXNUM,    MVT::v8f32,   5 },
2409     { ISD::FMAXNUM,    MVT::f64,     3 },
2410     { ISD::FMAXNUM,    MVT::v2f64,   3 },
2411     { ISD::FMAXNUM,    MVT::v4f64,   5 },
2412     { ISD::FSQRT,      MVT::f32,    14 }, // SNB from http://www.agner.org/
2413     { ISD::FSQRT,      MVT::v4f32,  14 }, // SNB from http://www.agner.org/
2414     { ISD::FSQRT,      MVT::v8f32,  28 }, // SNB from http://www.agner.org/
2415     { ISD::FSQRT,      MVT::f64,    21 }, // SNB from http://www.agner.org/
2416     { ISD::FSQRT,      MVT::v2f64,  21 }, // SNB from http://www.agner.org/
2417     { ISD::FSQRT,      MVT::v4f64,  43 }, // SNB from http://www.agner.org/
2418   };
2419   static const CostTblEntry GLMCostTbl[] = {
2420     { ISD::FSQRT, MVT::f32,   19 }, // sqrtss
2421     { ISD::FSQRT, MVT::v4f32, 37 }, // sqrtps
2422     { ISD::FSQRT, MVT::f64,   34 }, // sqrtsd
2423     { ISD::FSQRT, MVT::v2f64, 67 }, // sqrtpd
2424   };
2425   static const CostTblEntry SLMCostTbl[] = {
2426     { ISD::FSQRT, MVT::f32,   20 }, // sqrtss
2427     { ISD::FSQRT, MVT::v4f32, 40 }, // sqrtps
2428     { ISD::FSQRT, MVT::f64,   35 }, // sqrtsd
2429     { ISD::FSQRT, MVT::v2f64, 70 }, // sqrtpd
2430   };
2431   static const CostTblEntry SSE42CostTbl[] = {
2432     { ISD::USUBSAT,    MVT::v4i32,   2 }, // pmaxud + psubd
2433     { ISD::UADDSAT,    MVT::v4i32,   3 }, // not + pminud + paddd
2434     { ISD::FSQRT,      MVT::f32,    18 }, // Nehalem from http://www.agner.org/
2435     { ISD::FSQRT,      MVT::v4f32,  18 }, // Nehalem from http://www.agner.org/
2436   };
2437   static const CostTblEntry SSSE3CostTbl[] = {
2438     { ISD::BITREVERSE, MVT::v2i64,   5 },
2439     { ISD::BITREVERSE, MVT::v4i32,   5 },
2440     { ISD::BITREVERSE, MVT::v8i16,   5 },
2441     { ISD::BITREVERSE, MVT::v16i8,   5 },
2442     { ISD::BSWAP,      MVT::v2i64,   1 },
2443     { ISD::BSWAP,      MVT::v4i32,   1 },
2444     { ISD::BSWAP,      MVT::v8i16,   1 },
2445     { ISD::CTLZ,       MVT::v2i64,  23 },
2446     { ISD::CTLZ,       MVT::v4i32,  18 },
2447     { ISD::CTLZ,       MVT::v8i16,  14 },
2448     { ISD::CTLZ,       MVT::v16i8,   9 },
2449     { ISD::CTPOP,      MVT::v2i64,   7 },
2450     { ISD::CTPOP,      MVT::v4i32,  11 },
2451     { ISD::CTPOP,      MVT::v8i16,   9 },
2452     { ISD::CTPOP,      MVT::v16i8,   6 },
2453     { ISD::CTTZ,       MVT::v2i64,  10 },
2454     { ISD::CTTZ,       MVT::v4i32,  14 },
2455     { ISD::CTTZ,       MVT::v8i16,  12 },
2456     { ISD::CTTZ,       MVT::v16i8,   9 }
2457   };
2458   static const CostTblEntry SSE2CostTbl[] = {
2459     { ISD::BITREVERSE, MVT::v2i64,  29 },
2460     { ISD::BITREVERSE, MVT::v4i32,  27 },
2461     { ISD::BITREVERSE, MVT::v8i16,  27 },
2462     { ISD::BITREVERSE, MVT::v16i8,  20 },
2463     { ISD::BSWAP,      MVT::v2i64,   7 },
2464     { ISD::BSWAP,      MVT::v4i32,   7 },
2465     { ISD::BSWAP,      MVT::v8i16,   7 },
2466     { ISD::CTLZ,       MVT::v2i64,  25 },
2467     { ISD::CTLZ,       MVT::v4i32,  26 },
2468     { ISD::CTLZ,       MVT::v8i16,  20 },
2469     { ISD::CTLZ,       MVT::v16i8,  17 },
2470     { ISD::CTPOP,      MVT::v2i64,  12 },
2471     { ISD::CTPOP,      MVT::v4i32,  15 },
2472     { ISD::CTPOP,      MVT::v8i16,  13 },
2473     { ISD::CTPOP,      MVT::v16i8,  10 },
2474     { ISD::CTTZ,       MVT::v2i64,  14 },
2475     { ISD::CTTZ,       MVT::v4i32,  18 },
2476     { ISD::CTTZ,       MVT::v8i16,  16 },
2477     { ISD::CTTZ,       MVT::v16i8,  13 },
2478     { ISD::SADDSAT,    MVT::v8i16,   1 },
2479     { ISD::SADDSAT,    MVT::v16i8,   1 },
2480     { ISD::SSUBSAT,    MVT::v8i16,   1 },
2481     { ISD::SSUBSAT,    MVT::v16i8,   1 },
2482     { ISD::UADDSAT,    MVT::v8i16,   1 },
2483     { ISD::UADDSAT,    MVT::v16i8,   1 },
2484     { ISD::USUBSAT,    MVT::v8i16,   1 },
2485     { ISD::USUBSAT,    MVT::v16i8,   1 },
2486     { ISD::FMAXNUM,    MVT::f64,     4 },
2487     { ISD::FMAXNUM,    MVT::v2f64,   4 },
2488     { ISD::FSQRT,      MVT::f64,    32 }, // Nehalem from http://www.agner.org/
2489     { ISD::FSQRT,      MVT::v2f64,  32 }, // Nehalem from http://www.agner.org/
2490   };
2491   static const CostTblEntry SSE1CostTbl[] = {
2492     { ISD::FMAXNUM,    MVT::f32,     4 },
2493     { ISD::FMAXNUM,    MVT::v4f32,   4 },
2494     { ISD::FSQRT,      MVT::f32,    28 }, // Pentium III from http://www.agner.org/
2495     { ISD::FSQRT,      MVT::v4f32,  56 }, // Pentium III from http://www.agner.org/
2496   };
2497   static const CostTblEntry BMI64CostTbl[] = { // 64-bit targets
2498     { ISD::CTTZ,       MVT::i64,     1 },
2499   };
2500   static const CostTblEntry BMI32CostTbl[] = { // 32 or 64-bit targets
2501     { ISD::CTTZ,       MVT::i32,     1 },
2502     { ISD::CTTZ,       MVT::i16,     1 },
2503     { ISD::CTTZ,       MVT::i8,      1 },
2504   };
2505   static const CostTblEntry LZCNT64CostTbl[] = { // 64-bit targets
2506     { ISD::CTLZ,       MVT::i64,     1 },
2507   };
2508   static const CostTblEntry LZCNT32CostTbl[] = { // 32 or 64-bit targets
2509     { ISD::CTLZ,       MVT::i32,     1 },
2510     { ISD::CTLZ,       MVT::i16,     1 },
2511     { ISD::CTLZ,       MVT::i8,      1 },
2512   };
2513   static const CostTblEntry POPCNT64CostTbl[] = { // 64-bit targets
2514     { ISD::CTPOP,      MVT::i64,     1 },
2515   };
2516   static const CostTblEntry POPCNT32CostTbl[] = { // 32 or 64-bit targets
2517     { ISD::CTPOP,      MVT::i32,     1 },
2518     { ISD::CTPOP,      MVT::i16,     1 },
2519     { ISD::CTPOP,      MVT::i8,      1 },
2520   };
2521   static const CostTblEntry X64CostTbl[] = { // 64-bit targets
2522     { ISD::BITREVERSE, MVT::i64,    14 },
2523     { ISD::CTLZ,       MVT::i64,     4 }, // BSR+XOR or BSR+XOR+CMOV
2524     { ISD::CTTZ,       MVT::i64,     3 }, // TEST+BSF+CMOV/BRANCH
2525     { ISD::CTPOP,      MVT::i64,    10 },
2526     { ISD::SADDO,      MVT::i64,     1 },
2527     { ISD::UADDO,      MVT::i64,     1 },
2528   };
2529   static const CostTblEntry X86CostTbl[] = { // 32 or 64-bit targets
2530     { ISD::BITREVERSE, MVT::i32,    14 },
2531     { ISD::BITREVERSE, MVT::i16,    14 },
2532     { ISD::BITREVERSE, MVT::i8,     11 },
2533     { ISD::CTLZ,       MVT::i32,     4 }, // BSR+XOR or BSR+XOR+CMOV
2534     { ISD::CTLZ,       MVT::i16,     4 }, // BSR+XOR or BSR+XOR+CMOV
2535     { ISD::CTLZ,       MVT::i8,      4 }, // BSR+XOR or BSR+XOR+CMOV
2536     { ISD::CTTZ,       MVT::i32,     3 }, // TEST+BSF+CMOV/BRANCH
2537     { ISD::CTTZ,       MVT::i16,     3 }, // TEST+BSF+CMOV/BRANCH
2538     { ISD::CTTZ,       MVT::i8,      3 }, // TEST+BSF+CMOV/BRANCH
2539     { ISD::CTPOP,      MVT::i32,     8 },
2540     { ISD::CTPOP,      MVT::i16,     9 },
2541     { ISD::CTPOP,      MVT::i8,      7 },
2542     { ISD::SADDO,      MVT::i32,     1 },
2543     { ISD::SADDO,      MVT::i16,     1 },
2544     { ISD::SADDO,      MVT::i8,      1 },
2545     { ISD::UADDO,      MVT::i32,     1 },
2546     { ISD::UADDO,      MVT::i16,     1 },
2547     { ISD::UADDO,      MVT::i8,      1 },
2548   };
2549 
2550   Type *RetTy = ICA.getReturnType();
2551   Type *OpTy = RetTy;
2552   Intrinsic::ID IID = ICA.getID();
2553   unsigned ISD = ISD::DELETED_NODE;
2554   switch (IID) {
2555   default:
2556     break;
2557   case Intrinsic::bitreverse:
2558     ISD = ISD::BITREVERSE;
2559     break;
2560   case Intrinsic::bswap:
2561     ISD = ISD::BSWAP;
2562     break;
2563   case Intrinsic::ctlz:
2564     ISD = ISD::CTLZ;
2565     break;
2566   case Intrinsic::ctpop:
2567     ISD = ISD::CTPOP;
2568     break;
2569   case Intrinsic::cttz:
2570     ISD = ISD::CTTZ;
2571     break;
2572   case Intrinsic::maxnum:
2573   case Intrinsic::minnum:
2574     // FMINNUM has same costs so don't duplicate.
2575     ISD = ISD::FMAXNUM;
2576     break;
2577   case Intrinsic::sadd_sat:
2578     ISD = ISD::SADDSAT;
2579     break;
2580   case Intrinsic::ssub_sat:
2581     ISD = ISD::SSUBSAT;
2582     break;
2583   case Intrinsic::uadd_sat:
2584     ISD = ISD::UADDSAT;
2585     break;
2586   case Intrinsic::usub_sat:
2587     ISD = ISD::USUBSAT;
2588     break;
2589   case Intrinsic::sqrt:
2590     ISD = ISD::FSQRT;
2591     break;
2592   case Intrinsic::sadd_with_overflow:
2593   case Intrinsic::ssub_with_overflow:
2594     // SSUBO has same costs so don't duplicate.
2595     ISD = ISD::SADDO;
2596     OpTy = RetTy->getContainedType(0);
2597     break;
2598   case Intrinsic::uadd_with_overflow:
2599   case Intrinsic::usub_with_overflow:
2600     // USUBO has same costs so don't duplicate.
2601     ISD = ISD::UADDO;
2602     OpTy = RetTy->getContainedType(0);
2603     break;
2604   }
2605 
2606   if (ISD != ISD::DELETED_NODE) {
2607     // Legalize the type.
2608     std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, OpTy);
2609     MVT MTy = LT.second;
2610 
2611     // Attempt to lookup cost.
2612     if (ST->useGLMDivSqrtCosts())
2613       if (const auto *Entry = CostTableLookup(GLMCostTbl, ISD, MTy))
2614         return LT.first * Entry->Cost;
2615 
2616     if (ST->isSLM())
2617       if (const auto *Entry = CostTableLookup(SLMCostTbl, ISD, MTy))
2618         return LT.first * Entry->Cost;
2619 
2620     if (ST->hasCDI())
2621       if (const auto *Entry = CostTableLookup(AVX512CDCostTbl, ISD, MTy))
2622         return LT.first * Entry->Cost;
2623 
2624     if (ST->hasBWI())
2625       if (const auto *Entry = CostTableLookup(AVX512BWCostTbl, ISD, MTy))
2626         return LT.first * Entry->Cost;
2627 
2628     if (ST->hasAVX512())
2629       if (const auto *Entry = CostTableLookup(AVX512CostTbl, ISD, MTy))
2630         return LT.first * Entry->Cost;
2631 
2632     if (ST->hasXOP())
2633       if (const auto *Entry = CostTableLookup(XOPCostTbl, ISD, MTy))
2634         return LT.first * Entry->Cost;
2635 
2636     if (ST->hasAVX2())
2637       if (const auto *Entry = CostTableLookup(AVX2CostTbl, ISD, MTy))
2638         return LT.first * Entry->Cost;
2639 
2640     if (ST->hasAVX())
2641       if (const auto *Entry = CostTableLookup(AVX1CostTbl, ISD, MTy))
2642         return LT.first * Entry->Cost;
2643 
2644     if (ST->hasSSE42())
2645       if (const auto *Entry = CostTableLookup(SSE42CostTbl, ISD, MTy))
2646         return LT.first * Entry->Cost;
2647 
2648     if (ST->hasSSSE3())
2649       if (const auto *Entry = CostTableLookup(SSSE3CostTbl, ISD, MTy))
2650         return LT.first * Entry->Cost;
2651 
2652     if (ST->hasSSE2())
2653       if (const auto *Entry = CostTableLookup(SSE2CostTbl, ISD, MTy))
2654         return LT.first * Entry->Cost;
2655 
2656     if (ST->hasSSE1())
2657       if (const auto *Entry = CostTableLookup(SSE1CostTbl, ISD, MTy))
2658         return LT.first * Entry->Cost;
2659 
2660     if (ST->hasBMI()) {
2661       if (ST->is64Bit())
2662         if (const auto *Entry = CostTableLookup(BMI64CostTbl, ISD, MTy))
2663           return LT.first * Entry->Cost;
2664 
2665       if (const auto *Entry = CostTableLookup(BMI32CostTbl, ISD, MTy))
2666         return LT.first * Entry->Cost;
2667     }
2668 
2669     if (ST->hasLZCNT()) {
2670       if (ST->is64Bit())
2671         if (const auto *Entry = CostTableLookup(LZCNT64CostTbl, ISD, MTy))
2672           return LT.first * Entry->Cost;
2673 
2674       if (const auto *Entry = CostTableLookup(LZCNT32CostTbl, ISD, MTy))
2675         return LT.first * Entry->Cost;
2676     }
2677 
2678     if (ST->hasPOPCNT()) {
2679       if (ST->is64Bit())
2680         if (const auto *Entry = CostTableLookup(POPCNT64CostTbl, ISD, MTy))
2681           return LT.first * Entry->Cost;
2682 
2683       if (const auto *Entry = CostTableLookup(POPCNT32CostTbl, ISD, MTy))
2684         return LT.first * Entry->Cost;
2685     }
2686 
2687     // TODO - add BMI (TZCNT) scalar handling
2688 
2689     if (ST->is64Bit())
2690       if (const auto *Entry = CostTableLookup(X64CostTbl, ISD, MTy))
2691         return LT.first * Entry->Cost;
2692 
2693     if (const auto *Entry = CostTableLookup(X86CostTbl, ISD, MTy))
2694       return LT.first * Entry->Cost;
2695   }
2696 
2697   return BaseT::getIntrinsicInstrCost(ICA, CostKind);
2698 }
2699 
2700 int X86TTIImpl::getIntrinsicInstrCost(const IntrinsicCostAttributes &ICA,
2701                                       TTI::TargetCostKind CostKind) {
2702   if (ICA.isTypeBasedOnly())
2703     return getTypeBasedIntrinsicInstrCost(ICA, CostKind);
2704 
2705   static const CostTblEntry AVX512CostTbl[] = {
2706     { ISD::ROTL,       MVT::v8i64,   1 },
2707     { ISD::ROTL,       MVT::v4i64,   1 },
2708     { ISD::ROTL,       MVT::v2i64,   1 },
2709     { ISD::ROTL,       MVT::v16i32,  1 },
2710     { ISD::ROTL,       MVT::v8i32,   1 },
2711     { ISD::ROTL,       MVT::v4i32,   1 },
2712     { ISD::ROTR,       MVT::v8i64,   1 },
2713     { ISD::ROTR,       MVT::v4i64,   1 },
2714     { ISD::ROTR,       MVT::v2i64,   1 },
2715     { ISD::ROTR,       MVT::v16i32,  1 },
2716     { ISD::ROTR,       MVT::v8i32,   1 },
2717     { ISD::ROTR,       MVT::v4i32,   1 }
2718   };
2719   // XOP: ROTL = VPROT(X,Y), ROTR = VPROT(X,SUB(0,Y))
2720   static const CostTblEntry XOPCostTbl[] = {
2721     { ISD::ROTL,       MVT::v4i64,   4 },
2722     { ISD::ROTL,       MVT::v8i32,   4 },
2723     { ISD::ROTL,       MVT::v16i16,  4 },
2724     { ISD::ROTL,       MVT::v32i8,   4 },
2725     { ISD::ROTL,       MVT::v2i64,   1 },
2726     { ISD::ROTL,       MVT::v4i32,   1 },
2727     { ISD::ROTL,       MVT::v8i16,   1 },
2728     { ISD::ROTL,       MVT::v16i8,   1 },
2729     { ISD::ROTR,       MVT::v4i64,   6 },
2730     { ISD::ROTR,       MVT::v8i32,   6 },
2731     { ISD::ROTR,       MVT::v16i16,  6 },
2732     { ISD::ROTR,       MVT::v32i8,   6 },
2733     { ISD::ROTR,       MVT::v2i64,   2 },
2734     { ISD::ROTR,       MVT::v4i32,   2 },
2735     { ISD::ROTR,       MVT::v8i16,   2 },
2736     { ISD::ROTR,       MVT::v16i8,   2 }
2737   };
2738   static const CostTblEntry X64CostTbl[] = { // 64-bit targets
2739     { ISD::ROTL,       MVT::i64,     1 },
2740     { ISD::ROTR,       MVT::i64,     1 },
2741     { ISD::FSHL,       MVT::i64,     4 }
2742   };
2743   static const CostTblEntry X86CostTbl[] = { // 32 or 64-bit targets
2744     { ISD::ROTL,       MVT::i32,     1 },
2745     { ISD::ROTL,       MVT::i16,     1 },
2746     { ISD::ROTL,       MVT::i8,      1 },
2747     { ISD::ROTR,       MVT::i32,     1 },
2748     { ISD::ROTR,       MVT::i16,     1 },
2749     { ISD::ROTR,       MVT::i8,      1 },
2750     { ISD::FSHL,       MVT::i32,     4 },
2751     { ISD::FSHL,       MVT::i16,     4 },
2752     { ISD::FSHL,       MVT::i8,      4 }
2753   };
2754 
2755   Intrinsic::ID IID = ICA.getID();
2756   Type *RetTy = ICA.getReturnType();
2757   const SmallVectorImpl<Value *> &Args = ICA.getArgs();
2758   unsigned ISD = ISD::DELETED_NODE;
2759   switch (IID) {
2760   default:
2761     break;
2762   case Intrinsic::fshl:
2763     ISD = ISD::FSHL;
2764     if (Args[0] == Args[1])
2765       ISD = ISD::ROTL;
2766     break;
2767   case Intrinsic::fshr:
2768     // FSHR has same costs so don't duplicate.
2769     ISD = ISD::FSHL;
2770     if (Args[0] == Args[1])
2771       ISD = ISD::ROTR;
2772     break;
2773   }
2774 
2775   if (ISD != ISD::DELETED_NODE) {
2776     // Legalize the type.
2777     std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, RetTy);
2778     MVT MTy = LT.second;
2779 
2780     // Attempt to lookup cost.
2781     if (ST->hasAVX512())
2782       if (const auto *Entry = CostTableLookup(AVX512CostTbl, ISD, MTy))
2783         return LT.first * Entry->Cost;
2784 
2785     if (ST->hasXOP())
2786       if (const auto *Entry = CostTableLookup(XOPCostTbl, ISD, MTy))
2787         return LT.first * Entry->Cost;
2788 
2789     if (ST->is64Bit())
2790       if (const auto *Entry = CostTableLookup(X64CostTbl, ISD, MTy))
2791         return LT.first * Entry->Cost;
2792 
2793     if (const auto *Entry = CostTableLookup(X86CostTbl, ISD, MTy))
2794       return LT.first * Entry->Cost;
2795   }
2796 
2797   return BaseT::getIntrinsicInstrCost(ICA, CostKind);
2798 }
2799 
2800 int X86TTIImpl::getVectorInstrCost(unsigned Opcode, Type *Val, unsigned Index) {
2801   static const CostTblEntry SLMCostTbl[] = {
2802      { ISD::EXTRACT_VECTOR_ELT,       MVT::i8,      4 },
2803      { ISD::EXTRACT_VECTOR_ELT,       MVT::i16,     4 },
2804      { ISD::EXTRACT_VECTOR_ELT,       MVT::i32,     4 },
2805      { ISD::EXTRACT_VECTOR_ELT,       MVT::i64,     7 }
2806    };
2807 
2808   assert(Val->isVectorTy() && "This must be a vector type");
2809   Type *ScalarType = Val->getScalarType();
2810   int RegisterFileMoveCost = 0;
2811 
2812   if (Index != -1U && (Opcode == Instruction::ExtractElement ||
2813                        Opcode == Instruction::InsertElement)) {
2814     // Legalize the type.
2815     std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Val);
2816 
2817     // This type is legalized to a scalar type.
2818     if (!LT.second.isVector())
2819       return 0;
2820 
2821     // The type may be split. Normalize the index to the new type.
2822     unsigned NumElts = LT.second.getVectorNumElements();
2823     unsigned SubNumElts = NumElts;
2824     Index = Index % NumElts;
2825 
2826     // For >128-bit vectors, we need to extract higher 128-bit subvectors.
2827     // For inserts, we also need to insert the subvector back.
2828     if (LT.second.getSizeInBits() > 128) {
2829       assert((LT.second.getSizeInBits() % 128) == 0 && "Illegal vector");
2830       unsigned NumSubVecs = LT.second.getSizeInBits() / 128;
2831       SubNumElts = NumElts / NumSubVecs;
2832       if (SubNumElts <= Index) {
2833         RegisterFileMoveCost += (Opcode == Instruction::InsertElement ? 2 : 1);
2834         Index %= SubNumElts;
2835       }
2836     }
2837 
2838     if (Index == 0) {
2839       // Floating point scalars are already located in index #0.
2840       // Many insertions to #0 can fold away for scalar fp-ops, so let's assume
2841       // true for all.
2842       if (ScalarType->isFloatingPointTy())
2843         return RegisterFileMoveCost;
2844 
2845       // Assume movd/movq XMM -> GPR is relatively cheap on all targets.
2846       if (ScalarType->isIntegerTy() && Opcode == Instruction::ExtractElement)
2847         return 1 + RegisterFileMoveCost;
2848     }
2849 
2850     int ISD = TLI->InstructionOpcodeToISD(Opcode);
2851     assert(ISD && "Unexpected vector opcode");
2852     MVT MScalarTy = LT.second.getScalarType();
2853     if (ST->isSLM())
2854       if (auto *Entry = CostTableLookup(SLMCostTbl, ISD, MScalarTy))
2855         return Entry->Cost + RegisterFileMoveCost;
2856 
2857     // Assume pinsr/pextr XMM <-> GPR is relatively cheap on all targets.
2858     if ((MScalarTy == MVT::i16 && ST->hasSSE2()) ||
2859         (MScalarTy.isInteger() && ST->hasSSE41()))
2860       return 1 + RegisterFileMoveCost;
2861 
2862     // Assume insertps is relatively cheap on all targets.
2863     if (MScalarTy == MVT::f32 && ST->hasSSE41() &&
2864         Opcode == Instruction::InsertElement)
2865       return 1 + RegisterFileMoveCost;
2866 
2867     // For extractions we just need to shuffle the element to index 0, which
2868     // should be very cheap (assume cost = 1). For insertions we need to shuffle
2869     // the elements to its destination. In both cases we must handle the
2870     // subvector move(s).
2871     // If the vector type is already less than 128-bits then don't reduce it.
2872     // TODO: Under what circumstances should we shuffle using the full width?
2873     int ShuffleCost = 1;
2874     if (Opcode == Instruction::InsertElement) {
2875       auto *SubTy = cast<VectorType>(Val);
2876       EVT VT = TLI->getValueType(DL, Val);
2877       if (VT.getScalarType() != MScalarTy || VT.getSizeInBits() >= 128)
2878         SubTy = VectorType::get(ScalarType, SubNumElts);
2879       ShuffleCost = getShuffleCost(TTI::SK_PermuteTwoSrc, SubTy, 0, SubTy);
2880     }
2881     int IntOrFpCost = ScalarType->isFloatingPointTy() ? 0 : 1;
2882     return ShuffleCost + IntOrFpCost + RegisterFileMoveCost;
2883   }
2884 
2885   // Add to the base cost if we know that the extracted element of a vector is
2886   // destined to be moved to and used in the integer register file.
2887   if (Opcode == Instruction::ExtractElement && ScalarType->isPointerTy())
2888     RegisterFileMoveCost += 1;
2889 
2890   return BaseT::getVectorInstrCost(Opcode, Val, Index) + RegisterFileMoveCost;
2891 }
2892 
2893 unsigned X86TTIImpl::getScalarizationOverhead(VectorType *Ty,
2894                                               const APInt &DemandedElts,
2895                                               bool Insert, bool Extract) {
2896   unsigned Cost = 0;
2897 
2898   // For insertions, a ISD::BUILD_VECTOR style vector initialization can be much
2899   // cheaper than an accumulation of ISD::INSERT_VECTOR_ELT.
2900   if (Insert) {
2901     std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Ty);
2902     MVT MScalarTy = LT.second.getScalarType();
2903 
2904     if ((MScalarTy == MVT::i16 && ST->hasSSE2()) ||
2905         (MScalarTy.isInteger() && ST->hasSSE41()) ||
2906         (MScalarTy == MVT::f32 && ST->hasSSE41())) {
2907       // For types we can insert directly, insertion into 128-bit sub vectors is
2908       // cheap, followed by a cheap chain of concatenations.
2909       if (LT.second.getSizeInBits() <= 128) {
2910         Cost +=
2911             BaseT::getScalarizationOverhead(Ty, DemandedElts, Insert, false);
2912       } else {
2913         unsigned NumSubVecs = LT.second.getSizeInBits() / 128;
2914         Cost += (PowerOf2Ceil(NumSubVecs) - 1) * LT.first;
2915         Cost += DemandedElts.countPopulation();
2916 
2917         // For vXf32 cases, insertion into the 0'th index in each v4f32
2918         // 128-bit vector is free.
2919         // NOTE: This assumes legalization widens vXf32 vectors.
2920         if (MScalarTy == MVT::f32)
2921           for (unsigned i = 0, e = Ty->getNumElements(); i < e; i += 4)
2922             if (DemandedElts[i])
2923               Cost--;
2924       }
2925     } else if (LT.second.isVector()) {
2926       // Without fast insertion, we need to use MOVD/MOVQ to pass each demanded
2927       // integer element as a SCALAR_TO_VECTOR, then we build the vector as a
2928       // series of UNPCK followed by CONCAT_VECTORS - all of these can be
2929       // considered cheap.
2930       if (Ty->isIntOrIntVectorTy())
2931         Cost += DemandedElts.countPopulation();
2932 
2933       // Get the smaller of the legalized or original pow2-extended number of
2934       // vector elements, which represents the number of unpacks we'll end up
2935       // performing.
2936       unsigned NumElts = LT.second.getVectorNumElements();
2937       unsigned Pow2Elts = PowerOf2Ceil(Ty->getNumElements());
2938       Cost += (std::min<unsigned>(NumElts, Pow2Elts) - 1) * LT.first;
2939     }
2940   }
2941 
2942   // TODO: Use default extraction for now, but we should investigate extending this
2943   // to handle repeated subvector extraction.
2944   if (Extract)
2945     Cost += BaseT::getScalarizationOverhead(Ty, DemandedElts, false, Extract);
2946 
2947   return Cost;
2948 }
2949 
2950 int X86TTIImpl::getMemoryOpCost(unsigned Opcode, Type *Src,
2951                                 MaybeAlign Alignment, unsigned AddressSpace,
2952                                 TTI::TargetCostKind CostKind,
2953                                 const Instruction *I) {
2954   // Handle non-power-of-two vectors such as <3 x float>
2955   if (VectorType *VTy = dyn_cast<VectorType>(Src)) {
2956     unsigned NumElem = VTy->getNumElements();
2957 
2958     // Handle a few common cases:
2959     // <3 x float>
2960     if (NumElem == 3 && VTy->getScalarSizeInBits() == 32)
2961       // Cost = 64 bit store + extract + 32 bit store.
2962       return 3;
2963 
2964     // <3 x double>
2965     if (NumElem == 3 && VTy->getScalarSizeInBits() == 64)
2966       // Cost = 128 bit store + unpack + 64 bit store.
2967       return 3;
2968 
2969     // Assume that all other non-power-of-two numbers are scalarized.
2970     if (!isPowerOf2_32(NumElem)) {
2971       APInt DemandedElts = APInt::getAllOnesValue(NumElem);
2972       int Cost = BaseT::getMemoryOpCost(Opcode, VTy->getScalarType(), Alignment,
2973                                         AddressSpace, CostKind);
2974       int SplitCost = getScalarizationOverhead(VTy, DemandedElts,
2975                                                Opcode == Instruction::Load,
2976                                                Opcode == Instruction::Store);
2977       return NumElem * Cost + SplitCost;
2978     }
2979   }
2980 
2981   // Legalize the type.
2982   std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Src);
2983   assert((Opcode == Instruction::Load || Opcode == Instruction::Store) &&
2984          "Invalid Opcode");
2985 
2986   // Each load/store unit costs 1.
2987   int Cost = LT.first * 1;
2988 
2989   // This isn't exactly right. We're using slow unaligned 32-byte accesses as a
2990   // proxy for a double-pumped AVX memory interface such as on Sandybridge.
2991   if (LT.second.getStoreSize() == 32 && ST->isUnalignedMem32Slow())
2992     Cost *= 2;
2993 
2994   return Cost;
2995 }
2996 
2997 int X86TTIImpl::getMaskedMemoryOpCost(unsigned Opcode, Type *SrcTy,
2998                                       unsigned Alignment,
2999                                       unsigned AddressSpace,
3000                                       TTI::TargetCostKind CostKind) {
3001   bool IsLoad = (Instruction::Load == Opcode);
3002   bool IsStore = (Instruction::Store == Opcode);
3003 
3004   VectorType *SrcVTy = dyn_cast<VectorType>(SrcTy);
3005   if (!SrcVTy)
3006     // To calculate scalar take the regular cost, without mask
3007     return getMemoryOpCost(Opcode, SrcTy, MaybeAlign(Alignment), AddressSpace,
3008                            CostKind);
3009 
3010   unsigned NumElem = SrcVTy->getNumElements();
3011   VectorType *MaskTy =
3012       VectorType::get(Type::getInt8Ty(SrcVTy->getContext()), NumElem);
3013   if ((IsLoad && !isLegalMaskedLoad(SrcVTy, MaybeAlign(Alignment))) ||
3014       (IsStore && !isLegalMaskedStore(SrcVTy, MaybeAlign(Alignment))) ||
3015       !isPowerOf2_32(NumElem)) {
3016     // Scalarization
3017     APInt DemandedElts = APInt::getAllOnesValue(NumElem);
3018     int MaskSplitCost =
3019         getScalarizationOverhead(MaskTy, DemandedElts, false, true);
3020     int ScalarCompareCost = getCmpSelInstrCost(
3021         Instruction::ICmp, Type::getInt8Ty(SrcVTy->getContext()), nullptr,
3022         CostKind);
3023     int BranchCost = getCFInstrCost(Instruction::Br, CostKind);
3024     int MaskCmpCost = NumElem * (BranchCost + ScalarCompareCost);
3025     int ValueSplitCost =
3026         getScalarizationOverhead(SrcVTy, DemandedElts, IsLoad, IsStore);
3027     int MemopCost =
3028         NumElem * BaseT::getMemoryOpCost(Opcode, SrcVTy->getScalarType(),
3029                                          MaybeAlign(Alignment), AddressSpace,
3030                                          CostKind);
3031     return MemopCost + ValueSplitCost + MaskSplitCost + MaskCmpCost;
3032   }
3033 
3034   // Legalize the type.
3035   std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, SrcVTy);
3036   auto VT = TLI->getValueType(DL, SrcVTy);
3037   int Cost = 0;
3038   if (VT.isSimple() && LT.second != VT.getSimpleVT() &&
3039       LT.second.getVectorNumElements() == NumElem)
3040     // Promotion requires expand/truncate for data and a shuffle for mask.
3041     Cost += getShuffleCost(TTI::SK_PermuteTwoSrc, SrcVTy, 0, nullptr) +
3042             getShuffleCost(TTI::SK_PermuteTwoSrc, MaskTy, 0, nullptr);
3043 
3044   else if (LT.second.getVectorNumElements() > NumElem) {
3045     VectorType *NewMaskTy = VectorType::get(MaskTy->getElementType(),
3046                                             LT.second.getVectorNumElements());
3047     // Expanding requires fill mask with zeroes
3048     Cost += getShuffleCost(TTI::SK_InsertSubvector, NewMaskTy, 0, MaskTy);
3049   }
3050 
3051   // Pre-AVX512 - each maskmov load costs 2 + store costs ~8.
3052   if (!ST->hasAVX512())
3053     return Cost + LT.first * (IsLoad ? 2 : 8);
3054 
3055   // AVX-512 masked load/store is cheapper
3056   return Cost + LT.first;
3057 }
3058 
3059 int X86TTIImpl::getAddressComputationCost(Type *Ty, ScalarEvolution *SE,
3060                                           const SCEV *Ptr) {
3061   // Address computations in vectorized code with non-consecutive addresses will
3062   // likely result in more instructions compared to scalar code where the
3063   // computation can more often be merged into the index mode. The resulting
3064   // extra micro-ops can significantly decrease throughput.
3065   const unsigned NumVectorInstToHideOverhead = 10;
3066 
3067   // Cost modeling of Strided Access Computation is hidden by the indexing
3068   // modes of X86 regardless of the stride value. We dont believe that there
3069   // is a difference between constant strided access in gerenal and constant
3070   // strided value which is less than or equal to 64.
3071   // Even in the case of (loop invariant) stride whose value is not known at
3072   // compile time, the address computation will not incur more than one extra
3073   // ADD instruction.
3074   if (Ty->isVectorTy() && SE) {
3075     if (!BaseT::isStridedAccess(Ptr))
3076       return NumVectorInstToHideOverhead;
3077     if (!BaseT::getConstantStrideStep(SE, Ptr))
3078       return 1;
3079   }
3080 
3081   return BaseT::getAddressComputationCost(Ty, SE, Ptr);
3082 }
3083 
3084 int X86TTIImpl::getArithmeticReductionCost(unsigned Opcode, VectorType *ValTy,
3085                                            bool IsPairwise,
3086                                            TTI::TargetCostKind CostKind) {
3087   // Just use the default implementation for pair reductions.
3088   if (IsPairwise)
3089     return BaseT::getArithmeticReductionCost(Opcode, ValTy, IsPairwise, CostKind);
3090 
3091   // We use the Intel Architecture Code Analyzer(IACA) to measure the throughput
3092   // and make it as the cost.
3093 
3094   static const CostTblEntry SLMCostTblNoPairWise[] = {
3095     { ISD::FADD,  MVT::v2f64,   3 },
3096     { ISD::ADD,   MVT::v2i64,   5 },
3097   };
3098 
3099   static const CostTblEntry SSE2CostTblNoPairWise[] = {
3100     { ISD::FADD,  MVT::v2f64,   2 },
3101     { ISD::FADD,  MVT::v4f32,   4 },
3102     { ISD::ADD,   MVT::v2i64,   2 },      // The data reported by the IACA tool is "1.6".
3103     { ISD::ADD,   MVT::v2i32,   2 }, // FIXME: chosen to be less than v4i32
3104     { ISD::ADD,   MVT::v4i32,   3 },      // The data reported by the IACA tool is "3.3".
3105     { ISD::ADD,   MVT::v2i16,   2 },      // The data reported by the IACA tool is "4.3".
3106     { ISD::ADD,   MVT::v4i16,   3 },      // The data reported by the IACA tool is "4.3".
3107     { ISD::ADD,   MVT::v8i16,   4 },      // The data reported by the IACA tool is "4.3".
3108     { ISD::ADD,   MVT::v2i8,    2 },
3109     { ISD::ADD,   MVT::v4i8,    2 },
3110     { ISD::ADD,   MVT::v8i8,    2 },
3111     { ISD::ADD,   MVT::v16i8,   3 },
3112   };
3113 
3114   static const CostTblEntry AVX1CostTblNoPairWise[] = {
3115     { ISD::FADD,  MVT::v4f64,   3 },
3116     { ISD::FADD,  MVT::v4f32,   3 },
3117     { ISD::FADD,  MVT::v8f32,   4 },
3118     { ISD::ADD,   MVT::v2i64,   1 },      // The data reported by the IACA tool is "1.5".
3119     { ISD::ADD,   MVT::v4i64,   3 },
3120     { ISD::ADD,   MVT::v8i32,   5 },
3121     { ISD::ADD,   MVT::v16i16,  5 },
3122     { ISD::ADD,   MVT::v32i8,   4 },
3123   };
3124 
3125   int ISD = TLI->InstructionOpcodeToISD(Opcode);
3126   assert(ISD && "Invalid opcode");
3127 
3128   // Before legalizing the type, give a chance to look up illegal narrow types
3129   // in the table.
3130   // FIXME: Is there a better way to do this?
3131   EVT VT = TLI->getValueType(DL, ValTy);
3132   if (VT.isSimple()) {
3133     MVT MTy = VT.getSimpleVT();
3134     if (ST->isSLM())
3135       if (const auto *Entry = CostTableLookup(SLMCostTblNoPairWise, ISD, MTy))
3136         return Entry->Cost;
3137 
3138     if (ST->hasAVX())
3139       if (const auto *Entry = CostTableLookup(AVX1CostTblNoPairWise, ISD, MTy))
3140         return Entry->Cost;
3141 
3142     if (ST->hasSSE2())
3143       if (const auto *Entry = CostTableLookup(SSE2CostTblNoPairWise, ISD, MTy))
3144         return Entry->Cost;
3145   }
3146 
3147   std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, ValTy);
3148 
3149   MVT MTy = LT.second;
3150 
3151   auto *ValVTy = cast<VectorType>(ValTy);
3152 
3153   unsigned ArithmeticCost = 0;
3154   if (LT.first != 1 && MTy.isVector() &&
3155       MTy.getVectorNumElements() < ValVTy->getNumElements()) {
3156     // Type needs to be split. We need LT.first - 1 arithmetic ops.
3157     VectorType *SingleOpTy =
3158         VectorType::get(ValVTy->getElementType(), MTy.getVectorNumElements());
3159     ArithmeticCost = getArithmeticInstrCost(Opcode, SingleOpTy, CostKind);
3160     ArithmeticCost *= LT.first - 1;
3161   }
3162 
3163   if (ST->isSLM())
3164     if (const auto *Entry = CostTableLookup(SLMCostTblNoPairWise, ISD, MTy))
3165       return ArithmeticCost + Entry->Cost;
3166 
3167   if (ST->hasAVX())
3168     if (const auto *Entry = CostTableLookup(AVX1CostTblNoPairWise, ISD, MTy))
3169       return ArithmeticCost + Entry->Cost;
3170 
3171   if (ST->hasSSE2())
3172     if (const auto *Entry = CostTableLookup(SSE2CostTblNoPairWise, ISD, MTy))
3173       return ArithmeticCost + Entry->Cost;
3174 
3175   // FIXME: These assume a naive kshift+binop lowering, which is probably
3176   // conservative in most cases.
3177   static const CostTblEntry AVX512BoolReduction[] = {
3178     { ISD::AND,  MVT::v2i1,   3 },
3179     { ISD::AND,  MVT::v4i1,   5 },
3180     { ISD::AND,  MVT::v8i1,   7 },
3181     { ISD::AND,  MVT::v16i1,  9 },
3182     { ISD::AND,  MVT::v32i1, 11 },
3183     { ISD::AND,  MVT::v64i1, 13 },
3184     { ISD::OR,   MVT::v2i1,   3 },
3185     { ISD::OR,   MVT::v4i1,   5 },
3186     { ISD::OR,   MVT::v8i1,   7 },
3187     { ISD::OR,   MVT::v16i1,  9 },
3188     { ISD::OR,   MVT::v32i1, 11 },
3189     { ISD::OR,   MVT::v64i1, 13 },
3190   };
3191 
3192   static const CostTblEntry AVX2BoolReduction[] = {
3193     { ISD::AND,  MVT::v16i16,  2 }, // vpmovmskb + cmp
3194     { ISD::AND,  MVT::v32i8,   2 }, // vpmovmskb + cmp
3195     { ISD::OR,   MVT::v16i16,  2 }, // vpmovmskb + cmp
3196     { ISD::OR,   MVT::v32i8,   2 }, // vpmovmskb + cmp
3197   };
3198 
3199   static const CostTblEntry AVX1BoolReduction[] = {
3200     { ISD::AND,  MVT::v4i64,   2 }, // vmovmskpd + cmp
3201     { ISD::AND,  MVT::v8i32,   2 }, // vmovmskps + cmp
3202     { ISD::AND,  MVT::v16i16,  4 }, // vextractf128 + vpand + vpmovmskb + cmp
3203     { ISD::AND,  MVT::v32i8,   4 }, // vextractf128 + vpand + vpmovmskb + cmp
3204     { ISD::OR,   MVT::v4i64,   2 }, // vmovmskpd + cmp
3205     { ISD::OR,   MVT::v8i32,   2 }, // vmovmskps + cmp
3206     { ISD::OR,   MVT::v16i16,  4 }, // vextractf128 + vpor + vpmovmskb + cmp
3207     { ISD::OR,   MVT::v32i8,   4 }, // vextractf128 + vpor + vpmovmskb + cmp
3208   };
3209 
3210   static const CostTblEntry SSE2BoolReduction[] = {
3211     { ISD::AND,  MVT::v2i64,   2 }, // movmskpd + cmp
3212     { ISD::AND,  MVT::v4i32,   2 }, // movmskps + cmp
3213     { ISD::AND,  MVT::v8i16,   2 }, // pmovmskb + cmp
3214     { ISD::AND,  MVT::v16i8,   2 }, // pmovmskb + cmp
3215     { ISD::OR,   MVT::v2i64,   2 }, // movmskpd + cmp
3216     { ISD::OR,   MVT::v4i32,   2 }, // movmskps + cmp
3217     { ISD::OR,   MVT::v8i16,   2 }, // pmovmskb + cmp
3218     { ISD::OR,   MVT::v16i8,   2 }, // pmovmskb + cmp
3219   };
3220 
3221   // Handle bool allof/anyof patterns.
3222   if (ValVTy->getElementType()->isIntegerTy(1)) {
3223     unsigned ArithmeticCost = 0;
3224     if (LT.first != 1 && MTy.isVector() &&
3225         MTy.getVectorNumElements() < ValVTy->getNumElements()) {
3226       // Type needs to be split. We need LT.first - 1 arithmetic ops.
3227       Type *SingleOpTy =
3228           VectorType::get(ValVTy->getElementType(), MTy.getVectorNumElements());
3229       ArithmeticCost = getArithmeticInstrCost(Opcode, SingleOpTy, CostKind);
3230       ArithmeticCost *= LT.first - 1;
3231     }
3232 
3233     if (ST->hasAVX512())
3234       if (const auto *Entry = CostTableLookup(AVX512BoolReduction, ISD, MTy))
3235         return ArithmeticCost + Entry->Cost;
3236     if (ST->hasAVX2())
3237       if (const auto *Entry = CostTableLookup(AVX2BoolReduction, ISD, MTy))
3238         return ArithmeticCost + Entry->Cost;
3239     if (ST->hasAVX())
3240       if (const auto *Entry = CostTableLookup(AVX1BoolReduction, ISD, MTy))
3241         return ArithmeticCost + Entry->Cost;
3242     if (ST->hasSSE2())
3243       if (const auto *Entry = CostTableLookup(SSE2BoolReduction, ISD, MTy))
3244         return ArithmeticCost + Entry->Cost;
3245 
3246     return BaseT::getArithmeticReductionCost(Opcode, ValVTy, IsPairwise,
3247                                              CostKind);
3248   }
3249 
3250   unsigned NumVecElts = ValVTy->getNumElements();
3251   unsigned ScalarSize = ValVTy->getScalarSizeInBits();
3252 
3253   // Special case power of 2 reductions where the scalar type isn't changed
3254   // by type legalization.
3255   if (!isPowerOf2_32(NumVecElts) || ScalarSize != MTy.getScalarSizeInBits())
3256     return BaseT::getArithmeticReductionCost(Opcode, ValVTy, IsPairwise,
3257                                              CostKind);
3258 
3259   unsigned ReductionCost = 0;
3260 
3261   auto *Ty = ValVTy;
3262   if (LT.first != 1 && MTy.isVector() &&
3263       MTy.getVectorNumElements() < ValVTy->getNumElements()) {
3264     // Type needs to be split. We need LT.first - 1 arithmetic ops.
3265     Ty = VectorType::get(ValVTy->getElementType(), MTy.getVectorNumElements());
3266     ReductionCost = getArithmeticInstrCost(Opcode, Ty, CostKind);
3267     ReductionCost *= LT.first - 1;
3268     NumVecElts = MTy.getVectorNumElements();
3269   }
3270 
3271   // Now handle reduction with the legal type, taking into account size changes
3272   // at each level.
3273   while (NumVecElts > 1) {
3274     // Determine the size of the remaining vector we need to reduce.
3275     unsigned Size = NumVecElts * ScalarSize;
3276     NumVecElts /= 2;
3277     // If we're reducing from 256/512 bits, use an extract_subvector.
3278     if (Size > 128) {
3279       auto *SubTy = VectorType::get(ValVTy->getElementType(), NumVecElts);
3280       ReductionCost +=
3281           getShuffleCost(TTI::SK_ExtractSubvector, Ty, NumVecElts, SubTy);
3282       Ty = SubTy;
3283     } else if (Size == 128) {
3284       // Reducing from 128 bits is a permute of v2f64/v2i64.
3285       VectorType *ShufTy;
3286       if (ValVTy->isFloatingPointTy())
3287         ShufTy = VectorType::get(Type::getDoubleTy(ValVTy->getContext()), 2);
3288       else
3289         ShufTy = VectorType::get(Type::getInt64Ty(ValVTy->getContext()), 2);
3290       ReductionCost +=
3291           getShuffleCost(TTI::SK_PermuteSingleSrc, ShufTy, 0, nullptr);
3292     } else if (Size == 64) {
3293       // Reducing from 64 bits is a shuffle of v4f32/v4i32.
3294       VectorType *ShufTy;
3295       if (ValVTy->isFloatingPointTy())
3296         ShufTy = VectorType::get(Type::getFloatTy(ValVTy->getContext()), 4);
3297       else
3298         ShufTy = VectorType::get(Type::getInt32Ty(ValVTy->getContext()), 4);
3299       ReductionCost +=
3300           getShuffleCost(TTI::SK_PermuteSingleSrc, ShufTy, 0, nullptr);
3301     } else {
3302       // Reducing from smaller size is a shift by immediate.
3303       auto *ShiftTy = VectorType::get(
3304           Type::getIntNTy(ValVTy->getContext(), Size), 128 / Size);
3305       ReductionCost += getArithmeticInstrCost(
3306           Instruction::LShr, ShiftTy, CostKind,
3307           TargetTransformInfo::OK_AnyValue,
3308           TargetTransformInfo::OK_UniformConstantValue,
3309           TargetTransformInfo::OP_None, TargetTransformInfo::OP_None);
3310     }
3311 
3312     // Add the arithmetic op for this level.
3313     ReductionCost += getArithmeticInstrCost(Opcode, Ty, CostKind);
3314   }
3315 
3316   // Add the final extract element to the cost.
3317   return ReductionCost + getVectorInstrCost(Instruction::ExtractElement, Ty, 0);
3318 }
3319 
3320 int X86TTIImpl::getMinMaxCost(Type *Ty, Type *CondTy, bool IsUnsigned) {
3321   std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Ty);
3322 
3323   MVT MTy = LT.second;
3324 
3325   int ISD;
3326   if (Ty->isIntOrIntVectorTy()) {
3327     ISD = IsUnsigned ? ISD::UMIN : ISD::SMIN;
3328   } else {
3329     assert(Ty->isFPOrFPVectorTy() &&
3330            "Expected float point or integer vector type.");
3331     ISD = ISD::FMINNUM;
3332   }
3333 
3334   static const CostTblEntry SSE1CostTbl[] = {
3335     {ISD::FMINNUM, MVT::v4f32, 1},
3336   };
3337 
3338   static const CostTblEntry SSE2CostTbl[] = {
3339     {ISD::FMINNUM, MVT::v2f64, 1},
3340     {ISD::SMIN,    MVT::v8i16, 1},
3341     {ISD::UMIN,    MVT::v16i8, 1},
3342   };
3343 
3344   static const CostTblEntry SSE41CostTbl[] = {
3345     {ISD::SMIN,    MVT::v4i32, 1},
3346     {ISD::UMIN,    MVT::v4i32, 1},
3347     {ISD::UMIN,    MVT::v8i16, 1},
3348     {ISD::SMIN,    MVT::v16i8, 1},
3349   };
3350 
3351   static const CostTblEntry SSE42CostTbl[] = {
3352     {ISD::UMIN,    MVT::v2i64, 3}, // xor+pcmpgtq+blendvpd
3353   };
3354 
3355   static const CostTblEntry AVX1CostTbl[] = {
3356     {ISD::FMINNUM, MVT::v8f32,  1},
3357     {ISD::FMINNUM, MVT::v4f64,  1},
3358     {ISD::SMIN,    MVT::v8i32,  3},
3359     {ISD::UMIN,    MVT::v8i32,  3},
3360     {ISD::SMIN,    MVT::v16i16, 3},
3361     {ISD::UMIN,    MVT::v16i16, 3},
3362     {ISD::SMIN,    MVT::v32i8,  3},
3363     {ISD::UMIN,    MVT::v32i8,  3},
3364   };
3365 
3366   static const CostTblEntry AVX2CostTbl[] = {
3367     {ISD::SMIN,    MVT::v8i32,  1},
3368     {ISD::UMIN,    MVT::v8i32,  1},
3369     {ISD::SMIN,    MVT::v16i16, 1},
3370     {ISD::UMIN,    MVT::v16i16, 1},
3371     {ISD::SMIN,    MVT::v32i8,  1},
3372     {ISD::UMIN,    MVT::v32i8,  1},
3373   };
3374 
3375   static const CostTblEntry AVX512CostTbl[] = {
3376     {ISD::FMINNUM, MVT::v16f32, 1},
3377     {ISD::FMINNUM, MVT::v8f64,  1},
3378     {ISD::SMIN,    MVT::v2i64,  1},
3379     {ISD::UMIN,    MVT::v2i64,  1},
3380     {ISD::SMIN,    MVT::v4i64,  1},
3381     {ISD::UMIN,    MVT::v4i64,  1},
3382     {ISD::SMIN,    MVT::v8i64,  1},
3383     {ISD::UMIN,    MVT::v8i64,  1},
3384     {ISD::SMIN,    MVT::v16i32, 1},
3385     {ISD::UMIN,    MVT::v16i32, 1},
3386   };
3387 
3388   static const CostTblEntry AVX512BWCostTbl[] = {
3389     {ISD::SMIN,    MVT::v32i16, 1},
3390     {ISD::UMIN,    MVT::v32i16, 1},
3391     {ISD::SMIN,    MVT::v64i8,  1},
3392     {ISD::UMIN,    MVT::v64i8,  1},
3393   };
3394 
3395   // If we have a native MIN/MAX instruction for this type, use it.
3396   if (ST->hasBWI())
3397     if (const auto *Entry = CostTableLookup(AVX512BWCostTbl, ISD, MTy))
3398       return LT.first * Entry->Cost;
3399 
3400   if (ST->hasAVX512())
3401     if (const auto *Entry = CostTableLookup(AVX512CostTbl, ISD, MTy))
3402       return LT.first * Entry->Cost;
3403 
3404   if (ST->hasAVX2())
3405     if (const auto *Entry = CostTableLookup(AVX2CostTbl, ISD, MTy))
3406       return LT.first * Entry->Cost;
3407 
3408   if (ST->hasAVX())
3409     if (const auto *Entry = CostTableLookup(AVX1CostTbl, ISD, MTy))
3410       return LT.first * Entry->Cost;
3411 
3412   if (ST->hasSSE42())
3413     if (const auto *Entry = CostTableLookup(SSE42CostTbl, ISD, MTy))
3414       return LT.first * Entry->Cost;
3415 
3416   if (ST->hasSSE41())
3417     if (const auto *Entry = CostTableLookup(SSE41CostTbl, ISD, MTy))
3418       return LT.first * Entry->Cost;
3419 
3420   if (ST->hasSSE2())
3421     if (const auto *Entry = CostTableLookup(SSE2CostTbl, ISD, MTy))
3422       return LT.first * Entry->Cost;
3423 
3424   if (ST->hasSSE1())
3425     if (const auto *Entry = CostTableLookup(SSE1CostTbl, ISD, MTy))
3426       return LT.first * Entry->Cost;
3427 
3428   unsigned CmpOpcode;
3429   if (Ty->isFPOrFPVectorTy()) {
3430     CmpOpcode = Instruction::FCmp;
3431   } else {
3432     assert(Ty->isIntOrIntVectorTy() &&
3433            "expecting floating point or integer type for min/max reduction");
3434     CmpOpcode = Instruction::ICmp;
3435   }
3436 
3437   TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
3438   // Otherwise fall back to cmp+select.
3439   return getCmpSelInstrCost(CmpOpcode, Ty, CondTy, CostKind) +
3440          getCmpSelInstrCost(Instruction::Select, Ty, CondTy, CostKind);
3441 }
3442 
3443 int X86TTIImpl::getMinMaxReductionCost(VectorType *ValTy, VectorType *CondTy,
3444                                        bool IsPairwise, bool IsUnsigned,
3445                                        TTI::TargetCostKind CostKind) {
3446   // Just use the default implementation for pair reductions.
3447   if (IsPairwise)
3448     return BaseT::getMinMaxReductionCost(ValTy, CondTy, IsPairwise, IsUnsigned,
3449                                          CostKind);
3450 
3451   std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, ValTy);
3452 
3453   MVT MTy = LT.second;
3454 
3455   int ISD;
3456   if (ValTy->isIntOrIntVectorTy()) {
3457     ISD = IsUnsigned ? ISD::UMIN : ISD::SMIN;
3458   } else {
3459     assert(ValTy->isFPOrFPVectorTy() &&
3460            "Expected float point or integer vector type.");
3461     ISD = ISD::FMINNUM;
3462   }
3463 
3464   // We use the Intel Architecture Code Analyzer(IACA) to measure the throughput
3465   // and make it as the cost.
3466 
3467   static const CostTblEntry SSE2CostTblNoPairWise[] = {
3468       {ISD::UMIN, MVT::v2i16, 5}, // need pxors to use pminsw/pmaxsw
3469       {ISD::UMIN, MVT::v4i16, 7}, // need pxors to use pminsw/pmaxsw
3470       {ISD::UMIN, MVT::v8i16, 9}, // need pxors to use pminsw/pmaxsw
3471   };
3472 
3473   static const CostTblEntry SSE41CostTblNoPairWise[] = {
3474       {ISD::SMIN, MVT::v2i16, 3}, // same as sse2
3475       {ISD::SMIN, MVT::v4i16, 5}, // same as sse2
3476       {ISD::UMIN, MVT::v2i16, 5}, // same as sse2
3477       {ISD::UMIN, MVT::v4i16, 7}, // same as sse2
3478       {ISD::SMIN, MVT::v8i16, 4}, // phminposuw+xor
3479       {ISD::UMIN, MVT::v8i16, 4}, // FIXME: umin is cheaper than umax
3480       {ISD::SMIN, MVT::v2i8,  3}, // pminsb
3481       {ISD::SMIN, MVT::v4i8,  5}, // pminsb
3482       {ISD::SMIN, MVT::v8i8,  7}, // pminsb
3483       {ISD::SMIN, MVT::v16i8, 6},
3484       {ISD::UMIN, MVT::v2i8,  3}, // same as sse2
3485       {ISD::UMIN, MVT::v4i8,  5}, // same as sse2
3486       {ISD::UMIN, MVT::v8i8,  7}, // same as sse2
3487       {ISD::UMIN, MVT::v16i8, 6}, // FIXME: umin is cheaper than umax
3488   };
3489 
3490   static const CostTblEntry AVX1CostTblNoPairWise[] = {
3491       {ISD::SMIN, MVT::v16i16, 6},
3492       {ISD::UMIN, MVT::v16i16, 6}, // FIXME: umin is cheaper than umax
3493       {ISD::SMIN, MVT::v32i8, 8},
3494       {ISD::UMIN, MVT::v32i8, 8},
3495   };
3496 
3497   static const CostTblEntry AVX512BWCostTblNoPairWise[] = {
3498       {ISD::SMIN, MVT::v32i16, 8},
3499       {ISD::UMIN, MVT::v32i16, 8}, // FIXME: umin is cheaper than umax
3500       {ISD::SMIN, MVT::v64i8, 10},
3501       {ISD::UMIN, MVT::v64i8, 10},
3502   };
3503 
3504   // Before legalizing the type, give a chance to look up illegal narrow types
3505   // in the table.
3506   // FIXME: Is there a better way to do this?
3507   EVT VT = TLI->getValueType(DL, ValTy);
3508   if (VT.isSimple()) {
3509     MVT MTy = VT.getSimpleVT();
3510     if (ST->hasBWI())
3511       if (const auto *Entry = CostTableLookup(AVX512BWCostTblNoPairWise, ISD, MTy))
3512         return Entry->Cost;
3513 
3514     if (ST->hasAVX())
3515       if (const auto *Entry = CostTableLookup(AVX1CostTblNoPairWise, ISD, MTy))
3516         return Entry->Cost;
3517 
3518     if (ST->hasSSE41())
3519       if (const auto *Entry = CostTableLookup(SSE41CostTblNoPairWise, ISD, MTy))
3520         return Entry->Cost;
3521 
3522     if (ST->hasSSE2())
3523       if (const auto *Entry = CostTableLookup(SSE2CostTblNoPairWise, ISD, MTy))
3524         return Entry->Cost;
3525   }
3526 
3527   auto *ValVTy = cast<VectorType>(ValTy);
3528   unsigned NumVecElts = ValVTy->getNumElements();
3529 
3530   auto *Ty = ValVTy;
3531   unsigned MinMaxCost = 0;
3532   if (LT.first != 1 && MTy.isVector() &&
3533       MTy.getVectorNumElements() < ValVTy->getNumElements()) {
3534     // Type needs to be split. We need LT.first - 1 operations ops.
3535     Ty = VectorType::get(ValVTy->getElementType(), MTy.getVectorNumElements());
3536     auto *SubCondTy = VectorType::get(
3537         cast<VectorType>(CondTy)->getElementType(), MTy.getVectorNumElements());
3538     MinMaxCost = getMinMaxCost(Ty, SubCondTy, IsUnsigned);
3539     MinMaxCost *= LT.first - 1;
3540     NumVecElts = MTy.getVectorNumElements();
3541   }
3542 
3543   if (ST->hasBWI())
3544     if (const auto *Entry = CostTableLookup(AVX512BWCostTblNoPairWise, ISD, MTy))
3545       return MinMaxCost + Entry->Cost;
3546 
3547   if (ST->hasAVX())
3548     if (const auto *Entry = CostTableLookup(AVX1CostTblNoPairWise, ISD, MTy))
3549       return MinMaxCost + Entry->Cost;
3550 
3551   if (ST->hasSSE41())
3552     if (const auto *Entry = CostTableLookup(SSE41CostTblNoPairWise, ISD, MTy))
3553       return MinMaxCost + Entry->Cost;
3554 
3555   if (ST->hasSSE2())
3556     if (const auto *Entry = CostTableLookup(SSE2CostTblNoPairWise, ISD, MTy))
3557       return MinMaxCost + Entry->Cost;
3558 
3559   unsigned ScalarSize = ValTy->getScalarSizeInBits();
3560 
3561   // Special case power of 2 reductions where the scalar type isn't changed
3562   // by type legalization.
3563   if (!isPowerOf2_32(ValVTy->getNumElements()) ||
3564       ScalarSize != MTy.getScalarSizeInBits())
3565     return BaseT::getMinMaxReductionCost(ValTy, CondTy, IsPairwise, IsUnsigned,
3566                                          CostKind);
3567 
3568   // Now handle reduction with the legal type, taking into account size changes
3569   // at each level.
3570   while (NumVecElts > 1) {
3571     // Determine the size of the remaining vector we need to reduce.
3572     unsigned Size = NumVecElts * ScalarSize;
3573     NumVecElts /= 2;
3574     // If we're reducing from 256/512 bits, use an extract_subvector.
3575     if (Size > 128) {
3576       auto *SubTy = VectorType::get(ValVTy->getElementType(), NumVecElts);
3577       MinMaxCost +=
3578           getShuffleCost(TTI::SK_ExtractSubvector, Ty, NumVecElts, SubTy);
3579       Ty = SubTy;
3580     } else if (Size == 128) {
3581       // Reducing from 128 bits is a permute of v2f64/v2i64.
3582       VectorType *ShufTy;
3583       if (ValTy->isFloatingPointTy())
3584         ShufTy = VectorType::get(Type::getDoubleTy(ValTy->getContext()), 2);
3585       else
3586         ShufTy = VectorType::get(Type::getInt64Ty(ValTy->getContext()), 2);
3587       MinMaxCost +=
3588           getShuffleCost(TTI::SK_PermuteSingleSrc, ShufTy, 0, nullptr);
3589     } else if (Size == 64) {
3590       // Reducing from 64 bits is a shuffle of v4f32/v4i32.
3591       VectorType *ShufTy;
3592       if (ValTy->isFloatingPointTy())
3593         ShufTy = VectorType::get(Type::getFloatTy(ValTy->getContext()), 4);
3594       else
3595         ShufTy = VectorType::get(Type::getInt32Ty(ValTy->getContext()), 4);
3596       MinMaxCost +=
3597           getShuffleCost(TTI::SK_PermuteSingleSrc, ShufTy, 0, nullptr);
3598     } else {
3599       // Reducing from smaller size is a shift by immediate.
3600       VectorType *ShiftTy = VectorType::get(
3601           Type::getIntNTy(ValTy->getContext(), Size), 128 / Size);
3602       MinMaxCost += getArithmeticInstrCost(
3603           Instruction::LShr, ShiftTy, TTI::TCK_RecipThroughput,
3604           TargetTransformInfo::OK_AnyValue,
3605           TargetTransformInfo::OK_UniformConstantValue,
3606           TargetTransformInfo::OP_None, TargetTransformInfo::OP_None);
3607     }
3608 
3609     // Add the arithmetic op for this level.
3610     auto *SubCondTy = VectorType::get(CondTy->getElementType(),
3611                                       Ty->getNumElements());
3612     MinMaxCost += getMinMaxCost(Ty, SubCondTy, IsUnsigned);
3613   }
3614 
3615   // Add the final extract element to the cost.
3616   return MinMaxCost + getVectorInstrCost(Instruction::ExtractElement, Ty, 0);
3617 }
3618 
3619 /// Calculate the cost of materializing a 64-bit value. This helper
3620 /// method might only calculate a fraction of a larger immediate. Therefore it
3621 /// is valid to return a cost of ZERO.
3622 int X86TTIImpl::getIntImmCost(int64_t Val) {
3623   if (Val == 0)
3624     return TTI::TCC_Free;
3625 
3626   if (isInt<32>(Val))
3627     return TTI::TCC_Basic;
3628 
3629   return 2 * TTI::TCC_Basic;
3630 }
3631 
3632 int X86TTIImpl::getIntImmCost(const APInt &Imm, Type *Ty,
3633                               TTI::TargetCostKind CostKind) {
3634   assert(Ty->isIntegerTy());
3635 
3636   unsigned BitSize = Ty->getPrimitiveSizeInBits();
3637   if (BitSize == 0)
3638     return ~0U;
3639 
3640   // Never hoist constants larger than 128bit, because this might lead to
3641   // incorrect code generation or assertions in codegen.
3642   // Fixme: Create a cost model for types larger than i128 once the codegen
3643   // issues have been fixed.
3644   if (BitSize > 128)
3645     return TTI::TCC_Free;
3646 
3647   if (Imm == 0)
3648     return TTI::TCC_Free;
3649 
3650   // Sign-extend all constants to a multiple of 64-bit.
3651   APInt ImmVal = Imm;
3652   if (BitSize % 64 != 0)
3653     ImmVal = Imm.sext(alignTo(BitSize, 64));
3654 
3655   // Split the constant into 64-bit chunks and calculate the cost for each
3656   // chunk.
3657   int Cost = 0;
3658   for (unsigned ShiftVal = 0; ShiftVal < BitSize; ShiftVal += 64) {
3659     APInt Tmp = ImmVal.ashr(ShiftVal).sextOrTrunc(64);
3660     int64_t Val = Tmp.getSExtValue();
3661     Cost += getIntImmCost(Val);
3662   }
3663   // We need at least one instruction to materialize the constant.
3664   return std::max(1, Cost);
3665 }
3666 
3667 int X86TTIImpl::getIntImmCostInst(unsigned Opcode, unsigned Idx, const APInt &Imm,
3668                                   Type *Ty, TTI::TargetCostKind CostKind) {
3669   assert(Ty->isIntegerTy());
3670 
3671   unsigned BitSize = Ty->getPrimitiveSizeInBits();
3672   // There is no cost model for constants with a bit size of 0. Return TCC_Free
3673   // here, so that constant hoisting will ignore this constant.
3674   if (BitSize == 0)
3675     return TTI::TCC_Free;
3676 
3677   unsigned ImmIdx = ~0U;
3678   switch (Opcode) {
3679   default:
3680     return TTI::TCC_Free;
3681   case Instruction::GetElementPtr:
3682     // Always hoist the base address of a GetElementPtr. This prevents the
3683     // creation of new constants for every base constant that gets constant
3684     // folded with the offset.
3685     if (Idx == 0)
3686       return 2 * TTI::TCC_Basic;
3687     return TTI::TCC_Free;
3688   case Instruction::Store:
3689     ImmIdx = 0;
3690     break;
3691   case Instruction::ICmp:
3692     // This is an imperfect hack to prevent constant hoisting of
3693     // compares that might be trying to check if a 64-bit value fits in
3694     // 32-bits. The backend can optimize these cases using a right shift by 32.
3695     // Ideally we would check the compare predicate here. There also other
3696     // similar immediates the backend can use shifts for.
3697     if (Idx == 1 && Imm.getBitWidth() == 64) {
3698       uint64_t ImmVal = Imm.getZExtValue();
3699       if (ImmVal == 0x100000000ULL || ImmVal == 0xffffffff)
3700         return TTI::TCC_Free;
3701     }
3702     ImmIdx = 1;
3703     break;
3704   case Instruction::And:
3705     // We support 64-bit ANDs with immediates with 32-bits of leading zeroes
3706     // by using a 32-bit operation with implicit zero extension. Detect such
3707     // immediates here as the normal path expects bit 31 to be sign extended.
3708     if (Idx == 1 && Imm.getBitWidth() == 64 && isUInt<32>(Imm.getZExtValue()))
3709       return TTI::TCC_Free;
3710     ImmIdx = 1;
3711     break;
3712   case Instruction::Add:
3713   case Instruction::Sub:
3714     // For add/sub, we can use the opposite instruction for INT32_MIN.
3715     if (Idx == 1 && Imm.getBitWidth() == 64 && Imm.getZExtValue() == 0x80000000)
3716       return TTI::TCC_Free;
3717     ImmIdx = 1;
3718     break;
3719   case Instruction::UDiv:
3720   case Instruction::SDiv:
3721   case Instruction::URem:
3722   case Instruction::SRem:
3723     // Division by constant is typically expanded later into a different
3724     // instruction sequence. This completely changes the constants.
3725     // Report them as "free" to stop ConstantHoist from marking them as opaque.
3726     return TTI::TCC_Free;
3727   case Instruction::Mul:
3728   case Instruction::Or:
3729   case Instruction::Xor:
3730     ImmIdx = 1;
3731     break;
3732   // Always return TCC_Free for the shift value of a shift instruction.
3733   case Instruction::Shl:
3734   case Instruction::LShr:
3735   case Instruction::AShr:
3736     if (Idx == 1)
3737       return TTI::TCC_Free;
3738     break;
3739   case Instruction::Trunc:
3740   case Instruction::ZExt:
3741   case Instruction::SExt:
3742   case Instruction::IntToPtr:
3743   case Instruction::PtrToInt:
3744   case Instruction::BitCast:
3745   case Instruction::PHI:
3746   case Instruction::Call:
3747   case Instruction::Select:
3748   case Instruction::Ret:
3749   case Instruction::Load:
3750     break;
3751   }
3752 
3753   if (Idx == ImmIdx) {
3754     int NumConstants = divideCeil(BitSize, 64);
3755     int Cost = X86TTIImpl::getIntImmCost(Imm, Ty, CostKind);
3756     return (Cost <= NumConstants * TTI::TCC_Basic)
3757                ? static_cast<int>(TTI::TCC_Free)
3758                : Cost;
3759   }
3760 
3761   return X86TTIImpl::getIntImmCost(Imm, Ty, CostKind);
3762 }
3763 
3764 int X86TTIImpl::getIntImmCostIntrin(Intrinsic::ID IID, unsigned Idx,
3765                                     const APInt &Imm, Type *Ty,
3766                                     TTI::TargetCostKind CostKind) {
3767   assert(Ty->isIntegerTy());
3768 
3769   unsigned BitSize = Ty->getPrimitiveSizeInBits();
3770   // There is no cost model for constants with a bit size of 0. Return TCC_Free
3771   // here, so that constant hoisting will ignore this constant.
3772   if (BitSize == 0)
3773     return TTI::TCC_Free;
3774 
3775   switch (IID) {
3776   default:
3777     return TTI::TCC_Free;
3778   case Intrinsic::sadd_with_overflow:
3779   case Intrinsic::uadd_with_overflow:
3780   case Intrinsic::ssub_with_overflow:
3781   case Intrinsic::usub_with_overflow:
3782   case Intrinsic::smul_with_overflow:
3783   case Intrinsic::umul_with_overflow:
3784     if ((Idx == 1) && Imm.getBitWidth() <= 64 && isInt<32>(Imm.getSExtValue()))
3785       return TTI::TCC_Free;
3786     break;
3787   case Intrinsic::experimental_stackmap:
3788     if ((Idx < 2) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue())))
3789       return TTI::TCC_Free;
3790     break;
3791   case Intrinsic::experimental_patchpoint_void:
3792   case Intrinsic::experimental_patchpoint_i64:
3793     if ((Idx < 4) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue())))
3794       return TTI::TCC_Free;
3795     break;
3796   }
3797   return X86TTIImpl::getIntImmCost(Imm, Ty, CostKind);
3798 }
3799 
3800 unsigned
3801 X86TTIImpl::getUserCost(const User *U, ArrayRef<const Value *> Operands,
3802                         TTI::TargetCostKind CostKind) {
3803   if (isa<StoreInst>(U)) {
3804     Value *Ptr = U->getOperand(1);
3805     // Store instruction with index and scale costs 2 Uops.
3806     // Check the preceding GEP to identify non-const indices.
3807     if (auto GEP = dyn_cast<GetElementPtrInst>(Ptr)) {
3808       if (!all_of(GEP->indices(), [](Value *V) { return isa<Constant>(V); }))
3809         return TTI::TCC_Basic * 2;
3810     }
3811     return TTI::TCC_Basic;
3812   }
3813   return BaseT::getUserCost(U, Operands, CostKind);
3814 }
3815 
3816 // Return an average cost of Gather / Scatter instruction, maybe improved later
3817 int X86TTIImpl::getGSVectorCost(unsigned Opcode, Type *SrcVTy, Value *Ptr,
3818                                 unsigned Alignment, unsigned AddressSpace) {
3819 
3820   assert(isa<VectorType>(SrcVTy) && "Unexpected type in getGSVectorCost");
3821   unsigned VF = cast<VectorType>(SrcVTy)->getNumElements();
3822 
3823   // Try to reduce index size from 64 bit (default for GEP)
3824   // to 32. It is essential for VF 16. If the index can't be reduced to 32, the
3825   // operation will use 16 x 64 indices which do not fit in a zmm and needs
3826   // to split. Also check that the base pointer is the same for all lanes,
3827   // and that there's at most one variable index.
3828   auto getIndexSizeInBits = [](Value *Ptr, const DataLayout& DL) {
3829     unsigned IndexSize = DL.getPointerSizeInBits();
3830     GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr);
3831     if (IndexSize < 64 || !GEP)
3832       return IndexSize;
3833 
3834     unsigned NumOfVarIndices = 0;
3835     Value *Ptrs = GEP->getPointerOperand();
3836     if (Ptrs->getType()->isVectorTy() && !getSplatValue(Ptrs))
3837       return IndexSize;
3838     for (unsigned i = 1; i < GEP->getNumOperands(); ++i) {
3839       if (isa<Constant>(GEP->getOperand(i)))
3840         continue;
3841       Type *IndxTy = GEP->getOperand(i)->getType();
3842       if (auto *IndexVTy = dyn_cast<VectorType>(IndxTy))
3843         IndxTy = IndexVTy->getElementType();
3844       if ((IndxTy->getPrimitiveSizeInBits() == 64 &&
3845           !isa<SExtInst>(GEP->getOperand(i))) ||
3846          ++NumOfVarIndices > 1)
3847         return IndexSize; // 64
3848     }
3849     return (unsigned)32;
3850   };
3851 
3852 
3853   // Trying to reduce IndexSize to 32 bits for vector 16.
3854   // By default the IndexSize is equal to pointer size.
3855   unsigned IndexSize = (ST->hasAVX512() && VF >= 16)
3856                            ? getIndexSizeInBits(Ptr, DL)
3857                            : DL.getPointerSizeInBits();
3858 
3859   Type *IndexVTy = VectorType::get(IntegerType::get(SrcVTy->getContext(),
3860                                                     IndexSize), VF);
3861   std::pair<int, MVT> IdxsLT = TLI->getTypeLegalizationCost(DL, IndexVTy);
3862   std::pair<int, MVT> SrcLT = TLI->getTypeLegalizationCost(DL, SrcVTy);
3863   int SplitFactor = std::max(IdxsLT.first, SrcLT.first);
3864   if (SplitFactor > 1) {
3865     // Handle splitting of vector of pointers
3866     Type *SplitSrcTy = VectorType::get(SrcVTy->getScalarType(), VF / SplitFactor);
3867     return SplitFactor * getGSVectorCost(Opcode, SplitSrcTy, Ptr, Alignment,
3868                                          AddressSpace);
3869   }
3870 
3871   // The gather / scatter cost is given by Intel architects. It is a rough
3872   // number since we are looking at one instruction in a time.
3873   const int GSOverhead = (Opcode == Instruction::Load)
3874                              ? ST->getGatherOverhead()
3875                              : ST->getScatterOverhead();
3876   return GSOverhead + VF * getMemoryOpCost(Opcode, SrcVTy->getScalarType(),
3877                                            MaybeAlign(Alignment), AddressSpace,
3878                                            TTI::TCK_RecipThroughput);
3879 }
3880 
3881 /// Return the cost of full scalarization of gather / scatter operation.
3882 ///
3883 /// Opcode - Load or Store instruction.
3884 /// SrcVTy - The type of the data vector that should be gathered or scattered.
3885 /// VariableMask - The mask is non-constant at compile time.
3886 /// Alignment - Alignment for one element.
3887 /// AddressSpace - pointer[s] address space.
3888 ///
3889 int X86TTIImpl::getGSScalarCost(unsigned Opcode, Type *SrcVTy,
3890                                 bool VariableMask, unsigned Alignment,
3891                                 unsigned AddressSpace) {
3892   unsigned VF = cast<VectorType>(SrcVTy)->getNumElements();
3893   APInt DemandedElts = APInt::getAllOnesValue(VF);
3894   TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
3895 
3896   int MaskUnpackCost = 0;
3897   if (VariableMask) {
3898     VectorType *MaskTy =
3899       VectorType::get(Type::getInt1Ty(SrcVTy->getContext()), VF);
3900     MaskUnpackCost =
3901         getScalarizationOverhead(MaskTy, DemandedElts, false, true);
3902     int ScalarCompareCost =
3903       getCmpSelInstrCost(Instruction::ICmp, Type::getInt1Ty(SrcVTy->getContext()),
3904                          nullptr, CostKind);
3905     int BranchCost = getCFInstrCost(Instruction::Br, CostKind);
3906     MaskUnpackCost += VF * (BranchCost + ScalarCompareCost);
3907   }
3908 
3909   // The cost of the scalar loads/stores.
3910   int MemoryOpCost = VF * getMemoryOpCost(Opcode, SrcVTy->getScalarType(),
3911                                           MaybeAlign(Alignment), AddressSpace,
3912                                           CostKind);
3913 
3914   int InsertExtractCost = 0;
3915   if (Opcode == Instruction::Load)
3916     for (unsigned i = 0; i < VF; ++i)
3917       // Add the cost of inserting each scalar load into the vector
3918       InsertExtractCost +=
3919         getVectorInstrCost(Instruction::InsertElement, SrcVTy, i);
3920   else
3921     for (unsigned i = 0; i < VF; ++i)
3922       // Add the cost of extracting each element out of the data vector
3923       InsertExtractCost +=
3924         getVectorInstrCost(Instruction::ExtractElement, SrcVTy, i);
3925 
3926   return MemoryOpCost + MaskUnpackCost + InsertExtractCost;
3927 }
3928 
3929 /// Calculate the cost of Gather / Scatter operation
3930 int X86TTIImpl::getGatherScatterOpCost(
3931     unsigned Opcode, Type *SrcVTy, Value *Ptr, bool VariableMask,
3932     unsigned Alignment, TTI::TargetCostKind CostKind,
3933     const Instruction *I = nullptr) {
3934 
3935   assert(SrcVTy->isVectorTy() && "Unexpected data type for Gather/Scatter");
3936   unsigned VF = cast<VectorType>(SrcVTy)->getNumElements();
3937   PointerType *PtrTy = dyn_cast<PointerType>(Ptr->getType());
3938   if (!PtrTy && Ptr->getType()->isVectorTy())
3939     PtrTy = dyn_cast<PointerType>(
3940         cast<VectorType>(Ptr->getType())->getElementType());
3941   assert(PtrTy && "Unexpected type for Ptr argument");
3942   unsigned AddressSpace = PtrTy->getAddressSpace();
3943 
3944   bool Scalarize = false;
3945   if ((Opcode == Instruction::Load &&
3946        !isLegalMaskedGather(SrcVTy, MaybeAlign(Alignment))) ||
3947       (Opcode == Instruction::Store &&
3948        !isLegalMaskedScatter(SrcVTy, MaybeAlign(Alignment))))
3949     Scalarize = true;
3950   // Gather / Scatter for vector 2 is not profitable on KNL / SKX
3951   // Vector-4 of gather/scatter instruction does not exist on KNL.
3952   // We can extend it to 8 elements, but zeroing upper bits of
3953   // the mask vector will add more instructions. Right now we give the scalar
3954   // cost of vector-4 for KNL. TODO: Check, maybe the gather/scatter instruction
3955   // is better in the VariableMask case.
3956   if (ST->hasAVX512() && (VF == 2 || (VF == 4 && !ST->hasVLX())))
3957     Scalarize = true;
3958 
3959   if (Scalarize)
3960     return getGSScalarCost(Opcode, SrcVTy, VariableMask, Alignment,
3961                            AddressSpace);
3962 
3963   return getGSVectorCost(Opcode, SrcVTy, Ptr, Alignment, AddressSpace);
3964 }
3965 
3966 bool X86TTIImpl::isLSRCostLess(TargetTransformInfo::LSRCost &C1,
3967                                TargetTransformInfo::LSRCost &C2) {
3968     // X86 specific here are "instruction number 1st priority".
3969     return std::tie(C1.Insns, C1.NumRegs, C1.AddRecCost,
3970                     C1.NumIVMuls, C1.NumBaseAdds,
3971                     C1.ScaleCost, C1.ImmCost, C1.SetupCost) <
3972            std::tie(C2.Insns, C2.NumRegs, C2.AddRecCost,
3973                     C2.NumIVMuls, C2.NumBaseAdds,
3974                     C2.ScaleCost, C2.ImmCost, C2.SetupCost);
3975 }
3976 
3977 bool X86TTIImpl::canMacroFuseCmp() {
3978   return ST->hasMacroFusion() || ST->hasBranchFusion();
3979 }
3980 
3981 bool X86TTIImpl::isLegalMaskedLoad(Type *DataTy, MaybeAlign Alignment) {
3982   if (!ST->hasAVX())
3983     return false;
3984 
3985   // The backend can't handle a single element vector.
3986   if (isa<VectorType>(DataTy) &&
3987       cast<VectorType>(DataTy)->getNumElements() == 1)
3988     return false;
3989   Type *ScalarTy = DataTy->getScalarType();
3990 
3991   if (ScalarTy->isPointerTy())
3992     return true;
3993 
3994   if (ScalarTy->isFloatTy() || ScalarTy->isDoubleTy())
3995     return true;
3996 
3997   if (!ScalarTy->isIntegerTy())
3998     return false;
3999 
4000   unsigned IntWidth = ScalarTy->getIntegerBitWidth();
4001   return IntWidth == 32 || IntWidth == 64 ||
4002          ((IntWidth == 8 || IntWidth == 16) && ST->hasBWI());
4003 }
4004 
4005 bool X86TTIImpl::isLegalMaskedStore(Type *DataType, MaybeAlign Alignment) {
4006   return isLegalMaskedLoad(DataType, Alignment);
4007 }
4008 
4009 bool X86TTIImpl::isLegalNTLoad(Type *DataType, Align Alignment) {
4010   unsigned DataSize = DL.getTypeStoreSize(DataType);
4011   // The only supported nontemporal loads are for aligned vectors of 16 or 32
4012   // bytes.  Note that 32-byte nontemporal vector loads are supported by AVX2
4013   // (the equivalent stores only require AVX).
4014   if (Alignment >= DataSize && (DataSize == 16 || DataSize == 32))
4015     return DataSize == 16 ?  ST->hasSSE1() : ST->hasAVX2();
4016 
4017   return false;
4018 }
4019 
4020 bool X86TTIImpl::isLegalNTStore(Type *DataType, Align Alignment) {
4021   unsigned DataSize = DL.getTypeStoreSize(DataType);
4022 
4023   // SSE4A supports nontemporal stores of float and double at arbitrary
4024   // alignment.
4025   if (ST->hasSSE4A() && (DataType->isFloatTy() || DataType->isDoubleTy()))
4026     return true;
4027 
4028   // Besides the SSE4A subtarget exception above, only aligned stores are
4029   // available nontemporaly on any other subtarget.  And only stores with a size
4030   // of 4..32 bytes (powers of 2, only) are permitted.
4031   if (Alignment < DataSize || DataSize < 4 || DataSize > 32 ||
4032       !isPowerOf2_32(DataSize))
4033     return false;
4034 
4035   // 32-byte vector nontemporal stores are supported by AVX (the equivalent
4036   // loads require AVX2).
4037   if (DataSize == 32)
4038     return ST->hasAVX();
4039   else if (DataSize == 16)
4040     return ST->hasSSE1();
4041   return true;
4042 }
4043 
4044 bool X86TTIImpl::isLegalMaskedExpandLoad(Type *DataTy) {
4045   if (!isa<VectorType>(DataTy))
4046     return false;
4047 
4048   if (!ST->hasAVX512())
4049     return false;
4050 
4051   // The backend can't handle a single element vector.
4052   if (cast<VectorType>(DataTy)->getNumElements() == 1)
4053     return false;
4054 
4055   Type *ScalarTy = cast<VectorType>(DataTy)->getElementType();
4056 
4057   if (ScalarTy->isFloatTy() || ScalarTy->isDoubleTy())
4058     return true;
4059 
4060   if (!ScalarTy->isIntegerTy())
4061     return false;
4062 
4063   unsigned IntWidth = ScalarTy->getIntegerBitWidth();
4064   return IntWidth == 32 || IntWidth == 64 ||
4065          ((IntWidth == 8 || IntWidth == 16) && ST->hasVBMI2());
4066 }
4067 
4068 bool X86TTIImpl::isLegalMaskedCompressStore(Type *DataTy) {
4069   return isLegalMaskedExpandLoad(DataTy);
4070 }
4071 
4072 bool X86TTIImpl::isLegalMaskedGather(Type *DataTy, MaybeAlign Alignment) {
4073   // Some CPUs have better gather performance than others.
4074   // TODO: Remove the explicit ST->hasAVX512()?, That would mean we would only
4075   // enable gather with a -march.
4076   if (!(ST->hasAVX512() || (ST->hasFastGather() && ST->hasAVX2())))
4077     return false;
4078 
4079   // This function is called now in two cases: from the Loop Vectorizer
4080   // and from the Scalarizer.
4081   // When the Loop Vectorizer asks about legality of the feature,
4082   // the vectorization factor is not calculated yet. The Loop Vectorizer
4083   // sends a scalar type and the decision is based on the width of the
4084   // scalar element.
4085   // Later on, the cost model will estimate usage this intrinsic based on
4086   // the vector type.
4087   // The Scalarizer asks again about legality. It sends a vector type.
4088   // In this case we can reject non-power-of-2 vectors.
4089   // We also reject single element vectors as the type legalizer can't
4090   // scalarize it.
4091   if (auto *DataVTy = dyn_cast<VectorType>(DataTy)) {
4092     unsigned NumElts = DataVTy->getNumElements();
4093     if (NumElts == 1 || !isPowerOf2_32(NumElts))
4094       return false;
4095   }
4096   Type *ScalarTy = DataTy->getScalarType();
4097   if (ScalarTy->isPointerTy())
4098     return true;
4099 
4100   if (ScalarTy->isFloatTy() || ScalarTy->isDoubleTy())
4101     return true;
4102 
4103   if (!ScalarTy->isIntegerTy())
4104     return false;
4105 
4106   unsigned IntWidth = ScalarTy->getIntegerBitWidth();
4107   return IntWidth == 32 || IntWidth == 64;
4108 }
4109 
4110 bool X86TTIImpl::isLegalMaskedScatter(Type *DataType, MaybeAlign Alignment) {
4111   // AVX2 doesn't support scatter
4112   if (!ST->hasAVX512())
4113     return false;
4114   return isLegalMaskedGather(DataType, Alignment);
4115 }
4116 
4117 bool X86TTIImpl::hasDivRemOp(Type *DataType, bool IsSigned) {
4118   EVT VT = TLI->getValueType(DL, DataType);
4119   return TLI->isOperationLegal(IsSigned ? ISD::SDIVREM : ISD::UDIVREM, VT);
4120 }
4121 
4122 bool X86TTIImpl::isFCmpOrdCheaperThanFCmpZero(Type *Ty) {
4123   return false;
4124 }
4125 
4126 bool X86TTIImpl::areInlineCompatible(const Function *Caller,
4127                                      const Function *Callee) const {
4128   const TargetMachine &TM = getTLI()->getTargetMachine();
4129 
4130   // Work this as a subsetting of subtarget features.
4131   const FeatureBitset &CallerBits =
4132       TM.getSubtargetImpl(*Caller)->getFeatureBits();
4133   const FeatureBitset &CalleeBits =
4134       TM.getSubtargetImpl(*Callee)->getFeatureBits();
4135 
4136   FeatureBitset RealCallerBits = CallerBits & ~InlineFeatureIgnoreList;
4137   FeatureBitset RealCalleeBits = CalleeBits & ~InlineFeatureIgnoreList;
4138   return (RealCallerBits & RealCalleeBits) == RealCalleeBits;
4139 }
4140 
4141 bool X86TTIImpl::areFunctionArgsABICompatible(
4142     const Function *Caller, const Function *Callee,
4143     SmallPtrSetImpl<Argument *> &Args) const {
4144   if (!BaseT::areFunctionArgsABICompatible(Caller, Callee, Args))
4145     return false;
4146 
4147   // If we get here, we know the target features match. If one function
4148   // considers 512-bit vectors legal and the other does not, consider them
4149   // incompatible.
4150   const TargetMachine &TM = getTLI()->getTargetMachine();
4151 
4152   if (TM.getSubtarget<X86Subtarget>(*Caller).useAVX512Regs() ==
4153       TM.getSubtarget<X86Subtarget>(*Callee).useAVX512Regs())
4154     return true;
4155 
4156   // Consider the arguments compatible if they aren't vectors or aggregates.
4157   // FIXME: Look at the size of vectors.
4158   // FIXME: Look at the element types of aggregates to see if there are vectors.
4159   // FIXME: The API of this function seems intended to allow arguments
4160   // to be removed from the set, but the caller doesn't check if the set
4161   // becomes empty so that may not work in practice.
4162   return llvm::none_of(Args, [](Argument *A) {
4163     auto *EltTy = cast<PointerType>(A->getType())->getElementType();
4164     return EltTy->isVectorTy() || EltTy->isAggregateType();
4165   });
4166 }
4167 
4168 X86TTIImpl::TTI::MemCmpExpansionOptions
4169 X86TTIImpl::enableMemCmpExpansion(bool OptSize, bool IsZeroCmp) const {
4170   TTI::MemCmpExpansionOptions Options;
4171   Options.MaxNumLoads = TLI->getMaxExpandSizeMemcmp(OptSize);
4172   Options.NumLoadsPerBlock = 2;
4173   // All GPR and vector loads can be unaligned.
4174   Options.AllowOverlappingLoads = true;
4175   if (IsZeroCmp) {
4176     // Only enable vector loads for equality comparison. Right now the vector
4177     // version is not as fast for three way compare (see #33329).
4178     const unsigned PreferredWidth = ST->getPreferVectorWidth();
4179     if (PreferredWidth >= 512 && ST->hasAVX512()) Options.LoadSizes.push_back(64);
4180     if (PreferredWidth >= 256 && ST->hasAVX()) Options.LoadSizes.push_back(32);
4181     if (PreferredWidth >= 128 && ST->hasSSE2()) Options.LoadSizes.push_back(16);
4182   }
4183   if (ST->is64Bit()) {
4184     Options.LoadSizes.push_back(8);
4185   }
4186   Options.LoadSizes.push_back(4);
4187   Options.LoadSizes.push_back(2);
4188   Options.LoadSizes.push_back(1);
4189   return Options;
4190 }
4191 
4192 bool X86TTIImpl::enableInterleavedAccessVectorization() {
4193   // TODO: We expect this to be beneficial regardless of arch,
4194   // but there are currently some unexplained performance artifacts on Atom.
4195   // As a temporary solution, disable on Atom.
4196   return !(ST->isAtom());
4197 }
4198 
4199 // Get estimation for interleaved load/store operations for AVX2.
4200 // \p Factor is the interleaved-access factor (stride) - number of
4201 // (interleaved) elements in the group.
4202 // \p Indices contains the indices for a strided load: when the
4203 // interleaved load has gaps they indicate which elements are used.
4204 // If Indices is empty (or if the number of indices is equal to the size
4205 // of the interleaved-access as given in \p Factor) the access has no gaps.
4206 //
4207 // As opposed to AVX-512, AVX2 does not have generic shuffles that allow
4208 // computing the cost using a generic formula as a function of generic
4209 // shuffles. We therefore use a lookup table instead, filled according to
4210 // the instruction sequences that codegen currently generates.
4211 int X86TTIImpl::getInterleavedMemoryOpCostAVX2(unsigned Opcode, Type *VecTy,
4212                                                unsigned Factor,
4213                                                ArrayRef<unsigned> Indices,
4214                                                unsigned Alignment,
4215                                                unsigned AddressSpace,
4216                                                TTI::TargetCostKind CostKind,
4217                                                bool UseMaskForCond,
4218                                                bool UseMaskForGaps) {
4219 
4220   if (UseMaskForCond || UseMaskForGaps)
4221     return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices,
4222                                              Alignment, AddressSpace, CostKind,
4223                                              UseMaskForCond, UseMaskForGaps);
4224 
4225   // We currently Support only fully-interleaved groups, with no gaps.
4226   // TODO: Support also strided loads (interleaved-groups with gaps).
4227   if (Indices.size() && Indices.size() != Factor)
4228     return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices,
4229                                              Alignment, AddressSpace,
4230                                              CostKind);
4231 
4232   // VecTy for interleave memop is <VF*Factor x Elt>.
4233   // So, for VF=4, Interleave Factor = 3, Element type = i32 we have
4234   // VecTy = <12 x i32>.
4235   MVT LegalVT = getTLI()->getTypeLegalizationCost(DL, VecTy).second;
4236 
4237   // This function can be called with VecTy=<6xi128>, Factor=3, in which case
4238   // the VF=2, while v2i128 is an unsupported MVT vector type
4239   // (see MachineValueType.h::getVectorVT()).
4240   if (!LegalVT.isVector())
4241     return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices,
4242                                              Alignment, AddressSpace,
4243                                              CostKind);
4244 
4245   unsigned VF = cast<VectorType>(VecTy)->getNumElements() / Factor;
4246   Type *ScalarTy = cast<VectorType>(VecTy)->getElementType();
4247 
4248   // Calculate the number of memory operations (NumOfMemOps), required
4249   // for load/store the VecTy.
4250   unsigned VecTySize = DL.getTypeStoreSize(VecTy);
4251   unsigned LegalVTSize = LegalVT.getStoreSize();
4252   unsigned NumOfMemOps = (VecTySize + LegalVTSize - 1) / LegalVTSize;
4253 
4254   // Get the cost of one memory operation.
4255   Type *SingleMemOpTy =
4256       VectorType::get(cast<VectorType>(VecTy)->getElementType(),
4257                       LegalVT.getVectorNumElements());
4258   unsigned MemOpCost = getMemoryOpCost(Opcode, SingleMemOpTy,
4259                                        MaybeAlign(Alignment), AddressSpace,
4260                                        CostKind);
4261 
4262   VectorType *VT = VectorType::get(ScalarTy, VF);
4263   EVT ETy = TLI->getValueType(DL, VT);
4264   if (!ETy.isSimple())
4265     return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices,
4266                                              Alignment, AddressSpace,
4267                                              CostKind);
4268 
4269   // TODO: Complete for other data-types and strides.
4270   // Each combination of Stride, ElementTy and VF results in a different
4271   // sequence; The cost tables are therefore accessed with:
4272   // Factor (stride) and VectorType=VFxElemType.
4273   // The Cost accounts only for the shuffle sequence;
4274   // The cost of the loads/stores is accounted for separately.
4275   //
4276   static const CostTblEntry AVX2InterleavedLoadTbl[] = {
4277     { 2, MVT::v4i64, 6 }, //(load 8i64 and) deinterleave into 2 x 4i64
4278     { 2, MVT::v4f64, 6 }, //(load 8f64 and) deinterleave into 2 x 4f64
4279 
4280     { 3, MVT::v2i8,  10 }, //(load 6i8 and)  deinterleave into 3 x 2i8
4281     { 3, MVT::v4i8,  4 },  //(load 12i8 and) deinterleave into 3 x 4i8
4282     { 3, MVT::v8i8,  9 },  //(load 24i8 and) deinterleave into 3 x 8i8
4283     { 3, MVT::v16i8, 11},  //(load 48i8 and) deinterleave into 3 x 16i8
4284     { 3, MVT::v32i8, 13},  //(load 96i8 and) deinterleave into 3 x 32i8
4285     { 3, MVT::v8f32, 17 }, //(load 24f32 and)deinterleave into 3 x 8f32
4286 
4287     { 4, MVT::v2i8,  12 }, //(load 8i8 and)   deinterleave into 4 x 2i8
4288     { 4, MVT::v4i8,  4 },  //(load 16i8 and)  deinterleave into 4 x 4i8
4289     { 4, MVT::v8i8,  20 }, //(load 32i8 and)  deinterleave into 4 x 8i8
4290     { 4, MVT::v16i8, 39 }, //(load 64i8 and)  deinterleave into 4 x 16i8
4291     { 4, MVT::v32i8, 80 }, //(load 128i8 and) deinterleave into 4 x 32i8
4292 
4293     { 8, MVT::v8f32, 40 }  //(load 64f32 and)deinterleave into 8 x 8f32
4294   };
4295 
4296   static const CostTblEntry AVX2InterleavedStoreTbl[] = {
4297     { 2, MVT::v4i64, 6 }, //interleave into 2 x 4i64 into 8i64 (and store)
4298     { 2, MVT::v4f64, 6 }, //interleave into 2 x 4f64 into 8f64 (and store)
4299 
4300     { 3, MVT::v2i8,  7 },  //interleave 3 x 2i8  into 6i8 (and store)
4301     { 3, MVT::v4i8,  8 },  //interleave 3 x 4i8  into 12i8 (and store)
4302     { 3, MVT::v8i8,  11 }, //interleave 3 x 8i8  into 24i8 (and store)
4303     { 3, MVT::v16i8, 11 }, //interleave 3 x 16i8 into 48i8 (and store)
4304     { 3, MVT::v32i8, 13 }, //interleave 3 x 32i8 into 96i8 (and store)
4305 
4306     { 4, MVT::v2i8,  12 }, //interleave 4 x 2i8  into 8i8 (and store)
4307     { 4, MVT::v4i8,  9 },  //interleave 4 x 4i8  into 16i8 (and store)
4308     { 4, MVT::v8i8,  10 }, //interleave 4 x 8i8  into 32i8 (and store)
4309     { 4, MVT::v16i8, 10 }, //interleave 4 x 16i8 into 64i8 (and store)
4310     { 4, MVT::v32i8, 12 }  //interleave 4 x 32i8 into 128i8 (and store)
4311   };
4312 
4313   if (Opcode == Instruction::Load) {
4314     if (const auto *Entry =
4315             CostTableLookup(AVX2InterleavedLoadTbl, Factor, ETy.getSimpleVT()))
4316       return NumOfMemOps * MemOpCost + Entry->Cost;
4317   } else {
4318     assert(Opcode == Instruction::Store &&
4319            "Expected Store Instruction at this  point");
4320     if (const auto *Entry =
4321             CostTableLookup(AVX2InterleavedStoreTbl, Factor, ETy.getSimpleVT()))
4322       return NumOfMemOps * MemOpCost + Entry->Cost;
4323   }
4324 
4325   return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices,
4326                                            Alignment, AddressSpace, CostKind);
4327 }
4328 
4329 // Get estimation for interleaved load/store operations and strided load.
4330 // \p Indices contains indices for strided load.
4331 // \p Factor - the factor of interleaving.
4332 // AVX-512 provides 3-src shuffles that significantly reduces the cost.
4333 int X86TTIImpl::getInterleavedMemoryOpCostAVX512(unsigned Opcode, Type *VecTy,
4334                                                  unsigned Factor,
4335                                                  ArrayRef<unsigned> Indices,
4336                                                  unsigned Alignment,
4337                                                  unsigned AddressSpace,
4338                                                  TTI::TargetCostKind CostKind,
4339                                                  bool UseMaskForCond,
4340                                                  bool UseMaskForGaps) {
4341 
4342   if (UseMaskForCond || UseMaskForGaps)
4343     return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices,
4344                                              Alignment, AddressSpace, CostKind,
4345                                              UseMaskForCond, UseMaskForGaps);
4346 
4347   // VecTy for interleave memop is <VF*Factor x Elt>.
4348   // So, for VF=4, Interleave Factor = 3, Element type = i32 we have
4349   // VecTy = <12 x i32>.
4350 
4351   // Calculate the number of memory operations (NumOfMemOps), required
4352   // for load/store the VecTy.
4353   MVT LegalVT = getTLI()->getTypeLegalizationCost(DL, VecTy).second;
4354   unsigned VecTySize = DL.getTypeStoreSize(VecTy);
4355   unsigned LegalVTSize = LegalVT.getStoreSize();
4356   unsigned NumOfMemOps = (VecTySize + LegalVTSize - 1) / LegalVTSize;
4357 
4358   // Get the cost of one memory operation.
4359   auto *SingleMemOpTy =
4360       VectorType::get(cast<VectorType>(VecTy)->getElementType(),
4361                       LegalVT.getVectorNumElements());
4362   unsigned MemOpCost = getMemoryOpCost(Opcode, SingleMemOpTy,
4363                                        MaybeAlign(Alignment), AddressSpace,
4364                                        CostKind);
4365 
4366   unsigned VF = cast<VectorType>(VecTy)->getNumElements() / Factor;
4367   MVT VT = MVT::getVectorVT(MVT::getVT(VecTy->getScalarType()), VF);
4368 
4369   if (Opcode == Instruction::Load) {
4370     // The tables (AVX512InterleavedLoadTbl and AVX512InterleavedStoreTbl)
4371     // contain the cost of the optimized shuffle sequence that the
4372     // X86InterleavedAccess pass will generate.
4373     // The cost of loads and stores are computed separately from the table.
4374 
4375     // X86InterleavedAccess support only the following interleaved-access group.
4376     static const CostTblEntry AVX512InterleavedLoadTbl[] = {
4377         {3, MVT::v16i8, 12}, //(load 48i8 and) deinterleave into 3 x 16i8
4378         {3, MVT::v32i8, 14}, //(load 96i8 and) deinterleave into 3 x 32i8
4379         {3, MVT::v64i8, 22}, //(load 96i8 and) deinterleave into 3 x 32i8
4380     };
4381 
4382     if (const auto *Entry =
4383             CostTableLookup(AVX512InterleavedLoadTbl, Factor, VT))
4384       return NumOfMemOps * MemOpCost + Entry->Cost;
4385     //If an entry does not exist, fallback to the default implementation.
4386 
4387     // Kind of shuffle depends on number of loaded values.
4388     // If we load the entire data in one register, we can use a 1-src shuffle.
4389     // Otherwise, we'll merge 2 sources in each operation.
4390     TTI::ShuffleKind ShuffleKind =
4391         (NumOfMemOps > 1) ? TTI::SK_PermuteTwoSrc : TTI::SK_PermuteSingleSrc;
4392 
4393     unsigned ShuffleCost =
4394         getShuffleCost(ShuffleKind, SingleMemOpTy, 0, nullptr);
4395 
4396     unsigned NumOfLoadsInInterleaveGrp =
4397         Indices.size() ? Indices.size() : Factor;
4398     Type *ResultTy =
4399         VectorType::get(cast<VectorType>(VecTy)->getElementType(),
4400                         cast<VectorType>(VecTy)->getNumElements() / Factor);
4401     unsigned NumOfResults =
4402         getTLI()->getTypeLegalizationCost(DL, ResultTy).first *
4403         NumOfLoadsInInterleaveGrp;
4404 
4405     // About a half of the loads may be folded in shuffles when we have only
4406     // one result. If we have more than one result, we do not fold loads at all.
4407     unsigned NumOfUnfoldedLoads =
4408         NumOfResults > 1 ? NumOfMemOps : NumOfMemOps / 2;
4409 
4410     // Get a number of shuffle operations per result.
4411     unsigned NumOfShufflesPerResult =
4412         std::max((unsigned)1, (unsigned)(NumOfMemOps - 1));
4413 
4414     // The SK_MergeTwoSrc shuffle clobbers one of src operands.
4415     // When we have more than one destination, we need additional instructions
4416     // to keep sources.
4417     unsigned NumOfMoves = 0;
4418     if (NumOfResults > 1 && ShuffleKind == TTI::SK_PermuteTwoSrc)
4419       NumOfMoves = NumOfResults * NumOfShufflesPerResult / 2;
4420 
4421     int Cost = NumOfResults * NumOfShufflesPerResult * ShuffleCost +
4422                NumOfUnfoldedLoads * MemOpCost + NumOfMoves;
4423 
4424     return Cost;
4425   }
4426 
4427   // Store.
4428   assert(Opcode == Instruction::Store &&
4429          "Expected Store Instruction at this  point");
4430   // X86InterleavedAccess support only the following interleaved-access group.
4431   static const CostTblEntry AVX512InterleavedStoreTbl[] = {
4432       {3, MVT::v16i8, 12}, // interleave 3 x 16i8 into 48i8 (and store)
4433       {3, MVT::v32i8, 14}, // interleave 3 x 32i8 into 96i8 (and store)
4434       {3, MVT::v64i8, 26}, // interleave 3 x 64i8 into 96i8 (and store)
4435 
4436       {4, MVT::v8i8, 10},  // interleave 4 x 8i8  into 32i8  (and store)
4437       {4, MVT::v16i8, 11}, // interleave 4 x 16i8 into 64i8  (and store)
4438       {4, MVT::v32i8, 14}, // interleave 4 x 32i8 into 128i8 (and store)
4439       {4, MVT::v64i8, 24}  // interleave 4 x 32i8 into 256i8 (and store)
4440   };
4441 
4442   if (const auto *Entry =
4443           CostTableLookup(AVX512InterleavedStoreTbl, Factor, VT))
4444     return NumOfMemOps * MemOpCost + Entry->Cost;
4445   //If an entry does not exist, fallback to the default implementation.
4446 
4447   // There is no strided stores meanwhile. And store can't be folded in
4448   // shuffle.
4449   unsigned NumOfSources = Factor; // The number of values to be merged.
4450   unsigned ShuffleCost =
4451       getShuffleCost(TTI::SK_PermuteTwoSrc, SingleMemOpTy, 0, nullptr);
4452   unsigned NumOfShufflesPerStore = NumOfSources - 1;
4453 
4454   // The SK_MergeTwoSrc shuffle clobbers one of src operands.
4455   // We need additional instructions to keep sources.
4456   unsigned NumOfMoves = NumOfMemOps * NumOfShufflesPerStore / 2;
4457   int Cost = NumOfMemOps * (MemOpCost + NumOfShufflesPerStore * ShuffleCost) +
4458              NumOfMoves;
4459   return Cost;
4460 }
4461 
4462 int X86TTIImpl::getInterleavedMemoryOpCost(unsigned Opcode, Type *VecTy,
4463                                            unsigned Factor,
4464                                            ArrayRef<unsigned> Indices,
4465                                            unsigned Alignment,
4466                                            unsigned AddressSpace,
4467                                            TTI::TargetCostKind CostKind,
4468                                            bool UseMaskForCond,
4469                                            bool UseMaskForGaps) {
4470   auto isSupportedOnAVX512 = [](Type *VecTy, bool HasBW) {
4471     Type *EltTy = cast<VectorType>(VecTy)->getElementType();
4472     if (EltTy->isFloatTy() || EltTy->isDoubleTy() || EltTy->isIntegerTy(64) ||
4473         EltTy->isIntegerTy(32) || EltTy->isPointerTy())
4474       return true;
4475     if (EltTy->isIntegerTy(16) || EltTy->isIntegerTy(8))
4476       return HasBW;
4477     return false;
4478   };
4479   if (ST->hasAVX512() && isSupportedOnAVX512(VecTy, ST->hasBWI()))
4480     return getInterleavedMemoryOpCostAVX512(Opcode, VecTy, Factor, Indices,
4481                                             Alignment, AddressSpace, CostKind,
4482                                             UseMaskForCond, UseMaskForGaps);
4483   if (ST->hasAVX2())
4484     return getInterleavedMemoryOpCostAVX2(Opcode, VecTy, Factor, Indices,
4485                                           Alignment, AddressSpace, CostKind,
4486                                           UseMaskForCond, UseMaskForGaps);
4487 
4488   return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices,
4489                                            Alignment, AddressSpace, CostKind,
4490                                            UseMaskForCond, UseMaskForGaps);
4491 }
4492