1 //===-- X86TargetTransformInfo.cpp - X86 specific TTI pass ----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// \file 9 /// This file implements a TargetTransformInfo analysis pass specific to the 10 /// X86 target machine. It uses the target's detailed information to provide 11 /// more precise answers to certain TTI queries, while letting the target 12 /// independent and default TTI implementations handle the rest. 13 /// 14 //===----------------------------------------------------------------------===// 15 /// About Cost Model numbers used below it's necessary to say the following: 16 /// the numbers correspond to some "generic" X86 CPU instead of usage of 17 /// concrete CPU model. Usually the numbers correspond to CPU where the feature 18 /// apeared at the first time. For example, if we do Subtarget.hasSSE42() in 19 /// the lookups below the cost is based on Nehalem as that was the first CPU 20 /// to support that feature level and thus has most likely the worst case cost. 21 /// Some examples of other technologies/CPUs: 22 /// SSE 3 - Pentium4 / Athlon64 23 /// SSE 4.1 - Penryn 24 /// SSE 4.2 - Nehalem 25 /// AVX - Sandy Bridge 26 /// AVX2 - Haswell 27 /// AVX-512 - Xeon Phi / Skylake 28 /// And some examples of instruction target dependent costs (latency) 29 /// divss sqrtss rsqrtss 30 /// AMD K7 11-16 19 3 31 /// Piledriver 9-24 13-15 5 32 /// Jaguar 14 16 2 33 /// Pentium II,III 18 30 2 34 /// Nehalem 7-14 7-18 3 35 /// Haswell 10-13 11 5 36 /// TODO: Develop and implement the target dependent cost model and 37 /// specialize cost numbers for different Cost Model Targets such as throughput, 38 /// code size, latency and uop count. 39 //===----------------------------------------------------------------------===// 40 41 #include "X86TargetTransformInfo.h" 42 #include "llvm/Analysis/TargetTransformInfo.h" 43 #include "llvm/CodeGen/BasicTTIImpl.h" 44 #include "llvm/CodeGen/CostTable.h" 45 #include "llvm/CodeGen/TargetLowering.h" 46 #include "llvm/IR/IntrinsicInst.h" 47 #include "llvm/Support/Debug.h" 48 49 using namespace llvm; 50 51 #define DEBUG_TYPE "x86tti" 52 53 //===----------------------------------------------------------------------===// 54 // 55 // X86 cost model. 56 // 57 //===----------------------------------------------------------------------===// 58 59 TargetTransformInfo::PopcntSupportKind 60 X86TTIImpl::getPopcntSupport(unsigned TyWidth) { 61 assert(isPowerOf2_32(TyWidth) && "Ty width must be power of 2"); 62 // TODO: Currently the __builtin_popcount() implementation using SSE3 63 // instructions is inefficient. Once the problem is fixed, we should 64 // call ST->hasSSE3() instead of ST->hasPOPCNT(). 65 return ST->hasPOPCNT() ? TTI::PSK_FastHardware : TTI::PSK_Software; 66 } 67 68 llvm::Optional<unsigned> X86TTIImpl::getCacheSize( 69 TargetTransformInfo::CacheLevel Level) const { 70 switch (Level) { 71 case TargetTransformInfo::CacheLevel::L1D: 72 // - Penryn 73 // - Nehalem 74 // - Westmere 75 // - Sandy Bridge 76 // - Ivy Bridge 77 // - Haswell 78 // - Broadwell 79 // - Skylake 80 // - Kabylake 81 return 32 * 1024; // 32 KByte 82 case TargetTransformInfo::CacheLevel::L2D: 83 // - Penryn 84 // - Nehalem 85 // - Westmere 86 // - Sandy Bridge 87 // - Ivy Bridge 88 // - Haswell 89 // - Broadwell 90 // - Skylake 91 // - Kabylake 92 return 256 * 1024; // 256 KByte 93 } 94 95 llvm_unreachable("Unknown TargetTransformInfo::CacheLevel"); 96 } 97 98 llvm::Optional<unsigned> X86TTIImpl::getCacheAssociativity( 99 TargetTransformInfo::CacheLevel Level) const { 100 // - Penryn 101 // - Nehalem 102 // - Westmere 103 // - Sandy Bridge 104 // - Ivy Bridge 105 // - Haswell 106 // - Broadwell 107 // - Skylake 108 // - Kabylake 109 switch (Level) { 110 case TargetTransformInfo::CacheLevel::L1D: 111 LLVM_FALLTHROUGH; 112 case TargetTransformInfo::CacheLevel::L2D: 113 return 8; 114 } 115 116 llvm_unreachable("Unknown TargetTransformInfo::CacheLevel"); 117 } 118 119 unsigned X86TTIImpl::getNumberOfRegisters(unsigned ClassID) const { 120 bool Vector = (ClassID == 1); 121 if (Vector && !ST->hasSSE1()) 122 return 0; 123 124 if (ST->is64Bit()) { 125 if (Vector && ST->hasAVX512()) 126 return 32; 127 return 16; 128 } 129 return 8; 130 } 131 132 TypeSize 133 X86TTIImpl::getRegisterBitWidth(TargetTransformInfo::RegisterKind K) const { 134 unsigned PreferVectorWidth = ST->getPreferVectorWidth(); 135 switch (K) { 136 case TargetTransformInfo::RGK_Scalar: 137 return TypeSize::getFixed(ST->is64Bit() ? 64 : 32); 138 case TargetTransformInfo::RGK_FixedWidthVector: 139 if (ST->hasAVX512() && PreferVectorWidth >= 512) 140 return TypeSize::getFixed(512); 141 if (ST->hasAVX() && PreferVectorWidth >= 256) 142 return TypeSize::getFixed(256); 143 if (ST->hasSSE1() && PreferVectorWidth >= 128) 144 return TypeSize::getFixed(128); 145 return TypeSize::getFixed(0); 146 case TargetTransformInfo::RGK_ScalableVector: 147 return TypeSize::getScalable(0); 148 } 149 150 llvm_unreachable("Unsupported register kind"); 151 } 152 153 unsigned X86TTIImpl::getLoadStoreVecRegBitWidth(unsigned) const { 154 return getRegisterBitWidth(TargetTransformInfo::RGK_FixedWidthVector) 155 .getFixedSize(); 156 } 157 158 unsigned X86TTIImpl::getMaxInterleaveFactor(unsigned VF) { 159 // If the loop will not be vectorized, don't interleave the loop. 160 // Let regular unroll to unroll the loop, which saves the overflow 161 // check and memory check cost. 162 if (VF == 1) 163 return 1; 164 165 if (ST->isAtom()) 166 return 1; 167 168 // Sandybridge and Haswell have multiple execution ports and pipelined 169 // vector units. 170 if (ST->hasAVX()) 171 return 4; 172 173 return 2; 174 } 175 176 InstructionCost X86TTIImpl::getArithmeticInstrCost( 177 unsigned Opcode, Type *Ty, TTI::TargetCostKind CostKind, 178 TTI::OperandValueKind Op1Info, TTI::OperandValueKind Op2Info, 179 TTI::OperandValueProperties Opd1PropInfo, 180 TTI::OperandValueProperties Opd2PropInfo, ArrayRef<const Value *> Args, 181 const Instruction *CxtI) { 182 // TODO: Handle more cost kinds. 183 if (CostKind != TTI::TCK_RecipThroughput) 184 return BaseT::getArithmeticInstrCost(Opcode, Ty, CostKind, Op1Info, 185 Op2Info, Opd1PropInfo, 186 Opd2PropInfo, Args, CxtI); 187 188 // vXi8 multiplications are always promoted to vXi16. 189 if (Opcode == Instruction::Mul && Ty->isVectorTy() && 190 Ty->getScalarSizeInBits() == 8) { 191 Type *WideVecTy = 192 VectorType::getExtendedElementVectorType(cast<VectorType>(Ty)); 193 return getCastInstrCost(Instruction::ZExt, WideVecTy, Ty, 194 TargetTransformInfo::CastContextHint::None, 195 CostKind) + 196 getCastInstrCost(Instruction::Trunc, Ty, WideVecTy, 197 TargetTransformInfo::CastContextHint::None, 198 CostKind) + 199 getArithmeticInstrCost(Opcode, WideVecTy, CostKind, Op1Info, Op2Info, 200 Opd1PropInfo, Opd2PropInfo); 201 } 202 203 // Legalize the type. 204 std::pair<InstructionCost, MVT> LT = TLI->getTypeLegalizationCost(DL, Ty); 205 206 int ISD = TLI->InstructionOpcodeToISD(Opcode); 207 assert(ISD && "Invalid opcode"); 208 209 static const CostTblEntry GLMCostTable[] = { 210 { ISD::FDIV, MVT::f32, 18 }, // divss 211 { ISD::FDIV, MVT::v4f32, 35 }, // divps 212 { ISD::FDIV, MVT::f64, 33 }, // divsd 213 { ISD::FDIV, MVT::v2f64, 65 }, // divpd 214 }; 215 216 if (ST->useGLMDivSqrtCosts()) 217 if (const auto *Entry = CostTableLookup(GLMCostTable, ISD, 218 LT.second)) 219 return LT.first * Entry->Cost; 220 221 static const CostTblEntry SLMCostTable[] = { 222 { ISD::MUL, MVT::v4i32, 11 }, // pmulld 223 { ISD::MUL, MVT::v8i16, 2 }, // pmullw 224 { ISD::FMUL, MVT::f64, 2 }, // mulsd 225 { ISD::FMUL, MVT::v2f64, 4 }, // mulpd 226 { ISD::FMUL, MVT::v4f32, 2 }, // mulps 227 { ISD::FDIV, MVT::f32, 17 }, // divss 228 { ISD::FDIV, MVT::v4f32, 39 }, // divps 229 { ISD::FDIV, MVT::f64, 32 }, // divsd 230 { ISD::FDIV, MVT::v2f64, 69 }, // divpd 231 { ISD::FADD, MVT::v2f64, 2 }, // addpd 232 { ISD::FSUB, MVT::v2f64, 2 }, // subpd 233 // v2i64/v4i64 mul is custom lowered as a series of long: 234 // multiplies(3), shifts(3) and adds(2) 235 // slm muldq version throughput is 2 and addq throughput 4 236 // thus: 3X2 (muldq throughput) + 3X1 (shift throughput) + 237 // 3X4 (addq throughput) = 17 238 { ISD::MUL, MVT::v2i64, 17 }, 239 // slm addq\subq throughput is 4 240 { ISD::ADD, MVT::v2i64, 4 }, 241 { ISD::SUB, MVT::v2i64, 4 }, 242 }; 243 244 if (ST->isSLM()) { 245 if (Args.size() == 2 && ISD == ISD::MUL && LT.second == MVT::v4i32) { 246 // Check if the operands can be shrinked into a smaller datatype. 247 bool Op1Signed = false; 248 unsigned Op1MinSize = BaseT::minRequiredElementSize(Args[0], Op1Signed); 249 bool Op2Signed = false; 250 unsigned Op2MinSize = BaseT::minRequiredElementSize(Args[1], Op2Signed); 251 252 bool SignedMode = Op1Signed || Op2Signed; 253 unsigned OpMinSize = std::max(Op1MinSize, Op2MinSize); 254 255 if (OpMinSize <= 7) 256 return LT.first * 3; // pmullw/sext 257 if (!SignedMode && OpMinSize <= 8) 258 return LT.first * 3; // pmullw/zext 259 if (OpMinSize <= 15) 260 return LT.first * 5; // pmullw/pmulhw/pshuf 261 if (!SignedMode && OpMinSize <= 16) 262 return LT.first * 5; // pmullw/pmulhw/pshuf 263 } 264 265 if (const auto *Entry = CostTableLookup(SLMCostTable, ISD, 266 LT.second)) { 267 return LT.first * Entry->Cost; 268 } 269 } 270 271 if ((ISD == ISD::SDIV || ISD == ISD::SREM || ISD == ISD::UDIV || 272 ISD == ISD::UREM) && 273 (Op2Info == TargetTransformInfo::OK_UniformConstantValue || 274 Op2Info == TargetTransformInfo::OK_NonUniformConstantValue) && 275 Opd2PropInfo == TargetTransformInfo::OP_PowerOf2) { 276 if (ISD == ISD::SDIV || ISD == ISD::SREM) { 277 // On X86, vector signed division by constants power-of-two are 278 // normally expanded to the sequence SRA + SRL + ADD + SRA. 279 // The OperandValue properties may not be the same as that of the previous 280 // operation; conservatively assume OP_None. 281 InstructionCost Cost = 282 2 * getArithmeticInstrCost(Instruction::AShr, Ty, CostKind, Op1Info, 283 Op2Info, TargetTransformInfo::OP_None, 284 TargetTransformInfo::OP_None); 285 Cost += getArithmeticInstrCost(Instruction::LShr, Ty, CostKind, Op1Info, 286 Op2Info, 287 TargetTransformInfo::OP_None, 288 TargetTransformInfo::OP_None); 289 Cost += getArithmeticInstrCost(Instruction::Add, Ty, CostKind, Op1Info, 290 Op2Info, 291 TargetTransformInfo::OP_None, 292 TargetTransformInfo::OP_None); 293 294 if (ISD == ISD::SREM) { 295 // For SREM: (X % C) is the equivalent of (X - (X/C)*C) 296 Cost += getArithmeticInstrCost(Instruction::Mul, Ty, CostKind, Op1Info, 297 Op2Info); 298 Cost += getArithmeticInstrCost(Instruction::Sub, Ty, CostKind, Op1Info, 299 Op2Info); 300 } 301 302 return Cost; 303 } 304 305 // Vector unsigned division/remainder will be simplified to shifts/masks. 306 if (ISD == ISD::UDIV) 307 return getArithmeticInstrCost(Instruction::LShr, Ty, CostKind, 308 Op1Info, Op2Info, 309 TargetTransformInfo::OP_None, 310 TargetTransformInfo::OP_None); 311 312 else // UREM 313 return getArithmeticInstrCost(Instruction::And, Ty, CostKind, 314 Op1Info, Op2Info, 315 TargetTransformInfo::OP_None, 316 TargetTransformInfo::OP_None); 317 } 318 319 static const CostTblEntry AVX512BWUniformConstCostTable[] = { 320 { ISD::SHL, MVT::v64i8, 2 }, // psllw + pand. 321 { ISD::SRL, MVT::v64i8, 2 }, // psrlw + pand. 322 { ISD::SRA, MVT::v64i8, 4 }, // psrlw, pand, pxor, psubb. 323 }; 324 325 if (Op2Info == TargetTransformInfo::OK_UniformConstantValue && 326 ST->hasBWI()) { 327 if (const auto *Entry = CostTableLookup(AVX512BWUniformConstCostTable, ISD, 328 LT.second)) 329 return LT.first * Entry->Cost; 330 } 331 332 static const CostTblEntry AVX512UniformConstCostTable[] = { 333 { ISD::SRA, MVT::v2i64, 1 }, 334 { ISD::SRA, MVT::v4i64, 1 }, 335 { ISD::SRA, MVT::v8i64, 1 }, 336 337 { ISD::SHL, MVT::v64i8, 4 }, // psllw + pand. 338 { ISD::SRL, MVT::v64i8, 4 }, // psrlw + pand. 339 { ISD::SRA, MVT::v64i8, 8 }, // psrlw, pand, pxor, psubb. 340 341 { ISD::SDIV, MVT::v16i32, 6 }, // pmuludq sequence 342 { ISD::SREM, MVT::v16i32, 8 }, // pmuludq+mul+sub sequence 343 { ISD::UDIV, MVT::v16i32, 5 }, // pmuludq sequence 344 { ISD::UREM, MVT::v16i32, 7 }, // pmuludq+mul+sub sequence 345 }; 346 347 if (Op2Info == TargetTransformInfo::OK_UniformConstantValue && 348 ST->hasAVX512()) { 349 if (const auto *Entry = CostTableLookup(AVX512UniformConstCostTable, ISD, 350 LT.second)) 351 return LT.first * Entry->Cost; 352 } 353 354 static const CostTblEntry AVX2UniformConstCostTable[] = { 355 { ISD::SHL, MVT::v32i8, 2 }, // psllw + pand. 356 { ISD::SRL, MVT::v32i8, 2 }, // psrlw + pand. 357 { ISD::SRA, MVT::v32i8, 4 }, // psrlw, pand, pxor, psubb. 358 359 { ISD::SRA, MVT::v4i64, 4 }, // 2 x psrad + shuffle. 360 361 { ISD::SDIV, MVT::v8i32, 6 }, // pmuludq sequence 362 { ISD::SREM, MVT::v8i32, 8 }, // pmuludq+mul+sub sequence 363 { ISD::UDIV, MVT::v8i32, 5 }, // pmuludq sequence 364 { ISD::UREM, MVT::v8i32, 7 }, // pmuludq+mul+sub sequence 365 }; 366 367 if (Op2Info == TargetTransformInfo::OK_UniformConstantValue && 368 ST->hasAVX2()) { 369 if (const auto *Entry = CostTableLookup(AVX2UniformConstCostTable, ISD, 370 LT.second)) 371 return LT.first * Entry->Cost; 372 } 373 374 static const CostTblEntry SSE2UniformConstCostTable[] = { 375 { ISD::SHL, MVT::v16i8, 2 }, // psllw + pand. 376 { ISD::SRL, MVT::v16i8, 2 }, // psrlw + pand. 377 { ISD::SRA, MVT::v16i8, 4 }, // psrlw, pand, pxor, psubb. 378 379 { ISD::SHL, MVT::v32i8, 4+2 }, // 2*(psllw + pand) + split. 380 { ISD::SRL, MVT::v32i8, 4+2 }, // 2*(psrlw + pand) + split. 381 { ISD::SRA, MVT::v32i8, 8+2 }, // 2*(psrlw, pand, pxor, psubb) + split. 382 383 { ISD::SDIV, MVT::v8i32, 12+2 }, // 2*pmuludq sequence + split. 384 { ISD::SREM, MVT::v8i32, 16+2 }, // 2*pmuludq+mul+sub sequence + split. 385 { ISD::SDIV, MVT::v4i32, 6 }, // pmuludq sequence 386 { ISD::SREM, MVT::v4i32, 8 }, // pmuludq+mul+sub sequence 387 { ISD::UDIV, MVT::v8i32, 10+2 }, // 2*pmuludq sequence + split. 388 { ISD::UREM, MVT::v8i32, 14+2 }, // 2*pmuludq+mul+sub sequence + split. 389 { ISD::UDIV, MVT::v4i32, 5 }, // pmuludq sequence 390 { ISD::UREM, MVT::v4i32, 7 }, // pmuludq+mul+sub sequence 391 }; 392 393 // XOP has faster vXi8 shifts. 394 if (Op2Info == TargetTransformInfo::OK_UniformConstantValue && 395 ST->hasSSE2() && !ST->hasXOP()) { 396 if (const auto *Entry = 397 CostTableLookup(SSE2UniformConstCostTable, ISD, LT.second)) 398 return LT.first * Entry->Cost; 399 } 400 401 static const CostTblEntry AVX512BWConstCostTable[] = { 402 { ISD::SDIV, MVT::v64i8, 14 }, // 2*ext+2*pmulhw sequence 403 { ISD::SREM, MVT::v64i8, 16 }, // 2*ext+2*pmulhw+mul+sub sequence 404 { ISD::UDIV, MVT::v64i8, 14 }, // 2*ext+2*pmulhw sequence 405 { ISD::UREM, MVT::v64i8, 16 }, // 2*ext+2*pmulhw+mul+sub sequence 406 { ISD::SDIV, MVT::v32i16, 6 }, // vpmulhw sequence 407 { ISD::SREM, MVT::v32i16, 8 }, // vpmulhw+mul+sub sequence 408 { ISD::UDIV, MVT::v32i16, 6 }, // vpmulhuw sequence 409 { ISD::UREM, MVT::v32i16, 8 }, // vpmulhuw+mul+sub sequence 410 }; 411 412 if ((Op2Info == TargetTransformInfo::OK_UniformConstantValue || 413 Op2Info == TargetTransformInfo::OK_NonUniformConstantValue) && 414 ST->hasBWI()) { 415 if (const auto *Entry = 416 CostTableLookup(AVX512BWConstCostTable, ISD, LT.second)) 417 return LT.first * Entry->Cost; 418 } 419 420 static const CostTblEntry AVX512ConstCostTable[] = { 421 { ISD::SDIV, MVT::v16i32, 15 }, // vpmuldq sequence 422 { ISD::SREM, MVT::v16i32, 17 }, // vpmuldq+mul+sub sequence 423 { ISD::UDIV, MVT::v16i32, 15 }, // vpmuludq sequence 424 { ISD::UREM, MVT::v16i32, 17 }, // vpmuludq+mul+sub sequence 425 { ISD::SDIV, MVT::v64i8, 28 }, // 4*ext+4*pmulhw sequence 426 { ISD::SREM, MVT::v64i8, 32 }, // 4*ext+4*pmulhw+mul+sub sequence 427 { ISD::UDIV, MVT::v64i8, 28 }, // 4*ext+4*pmulhw sequence 428 { ISD::UREM, MVT::v64i8, 32 }, // 4*ext+4*pmulhw+mul+sub sequence 429 { ISD::SDIV, MVT::v32i16, 12 }, // 2*vpmulhw sequence 430 { ISD::SREM, MVT::v32i16, 16 }, // 2*vpmulhw+mul+sub sequence 431 { ISD::UDIV, MVT::v32i16, 12 }, // 2*vpmulhuw sequence 432 { ISD::UREM, MVT::v32i16, 16 }, // 2*vpmulhuw+mul+sub sequence 433 }; 434 435 if ((Op2Info == TargetTransformInfo::OK_UniformConstantValue || 436 Op2Info == TargetTransformInfo::OK_NonUniformConstantValue) && 437 ST->hasAVX512()) { 438 if (const auto *Entry = 439 CostTableLookup(AVX512ConstCostTable, ISD, LT.second)) 440 return LT.first * Entry->Cost; 441 } 442 443 static const CostTblEntry AVX2ConstCostTable[] = { 444 { ISD::SDIV, MVT::v32i8, 14 }, // 2*ext+2*pmulhw sequence 445 { ISD::SREM, MVT::v32i8, 16 }, // 2*ext+2*pmulhw+mul+sub sequence 446 { ISD::UDIV, MVT::v32i8, 14 }, // 2*ext+2*pmulhw sequence 447 { ISD::UREM, MVT::v32i8, 16 }, // 2*ext+2*pmulhw+mul+sub sequence 448 { ISD::SDIV, MVT::v16i16, 6 }, // vpmulhw sequence 449 { ISD::SREM, MVT::v16i16, 8 }, // vpmulhw+mul+sub sequence 450 { ISD::UDIV, MVT::v16i16, 6 }, // vpmulhuw sequence 451 { ISD::UREM, MVT::v16i16, 8 }, // vpmulhuw+mul+sub sequence 452 { ISD::SDIV, MVT::v8i32, 15 }, // vpmuldq sequence 453 { ISD::SREM, MVT::v8i32, 19 }, // vpmuldq+mul+sub sequence 454 { ISD::UDIV, MVT::v8i32, 15 }, // vpmuludq sequence 455 { ISD::UREM, MVT::v8i32, 19 }, // vpmuludq+mul+sub sequence 456 }; 457 458 if ((Op2Info == TargetTransformInfo::OK_UniformConstantValue || 459 Op2Info == TargetTransformInfo::OK_NonUniformConstantValue) && 460 ST->hasAVX2()) { 461 if (const auto *Entry = CostTableLookup(AVX2ConstCostTable, ISD, LT.second)) 462 return LT.first * Entry->Cost; 463 } 464 465 static const CostTblEntry SSE2ConstCostTable[] = { 466 { ISD::SDIV, MVT::v32i8, 28+2 }, // 4*ext+4*pmulhw sequence + split. 467 { ISD::SREM, MVT::v32i8, 32+2 }, // 4*ext+4*pmulhw+mul+sub sequence + split. 468 { ISD::SDIV, MVT::v16i8, 14 }, // 2*ext+2*pmulhw sequence 469 { ISD::SREM, MVT::v16i8, 16 }, // 2*ext+2*pmulhw+mul+sub sequence 470 { ISD::UDIV, MVT::v32i8, 28+2 }, // 4*ext+4*pmulhw sequence + split. 471 { ISD::UREM, MVT::v32i8, 32+2 }, // 4*ext+4*pmulhw+mul+sub sequence + split. 472 { ISD::UDIV, MVT::v16i8, 14 }, // 2*ext+2*pmulhw sequence 473 { ISD::UREM, MVT::v16i8, 16 }, // 2*ext+2*pmulhw+mul+sub sequence 474 { ISD::SDIV, MVT::v16i16, 12+2 }, // 2*pmulhw sequence + split. 475 { ISD::SREM, MVT::v16i16, 16+2 }, // 2*pmulhw+mul+sub sequence + split. 476 { ISD::SDIV, MVT::v8i16, 6 }, // pmulhw sequence 477 { ISD::SREM, MVT::v8i16, 8 }, // pmulhw+mul+sub sequence 478 { ISD::UDIV, MVT::v16i16, 12+2 }, // 2*pmulhuw sequence + split. 479 { ISD::UREM, MVT::v16i16, 16+2 }, // 2*pmulhuw+mul+sub sequence + split. 480 { ISD::UDIV, MVT::v8i16, 6 }, // pmulhuw sequence 481 { ISD::UREM, MVT::v8i16, 8 }, // pmulhuw+mul+sub sequence 482 { ISD::SDIV, MVT::v8i32, 38+2 }, // 2*pmuludq sequence + split. 483 { ISD::SREM, MVT::v8i32, 48+2 }, // 2*pmuludq+mul+sub sequence + split. 484 { ISD::SDIV, MVT::v4i32, 19 }, // pmuludq sequence 485 { ISD::SREM, MVT::v4i32, 24 }, // pmuludq+mul+sub sequence 486 { ISD::UDIV, MVT::v8i32, 30+2 }, // 2*pmuludq sequence + split. 487 { ISD::UREM, MVT::v8i32, 40+2 }, // 2*pmuludq+mul+sub sequence + split. 488 { ISD::UDIV, MVT::v4i32, 15 }, // pmuludq sequence 489 { ISD::UREM, MVT::v4i32, 20 }, // pmuludq+mul+sub sequence 490 }; 491 492 if ((Op2Info == TargetTransformInfo::OK_UniformConstantValue || 493 Op2Info == TargetTransformInfo::OK_NonUniformConstantValue) && 494 ST->hasSSE2()) { 495 // pmuldq sequence. 496 if (ISD == ISD::SDIV && LT.second == MVT::v8i32 && ST->hasAVX()) 497 return LT.first * 32; 498 if (ISD == ISD::SREM && LT.second == MVT::v8i32 && ST->hasAVX()) 499 return LT.first * 38; 500 if (ISD == ISD::SDIV && LT.second == MVT::v4i32 && ST->hasSSE41()) 501 return LT.first * 15; 502 if (ISD == ISD::SREM && LT.second == MVT::v4i32 && ST->hasSSE41()) 503 return LT.first * 20; 504 505 if (const auto *Entry = CostTableLookup(SSE2ConstCostTable, ISD, LT.second)) 506 return LT.first * Entry->Cost; 507 } 508 509 static const CostTblEntry AVX512BWShiftCostTable[] = { 510 { ISD::SHL, MVT::v16i8, 4 }, // extend/vpsllvw/pack sequence. 511 { ISD::SRL, MVT::v16i8, 4 }, // extend/vpsrlvw/pack sequence. 512 { ISD::SRA, MVT::v16i8, 4 }, // extend/vpsravw/pack sequence. 513 { ISD::SHL, MVT::v32i8, 4 }, // extend/vpsllvw/pack sequence. 514 { ISD::SRL, MVT::v32i8, 4 }, // extend/vpsrlvw/pack sequence. 515 { ISD::SRA, MVT::v32i8, 6 }, // extend/vpsravw/pack sequence. 516 { ISD::SHL, MVT::v64i8, 6 }, // extend/vpsllvw/pack sequence. 517 { ISD::SRL, MVT::v64i8, 7 }, // extend/vpsrlvw/pack sequence. 518 { ISD::SRA, MVT::v64i8, 15 }, // extend/vpsravw/pack sequence. 519 520 { ISD::SHL, MVT::v8i16, 1 }, // vpsllvw 521 { ISD::SRL, MVT::v8i16, 1 }, // vpsrlvw 522 { ISD::SRA, MVT::v8i16, 1 }, // vpsravw 523 { ISD::SHL, MVT::v16i16, 1 }, // vpsllvw 524 { ISD::SRL, MVT::v16i16, 1 }, // vpsrlvw 525 { ISD::SRA, MVT::v16i16, 1 }, // vpsravw 526 { ISD::SHL, MVT::v32i16, 1 }, // vpsllvw 527 { ISD::SRL, MVT::v32i16, 1 }, // vpsrlvw 528 { ISD::SRA, MVT::v32i16, 1 }, // vpsravw 529 }; 530 531 if (ST->hasBWI()) 532 if (const auto *Entry = CostTableLookup(AVX512BWShiftCostTable, ISD, LT.second)) 533 return LT.first * Entry->Cost; 534 535 static const CostTblEntry AVX2UniformCostTable[] = { 536 // Uniform splats are cheaper for the following instructions. 537 { ISD::SHL, MVT::v16i16, 1 }, // psllw. 538 { ISD::SRL, MVT::v16i16, 1 }, // psrlw. 539 { ISD::SRA, MVT::v16i16, 1 }, // psraw. 540 { ISD::SHL, MVT::v32i16, 2 }, // 2*psllw. 541 { ISD::SRL, MVT::v32i16, 2 }, // 2*psrlw. 542 { ISD::SRA, MVT::v32i16, 2 }, // 2*psraw. 543 544 { ISD::SHL, MVT::v8i32, 1 }, // pslld 545 { ISD::SRL, MVT::v8i32, 1 }, // psrld 546 { ISD::SRA, MVT::v8i32, 1 }, // psrad 547 { ISD::SHL, MVT::v4i64, 1 }, // psllq 548 { ISD::SRL, MVT::v4i64, 1 }, // psrlq 549 }; 550 551 if (ST->hasAVX2() && 552 ((Op2Info == TargetTransformInfo::OK_UniformConstantValue) || 553 (Op2Info == TargetTransformInfo::OK_UniformValue))) { 554 if (const auto *Entry = 555 CostTableLookup(AVX2UniformCostTable, ISD, LT.second)) 556 return LT.first * Entry->Cost; 557 } 558 559 static const CostTblEntry SSE2UniformCostTable[] = { 560 // Uniform splats are cheaper for the following instructions. 561 { ISD::SHL, MVT::v8i16, 1 }, // psllw. 562 { ISD::SHL, MVT::v4i32, 1 }, // pslld 563 { ISD::SHL, MVT::v2i64, 1 }, // psllq. 564 565 { ISD::SRL, MVT::v8i16, 1 }, // psrlw. 566 { ISD::SRL, MVT::v4i32, 1 }, // psrld. 567 { ISD::SRL, MVT::v2i64, 1 }, // psrlq. 568 569 { ISD::SRA, MVT::v8i16, 1 }, // psraw. 570 { ISD::SRA, MVT::v4i32, 1 }, // psrad. 571 }; 572 573 if (ST->hasSSE2() && 574 ((Op2Info == TargetTransformInfo::OK_UniformConstantValue) || 575 (Op2Info == TargetTransformInfo::OK_UniformValue))) { 576 if (const auto *Entry = 577 CostTableLookup(SSE2UniformCostTable, ISD, LT.second)) 578 return LT.first * Entry->Cost; 579 } 580 581 static const CostTblEntry AVX512DQCostTable[] = { 582 { ISD::MUL, MVT::v2i64, 2 }, // pmullq 583 { ISD::MUL, MVT::v4i64, 2 }, // pmullq 584 { ISD::MUL, MVT::v8i64, 2 } // pmullq 585 }; 586 587 // Look for AVX512DQ lowering tricks for custom cases. 588 if (ST->hasDQI()) 589 if (const auto *Entry = CostTableLookup(AVX512DQCostTable, ISD, LT.second)) 590 return LT.first * Entry->Cost; 591 592 static const CostTblEntry AVX512BWCostTable[] = { 593 { ISD::SHL, MVT::v64i8, 11 }, // vpblendvb sequence. 594 { ISD::SRL, MVT::v64i8, 11 }, // vpblendvb sequence. 595 { ISD::SRA, MVT::v64i8, 24 }, // vpblendvb sequence. 596 }; 597 598 // Look for AVX512BW lowering tricks for custom cases. 599 if (ST->hasBWI()) 600 if (const auto *Entry = CostTableLookup(AVX512BWCostTable, ISD, LT.second)) 601 return LT.first * Entry->Cost; 602 603 static const CostTblEntry AVX512CostTable[] = { 604 { ISD::SHL, MVT::v4i32, 1 }, 605 { ISD::SRL, MVT::v4i32, 1 }, 606 { ISD::SRA, MVT::v4i32, 1 }, 607 { ISD::SHL, MVT::v8i32, 1 }, 608 { ISD::SRL, MVT::v8i32, 1 }, 609 { ISD::SRA, MVT::v8i32, 1 }, 610 { ISD::SHL, MVT::v16i32, 1 }, 611 { ISD::SRL, MVT::v16i32, 1 }, 612 { ISD::SRA, MVT::v16i32, 1 }, 613 614 { ISD::SHL, MVT::v2i64, 1 }, 615 { ISD::SRL, MVT::v2i64, 1 }, 616 { ISD::SHL, MVT::v4i64, 1 }, 617 { ISD::SRL, MVT::v4i64, 1 }, 618 { ISD::SHL, MVT::v8i64, 1 }, 619 { ISD::SRL, MVT::v8i64, 1 }, 620 621 { ISD::SRA, MVT::v2i64, 1 }, 622 { ISD::SRA, MVT::v4i64, 1 }, 623 { ISD::SRA, MVT::v8i64, 1 }, 624 625 { ISD::MUL, MVT::v16i32, 1 }, // pmulld (Skylake from agner.org) 626 { ISD::MUL, MVT::v8i32, 1 }, // pmulld (Skylake from agner.org) 627 { ISD::MUL, MVT::v4i32, 1 }, // pmulld (Skylake from agner.org) 628 { ISD::MUL, MVT::v8i64, 6 }, // 3*pmuludq/3*shift/2*add 629 630 { ISD::FNEG, MVT::v8f64, 1 }, // Skylake from http://www.agner.org/ 631 { ISD::FADD, MVT::v8f64, 1 }, // Skylake from http://www.agner.org/ 632 { ISD::FSUB, MVT::v8f64, 1 }, // Skylake from http://www.agner.org/ 633 { ISD::FMUL, MVT::v8f64, 1 }, // Skylake from http://www.agner.org/ 634 635 { ISD::FNEG, MVT::v16f32, 1 }, // Skylake from http://www.agner.org/ 636 { ISD::FADD, MVT::v16f32, 1 }, // Skylake from http://www.agner.org/ 637 { ISD::FSUB, MVT::v16f32, 1 }, // Skylake from http://www.agner.org/ 638 { ISD::FMUL, MVT::v16f32, 1 }, // Skylake from http://www.agner.org/ 639 }; 640 641 if (ST->hasAVX512()) 642 if (const auto *Entry = CostTableLookup(AVX512CostTable, ISD, LT.second)) 643 return LT.first * Entry->Cost; 644 645 static const CostTblEntry AVX2ShiftCostTable[] = { 646 // Shifts on vXi64/vXi32 on AVX2 is legal even though we declare to 647 // customize them to detect the cases where shift amount is a scalar one. 648 { ISD::SHL, MVT::v4i32, 2 }, // vpsllvd (Haswell from agner.org) 649 { ISD::SRL, MVT::v4i32, 2 }, // vpsrlvd (Haswell from agner.org) 650 { ISD::SRA, MVT::v4i32, 2 }, // vpsravd (Haswell from agner.org) 651 { ISD::SHL, MVT::v8i32, 2 }, // vpsllvd (Haswell from agner.org) 652 { ISD::SRL, MVT::v8i32, 2 }, // vpsrlvd (Haswell from agner.org) 653 { ISD::SRA, MVT::v8i32, 2 }, // vpsravd (Haswell from agner.org) 654 { ISD::SHL, MVT::v2i64, 1 }, // vpsllvq (Haswell from agner.org) 655 { ISD::SRL, MVT::v2i64, 1 }, // vpsrlvq (Haswell from agner.org) 656 { ISD::SHL, MVT::v4i64, 1 }, // vpsllvq (Haswell from agner.org) 657 { ISD::SRL, MVT::v4i64, 1 }, // vpsrlvq (Haswell from agner.org) 658 }; 659 660 if (ST->hasAVX512()) { 661 if (ISD == ISD::SHL && LT.second == MVT::v32i16 && 662 (Op2Info == TargetTransformInfo::OK_UniformConstantValue || 663 Op2Info == TargetTransformInfo::OK_NonUniformConstantValue)) 664 // On AVX512, a packed v32i16 shift left by a constant build_vector 665 // is lowered into a vector multiply (vpmullw). 666 return getArithmeticInstrCost(Instruction::Mul, Ty, CostKind, 667 Op1Info, Op2Info, 668 TargetTransformInfo::OP_None, 669 TargetTransformInfo::OP_None); 670 } 671 672 // Look for AVX2 lowering tricks (XOP is always better at v4i32 shifts). 673 if (ST->hasAVX2() && !(ST->hasXOP() && LT.second == MVT::v4i32)) { 674 if (ISD == ISD::SHL && LT.second == MVT::v16i16 && 675 (Op2Info == TargetTransformInfo::OK_UniformConstantValue || 676 Op2Info == TargetTransformInfo::OK_NonUniformConstantValue)) 677 // On AVX2, a packed v16i16 shift left by a constant build_vector 678 // is lowered into a vector multiply (vpmullw). 679 return getArithmeticInstrCost(Instruction::Mul, Ty, CostKind, 680 Op1Info, Op2Info, 681 TargetTransformInfo::OP_None, 682 TargetTransformInfo::OP_None); 683 684 if (const auto *Entry = CostTableLookup(AVX2ShiftCostTable, ISD, LT.second)) 685 return LT.first * Entry->Cost; 686 } 687 688 static const CostTblEntry XOPShiftCostTable[] = { 689 // 128bit shifts take 1cy, but right shifts require negation beforehand. 690 { ISD::SHL, MVT::v16i8, 1 }, 691 { ISD::SRL, MVT::v16i8, 2 }, 692 { ISD::SRA, MVT::v16i8, 2 }, 693 { ISD::SHL, MVT::v8i16, 1 }, 694 { ISD::SRL, MVT::v8i16, 2 }, 695 { ISD::SRA, MVT::v8i16, 2 }, 696 { ISD::SHL, MVT::v4i32, 1 }, 697 { ISD::SRL, MVT::v4i32, 2 }, 698 { ISD::SRA, MVT::v4i32, 2 }, 699 { ISD::SHL, MVT::v2i64, 1 }, 700 { ISD::SRL, MVT::v2i64, 2 }, 701 { ISD::SRA, MVT::v2i64, 2 }, 702 // 256bit shifts require splitting if AVX2 didn't catch them above. 703 { ISD::SHL, MVT::v32i8, 2+2 }, 704 { ISD::SRL, MVT::v32i8, 4+2 }, 705 { ISD::SRA, MVT::v32i8, 4+2 }, 706 { ISD::SHL, MVT::v16i16, 2+2 }, 707 { ISD::SRL, MVT::v16i16, 4+2 }, 708 { ISD::SRA, MVT::v16i16, 4+2 }, 709 { ISD::SHL, MVT::v8i32, 2+2 }, 710 { ISD::SRL, MVT::v8i32, 4+2 }, 711 { ISD::SRA, MVT::v8i32, 4+2 }, 712 { ISD::SHL, MVT::v4i64, 2+2 }, 713 { ISD::SRL, MVT::v4i64, 4+2 }, 714 { ISD::SRA, MVT::v4i64, 4+2 }, 715 }; 716 717 // Look for XOP lowering tricks. 718 if (ST->hasXOP()) { 719 // If the right shift is constant then we'll fold the negation so 720 // it's as cheap as a left shift. 721 int ShiftISD = ISD; 722 if ((ShiftISD == ISD::SRL || ShiftISD == ISD::SRA) && 723 (Op2Info == TargetTransformInfo::OK_UniformConstantValue || 724 Op2Info == TargetTransformInfo::OK_NonUniformConstantValue)) 725 ShiftISD = ISD::SHL; 726 if (const auto *Entry = 727 CostTableLookup(XOPShiftCostTable, ShiftISD, LT.second)) 728 return LT.first * Entry->Cost; 729 } 730 731 static const CostTblEntry SSE2UniformShiftCostTable[] = { 732 // Uniform splats are cheaper for the following instructions. 733 { ISD::SHL, MVT::v16i16, 2+2 }, // 2*psllw + split. 734 { ISD::SHL, MVT::v8i32, 2+2 }, // 2*pslld + split. 735 { ISD::SHL, MVT::v4i64, 2+2 }, // 2*psllq + split. 736 737 { ISD::SRL, MVT::v16i16, 2+2 }, // 2*psrlw + split. 738 { ISD::SRL, MVT::v8i32, 2+2 }, // 2*psrld + split. 739 { ISD::SRL, MVT::v4i64, 2+2 }, // 2*psrlq + split. 740 741 { ISD::SRA, MVT::v16i16, 2+2 }, // 2*psraw + split. 742 { ISD::SRA, MVT::v8i32, 2+2 }, // 2*psrad + split. 743 { ISD::SRA, MVT::v2i64, 4 }, // 2*psrad + shuffle. 744 { ISD::SRA, MVT::v4i64, 8+2 }, // 2*(2*psrad + shuffle) + split. 745 }; 746 747 if (ST->hasSSE2() && 748 ((Op2Info == TargetTransformInfo::OK_UniformConstantValue) || 749 (Op2Info == TargetTransformInfo::OK_UniformValue))) { 750 751 // Handle AVX2 uniform v4i64 ISD::SRA, it's not worth a table. 752 if (ISD == ISD::SRA && LT.second == MVT::v4i64 && ST->hasAVX2()) 753 return LT.first * 4; // 2*psrad + shuffle. 754 755 if (const auto *Entry = 756 CostTableLookup(SSE2UniformShiftCostTable, ISD, LT.second)) 757 return LT.first * Entry->Cost; 758 } 759 760 if (ISD == ISD::SHL && 761 Op2Info == TargetTransformInfo::OK_NonUniformConstantValue) { 762 MVT VT = LT.second; 763 // Vector shift left by non uniform constant can be lowered 764 // into vector multiply. 765 if (((VT == MVT::v8i16 || VT == MVT::v4i32) && ST->hasSSE2()) || 766 ((VT == MVT::v16i16 || VT == MVT::v8i32) && ST->hasAVX())) 767 ISD = ISD::MUL; 768 } 769 770 static const CostTblEntry AVX2CostTable[] = { 771 { ISD::SHL, MVT::v16i8, 6 }, // vpblendvb sequence. 772 { ISD::SHL, MVT::v32i8, 6 }, // vpblendvb sequence. 773 { ISD::SHL, MVT::v64i8, 12 }, // 2*vpblendvb sequence. 774 { ISD::SHL, MVT::v8i16, 5 }, // extend/vpsrlvd/pack sequence. 775 { ISD::SHL, MVT::v16i16, 7 }, // extend/vpsrlvd/pack sequence. 776 { ISD::SHL, MVT::v32i16, 14 }, // 2*extend/vpsrlvd/pack sequence. 777 778 { ISD::SRL, MVT::v16i8, 6 }, // vpblendvb sequence. 779 { ISD::SRL, MVT::v32i8, 6 }, // vpblendvb sequence. 780 { ISD::SRL, MVT::v64i8, 12 }, // 2*vpblendvb sequence. 781 { ISD::SRL, MVT::v8i16, 5 }, // extend/vpsrlvd/pack sequence. 782 { ISD::SRL, MVT::v16i16, 7 }, // extend/vpsrlvd/pack sequence. 783 { ISD::SRL, MVT::v32i16, 14 }, // 2*extend/vpsrlvd/pack sequence. 784 785 { ISD::SRA, MVT::v16i8, 17 }, // vpblendvb sequence. 786 { ISD::SRA, MVT::v32i8, 17 }, // vpblendvb sequence. 787 { ISD::SRA, MVT::v64i8, 34 }, // 2*vpblendvb sequence. 788 { ISD::SRA, MVT::v8i16, 5 }, // extend/vpsravd/pack sequence. 789 { ISD::SRA, MVT::v16i16, 7 }, // extend/vpsravd/pack sequence. 790 { ISD::SRA, MVT::v32i16, 14 }, // 2*extend/vpsravd/pack sequence. 791 { ISD::SRA, MVT::v2i64, 2 }, // srl/xor/sub sequence. 792 { ISD::SRA, MVT::v4i64, 2 }, // srl/xor/sub sequence. 793 794 { ISD::SUB, MVT::v32i8, 1 }, // psubb 795 { ISD::ADD, MVT::v32i8, 1 }, // paddb 796 { ISD::SUB, MVT::v16i16, 1 }, // psubw 797 { ISD::ADD, MVT::v16i16, 1 }, // paddw 798 { ISD::SUB, MVT::v8i32, 1 }, // psubd 799 { ISD::ADD, MVT::v8i32, 1 }, // paddd 800 { ISD::SUB, MVT::v4i64, 1 }, // psubq 801 { ISD::ADD, MVT::v4i64, 1 }, // paddq 802 803 { ISD::MUL, MVT::v16i16, 1 }, // pmullw 804 { ISD::MUL, MVT::v8i32, 2 }, // pmulld (Haswell from agner.org) 805 { ISD::MUL, MVT::v4i64, 6 }, // 3*pmuludq/3*shift/2*add 806 807 { ISD::FNEG, MVT::v4f64, 1 }, // Haswell from http://www.agner.org/ 808 { ISD::FNEG, MVT::v8f32, 1 }, // Haswell from http://www.agner.org/ 809 { ISD::FADD, MVT::v4f64, 1 }, // Haswell from http://www.agner.org/ 810 { ISD::FADD, MVT::v8f32, 1 }, // Haswell from http://www.agner.org/ 811 { ISD::FSUB, MVT::v4f64, 1 }, // Haswell from http://www.agner.org/ 812 { ISD::FSUB, MVT::v8f32, 1 }, // Haswell from http://www.agner.org/ 813 { ISD::FMUL, MVT::f64, 1 }, // Haswell from http://www.agner.org/ 814 { ISD::FMUL, MVT::v2f64, 1 }, // Haswell from http://www.agner.org/ 815 { ISD::FMUL, MVT::v4f64, 1 }, // Haswell from http://www.agner.org/ 816 { ISD::FMUL, MVT::v8f32, 1 }, // Haswell from http://www.agner.org/ 817 818 { ISD::FDIV, MVT::f32, 7 }, // Haswell from http://www.agner.org/ 819 { ISD::FDIV, MVT::v4f32, 7 }, // Haswell from http://www.agner.org/ 820 { ISD::FDIV, MVT::v8f32, 14 }, // Haswell from http://www.agner.org/ 821 { ISD::FDIV, MVT::f64, 14 }, // Haswell from http://www.agner.org/ 822 { ISD::FDIV, MVT::v2f64, 14 }, // Haswell from http://www.agner.org/ 823 { ISD::FDIV, MVT::v4f64, 28 }, // Haswell from http://www.agner.org/ 824 }; 825 826 // Look for AVX2 lowering tricks for custom cases. 827 if (ST->hasAVX2()) 828 if (const auto *Entry = CostTableLookup(AVX2CostTable, ISD, LT.second)) 829 return LT.first * Entry->Cost; 830 831 static const CostTblEntry AVX1CostTable[] = { 832 // We don't have to scalarize unsupported ops. We can issue two half-sized 833 // operations and we only need to extract the upper YMM half. 834 // Two ops + 1 extract + 1 insert = 4. 835 { ISD::MUL, MVT::v16i16, 4 }, 836 { ISD::MUL, MVT::v8i32, 5 }, // BTVER2 from http://www.agner.org/ 837 { ISD::MUL, MVT::v4i64, 12 }, 838 839 { ISD::SUB, MVT::v32i8, 4 }, 840 { ISD::ADD, MVT::v32i8, 4 }, 841 { ISD::SUB, MVT::v16i16, 4 }, 842 { ISD::ADD, MVT::v16i16, 4 }, 843 { ISD::SUB, MVT::v8i32, 4 }, 844 { ISD::ADD, MVT::v8i32, 4 }, 845 { ISD::SUB, MVT::v4i64, 4 }, 846 { ISD::ADD, MVT::v4i64, 4 }, 847 848 { ISD::SHL, MVT::v16i8, 10 }, // pblendvb sequence . 849 { ISD::SHL, MVT::v32i8, 22 }, // pblendvb sequence + split. 850 { ISD::SHL, MVT::v8i16, 6 }, // pblendvb sequence. 851 { ISD::SHL, MVT::v16i16, 13 }, // pblendvb sequence + split. 852 { ISD::SHL, MVT::v4i32, 3 }, // pslld/paddd/cvttps2dq/pmulld 853 { ISD::SHL, MVT::v8i32, 9 }, // pslld/paddd/cvttps2dq/pmulld + split 854 { ISD::SHL, MVT::v2i64, 2 }, // Shift each lane + blend. 855 { ISD::SHL, MVT::v4i64, 6 }, // Shift each lane + blend + split. 856 857 { ISD::SRL, MVT::v16i8, 11 }, // pblendvb sequence. 858 { ISD::SRL, MVT::v32i8, 23 }, // pblendvb sequence + split. 859 { ISD::SRL, MVT::v8i16, 13 }, // pblendvb sequence. 860 { ISD::SRL, MVT::v16i16, 28 }, // pblendvb sequence + split. 861 { ISD::SRL, MVT::v4i32, 6 }, // Shift each lane + blend. 862 { ISD::SRL, MVT::v8i32, 14 }, // Shift each lane + blend + split. 863 { ISD::SRL, MVT::v2i64, 2 }, // Shift each lane + blend. 864 { ISD::SRL, MVT::v4i64, 6 }, // Shift each lane + blend + split. 865 866 { ISD::SRA, MVT::v16i8, 21 }, // pblendvb sequence. 867 { ISD::SRA, MVT::v32i8, 44 }, // pblendvb sequence + split. 868 { ISD::SRA, MVT::v8i16, 13 }, // pblendvb sequence. 869 { ISD::SRA, MVT::v16i16, 28 }, // pblendvb sequence + split. 870 { ISD::SRA, MVT::v4i32, 6 }, // Shift each lane + blend. 871 { ISD::SRA, MVT::v8i32, 14 }, // Shift each lane + blend + split. 872 { ISD::SRA, MVT::v2i64, 5 }, // Shift each lane + blend. 873 { ISD::SRA, MVT::v4i64, 12 }, // Shift each lane + blend + split. 874 875 { ISD::FNEG, MVT::v4f64, 2 }, // BTVER2 from http://www.agner.org/ 876 { ISD::FNEG, MVT::v8f32, 2 }, // BTVER2 from http://www.agner.org/ 877 878 { ISD::FMUL, MVT::f64, 2 }, // BTVER2 from http://www.agner.org/ 879 { ISD::FMUL, MVT::v2f64, 2 }, // BTVER2 from http://www.agner.org/ 880 { ISD::FMUL, MVT::v4f64, 4 }, // BTVER2 from http://www.agner.org/ 881 882 { ISD::FDIV, MVT::f32, 14 }, // SNB from http://www.agner.org/ 883 { ISD::FDIV, MVT::v4f32, 14 }, // SNB from http://www.agner.org/ 884 { ISD::FDIV, MVT::v8f32, 28 }, // SNB from http://www.agner.org/ 885 { ISD::FDIV, MVT::f64, 22 }, // SNB from http://www.agner.org/ 886 { ISD::FDIV, MVT::v2f64, 22 }, // SNB from http://www.agner.org/ 887 { ISD::FDIV, MVT::v4f64, 44 }, // SNB from http://www.agner.org/ 888 }; 889 890 if (ST->hasAVX()) 891 if (const auto *Entry = CostTableLookup(AVX1CostTable, ISD, LT.second)) 892 return LT.first * Entry->Cost; 893 894 static const CostTblEntry SSE42CostTable[] = { 895 { ISD::FADD, MVT::f64, 1 }, // Nehalem from http://www.agner.org/ 896 { ISD::FADD, MVT::f32, 1 }, // Nehalem from http://www.agner.org/ 897 { ISD::FADD, MVT::v2f64, 1 }, // Nehalem from http://www.agner.org/ 898 { ISD::FADD, MVT::v4f32, 1 }, // Nehalem from http://www.agner.org/ 899 900 { ISD::FSUB, MVT::f64, 1 }, // Nehalem from http://www.agner.org/ 901 { ISD::FSUB, MVT::f32 , 1 }, // Nehalem from http://www.agner.org/ 902 { ISD::FSUB, MVT::v2f64, 1 }, // Nehalem from http://www.agner.org/ 903 { ISD::FSUB, MVT::v4f32, 1 }, // Nehalem from http://www.agner.org/ 904 905 { ISD::FMUL, MVT::f64, 1 }, // Nehalem from http://www.agner.org/ 906 { ISD::FMUL, MVT::f32, 1 }, // Nehalem from http://www.agner.org/ 907 { ISD::FMUL, MVT::v2f64, 1 }, // Nehalem from http://www.agner.org/ 908 { ISD::FMUL, MVT::v4f32, 1 }, // Nehalem from http://www.agner.org/ 909 910 { ISD::FDIV, MVT::f32, 14 }, // Nehalem from http://www.agner.org/ 911 { ISD::FDIV, MVT::v4f32, 14 }, // Nehalem from http://www.agner.org/ 912 { ISD::FDIV, MVT::f64, 22 }, // Nehalem from http://www.agner.org/ 913 { ISD::FDIV, MVT::v2f64, 22 }, // Nehalem from http://www.agner.org/ 914 915 { ISD::MUL, MVT::v2i64, 6 } // 3*pmuludq/3*shift/2*add 916 }; 917 918 if (ST->hasSSE42()) 919 if (const auto *Entry = CostTableLookup(SSE42CostTable, ISD, LT.second)) 920 return LT.first * Entry->Cost; 921 922 static const CostTblEntry SSE41CostTable[] = { 923 { ISD::SHL, MVT::v16i8, 11 }, // pblendvb sequence. 924 { ISD::SHL, MVT::v8i16, 14 }, // pblendvb sequence. 925 { ISD::SHL, MVT::v4i32, 4 }, // pslld/paddd/cvttps2dq/pmulld 926 927 { ISD::SRL, MVT::v16i8, 12 }, // pblendvb sequence. 928 { ISD::SRL, MVT::v8i16, 14 }, // pblendvb sequence. 929 { ISD::SRL, MVT::v4i32, 11 }, // Shift each lane + blend. 930 931 { ISD::SRA, MVT::v16i8, 24 }, // pblendvb sequence. 932 { ISD::SRA, MVT::v8i16, 14 }, // pblendvb sequence. 933 { ISD::SRA, MVT::v4i32, 12 }, // Shift each lane + blend. 934 935 { ISD::MUL, MVT::v4i32, 2 } // pmulld (Nehalem from agner.org) 936 }; 937 938 if (ST->hasSSE41()) 939 if (const auto *Entry = CostTableLookup(SSE41CostTable, ISD, LT.second)) 940 return LT.first * Entry->Cost; 941 942 static const CostTblEntry SSE2CostTable[] = { 943 // We don't correctly identify costs of casts because they are marked as 944 // custom. 945 { ISD::SHL, MVT::v16i8, 26 }, // cmpgtb sequence. 946 { ISD::SHL, MVT::v8i16, 32 }, // cmpgtb sequence. 947 { ISD::SHL, MVT::v4i32, 2*5 }, // We optimized this using mul. 948 { ISD::SHL, MVT::v2i64, 4 }, // splat+shuffle sequence. 949 950 { ISD::SRL, MVT::v16i8, 26 }, // cmpgtb sequence. 951 { ISD::SRL, MVT::v8i16, 32 }, // cmpgtb sequence. 952 { ISD::SRL, MVT::v4i32, 16 }, // Shift each lane + blend. 953 { ISD::SRL, MVT::v2i64, 4 }, // splat+shuffle sequence. 954 955 { ISD::SRA, MVT::v16i8, 54 }, // unpacked cmpgtb sequence. 956 { ISD::SRA, MVT::v8i16, 32 }, // cmpgtb sequence. 957 { ISD::SRA, MVT::v4i32, 16 }, // Shift each lane + blend. 958 { ISD::SRA, MVT::v2i64, 12 }, // srl/xor/sub sequence. 959 960 { ISD::MUL, MVT::v8i16, 1 }, // pmullw 961 { ISD::MUL, MVT::v4i32, 6 }, // 3*pmuludq/4*shuffle 962 { ISD::MUL, MVT::v2i64, 8 }, // 3*pmuludq/3*shift/2*add 963 964 { ISD::FDIV, MVT::f32, 23 }, // Pentium IV from http://www.agner.org/ 965 { ISD::FDIV, MVT::v4f32, 39 }, // Pentium IV from http://www.agner.org/ 966 { ISD::FDIV, MVT::f64, 38 }, // Pentium IV from http://www.agner.org/ 967 { ISD::FDIV, MVT::v2f64, 69 }, // Pentium IV from http://www.agner.org/ 968 969 { ISD::FNEG, MVT::f32, 1 }, // Pentium IV from http://www.agner.org/ 970 { ISD::FNEG, MVT::f64, 1 }, // Pentium IV from http://www.agner.org/ 971 { ISD::FNEG, MVT::v4f32, 1 }, // Pentium IV from http://www.agner.org/ 972 { ISD::FNEG, MVT::v2f64, 1 }, // Pentium IV from http://www.agner.org/ 973 974 { ISD::FADD, MVT::f32, 2 }, // Pentium IV from http://www.agner.org/ 975 { ISD::FADD, MVT::f64, 2 }, // Pentium IV from http://www.agner.org/ 976 977 { ISD::FSUB, MVT::f32, 2 }, // Pentium IV from http://www.agner.org/ 978 { ISD::FSUB, MVT::f64, 2 }, // Pentium IV from http://www.agner.org/ 979 }; 980 981 if (ST->hasSSE2()) 982 if (const auto *Entry = CostTableLookup(SSE2CostTable, ISD, LT.second)) 983 return LT.first * Entry->Cost; 984 985 static const CostTblEntry SSE1CostTable[] = { 986 { ISD::FDIV, MVT::f32, 17 }, // Pentium III from http://www.agner.org/ 987 { ISD::FDIV, MVT::v4f32, 34 }, // Pentium III from http://www.agner.org/ 988 989 { ISD::FNEG, MVT::f32, 2 }, // Pentium III from http://www.agner.org/ 990 { ISD::FNEG, MVT::v4f32, 2 }, // Pentium III from http://www.agner.org/ 991 992 { ISD::FADD, MVT::f32, 1 }, // Pentium III from http://www.agner.org/ 993 { ISD::FADD, MVT::v4f32, 2 }, // Pentium III from http://www.agner.org/ 994 995 { ISD::FSUB, MVT::f32, 1 }, // Pentium III from http://www.agner.org/ 996 { ISD::FSUB, MVT::v4f32, 2 }, // Pentium III from http://www.agner.org/ 997 }; 998 999 if (ST->hasSSE1()) 1000 if (const auto *Entry = CostTableLookup(SSE1CostTable, ISD, LT.second)) 1001 return LT.first * Entry->Cost; 1002 1003 static const CostTblEntry X64CostTbl[] = { // 64-bit targets 1004 { ISD::ADD, MVT::i64, 1 }, // Core (Merom) from http://www.agner.org/ 1005 { ISD::SUB, MVT::i64, 1 }, // Core (Merom) from http://www.agner.org/ 1006 }; 1007 1008 if (ST->is64Bit()) 1009 if (const auto *Entry = CostTableLookup(X64CostTbl, ISD, LT.second)) 1010 return LT.first * Entry->Cost; 1011 1012 static const CostTblEntry X86CostTbl[] = { // 32 or 64-bit targets 1013 { ISD::ADD, MVT::i8, 1 }, // Pentium III from http://www.agner.org/ 1014 { ISD::ADD, MVT::i16, 1 }, // Pentium III from http://www.agner.org/ 1015 { ISD::ADD, MVT::i32, 1 }, // Pentium III from http://www.agner.org/ 1016 1017 { ISD::SUB, MVT::i8, 1 }, // Pentium III from http://www.agner.org/ 1018 { ISD::SUB, MVT::i16, 1 }, // Pentium III from http://www.agner.org/ 1019 { ISD::SUB, MVT::i32, 1 }, // Pentium III from http://www.agner.org/ 1020 }; 1021 1022 if (const auto *Entry = CostTableLookup(X86CostTbl, ISD, LT.second)) 1023 return LT.first * Entry->Cost; 1024 1025 // It is not a good idea to vectorize division. We have to scalarize it and 1026 // in the process we will often end up having to spilling regular 1027 // registers. The overhead of division is going to dominate most kernels 1028 // anyways so try hard to prevent vectorization of division - it is 1029 // generally a bad idea. Assume somewhat arbitrarily that we have to be able 1030 // to hide "20 cycles" for each lane. 1031 if (LT.second.isVector() && (ISD == ISD::SDIV || ISD == ISD::SREM || 1032 ISD == ISD::UDIV || ISD == ISD::UREM)) { 1033 InstructionCost ScalarCost = getArithmeticInstrCost( 1034 Opcode, Ty->getScalarType(), CostKind, Op1Info, Op2Info, 1035 TargetTransformInfo::OP_None, TargetTransformInfo::OP_None); 1036 return 20 * LT.first * LT.second.getVectorNumElements() * ScalarCost; 1037 } 1038 1039 // Fallback to the default implementation. 1040 return BaseT::getArithmeticInstrCost(Opcode, Ty, CostKind, Op1Info, Op2Info); 1041 } 1042 1043 InstructionCost X86TTIImpl::getShuffleCost(TTI::ShuffleKind Kind, 1044 VectorType *BaseTp, 1045 ArrayRef<int> Mask, int Index, 1046 VectorType *SubTp) { 1047 // 64-bit packed float vectors (v2f32) are widened to type v4f32. 1048 // 64-bit packed integer vectors (v2i32) are widened to type v4i32. 1049 std::pair<InstructionCost, MVT> LT = TLI->getTypeLegalizationCost(DL, BaseTp); 1050 1051 Kind = improveShuffleKindFromMask(Kind, Mask); 1052 // Treat Transpose as 2-op shuffles - there's no difference in lowering. 1053 if (Kind == TTI::SK_Transpose) 1054 Kind = TTI::SK_PermuteTwoSrc; 1055 1056 // For Broadcasts we are splatting the first element from the first input 1057 // register, so only need to reference that input and all the output 1058 // registers are the same. 1059 if (Kind == TTI::SK_Broadcast) 1060 LT.first = 1; 1061 1062 // Subvector extractions are free if they start at the beginning of a 1063 // vector and cheap if the subvectors are aligned. 1064 if (Kind == TTI::SK_ExtractSubvector && LT.second.isVector()) { 1065 int NumElts = LT.second.getVectorNumElements(); 1066 if ((Index % NumElts) == 0) 1067 return 0; 1068 std::pair<InstructionCost, MVT> SubLT = 1069 TLI->getTypeLegalizationCost(DL, SubTp); 1070 if (SubLT.second.isVector()) { 1071 int NumSubElts = SubLT.second.getVectorNumElements(); 1072 if ((Index % NumSubElts) == 0 && (NumElts % NumSubElts) == 0) 1073 return SubLT.first; 1074 // Handle some cases for widening legalization. For now we only handle 1075 // cases where the original subvector was naturally aligned and evenly 1076 // fit in its legalized subvector type. 1077 // FIXME: Remove some of the alignment restrictions. 1078 // FIXME: We can use permq for 64-bit or larger extracts from 256-bit 1079 // vectors. 1080 int OrigSubElts = cast<FixedVectorType>(SubTp)->getNumElements(); 1081 if (NumSubElts > OrigSubElts && (Index % OrigSubElts) == 0 && 1082 (NumSubElts % OrigSubElts) == 0 && 1083 LT.second.getVectorElementType() == 1084 SubLT.second.getVectorElementType() && 1085 LT.second.getVectorElementType().getSizeInBits() == 1086 BaseTp->getElementType()->getPrimitiveSizeInBits()) { 1087 assert(NumElts >= NumSubElts && NumElts > OrigSubElts && 1088 "Unexpected number of elements!"); 1089 auto *VecTy = FixedVectorType::get(BaseTp->getElementType(), 1090 LT.second.getVectorNumElements()); 1091 auto *SubTy = FixedVectorType::get(BaseTp->getElementType(), 1092 SubLT.second.getVectorNumElements()); 1093 int ExtractIndex = alignDown((Index % NumElts), NumSubElts); 1094 InstructionCost ExtractCost = getShuffleCost( 1095 TTI::SK_ExtractSubvector, VecTy, None, ExtractIndex, SubTy); 1096 1097 // If the original size is 32-bits or more, we can use pshufd. Otherwise 1098 // if we have SSSE3 we can use pshufb. 1099 if (SubTp->getPrimitiveSizeInBits() >= 32 || ST->hasSSSE3()) 1100 return ExtractCost + 1; // pshufd or pshufb 1101 1102 assert(SubTp->getPrimitiveSizeInBits() == 16 && 1103 "Unexpected vector size"); 1104 1105 return ExtractCost + 2; // worst case pshufhw + pshufd 1106 } 1107 } 1108 } 1109 1110 // Subvector insertions are cheap if the subvectors are aligned. 1111 // Note that in general, the insertion starting at the beginning of a vector 1112 // isn't free, because we need to preserve the rest of the wide vector. 1113 if (Kind == TTI::SK_InsertSubvector && LT.second.isVector()) { 1114 int NumElts = LT.second.getVectorNumElements(); 1115 std::pair<InstructionCost, MVT> SubLT = 1116 TLI->getTypeLegalizationCost(DL, SubTp); 1117 if (SubLT.second.isVector()) { 1118 int NumSubElts = SubLT.second.getVectorNumElements(); 1119 if ((Index % NumSubElts) == 0 && (NumElts % NumSubElts) == 0) 1120 return SubLT.first; 1121 } 1122 } 1123 1124 // Handle some common (illegal) sub-vector types as they are often very cheap 1125 // to shuffle even on targets without PSHUFB. 1126 EVT VT = TLI->getValueType(DL, BaseTp); 1127 if (VT.isSimple() && VT.isVector() && VT.getSizeInBits() < 128 && 1128 !ST->hasSSSE3()) { 1129 static const CostTblEntry SSE2SubVectorShuffleTbl[] = { 1130 {TTI::SK_Broadcast, MVT::v4i16, 1}, // pshuflw 1131 {TTI::SK_Broadcast, MVT::v2i16, 1}, // pshuflw 1132 {TTI::SK_Broadcast, MVT::v8i8, 2}, // punpck/pshuflw 1133 {TTI::SK_Broadcast, MVT::v4i8, 2}, // punpck/pshuflw 1134 {TTI::SK_Broadcast, MVT::v2i8, 1}, // punpck 1135 1136 {TTI::SK_Reverse, MVT::v4i16, 1}, // pshuflw 1137 {TTI::SK_Reverse, MVT::v2i16, 1}, // pshuflw 1138 {TTI::SK_Reverse, MVT::v4i8, 3}, // punpck/pshuflw/packus 1139 {TTI::SK_Reverse, MVT::v2i8, 1}, // punpck 1140 1141 {TTI::SK_PermuteTwoSrc, MVT::v4i16, 2}, // punpck/pshuflw 1142 {TTI::SK_PermuteTwoSrc, MVT::v2i16, 2}, // punpck/pshuflw 1143 {TTI::SK_PermuteTwoSrc, MVT::v8i8, 7}, // punpck/pshuflw 1144 {TTI::SK_PermuteTwoSrc, MVT::v4i8, 4}, // punpck/pshuflw 1145 {TTI::SK_PermuteTwoSrc, MVT::v2i8, 2}, // punpck 1146 1147 {TTI::SK_PermuteSingleSrc, MVT::v4i16, 1}, // pshuflw 1148 {TTI::SK_PermuteSingleSrc, MVT::v2i16, 1}, // pshuflw 1149 {TTI::SK_PermuteSingleSrc, MVT::v8i8, 5}, // punpck/pshuflw 1150 {TTI::SK_PermuteSingleSrc, MVT::v4i8, 3}, // punpck/pshuflw 1151 {TTI::SK_PermuteSingleSrc, MVT::v2i8, 1}, // punpck 1152 }; 1153 1154 if (ST->hasSSE2()) 1155 if (const auto *Entry = 1156 CostTableLookup(SSE2SubVectorShuffleTbl, Kind, VT.getSimpleVT())) 1157 return Entry->Cost; 1158 } 1159 1160 // We are going to permute multiple sources and the result will be in multiple 1161 // destinations. Providing an accurate cost only for splits where the element 1162 // type remains the same. 1163 if (Kind == TTI::SK_PermuteSingleSrc && LT.first != 1) { 1164 MVT LegalVT = LT.second; 1165 if (LegalVT.isVector() && 1166 LegalVT.getVectorElementType().getSizeInBits() == 1167 BaseTp->getElementType()->getPrimitiveSizeInBits() && 1168 LegalVT.getVectorNumElements() < 1169 cast<FixedVectorType>(BaseTp)->getNumElements()) { 1170 1171 unsigned VecTySize = DL.getTypeStoreSize(BaseTp); 1172 unsigned LegalVTSize = LegalVT.getStoreSize(); 1173 // Number of source vectors after legalization: 1174 unsigned NumOfSrcs = (VecTySize + LegalVTSize - 1) / LegalVTSize; 1175 // Number of destination vectors after legalization: 1176 InstructionCost NumOfDests = LT.first; 1177 1178 auto *SingleOpTy = FixedVectorType::get(BaseTp->getElementType(), 1179 LegalVT.getVectorNumElements()); 1180 1181 InstructionCost NumOfShuffles = (NumOfSrcs - 1) * NumOfDests; 1182 return NumOfShuffles * getShuffleCost(TTI::SK_PermuteTwoSrc, SingleOpTy, 1183 None, 0, nullptr); 1184 } 1185 1186 return BaseT::getShuffleCost(Kind, BaseTp, Mask, Index, SubTp); 1187 } 1188 1189 // For 2-input shuffles, we must account for splitting the 2 inputs into many. 1190 if (Kind == TTI::SK_PermuteTwoSrc && LT.first != 1) { 1191 // We assume that source and destination have the same vector type. 1192 InstructionCost NumOfDests = LT.first; 1193 InstructionCost NumOfShufflesPerDest = LT.first * 2 - 1; 1194 LT.first = NumOfDests * NumOfShufflesPerDest; 1195 } 1196 1197 static const CostTblEntry AVX512VBMIShuffleTbl[] = { 1198 {TTI::SK_Reverse, MVT::v64i8, 1}, // vpermb 1199 {TTI::SK_Reverse, MVT::v32i8, 1}, // vpermb 1200 1201 {TTI::SK_PermuteSingleSrc, MVT::v64i8, 1}, // vpermb 1202 {TTI::SK_PermuteSingleSrc, MVT::v32i8, 1}, // vpermb 1203 1204 {TTI::SK_PermuteTwoSrc, MVT::v64i8, 2}, // vpermt2b 1205 {TTI::SK_PermuteTwoSrc, MVT::v32i8, 2}, // vpermt2b 1206 {TTI::SK_PermuteTwoSrc, MVT::v16i8, 2} // vpermt2b 1207 }; 1208 1209 if (ST->hasVBMI()) 1210 if (const auto *Entry = 1211 CostTableLookup(AVX512VBMIShuffleTbl, Kind, LT.second)) 1212 return LT.first * Entry->Cost; 1213 1214 static const CostTblEntry AVX512BWShuffleTbl[] = { 1215 {TTI::SK_Broadcast, MVT::v32i16, 1}, // vpbroadcastw 1216 {TTI::SK_Broadcast, MVT::v64i8, 1}, // vpbroadcastb 1217 1218 {TTI::SK_Reverse, MVT::v32i16, 2}, // vpermw 1219 {TTI::SK_Reverse, MVT::v16i16, 2}, // vpermw 1220 {TTI::SK_Reverse, MVT::v64i8, 2}, // pshufb + vshufi64x2 1221 1222 {TTI::SK_PermuteSingleSrc, MVT::v32i16, 2}, // vpermw 1223 {TTI::SK_PermuteSingleSrc, MVT::v16i16, 2}, // vpermw 1224 {TTI::SK_PermuteSingleSrc, MVT::v64i8, 8}, // extend to v32i16 1225 1226 {TTI::SK_PermuteTwoSrc, MVT::v32i16, 2}, // vpermt2w 1227 {TTI::SK_PermuteTwoSrc, MVT::v16i16, 2}, // vpermt2w 1228 {TTI::SK_PermuteTwoSrc, MVT::v8i16, 2}, // vpermt2w 1229 {TTI::SK_PermuteTwoSrc, MVT::v64i8, 19}, // 6 * v32i8 + 1 1230 1231 {TTI::SK_Select, MVT::v32i16, 1}, // vblendmw 1232 {TTI::SK_Select, MVT::v64i8, 1}, // vblendmb 1233 }; 1234 1235 if (ST->hasBWI()) 1236 if (const auto *Entry = 1237 CostTableLookup(AVX512BWShuffleTbl, Kind, LT.second)) 1238 return LT.first * Entry->Cost; 1239 1240 static const CostTblEntry AVX512ShuffleTbl[] = { 1241 {TTI::SK_Broadcast, MVT::v8f64, 1}, // vbroadcastpd 1242 {TTI::SK_Broadcast, MVT::v16f32, 1}, // vbroadcastps 1243 {TTI::SK_Broadcast, MVT::v8i64, 1}, // vpbroadcastq 1244 {TTI::SK_Broadcast, MVT::v16i32, 1}, // vpbroadcastd 1245 {TTI::SK_Broadcast, MVT::v32i16, 1}, // vpbroadcastw 1246 {TTI::SK_Broadcast, MVT::v64i8, 1}, // vpbroadcastb 1247 1248 {TTI::SK_Reverse, MVT::v8f64, 1}, // vpermpd 1249 {TTI::SK_Reverse, MVT::v16f32, 1}, // vpermps 1250 {TTI::SK_Reverse, MVT::v8i64, 1}, // vpermq 1251 {TTI::SK_Reverse, MVT::v16i32, 1}, // vpermd 1252 {TTI::SK_Reverse, MVT::v32i16, 7}, // per mca 1253 {TTI::SK_Reverse, MVT::v64i8, 7}, // per mca 1254 1255 {TTI::SK_PermuteSingleSrc, MVT::v8f64, 1}, // vpermpd 1256 {TTI::SK_PermuteSingleSrc, MVT::v4f64, 1}, // vpermpd 1257 {TTI::SK_PermuteSingleSrc, MVT::v2f64, 1}, // vpermpd 1258 {TTI::SK_PermuteSingleSrc, MVT::v16f32, 1}, // vpermps 1259 {TTI::SK_PermuteSingleSrc, MVT::v8f32, 1}, // vpermps 1260 {TTI::SK_PermuteSingleSrc, MVT::v4f32, 1}, // vpermps 1261 {TTI::SK_PermuteSingleSrc, MVT::v8i64, 1}, // vpermq 1262 {TTI::SK_PermuteSingleSrc, MVT::v4i64, 1}, // vpermq 1263 {TTI::SK_PermuteSingleSrc, MVT::v2i64, 1}, // vpermq 1264 {TTI::SK_PermuteSingleSrc, MVT::v16i32, 1}, // vpermd 1265 {TTI::SK_PermuteSingleSrc, MVT::v8i32, 1}, // vpermd 1266 {TTI::SK_PermuteSingleSrc, MVT::v4i32, 1}, // vpermd 1267 {TTI::SK_PermuteSingleSrc, MVT::v16i8, 1}, // pshufb 1268 1269 {TTI::SK_PermuteTwoSrc, MVT::v8f64, 1}, // vpermt2pd 1270 {TTI::SK_PermuteTwoSrc, MVT::v16f32, 1}, // vpermt2ps 1271 {TTI::SK_PermuteTwoSrc, MVT::v8i64, 1}, // vpermt2q 1272 {TTI::SK_PermuteTwoSrc, MVT::v16i32, 1}, // vpermt2d 1273 {TTI::SK_PermuteTwoSrc, MVT::v4f64, 1}, // vpermt2pd 1274 {TTI::SK_PermuteTwoSrc, MVT::v8f32, 1}, // vpermt2ps 1275 {TTI::SK_PermuteTwoSrc, MVT::v4i64, 1}, // vpermt2q 1276 {TTI::SK_PermuteTwoSrc, MVT::v8i32, 1}, // vpermt2d 1277 {TTI::SK_PermuteTwoSrc, MVT::v2f64, 1}, // vpermt2pd 1278 {TTI::SK_PermuteTwoSrc, MVT::v4f32, 1}, // vpermt2ps 1279 {TTI::SK_PermuteTwoSrc, MVT::v2i64, 1}, // vpermt2q 1280 {TTI::SK_PermuteTwoSrc, MVT::v4i32, 1}, // vpermt2d 1281 1282 // FIXME: This just applies the type legalization cost rules above 1283 // assuming these completely split. 1284 {TTI::SK_PermuteSingleSrc, MVT::v32i16, 14}, 1285 {TTI::SK_PermuteSingleSrc, MVT::v64i8, 14}, 1286 {TTI::SK_PermuteTwoSrc, MVT::v32i16, 42}, 1287 {TTI::SK_PermuteTwoSrc, MVT::v64i8, 42}, 1288 1289 {TTI::SK_Select, MVT::v32i16, 1}, // vpternlogq 1290 {TTI::SK_Select, MVT::v64i8, 1}, // vpternlogq 1291 {TTI::SK_Select, MVT::v8f64, 1}, // vblendmpd 1292 {TTI::SK_Select, MVT::v16f32, 1}, // vblendmps 1293 {TTI::SK_Select, MVT::v8i64, 1}, // vblendmq 1294 {TTI::SK_Select, MVT::v16i32, 1}, // vblendmd 1295 }; 1296 1297 if (ST->hasAVX512()) 1298 if (const auto *Entry = CostTableLookup(AVX512ShuffleTbl, Kind, LT.second)) 1299 return LT.first * Entry->Cost; 1300 1301 static const CostTblEntry AVX2ShuffleTbl[] = { 1302 {TTI::SK_Broadcast, MVT::v4f64, 1}, // vbroadcastpd 1303 {TTI::SK_Broadcast, MVT::v8f32, 1}, // vbroadcastps 1304 {TTI::SK_Broadcast, MVT::v4i64, 1}, // vpbroadcastq 1305 {TTI::SK_Broadcast, MVT::v8i32, 1}, // vpbroadcastd 1306 {TTI::SK_Broadcast, MVT::v16i16, 1}, // vpbroadcastw 1307 {TTI::SK_Broadcast, MVT::v32i8, 1}, // vpbroadcastb 1308 1309 {TTI::SK_Reverse, MVT::v4f64, 1}, // vpermpd 1310 {TTI::SK_Reverse, MVT::v8f32, 1}, // vpermps 1311 {TTI::SK_Reverse, MVT::v4i64, 1}, // vpermq 1312 {TTI::SK_Reverse, MVT::v8i32, 1}, // vpermd 1313 {TTI::SK_Reverse, MVT::v16i16, 2}, // vperm2i128 + pshufb 1314 {TTI::SK_Reverse, MVT::v32i8, 2}, // vperm2i128 + pshufb 1315 1316 {TTI::SK_Select, MVT::v16i16, 1}, // vpblendvb 1317 {TTI::SK_Select, MVT::v32i8, 1}, // vpblendvb 1318 1319 {TTI::SK_PermuteSingleSrc, MVT::v4f64, 1}, // vpermpd 1320 {TTI::SK_PermuteSingleSrc, MVT::v8f32, 1}, // vpermps 1321 {TTI::SK_PermuteSingleSrc, MVT::v4i64, 1}, // vpermq 1322 {TTI::SK_PermuteSingleSrc, MVT::v8i32, 1}, // vpermd 1323 {TTI::SK_PermuteSingleSrc, MVT::v16i16, 4}, // vperm2i128 + 2*vpshufb 1324 // + vpblendvb 1325 {TTI::SK_PermuteSingleSrc, MVT::v32i8, 4}, // vperm2i128 + 2*vpshufb 1326 // + vpblendvb 1327 1328 {TTI::SK_PermuteTwoSrc, MVT::v4f64, 3}, // 2*vpermpd + vblendpd 1329 {TTI::SK_PermuteTwoSrc, MVT::v8f32, 3}, // 2*vpermps + vblendps 1330 {TTI::SK_PermuteTwoSrc, MVT::v4i64, 3}, // 2*vpermq + vpblendd 1331 {TTI::SK_PermuteTwoSrc, MVT::v8i32, 3}, // 2*vpermd + vpblendd 1332 {TTI::SK_PermuteTwoSrc, MVT::v16i16, 7}, // 2*vperm2i128 + 4*vpshufb 1333 // + vpblendvb 1334 {TTI::SK_PermuteTwoSrc, MVT::v32i8, 7}, // 2*vperm2i128 + 4*vpshufb 1335 // + vpblendvb 1336 }; 1337 1338 if (ST->hasAVX2()) 1339 if (const auto *Entry = CostTableLookup(AVX2ShuffleTbl, Kind, LT.second)) 1340 return LT.first * Entry->Cost; 1341 1342 static const CostTblEntry XOPShuffleTbl[] = { 1343 {TTI::SK_PermuteSingleSrc, MVT::v4f64, 2}, // vperm2f128 + vpermil2pd 1344 {TTI::SK_PermuteSingleSrc, MVT::v8f32, 2}, // vperm2f128 + vpermil2ps 1345 {TTI::SK_PermuteSingleSrc, MVT::v4i64, 2}, // vperm2f128 + vpermil2pd 1346 {TTI::SK_PermuteSingleSrc, MVT::v8i32, 2}, // vperm2f128 + vpermil2ps 1347 {TTI::SK_PermuteSingleSrc, MVT::v16i16, 4}, // vextractf128 + 2*vpperm 1348 // + vinsertf128 1349 {TTI::SK_PermuteSingleSrc, MVT::v32i8, 4}, // vextractf128 + 2*vpperm 1350 // + vinsertf128 1351 1352 {TTI::SK_PermuteTwoSrc, MVT::v16i16, 9}, // 2*vextractf128 + 6*vpperm 1353 // + vinsertf128 1354 {TTI::SK_PermuteTwoSrc, MVT::v8i16, 1}, // vpperm 1355 {TTI::SK_PermuteTwoSrc, MVT::v32i8, 9}, // 2*vextractf128 + 6*vpperm 1356 // + vinsertf128 1357 {TTI::SK_PermuteTwoSrc, MVT::v16i8, 1}, // vpperm 1358 }; 1359 1360 if (ST->hasXOP()) 1361 if (const auto *Entry = CostTableLookup(XOPShuffleTbl, Kind, LT.second)) 1362 return LT.first * Entry->Cost; 1363 1364 static const CostTblEntry AVX1ShuffleTbl[] = { 1365 {TTI::SK_Broadcast, MVT::v4f64, 2}, // vperm2f128 + vpermilpd 1366 {TTI::SK_Broadcast, MVT::v8f32, 2}, // vperm2f128 + vpermilps 1367 {TTI::SK_Broadcast, MVT::v4i64, 2}, // vperm2f128 + vpermilpd 1368 {TTI::SK_Broadcast, MVT::v8i32, 2}, // vperm2f128 + vpermilps 1369 {TTI::SK_Broadcast, MVT::v16i16, 3}, // vpshuflw + vpshufd + vinsertf128 1370 {TTI::SK_Broadcast, MVT::v32i8, 2}, // vpshufb + vinsertf128 1371 1372 {TTI::SK_Reverse, MVT::v4f64, 2}, // vperm2f128 + vpermilpd 1373 {TTI::SK_Reverse, MVT::v8f32, 2}, // vperm2f128 + vpermilps 1374 {TTI::SK_Reverse, MVT::v4i64, 2}, // vperm2f128 + vpermilpd 1375 {TTI::SK_Reverse, MVT::v8i32, 2}, // vperm2f128 + vpermilps 1376 {TTI::SK_Reverse, MVT::v16i16, 4}, // vextractf128 + 2*pshufb 1377 // + vinsertf128 1378 {TTI::SK_Reverse, MVT::v32i8, 4}, // vextractf128 + 2*pshufb 1379 // + vinsertf128 1380 1381 {TTI::SK_Select, MVT::v4i64, 1}, // vblendpd 1382 {TTI::SK_Select, MVT::v4f64, 1}, // vblendpd 1383 {TTI::SK_Select, MVT::v8i32, 1}, // vblendps 1384 {TTI::SK_Select, MVT::v8f32, 1}, // vblendps 1385 {TTI::SK_Select, MVT::v16i16, 3}, // vpand + vpandn + vpor 1386 {TTI::SK_Select, MVT::v32i8, 3}, // vpand + vpandn + vpor 1387 1388 {TTI::SK_PermuteSingleSrc, MVT::v4f64, 2}, // vperm2f128 + vshufpd 1389 {TTI::SK_PermuteSingleSrc, MVT::v4i64, 2}, // vperm2f128 + vshufpd 1390 {TTI::SK_PermuteSingleSrc, MVT::v8f32, 4}, // 2*vperm2f128 + 2*vshufps 1391 {TTI::SK_PermuteSingleSrc, MVT::v8i32, 4}, // 2*vperm2f128 + 2*vshufps 1392 {TTI::SK_PermuteSingleSrc, MVT::v16i16, 8}, // vextractf128 + 4*pshufb 1393 // + 2*por + vinsertf128 1394 {TTI::SK_PermuteSingleSrc, MVT::v32i8, 8}, // vextractf128 + 4*pshufb 1395 // + 2*por + vinsertf128 1396 1397 {TTI::SK_PermuteTwoSrc, MVT::v4f64, 3}, // 2*vperm2f128 + vshufpd 1398 {TTI::SK_PermuteTwoSrc, MVT::v4i64, 3}, // 2*vperm2f128 + vshufpd 1399 {TTI::SK_PermuteTwoSrc, MVT::v8f32, 4}, // 2*vperm2f128 + 2*vshufps 1400 {TTI::SK_PermuteTwoSrc, MVT::v8i32, 4}, // 2*vperm2f128 + 2*vshufps 1401 {TTI::SK_PermuteTwoSrc, MVT::v16i16, 15}, // 2*vextractf128 + 8*pshufb 1402 // + 4*por + vinsertf128 1403 {TTI::SK_PermuteTwoSrc, MVT::v32i8, 15}, // 2*vextractf128 + 8*pshufb 1404 // + 4*por + vinsertf128 1405 }; 1406 1407 if (ST->hasAVX()) 1408 if (const auto *Entry = CostTableLookup(AVX1ShuffleTbl, Kind, LT.second)) 1409 return LT.first * Entry->Cost; 1410 1411 static const CostTblEntry SSE41ShuffleTbl[] = { 1412 {TTI::SK_Select, MVT::v2i64, 1}, // pblendw 1413 {TTI::SK_Select, MVT::v2f64, 1}, // movsd 1414 {TTI::SK_Select, MVT::v4i32, 1}, // pblendw 1415 {TTI::SK_Select, MVT::v4f32, 1}, // blendps 1416 {TTI::SK_Select, MVT::v8i16, 1}, // pblendw 1417 {TTI::SK_Select, MVT::v16i8, 1} // pblendvb 1418 }; 1419 1420 if (ST->hasSSE41()) 1421 if (const auto *Entry = CostTableLookup(SSE41ShuffleTbl, Kind, LT.second)) 1422 return LT.first * Entry->Cost; 1423 1424 static const CostTblEntry SSSE3ShuffleTbl[] = { 1425 {TTI::SK_Broadcast, MVT::v8i16, 1}, // pshufb 1426 {TTI::SK_Broadcast, MVT::v16i8, 1}, // pshufb 1427 1428 {TTI::SK_Reverse, MVT::v8i16, 1}, // pshufb 1429 {TTI::SK_Reverse, MVT::v16i8, 1}, // pshufb 1430 1431 {TTI::SK_Select, MVT::v8i16, 3}, // 2*pshufb + por 1432 {TTI::SK_Select, MVT::v16i8, 3}, // 2*pshufb + por 1433 1434 {TTI::SK_PermuteSingleSrc, MVT::v8i16, 1}, // pshufb 1435 {TTI::SK_PermuteSingleSrc, MVT::v16i8, 1}, // pshufb 1436 1437 {TTI::SK_PermuteTwoSrc, MVT::v8i16, 3}, // 2*pshufb + por 1438 {TTI::SK_PermuteTwoSrc, MVT::v16i8, 3}, // 2*pshufb + por 1439 }; 1440 1441 if (ST->hasSSSE3()) 1442 if (const auto *Entry = CostTableLookup(SSSE3ShuffleTbl, Kind, LT.second)) 1443 return LT.first * Entry->Cost; 1444 1445 static const CostTblEntry SSE2ShuffleTbl[] = { 1446 {TTI::SK_Broadcast, MVT::v2f64, 1}, // shufpd 1447 {TTI::SK_Broadcast, MVT::v2i64, 1}, // pshufd 1448 {TTI::SK_Broadcast, MVT::v4i32, 1}, // pshufd 1449 {TTI::SK_Broadcast, MVT::v8i16, 2}, // pshuflw + pshufd 1450 {TTI::SK_Broadcast, MVT::v16i8, 3}, // unpck + pshuflw + pshufd 1451 1452 {TTI::SK_Reverse, MVT::v2f64, 1}, // shufpd 1453 {TTI::SK_Reverse, MVT::v2i64, 1}, // pshufd 1454 {TTI::SK_Reverse, MVT::v4i32, 1}, // pshufd 1455 {TTI::SK_Reverse, MVT::v8i16, 3}, // pshuflw + pshufhw + pshufd 1456 {TTI::SK_Reverse, MVT::v16i8, 9}, // 2*pshuflw + 2*pshufhw 1457 // + 2*pshufd + 2*unpck + packus 1458 1459 {TTI::SK_Select, MVT::v2i64, 1}, // movsd 1460 {TTI::SK_Select, MVT::v2f64, 1}, // movsd 1461 {TTI::SK_Select, MVT::v4i32, 2}, // 2*shufps 1462 {TTI::SK_Select, MVT::v8i16, 3}, // pand + pandn + por 1463 {TTI::SK_Select, MVT::v16i8, 3}, // pand + pandn + por 1464 1465 {TTI::SK_PermuteSingleSrc, MVT::v2f64, 1}, // shufpd 1466 {TTI::SK_PermuteSingleSrc, MVT::v2i64, 1}, // pshufd 1467 {TTI::SK_PermuteSingleSrc, MVT::v4i32, 1}, // pshufd 1468 {TTI::SK_PermuteSingleSrc, MVT::v8i16, 5}, // 2*pshuflw + 2*pshufhw 1469 // + pshufd/unpck 1470 { TTI::SK_PermuteSingleSrc, MVT::v16i8, 10 }, // 2*pshuflw + 2*pshufhw 1471 // + 2*pshufd + 2*unpck + 2*packus 1472 1473 { TTI::SK_PermuteTwoSrc, MVT::v2f64, 1 }, // shufpd 1474 { TTI::SK_PermuteTwoSrc, MVT::v2i64, 1 }, // shufpd 1475 { TTI::SK_PermuteTwoSrc, MVT::v4i32, 2 }, // 2*{unpck,movsd,pshufd} 1476 { TTI::SK_PermuteTwoSrc, MVT::v8i16, 8 }, // blend+permute 1477 { TTI::SK_PermuteTwoSrc, MVT::v16i8, 13 }, // blend+permute 1478 }; 1479 1480 if (ST->hasSSE2()) 1481 if (const auto *Entry = CostTableLookup(SSE2ShuffleTbl, Kind, LT.second)) 1482 return LT.first * Entry->Cost; 1483 1484 static const CostTblEntry SSE1ShuffleTbl[] = { 1485 { TTI::SK_Broadcast, MVT::v4f32, 1 }, // shufps 1486 { TTI::SK_Reverse, MVT::v4f32, 1 }, // shufps 1487 { TTI::SK_Select, MVT::v4f32, 2 }, // 2*shufps 1488 { TTI::SK_PermuteSingleSrc, MVT::v4f32, 1 }, // shufps 1489 { TTI::SK_PermuteTwoSrc, MVT::v4f32, 2 }, // 2*shufps 1490 }; 1491 1492 if (ST->hasSSE1()) 1493 if (const auto *Entry = CostTableLookup(SSE1ShuffleTbl, Kind, LT.second)) 1494 return LT.first * Entry->Cost; 1495 1496 return BaseT::getShuffleCost(Kind, BaseTp, Mask, Index, SubTp); 1497 } 1498 1499 InstructionCost X86TTIImpl::getCastInstrCost(unsigned Opcode, Type *Dst, 1500 Type *Src, 1501 TTI::CastContextHint CCH, 1502 TTI::TargetCostKind CostKind, 1503 const Instruction *I) { 1504 int ISD = TLI->InstructionOpcodeToISD(Opcode); 1505 assert(ISD && "Invalid opcode"); 1506 1507 // TODO: Allow non-throughput costs that aren't binary. 1508 auto AdjustCost = [&CostKind](InstructionCost Cost) -> InstructionCost { 1509 if (CostKind != TTI::TCK_RecipThroughput) 1510 return Cost == 0 ? 0 : 1; 1511 return Cost; 1512 }; 1513 1514 // FIXME: Need a better design of the cost table to handle non-simple types of 1515 // potential massive combinations (elem_num x src_type x dst_type). 1516 1517 static const TypeConversionCostTblEntry AVX512BWConversionTbl[] { 1518 { ISD::SIGN_EXTEND, MVT::v32i16, MVT::v32i8, 1 }, 1519 { ISD::ZERO_EXTEND, MVT::v32i16, MVT::v32i8, 1 }, 1520 1521 // Mask sign extend has an instruction. 1522 { ISD::SIGN_EXTEND, MVT::v2i8, MVT::v2i1, 1 }, 1523 { ISD::SIGN_EXTEND, MVT::v2i16, MVT::v2i1, 1 }, 1524 { ISD::SIGN_EXTEND, MVT::v4i8, MVT::v4i1, 1 }, 1525 { ISD::SIGN_EXTEND, MVT::v4i16, MVT::v4i1, 1 }, 1526 { ISD::SIGN_EXTEND, MVT::v8i8, MVT::v8i1, 1 }, 1527 { ISD::SIGN_EXTEND, MVT::v8i16, MVT::v8i1, 1 }, 1528 { ISD::SIGN_EXTEND, MVT::v16i8, MVT::v16i1, 1 }, 1529 { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i1, 1 }, 1530 { ISD::SIGN_EXTEND, MVT::v32i8, MVT::v32i1, 1 }, 1531 { ISD::SIGN_EXTEND, MVT::v32i16, MVT::v32i1, 1 }, 1532 { ISD::SIGN_EXTEND, MVT::v64i8, MVT::v64i1, 1 }, 1533 1534 // Mask zero extend is a sext + shift. 1535 { ISD::ZERO_EXTEND, MVT::v2i8, MVT::v2i1, 2 }, 1536 { ISD::ZERO_EXTEND, MVT::v2i16, MVT::v2i1, 2 }, 1537 { ISD::ZERO_EXTEND, MVT::v4i8, MVT::v4i1, 2 }, 1538 { ISD::ZERO_EXTEND, MVT::v4i16, MVT::v4i1, 2 }, 1539 { ISD::ZERO_EXTEND, MVT::v8i8, MVT::v8i1, 2 }, 1540 { ISD::ZERO_EXTEND, MVT::v8i16, MVT::v8i1, 2 }, 1541 { ISD::ZERO_EXTEND, MVT::v16i8, MVT::v16i1, 2 }, 1542 { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i1, 2 }, 1543 { ISD::ZERO_EXTEND, MVT::v32i8, MVT::v32i1, 2 }, 1544 { ISD::ZERO_EXTEND, MVT::v32i16, MVT::v32i1, 2 }, 1545 { ISD::ZERO_EXTEND, MVT::v64i8, MVT::v64i1, 2 }, 1546 1547 { ISD::TRUNCATE, MVT::v32i8, MVT::v32i16, 2 }, 1548 { ISD::TRUNCATE, MVT::v16i8, MVT::v16i16, 2 }, // widen to zmm 1549 { ISD::TRUNCATE, MVT::v2i1, MVT::v2i8, 2 }, // widen to zmm 1550 { ISD::TRUNCATE, MVT::v2i1, MVT::v2i16, 2 }, // widen to zmm 1551 { ISD::TRUNCATE, MVT::v2i8, MVT::v2i16, 2 }, // vpmovwb 1552 { ISD::TRUNCATE, MVT::v4i1, MVT::v4i8, 2 }, // widen to zmm 1553 { ISD::TRUNCATE, MVT::v4i1, MVT::v4i16, 2 }, // widen to zmm 1554 { ISD::TRUNCATE, MVT::v4i8, MVT::v4i16, 2 }, // vpmovwb 1555 { ISD::TRUNCATE, MVT::v8i1, MVT::v8i8, 2 }, // widen to zmm 1556 { ISD::TRUNCATE, MVT::v8i1, MVT::v8i16, 2 }, // widen to zmm 1557 { ISD::TRUNCATE, MVT::v8i8, MVT::v8i16, 2 }, // vpmovwb 1558 { ISD::TRUNCATE, MVT::v16i1, MVT::v16i8, 2 }, // widen to zmm 1559 { ISD::TRUNCATE, MVT::v16i1, MVT::v16i16, 2 }, // widen to zmm 1560 { ISD::TRUNCATE, MVT::v32i1, MVT::v32i8, 2 }, // widen to zmm 1561 { ISD::TRUNCATE, MVT::v32i1, MVT::v32i16, 2 }, 1562 { ISD::TRUNCATE, MVT::v64i1, MVT::v64i8, 2 }, 1563 }; 1564 1565 static const TypeConversionCostTblEntry AVX512DQConversionTbl[] = { 1566 { ISD::SINT_TO_FP, MVT::v8f32, MVT::v8i64, 1 }, 1567 { ISD::SINT_TO_FP, MVT::v8f64, MVT::v8i64, 1 }, 1568 1569 { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i64, 1 }, 1570 { ISD::UINT_TO_FP, MVT::v8f64, MVT::v8i64, 1 }, 1571 1572 { ISD::FP_TO_SINT, MVT::v8i64, MVT::v8f32, 1 }, 1573 { ISD::FP_TO_SINT, MVT::v8i64, MVT::v8f64, 1 }, 1574 1575 { ISD::FP_TO_UINT, MVT::v8i64, MVT::v8f32, 1 }, 1576 { ISD::FP_TO_UINT, MVT::v8i64, MVT::v8f64, 1 }, 1577 }; 1578 1579 // TODO: For AVX512DQ + AVX512VL, we also have cheap casts for 128-bit and 1580 // 256-bit wide vectors. 1581 1582 static const TypeConversionCostTblEntry AVX512FConversionTbl[] = { 1583 { ISD::FP_EXTEND, MVT::v8f64, MVT::v8f32, 1 }, 1584 { ISD::FP_EXTEND, MVT::v8f64, MVT::v16f32, 3 }, 1585 { ISD::FP_ROUND, MVT::v8f32, MVT::v8f64, 1 }, 1586 1587 { ISD::TRUNCATE, MVT::v2i1, MVT::v2i8, 3 }, // sext+vpslld+vptestmd 1588 { ISD::TRUNCATE, MVT::v4i1, MVT::v4i8, 3 }, // sext+vpslld+vptestmd 1589 { ISD::TRUNCATE, MVT::v8i1, MVT::v8i8, 3 }, // sext+vpslld+vptestmd 1590 { ISD::TRUNCATE, MVT::v16i1, MVT::v16i8, 3 }, // sext+vpslld+vptestmd 1591 { ISD::TRUNCATE, MVT::v2i1, MVT::v2i16, 3 }, // sext+vpsllq+vptestmq 1592 { ISD::TRUNCATE, MVT::v4i1, MVT::v4i16, 3 }, // sext+vpsllq+vptestmq 1593 { ISD::TRUNCATE, MVT::v8i1, MVT::v8i16, 3 }, // sext+vpsllq+vptestmq 1594 { ISD::TRUNCATE, MVT::v16i1, MVT::v16i16, 3 }, // sext+vpslld+vptestmd 1595 { ISD::TRUNCATE, MVT::v2i1, MVT::v2i32, 2 }, // zmm vpslld+vptestmd 1596 { ISD::TRUNCATE, MVT::v4i1, MVT::v4i32, 2 }, // zmm vpslld+vptestmd 1597 { ISD::TRUNCATE, MVT::v8i1, MVT::v8i32, 2 }, // zmm vpslld+vptestmd 1598 { ISD::TRUNCATE, MVT::v16i1, MVT::v16i32, 2 }, // vpslld+vptestmd 1599 { ISD::TRUNCATE, MVT::v2i1, MVT::v2i64, 2 }, // zmm vpsllq+vptestmq 1600 { ISD::TRUNCATE, MVT::v4i1, MVT::v4i64, 2 }, // zmm vpsllq+vptestmq 1601 { ISD::TRUNCATE, MVT::v8i1, MVT::v8i64, 2 }, // vpsllq+vptestmq 1602 { ISD::TRUNCATE, MVT::v2i8, MVT::v2i32, 2 }, // vpmovdb 1603 { ISD::TRUNCATE, MVT::v4i8, MVT::v4i32, 2 }, // vpmovdb 1604 { ISD::TRUNCATE, MVT::v16i8, MVT::v16i32, 2 }, // vpmovdb 1605 { ISD::TRUNCATE, MVT::v16i16, MVT::v16i32, 2 }, // vpmovdb 1606 { ISD::TRUNCATE, MVT::v2i8, MVT::v2i64, 2 }, // vpmovqb 1607 { ISD::TRUNCATE, MVT::v2i16, MVT::v2i64, 1 }, // vpshufb 1608 { ISD::TRUNCATE, MVT::v8i8, MVT::v8i64, 2 }, // vpmovqb 1609 { ISD::TRUNCATE, MVT::v8i16, MVT::v8i64, 2 }, // vpmovqw 1610 { ISD::TRUNCATE, MVT::v8i32, MVT::v8i64, 1 }, // vpmovqd 1611 { ISD::TRUNCATE, MVT::v4i32, MVT::v4i64, 1 }, // zmm vpmovqd 1612 { ISD::TRUNCATE, MVT::v16i8, MVT::v16i64, 5 },// 2*vpmovqd+concat+vpmovdb 1613 1614 { ISD::TRUNCATE, MVT::v16i8, MVT::v16i16, 3 }, // extend to v16i32 1615 { ISD::TRUNCATE, MVT::v32i8, MVT::v32i16, 8 }, 1616 1617 // Sign extend is zmm vpternlogd+vptruncdb. 1618 // Zero extend is zmm broadcast load+vptruncdw. 1619 { ISD::SIGN_EXTEND, MVT::v2i8, MVT::v2i1, 3 }, 1620 { ISD::ZERO_EXTEND, MVT::v2i8, MVT::v2i1, 4 }, 1621 { ISD::SIGN_EXTEND, MVT::v4i8, MVT::v4i1, 3 }, 1622 { ISD::ZERO_EXTEND, MVT::v4i8, MVT::v4i1, 4 }, 1623 { ISD::SIGN_EXTEND, MVT::v8i8, MVT::v8i1, 3 }, 1624 { ISD::ZERO_EXTEND, MVT::v8i8, MVT::v8i1, 4 }, 1625 { ISD::SIGN_EXTEND, MVT::v16i8, MVT::v16i1, 3 }, 1626 { ISD::ZERO_EXTEND, MVT::v16i8, MVT::v16i1, 4 }, 1627 1628 // Sign extend is zmm vpternlogd+vptruncdw. 1629 // Zero extend is zmm vpternlogd+vptruncdw+vpsrlw. 1630 { ISD::SIGN_EXTEND, MVT::v2i16, MVT::v2i1, 3 }, 1631 { ISD::ZERO_EXTEND, MVT::v2i16, MVT::v2i1, 4 }, 1632 { ISD::SIGN_EXTEND, MVT::v4i16, MVT::v4i1, 3 }, 1633 { ISD::ZERO_EXTEND, MVT::v4i16, MVT::v4i1, 4 }, 1634 { ISD::SIGN_EXTEND, MVT::v8i16, MVT::v8i1, 3 }, 1635 { ISD::ZERO_EXTEND, MVT::v8i16, MVT::v8i1, 4 }, 1636 { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i1, 3 }, 1637 { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i1, 4 }, 1638 1639 { ISD::SIGN_EXTEND, MVT::v2i32, MVT::v2i1, 1 }, // zmm vpternlogd 1640 { ISD::ZERO_EXTEND, MVT::v2i32, MVT::v2i1, 2 }, // zmm vpternlogd+psrld 1641 { ISD::SIGN_EXTEND, MVT::v4i32, MVT::v4i1, 1 }, // zmm vpternlogd 1642 { ISD::ZERO_EXTEND, MVT::v4i32, MVT::v4i1, 2 }, // zmm vpternlogd+psrld 1643 { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i1, 1 }, // zmm vpternlogd 1644 { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i1, 2 }, // zmm vpternlogd+psrld 1645 { ISD::SIGN_EXTEND, MVT::v2i64, MVT::v2i1, 1 }, // zmm vpternlogq 1646 { ISD::ZERO_EXTEND, MVT::v2i64, MVT::v2i1, 2 }, // zmm vpternlogq+psrlq 1647 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i1, 1 }, // zmm vpternlogq 1648 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i1, 2 }, // zmm vpternlogq+psrlq 1649 1650 { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i1, 1 }, // vpternlogd 1651 { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i1, 2 }, // vpternlogd+psrld 1652 { ISD::SIGN_EXTEND, MVT::v8i64, MVT::v8i1, 1 }, // vpternlogq 1653 { ISD::ZERO_EXTEND, MVT::v8i64, MVT::v8i1, 2 }, // vpternlogq+psrlq 1654 1655 { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i8, 1 }, 1656 { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i8, 1 }, 1657 { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i16, 1 }, 1658 { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i16, 1 }, 1659 { ISD::SIGN_EXTEND, MVT::v8i64, MVT::v8i8, 1 }, 1660 { ISD::ZERO_EXTEND, MVT::v8i64, MVT::v8i8, 1 }, 1661 { ISD::SIGN_EXTEND, MVT::v8i64, MVT::v8i16, 1 }, 1662 { ISD::ZERO_EXTEND, MVT::v8i64, MVT::v8i16, 1 }, 1663 { ISD::SIGN_EXTEND, MVT::v8i64, MVT::v8i32, 1 }, 1664 { ISD::ZERO_EXTEND, MVT::v8i64, MVT::v8i32, 1 }, 1665 1666 { ISD::SIGN_EXTEND, MVT::v32i16, MVT::v32i8, 3 }, // FIXME: May not be right 1667 { ISD::ZERO_EXTEND, MVT::v32i16, MVT::v32i8, 3 }, // FIXME: May not be right 1668 1669 { ISD::SINT_TO_FP, MVT::v8f64, MVT::v8i1, 4 }, 1670 { ISD::SINT_TO_FP, MVT::v16f32, MVT::v16i1, 3 }, 1671 { ISD::SINT_TO_FP, MVT::v8f64, MVT::v8i8, 2 }, 1672 { ISD::SINT_TO_FP, MVT::v16f32, MVT::v16i8, 2 }, 1673 { ISD::SINT_TO_FP, MVT::v8f64, MVT::v8i16, 2 }, 1674 { ISD::SINT_TO_FP, MVT::v16f32, MVT::v16i16, 2 }, 1675 { ISD::SINT_TO_FP, MVT::v16f32, MVT::v16i32, 1 }, 1676 { ISD::SINT_TO_FP, MVT::v8f64, MVT::v8i32, 1 }, 1677 1678 { ISD::UINT_TO_FP, MVT::v8f64, MVT::v8i1, 4 }, 1679 { ISD::UINT_TO_FP, MVT::v16f32, MVT::v16i1, 3 }, 1680 { ISD::UINT_TO_FP, MVT::v8f64, MVT::v8i8, 2 }, 1681 { ISD::UINT_TO_FP, MVT::v16f32, MVT::v16i8, 2 }, 1682 { ISD::UINT_TO_FP, MVT::v8f64, MVT::v8i16, 2 }, 1683 { ISD::UINT_TO_FP, MVT::v16f32, MVT::v16i16, 2 }, 1684 { ISD::UINT_TO_FP, MVT::v8f64, MVT::v8i32, 1 }, 1685 { ISD::UINT_TO_FP, MVT::v16f32, MVT::v16i32, 1 }, 1686 { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i64, 26 }, 1687 { ISD::UINT_TO_FP, MVT::v8f64, MVT::v8i64, 5 }, 1688 1689 { ISD::FP_TO_SINT, MVT::v8i8, MVT::v8f64, 3 }, 1690 { ISD::FP_TO_SINT, MVT::v8i16, MVT::v8f64, 3 }, 1691 { ISD::FP_TO_SINT, MVT::v16i8, MVT::v16f32, 3 }, 1692 { ISD::FP_TO_SINT, MVT::v16i16, MVT::v16f32, 3 }, 1693 1694 { ISD::FP_TO_UINT, MVT::v8i32, MVT::v8f64, 1 }, 1695 { ISD::FP_TO_UINT, MVT::v8i16, MVT::v8f64, 3 }, 1696 { ISD::FP_TO_UINT, MVT::v8i8, MVT::v8f64, 3 }, 1697 { ISD::FP_TO_UINT, MVT::v16i32, MVT::v16f32, 1 }, 1698 { ISD::FP_TO_UINT, MVT::v16i16, MVT::v16f32, 3 }, 1699 { ISD::FP_TO_UINT, MVT::v16i8, MVT::v16f32, 3 }, 1700 }; 1701 1702 static const TypeConversionCostTblEntry AVX512BWVLConversionTbl[] { 1703 // Mask sign extend has an instruction. 1704 { ISD::SIGN_EXTEND, MVT::v2i8, MVT::v2i1, 1 }, 1705 { ISD::SIGN_EXTEND, MVT::v2i16, MVT::v2i1, 1 }, 1706 { ISD::SIGN_EXTEND, MVT::v4i8, MVT::v4i1, 1 }, 1707 { ISD::SIGN_EXTEND, MVT::v4i16, MVT::v4i1, 1 }, 1708 { ISD::SIGN_EXTEND, MVT::v8i8, MVT::v8i1, 1 }, 1709 { ISD::SIGN_EXTEND, MVT::v8i16, MVT::v8i1, 1 }, 1710 { ISD::SIGN_EXTEND, MVT::v16i8, MVT::v16i1, 1 }, 1711 { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i1, 1 }, 1712 { ISD::SIGN_EXTEND, MVT::v32i8, MVT::v32i1, 1 }, 1713 1714 // Mask zero extend is a sext + shift. 1715 { ISD::ZERO_EXTEND, MVT::v2i8, MVT::v2i1, 2 }, 1716 { ISD::ZERO_EXTEND, MVT::v2i16, MVT::v2i1, 2 }, 1717 { ISD::ZERO_EXTEND, MVT::v4i8, MVT::v4i1, 2 }, 1718 { ISD::ZERO_EXTEND, MVT::v4i16, MVT::v4i1, 2 }, 1719 { ISD::ZERO_EXTEND, MVT::v8i8, MVT::v8i1, 2 }, 1720 { ISD::ZERO_EXTEND, MVT::v8i16, MVT::v8i1, 2 }, 1721 { ISD::ZERO_EXTEND, MVT::v16i8, MVT::v16i1, 2 }, 1722 { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i1, 2 }, 1723 { ISD::ZERO_EXTEND, MVT::v32i8, MVT::v32i1, 2 }, 1724 1725 { ISD::TRUNCATE, MVT::v16i8, MVT::v16i16, 2 }, 1726 { ISD::TRUNCATE, MVT::v2i1, MVT::v2i8, 2 }, // vpsllw+vptestmb 1727 { ISD::TRUNCATE, MVT::v2i1, MVT::v2i16, 2 }, // vpsllw+vptestmw 1728 { ISD::TRUNCATE, MVT::v4i1, MVT::v4i8, 2 }, // vpsllw+vptestmb 1729 { ISD::TRUNCATE, MVT::v4i1, MVT::v4i16, 2 }, // vpsllw+vptestmw 1730 { ISD::TRUNCATE, MVT::v8i1, MVT::v8i8, 2 }, // vpsllw+vptestmb 1731 { ISD::TRUNCATE, MVT::v8i1, MVT::v8i16, 2 }, // vpsllw+vptestmw 1732 { ISD::TRUNCATE, MVT::v16i1, MVT::v16i8, 2 }, // vpsllw+vptestmb 1733 { ISD::TRUNCATE, MVT::v16i1, MVT::v16i16, 2 }, // vpsllw+vptestmw 1734 { ISD::TRUNCATE, MVT::v32i1, MVT::v32i8, 2 }, // vpsllw+vptestmb 1735 }; 1736 1737 static const TypeConversionCostTblEntry AVX512DQVLConversionTbl[] = { 1738 { ISD::SINT_TO_FP, MVT::v2f32, MVT::v2i64, 1 }, 1739 { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i64, 1 }, 1740 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i64, 1 }, 1741 { ISD::SINT_TO_FP, MVT::v4f64, MVT::v4i64, 1 }, 1742 1743 { ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i64, 1 }, 1744 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i64, 1 }, 1745 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i64, 1 }, 1746 { ISD::UINT_TO_FP, MVT::v4f64, MVT::v4i64, 1 }, 1747 1748 { ISD::FP_TO_SINT, MVT::v2i64, MVT::v2f32, 1 }, 1749 { ISD::FP_TO_SINT, MVT::v4i64, MVT::v4f32, 1 }, 1750 { ISD::FP_TO_SINT, MVT::v2i64, MVT::v2f64, 1 }, 1751 { ISD::FP_TO_SINT, MVT::v4i64, MVT::v4f64, 1 }, 1752 1753 { ISD::FP_TO_UINT, MVT::v2i64, MVT::v2f32, 1 }, 1754 { ISD::FP_TO_UINT, MVT::v4i64, MVT::v4f32, 1 }, 1755 { ISD::FP_TO_UINT, MVT::v2i64, MVT::v2f64, 1 }, 1756 { ISD::FP_TO_UINT, MVT::v4i64, MVT::v4f64, 1 }, 1757 }; 1758 1759 static const TypeConversionCostTblEntry AVX512VLConversionTbl[] = { 1760 { ISD::TRUNCATE, MVT::v2i1, MVT::v2i8, 3 }, // sext+vpslld+vptestmd 1761 { ISD::TRUNCATE, MVT::v4i1, MVT::v4i8, 3 }, // sext+vpslld+vptestmd 1762 { ISD::TRUNCATE, MVT::v8i1, MVT::v8i8, 3 }, // sext+vpslld+vptestmd 1763 { ISD::TRUNCATE, MVT::v16i1, MVT::v16i8, 8 }, // split+2*v8i8 1764 { ISD::TRUNCATE, MVT::v2i1, MVT::v2i16, 3 }, // sext+vpsllq+vptestmq 1765 { ISD::TRUNCATE, MVT::v4i1, MVT::v4i16, 3 }, // sext+vpsllq+vptestmq 1766 { ISD::TRUNCATE, MVT::v8i1, MVT::v8i16, 3 }, // sext+vpsllq+vptestmq 1767 { ISD::TRUNCATE, MVT::v16i1, MVT::v16i16, 8 }, // split+2*v8i16 1768 { ISD::TRUNCATE, MVT::v2i1, MVT::v2i32, 2 }, // vpslld+vptestmd 1769 { ISD::TRUNCATE, MVT::v4i1, MVT::v4i32, 2 }, // vpslld+vptestmd 1770 { ISD::TRUNCATE, MVT::v8i1, MVT::v8i32, 2 }, // vpslld+vptestmd 1771 { ISD::TRUNCATE, MVT::v2i1, MVT::v2i64, 2 }, // vpsllq+vptestmq 1772 { ISD::TRUNCATE, MVT::v4i1, MVT::v4i64, 2 }, // vpsllq+vptestmq 1773 { ISD::TRUNCATE, MVT::v4i32, MVT::v4i64, 1 }, // vpmovqd 1774 { ISD::TRUNCATE, MVT::v4i8, MVT::v4i64, 2 }, // vpmovqb 1775 { ISD::TRUNCATE, MVT::v4i16, MVT::v4i64, 2 }, // vpmovqw 1776 { ISD::TRUNCATE, MVT::v8i8, MVT::v8i32, 2 }, // vpmovwb 1777 1778 // sign extend is vpcmpeq+maskedmove+vpmovdw+vpacksswb 1779 // zero extend is vpcmpeq+maskedmove+vpmovdw+vpsrlw+vpackuswb 1780 { ISD::SIGN_EXTEND, MVT::v2i8, MVT::v2i1, 5 }, 1781 { ISD::ZERO_EXTEND, MVT::v2i8, MVT::v2i1, 6 }, 1782 { ISD::SIGN_EXTEND, MVT::v4i8, MVT::v4i1, 5 }, 1783 { ISD::ZERO_EXTEND, MVT::v4i8, MVT::v4i1, 6 }, 1784 { ISD::SIGN_EXTEND, MVT::v8i8, MVT::v8i1, 5 }, 1785 { ISD::ZERO_EXTEND, MVT::v8i8, MVT::v8i1, 6 }, 1786 { ISD::SIGN_EXTEND, MVT::v16i8, MVT::v16i1, 10 }, 1787 { ISD::ZERO_EXTEND, MVT::v16i8, MVT::v16i1, 12 }, 1788 1789 // sign extend is vpcmpeq+maskedmove+vpmovdw 1790 // zero extend is vpcmpeq+maskedmove+vpmovdw+vpsrlw 1791 { ISD::SIGN_EXTEND, MVT::v2i16, MVT::v2i1, 4 }, 1792 { ISD::ZERO_EXTEND, MVT::v2i16, MVT::v2i1, 5 }, 1793 { ISD::SIGN_EXTEND, MVT::v4i16, MVT::v4i1, 4 }, 1794 { ISD::ZERO_EXTEND, MVT::v4i16, MVT::v4i1, 5 }, 1795 { ISD::SIGN_EXTEND, MVT::v8i16, MVT::v8i1, 4 }, 1796 { ISD::ZERO_EXTEND, MVT::v8i16, MVT::v8i1, 5 }, 1797 { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i1, 10 }, 1798 { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i1, 12 }, 1799 1800 { ISD::SIGN_EXTEND, MVT::v2i32, MVT::v2i1, 1 }, // vpternlogd 1801 { ISD::ZERO_EXTEND, MVT::v2i32, MVT::v2i1, 2 }, // vpternlogd+psrld 1802 { ISD::SIGN_EXTEND, MVT::v4i32, MVT::v4i1, 1 }, // vpternlogd 1803 { ISD::ZERO_EXTEND, MVT::v4i32, MVT::v4i1, 2 }, // vpternlogd+psrld 1804 { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i1, 1 }, // vpternlogd 1805 { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i1, 2 }, // vpternlogd+psrld 1806 { ISD::SIGN_EXTEND, MVT::v2i64, MVT::v2i1, 1 }, // vpternlogq 1807 { ISD::ZERO_EXTEND, MVT::v2i64, MVT::v2i1, 2 }, // vpternlogq+psrlq 1808 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i1, 1 }, // vpternlogq 1809 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i1, 2 }, // vpternlogq+psrlq 1810 1811 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i8, 2 }, 1812 { ISD::UINT_TO_FP, MVT::v4f64, MVT::v4i8, 2 }, 1813 { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i8, 2 }, 1814 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i16, 5 }, 1815 { ISD::UINT_TO_FP, MVT::v4f64, MVT::v4i16, 2 }, 1816 { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i16, 2 }, 1817 { ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i32, 2 }, 1818 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i32, 1 }, 1819 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i32, 1 }, 1820 { ISD::UINT_TO_FP, MVT::v4f64, MVT::v4i32, 1 }, 1821 { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i32, 1 }, 1822 { ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i64, 5 }, 1823 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i64, 5 }, 1824 { ISD::UINT_TO_FP, MVT::v4f64, MVT::v4i64, 5 }, 1825 1826 { ISD::UINT_TO_FP, MVT::f32, MVT::i64, 1 }, 1827 { ISD::UINT_TO_FP, MVT::f64, MVT::i64, 1 }, 1828 1829 { ISD::FP_TO_SINT, MVT::v8i8, MVT::v8f32, 3 }, 1830 { ISD::FP_TO_UINT, MVT::v8i8, MVT::v8f32, 3 }, 1831 1832 { ISD::FP_TO_UINT, MVT::i64, MVT::f32, 1 }, 1833 { ISD::FP_TO_UINT, MVT::i64, MVT::f64, 1 }, 1834 1835 { ISD::FP_TO_UINT, MVT::v2i32, MVT::v2f32, 1 }, 1836 { ISD::FP_TO_UINT, MVT::v4i32, MVT::v4f32, 1 }, 1837 { ISD::FP_TO_UINT, MVT::v2i32, MVT::v2f64, 1 }, 1838 { ISD::FP_TO_UINT, MVT::v4i32, MVT::v4f64, 1 }, 1839 { ISD::FP_TO_UINT, MVT::v8i32, MVT::v8f32, 1 }, 1840 }; 1841 1842 static const TypeConversionCostTblEntry AVX2ConversionTbl[] = { 1843 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i1, 3 }, 1844 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i1, 3 }, 1845 { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i1, 3 }, 1846 { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i1, 3 }, 1847 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i8, 1 }, 1848 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i8, 1 }, 1849 { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i8, 1 }, 1850 { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i8, 1 }, 1851 { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i1, 1 }, 1852 { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i1, 1 }, 1853 { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i8, 1 }, 1854 { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i8, 1 }, 1855 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i16, 1 }, 1856 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i16, 1 }, 1857 { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i16, 1 }, 1858 { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i16, 1 }, 1859 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i32, 1 }, 1860 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i32, 1 }, 1861 { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i16, 3 }, 1862 { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i16, 3 }, 1863 1864 { ISD::TRUNCATE, MVT::v4i32, MVT::v4i64, 2 }, 1865 { ISD::TRUNCATE, MVT::v8i1, MVT::v8i32, 2 }, 1866 { ISD::TRUNCATE, MVT::v8i16, MVT::v8i32, 2 }, 1867 1868 { ISD::FP_EXTEND, MVT::v8f64, MVT::v8f32, 3 }, 1869 { ISD::FP_ROUND, MVT::v8f32, MVT::v8f64, 3 }, 1870 1871 { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i32, 5 }, 1872 }; 1873 1874 static const TypeConversionCostTblEntry AVXConversionTbl[] = { 1875 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i1, 6 }, 1876 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i1, 4 }, 1877 { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i1, 7 }, 1878 { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i1, 4 }, 1879 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i8, 3 }, 1880 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i8, 3 }, 1881 { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i8, 3 }, 1882 { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i8, 3 }, 1883 { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i1, 4 }, 1884 { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i1, 4 }, 1885 { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i8, 3 }, 1886 { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i8, 3 }, 1887 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i16, 3 }, 1888 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i16, 3 }, 1889 { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i16, 3 }, 1890 { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i16, 3 }, 1891 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i32, 3 }, 1892 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i32, 3 }, 1893 1894 { ISD::TRUNCATE, MVT::v4i1, MVT::v4i64, 4 }, 1895 { ISD::TRUNCATE, MVT::v8i1, MVT::v8i32, 5 }, 1896 { ISD::TRUNCATE, MVT::v16i1, MVT::v16i16, 4 }, 1897 { ISD::TRUNCATE, MVT::v8i1, MVT::v8i64, 9 }, 1898 { ISD::TRUNCATE, MVT::v16i1, MVT::v16i64, 11 }, 1899 1900 { ISD::TRUNCATE, MVT::v16i8, MVT::v16i16, 4 }, 1901 { ISD::TRUNCATE, MVT::v8i8, MVT::v8i32, 4 }, 1902 { ISD::TRUNCATE, MVT::v8i16, MVT::v8i32, 5 }, 1903 { ISD::TRUNCATE, MVT::v4i8, MVT::v4i64, 4 }, 1904 { ISD::TRUNCATE, MVT::v4i16, MVT::v4i64, 4 }, 1905 { ISD::TRUNCATE, MVT::v4i32, MVT::v4i64, 2 }, 1906 { ISD::TRUNCATE, MVT::v8i8, MVT::v8i64, 11 }, 1907 { ISD::TRUNCATE, MVT::v8i16, MVT::v8i64, 9 }, 1908 { ISD::TRUNCATE, MVT::v8i32, MVT::v8i64, 3 }, 1909 { ISD::TRUNCATE, MVT::v16i8, MVT::v16i64, 11 }, 1910 1911 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i1, 3 }, 1912 { ISD::SINT_TO_FP, MVT::v4f64, MVT::v4i1, 3 }, 1913 { ISD::SINT_TO_FP, MVT::v8f32, MVT::v8i1, 8 }, 1914 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i8, 3 }, 1915 { ISD::SINT_TO_FP, MVT::v4f64, MVT::v4i8, 3 }, 1916 { ISD::SINT_TO_FP, MVT::v8f32, MVT::v8i8, 8 }, 1917 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i16, 3 }, 1918 { ISD::SINT_TO_FP, MVT::v4f64, MVT::v4i16, 3 }, 1919 { ISD::SINT_TO_FP, MVT::v8f32, MVT::v8i16, 5 }, 1920 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i32, 1 }, 1921 { ISD::SINT_TO_FP, MVT::v4f64, MVT::v4i32, 1 }, 1922 { ISD::SINT_TO_FP, MVT::v8f32, MVT::v8i32, 1 }, 1923 1924 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i1, 7 }, 1925 { ISD::UINT_TO_FP, MVT::v4f64, MVT::v4i1, 7 }, 1926 { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i1, 6 }, 1927 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i8, 2 }, 1928 { ISD::UINT_TO_FP, MVT::v4f64, MVT::v4i8, 2 }, 1929 { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i8, 5 }, 1930 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i16, 2 }, 1931 { ISD::UINT_TO_FP, MVT::v4f64, MVT::v4i16, 2 }, 1932 { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i16, 5 }, 1933 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i32, 6 }, 1934 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i32, 6 }, 1935 { ISD::UINT_TO_FP, MVT::v4f64, MVT::v4i32, 6 }, 1936 { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i32, 8 }, 1937 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i64, 5 }, 1938 { ISD::UINT_TO_FP, MVT::v4f64, MVT::v4i64, 6 }, 1939 // The generic code to compute the scalar overhead is currently broken. 1940 // Workaround this limitation by estimating the scalarization overhead 1941 // here. We have roughly 10 instructions per scalar element. 1942 // Multiply that by the vector width. 1943 // FIXME: remove that when PR19268 is fixed. 1944 { ISD::SINT_TO_FP, MVT::v4f64, MVT::v4i64, 13 }, 1945 { ISD::SINT_TO_FP, MVT::v4f64, MVT::v4i64, 13 }, 1946 1947 { ISD::FP_TO_SINT, MVT::v8i8, MVT::v8f32, 4 }, 1948 { ISD::FP_TO_SINT, MVT::v4i8, MVT::v4f64, 3 }, 1949 { ISD::FP_TO_SINT, MVT::v4i16, MVT::v4f64, 2 }, 1950 { ISD::FP_TO_SINT, MVT::v8i16, MVT::v8f32, 3 }, 1951 1952 { ISD::FP_TO_UINT, MVT::v4i8, MVT::v4f64, 3 }, 1953 { ISD::FP_TO_UINT, MVT::v4i16, MVT::v4f64, 2 }, 1954 { ISD::FP_TO_UINT, MVT::v8i8, MVT::v8f32, 4 }, 1955 { ISD::FP_TO_UINT, MVT::v8i16, MVT::v8f32, 3 }, 1956 { ISD::FP_TO_UINT, MVT::v8i32, MVT::v8f32, 9 }, 1957 // This node is expanded into scalarized operations but BasicTTI is overly 1958 // optimistic estimating its cost. It computes 3 per element (one 1959 // vector-extract, one scalar conversion and one vector-insert). The 1960 // problem is that the inserts form a read-modify-write chain so latency 1961 // should be factored in too. Inflating the cost per element by 1. 1962 { ISD::FP_TO_UINT, MVT::v4i32, MVT::v4f64, 4*4 }, 1963 1964 { ISD::FP_EXTEND, MVT::v4f64, MVT::v4f32, 1 }, 1965 { ISD::FP_ROUND, MVT::v4f32, MVT::v4f64, 1 }, 1966 }; 1967 1968 static const TypeConversionCostTblEntry SSE41ConversionTbl[] = { 1969 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i8, 2 }, 1970 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i8, 2 }, 1971 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i16, 2 }, 1972 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i16, 2 }, 1973 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i32, 2 }, 1974 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i32, 2 }, 1975 1976 { ISD::ZERO_EXTEND, MVT::v2i16, MVT::v2i8, 1 }, 1977 { ISD::SIGN_EXTEND, MVT::v2i16, MVT::v2i8, 1 }, 1978 { ISD::ZERO_EXTEND, MVT::v2i32, MVT::v2i8, 1 }, 1979 { ISD::SIGN_EXTEND, MVT::v2i32, MVT::v2i8, 1 }, 1980 { ISD::ZERO_EXTEND, MVT::v2i64, MVT::v2i8, 1 }, 1981 { ISD::SIGN_EXTEND, MVT::v2i64, MVT::v2i8, 1 }, 1982 { ISD::ZERO_EXTEND, MVT::v4i16, MVT::v4i8, 1 }, 1983 { ISD::SIGN_EXTEND, MVT::v4i16, MVT::v4i8, 1 }, 1984 { ISD::ZERO_EXTEND, MVT::v4i32, MVT::v4i8, 1 }, 1985 { ISD::SIGN_EXTEND, MVT::v4i32, MVT::v4i8, 1 }, 1986 { ISD::ZERO_EXTEND, MVT::v8i16, MVT::v8i8, 1 }, 1987 { ISD::SIGN_EXTEND, MVT::v8i16, MVT::v8i8, 1 }, 1988 { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i8, 2 }, 1989 { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i8, 2 }, 1990 { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i8, 2 }, 1991 { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i8, 2 }, 1992 { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i8, 4 }, 1993 { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i8, 4 }, 1994 { ISD::ZERO_EXTEND, MVT::v2i32, MVT::v2i16, 1 }, 1995 { ISD::SIGN_EXTEND, MVT::v2i32, MVT::v2i16, 1 }, 1996 { ISD::ZERO_EXTEND, MVT::v2i64, MVT::v2i16, 1 }, 1997 { ISD::SIGN_EXTEND, MVT::v2i64, MVT::v2i16, 1 }, 1998 { ISD::ZERO_EXTEND, MVT::v4i32, MVT::v4i16, 1 }, 1999 { ISD::SIGN_EXTEND, MVT::v4i32, MVT::v4i16, 1 }, 2000 { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i16, 2 }, 2001 { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i16, 2 }, 2002 { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i16, 4 }, 2003 { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i16, 4 }, 2004 { ISD::ZERO_EXTEND, MVT::v2i64, MVT::v2i32, 1 }, 2005 { ISD::SIGN_EXTEND, MVT::v2i64, MVT::v2i32, 1 }, 2006 2007 // These truncates end up widening elements. 2008 { ISD::TRUNCATE, MVT::v2i1, MVT::v2i8, 1 }, // PMOVXZBQ 2009 { ISD::TRUNCATE, MVT::v2i1, MVT::v2i16, 1 }, // PMOVXZWQ 2010 { ISD::TRUNCATE, MVT::v4i1, MVT::v4i8, 1 }, // PMOVXZBD 2011 2012 { ISD::TRUNCATE, MVT::v2i8, MVT::v2i16, 1 }, 2013 { ISD::TRUNCATE, MVT::v4i8, MVT::v4i16, 1 }, 2014 { ISD::TRUNCATE, MVT::v8i8, MVT::v8i16, 1 }, 2015 { ISD::TRUNCATE, MVT::v4i8, MVT::v4i32, 1 }, 2016 { ISD::TRUNCATE, MVT::v4i16, MVT::v4i32, 1 }, 2017 { ISD::TRUNCATE, MVT::v8i8, MVT::v8i32, 3 }, 2018 { ISD::TRUNCATE, MVT::v8i16, MVT::v8i32, 3 }, 2019 { ISD::TRUNCATE, MVT::v16i16, MVT::v16i32, 6 }, 2020 { ISD::TRUNCATE, MVT::v2i8, MVT::v2i64, 1 }, // PSHUFB 2021 2022 { ISD::UINT_TO_FP, MVT::f32, MVT::i64, 4 }, 2023 { ISD::UINT_TO_FP, MVT::f64, MVT::i64, 4 }, 2024 2025 { ISD::FP_TO_SINT, MVT::v2i8, MVT::v2f32, 3 }, 2026 { ISD::FP_TO_SINT, MVT::v2i8, MVT::v2f64, 3 }, 2027 2028 { ISD::FP_TO_UINT, MVT::v2i8, MVT::v2f32, 3 }, 2029 { ISD::FP_TO_UINT, MVT::v2i8, MVT::v2f64, 3 }, 2030 { ISD::FP_TO_UINT, MVT::v4i16, MVT::v4f32, 2 }, 2031 }; 2032 2033 static const TypeConversionCostTblEntry SSE2ConversionTbl[] = { 2034 // These are somewhat magic numbers justified by looking at the output of 2035 // Intel's IACA, running some kernels and making sure when we take 2036 // legalization into account the throughput will be overestimated. 2037 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v16i8, 8 }, 2038 { ISD::SINT_TO_FP, MVT::v2f64, MVT::v16i8, 16*10 }, 2039 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v8i16, 15 }, 2040 { ISD::SINT_TO_FP, MVT::v2f64, MVT::v8i16, 8*10 }, 2041 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i32, 5 }, 2042 { ISD::SINT_TO_FP, MVT::v2f64, MVT::v4i32, 2*10 }, 2043 { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i32, 2*10 }, 2044 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v2i64, 15 }, 2045 { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i64, 2*10 }, 2046 2047 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v16i8, 16*10 }, 2048 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v16i8, 8 }, 2049 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v8i16, 15 }, 2050 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v8i16, 8*10 }, 2051 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v4i32, 4*10 }, 2052 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i32, 5 }, 2053 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i64, 6 }, 2054 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v2i64, 15 }, 2055 2056 { ISD::FP_TO_SINT, MVT::v2i8, MVT::v2f32, 4 }, 2057 { ISD::FP_TO_SINT, MVT::v2i16, MVT::v2f32, 2 }, 2058 { ISD::FP_TO_SINT, MVT::v4i8, MVT::v4f32, 3 }, 2059 { ISD::FP_TO_SINT, MVT::v4i16, MVT::v4f32, 2 }, 2060 { ISD::FP_TO_SINT, MVT::v2i16, MVT::v2f64, 2 }, 2061 { ISD::FP_TO_SINT, MVT::v2i8, MVT::v2f64, 4 }, 2062 2063 { ISD::FP_TO_SINT, MVT::v2i32, MVT::v2f64, 1 }, 2064 2065 { ISD::UINT_TO_FP, MVT::f32, MVT::i64, 6 }, 2066 { ISD::UINT_TO_FP, MVT::f64, MVT::i64, 6 }, 2067 2068 { ISD::FP_TO_UINT, MVT::i64, MVT::f32, 4 }, 2069 { ISD::FP_TO_UINT, MVT::i64, MVT::f64, 4 }, 2070 { ISD::FP_TO_UINT, MVT::v2i8, MVT::v2f32, 4 }, 2071 { ISD::FP_TO_UINT, MVT::v2i8, MVT::v2f64, 4 }, 2072 { ISD::FP_TO_UINT, MVT::v4i8, MVT::v4f32, 3 }, 2073 { ISD::FP_TO_UINT, MVT::v2i16, MVT::v2f32, 2 }, 2074 { ISD::FP_TO_UINT, MVT::v2i16, MVT::v2f64, 2 }, 2075 { ISD::FP_TO_UINT, MVT::v4i16, MVT::v4f32, 4 }, 2076 { ISD::FP_TO_UINT, MVT::v4i32, MVT::v4f32, 8 }, 2077 2078 { ISD::ZERO_EXTEND, MVT::v4i16, MVT::v4i8, 1 }, 2079 { ISD::SIGN_EXTEND, MVT::v4i16, MVT::v4i8, 6 }, 2080 { ISD::ZERO_EXTEND, MVT::v4i32, MVT::v4i8, 2 }, 2081 { ISD::SIGN_EXTEND, MVT::v4i32, MVT::v4i8, 3 }, 2082 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i8, 4 }, 2083 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i8, 8 }, 2084 { ISD::ZERO_EXTEND, MVT::v8i16, MVT::v8i8, 1 }, 2085 { ISD::SIGN_EXTEND, MVT::v8i16, MVT::v8i8, 2 }, 2086 { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i8, 6 }, 2087 { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i8, 6 }, 2088 { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i8, 3 }, 2089 { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i8, 4 }, 2090 { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i8, 9 }, 2091 { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i8, 12 }, 2092 { ISD::ZERO_EXTEND, MVT::v4i32, MVT::v4i16, 1 }, 2093 { ISD::SIGN_EXTEND, MVT::v4i32, MVT::v4i16, 2 }, 2094 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i16, 3 }, 2095 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i16, 10 }, 2096 { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i16, 3 }, 2097 { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i16, 4 }, 2098 { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i16, 6 }, 2099 { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i16, 8 }, 2100 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i32, 3 }, 2101 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i32, 5 }, 2102 2103 // These truncates are really widening elements. 2104 { ISD::TRUNCATE, MVT::v2i1, MVT::v2i32, 1 }, // PSHUFD 2105 { ISD::TRUNCATE, MVT::v2i1, MVT::v2i16, 2 }, // PUNPCKLWD+DQ 2106 { ISD::TRUNCATE, MVT::v2i1, MVT::v2i8, 3 }, // PUNPCKLBW+WD+PSHUFD 2107 { ISD::TRUNCATE, MVT::v4i1, MVT::v4i16, 1 }, // PUNPCKLWD 2108 { ISD::TRUNCATE, MVT::v4i1, MVT::v4i8, 2 }, // PUNPCKLBW+WD 2109 { ISD::TRUNCATE, MVT::v8i1, MVT::v8i8, 1 }, // PUNPCKLBW 2110 2111 { ISD::TRUNCATE, MVT::v2i8, MVT::v2i16, 2 }, // PAND+PACKUSWB 2112 { ISD::TRUNCATE, MVT::v4i8, MVT::v4i16, 2 }, // PAND+PACKUSWB 2113 { ISD::TRUNCATE, MVT::v8i8, MVT::v8i16, 2 }, // PAND+PACKUSWB 2114 { ISD::TRUNCATE, MVT::v16i8, MVT::v16i16, 3 }, 2115 { ISD::TRUNCATE, MVT::v2i8, MVT::v2i32, 3 }, // PAND+2*PACKUSWB 2116 { ISD::TRUNCATE, MVT::v2i16, MVT::v2i32, 1 }, 2117 { ISD::TRUNCATE, MVT::v4i8, MVT::v4i32, 3 }, 2118 { ISD::TRUNCATE, MVT::v4i16, MVT::v4i32, 3 }, 2119 { ISD::TRUNCATE, MVT::v8i8, MVT::v8i32, 4 }, 2120 { ISD::TRUNCATE, MVT::v16i8, MVT::v16i32, 7 }, 2121 { ISD::TRUNCATE, MVT::v8i16, MVT::v8i32, 5 }, 2122 { ISD::TRUNCATE, MVT::v16i16, MVT::v16i32, 10 }, 2123 { ISD::TRUNCATE, MVT::v2i8, MVT::v2i64, 4 }, // PAND+3*PACKUSWB 2124 { ISD::TRUNCATE, MVT::v2i16, MVT::v2i64, 2 }, // PSHUFD+PSHUFLW 2125 { ISD::TRUNCATE, MVT::v2i32, MVT::v2i64, 1 }, // PSHUFD 2126 }; 2127 2128 std::pair<InstructionCost, MVT> LTSrc = TLI->getTypeLegalizationCost(DL, Src); 2129 std::pair<InstructionCost, MVT> LTDest = 2130 TLI->getTypeLegalizationCost(DL, Dst); 2131 2132 if (ST->hasSSE41() && !ST->hasAVX()) 2133 if (const auto *Entry = ConvertCostTableLookup(SSE41ConversionTbl, ISD, 2134 LTDest.second, LTSrc.second)) 2135 return AdjustCost(LTSrc.first * Entry->Cost); 2136 2137 if (ST->hasSSE2() && !ST->hasAVX()) 2138 if (const auto *Entry = ConvertCostTableLookup(SSE2ConversionTbl, ISD, 2139 LTDest.second, LTSrc.second)) 2140 return AdjustCost(LTSrc.first * Entry->Cost); 2141 2142 EVT SrcTy = TLI->getValueType(DL, Src); 2143 EVT DstTy = TLI->getValueType(DL, Dst); 2144 2145 // The function getSimpleVT only handles simple value types. 2146 if (!SrcTy.isSimple() || !DstTy.isSimple()) 2147 return AdjustCost(BaseT::getCastInstrCost(Opcode, Dst, Src, CCH, CostKind)); 2148 2149 MVT SimpleSrcTy = SrcTy.getSimpleVT(); 2150 MVT SimpleDstTy = DstTy.getSimpleVT(); 2151 2152 if (ST->useAVX512Regs()) { 2153 if (ST->hasBWI()) 2154 if (const auto *Entry = ConvertCostTableLookup(AVX512BWConversionTbl, ISD, 2155 SimpleDstTy, SimpleSrcTy)) 2156 return AdjustCost(Entry->Cost); 2157 2158 if (ST->hasDQI()) 2159 if (const auto *Entry = ConvertCostTableLookup(AVX512DQConversionTbl, ISD, 2160 SimpleDstTy, SimpleSrcTy)) 2161 return AdjustCost(Entry->Cost); 2162 2163 if (ST->hasAVX512()) 2164 if (const auto *Entry = ConvertCostTableLookup(AVX512FConversionTbl, ISD, 2165 SimpleDstTy, SimpleSrcTy)) 2166 return AdjustCost(Entry->Cost); 2167 } 2168 2169 if (ST->hasBWI()) 2170 if (const auto *Entry = ConvertCostTableLookup(AVX512BWVLConversionTbl, ISD, 2171 SimpleDstTy, SimpleSrcTy)) 2172 return AdjustCost(Entry->Cost); 2173 2174 if (ST->hasDQI()) 2175 if (const auto *Entry = ConvertCostTableLookup(AVX512DQVLConversionTbl, ISD, 2176 SimpleDstTy, SimpleSrcTy)) 2177 return AdjustCost(Entry->Cost); 2178 2179 if (ST->hasAVX512()) 2180 if (const auto *Entry = ConvertCostTableLookup(AVX512VLConversionTbl, ISD, 2181 SimpleDstTy, SimpleSrcTy)) 2182 return AdjustCost(Entry->Cost); 2183 2184 if (ST->hasAVX2()) { 2185 if (const auto *Entry = ConvertCostTableLookup(AVX2ConversionTbl, ISD, 2186 SimpleDstTy, SimpleSrcTy)) 2187 return AdjustCost(Entry->Cost); 2188 } 2189 2190 if (ST->hasAVX()) { 2191 if (const auto *Entry = ConvertCostTableLookup(AVXConversionTbl, ISD, 2192 SimpleDstTy, SimpleSrcTy)) 2193 return AdjustCost(Entry->Cost); 2194 } 2195 2196 if (ST->hasSSE41()) { 2197 if (const auto *Entry = ConvertCostTableLookup(SSE41ConversionTbl, ISD, 2198 SimpleDstTy, SimpleSrcTy)) 2199 return AdjustCost(Entry->Cost); 2200 } 2201 2202 if (ST->hasSSE2()) { 2203 if (const auto *Entry = ConvertCostTableLookup(SSE2ConversionTbl, ISD, 2204 SimpleDstTy, SimpleSrcTy)) 2205 return AdjustCost(Entry->Cost); 2206 } 2207 2208 return AdjustCost( 2209 BaseT::getCastInstrCost(Opcode, Dst, Src, CCH, CostKind, I)); 2210 } 2211 2212 InstructionCost X86TTIImpl::getCmpSelInstrCost(unsigned Opcode, Type *ValTy, 2213 Type *CondTy, 2214 CmpInst::Predicate VecPred, 2215 TTI::TargetCostKind CostKind, 2216 const Instruction *I) { 2217 // TODO: Handle other cost kinds. 2218 if (CostKind != TTI::TCK_RecipThroughput) 2219 return BaseT::getCmpSelInstrCost(Opcode, ValTy, CondTy, VecPred, CostKind, 2220 I); 2221 2222 // Legalize the type. 2223 std::pair<InstructionCost, MVT> LT = TLI->getTypeLegalizationCost(DL, ValTy); 2224 2225 MVT MTy = LT.second; 2226 2227 int ISD = TLI->InstructionOpcodeToISD(Opcode); 2228 assert(ISD && "Invalid opcode"); 2229 2230 unsigned ExtraCost = 0; 2231 if (I && (Opcode == Instruction::ICmp || Opcode == Instruction::FCmp)) { 2232 // Some vector comparison predicates cost extra instructions. 2233 if (MTy.isVector() && 2234 !((ST->hasXOP() && (!ST->hasAVX2() || MTy.is128BitVector())) || 2235 (ST->hasAVX512() && 32 <= MTy.getScalarSizeInBits()) || 2236 ST->hasBWI())) { 2237 switch (cast<CmpInst>(I)->getPredicate()) { 2238 case CmpInst::Predicate::ICMP_NE: 2239 // xor(cmpeq(x,y),-1) 2240 ExtraCost = 1; 2241 break; 2242 case CmpInst::Predicate::ICMP_SGE: 2243 case CmpInst::Predicate::ICMP_SLE: 2244 // xor(cmpgt(x,y),-1) 2245 ExtraCost = 1; 2246 break; 2247 case CmpInst::Predicate::ICMP_ULT: 2248 case CmpInst::Predicate::ICMP_UGT: 2249 // cmpgt(xor(x,signbit),xor(y,signbit)) 2250 // xor(cmpeq(pmaxu(x,y),x),-1) 2251 ExtraCost = 2; 2252 break; 2253 case CmpInst::Predicate::ICMP_ULE: 2254 case CmpInst::Predicate::ICMP_UGE: 2255 if ((ST->hasSSE41() && MTy.getScalarSizeInBits() == 32) || 2256 (ST->hasSSE2() && MTy.getScalarSizeInBits() < 32)) { 2257 // cmpeq(psubus(x,y),0) 2258 // cmpeq(pminu(x,y),x) 2259 ExtraCost = 1; 2260 } else { 2261 // xor(cmpgt(xor(x,signbit),xor(y,signbit)),-1) 2262 ExtraCost = 3; 2263 } 2264 break; 2265 default: 2266 break; 2267 } 2268 } 2269 } 2270 2271 static const CostTblEntry SLMCostTbl[] = { 2272 // slm pcmpeq/pcmpgt throughput is 2 2273 { ISD::SETCC, MVT::v2i64, 2 }, 2274 }; 2275 2276 static const CostTblEntry AVX512BWCostTbl[] = { 2277 { ISD::SETCC, MVT::v32i16, 1 }, 2278 { ISD::SETCC, MVT::v64i8, 1 }, 2279 2280 { ISD::SELECT, MVT::v32i16, 1 }, 2281 { ISD::SELECT, MVT::v64i8, 1 }, 2282 }; 2283 2284 static const CostTblEntry AVX512CostTbl[] = { 2285 { ISD::SETCC, MVT::v8i64, 1 }, 2286 { ISD::SETCC, MVT::v16i32, 1 }, 2287 { ISD::SETCC, MVT::v8f64, 1 }, 2288 { ISD::SETCC, MVT::v16f32, 1 }, 2289 2290 { ISD::SELECT, MVT::v8i64, 1 }, 2291 { ISD::SELECT, MVT::v16i32, 1 }, 2292 { ISD::SELECT, MVT::v8f64, 1 }, 2293 { ISD::SELECT, MVT::v16f32, 1 }, 2294 2295 { ISD::SETCC, MVT::v32i16, 2 }, // FIXME: should probably be 4 2296 { ISD::SETCC, MVT::v64i8, 2 }, // FIXME: should probably be 4 2297 2298 { ISD::SELECT, MVT::v32i16, 2 }, // FIXME: should be 3 2299 { ISD::SELECT, MVT::v64i8, 2 }, // FIXME: should be 3 2300 }; 2301 2302 static const CostTblEntry AVX2CostTbl[] = { 2303 { ISD::SETCC, MVT::v4i64, 1 }, 2304 { ISD::SETCC, MVT::v8i32, 1 }, 2305 { ISD::SETCC, MVT::v16i16, 1 }, 2306 { ISD::SETCC, MVT::v32i8, 1 }, 2307 2308 { ISD::SELECT, MVT::v4i64, 1 }, // pblendvb 2309 { ISD::SELECT, MVT::v8i32, 1 }, // pblendvb 2310 { ISD::SELECT, MVT::v16i16, 1 }, // pblendvb 2311 { ISD::SELECT, MVT::v32i8, 1 }, // pblendvb 2312 }; 2313 2314 static const CostTblEntry AVX1CostTbl[] = { 2315 { ISD::SETCC, MVT::v4f64, 1 }, 2316 { ISD::SETCC, MVT::v8f32, 1 }, 2317 // AVX1 does not support 8-wide integer compare. 2318 { ISD::SETCC, MVT::v4i64, 4 }, 2319 { ISD::SETCC, MVT::v8i32, 4 }, 2320 { ISD::SETCC, MVT::v16i16, 4 }, 2321 { ISD::SETCC, MVT::v32i8, 4 }, 2322 2323 { ISD::SELECT, MVT::v4f64, 1 }, // vblendvpd 2324 { ISD::SELECT, MVT::v8f32, 1 }, // vblendvps 2325 { ISD::SELECT, MVT::v4i64, 1 }, // vblendvpd 2326 { ISD::SELECT, MVT::v8i32, 1 }, // vblendvps 2327 { ISD::SELECT, MVT::v16i16, 3 }, // vandps + vandnps + vorps 2328 { ISD::SELECT, MVT::v32i8, 3 }, // vandps + vandnps + vorps 2329 }; 2330 2331 static const CostTblEntry SSE42CostTbl[] = { 2332 { ISD::SETCC, MVT::v2f64, 1 }, 2333 { ISD::SETCC, MVT::v4f32, 1 }, 2334 { ISD::SETCC, MVT::v2i64, 1 }, 2335 }; 2336 2337 static const CostTblEntry SSE41CostTbl[] = { 2338 { ISD::SELECT, MVT::v2f64, 1 }, // blendvpd 2339 { ISD::SELECT, MVT::v4f32, 1 }, // blendvps 2340 { ISD::SELECT, MVT::v2i64, 1 }, // pblendvb 2341 { ISD::SELECT, MVT::v4i32, 1 }, // pblendvb 2342 { ISD::SELECT, MVT::v8i16, 1 }, // pblendvb 2343 { ISD::SELECT, MVT::v16i8, 1 }, // pblendvb 2344 }; 2345 2346 static const CostTblEntry SSE2CostTbl[] = { 2347 { ISD::SETCC, MVT::v2f64, 2 }, 2348 { ISD::SETCC, MVT::f64, 1 }, 2349 { ISD::SETCC, MVT::v2i64, 8 }, 2350 { ISD::SETCC, MVT::v4i32, 1 }, 2351 { ISD::SETCC, MVT::v8i16, 1 }, 2352 { ISD::SETCC, MVT::v16i8, 1 }, 2353 2354 { ISD::SELECT, MVT::v2f64, 3 }, // andpd + andnpd + orpd 2355 { ISD::SELECT, MVT::v2i64, 3 }, // pand + pandn + por 2356 { ISD::SELECT, MVT::v4i32, 3 }, // pand + pandn + por 2357 { ISD::SELECT, MVT::v8i16, 3 }, // pand + pandn + por 2358 { ISD::SELECT, MVT::v16i8, 3 }, // pand + pandn + por 2359 }; 2360 2361 static const CostTblEntry SSE1CostTbl[] = { 2362 { ISD::SETCC, MVT::v4f32, 2 }, 2363 { ISD::SETCC, MVT::f32, 1 }, 2364 2365 { ISD::SELECT, MVT::v4f32, 3 }, // andps + andnps + orps 2366 }; 2367 2368 if (ST->isSLM()) 2369 if (const auto *Entry = CostTableLookup(SLMCostTbl, ISD, MTy)) 2370 return LT.first * (ExtraCost + Entry->Cost); 2371 2372 if (ST->hasBWI()) 2373 if (const auto *Entry = CostTableLookup(AVX512BWCostTbl, ISD, MTy)) 2374 return LT.first * (ExtraCost + Entry->Cost); 2375 2376 if (ST->hasAVX512()) 2377 if (const auto *Entry = CostTableLookup(AVX512CostTbl, ISD, MTy)) 2378 return LT.first * (ExtraCost + Entry->Cost); 2379 2380 if (ST->hasAVX2()) 2381 if (const auto *Entry = CostTableLookup(AVX2CostTbl, ISD, MTy)) 2382 return LT.first * (ExtraCost + Entry->Cost); 2383 2384 if (ST->hasAVX()) 2385 if (const auto *Entry = CostTableLookup(AVX1CostTbl, ISD, MTy)) 2386 return LT.first * (ExtraCost + Entry->Cost); 2387 2388 if (ST->hasSSE42()) 2389 if (const auto *Entry = CostTableLookup(SSE42CostTbl, ISD, MTy)) 2390 return LT.first * (ExtraCost + Entry->Cost); 2391 2392 if (ST->hasSSE41()) 2393 if (const auto *Entry = CostTableLookup(SSE41CostTbl, ISD, MTy)) 2394 return LT.first * (ExtraCost + Entry->Cost); 2395 2396 if (ST->hasSSE2()) 2397 if (const auto *Entry = CostTableLookup(SSE2CostTbl, ISD, MTy)) 2398 return LT.first * (ExtraCost + Entry->Cost); 2399 2400 if (ST->hasSSE1()) 2401 if (const auto *Entry = CostTableLookup(SSE1CostTbl, ISD, MTy)) 2402 return LT.first * (ExtraCost + Entry->Cost); 2403 2404 return BaseT::getCmpSelInstrCost(Opcode, ValTy, CondTy, VecPred, CostKind, I); 2405 } 2406 2407 unsigned X86TTIImpl::getAtomicMemIntrinsicMaxElementSize() const { return 16; } 2408 2409 InstructionCost 2410 X86TTIImpl::getTypeBasedIntrinsicInstrCost(const IntrinsicCostAttributes &ICA, 2411 TTI::TargetCostKind CostKind) { 2412 2413 // Costs should match the codegen from: 2414 // BITREVERSE: llvm\test\CodeGen\X86\vector-bitreverse.ll 2415 // BSWAP: llvm\test\CodeGen\X86\bswap-vector.ll 2416 // CTLZ: llvm\test\CodeGen\X86\vector-lzcnt-*.ll 2417 // CTPOP: llvm\test\CodeGen\X86\vector-popcnt-*.ll 2418 // CTTZ: llvm\test\CodeGen\X86\vector-tzcnt-*.ll 2419 2420 // TODO: Overflow intrinsics (*ADDO, *SUBO, *MULO) with vector types are not 2421 // specialized in these tables yet. 2422 static const CostTblEntry AVX512CDCostTbl[] = { 2423 { ISD::CTLZ, MVT::v8i64, 1 }, 2424 { ISD::CTLZ, MVT::v16i32, 1 }, 2425 { ISD::CTLZ, MVT::v32i16, 8 }, 2426 { ISD::CTLZ, MVT::v64i8, 20 }, 2427 { ISD::CTLZ, MVT::v4i64, 1 }, 2428 { ISD::CTLZ, MVT::v8i32, 1 }, 2429 { ISD::CTLZ, MVT::v16i16, 4 }, 2430 { ISD::CTLZ, MVT::v32i8, 10 }, 2431 { ISD::CTLZ, MVT::v2i64, 1 }, 2432 { ISD::CTLZ, MVT::v4i32, 1 }, 2433 { ISD::CTLZ, MVT::v8i16, 4 }, 2434 { ISD::CTLZ, MVT::v16i8, 4 }, 2435 }; 2436 static const CostTblEntry AVX512BWCostTbl[] = { 2437 { ISD::ABS, MVT::v32i16, 1 }, 2438 { ISD::ABS, MVT::v64i8, 1 }, 2439 { ISD::BITREVERSE, MVT::v8i64, 5 }, 2440 { ISD::BITREVERSE, MVT::v16i32, 5 }, 2441 { ISD::BITREVERSE, MVT::v32i16, 5 }, 2442 { ISD::BITREVERSE, MVT::v64i8, 5 }, 2443 { ISD::CTLZ, MVT::v8i64, 23 }, 2444 { ISD::CTLZ, MVT::v16i32, 22 }, 2445 { ISD::CTLZ, MVT::v32i16, 18 }, 2446 { ISD::CTLZ, MVT::v64i8, 17 }, 2447 { ISD::CTPOP, MVT::v8i64, 7 }, 2448 { ISD::CTPOP, MVT::v16i32, 11 }, 2449 { ISD::CTPOP, MVT::v32i16, 9 }, 2450 { ISD::CTPOP, MVT::v64i8, 6 }, 2451 { ISD::CTTZ, MVT::v8i64, 10 }, 2452 { ISD::CTTZ, MVT::v16i32, 14 }, 2453 { ISD::CTTZ, MVT::v32i16, 12 }, 2454 { ISD::CTTZ, MVT::v64i8, 9 }, 2455 { ISD::SADDSAT, MVT::v32i16, 1 }, 2456 { ISD::SADDSAT, MVT::v64i8, 1 }, 2457 { ISD::SMAX, MVT::v32i16, 1 }, 2458 { ISD::SMAX, MVT::v64i8, 1 }, 2459 { ISD::SMIN, MVT::v32i16, 1 }, 2460 { ISD::SMIN, MVT::v64i8, 1 }, 2461 { ISD::SSUBSAT, MVT::v32i16, 1 }, 2462 { ISD::SSUBSAT, MVT::v64i8, 1 }, 2463 { ISD::UADDSAT, MVT::v32i16, 1 }, 2464 { ISD::UADDSAT, MVT::v64i8, 1 }, 2465 { ISD::UMAX, MVT::v32i16, 1 }, 2466 { ISD::UMAX, MVT::v64i8, 1 }, 2467 { ISD::UMIN, MVT::v32i16, 1 }, 2468 { ISD::UMIN, MVT::v64i8, 1 }, 2469 { ISD::USUBSAT, MVT::v32i16, 1 }, 2470 { ISD::USUBSAT, MVT::v64i8, 1 }, 2471 }; 2472 static const CostTblEntry AVX512CostTbl[] = { 2473 { ISD::ABS, MVT::v8i64, 1 }, 2474 { ISD::ABS, MVT::v16i32, 1 }, 2475 { ISD::ABS, MVT::v32i16, 2 }, // FIXME: include split 2476 { ISD::ABS, MVT::v64i8, 2 }, // FIXME: include split 2477 { ISD::ABS, MVT::v4i64, 1 }, 2478 { ISD::ABS, MVT::v2i64, 1 }, 2479 { ISD::BITREVERSE, MVT::v8i64, 36 }, 2480 { ISD::BITREVERSE, MVT::v16i32, 24 }, 2481 { ISD::BITREVERSE, MVT::v32i16, 10 }, 2482 { ISD::BITREVERSE, MVT::v64i8, 10 }, 2483 { ISD::CTLZ, MVT::v8i64, 29 }, 2484 { ISD::CTLZ, MVT::v16i32, 35 }, 2485 { ISD::CTLZ, MVT::v32i16, 28 }, 2486 { ISD::CTLZ, MVT::v64i8, 18 }, 2487 { ISD::CTPOP, MVT::v8i64, 16 }, 2488 { ISD::CTPOP, MVT::v16i32, 24 }, 2489 { ISD::CTPOP, MVT::v32i16, 18 }, 2490 { ISD::CTPOP, MVT::v64i8, 12 }, 2491 { ISD::CTTZ, MVT::v8i64, 20 }, 2492 { ISD::CTTZ, MVT::v16i32, 28 }, 2493 { ISD::CTTZ, MVT::v32i16, 24 }, 2494 { ISD::CTTZ, MVT::v64i8, 18 }, 2495 { ISD::SMAX, MVT::v8i64, 1 }, 2496 { ISD::SMAX, MVT::v16i32, 1 }, 2497 { ISD::SMAX, MVT::v32i16, 2 }, // FIXME: include split 2498 { ISD::SMAX, MVT::v64i8, 2 }, // FIXME: include split 2499 { ISD::SMAX, MVT::v4i64, 1 }, 2500 { ISD::SMAX, MVT::v2i64, 1 }, 2501 { ISD::SMIN, MVT::v8i64, 1 }, 2502 { ISD::SMIN, MVT::v16i32, 1 }, 2503 { ISD::SMIN, MVT::v32i16, 2 }, // FIXME: include split 2504 { ISD::SMIN, MVT::v64i8, 2 }, // FIXME: include split 2505 { ISD::SMIN, MVT::v4i64, 1 }, 2506 { ISD::SMIN, MVT::v2i64, 1 }, 2507 { ISD::UMAX, MVT::v8i64, 1 }, 2508 { ISD::UMAX, MVT::v16i32, 1 }, 2509 { ISD::UMAX, MVT::v32i16, 2 }, // FIXME: include split 2510 { ISD::UMAX, MVT::v64i8, 2 }, // FIXME: include split 2511 { ISD::UMAX, MVT::v4i64, 1 }, 2512 { ISD::UMAX, MVT::v2i64, 1 }, 2513 { ISD::UMIN, MVT::v8i64, 1 }, 2514 { ISD::UMIN, MVT::v16i32, 1 }, 2515 { ISD::UMIN, MVT::v32i16, 2 }, // FIXME: include split 2516 { ISD::UMIN, MVT::v64i8, 2 }, // FIXME: include split 2517 { ISD::UMIN, MVT::v4i64, 1 }, 2518 { ISD::UMIN, MVT::v2i64, 1 }, 2519 { ISD::USUBSAT, MVT::v16i32, 2 }, // pmaxud + psubd 2520 { ISD::USUBSAT, MVT::v2i64, 2 }, // pmaxuq + psubq 2521 { ISD::USUBSAT, MVT::v4i64, 2 }, // pmaxuq + psubq 2522 { ISD::USUBSAT, MVT::v8i64, 2 }, // pmaxuq + psubq 2523 { ISD::UADDSAT, MVT::v16i32, 3 }, // not + pminud + paddd 2524 { ISD::UADDSAT, MVT::v2i64, 3 }, // not + pminuq + paddq 2525 { ISD::UADDSAT, MVT::v4i64, 3 }, // not + pminuq + paddq 2526 { ISD::UADDSAT, MVT::v8i64, 3 }, // not + pminuq + paddq 2527 { ISD::SADDSAT, MVT::v32i16, 2 }, // FIXME: include split 2528 { ISD::SADDSAT, MVT::v64i8, 2 }, // FIXME: include split 2529 { ISD::SSUBSAT, MVT::v32i16, 2 }, // FIXME: include split 2530 { ISD::SSUBSAT, MVT::v64i8, 2 }, // FIXME: include split 2531 { ISD::UADDSAT, MVT::v32i16, 2 }, // FIXME: include split 2532 { ISD::UADDSAT, MVT::v64i8, 2 }, // FIXME: include split 2533 { ISD::USUBSAT, MVT::v32i16, 2 }, // FIXME: include split 2534 { ISD::USUBSAT, MVT::v64i8, 2 }, // FIXME: include split 2535 { ISD::FMAXNUM, MVT::f32, 2 }, 2536 { ISD::FMAXNUM, MVT::v4f32, 2 }, 2537 { ISD::FMAXNUM, MVT::v8f32, 2 }, 2538 { ISD::FMAXNUM, MVT::v16f32, 2 }, 2539 { ISD::FMAXNUM, MVT::f64, 2 }, 2540 { ISD::FMAXNUM, MVT::v2f64, 2 }, 2541 { ISD::FMAXNUM, MVT::v4f64, 2 }, 2542 { ISD::FMAXNUM, MVT::v8f64, 2 }, 2543 }; 2544 static const CostTblEntry XOPCostTbl[] = { 2545 { ISD::BITREVERSE, MVT::v4i64, 4 }, 2546 { ISD::BITREVERSE, MVT::v8i32, 4 }, 2547 { ISD::BITREVERSE, MVT::v16i16, 4 }, 2548 { ISD::BITREVERSE, MVT::v32i8, 4 }, 2549 { ISD::BITREVERSE, MVT::v2i64, 1 }, 2550 { ISD::BITREVERSE, MVT::v4i32, 1 }, 2551 { ISD::BITREVERSE, MVT::v8i16, 1 }, 2552 { ISD::BITREVERSE, MVT::v16i8, 1 }, 2553 { ISD::BITREVERSE, MVT::i64, 3 }, 2554 { ISD::BITREVERSE, MVT::i32, 3 }, 2555 { ISD::BITREVERSE, MVT::i16, 3 }, 2556 { ISD::BITREVERSE, MVT::i8, 3 } 2557 }; 2558 static const CostTblEntry AVX2CostTbl[] = { 2559 { ISD::ABS, MVT::v4i64, 2 }, // VBLENDVPD(X,VPSUBQ(0,X),X) 2560 { ISD::ABS, MVT::v8i32, 1 }, 2561 { ISD::ABS, MVT::v16i16, 1 }, 2562 { ISD::ABS, MVT::v32i8, 1 }, 2563 { ISD::BITREVERSE, MVT::v4i64, 5 }, 2564 { ISD::BITREVERSE, MVT::v8i32, 5 }, 2565 { ISD::BITREVERSE, MVT::v16i16, 5 }, 2566 { ISD::BITREVERSE, MVT::v32i8, 5 }, 2567 { ISD::BSWAP, MVT::v4i64, 1 }, 2568 { ISD::BSWAP, MVT::v8i32, 1 }, 2569 { ISD::BSWAP, MVT::v16i16, 1 }, 2570 { ISD::CTLZ, MVT::v4i64, 23 }, 2571 { ISD::CTLZ, MVT::v8i32, 18 }, 2572 { ISD::CTLZ, MVT::v16i16, 14 }, 2573 { ISD::CTLZ, MVT::v32i8, 9 }, 2574 { ISD::CTPOP, MVT::v4i64, 7 }, 2575 { ISD::CTPOP, MVT::v8i32, 11 }, 2576 { ISD::CTPOP, MVT::v16i16, 9 }, 2577 { ISD::CTPOP, MVT::v32i8, 6 }, 2578 { ISD::CTTZ, MVT::v4i64, 10 }, 2579 { ISD::CTTZ, MVT::v8i32, 14 }, 2580 { ISD::CTTZ, MVT::v16i16, 12 }, 2581 { ISD::CTTZ, MVT::v32i8, 9 }, 2582 { ISD::SADDSAT, MVT::v16i16, 1 }, 2583 { ISD::SADDSAT, MVT::v32i8, 1 }, 2584 { ISD::SMAX, MVT::v8i32, 1 }, 2585 { ISD::SMAX, MVT::v16i16, 1 }, 2586 { ISD::SMAX, MVT::v32i8, 1 }, 2587 { ISD::SMIN, MVT::v8i32, 1 }, 2588 { ISD::SMIN, MVT::v16i16, 1 }, 2589 { ISD::SMIN, MVT::v32i8, 1 }, 2590 { ISD::SSUBSAT, MVT::v16i16, 1 }, 2591 { ISD::SSUBSAT, MVT::v32i8, 1 }, 2592 { ISD::UADDSAT, MVT::v16i16, 1 }, 2593 { ISD::UADDSAT, MVT::v32i8, 1 }, 2594 { ISD::UADDSAT, MVT::v8i32, 3 }, // not + pminud + paddd 2595 { ISD::UMAX, MVT::v8i32, 1 }, 2596 { ISD::UMAX, MVT::v16i16, 1 }, 2597 { ISD::UMAX, MVT::v32i8, 1 }, 2598 { ISD::UMIN, MVT::v8i32, 1 }, 2599 { ISD::UMIN, MVT::v16i16, 1 }, 2600 { ISD::UMIN, MVT::v32i8, 1 }, 2601 { ISD::USUBSAT, MVT::v16i16, 1 }, 2602 { ISD::USUBSAT, MVT::v32i8, 1 }, 2603 { ISD::USUBSAT, MVT::v8i32, 2 }, // pmaxud + psubd 2604 { ISD::FMAXNUM, MVT::v8f32, 3 }, // MAXPS + CMPUNORDPS + BLENDVPS 2605 { ISD::FMAXNUM, MVT::v4f64, 3 }, // MAXPD + CMPUNORDPD + BLENDVPD 2606 { ISD::FSQRT, MVT::f32, 7 }, // Haswell from http://www.agner.org/ 2607 { ISD::FSQRT, MVT::v4f32, 7 }, // Haswell from http://www.agner.org/ 2608 { ISD::FSQRT, MVT::v8f32, 14 }, // Haswell from http://www.agner.org/ 2609 { ISD::FSQRT, MVT::f64, 14 }, // Haswell from http://www.agner.org/ 2610 { ISD::FSQRT, MVT::v2f64, 14 }, // Haswell from http://www.agner.org/ 2611 { ISD::FSQRT, MVT::v4f64, 28 }, // Haswell from http://www.agner.org/ 2612 }; 2613 static const CostTblEntry AVX1CostTbl[] = { 2614 { ISD::ABS, MVT::v4i64, 5 }, // VBLENDVPD(X,VPSUBQ(0,X),X) 2615 { ISD::ABS, MVT::v8i32, 3 }, 2616 { ISD::ABS, MVT::v16i16, 3 }, 2617 { ISD::ABS, MVT::v32i8, 3 }, 2618 { ISD::BITREVERSE, MVT::v4i64, 12 }, // 2 x 128-bit Op + extract/insert 2619 { ISD::BITREVERSE, MVT::v8i32, 12 }, // 2 x 128-bit Op + extract/insert 2620 { ISD::BITREVERSE, MVT::v16i16, 12 }, // 2 x 128-bit Op + extract/insert 2621 { ISD::BITREVERSE, MVT::v32i8, 12 }, // 2 x 128-bit Op + extract/insert 2622 { ISD::BSWAP, MVT::v4i64, 4 }, 2623 { ISD::BSWAP, MVT::v8i32, 4 }, 2624 { ISD::BSWAP, MVT::v16i16, 4 }, 2625 { ISD::CTLZ, MVT::v4i64, 48 }, // 2 x 128-bit Op + extract/insert 2626 { ISD::CTLZ, MVT::v8i32, 38 }, // 2 x 128-bit Op + extract/insert 2627 { ISD::CTLZ, MVT::v16i16, 30 }, // 2 x 128-bit Op + extract/insert 2628 { ISD::CTLZ, MVT::v32i8, 20 }, // 2 x 128-bit Op + extract/insert 2629 { ISD::CTPOP, MVT::v4i64, 16 }, // 2 x 128-bit Op + extract/insert 2630 { ISD::CTPOP, MVT::v8i32, 24 }, // 2 x 128-bit Op + extract/insert 2631 { ISD::CTPOP, MVT::v16i16, 20 }, // 2 x 128-bit Op + extract/insert 2632 { ISD::CTPOP, MVT::v32i8, 14 }, // 2 x 128-bit Op + extract/insert 2633 { ISD::CTTZ, MVT::v4i64, 22 }, // 2 x 128-bit Op + extract/insert 2634 { ISD::CTTZ, MVT::v8i32, 30 }, // 2 x 128-bit Op + extract/insert 2635 { ISD::CTTZ, MVT::v16i16, 26 }, // 2 x 128-bit Op + extract/insert 2636 { ISD::CTTZ, MVT::v32i8, 20 }, // 2 x 128-bit Op + extract/insert 2637 { ISD::SADDSAT, MVT::v16i16, 4 }, // 2 x 128-bit Op + extract/insert 2638 { ISD::SADDSAT, MVT::v32i8, 4 }, // 2 x 128-bit Op + extract/insert 2639 { ISD::SMAX, MVT::v8i32, 4 }, // 2 x 128-bit Op + extract/insert 2640 { ISD::SMAX, MVT::v16i16, 4 }, // 2 x 128-bit Op + extract/insert 2641 { ISD::SMAX, MVT::v32i8, 4 }, // 2 x 128-bit Op + extract/insert 2642 { ISD::SMIN, MVT::v8i32, 4 }, // 2 x 128-bit Op + extract/insert 2643 { ISD::SMIN, MVT::v16i16, 4 }, // 2 x 128-bit Op + extract/insert 2644 { ISD::SMIN, MVT::v32i8, 4 }, // 2 x 128-bit Op + extract/insert 2645 { ISD::SSUBSAT, MVT::v16i16, 4 }, // 2 x 128-bit Op + extract/insert 2646 { ISD::SSUBSAT, MVT::v32i8, 4 }, // 2 x 128-bit Op + extract/insert 2647 { ISD::UADDSAT, MVT::v16i16, 4 }, // 2 x 128-bit Op + extract/insert 2648 { ISD::UADDSAT, MVT::v32i8, 4 }, // 2 x 128-bit Op + extract/insert 2649 { ISD::UADDSAT, MVT::v8i32, 8 }, // 2 x 128-bit Op + extract/insert 2650 { ISD::UMAX, MVT::v8i32, 4 }, // 2 x 128-bit Op + extract/insert 2651 { ISD::UMAX, MVT::v16i16, 4 }, // 2 x 128-bit Op + extract/insert 2652 { ISD::UMAX, MVT::v32i8, 4 }, // 2 x 128-bit Op + extract/insert 2653 { ISD::UMIN, MVT::v8i32, 4 }, // 2 x 128-bit Op + extract/insert 2654 { ISD::UMIN, MVT::v16i16, 4 }, // 2 x 128-bit Op + extract/insert 2655 { ISD::UMIN, MVT::v32i8, 4 }, // 2 x 128-bit Op + extract/insert 2656 { ISD::USUBSAT, MVT::v16i16, 4 }, // 2 x 128-bit Op + extract/insert 2657 { ISD::USUBSAT, MVT::v32i8, 4 }, // 2 x 128-bit Op + extract/insert 2658 { ISD::USUBSAT, MVT::v8i32, 6 }, // 2 x 128-bit Op + extract/insert 2659 { ISD::FMAXNUM, MVT::f32, 3 }, // MAXSS + CMPUNORDSS + BLENDVPS 2660 { ISD::FMAXNUM, MVT::v4f32, 3 }, // MAXPS + CMPUNORDPS + BLENDVPS 2661 { ISD::FMAXNUM, MVT::v8f32, 5 }, // MAXPS + CMPUNORDPS + BLENDVPS + ? 2662 { ISD::FMAXNUM, MVT::f64, 3 }, // MAXSD + CMPUNORDSD + BLENDVPD 2663 { ISD::FMAXNUM, MVT::v2f64, 3 }, // MAXPD + CMPUNORDPD + BLENDVPD 2664 { ISD::FMAXNUM, MVT::v4f64, 5 }, // MAXPD + CMPUNORDPD + BLENDVPD + ? 2665 { ISD::FSQRT, MVT::f32, 14 }, // SNB from http://www.agner.org/ 2666 { ISD::FSQRT, MVT::v4f32, 14 }, // SNB from http://www.agner.org/ 2667 { ISD::FSQRT, MVT::v8f32, 28 }, // SNB from http://www.agner.org/ 2668 { ISD::FSQRT, MVT::f64, 21 }, // SNB from http://www.agner.org/ 2669 { ISD::FSQRT, MVT::v2f64, 21 }, // SNB from http://www.agner.org/ 2670 { ISD::FSQRT, MVT::v4f64, 43 }, // SNB from http://www.agner.org/ 2671 }; 2672 static const CostTblEntry GLMCostTbl[] = { 2673 { ISD::FSQRT, MVT::f32, 19 }, // sqrtss 2674 { ISD::FSQRT, MVT::v4f32, 37 }, // sqrtps 2675 { ISD::FSQRT, MVT::f64, 34 }, // sqrtsd 2676 { ISD::FSQRT, MVT::v2f64, 67 }, // sqrtpd 2677 }; 2678 static const CostTblEntry SLMCostTbl[] = { 2679 { ISD::FSQRT, MVT::f32, 20 }, // sqrtss 2680 { ISD::FSQRT, MVT::v4f32, 40 }, // sqrtps 2681 { ISD::FSQRT, MVT::f64, 35 }, // sqrtsd 2682 { ISD::FSQRT, MVT::v2f64, 70 }, // sqrtpd 2683 }; 2684 static const CostTblEntry SSE42CostTbl[] = { 2685 { ISD::USUBSAT, MVT::v4i32, 2 }, // pmaxud + psubd 2686 { ISD::UADDSAT, MVT::v4i32, 3 }, // not + pminud + paddd 2687 { ISD::FSQRT, MVT::f32, 18 }, // Nehalem from http://www.agner.org/ 2688 { ISD::FSQRT, MVT::v4f32, 18 }, // Nehalem from http://www.agner.org/ 2689 }; 2690 static const CostTblEntry SSE41CostTbl[] = { 2691 { ISD::ABS, MVT::v2i64, 2 }, // BLENDVPD(X,PSUBQ(0,X),X) 2692 { ISD::SMAX, MVT::v4i32, 1 }, 2693 { ISD::SMAX, MVT::v16i8, 1 }, 2694 { ISD::SMIN, MVT::v4i32, 1 }, 2695 { ISD::SMIN, MVT::v16i8, 1 }, 2696 { ISD::UMAX, MVT::v4i32, 1 }, 2697 { ISD::UMAX, MVT::v8i16, 1 }, 2698 { ISD::UMIN, MVT::v4i32, 1 }, 2699 { ISD::UMIN, MVT::v8i16, 1 }, 2700 }; 2701 static const CostTblEntry SSSE3CostTbl[] = { 2702 { ISD::ABS, MVT::v4i32, 1 }, 2703 { ISD::ABS, MVT::v8i16, 1 }, 2704 { ISD::ABS, MVT::v16i8, 1 }, 2705 { ISD::BITREVERSE, MVT::v2i64, 5 }, 2706 { ISD::BITREVERSE, MVT::v4i32, 5 }, 2707 { ISD::BITREVERSE, MVT::v8i16, 5 }, 2708 { ISD::BITREVERSE, MVT::v16i8, 5 }, 2709 { ISD::BSWAP, MVT::v2i64, 1 }, 2710 { ISD::BSWAP, MVT::v4i32, 1 }, 2711 { ISD::BSWAP, MVT::v8i16, 1 }, 2712 { ISD::CTLZ, MVT::v2i64, 23 }, 2713 { ISD::CTLZ, MVT::v4i32, 18 }, 2714 { ISD::CTLZ, MVT::v8i16, 14 }, 2715 { ISD::CTLZ, MVT::v16i8, 9 }, 2716 { ISD::CTPOP, MVT::v2i64, 7 }, 2717 { ISD::CTPOP, MVT::v4i32, 11 }, 2718 { ISD::CTPOP, MVT::v8i16, 9 }, 2719 { ISD::CTPOP, MVT::v16i8, 6 }, 2720 { ISD::CTTZ, MVT::v2i64, 10 }, 2721 { ISD::CTTZ, MVT::v4i32, 14 }, 2722 { ISD::CTTZ, MVT::v8i16, 12 }, 2723 { ISD::CTTZ, MVT::v16i8, 9 } 2724 }; 2725 static const CostTblEntry SSE2CostTbl[] = { 2726 { ISD::ABS, MVT::v2i64, 4 }, 2727 { ISD::ABS, MVT::v4i32, 3 }, 2728 { ISD::ABS, MVT::v8i16, 2 }, 2729 { ISD::ABS, MVT::v16i8, 2 }, 2730 { ISD::BITREVERSE, MVT::v2i64, 29 }, 2731 { ISD::BITREVERSE, MVT::v4i32, 27 }, 2732 { ISD::BITREVERSE, MVT::v8i16, 27 }, 2733 { ISD::BITREVERSE, MVT::v16i8, 20 }, 2734 { ISD::BSWAP, MVT::v2i64, 7 }, 2735 { ISD::BSWAP, MVT::v4i32, 7 }, 2736 { ISD::BSWAP, MVT::v8i16, 7 }, 2737 { ISD::CTLZ, MVT::v2i64, 25 }, 2738 { ISD::CTLZ, MVT::v4i32, 26 }, 2739 { ISD::CTLZ, MVT::v8i16, 20 }, 2740 { ISD::CTLZ, MVT::v16i8, 17 }, 2741 { ISD::CTPOP, MVT::v2i64, 12 }, 2742 { ISD::CTPOP, MVT::v4i32, 15 }, 2743 { ISD::CTPOP, MVT::v8i16, 13 }, 2744 { ISD::CTPOP, MVT::v16i8, 10 }, 2745 { ISD::CTTZ, MVT::v2i64, 14 }, 2746 { ISD::CTTZ, MVT::v4i32, 18 }, 2747 { ISD::CTTZ, MVT::v8i16, 16 }, 2748 { ISD::CTTZ, MVT::v16i8, 13 }, 2749 { ISD::SADDSAT, MVT::v8i16, 1 }, 2750 { ISD::SADDSAT, MVT::v16i8, 1 }, 2751 { ISD::SMAX, MVT::v8i16, 1 }, 2752 { ISD::SMIN, MVT::v8i16, 1 }, 2753 { ISD::SSUBSAT, MVT::v8i16, 1 }, 2754 { ISD::SSUBSAT, MVT::v16i8, 1 }, 2755 { ISD::UADDSAT, MVT::v8i16, 1 }, 2756 { ISD::UADDSAT, MVT::v16i8, 1 }, 2757 { ISD::UMAX, MVT::v8i16, 2 }, 2758 { ISD::UMAX, MVT::v16i8, 1 }, 2759 { ISD::UMIN, MVT::v8i16, 2 }, 2760 { ISD::UMIN, MVT::v16i8, 1 }, 2761 { ISD::USUBSAT, MVT::v8i16, 1 }, 2762 { ISD::USUBSAT, MVT::v16i8, 1 }, 2763 { ISD::FMAXNUM, MVT::f64, 4 }, 2764 { ISD::FMAXNUM, MVT::v2f64, 4 }, 2765 { ISD::FSQRT, MVT::f64, 32 }, // Nehalem from http://www.agner.org/ 2766 { ISD::FSQRT, MVT::v2f64, 32 }, // Nehalem from http://www.agner.org/ 2767 }; 2768 static const CostTblEntry SSE1CostTbl[] = { 2769 { ISD::FMAXNUM, MVT::f32, 4 }, 2770 { ISD::FMAXNUM, MVT::v4f32, 4 }, 2771 { ISD::FSQRT, MVT::f32, 28 }, // Pentium III from http://www.agner.org/ 2772 { ISD::FSQRT, MVT::v4f32, 56 }, // Pentium III from http://www.agner.org/ 2773 }; 2774 static const CostTblEntry BMI64CostTbl[] = { // 64-bit targets 2775 { ISD::CTTZ, MVT::i64, 1 }, 2776 }; 2777 static const CostTblEntry BMI32CostTbl[] = { // 32 or 64-bit targets 2778 { ISD::CTTZ, MVT::i32, 1 }, 2779 { ISD::CTTZ, MVT::i16, 1 }, 2780 { ISD::CTTZ, MVT::i8, 1 }, 2781 }; 2782 static const CostTblEntry LZCNT64CostTbl[] = { // 64-bit targets 2783 { ISD::CTLZ, MVT::i64, 1 }, 2784 }; 2785 static const CostTblEntry LZCNT32CostTbl[] = { // 32 or 64-bit targets 2786 { ISD::CTLZ, MVT::i32, 1 }, 2787 { ISD::CTLZ, MVT::i16, 1 }, 2788 { ISD::CTLZ, MVT::i8, 1 }, 2789 }; 2790 static const CostTblEntry POPCNT64CostTbl[] = { // 64-bit targets 2791 { ISD::CTPOP, MVT::i64, 1 }, 2792 }; 2793 static const CostTblEntry POPCNT32CostTbl[] = { // 32 or 64-bit targets 2794 { ISD::CTPOP, MVT::i32, 1 }, 2795 { ISD::CTPOP, MVT::i16, 1 }, 2796 { ISD::CTPOP, MVT::i8, 1 }, 2797 }; 2798 static const CostTblEntry X64CostTbl[] = { // 64-bit targets 2799 { ISD::ABS, MVT::i64, 2 }, // SUB+CMOV 2800 { ISD::BITREVERSE, MVT::i64, 14 }, 2801 { ISD::BSWAP, MVT::i64, 1 }, 2802 { ISD::CTLZ, MVT::i64, 4 }, // BSR+XOR or BSR+XOR+CMOV 2803 { ISD::CTTZ, MVT::i64, 3 }, // TEST+BSF+CMOV/BRANCH 2804 { ISD::CTPOP, MVT::i64, 10 }, 2805 { ISD::SADDO, MVT::i64, 1 }, 2806 { ISD::UADDO, MVT::i64, 1 }, 2807 { ISD::UMULO, MVT::i64, 2 }, // mulq + seto 2808 }; 2809 static const CostTblEntry X86CostTbl[] = { // 32 or 64-bit targets 2810 { ISD::ABS, MVT::i32, 2 }, // SUB+CMOV 2811 { ISD::ABS, MVT::i16, 2 }, // SUB+CMOV 2812 { ISD::BITREVERSE, MVT::i32, 14 }, 2813 { ISD::BITREVERSE, MVT::i16, 14 }, 2814 { ISD::BITREVERSE, MVT::i8, 11 }, 2815 { ISD::BSWAP, MVT::i32, 1 }, 2816 { ISD::BSWAP, MVT::i16, 1 }, // ROL 2817 { ISD::CTLZ, MVT::i32, 4 }, // BSR+XOR or BSR+XOR+CMOV 2818 { ISD::CTLZ, MVT::i16, 4 }, // BSR+XOR or BSR+XOR+CMOV 2819 { ISD::CTLZ, MVT::i8, 4 }, // BSR+XOR or BSR+XOR+CMOV 2820 { ISD::CTTZ, MVT::i32, 3 }, // TEST+BSF+CMOV/BRANCH 2821 { ISD::CTTZ, MVT::i16, 3 }, // TEST+BSF+CMOV/BRANCH 2822 { ISD::CTTZ, MVT::i8, 3 }, // TEST+BSF+CMOV/BRANCH 2823 { ISD::CTPOP, MVT::i32, 8 }, 2824 { ISD::CTPOP, MVT::i16, 9 }, 2825 { ISD::CTPOP, MVT::i8, 7 }, 2826 { ISD::SADDO, MVT::i32, 1 }, 2827 { ISD::SADDO, MVT::i16, 1 }, 2828 { ISD::SADDO, MVT::i8, 1 }, 2829 { ISD::UADDO, MVT::i32, 1 }, 2830 { ISD::UADDO, MVT::i16, 1 }, 2831 { ISD::UADDO, MVT::i8, 1 }, 2832 { ISD::UMULO, MVT::i32, 2 }, // mul + seto 2833 { ISD::UMULO, MVT::i16, 2 }, 2834 { ISD::UMULO, MVT::i8, 2 }, 2835 }; 2836 2837 Type *RetTy = ICA.getReturnType(); 2838 Type *OpTy = RetTy; 2839 Intrinsic::ID IID = ICA.getID(); 2840 unsigned ISD = ISD::DELETED_NODE; 2841 switch (IID) { 2842 default: 2843 break; 2844 case Intrinsic::abs: 2845 ISD = ISD::ABS; 2846 break; 2847 case Intrinsic::bitreverse: 2848 ISD = ISD::BITREVERSE; 2849 break; 2850 case Intrinsic::bswap: 2851 ISD = ISD::BSWAP; 2852 break; 2853 case Intrinsic::ctlz: 2854 ISD = ISD::CTLZ; 2855 break; 2856 case Intrinsic::ctpop: 2857 ISD = ISD::CTPOP; 2858 break; 2859 case Intrinsic::cttz: 2860 ISD = ISD::CTTZ; 2861 break; 2862 case Intrinsic::maxnum: 2863 case Intrinsic::minnum: 2864 // FMINNUM has same costs so don't duplicate. 2865 ISD = ISD::FMAXNUM; 2866 break; 2867 case Intrinsic::sadd_sat: 2868 ISD = ISD::SADDSAT; 2869 break; 2870 case Intrinsic::smax: 2871 ISD = ISD::SMAX; 2872 break; 2873 case Intrinsic::smin: 2874 ISD = ISD::SMIN; 2875 break; 2876 case Intrinsic::ssub_sat: 2877 ISD = ISD::SSUBSAT; 2878 break; 2879 case Intrinsic::uadd_sat: 2880 ISD = ISD::UADDSAT; 2881 break; 2882 case Intrinsic::umax: 2883 ISD = ISD::UMAX; 2884 break; 2885 case Intrinsic::umin: 2886 ISD = ISD::UMIN; 2887 break; 2888 case Intrinsic::usub_sat: 2889 ISD = ISD::USUBSAT; 2890 break; 2891 case Intrinsic::sqrt: 2892 ISD = ISD::FSQRT; 2893 break; 2894 case Intrinsic::sadd_with_overflow: 2895 case Intrinsic::ssub_with_overflow: 2896 // SSUBO has same costs so don't duplicate. 2897 ISD = ISD::SADDO; 2898 OpTy = RetTy->getContainedType(0); 2899 break; 2900 case Intrinsic::uadd_with_overflow: 2901 case Intrinsic::usub_with_overflow: 2902 // USUBO has same costs so don't duplicate. 2903 ISD = ISD::UADDO; 2904 OpTy = RetTy->getContainedType(0); 2905 break; 2906 case Intrinsic::umul_with_overflow: 2907 case Intrinsic::smul_with_overflow: 2908 // SMULO has same costs so don't duplicate. 2909 ISD = ISD::UMULO; 2910 OpTy = RetTy->getContainedType(0); 2911 break; 2912 } 2913 2914 if (ISD != ISD::DELETED_NODE) { 2915 // Legalize the type. 2916 std::pair<InstructionCost, MVT> LT = TLI->getTypeLegalizationCost(DL, OpTy); 2917 MVT MTy = LT.second; 2918 2919 // Attempt to lookup cost. 2920 if (ISD == ISD::BITREVERSE && ST->hasGFNI() && ST->hasSSSE3() && 2921 MTy.isVector()) { 2922 // With PSHUFB the code is very similar for all types. If we have integer 2923 // byte operations, we just need a GF2P8AFFINEQB for vXi8. For other types 2924 // we also need a PSHUFB. 2925 unsigned Cost = MTy.getVectorElementType() == MVT::i8 ? 1 : 2; 2926 2927 // Without byte operations, we need twice as many GF2P8AFFINEQB and PSHUFB 2928 // instructions. We also need an extract and an insert. 2929 if (!(MTy.is128BitVector() || (ST->hasAVX2() && MTy.is256BitVector()) || 2930 (ST->hasBWI() && MTy.is512BitVector()))) 2931 Cost = Cost * 2 + 2; 2932 2933 return LT.first * Cost; 2934 } 2935 2936 auto adjustTableCost = [](const CostTblEntry &Entry, 2937 InstructionCost LegalizationCost, 2938 FastMathFlags FMF) { 2939 // If there are no NANs to deal with, then these are reduced to a 2940 // single MIN** or MAX** instruction instead of the MIN/CMP/SELECT that we 2941 // assume is used in the non-fast case. 2942 if (Entry.ISD == ISD::FMAXNUM || Entry.ISD == ISD::FMINNUM) { 2943 if (FMF.noNaNs()) 2944 return LegalizationCost * 1; 2945 } 2946 return LegalizationCost * (int)Entry.Cost; 2947 }; 2948 2949 if (ST->useGLMDivSqrtCosts()) 2950 if (const auto *Entry = CostTableLookup(GLMCostTbl, ISD, MTy)) 2951 return adjustTableCost(*Entry, LT.first, ICA.getFlags()); 2952 2953 if (ST->isSLM()) 2954 if (const auto *Entry = CostTableLookup(SLMCostTbl, ISD, MTy)) 2955 return adjustTableCost(*Entry, LT.first, ICA.getFlags()); 2956 2957 if (ST->hasCDI()) 2958 if (const auto *Entry = CostTableLookup(AVX512CDCostTbl, ISD, MTy)) 2959 return adjustTableCost(*Entry, LT.first, ICA.getFlags()); 2960 2961 if (ST->hasBWI()) 2962 if (const auto *Entry = CostTableLookup(AVX512BWCostTbl, ISD, MTy)) 2963 return adjustTableCost(*Entry, LT.first, ICA.getFlags()); 2964 2965 if (ST->hasAVX512()) 2966 if (const auto *Entry = CostTableLookup(AVX512CostTbl, ISD, MTy)) 2967 return adjustTableCost(*Entry, LT.first, ICA.getFlags()); 2968 2969 if (ST->hasXOP()) 2970 if (const auto *Entry = CostTableLookup(XOPCostTbl, ISD, MTy)) 2971 return adjustTableCost(*Entry, LT.first, ICA.getFlags()); 2972 2973 if (ST->hasAVX2()) 2974 if (const auto *Entry = CostTableLookup(AVX2CostTbl, ISD, MTy)) 2975 return adjustTableCost(*Entry, LT.first, ICA.getFlags()); 2976 2977 if (ST->hasAVX()) 2978 if (const auto *Entry = CostTableLookup(AVX1CostTbl, ISD, MTy)) 2979 return adjustTableCost(*Entry, LT.first, ICA.getFlags()); 2980 2981 if (ST->hasSSE42()) 2982 if (const auto *Entry = CostTableLookup(SSE42CostTbl, ISD, MTy)) 2983 return adjustTableCost(*Entry, LT.first, ICA.getFlags()); 2984 2985 if (ST->hasSSE41()) 2986 if (const auto *Entry = CostTableLookup(SSE41CostTbl, ISD, MTy)) 2987 return adjustTableCost(*Entry, LT.first, ICA.getFlags()); 2988 2989 if (ST->hasSSSE3()) 2990 if (const auto *Entry = CostTableLookup(SSSE3CostTbl, ISD, MTy)) 2991 return adjustTableCost(*Entry, LT.first, ICA.getFlags()); 2992 2993 if (ST->hasSSE2()) 2994 if (const auto *Entry = CostTableLookup(SSE2CostTbl, ISD, MTy)) 2995 return adjustTableCost(*Entry, LT.first, ICA.getFlags()); 2996 2997 if (ST->hasSSE1()) 2998 if (const auto *Entry = CostTableLookup(SSE1CostTbl, ISD, MTy)) 2999 return adjustTableCost(*Entry, LT.first, ICA.getFlags()); 3000 3001 if (ST->hasBMI()) { 3002 if (ST->is64Bit()) 3003 if (const auto *Entry = CostTableLookup(BMI64CostTbl, ISD, MTy)) 3004 return adjustTableCost(*Entry, LT.first, ICA.getFlags()); 3005 3006 if (const auto *Entry = CostTableLookup(BMI32CostTbl, ISD, MTy)) 3007 return adjustTableCost(*Entry, LT.first, ICA.getFlags()); 3008 } 3009 3010 if (ST->hasLZCNT()) { 3011 if (ST->is64Bit()) 3012 if (const auto *Entry = CostTableLookup(LZCNT64CostTbl, ISD, MTy)) 3013 return adjustTableCost(*Entry, LT.first, ICA.getFlags()); 3014 3015 if (const auto *Entry = CostTableLookup(LZCNT32CostTbl, ISD, MTy)) 3016 return adjustTableCost(*Entry, LT.first, ICA.getFlags()); 3017 } 3018 3019 if (ST->hasPOPCNT()) { 3020 if (ST->is64Bit()) 3021 if (const auto *Entry = CostTableLookup(POPCNT64CostTbl, ISD, MTy)) 3022 return adjustTableCost(*Entry, LT.first, ICA.getFlags()); 3023 3024 if (const auto *Entry = CostTableLookup(POPCNT32CostTbl, ISD, MTy)) 3025 return adjustTableCost(*Entry, LT.first, ICA.getFlags()); 3026 } 3027 3028 if (ISD == ISD::BSWAP && ST->hasMOVBE() && ST->hasFastMOVBE()) { 3029 if (const Instruction *II = ICA.getInst()) { 3030 if (II->hasOneUse() && isa<StoreInst>(II->user_back())) 3031 return TTI::TCC_Free; 3032 if (auto *LI = dyn_cast<LoadInst>(II->getOperand(0))) { 3033 if (LI->hasOneUse()) 3034 return TTI::TCC_Free; 3035 } 3036 } 3037 } 3038 3039 // TODO - add BMI (TZCNT) scalar handling 3040 3041 if (ST->is64Bit()) 3042 if (const auto *Entry = CostTableLookup(X64CostTbl, ISD, MTy)) 3043 return adjustTableCost(*Entry, LT.first, ICA.getFlags()); 3044 3045 if (const auto *Entry = CostTableLookup(X86CostTbl, ISD, MTy)) 3046 return adjustTableCost(*Entry, LT.first, ICA.getFlags()); 3047 } 3048 3049 return BaseT::getIntrinsicInstrCost(ICA, CostKind); 3050 } 3051 3052 InstructionCost 3053 X86TTIImpl::getIntrinsicInstrCost(const IntrinsicCostAttributes &ICA, 3054 TTI::TargetCostKind CostKind) { 3055 if (ICA.isTypeBasedOnly()) 3056 return getTypeBasedIntrinsicInstrCost(ICA, CostKind); 3057 3058 static const CostTblEntry AVX512CostTbl[] = { 3059 { ISD::ROTL, MVT::v8i64, 1 }, 3060 { ISD::ROTL, MVT::v4i64, 1 }, 3061 { ISD::ROTL, MVT::v2i64, 1 }, 3062 { ISD::ROTL, MVT::v16i32, 1 }, 3063 { ISD::ROTL, MVT::v8i32, 1 }, 3064 { ISD::ROTL, MVT::v4i32, 1 }, 3065 { ISD::ROTR, MVT::v8i64, 1 }, 3066 { ISD::ROTR, MVT::v4i64, 1 }, 3067 { ISD::ROTR, MVT::v2i64, 1 }, 3068 { ISD::ROTR, MVT::v16i32, 1 }, 3069 { ISD::ROTR, MVT::v8i32, 1 }, 3070 { ISD::ROTR, MVT::v4i32, 1 } 3071 }; 3072 // XOP: ROTL = VPROT(X,Y), ROTR = VPROT(X,SUB(0,Y)) 3073 static const CostTblEntry XOPCostTbl[] = { 3074 { ISD::ROTL, MVT::v4i64, 4 }, 3075 { ISD::ROTL, MVT::v8i32, 4 }, 3076 { ISD::ROTL, MVT::v16i16, 4 }, 3077 { ISD::ROTL, MVT::v32i8, 4 }, 3078 { ISD::ROTL, MVT::v2i64, 1 }, 3079 { ISD::ROTL, MVT::v4i32, 1 }, 3080 { ISD::ROTL, MVT::v8i16, 1 }, 3081 { ISD::ROTL, MVT::v16i8, 1 }, 3082 { ISD::ROTR, MVT::v4i64, 6 }, 3083 { ISD::ROTR, MVT::v8i32, 6 }, 3084 { ISD::ROTR, MVT::v16i16, 6 }, 3085 { ISD::ROTR, MVT::v32i8, 6 }, 3086 { ISD::ROTR, MVT::v2i64, 2 }, 3087 { ISD::ROTR, MVT::v4i32, 2 }, 3088 { ISD::ROTR, MVT::v8i16, 2 }, 3089 { ISD::ROTR, MVT::v16i8, 2 } 3090 }; 3091 static const CostTblEntry X64CostTbl[] = { // 64-bit targets 3092 { ISD::ROTL, MVT::i64, 1 }, 3093 { ISD::ROTR, MVT::i64, 1 }, 3094 { ISD::FSHL, MVT::i64, 4 } 3095 }; 3096 static const CostTblEntry X86CostTbl[] = { // 32 or 64-bit targets 3097 { ISD::ROTL, MVT::i32, 1 }, 3098 { ISD::ROTL, MVT::i16, 1 }, 3099 { ISD::ROTL, MVT::i8, 1 }, 3100 { ISD::ROTR, MVT::i32, 1 }, 3101 { ISD::ROTR, MVT::i16, 1 }, 3102 { ISD::ROTR, MVT::i8, 1 }, 3103 { ISD::FSHL, MVT::i32, 4 }, 3104 { ISD::FSHL, MVT::i16, 4 }, 3105 { ISD::FSHL, MVT::i8, 4 } 3106 }; 3107 3108 Intrinsic::ID IID = ICA.getID(); 3109 Type *RetTy = ICA.getReturnType(); 3110 const SmallVectorImpl<const Value *> &Args = ICA.getArgs(); 3111 unsigned ISD = ISD::DELETED_NODE; 3112 switch (IID) { 3113 default: 3114 break; 3115 case Intrinsic::fshl: 3116 ISD = ISD::FSHL; 3117 if (Args[0] == Args[1]) 3118 ISD = ISD::ROTL; 3119 break; 3120 case Intrinsic::fshr: 3121 // FSHR has same costs so don't duplicate. 3122 ISD = ISD::FSHL; 3123 if (Args[0] == Args[1]) 3124 ISD = ISD::ROTR; 3125 break; 3126 } 3127 3128 if (ISD != ISD::DELETED_NODE) { 3129 // Legalize the type. 3130 std::pair<InstructionCost, MVT> LT = 3131 TLI->getTypeLegalizationCost(DL, RetTy); 3132 MVT MTy = LT.second; 3133 3134 // Attempt to lookup cost. 3135 if (ST->hasAVX512()) 3136 if (const auto *Entry = CostTableLookup(AVX512CostTbl, ISD, MTy)) 3137 return LT.first * Entry->Cost; 3138 3139 if (ST->hasXOP()) 3140 if (const auto *Entry = CostTableLookup(XOPCostTbl, ISD, MTy)) 3141 return LT.first * Entry->Cost; 3142 3143 if (ST->is64Bit()) 3144 if (const auto *Entry = CostTableLookup(X64CostTbl, ISD, MTy)) 3145 return LT.first * Entry->Cost; 3146 3147 if (const auto *Entry = CostTableLookup(X86CostTbl, ISD, MTy)) 3148 return LT.first * Entry->Cost; 3149 } 3150 3151 return BaseT::getIntrinsicInstrCost(ICA, CostKind); 3152 } 3153 3154 InstructionCost X86TTIImpl::getVectorInstrCost(unsigned Opcode, Type *Val, 3155 unsigned Index) { 3156 static const CostTblEntry SLMCostTbl[] = { 3157 { ISD::EXTRACT_VECTOR_ELT, MVT::i8, 4 }, 3158 { ISD::EXTRACT_VECTOR_ELT, MVT::i16, 4 }, 3159 { ISD::EXTRACT_VECTOR_ELT, MVT::i32, 4 }, 3160 { ISD::EXTRACT_VECTOR_ELT, MVT::i64, 7 } 3161 }; 3162 3163 assert(Val->isVectorTy() && "This must be a vector type"); 3164 Type *ScalarType = Val->getScalarType(); 3165 int RegisterFileMoveCost = 0; 3166 3167 if (Index != -1U && (Opcode == Instruction::ExtractElement || 3168 Opcode == Instruction::InsertElement)) { 3169 // Legalize the type. 3170 std::pair<InstructionCost, MVT> LT = TLI->getTypeLegalizationCost(DL, Val); 3171 3172 // This type is legalized to a scalar type. 3173 if (!LT.second.isVector()) 3174 return 0; 3175 3176 // The type may be split. Normalize the index to the new type. 3177 unsigned NumElts = LT.second.getVectorNumElements(); 3178 unsigned SubNumElts = NumElts; 3179 Index = Index % NumElts; 3180 3181 // For >128-bit vectors, we need to extract higher 128-bit subvectors. 3182 // For inserts, we also need to insert the subvector back. 3183 if (LT.second.getSizeInBits() > 128) { 3184 assert((LT.second.getSizeInBits() % 128) == 0 && "Illegal vector"); 3185 unsigned NumSubVecs = LT.second.getSizeInBits() / 128; 3186 SubNumElts = NumElts / NumSubVecs; 3187 if (SubNumElts <= Index) { 3188 RegisterFileMoveCost += (Opcode == Instruction::InsertElement ? 2 : 1); 3189 Index %= SubNumElts; 3190 } 3191 } 3192 3193 if (Index == 0) { 3194 // Floating point scalars are already located in index #0. 3195 // Many insertions to #0 can fold away for scalar fp-ops, so let's assume 3196 // true for all. 3197 if (ScalarType->isFloatingPointTy()) 3198 return RegisterFileMoveCost; 3199 3200 // Assume movd/movq XMM -> GPR is relatively cheap on all targets. 3201 if (ScalarType->isIntegerTy() && Opcode == Instruction::ExtractElement) 3202 return 1 + RegisterFileMoveCost; 3203 } 3204 3205 int ISD = TLI->InstructionOpcodeToISD(Opcode); 3206 assert(ISD && "Unexpected vector opcode"); 3207 MVT MScalarTy = LT.second.getScalarType(); 3208 if (ST->isSLM()) 3209 if (auto *Entry = CostTableLookup(SLMCostTbl, ISD, MScalarTy)) 3210 return Entry->Cost + RegisterFileMoveCost; 3211 3212 // Assume pinsr/pextr XMM <-> GPR is relatively cheap on all targets. 3213 if ((MScalarTy == MVT::i16 && ST->hasSSE2()) || 3214 (MScalarTy.isInteger() && ST->hasSSE41())) 3215 return 1 + RegisterFileMoveCost; 3216 3217 // Assume insertps is relatively cheap on all targets. 3218 if (MScalarTy == MVT::f32 && ST->hasSSE41() && 3219 Opcode == Instruction::InsertElement) 3220 return 1 + RegisterFileMoveCost; 3221 3222 // For extractions we just need to shuffle the element to index 0, which 3223 // should be very cheap (assume cost = 1). For insertions we need to shuffle 3224 // the elements to its destination. In both cases we must handle the 3225 // subvector move(s). 3226 // If the vector type is already less than 128-bits then don't reduce it. 3227 // TODO: Under what circumstances should we shuffle using the full width? 3228 InstructionCost ShuffleCost = 1; 3229 if (Opcode == Instruction::InsertElement) { 3230 auto *SubTy = cast<VectorType>(Val); 3231 EVT VT = TLI->getValueType(DL, Val); 3232 if (VT.getScalarType() != MScalarTy || VT.getSizeInBits() >= 128) 3233 SubTy = FixedVectorType::get(ScalarType, SubNumElts); 3234 ShuffleCost = 3235 getShuffleCost(TTI::SK_PermuteTwoSrc, SubTy, None, 0, SubTy); 3236 } 3237 int IntOrFpCost = ScalarType->isFloatingPointTy() ? 0 : 1; 3238 return ShuffleCost + IntOrFpCost + RegisterFileMoveCost; 3239 } 3240 3241 // Add to the base cost if we know that the extracted element of a vector is 3242 // destined to be moved to and used in the integer register file. 3243 if (Opcode == Instruction::ExtractElement && ScalarType->isPointerTy()) 3244 RegisterFileMoveCost += 1; 3245 3246 return BaseT::getVectorInstrCost(Opcode, Val, Index) + RegisterFileMoveCost; 3247 } 3248 3249 InstructionCost X86TTIImpl::getScalarizationOverhead(VectorType *Ty, 3250 const APInt &DemandedElts, 3251 bool Insert, 3252 bool Extract) { 3253 InstructionCost Cost = 0; 3254 3255 // For insertions, a ISD::BUILD_VECTOR style vector initialization can be much 3256 // cheaper than an accumulation of ISD::INSERT_VECTOR_ELT. 3257 if (Insert) { 3258 std::pair<InstructionCost, MVT> LT = TLI->getTypeLegalizationCost(DL, Ty); 3259 MVT MScalarTy = LT.second.getScalarType(); 3260 3261 if ((MScalarTy == MVT::i16 && ST->hasSSE2()) || 3262 (MScalarTy.isInteger() && ST->hasSSE41()) || 3263 (MScalarTy == MVT::f32 && ST->hasSSE41())) { 3264 // For types we can insert directly, insertion into 128-bit sub vectors is 3265 // cheap, followed by a cheap chain of concatenations. 3266 if (LT.second.getSizeInBits() <= 128) { 3267 Cost += 3268 BaseT::getScalarizationOverhead(Ty, DemandedElts, Insert, false); 3269 } else { 3270 // In each 128-lane, if at least one index is demanded but not all 3271 // indices are demanded and this 128-lane is not the first 128-lane of 3272 // the legalized-vector, then this 128-lane needs a extracti128; If in 3273 // each 128-lane, there is at least one demanded index, this 128-lane 3274 // needs a inserti128. 3275 3276 // The following cases will help you build a better understanding: 3277 // Assume we insert several elements into a v8i32 vector in avx2, 3278 // Case#1: inserting into 1th index needs vpinsrd + inserti128. 3279 // Case#2: inserting into 5th index needs extracti128 + vpinsrd + 3280 // inserti128. 3281 // Case#3: inserting into 4,5,6,7 index needs 4*vpinsrd + inserti128. 3282 const int CostValue = *LT.first.getValue(); 3283 assert(CostValue >= 0 && "Negative cost!"); 3284 unsigned Num128Lanes = LT.second.getSizeInBits() / 128 * CostValue; 3285 unsigned NumElts = LT.second.getVectorNumElements() * CostValue; 3286 APInt WidenedDemandedElts = DemandedElts.zextOrSelf(NumElts); 3287 unsigned Scale = NumElts / Num128Lanes; 3288 // We iterate each 128-lane, and check if we need a 3289 // extracti128/inserti128 for this 128-lane. 3290 for (unsigned I = 0; I < NumElts; I += Scale) { 3291 APInt Mask = WidenedDemandedElts.getBitsSet(NumElts, I, I + Scale); 3292 APInt MaskedDE = Mask & WidenedDemandedElts; 3293 unsigned Population = MaskedDE.countPopulation(); 3294 Cost += (Population > 0 && Population != Scale && 3295 I % LT.second.getVectorNumElements() != 0); 3296 Cost += Population > 0; 3297 } 3298 Cost += DemandedElts.countPopulation(); 3299 3300 // For vXf32 cases, insertion into the 0'th index in each v4f32 3301 // 128-bit vector is free. 3302 // NOTE: This assumes legalization widens vXf32 vectors. 3303 if (MScalarTy == MVT::f32) 3304 for (unsigned i = 0, e = cast<FixedVectorType>(Ty)->getNumElements(); 3305 i < e; i += 4) 3306 if (DemandedElts[i]) 3307 Cost--; 3308 } 3309 } else if (LT.second.isVector()) { 3310 // Without fast insertion, we need to use MOVD/MOVQ to pass each demanded 3311 // integer element as a SCALAR_TO_VECTOR, then we build the vector as a 3312 // series of UNPCK followed by CONCAT_VECTORS - all of these can be 3313 // considered cheap. 3314 if (Ty->isIntOrIntVectorTy()) 3315 Cost += DemandedElts.countPopulation(); 3316 3317 // Get the smaller of the legalized or original pow2-extended number of 3318 // vector elements, which represents the number of unpacks we'll end up 3319 // performing. 3320 unsigned NumElts = LT.second.getVectorNumElements(); 3321 unsigned Pow2Elts = 3322 PowerOf2Ceil(cast<FixedVectorType>(Ty)->getNumElements()); 3323 Cost += (std::min<unsigned>(NumElts, Pow2Elts) - 1) * LT.first; 3324 } 3325 } 3326 3327 // TODO: Use default extraction for now, but we should investigate extending this 3328 // to handle repeated subvector extraction. 3329 if (Extract) 3330 Cost += BaseT::getScalarizationOverhead(Ty, DemandedElts, false, Extract); 3331 3332 return Cost; 3333 } 3334 3335 InstructionCost X86TTIImpl::getMemoryOpCost(unsigned Opcode, Type *Src, 3336 MaybeAlign Alignment, 3337 unsigned AddressSpace, 3338 TTI::TargetCostKind CostKind, 3339 const Instruction *I) { 3340 // TODO: Handle other cost kinds. 3341 if (CostKind != TTI::TCK_RecipThroughput) { 3342 if (auto *SI = dyn_cast_or_null<StoreInst>(I)) { 3343 // Store instruction with index and scale costs 2 Uops. 3344 // Check the preceding GEP to identify non-const indices. 3345 if (auto *GEP = dyn_cast<GetElementPtrInst>(SI->getPointerOperand())) { 3346 if (!all_of(GEP->indices(), [](Value *V) { return isa<Constant>(V); })) 3347 return TTI::TCC_Basic * 2; 3348 } 3349 } 3350 return TTI::TCC_Basic; 3351 } 3352 3353 assert((Opcode == Instruction::Load || Opcode == Instruction::Store) && 3354 "Invalid Opcode"); 3355 // Type legalization can't handle structs 3356 if (TLI->getValueType(DL, Src, true) == MVT::Other) 3357 return BaseT::getMemoryOpCost(Opcode, Src, Alignment, AddressSpace, 3358 CostKind); 3359 3360 // Legalize the type. 3361 std::pair<InstructionCost, MVT> LT = TLI->getTypeLegalizationCost(DL, Src); 3362 3363 auto *VTy = dyn_cast<FixedVectorType>(Src); 3364 3365 // Handle the simple case of non-vectors. 3366 // NOTE: this assumes that legalization never creates vector from scalars! 3367 if (!VTy || !LT.second.isVector()) 3368 // Each load/store unit costs 1. 3369 return LT.first * 1; 3370 3371 bool IsLoad = Opcode == Instruction::Load; 3372 3373 Type *EltTy = VTy->getElementType(); 3374 3375 const int EltTyBits = DL.getTypeSizeInBits(EltTy); 3376 3377 InstructionCost Cost = 0; 3378 3379 // Source of truth: how many elements were there in the original IR vector? 3380 const unsigned SrcNumElt = VTy->getNumElements(); 3381 3382 // How far have we gotten? 3383 int NumEltRemaining = SrcNumElt; 3384 // Note that we intentionally capture by-reference, NumEltRemaining changes. 3385 auto NumEltDone = [&]() { return SrcNumElt - NumEltRemaining; }; 3386 3387 const int MaxLegalOpSizeBytes = divideCeil(LT.second.getSizeInBits(), 8); 3388 3389 // Note that even if we can store 64 bits of an XMM, we still operate on XMM. 3390 const unsigned XMMBits = 128; 3391 if (XMMBits % EltTyBits != 0) 3392 // Vector size must be a multiple of the element size. I.e. no padding. 3393 return BaseT::getMemoryOpCost(Opcode, Src, Alignment, AddressSpace, 3394 CostKind); 3395 const int NumEltPerXMM = XMMBits / EltTyBits; 3396 3397 auto *XMMVecTy = FixedVectorType::get(EltTy, NumEltPerXMM); 3398 3399 for (int CurrOpSizeBytes = MaxLegalOpSizeBytes, SubVecEltsLeft = 0; 3400 NumEltRemaining > 0; CurrOpSizeBytes /= 2) { 3401 // How many elements would a single op deal with at once? 3402 if ((8 * CurrOpSizeBytes) % EltTyBits != 0) 3403 // Vector size must be a multiple of the element size. I.e. no padding. 3404 return BaseT::getMemoryOpCost(Opcode, Src, Alignment, AddressSpace, 3405 CostKind); 3406 int CurrNumEltPerOp = (8 * CurrOpSizeBytes) / EltTyBits; 3407 3408 assert(CurrOpSizeBytes > 0 && CurrNumEltPerOp > 0 && "How'd we get here?"); 3409 assert((((NumEltRemaining * EltTyBits) < (2 * 8 * CurrOpSizeBytes)) || 3410 (CurrOpSizeBytes == MaxLegalOpSizeBytes)) && 3411 "Unless we haven't halved the op size yet, " 3412 "we have less than two op's sized units of work left."); 3413 3414 auto *CurrVecTy = CurrNumEltPerOp > NumEltPerXMM 3415 ? FixedVectorType::get(EltTy, CurrNumEltPerOp) 3416 : XMMVecTy; 3417 3418 assert(CurrVecTy->getNumElements() % CurrNumEltPerOp == 0 && 3419 "After halving sizes, the vector elt count is no longer a multiple " 3420 "of number of elements per operation?"); 3421 auto *CoalescedVecTy = 3422 CurrNumEltPerOp == 1 3423 ? CurrVecTy 3424 : FixedVectorType::get( 3425 IntegerType::get(Src->getContext(), 3426 EltTyBits * CurrNumEltPerOp), 3427 CurrVecTy->getNumElements() / CurrNumEltPerOp); 3428 assert(DL.getTypeSizeInBits(CoalescedVecTy) == 3429 DL.getTypeSizeInBits(CurrVecTy) && 3430 "coalesciing elements doesn't change vector width."); 3431 3432 while (NumEltRemaining > 0) { 3433 assert(SubVecEltsLeft >= 0 && "Subreg element count overconsumtion?"); 3434 3435 // Can we use this vector size, as per the remaining element count? 3436 // Iff the vector is naturally aligned, we can do a wide load regardless. 3437 if (NumEltRemaining < CurrNumEltPerOp && 3438 (!IsLoad || Alignment.valueOrOne() < CurrOpSizeBytes) && 3439 CurrOpSizeBytes != 1) 3440 break; // Try smalled vector size. 3441 3442 bool Is0thSubVec = (NumEltDone() % LT.second.getVectorNumElements()) == 0; 3443 3444 // If we have fully processed the previous reg, we need to replenish it. 3445 if (SubVecEltsLeft == 0) { 3446 SubVecEltsLeft += CurrVecTy->getNumElements(); 3447 // And that's free only for the 0'th subvector of a legalized vector. 3448 if (!Is0thSubVec) 3449 Cost += getShuffleCost(IsLoad ? TTI::ShuffleKind::SK_InsertSubvector 3450 : TTI::ShuffleKind::SK_ExtractSubvector, 3451 VTy, None, NumEltDone(), CurrVecTy); 3452 } 3453 3454 // While we can directly load/store ZMM, YMM, and 64-bit halves of XMM, 3455 // for smaller widths (32/16/8) we have to insert/extract them separately. 3456 // Again, it's free for the 0'th subreg (if op is 32/64 bit wide, 3457 // but let's pretend that it is also true for 16/8 bit wide ops...) 3458 if (CurrOpSizeBytes <= 32 / 8 && !Is0thSubVec) { 3459 int NumEltDoneInCurrXMM = NumEltDone() % NumEltPerXMM; 3460 assert(NumEltDoneInCurrXMM % CurrNumEltPerOp == 0 && ""); 3461 int CoalescedVecEltIdx = NumEltDoneInCurrXMM / CurrNumEltPerOp; 3462 APInt DemandedElts = 3463 APInt::getBitsSet(CoalescedVecTy->getNumElements(), 3464 CoalescedVecEltIdx, CoalescedVecEltIdx + 1); 3465 assert(DemandedElts.countPopulation() == 1 && "Inserting single value"); 3466 Cost += getScalarizationOverhead(CoalescedVecTy, DemandedElts, IsLoad, 3467 !IsLoad); 3468 } 3469 3470 // This isn't exactly right. We're using slow unaligned 32-byte accesses 3471 // as a proxy for a double-pumped AVX memory interface such as on 3472 // Sandybridge. 3473 if (CurrOpSizeBytes == 32 && ST->isUnalignedMem32Slow()) 3474 Cost += 2; 3475 else 3476 Cost += 1; 3477 3478 SubVecEltsLeft -= CurrNumEltPerOp; 3479 NumEltRemaining -= CurrNumEltPerOp; 3480 Alignment = commonAlignment(Alignment.valueOrOne(), CurrOpSizeBytes); 3481 } 3482 } 3483 3484 assert(NumEltRemaining <= 0 && "Should have processed all the elements."); 3485 3486 return Cost; 3487 } 3488 3489 InstructionCost 3490 X86TTIImpl::getMaskedMemoryOpCost(unsigned Opcode, Type *SrcTy, Align Alignment, 3491 unsigned AddressSpace, 3492 TTI::TargetCostKind CostKind) { 3493 bool IsLoad = (Instruction::Load == Opcode); 3494 bool IsStore = (Instruction::Store == Opcode); 3495 3496 auto *SrcVTy = dyn_cast<FixedVectorType>(SrcTy); 3497 if (!SrcVTy) 3498 // To calculate scalar take the regular cost, without mask 3499 return getMemoryOpCost(Opcode, SrcTy, Alignment, AddressSpace, CostKind); 3500 3501 unsigned NumElem = SrcVTy->getNumElements(); 3502 auto *MaskTy = 3503 FixedVectorType::get(Type::getInt8Ty(SrcVTy->getContext()), NumElem); 3504 if ((IsLoad && !isLegalMaskedLoad(SrcVTy, Alignment)) || 3505 (IsStore && !isLegalMaskedStore(SrcVTy, Alignment))) { 3506 // Scalarization 3507 APInt DemandedElts = APInt::getAllOnesValue(NumElem); 3508 InstructionCost MaskSplitCost = 3509 getScalarizationOverhead(MaskTy, DemandedElts, false, true); 3510 InstructionCost ScalarCompareCost = getCmpSelInstrCost( 3511 Instruction::ICmp, Type::getInt8Ty(SrcVTy->getContext()), nullptr, 3512 CmpInst::BAD_ICMP_PREDICATE, CostKind); 3513 InstructionCost BranchCost = getCFInstrCost(Instruction::Br, CostKind); 3514 InstructionCost MaskCmpCost = NumElem * (BranchCost + ScalarCompareCost); 3515 InstructionCost ValueSplitCost = 3516 getScalarizationOverhead(SrcVTy, DemandedElts, IsLoad, IsStore); 3517 InstructionCost MemopCost = 3518 NumElem * BaseT::getMemoryOpCost(Opcode, SrcVTy->getScalarType(), 3519 Alignment, AddressSpace, CostKind); 3520 return MemopCost + ValueSplitCost + MaskSplitCost + MaskCmpCost; 3521 } 3522 3523 // Legalize the type. 3524 std::pair<InstructionCost, MVT> LT = TLI->getTypeLegalizationCost(DL, SrcVTy); 3525 auto VT = TLI->getValueType(DL, SrcVTy); 3526 InstructionCost Cost = 0; 3527 if (VT.isSimple() && LT.second != VT.getSimpleVT() && 3528 LT.second.getVectorNumElements() == NumElem) 3529 // Promotion requires extend/truncate for data and a shuffle for mask. 3530 Cost += getShuffleCost(TTI::SK_PermuteTwoSrc, SrcVTy, None, 0, nullptr) + 3531 getShuffleCost(TTI::SK_PermuteTwoSrc, MaskTy, None, 0, nullptr); 3532 3533 else if (LT.first * LT.second.getVectorNumElements() > NumElem) { 3534 auto *NewMaskTy = FixedVectorType::get(MaskTy->getElementType(), 3535 LT.second.getVectorNumElements()); 3536 // Expanding requires fill mask with zeroes 3537 Cost += getShuffleCost(TTI::SK_InsertSubvector, NewMaskTy, None, 0, MaskTy); 3538 } 3539 3540 // Pre-AVX512 - each maskmov load costs 2 + store costs ~8. 3541 if (!ST->hasAVX512()) 3542 return Cost + LT.first * (IsLoad ? 2 : 8); 3543 3544 // AVX-512 masked load/store is cheapper 3545 return Cost + LT.first; 3546 } 3547 3548 InstructionCost X86TTIImpl::getAddressComputationCost(Type *Ty, 3549 ScalarEvolution *SE, 3550 const SCEV *Ptr) { 3551 // Address computations in vectorized code with non-consecutive addresses will 3552 // likely result in more instructions compared to scalar code where the 3553 // computation can more often be merged into the index mode. The resulting 3554 // extra micro-ops can significantly decrease throughput. 3555 const unsigned NumVectorInstToHideOverhead = 10; 3556 3557 // Cost modeling of Strided Access Computation is hidden by the indexing 3558 // modes of X86 regardless of the stride value. We dont believe that there 3559 // is a difference between constant strided access in gerenal and constant 3560 // strided value which is less than or equal to 64. 3561 // Even in the case of (loop invariant) stride whose value is not known at 3562 // compile time, the address computation will not incur more than one extra 3563 // ADD instruction. 3564 if (Ty->isVectorTy() && SE) { 3565 if (!BaseT::isStridedAccess(Ptr)) 3566 return NumVectorInstToHideOverhead; 3567 if (!BaseT::getConstantStrideStep(SE, Ptr)) 3568 return 1; 3569 } 3570 3571 return BaseT::getAddressComputationCost(Ty, SE, Ptr); 3572 } 3573 3574 InstructionCost 3575 X86TTIImpl::getArithmeticReductionCost(unsigned Opcode, VectorType *ValTy, 3576 bool IsPairwise, 3577 TTI::TargetCostKind CostKind) { 3578 // Just use the default implementation for pair reductions. 3579 if (IsPairwise) 3580 return BaseT::getArithmeticReductionCost(Opcode, ValTy, IsPairwise, CostKind); 3581 3582 // We use the Intel Architecture Code Analyzer(IACA) to measure the throughput 3583 // and make it as the cost. 3584 3585 static const CostTblEntry SLMCostTblNoPairWise[] = { 3586 { ISD::FADD, MVT::v2f64, 3 }, 3587 { ISD::ADD, MVT::v2i64, 5 }, 3588 }; 3589 3590 static const CostTblEntry SSE2CostTblNoPairWise[] = { 3591 { ISD::FADD, MVT::v2f64, 2 }, 3592 { ISD::FADD, MVT::v2f32, 2 }, 3593 { ISD::FADD, MVT::v4f32, 4 }, 3594 { ISD::ADD, MVT::v2i64, 2 }, // The data reported by the IACA tool is "1.6". 3595 { ISD::ADD, MVT::v2i32, 2 }, // FIXME: chosen to be less than v4i32 3596 { ISD::ADD, MVT::v4i32, 3 }, // The data reported by the IACA tool is "3.3". 3597 { ISD::ADD, MVT::v2i16, 2 }, // The data reported by the IACA tool is "4.3". 3598 { ISD::ADD, MVT::v4i16, 3 }, // The data reported by the IACA tool is "4.3". 3599 { ISD::ADD, MVT::v8i16, 4 }, // The data reported by the IACA tool is "4.3". 3600 { ISD::ADD, MVT::v2i8, 2 }, 3601 { ISD::ADD, MVT::v4i8, 2 }, 3602 { ISD::ADD, MVT::v8i8, 2 }, 3603 { ISD::ADD, MVT::v16i8, 3 }, 3604 }; 3605 3606 static const CostTblEntry AVX1CostTblNoPairWise[] = { 3607 { ISD::FADD, MVT::v4f64, 3 }, 3608 { ISD::FADD, MVT::v4f32, 3 }, 3609 { ISD::FADD, MVT::v8f32, 4 }, 3610 { ISD::ADD, MVT::v2i64, 1 }, // The data reported by the IACA tool is "1.5". 3611 { ISD::ADD, MVT::v4i64, 3 }, 3612 { ISD::ADD, MVT::v8i32, 5 }, 3613 { ISD::ADD, MVT::v16i16, 5 }, 3614 { ISD::ADD, MVT::v32i8, 4 }, 3615 }; 3616 3617 int ISD = TLI->InstructionOpcodeToISD(Opcode); 3618 assert(ISD && "Invalid opcode"); 3619 3620 // Before legalizing the type, give a chance to look up illegal narrow types 3621 // in the table. 3622 // FIXME: Is there a better way to do this? 3623 EVT VT = TLI->getValueType(DL, ValTy); 3624 if (VT.isSimple()) { 3625 MVT MTy = VT.getSimpleVT(); 3626 if (ST->isSLM()) 3627 if (const auto *Entry = CostTableLookup(SLMCostTblNoPairWise, ISD, MTy)) 3628 return Entry->Cost; 3629 3630 if (ST->hasAVX()) 3631 if (const auto *Entry = CostTableLookup(AVX1CostTblNoPairWise, ISD, MTy)) 3632 return Entry->Cost; 3633 3634 if (ST->hasSSE2()) 3635 if (const auto *Entry = CostTableLookup(SSE2CostTblNoPairWise, ISD, MTy)) 3636 return Entry->Cost; 3637 } 3638 3639 std::pair<InstructionCost, MVT> LT = TLI->getTypeLegalizationCost(DL, ValTy); 3640 3641 MVT MTy = LT.second; 3642 3643 auto *ValVTy = cast<FixedVectorType>(ValTy); 3644 3645 // Special case: vXi8 mul reductions are performed as vXi16. 3646 if (ISD == ISD::MUL && MTy.getScalarType() == MVT::i8) { 3647 auto *WideSclTy = IntegerType::get(ValVTy->getContext(), 16); 3648 auto *WideVecTy = FixedVectorType::get(WideSclTy, ValVTy->getNumElements()); 3649 return getCastInstrCost(Instruction::ZExt, WideVecTy, ValTy, 3650 TargetTransformInfo::CastContextHint::None, 3651 CostKind) + 3652 getArithmeticReductionCost(Opcode, WideVecTy, IsPairwise, CostKind); 3653 } 3654 3655 InstructionCost ArithmeticCost = 0; 3656 if (LT.first != 1 && MTy.isVector() && 3657 MTy.getVectorNumElements() < ValVTy->getNumElements()) { 3658 // Type needs to be split. We need LT.first - 1 arithmetic ops. 3659 auto *SingleOpTy = FixedVectorType::get(ValVTy->getElementType(), 3660 MTy.getVectorNumElements()); 3661 ArithmeticCost = getArithmeticInstrCost(Opcode, SingleOpTy, CostKind); 3662 ArithmeticCost *= LT.first - 1; 3663 } 3664 3665 if (ST->isSLM()) 3666 if (const auto *Entry = CostTableLookup(SLMCostTblNoPairWise, ISD, MTy)) 3667 return ArithmeticCost + Entry->Cost; 3668 3669 if (ST->hasAVX()) 3670 if (const auto *Entry = CostTableLookup(AVX1CostTblNoPairWise, ISD, MTy)) 3671 return ArithmeticCost + Entry->Cost; 3672 3673 if (ST->hasSSE2()) 3674 if (const auto *Entry = CostTableLookup(SSE2CostTblNoPairWise, ISD, MTy)) 3675 return ArithmeticCost + Entry->Cost; 3676 3677 // FIXME: These assume a naive kshift+binop lowering, which is probably 3678 // conservative in most cases. 3679 static const CostTblEntry AVX512BoolReduction[] = { 3680 { ISD::AND, MVT::v2i1, 3 }, 3681 { ISD::AND, MVT::v4i1, 5 }, 3682 { ISD::AND, MVT::v8i1, 7 }, 3683 { ISD::AND, MVT::v16i1, 9 }, 3684 { ISD::AND, MVT::v32i1, 11 }, 3685 { ISD::AND, MVT::v64i1, 13 }, 3686 { ISD::OR, MVT::v2i1, 3 }, 3687 { ISD::OR, MVT::v4i1, 5 }, 3688 { ISD::OR, MVT::v8i1, 7 }, 3689 { ISD::OR, MVT::v16i1, 9 }, 3690 { ISD::OR, MVT::v32i1, 11 }, 3691 { ISD::OR, MVT::v64i1, 13 }, 3692 }; 3693 3694 static const CostTblEntry AVX2BoolReduction[] = { 3695 { ISD::AND, MVT::v16i16, 2 }, // vpmovmskb + cmp 3696 { ISD::AND, MVT::v32i8, 2 }, // vpmovmskb + cmp 3697 { ISD::OR, MVT::v16i16, 2 }, // vpmovmskb + cmp 3698 { ISD::OR, MVT::v32i8, 2 }, // vpmovmskb + cmp 3699 }; 3700 3701 static const CostTblEntry AVX1BoolReduction[] = { 3702 { ISD::AND, MVT::v4i64, 2 }, // vmovmskpd + cmp 3703 { ISD::AND, MVT::v8i32, 2 }, // vmovmskps + cmp 3704 { ISD::AND, MVT::v16i16, 4 }, // vextractf128 + vpand + vpmovmskb + cmp 3705 { ISD::AND, MVT::v32i8, 4 }, // vextractf128 + vpand + vpmovmskb + cmp 3706 { ISD::OR, MVT::v4i64, 2 }, // vmovmskpd + cmp 3707 { ISD::OR, MVT::v8i32, 2 }, // vmovmskps + cmp 3708 { ISD::OR, MVT::v16i16, 4 }, // vextractf128 + vpor + vpmovmskb + cmp 3709 { ISD::OR, MVT::v32i8, 4 }, // vextractf128 + vpor + vpmovmskb + cmp 3710 }; 3711 3712 static const CostTblEntry SSE2BoolReduction[] = { 3713 { ISD::AND, MVT::v2i64, 2 }, // movmskpd + cmp 3714 { ISD::AND, MVT::v4i32, 2 }, // movmskps + cmp 3715 { ISD::AND, MVT::v8i16, 2 }, // pmovmskb + cmp 3716 { ISD::AND, MVT::v16i8, 2 }, // pmovmskb + cmp 3717 { ISD::OR, MVT::v2i64, 2 }, // movmskpd + cmp 3718 { ISD::OR, MVT::v4i32, 2 }, // movmskps + cmp 3719 { ISD::OR, MVT::v8i16, 2 }, // pmovmskb + cmp 3720 { ISD::OR, MVT::v16i8, 2 }, // pmovmskb + cmp 3721 }; 3722 3723 // Handle bool allof/anyof patterns. 3724 if (ValVTy->getElementType()->isIntegerTy(1)) { 3725 InstructionCost ArithmeticCost = 0; 3726 if (LT.first != 1 && MTy.isVector() && 3727 MTy.getVectorNumElements() < ValVTy->getNumElements()) { 3728 // Type needs to be split. We need LT.first - 1 arithmetic ops. 3729 auto *SingleOpTy = FixedVectorType::get(ValVTy->getElementType(), 3730 MTy.getVectorNumElements()); 3731 ArithmeticCost = getArithmeticInstrCost(Opcode, SingleOpTy, CostKind); 3732 ArithmeticCost *= LT.first - 1; 3733 } 3734 3735 if (ST->hasAVX512()) 3736 if (const auto *Entry = CostTableLookup(AVX512BoolReduction, ISD, MTy)) 3737 return ArithmeticCost + Entry->Cost; 3738 if (ST->hasAVX2()) 3739 if (const auto *Entry = CostTableLookup(AVX2BoolReduction, ISD, MTy)) 3740 return ArithmeticCost + Entry->Cost; 3741 if (ST->hasAVX()) 3742 if (const auto *Entry = CostTableLookup(AVX1BoolReduction, ISD, MTy)) 3743 return ArithmeticCost + Entry->Cost; 3744 if (ST->hasSSE2()) 3745 if (const auto *Entry = CostTableLookup(SSE2BoolReduction, ISD, MTy)) 3746 return ArithmeticCost + Entry->Cost; 3747 3748 return BaseT::getArithmeticReductionCost(Opcode, ValVTy, IsPairwise, 3749 CostKind); 3750 } 3751 3752 unsigned NumVecElts = ValVTy->getNumElements(); 3753 unsigned ScalarSize = ValVTy->getScalarSizeInBits(); 3754 3755 // Special case power of 2 reductions where the scalar type isn't changed 3756 // by type legalization. 3757 if (!isPowerOf2_32(NumVecElts) || ScalarSize != MTy.getScalarSizeInBits()) 3758 return BaseT::getArithmeticReductionCost(Opcode, ValVTy, IsPairwise, 3759 CostKind); 3760 3761 InstructionCost ReductionCost = 0; 3762 3763 auto *Ty = ValVTy; 3764 if (LT.first != 1 && MTy.isVector() && 3765 MTy.getVectorNumElements() < ValVTy->getNumElements()) { 3766 // Type needs to be split. We need LT.first - 1 arithmetic ops. 3767 Ty = FixedVectorType::get(ValVTy->getElementType(), 3768 MTy.getVectorNumElements()); 3769 ReductionCost = getArithmeticInstrCost(Opcode, Ty, CostKind); 3770 ReductionCost *= LT.first - 1; 3771 NumVecElts = MTy.getVectorNumElements(); 3772 } 3773 3774 // Now handle reduction with the legal type, taking into account size changes 3775 // at each level. 3776 while (NumVecElts > 1) { 3777 // Determine the size of the remaining vector we need to reduce. 3778 unsigned Size = NumVecElts * ScalarSize; 3779 NumVecElts /= 2; 3780 // If we're reducing from 256/512 bits, use an extract_subvector. 3781 if (Size > 128) { 3782 auto *SubTy = FixedVectorType::get(ValVTy->getElementType(), NumVecElts); 3783 ReductionCost += 3784 getShuffleCost(TTI::SK_ExtractSubvector, Ty, None, NumVecElts, SubTy); 3785 Ty = SubTy; 3786 } else if (Size == 128) { 3787 // Reducing from 128 bits is a permute of v2f64/v2i64. 3788 FixedVectorType *ShufTy; 3789 if (ValVTy->isFloatingPointTy()) 3790 ShufTy = 3791 FixedVectorType::get(Type::getDoubleTy(ValVTy->getContext()), 2); 3792 else 3793 ShufTy = 3794 FixedVectorType::get(Type::getInt64Ty(ValVTy->getContext()), 2); 3795 ReductionCost += 3796 getShuffleCost(TTI::SK_PermuteSingleSrc, ShufTy, None, 0, nullptr); 3797 } else if (Size == 64) { 3798 // Reducing from 64 bits is a shuffle of v4f32/v4i32. 3799 FixedVectorType *ShufTy; 3800 if (ValVTy->isFloatingPointTy()) 3801 ShufTy = 3802 FixedVectorType::get(Type::getFloatTy(ValVTy->getContext()), 4); 3803 else 3804 ShufTy = 3805 FixedVectorType::get(Type::getInt32Ty(ValVTy->getContext()), 4); 3806 ReductionCost += 3807 getShuffleCost(TTI::SK_PermuteSingleSrc, ShufTy, None, 0, nullptr); 3808 } else { 3809 // Reducing from smaller size is a shift by immediate. 3810 auto *ShiftTy = FixedVectorType::get( 3811 Type::getIntNTy(ValVTy->getContext(), Size), 128 / Size); 3812 ReductionCost += getArithmeticInstrCost( 3813 Instruction::LShr, ShiftTy, CostKind, 3814 TargetTransformInfo::OK_AnyValue, 3815 TargetTransformInfo::OK_UniformConstantValue, 3816 TargetTransformInfo::OP_None, TargetTransformInfo::OP_None); 3817 } 3818 3819 // Add the arithmetic op for this level. 3820 ReductionCost += getArithmeticInstrCost(Opcode, Ty, CostKind); 3821 } 3822 3823 // Add the final extract element to the cost. 3824 return ReductionCost + getVectorInstrCost(Instruction::ExtractElement, Ty, 0); 3825 } 3826 3827 InstructionCost X86TTIImpl::getMinMaxCost(Type *Ty, Type *CondTy, 3828 bool IsUnsigned) { 3829 std::pair<InstructionCost, MVT> LT = TLI->getTypeLegalizationCost(DL, Ty); 3830 3831 MVT MTy = LT.second; 3832 3833 int ISD; 3834 if (Ty->isIntOrIntVectorTy()) { 3835 ISD = IsUnsigned ? ISD::UMIN : ISD::SMIN; 3836 } else { 3837 assert(Ty->isFPOrFPVectorTy() && 3838 "Expected float point or integer vector type."); 3839 ISD = ISD::FMINNUM; 3840 } 3841 3842 static const CostTblEntry SSE1CostTbl[] = { 3843 {ISD::FMINNUM, MVT::v4f32, 1}, 3844 }; 3845 3846 static const CostTblEntry SSE2CostTbl[] = { 3847 {ISD::FMINNUM, MVT::v2f64, 1}, 3848 {ISD::SMIN, MVT::v8i16, 1}, 3849 {ISD::UMIN, MVT::v16i8, 1}, 3850 }; 3851 3852 static const CostTblEntry SSE41CostTbl[] = { 3853 {ISD::SMIN, MVT::v4i32, 1}, 3854 {ISD::UMIN, MVT::v4i32, 1}, 3855 {ISD::UMIN, MVT::v8i16, 1}, 3856 {ISD::SMIN, MVT::v16i8, 1}, 3857 }; 3858 3859 static const CostTblEntry SSE42CostTbl[] = { 3860 {ISD::UMIN, MVT::v2i64, 3}, // xor+pcmpgtq+blendvpd 3861 }; 3862 3863 static const CostTblEntry AVX1CostTbl[] = { 3864 {ISD::FMINNUM, MVT::v8f32, 1}, 3865 {ISD::FMINNUM, MVT::v4f64, 1}, 3866 {ISD::SMIN, MVT::v8i32, 3}, 3867 {ISD::UMIN, MVT::v8i32, 3}, 3868 {ISD::SMIN, MVT::v16i16, 3}, 3869 {ISD::UMIN, MVT::v16i16, 3}, 3870 {ISD::SMIN, MVT::v32i8, 3}, 3871 {ISD::UMIN, MVT::v32i8, 3}, 3872 }; 3873 3874 static const CostTblEntry AVX2CostTbl[] = { 3875 {ISD::SMIN, MVT::v8i32, 1}, 3876 {ISD::UMIN, MVT::v8i32, 1}, 3877 {ISD::SMIN, MVT::v16i16, 1}, 3878 {ISD::UMIN, MVT::v16i16, 1}, 3879 {ISD::SMIN, MVT::v32i8, 1}, 3880 {ISD::UMIN, MVT::v32i8, 1}, 3881 }; 3882 3883 static const CostTblEntry AVX512CostTbl[] = { 3884 {ISD::FMINNUM, MVT::v16f32, 1}, 3885 {ISD::FMINNUM, MVT::v8f64, 1}, 3886 {ISD::SMIN, MVT::v2i64, 1}, 3887 {ISD::UMIN, MVT::v2i64, 1}, 3888 {ISD::SMIN, MVT::v4i64, 1}, 3889 {ISD::UMIN, MVT::v4i64, 1}, 3890 {ISD::SMIN, MVT::v8i64, 1}, 3891 {ISD::UMIN, MVT::v8i64, 1}, 3892 {ISD::SMIN, MVT::v16i32, 1}, 3893 {ISD::UMIN, MVT::v16i32, 1}, 3894 }; 3895 3896 static const CostTblEntry AVX512BWCostTbl[] = { 3897 {ISD::SMIN, MVT::v32i16, 1}, 3898 {ISD::UMIN, MVT::v32i16, 1}, 3899 {ISD::SMIN, MVT::v64i8, 1}, 3900 {ISD::UMIN, MVT::v64i8, 1}, 3901 }; 3902 3903 // If we have a native MIN/MAX instruction for this type, use it. 3904 if (ST->hasBWI()) 3905 if (const auto *Entry = CostTableLookup(AVX512BWCostTbl, ISD, MTy)) 3906 return LT.first * Entry->Cost; 3907 3908 if (ST->hasAVX512()) 3909 if (const auto *Entry = CostTableLookup(AVX512CostTbl, ISD, MTy)) 3910 return LT.first * Entry->Cost; 3911 3912 if (ST->hasAVX2()) 3913 if (const auto *Entry = CostTableLookup(AVX2CostTbl, ISD, MTy)) 3914 return LT.first * Entry->Cost; 3915 3916 if (ST->hasAVX()) 3917 if (const auto *Entry = CostTableLookup(AVX1CostTbl, ISD, MTy)) 3918 return LT.first * Entry->Cost; 3919 3920 if (ST->hasSSE42()) 3921 if (const auto *Entry = CostTableLookup(SSE42CostTbl, ISD, MTy)) 3922 return LT.first * Entry->Cost; 3923 3924 if (ST->hasSSE41()) 3925 if (const auto *Entry = CostTableLookup(SSE41CostTbl, ISD, MTy)) 3926 return LT.first * Entry->Cost; 3927 3928 if (ST->hasSSE2()) 3929 if (const auto *Entry = CostTableLookup(SSE2CostTbl, ISD, MTy)) 3930 return LT.first * Entry->Cost; 3931 3932 if (ST->hasSSE1()) 3933 if (const auto *Entry = CostTableLookup(SSE1CostTbl, ISD, MTy)) 3934 return LT.first * Entry->Cost; 3935 3936 unsigned CmpOpcode; 3937 if (Ty->isFPOrFPVectorTy()) { 3938 CmpOpcode = Instruction::FCmp; 3939 } else { 3940 assert(Ty->isIntOrIntVectorTy() && 3941 "expecting floating point or integer type for min/max reduction"); 3942 CmpOpcode = Instruction::ICmp; 3943 } 3944 3945 TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 3946 // Otherwise fall back to cmp+select. 3947 InstructionCost Result = 3948 getCmpSelInstrCost(CmpOpcode, Ty, CondTy, CmpInst::BAD_ICMP_PREDICATE, 3949 CostKind) + 3950 getCmpSelInstrCost(Instruction::Select, Ty, CondTy, 3951 CmpInst::BAD_ICMP_PREDICATE, CostKind); 3952 return Result; 3953 } 3954 3955 InstructionCost 3956 X86TTIImpl::getMinMaxReductionCost(VectorType *ValTy, VectorType *CondTy, 3957 bool IsPairwise, bool IsUnsigned, 3958 TTI::TargetCostKind CostKind) { 3959 // Just use the default implementation for pair reductions. 3960 if (IsPairwise) 3961 return BaseT::getMinMaxReductionCost(ValTy, CondTy, IsPairwise, IsUnsigned, 3962 CostKind); 3963 3964 std::pair<InstructionCost, MVT> LT = TLI->getTypeLegalizationCost(DL, ValTy); 3965 3966 MVT MTy = LT.second; 3967 3968 int ISD; 3969 if (ValTy->isIntOrIntVectorTy()) { 3970 ISD = IsUnsigned ? ISD::UMIN : ISD::SMIN; 3971 } else { 3972 assert(ValTy->isFPOrFPVectorTy() && 3973 "Expected float point or integer vector type."); 3974 ISD = ISD::FMINNUM; 3975 } 3976 3977 // We use the Intel Architecture Code Analyzer(IACA) to measure the throughput 3978 // and make it as the cost. 3979 3980 static const CostTblEntry SSE2CostTblNoPairWise[] = { 3981 {ISD::UMIN, MVT::v2i16, 5}, // need pxors to use pminsw/pmaxsw 3982 {ISD::UMIN, MVT::v4i16, 7}, // need pxors to use pminsw/pmaxsw 3983 {ISD::UMIN, MVT::v8i16, 9}, // need pxors to use pminsw/pmaxsw 3984 }; 3985 3986 static const CostTblEntry SSE41CostTblNoPairWise[] = { 3987 {ISD::SMIN, MVT::v2i16, 3}, // same as sse2 3988 {ISD::SMIN, MVT::v4i16, 5}, // same as sse2 3989 {ISD::UMIN, MVT::v2i16, 5}, // same as sse2 3990 {ISD::UMIN, MVT::v4i16, 7}, // same as sse2 3991 {ISD::SMIN, MVT::v8i16, 4}, // phminposuw+xor 3992 {ISD::UMIN, MVT::v8i16, 4}, // FIXME: umin is cheaper than umax 3993 {ISD::SMIN, MVT::v2i8, 3}, // pminsb 3994 {ISD::SMIN, MVT::v4i8, 5}, // pminsb 3995 {ISD::SMIN, MVT::v8i8, 7}, // pminsb 3996 {ISD::SMIN, MVT::v16i8, 6}, 3997 {ISD::UMIN, MVT::v2i8, 3}, // same as sse2 3998 {ISD::UMIN, MVT::v4i8, 5}, // same as sse2 3999 {ISD::UMIN, MVT::v8i8, 7}, // same as sse2 4000 {ISD::UMIN, MVT::v16i8, 6}, // FIXME: umin is cheaper than umax 4001 }; 4002 4003 static const CostTblEntry AVX1CostTblNoPairWise[] = { 4004 {ISD::SMIN, MVT::v16i16, 6}, 4005 {ISD::UMIN, MVT::v16i16, 6}, // FIXME: umin is cheaper than umax 4006 {ISD::SMIN, MVT::v32i8, 8}, 4007 {ISD::UMIN, MVT::v32i8, 8}, 4008 }; 4009 4010 static const CostTblEntry AVX512BWCostTblNoPairWise[] = { 4011 {ISD::SMIN, MVT::v32i16, 8}, 4012 {ISD::UMIN, MVT::v32i16, 8}, // FIXME: umin is cheaper than umax 4013 {ISD::SMIN, MVT::v64i8, 10}, 4014 {ISD::UMIN, MVT::v64i8, 10}, 4015 }; 4016 4017 // Before legalizing the type, give a chance to look up illegal narrow types 4018 // in the table. 4019 // FIXME: Is there a better way to do this? 4020 EVT VT = TLI->getValueType(DL, ValTy); 4021 if (VT.isSimple()) { 4022 MVT MTy = VT.getSimpleVT(); 4023 if (ST->hasBWI()) 4024 if (const auto *Entry = CostTableLookup(AVX512BWCostTblNoPairWise, ISD, MTy)) 4025 return Entry->Cost; 4026 4027 if (ST->hasAVX()) 4028 if (const auto *Entry = CostTableLookup(AVX1CostTblNoPairWise, ISD, MTy)) 4029 return Entry->Cost; 4030 4031 if (ST->hasSSE41()) 4032 if (const auto *Entry = CostTableLookup(SSE41CostTblNoPairWise, ISD, MTy)) 4033 return Entry->Cost; 4034 4035 if (ST->hasSSE2()) 4036 if (const auto *Entry = CostTableLookup(SSE2CostTblNoPairWise, ISD, MTy)) 4037 return Entry->Cost; 4038 } 4039 4040 auto *ValVTy = cast<FixedVectorType>(ValTy); 4041 unsigned NumVecElts = ValVTy->getNumElements(); 4042 4043 auto *Ty = ValVTy; 4044 InstructionCost MinMaxCost = 0; 4045 if (LT.first != 1 && MTy.isVector() && 4046 MTy.getVectorNumElements() < ValVTy->getNumElements()) { 4047 // Type needs to be split. We need LT.first - 1 operations ops. 4048 Ty = FixedVectorType::get(ValVTy->getElementType(), 4049 MTy.getVectorNumElements()); 4050 auto *SubCondTy = FixedVectorType::get(CondTy->getElementType(), 4051 MTy.getVectorNumElements()); 4052 MinMaxCost = getMinMaxCost(Ty, SubCondTy, IsUnsigned); 4053 MinMaxCost *= LT.first - 1; 4054 NumVecElts = MTy.getVectorNumElements(); 4055 } 4056 4057 if (ST->hasBWI()) 4058 if (const auto *Entry = CostTableLookup(AVX512BWCostTblNoPairWise, ISD, MTy)) 4059 return MinMaxCost + Entry->Cost; 4060 4061 if (ST->hasAVX()) 4062 if (const auto *Entry = CostTableLookup(AVX1CostTblNoPairWise, ISD, MTy)) 4063 return MinMaxCost + Entry->Cost; 4064 4065 if (ST->hasSSE41()) 4066 if (const auto *Entry = CostTableLookup(SSE41CostTblNoPairWise, ISD, MTy)) 4067 return MinMaxCost + Entry->Cost; 4068 4069 if (ST->hasSSE2()) 4070 if (const auto *Entry = CostTableLookup(SSE2CostTblNoPairWise, ISD, MTy)) 4071 return MinMaxCost + Entry->Cost; 4072 4073 unsigned ScalarSize = ValTy->getScalarSizeInBits(); 4074 4075 // Special case power of 2 reductions where the scalar type isn't changed 4076 // by type legalization. 4077 if (!isPowerOf2_32(ValVTy->getNumElements()) || 4078 ScalarSize != MTy.getScalarSizeInBits()) 4079 return BaseT::getMinMaxReductionCost(ValTy, CondTy, IsPairwise, IsUnsigned, 4080 CostKind); 4081 4082 // Now handle reduction with the legal type, taking into account size changes 4083 // at each level. 4084 while (NumVecElts > 1) { 4085 // Determine the size of the remaining vector we need to reduce. 4086 unsigned Size = NumVecElts * ScalarSize; 4087 NumVecElts /= 2; 4088 // If we're reducing from 256/512 bits, use an extract_subvector. 4089 if (Size > 128) { 4090 auto *SubTy = FixedVectorType::get(ValVTy->getElementType(), NumVecElts); 4091 MinMaxCost += 4092 getShuffleCost(TTI::SK_ExtractSubvector, Ty, None, NumVecElts, SubTy); 4093 Ty = SubTy; 4094 } else if (Size == 128) { 4095 // Reducing from 128 bits is a permute of v2f64/v2i64. 4096 VectorType *ShufTy; 4097 if (ValTy->isFloatingPointTy()) 4098 ShufTy = 4099 FixedVectorType::get(Type::getDoubleTy(ValTy->getContext()), 2); 4100 else 4101 ShufTy = FixedVectorType::get(Type::getInt64Ty(ValTy->getContext()), 2); 4102 MinMaxCost += 4103 getShuffleCost(TTI::SK_PermuteSingleSrc, ShufTy, None, 0, nullptr); 4104 } else if (Size == 64) { 4105 // Reducing from 64 bits is a shuffle of v4f32/v4i32. 4106 FixedVectorType *ShufTy; 4107 if (ValTy->isFloatingPointTy()) 4108 ShufTy = FixedVectorType::get(Type::getFloatTy(ValTy->getContext()), 4); 4109 else 4110 ShufTy = FixedVectorType::get(Type::getInt32Ty(ValTy->getContext()), 4); 4111 MinMaxCost += 4112 getShuffleCost(TTI::SK_PermuteSingleSrc, ShufTy, None, 0, nullptr); 4113 } else { 4114 // Reducing from smaller size is a shift by immediate. 4115 auto *ShiftTy = FixedVectorType::get( 4116 Type::getIntNTy(ValTy->getContext(), Size), 128 / Size); 4117 MinMaxCost += getArithmeticInstrCost( 4118 Instruction::LShr, ShiftTy, TTI::TCK_RecipThroughput, 4119 TargetTransformInfo::OK_AnyValue, 4120 TargetTransformInfo::OK_UniformConstantValue, 4121 TargetTransformInfo::OP_None, TargetTransformInfo::OP_None); 4122 } 4123 4124 // Add the arithmetic op for this level. 4125 auto *SubCondTy = 4126 FixedVectorType::get(CondTy->getElementType(), Ty->getNumElements()); 4127 MinMaxCost += getMinMaxCost(Ty, SubCondTy, IsUnsigned); 4128 } 4129 4130 // Add the final extract element to the cost. 4131 return MinMaxCost + getVectorInstrCost(Instruction::ExtractElement, Ty, 0); 4132 } 4133 4134 /// Calculate the cost of materializing a 64-bit value. This helper 4135 /// method might only calculate a fraction of a larger immediate. Therefore it 4136 /// is valid to return a cost of ZERO. 4137 InstructionCost X86TTIImpl::getIntImmCost(int64_t Val) { 4138 if (Val == 0) 4139 return TTI::TCC_Free; 4140 4141 if (isInt<32>(Val)) 4142 return TTI::TCC_Basic; 4143 4144 return 2 * TTI::TCC_Basic; 4145 } 4146 4147 InstructionCost X86TTIImpl::getIntImmCost(const APInt &Imm, Type *Ty, 4148 TTI::TargetCostKind CostKind) { 4149 assert(Ty->isIntegerTy()); 4150 4151 unsigned BitSize = Ty->getPrimitiveSizeInBits(); 4152 if (BitSize == 0) 4153 return ~0U; 4154 4155 // Never hoist constants larger than 128bit, because this might lead to 4156 // incorrect code generation or assertions in codegen. 4157 // Fixme: Create a cost model for types larger than i128 once the codegen 4158 // issues have been fixed. 4159 if (BitSize > 128) 4160 return TTI::TCC_Free; 4161 4162 if (Imm == 0) 4163 return TTI::TCC_Free; 4164 4165 // Sign-extend all constants to a multiple of 64-bit. 4166 APInt ImmVal = Imm; 4167 if (BitSize % 64 != 0) 4168 ImmVal = Imm.sext(alignTo(BitSize, 64)); 4169 4170 // Split the constant into 64-bit chunks and calculate the cost for each 4171 // chunk. 4172 InstructionCost Cost = 0; 4173 for (unsigned ShiftVal = 0; ShiftVal < BitSize; ShiftVal += 64) { 4174 APInt Tmp = ImmVal.ashr(ShiftVal).sextOrTrunc(64); 4175 int64_t Val = Tmp.getSExtValue(); 4176 Cost += getIntImmCost(Val); 4177 } 4178 // We need at least one instruction to materialize the constant. 4179 return std::max<InstructionCost>(1, Cost); 4180 } 4181 4182 InstructionCost X86TTIImpl::getIntImmCostInst(unsigned Opcode, unsigned Idx, 4183 const APInt &Imm, Type *Ty, 4184 TTI::TargetCostKind CostKind, 4185 Instruction *Inst) { 4186 assert(Ty->isIntegerTy()); 4187 4188 unsigned BitSize = Ty->getPrimitiveSizeInBits(); 4189 // There is no cost model for constants with a bit size of 0. Return TCC_Free 4190 // here, so that constant hoisting will ignore this constant. 4191 if (BitSize == 0) 4192 return TTI::TCC_Free; 4193 4194 unsigned ImmIdx = ~0U; 4195 switch (Opcode) { 4196 default: 4197 return TTI::TCC_Free; 4198 case Instruction::GetElementPtr: 4199 // Always hoist the base address of a GetElementPtr. This prevents the 4200 // creation of new constants for every base constant that gets constant 4201 // folded with the offset. 4202 if (Idx == 0) 4203 return 2 * TTI::TCC_Basic; 4204 return TTI::TCC_Free; 4205 case Instruction::Store: 4206 ImmIdx = 0; 4207 break; 4208 case Instruction::ICmp: 4209 // This is an imperfect hack to prevent constant hoisting of 4210 // compares that might be trying to check if a 64-bit value fits in 4211 // 32-bits. The backend can optimize these cases using a right shift by 32. 4212 // Ideally we would check the compare predicate here. There also other 4213 // similar immediates the backend can use shifts for. 4214 if (Idx == 1 && Imm.getBitWidth() == 64) { 4215 uint64_t ImmVal = Imm.getZExtValue(); 4216 if (ImmVal == 0x100000000ULL || ImmVal == 0xffffffff) 4217 return TTI::TCC_Free; 4218 } 4219 ImmIdx = 1; 4220 break; 4221 case Instruction::And: 4222 // We support 64-bit ANDs with immediates with 32-bits of leading zeroes 4223 // by using a 32-bit operation with implicit zero extension. Detect such 4224 // immediates here as the normal path expects bit 31 to be sign extended. 4225 if (Idx == 1 && Imm.getBitWidth() == 64 && isUInt<32>(Imm.getZExtValue())) 4226 return TTI::TCC_Free; 4227 ImmIdx = 1; 4228 break; 4229 case Instruction::Add: 4230 case Instruction::Sub: 4231 // For add/sub, we can use the opposite instruction for INT32_MIN. 4232 if (Idx == 1 && Imm.getBitWidth() == 64 && Imm.getZExtValue() == 0x80000000) 4233 return TTI::TCC_Free; 4234 ImmIdx = 1; 4235 break; 4236 case Instruction::UDiv: 4237 case Instruction::SDiv: 4238 case Instruction::URem: 4239 case Instruction::SRem: 4240 // Division by constant is typically expanded later into a different 4241 // instruction sequence. This completely changes the constants. 4242 // Report them as "free" to stop ConstantHoist from marking them as opaque. 4243 return TTI::TCC_Free; 4244 case Instruction::Mul: 4245 case Instruction::Or: 4246 case Instruction::Xor: 4247 ImmIdx = 1; 4248 break; 4249 // Always return TCC_Free for the shift value of a shift instruction. 4250 case Instruction::Shl: 4251 case Instruction::LShr: 4252 case Instruction::AShr: 4253 if (Idx == 1) 4254 return TTI::TCC_Free; 4255 break; 4256 case Instruction::Trunc: 4257 case Instruction::ZExt: 4258 case Instruction::SExt: 4259 case Instruction::IntToPtr: 4260 case Instruction::PtrToInt: 4261 case Instruction::BitCast: 4262 case Instruction::PHI: 4263 case Instruction::Call: 4264 case Instruction::Select: 4265 case Instruction::Ret: 4266 case Instruction::Load: 4267 break; 4268 } 4269 4270 if (Idx == ImmIdx) { 4271 int NumConstants = divideCeil(BitSize, 64); 4272 InstructionCost Cost = X86TTIImpl::getIntImmCost(Imm, Ty, CostKind); 4273 return (Cost <= NumConstants * TTI::TCC_Basic) 4274 ? static_cast<int>(TTI::TCC_Free) 4275 : Cost; 4276 } 4277 4278 return X86TTIImpl::getIntImmCost(Imm, Ty, CostKind); 4279 } 4280 4281 InstructionCost X86TTIImpl::getIntImmCostIntrin(Intrinsic::ID IID, unsigned Idx, 4282 const APInt &Imm, Type *Ty, 4283 TTI::TargetCostKind CostKind) { 4284 assert(Ty->isIntegerTy()); 4285 4286 unsigned BitSize = Ty->getPrimitiveSizeInBits(); 4287 // There is no cost model for constants with a bit size of 0. Return TCC_Free 4288 // here, so that constant hoisting will ignore this constant. 4289 if (BitSize == 0) 4290 return TTI::TCC_Free; 4291 4292 switch (IID) { 4293 default: 4294 return TTI::TCC_Free; 4295 case Intrinsic::sadd_with_overflow: 4296 case Intrinsic::uadd_with_overflow: 4297 case Intrinsic::ssub_with_overflow: 4298 case Intrinsic::usub_with_overflow: 4299 case Intrinsic::smul_with_overflow: 4300 case Intrinsic::umul_with_overflow: 4301 if ((Idx == 1) && Imm.getBitWidth() <= 64 && isInt<32>(Imm.getSExtValue())) 4302 return TTI::TCC_Free; 4303 break; 4304 case Intrinsic::experimental_stackmap: 4305 if ((Idx < 2) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue()))) 4306 return TTI::TCC_Free; 4307 break; 4308 case Intrinsic::experimental_patchpoint_void: 4309 case Intrinsic::experimental_patchpoint_i64: 4310 if ((Idx < 4) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue()))) 4311 return TTI::TCC_Free; 4312 break; 4313 } 4314 return X86TTIImpl::getIntImmCost(Imm, Ty, CostKind); 4315 } 4316 4317 InstructionCost X86TTIImpl::getCFInstrCost(unsigned Opcode, 4318 TTI::TargetCostKind CostKind, 4319 const Instruction *I) { 4320 if (CostKind != TTI::TCK_RecipThroughput) 4321 return Opcode == Instruction::PHI ? 0 : 1; 4322 // Branches are assumed to be predicted. 4323 return 0; 4324 } 4325 4326 int X86TTIImpl::getGatherOverhead() const { 4327 // Some CPUs have more overhead for gather. The specified overhead is relative 4328 // to the Load operation. "2" is the number provided by Intel architects. This 4329 // parameter is used for cost estimation of Gather Op and comparison with 4330 // other alternatives. 4331 // TODO: Remove the explicit hasAVX512()?, That would mean we would only 4332 // enable gather with a -march. 4333 if (ST->hasAVX512() || (ST->hasAVX2() && ST->hasFastGather())) 4334 return 2; 4335 4336 return 1024; 4337 } 4338 4339 int X86TTIImpl::getScatterOverhead() const { 4340 if (ST->hasAVX512()) 4341 return 2; 4342 4343 return 1024; 4344 } 4345 4346 // Return an average cost of Gather / Scatter instruction, maybe improved later. 4347 // FIXME: Add TargetCostKind support. 4348 InstructionCost X86TTIImpl::getGSVectorCost(unsigned Opcode, Type *SrcVTy, 4349 const Value *Ptr, Align Alignment, 4350 unsigned AddressSpace) { 4351 4352 assert(isa<VectorType>(SrcVTy) && "Unexpected type in getGSVectorCost"); 4353 unsigned VF = cast<FixedVectorType>(SrcVTy)->getNumElements(); 4354 4355 // Try to reduce index size from 64 bit (default for GEP) 4356 // to 32. It is essential for VF 16. If the index can't be reduced to 32, the 4357 // operation will use 16 x 64 indices which do not fit in a zmm and needs 4358 // to split. Also check that the base pointer is the same for all lanes, 4359 // and that there's at most one variable index. 4360 auto getIndexSizeInBits = [](const Value *Ptr, const DataLayout &DL) { 4361 unsigned IndexSize = DL.getPointerSizeInBits(); 4362 const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr); 4363 if (IndexSize < 64 || !GEP) 4364 return IndexSize; 4365 4366 unsigned NumOfVarIndices = 0; 4367 const Value *Ptrs = GEP->getPointerOperand(); 4368 if (Ptrs->getType()->isVectorTy() && !getSplatValue(Ptrs)) 4369 return IndexSize; 4370 for (unsigned i = 1; i < GEP->getNumOperands(); ++i) { 4371 if (isa<Constant>(GEP->getOperand(i))) 4372 continue; 4373 Type *IndxTy = GEP->getOperand(i)->getType(); 4374 if (auto *IndexVTy = dyn_cast<VectorType>(IndxTy)) 4375 IndxTy = IndexVTy->getElementType(); 4376 if ((IndxTy->getPrimitiveSizeInBits() == 64 && 4377 !isa<SExtInst>(GEP->getOperand(i))) || 4378 ++NumOfVarIndices > 1) 4379 return IndexSize; // 64 4380 } 4381 return (unsigned)32; 4382 }; 4383 4384 // Trying to reduce IndexSize to 32 bits for vector 16. 4385 // By default the IndexSize is equal to pointer size. 4386 unsigned IndexSize = (ST->hasAVX512() && VF >= 16) 4387 ? getIndexSizeInBits(Ptr, DL) 4388 : DL.getPointerSizeInBits(); 4389 4390 auto *IndexVTy = FixedVectorType::get( 4391 IntegerType::get(SrcVTy->getContext(), IndexSize), VF); 4392 std::pair<InstructionCost, MVT> IdxsLT = 4393 TLI->getTypeLegalizationCost(DL, IndexVTy); 4394 std::pair<InstructionCost, MVT> SrcLT = 4395 TLI->getTypeLegalizationCost(DL, SrcVTy); 4396 InstructionCost::CostType SplitFactor = 4397 *std::max(IdxsLT.first, SrcLT.first).getValue(); 4398 if (SplitFactor > 1) { 4399 // Handle splitting of vector of pointers 4400 auto *SplitSrcTy = 4401 FixedVectorType::get(SrcVTy->getScalarType(), VF / SplitFactor); 4402 return SplitFactor * getGSVectorCost(Opcode, SplitSrcTy, Ptr, Alignment, 4403 AddressSpace); 4404 } 4405 4406 // The gather / scatter cost is given by Intel architects. It is a rough 4407 // number since we are looking at one instruction in a time. 4408 const int GSOverhead = (Opcode == Instruction::Load) 4409 ? getGatherOverhead() 4410 : getScatterOverhead(); 4411 return GSOverhead + VF * getMemoryOpCost(Opcode, SrcVTy->getScalarType(), 4412 MaybeAlign(Alignment), AddressSpace, 4413 TTI::TCK_RecipThroughput); 4414 } 4415 4416 /// Return the cost of full scalarization of gather / scatter operation. 4417 /// 4418 /// Opcode - Load or Store instruction. 4419 /// SrcVTy - The type of the data vector that should be gathered or scattered. 4420 /// VariableMask - The mask is non-constant at compile time. 4421 /// Alignment - Alignment for one element. 4422 /// AddressSpace - pointer[s] address space. 4423 /// 4424 /// FIXME: Add TargetCostKind support. 4425 InstructionCost X86TTIImpl::getGSScalarCost(unsigned Opcode, Type *SrcVTy, 4426 bool VariableMask, Align Alignment, 4427 unsigned AddressSpace) { 4428 unsigned VF = cast<FixedVectorType>(SrcVTy)->getNumElements(); 4429 APInt DemandedElts = APInt::getAllOnesValue(VF); 4430 TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 4431 4432 InstructionCost MaskUnpackCost = 0; 4433 if (VariableMask) { 4434 auto *MaskTy = 4435 FixedVectorType::get(Type::getInt1Ty(SrcVTy->getContext()), VF); 4436 MaskUnpackCost = 4437 getScalarizationOverhead(MaskTy, DemandedElts, false, true); 4438 InstructionCost ScalarCompareCost = getCmpSelInstrCost( 4439 Instruction::ICmp, Type::getInt1Ty(SrcVTy->getContext()), nullptr, 4440 CmpInst::BAD_ICMP_PREDICATE, CostKind); 4441 InstructionCost BranchCost = getCFInstrCost(Instruction::Br, CostKind); 4442 MaskUnpackCost += VF * (BranchCost + ScalarCompareCost); 4443 } 4444 4445 // The cost of the scalar loads/stores. 4446 InstructionCost MemoryOpCost = 4447 VF * getMemoryOpCost(Opcode, SrcVTy->getScalarType(), 4448 MaybeAlign(Alignment), AddressSpace, CostKind); 4449 4450 InstructionCost InsertExtractCost = 0; 4451 if (Opcode == Instruction::Load) 4452 for (unsigned i = 0; i < VF; ++i) 4453 // Add the cost of inserting each scalar load into the vector 4454 InsertExtractCost += 4455 getVectorInstrCost(Instruction::InsertElement, SrcVTy, i); 4456 else 4457 for (unsigned i = 0; i < VF; ++i) 4458 // Add the cost of extracting each element out of the data vector 4459 InsertExtractCost += 4460 getVectorInstrCost(Instruction::ExtractElement, SrcVTy, i); 4461 4462 return MemoryOpCost + MaskUnpackCost + InsertExtractCost; 4463 } 4464 4465 /// Calculate the cost of Gather / Scatter operation 4466 InstructionCost X86TTIImpl::getGatherScatterOpCost( 4467 unsigned Opcode, Type *SrcVTy, const Value *Ptr, bool VariableMask, 4468 Align Alignment, TTI::TargetCostKind CostKind, 4469 const Instruction *I = nullptr) { 4470 if (CostKind != TTI::TCK_RecipThroughput) { 4471 if ((Opcode == Instruction::Load && 4472 isLegalMaskedGather(SrcVTy, Align(Alignment))) || 4473 (Opcode == Instruction::Store && 4474 isLegalMaskedScatter(SrcVTy, Align(Alignment)))) 4475 return 1; 4476 return BaseT::getGatherScatterOpCost(Opcode, SrcVTy, Ptr, VariableMask, 4477 Alignment, CostKind, I); 4478 } 4479 4480 assert(SrcVTy->isVectorTy() && "Unexpected data type for Gather/Scatter"); 4481 unsigned VF = cast<FixedVectorType>(SrcVTy)->getNumElements(); 4482 PointerType *PtrTy = dyn_cast<PointerType>(Ptr->getType()); 4483 if (!PtrTy && Ptr->getType()->isVectorTy()) 4484 PtrTy = dyn_cast<PointerType>( 4485 cast<VectorType>(Ptr->getType())->getElementType()); 4486 assert(PtrTy && "Unexpected type for Ptr argument"); 4487 unsigned AddressSpace = PtrTy->getAddressSpace(); 4488 4489 bool Scalarize = false; 4490 if ((Opcode == Instruction::Load && 4491 !isLegalMaskedGather(SrcVTy, Align(Alignment))) || 4492 (Opcode == Instruction::Store && 4493 !isLegalMaskedScatter(SrcVTy, Align(Alignment)))) 4494 Scalarize = true; 4495 // Gather / Scatter for vector 2 is not profitable on KNL / SKX 4496 // Vector-4 of gather/scatter instruction does not exist on KNL. 4497 // We can extend it to 8 elements, but zeroing upper bits of 4498 // the mask vector will add more instructions. Right now we give the scalar 4499 // cost of vector-4 for KNL. TODO: Check, maybe the gather/scatter instruction 4500 // is better in the VariableMask case. 4501 if (ST->hasAVX512() && (VF == 2 || (VF == 4 && !ST->hasVLX()))) 4502 Scalarize = true; 4503 4504 if (Scalarize) 4505 return getGSScalarCost(Opcode, SrcVTy, VariableMask, Alignment, 4506 AddressSpace); 4507 4508 return getGSVectorCost(Opcode, SrcVTy, Ptr, Alignment, AddressSpace); 4509 } 4510 4511 bool X86TTIImpl::isLSRCostLess(TargetTransformInfo::LSRCost &C1, 4512 TargetTransformInfo::LSRCost &C2) { 4513 // X86 specific here are "instruction number 1st priority". 4514 return std::tie(C1.Insns, C1.NumRegs, C1.AddRecCost, 4515 C1.NumIVMuls, C1.NumBaseAdds, 4516 C1.ScaleCost, C1.ImmCost, C1.SetupCost) < 4517 std::tie(C2.Insns, C2.NumRegs, C2.AddRecCost, 4518 C2.NumIVMuls, C2.NumBaseAdds, 4519 C2.ScaleCost, C2.ImmCost, C2.SetupCost); 4520 } 4521 4522 bool X86TTIImpl::canMacroFuseCmp() { 4523 return ST->hasMacroFusion() || ST->hasBranchFusion(); 4524 } 4525 4526 bool X86TTIImpl::isLegalMaskedLoad(Type *DataTy, Align Alignment) { 4527 if (!ST->hasAVX()) 4528 return false; 4529 4530 // The backend can't handle a single element vector. 4531 if (isa<VectorType>(DataTy) && 4532 cast<FixedVectorType>(DataTy)->getNumElements() == 1) 4533 return false; 4534 Type *ScalarTy = DataTy->getScalarType(); 4535 4536 if (ScalarTy->isPointerTy()) 4537 return true; 4538 4539 if (ScalarTy->isFloatTy() || ScalarTy->isDoubleTy()) 4540 return true; 4541 4542 if (!ScalarTy->isIntegerTy()) 4543 return false; 4544 4545 unsigned IntWidth = ScalarTy->getIntegerBitWidth(); 4546 return IntWidth == 32 || IntWidth == 64 || 4547 ((IntWidth == 8 || IntWidth == 16) && ST->hasBWI()); 4548 } 4549 4550 bool X86TTIImpl::isLegalMaskedStore(Type *DataType, Align Alignment) { 4551 return isLegalMaskedLoad(DataType, Alignment); 4552 } 4553 4554 bool X86TTIImpl::isLegalNTLoad(Type *DataType, Align Alignment) { 4555 unsigned DataSize = DL.getTypeStoreSize(DataType); 4556 // The only supported nontemporal loads are for aligned vectors of 16 or 32 4557 // bytes. Note that 32-byte nontemporal vector loads are supported by AVX2 4558 // (the equivalent stores only require AVX). 4559 if (Alignment >= DataSize && (DataSize == 16 || DataSize == 32)) 4560 return DataSize == 16 ? ST->hasSSE1() : ST->hasAVX2(); 4561 4562 return false; 4563 } 4564 4565 bool X86TTIImpl::isLegalNTStore(Type *DataType, Align Alignment) { 4566 unsigned DataSize = DL.getTypeStoreSize(DataType); 4567 4568 // SSE4A supports nontemporal stores of float and double at arbitrary 4569 // alignment. 4570 if (ST->hasSSE4A() && (DataType->isFloatTy() || DataType->isDoubleTy())) 4571 return true; 4572 4573 // Besides the SSE4A subtarget exception above, only aligned stores are 4574 // available nontemporaly on any other subtarget. And only stores with a size 4575 // of 4..32 bytes (powers of 2, only) are permitted. 4576 if (Alignment < DataSize || DataSize < 4 || DataSize > 32 || 4577 !isPowerOf2_32(DataSize)) 4578 return false; 4579 4580 // 32-byte vector nontemporal stores are supported by AVX (the equivalent 4581 // loads require AVX2). 4582 if (DataSize == 32) 4583 return ST->hasAVX(); 4584 else if (DataSize == 16) 4585 return ST->hasSSE1(); 4586 return true; 4587 } 4588 4589 bool X86TTIImpl::isLegalMaskedExpandLoad(Type *DataTy) { 4590 if (!isa<VectorType>(DataTy)) 4591 return false; 4592 4593 if (!ST->hasAVX512()) 4594 return false; 4595 4596 // The backend can't handle a single element vector. 4597 if (cast<FixedVectorType>(DataTy)->getNumElements() == 1) 4598 return false; 4599 4600 Type *ScalarTy = cast<VectorType>(DataTy)->getElementType(); 4601 4602 if (ScalarTy->isFloatTy() || ScalarTy->isDoubleTy()) 4603 return true; 4604 4605 if (!ScalarTy->isIntegerTy()) 4606 return false; 4607 4608 unsigned IntWidth = ScalarTy->getIntegerBitWidth(); 4609 return IntWidth == 32 || IntWidth == 64 || 4610 ((IntWidth == 8 || IntWidth == 16) && ST->hasVBMI2()); 4611 } 4612 4613 bool X86TTIImpl::isLegalMaskedCompressStore(Type *DataTy) { 4614 return isLegalMaskedExpandLoad(DataTy); 4615 } 4616 4617 bool X86TTIImpl::isLegalMaskedGather(Type *DataTy, Align Alignment) { 4618 // Some CPUs have better gather performance than others. 4619 // TODO: Remove the explicit ST->hasAVX512()?, That would mean we would only 4620 // enable gather with a -march. 4621 if (!(ST->hasAVX512() || (ST->hasFastGather() && ST->hasAVX2()))) 4622 return false; 4623 4624 // This function is called now in two cases: from the Loop Vectorizer 4625 // and from the Scalarizer. 4626 // When the Loop Vectorizer asks about legality of the feature, 4627 // the vectorization factor is not calculated yet. The Loop Vectorizer 4628 // sends a scalar type and the decision is based on the width of the 4629 // scalar element. 4630 // Later on, the cost model will estimate usage this intrinsic based on 4631 // the vector type. 4632 // The Scalarizer asks again about legality. It sends a vector type. 4633 // In this case we can reject non-power-of-2 vectors. 4634 // We also reject single element vectors as the type legalizer can't 4635 // scalarize it. 4636 if (auto *DataVTy = dyn_cast<FixedVectorType>(DataTy)) { 4637 unsigned NumElts = DataVTy->getNumElements(); 4638 if (NumElts == 1) 4639 return false; 4640 } 4641 Type *ScalarTy = DataTy->getScalarType(); 4642 if (ScalarTy->isPointerTy()) 4643 return true; 4644 4645 if (ScalarTy->isFloatTy() || ScalarTy->isDoubleTy()) 4646 return true; 4647 4648 if (!ScalarTy->isIntegerTy()) 4649 return false; 4650 4651 unsigned IntWidth = ScalarTy->getIntegerBitWidth(); 4652 return IntWidth == 32 || IntWidth == 64; 4653 } 4654 4655 bool X86TTIImpl::isLegalMaskedScatter(Type *DataType, Align Alignment) { 4656 // AVX2 doesn't support scatter 4657 if (!ST->hasAVX512()) 4658 return false; 4659 return isLegalMaskedGather(DataType, Alignment); 4660 } 4661 4662 bool X86TTIImpl::hasDivRemOp(Type *DataType, bool IsSigned) { 4663 EVT VT = TLI->getValueType(DL, DataType); 4664 return TLI->isOperationLegal(IsSigned ? ISD::SDIVREM : ISD::UDIVREM, VT); 4665 } 4666 4667 bool X86TTIImpl::isFCmpOrdCheaperThanFCmpZero(Type *Ty) { 4668 return false; 4669 } 4670 4671 bool X86TTIImpl::areInlineCompatible(const Function *Caller, 4672 const Function *Callee) const { 4673 const TargetMachine &TM = getTLI()->getTargetMachine(); 4674 4675 // Work this as a subsetting of subtarget features. 4676 const FeatureBitset &CallerBits = 4677 TM.getSubtargetImpl(*Caller)->getFeatureBits(); 4678 const FeatureBitset &CalleeBits = 4679 TM.getSubtargetImpl(*Callee)->getFeatureBits(); 4680 4681 FeatureBitset RealCallerBits = CallerBits & ~InlineFeatureIgnoreList; 4682 FeatureBitset RealCalleeBits = CalleeBits & ~InlineFeatureIgnoreList; 4683 return (RealCallerBits & RealCalleeBits) == RealCalleeBits; 4684 } 4685 4686 bool X86TTIImpl::areFunctionArgsABICompatible( 4687 const Function *Caller, const Function *Callee, 4688 SmallPtrSetImpl<Argument *> &Args) const { 4689 if (!BaseT::areFunctionArgsABICompatible(Caller, Callee, Args)) 4690 return false; 4691 4692 // If we get here, we know the target features match. If one function 4693 // considers 512-bit vectors legal and the other does not, consider them 4694 // incompatible. 4695 const TargetMachine &TM = getTLI()->getTargetMachine(); 4696 4697 if (TM.getSubtarget<X86Subtarget>(*Caller).useAVX512Regs() == 4698 TM.getSubtarget<X86Subtarget>(*Callee).useAVX512Regs()) 4699 return true; 4700 4701 // Consider the arguments compatible if they aren't vectors or aggregates. 4702 // FIXME: Look at the size of vectors. 4703 // FIXME: Look at the element types of aggregates to see if there are vectors. 4704 // FIXME: The API of this function seems intended to allow arguments 4705 // to be removed from the set, but the caller doesn't check if the set 4706 // becomes empty so that may not work in practice. 4707 return llvm::none_of(Args, [](Argument *A) { 4708 auto *EltTy = cast<PointerType>(A->getType())->getElementType(); 4709 return EltTy->isVectorTy() || EltTy->isAggregateType(); 4710 }); 4711 } 4712 4713 X86TTIImpl::TTI::MemCmpExpansionOptions 4714 X86TTIImpl::enableMemCmpExpansion(bool OptSize, bool IsZeroCmp) const { 4715 TTI::MemCmpExpansionOptions Options; 4716 Options.MaxNumLoads = TLI->getMaxExpandSizeMemcmp(OptSize); 4717 Options.NumLoadsPerBlock = 2; 4718 // All GPR and vector loads can be unaligned. 4719 Options.AllowOverlappingLoads = true; 4720 if (IsZeroCmp) { 4721 // Only enable vector loads for equality comparison. Right now the vector 4722 // version is not as fast for three way compare (see #33329). 4723 const unsigned PreferredWidth = ST->getPreferVectorWidth(); 4724 if (PreferredWidth >= 512 && ST->hasAVX512()) Options.LoadSizes.push_back(64); 4725 if (PreferredWidth >= 256 && ST->hasAVX()) Options.LoadSizes.push_back(32); 4726 if (PreferredWidth >= 128 && ST->hasSSE2()) Options.LoadSizes.push_back(16); 4727 } 4728 if (ST->is64Bit()) { 4729 Options.LoadSizes.push_back(8); 4730 } 4731 Options.LoadSizes.push_back(4); 4732 Options.LoadSizes.push_back(2); 4733 Options.LoadSizes.push_back(1); 4734 return Options; 4735 } 4736 4737 bool X86TTIImpl::enableInterleavedAccessVectorization() { 4738 // TODO: We expect this to be beneficial regardless of arch, 4739 // but there are currently some unexplained performance artifacts on Atom. 4740 // As a temporary solution, disable on Atom. 4741 return !(ST->isAtom()); 4742 } 4743 4744 // Get estimation for interleaved load/store operations for AVX2. 4745 // \p Factor is the interleaved-access factor (stride) - number of 4746 // (interleaved) elements in the group. 4747 // \p Indices contains the indices for a strided load: when the 4748 // interleaved load has gaps they indicate which elements are used. 4749 // If Indices is empty (or if the number of indices is equal to the size 4750 // of the interleaved-access as given in \p Factor) the access has no gaps. 4751 // 4752 // As opposed to AVX-512, AVX2 does not have generic shuffles that allow 4753 // computing the cost using a generic formula as a function of generic 4754 // shuffles. We therefore use a lookup table instead, filled according to 4755 // the instruction sequences that codegen currently generates. 4756 InstructionCost X86TTIImpl::getInterleavedMemoryOpCostAVX2( 4757 unsigned Opcode, FixedVectorType *VecTy, unsigned Factor, 4758 ArrayRef<unsigned> Indices, Align Alignment, unsigned AddressSpace, 4759 TTI::TargetCostKind CostKind, bool UseMaskForCond, bool UseMaskForGaps) { 4760 4761 if (UseMaskForCond || UseMaskForGaps) 4762 return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices, 4763 Alignment, AddressSpace, CostKind, 4764 UseMaskForCond, UseMaskForGaps); 4765 4766 // We currently Support only fully-interleaved groups, with no gaps. 4767 // TODO: Support also strided loads (interleaved-groups with gaps). 4768 if (Indices.size() && Indices.size() != Factor) 4769 return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices, 4770 Alignment, AddressSpace, CostKind); 4771 4772 // VecTy for interleave memop is <VF*Factor x Elt>. 4773 // So, for VF=4, Interleave Factor = 3, Element type = i32 we have 4774 // VecTy = <12 x i32>. 4775 MVT LegalVT = getTLI()->getTypeLegalizationCost(DL, VecTy).second; 4776 4777 // This function can be called with VecTy=<6xi128>, Factor=3, in which case 4778 // the VF=2, while v2i128 is an unsupported MVT vector type 4779 // (see MachineValueType.h::getVectorVT()). 4780 if (!LegalVT.isVector()) 4781 return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices, 4782 Alignment, AddressSpace, CostKind); 4783 4784 unsigned VF = VecTy->getNumElements() / Factor; 4785 Type *ScalarTy = VecTy->getElementType(); 4786 // Deduplicate entries, model floats/pointers as appropriately-sized integers. 4787 if (!ScalarTy->isIntegerTy()) 4788 ScalarTy = 4789 Type::getIntNTy(ScalarTy->getContext(), DL.getTypeSizeInBits(ScalarTy)); 4790 4791 // Get the cost of all the memory operations. 4792 InstructionCost MemOpCosts = getMemoryOpCost( 4793 Opcode, VecTy, MaybeAlign(Alignment), AddressSpace, CostKind); 4794 4795 auto *VT = FixedVectorType::get(ScalarTy, VF); 4796 EVT ETy = TLI->getValueType(DL, VT); 4797 if (!ETy.isSimple()) 4798 return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices, 4799 Alignment, AddressSpace, CostKind); 4800 4801 // TODO: Complete for other data-types and strides. 4802 // Each combination of Stride, element bit width and VF results in a different 4803 // sequence; The cost tables are therefore accessed with: 4804 // Factor (stride) and VectorType=VFxiN. 4805 // The Cost accounts only for the shuffle sequence; 4806 // The cost of the loads/stores is accounted for separately. 4807 // 4808 static const CostTblEntry AVX2InterleavedLoadTbl[] = { 4809 {2, MVT::v4i64, 6}, // (load 8i64 and) deinterleave into 2 x 4i64 4810 4811 {3, MVT::v2i8, 10}, // (load 6i8 and) deinterleave into 3 x 2i8 4812 {3, MVT::v4i8, 4}, // (load 12i8 and) deinterleave into 3 x 4i8 4813 {3, MVT::v8i8, 9}, // (load 24i8 and) deinterleave into 3 x 8i8 4814 {3, MVT::v16i8, 11}, // (load 48i8 and) deinterleave into 3 x 16i8 4815 {3, MVT::v32i8, 13}, // (load 96i8 and) deinterleave into 3 x 32i8 4816 4817 {3, MVT::v8i32, 17}, // (load 24i32 and) deinterleave into 3 x 8i32 4818 4819 {4, MVT::v2i8, 12}, // (load 8i8 and) deinterleave into 4 x 2i8 4820 {4, MVT::v4i8, 4}, // (load 16i8 and) deinterleave into 4 x 4i8 4821 {4, MVT::v8i8, 20}, // (load 32i8 and) deinterleave into 4 x 8i8 4822 {4, MVT::v16i8, 39}, // (load 64i8 and) deinterleave into 4 x 16i8 4823 {4, MVT::v32i8, 80}, // (load 128i8 and) deinterleave into 4 x 32i8 4824 4825 {8, MVT::v8i32, 40} // (load 64i32 and) deinterleave into 8 x 8i32 4826 }; 4827 4828 static const CostTblEntry AVX2InterleavedStoreTbl[] = { 4829 {2, MVT::v4i64, 6}, // interleave 2 x 4i64 into 8i64 (and store) 4830 4831 {3, MVT::v2i8, 7}, // interleave 3 x 2i8 into 6i8 (and store) 4832 {3, MVT::v4i8, 8}, // interleave 3 x 4i8 into 12i8 (and store) 4833 {3, MVT::v8i8, 11}, // interleave 3 x 8i8 into 24i8 (and store) 4834 {3, MVT::v16i8, 11}, // interleave 3 x 16i8 into 48i8 (and store) 4835 {3, MVT::v32i8, 13}, // interleave 3 x 32i8 into 96i8 (and store) 4836 4837 {4, MVT::v2i8, 12}, // interleave 4 x 2i8 into 8i8 (and store) 4838 {4, MVT::v4i8, 9}, // interleave 4 x 4i8 into 16i8 (and store) 4839 {4, MVT::v8i8, 10}, // interleave 4 x 8i8 into 32i8 (and store) 4840 {4, MVT::v16i8, 10}, // interleave 4 x 16i8 into 64i8 (and store) 4841 {4, MVT::v32i8, 12} // interleave 4 x 32i8 into 128i8 (and store) 4842 }; 4843 4844 if (Opcode == Instruction::Load) { 4845 if (const auto *Entry = 4846 CostTableLookup(AVX2InterleavedLoadTbl, Factor, ETy.getSimpleVT())) 4847 return MemOpCosts + Entry->Cost; 4848 } else { 4849 assert(Opcode == Instruction::Store && 4850 "Expected Store Instruction at this point"); 4851 if (const auto *Entry = 4852 CostTableLookup(AVX2InterleavedStoreTbl, Factor, ETy.getSimpleVT())) 4853 return MemOpCosts + Entry->Cost; 4854 } 4855 4856 return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices, 4857 Alignment, AddressSpace, CostKind); 4858 } 4859 4860 // Get estimation for interleaved load/store operations and strided load. 4861 // \p Indices contains indices for strided load. 4862 // \p Factor - the factor of interleaving. 4863 // AVX-512 provides 3-src shuffles that significantly reduces the cost. 4864 InstructionCost X86TTIImpl::getInterleavedMemoryOpCostAVX512( 4865 unsigned Opcode, FixedVectorType *VecTy, unsigned Factor, 4866 ArrayRef<unsigned> Indices, Align Alignment, unsigned AddressSpace, 4867 TTI::TargetCostKind CostKind, bool UseMaskForCond, bool UseMaskForGaps) { 4868 4869 if (UseMaskForCond || UseMaskForGaps) 4870 return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices, 4871 Alignment, AddressSpace, CostKind, 4872 UseMaskForCond, UseMaskForGaps); 4873 4874 // VecTy for interleave memop is <VF*Factor x Elt>. 4875 // So, for VF=4, Interleave Factor = 3, Element type = i32 we have 4876 // VecTy = <12 x i32>. 4877 4878 // Calculate the number of memory operations (NumOfMemOps), required 4879 // for load/store the VecTy. 4880 MVT LegalVT = getTLI()->getTypeLegalizationCost(DL, VecTy).second; 4881 unsigned VecTySize = DL.getTypeStoreSize(VecTy); 4882 unsigned LegalVTSize = LegalVT.getStoreSize(); 4883 unsigned NumOfMemOps = (VecTySize + LegalVTSize - 1) / LegalVTSize; 4884 4885 // Get the cost of one memory operation. 4886 auto *SingleMemOpTy = FixedVectorType::get(VecTy->getElementType(), 4887 LegalVT.getVectorNumElements()); 4888 InstructionCost MemOpCost = getMemoryOpCost( 4889 Opcode, SingleMemOpTy, MaybeAlign(Alignment), AddressSpace, CostKind); 4890 4891 unsigned VF = VecTy->getNumElements() / Factor; 4892 MVT VT = MVT::getVectorVT(MVT::getVT(VecTy->getScalarType()), VF); 4893 4894 if (Opcode == Instruction::Load) { 4895 // The tables (AVX512InterleavedLoadTbl and AVX512InterleavedStoreTbl) 4896 // contain the cost of the optimized shuffle sequence that the 4897 // X86InterleavedAccess pass will generate. 4898 // The cost of loads and stores are computed separately from the table. 4899 4900 // X86InterleavedAccess support only the following interleaved-access group. 4901 static const CostTblEntry AVX512InterleavedLoadTbl[] = { 4902 {3, MVT::v16i8, 12}, //(load 48i8 and) deinterleave into 3 x 16i8 4903 {3, MVT::v32i8, 14}, //(load 96i8 and) deinterleave into 3 x 32i8 4904 {3, MVT::v64i8, 22}, //(load 96i8 and) deinterleave into 3 x 32i8 4905 }; 4906 4907 if (const auto *Entry = 4908 CostTableLookup(AVX512InterleavedLoadTbl, Factor, VT)) 4909 return NumOfMemOps * MemOpCost + Entry->Cost; 4910 //If an entry does not exist, fallback to the default implementation. 4911 4912 // Kind of shuffle depends on number of loaded values. 4913 // If we load the entire data in one register, we can use a 1-src shuffle. 4914 // Otherwise, we'll merge 2 sources in each operation. 4915 TTI::ShuffleKind ShuffleKind = 4916 (NumOfMemOps > 1) ? TTI::SK_PermuteTwoSrc : TTI::SK_PermuteSingleSrc; 4917 4918 InstructionCost ShuffleCost = 4919 getShuffleCost(ShuffleKind, SingleMemOpTy, None, 0, nullptr); 4920 4921 unsigned NumOfLoadsInInterleaveGrp = 4922 Indices.size() ? Indices.size() : Factor; 4923 auto *ResultTy = FixedVectorType::get(VecTy->getElementType(), 4924 VecTy->getNumElements() / Factor); 4925 InstructionCost NumOfResults = 4926 getTLI()->getTypeLegalizationCost(DL, ResultTy).first * 4927 NumOfLoadsInInterleaveGrp; 4928 4929 // About a half of the loads may be folded in shuffles when we have only 4930 // one result. If we have more than one result, we do not fold loads at all. 4931 unsigned NumOfUnfoldedLoads = 4932 NumOfResults > 1 ? NumOfMemOps : NumOfMemOps / 2; 4933 4934 // Get a number of shuffle operations per result. 4935 unsigned NumOfShufflesPerResult = 4936 std::max((unsigned)1, (unsigned)(NumOfMemOps - 1)); 4937 4938 // The SK_MergeTwoSrc shuffle clobbers one of src operands. 4939 // When we have more than one destination, we need additional instructions 4940 // to keep sources. 4941 InstructionCost NumOfMoves = 0; 4942 if (NumOfResults > 1 && ShuffleKind == TTI::SK_PermuteTwoSrc) 4943 NumOfMoves = NumOfResults * NumOfShufflesPerResult / 2; 4944 4945 InstructionCost Cost = NumOfResults * NumOfShufflesPerResult * ShuffleCost + 4946 NumOfUnfoldedLoads * MemOpCost + NumOfMoves; 4947 4948 return Cost; 4949 } 4950 4951 // Store. 4952 assert(Opcode == Instruction::Store && 4953 "Expected Store Instruction at this point"); 4954 // X86InterleavedAccess support only the following interleaved-access group. 4955 static const CostTblEntry AVX512InterleavedStoreTbl[] = { 4956 {3, MVT::v16i8, 12}, // interleave 3 x 16i8 into 48i8 (and store) 4957 {3, MVT::v32i8, 14}, // interleave 3 x 32i8 into 96i8 (and store) 4958 {3, MVT::v64i8, 26}, // interleave 3 x 64i8 into 96i8 (and store) 4959 4960 {4, MVT::v8i8, 10}, // interleave 4 x 8i8 into 32i8 (and store) 4961 {4, MVT::v16i8, 11}, // interleave 4 x 16i8 into 64i8 (and store) 4962 {4, MVT::v32i8, 14}, // interleave 4 x 32i8 into 128i8 (and store) 4963 {4, MVT::v64i8, 24} // interleave 4 x 32i8 into 256i8 (and store) 4964 }; 4965 4966 if (const auto *Entry = 4967 CostTableLookup(AVX512InterleavedStoreTbl, Factor, VT)) 4968 return NumOfMemOps * MemOpCost + Entry->Cost; 4969 //If an entry does not exist, fallback to the default implementation. 4970 4971 // There is no strided stores meanwhile. And store can't be folded in 4972 // shuffle. 4973 unsigned NumOfSources = Factor; // The number of values to be merged. 4974 InstructionCost ShuffleCost = 4975 getShuffleCost(TTI::SK_PermuteTwoSrc, SingleMemOpTy, None, 0, nullptr); 4976 unsigned NumOfShufflesPerStore = NumOfSources - 1; 4977 4978 // The SK_MergeTwoSrc shuffle clobbers one of src operands. 4979 // We need additional instructions to keep sources. 4980 unsigned NumOfMoves = NumOfMemOps * NumOfShufflesPerStore / 2; 4981 InstructionCost Cost = 4982 NumOfMemOps * (MemOpCost + NumOfShufflesPerStore * ShuffleCost) + 4983 NumOfMoves; 4984 return Cost; 4985 } 4986 4987 InstructionCost X86TTIImpl::getInterleavedMemoryOpCost( 4988 unsigned Opcode, Type *VecTy, unsigned Factor, ArrayRef<unsigned> Indices, 4989 Align Alignment, unsigned AddressSpace, TTI::TargetCostKind CostKind, 4990 bool UseMaskForCond, bool UseMaskForGaps) { 4991 auto isSupportedOnAVX512 = [](Type *VecTy, bool HasBW) { 4992 Type *EltTy = cast<VectorType>(VecTy)->getElementType(); 4993 if (EltTy->isFloatTy() || EltTy->isDoubleTy() || EltTy->isIntegerTy(64) || 4994 EltTy->isIntegerTy(32) || EltTy->isPointerTy()) 4995 return true; 4996 if (EltTy->isIntegerTy(16) || EltTy->isIntegerTy(8)) 4997 return HasBW; 4998 return false; 4999 }; 5000 if (ST->hasAVX512() && isSupportedOnAVX512(VecTy, ST->hasBWI())) 5001 return getInterleavedMemoryOpCostAVX512( 5002 Opcode, cast<FixedVectorType>(VecTy), Factor, Indices, Alignment, 5003 AddressSpace, CostKind, UseMaskForCond, UseMaskForGaps); 5004 if (ST->hasAVX2()) 5005 return getInterleavedMemoryOpCostAVX2( 5006 Opcode, cast<FixedVectorType>(VecTy), Factor, Indices, Alignment, 5007 AddressSpace, CostKind, UseMaskForCond, UseMaskForGaps); 5008 5009 return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices, 5010 Alignment, AddressSpace, CostKind, 5011 UseMaskForCond, UseMaskForGaps); 5012 } 5013