1 //===-- X86TargetTransformInfo.cpp - X86 specific TTI pass ----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// \file 9 /// This file implements a TargetTransformInfo analysis pass specific to the 10 /// X86 target machine. It uses the target's detailed information to provide 11 /// more precise answers to certain TTI queries, while letting the target 12 /// independent and default TTI implementations handle the rest. 13 /// 14 //===----------------------------------------------------------------------===// 15 /// About Cost Model numbers used below it's necessary to say the following: 16 /// the numbers correspond to some "generic" X86 CPU instead of usage of 17 /// concrete CPU model. Usually the numbers correspond to CPU where the feature 18 /// apeared at the first time. For example, if we do Subtarget.hasSSE42() in 19 /// the lookups below the cost is based on Nehalem as that was the first CPU 20 /// to support that feature level and thus has most likely the worst case cost. 21 /// Some examples of other technologies/CPUs: 22 /// SSE 3 - Pentium4 / Athlon64 23 /// SSE 4.1 - Penryn 24 /// SSE 4.2 - Nehalem 25 /// AVX - Sandy Bridge 26 /// AVX2 - Haswell 27 /// AVX-512 - Xeon Phi / Skylake 28 /// And some examples of instruction target dependent costs (latency) 29 /// divss sqrtss rsqrtss 30 /// AMD K7 11-16 19 3 31 /// Piledriver 9-24 13-15 5 32 /// Jaguar 14 16 2 33 /// Pentium II,III 18 30 2 34 /// Nehalem 7-14 7-18 3 35 /// Haswell 10-13 11 5 36 /// TODO: Develop and implement the target dependent cost model and 37 /// specialize cost numbers for different Cost Model Targets such as throughput, 38 /// code size, latency and uop count. 39 //===----------------------------------------------------------------------===// 40 41 #include "X86TargetTransformInfo.h" 42 #include "llvm/Analysis/TargetTransformInfo.h" 43 #include "llvm/CodeGen/BasicTTIImpl.h" 44 #include "llvm/CodeGen/CostTable.h" 45 #include "llvm/CodeGen/TargetLowering.h" 46 #include "llvm/IR/IntrinsicInst.h" 47 #include "llvm/Support/Debug.h" 48 49 using namespace llvm; 50 51 #define DEBUG_TYPE "x86tti" 52 53 //===----------------------------------------------------------------------===// 54 // 55 // X86 cost model. 56 // 57 //===----------------------------------------------------------------------===// 58 59 TargetTransformInfo::PopcntSupportKind 60 X86TTIImpl::getPopcntSupport(unsigned TyWidth) { 61 assert(isPowerOf2_32(TyWidth) && "Ty width must be power of 2"); 62 // TODO: Currently the __builtin_popcount() implementation using SSE3 63 // instructions is inefficient. Once the problem is fixed, we should 64 // call ST->hasSSE3() instead of ST->hasPOPCNT(). 65 return ST->hasPOPCNT() ? TTI::PSK_FastHardware : TTI::PSK_Software; 66 } 67 68 llvm::Optional<unsigned> X86TTIImpl::getCacheSize( 69 TargetTransformInfo::CacheLevel Level) const { 70 switch (Level) { 71 case TargetTransformInfo::CacheLevel::L1D: 72 // - Penryn 73 // - Nehalem 74 // - Westmere 75 // - Sandy Bridge 76 // - Ivy Bridge 77 // - Haswell 78 // - Broadwell 79 // - Skylake 80 // - Kabylake 81 return 32 * 1024; // 32 KByte 82 case TargetTransformInfo::CacheLevel::L2D: 83 // - Penryn 84 // - Nehalem 85 // - Westmere 86 // - Sandy Bridge 87 // - Ivy Bridge 88 // - Haswell 89 // - Broadwell 90 // - Skylake 91 // - Kabylake 92 return 256 * 1024; // 256 KByte 93 } 94 95 llvm_unreachable("Unknown TargetTransformInfo::CacheLevel"); 96 } 97 98 llvm::Optional<unsigned> X86TTIImpl::getCacheAssociativity( 99 TargetTransformInfo::CacheLevel Level) const { 100 // - Penryn 101 // - Nehalem 102 // - Westmere 103 // - Sandy Bridge 104 // - Ivy Bridge 105 // - Haswell 106 // - Broadwell 107 // - Skylake 108 // - Kabylake 109 switch (Level) { 110 case TargetTransformInfo::CacheLevel::L1D: 111 LLVM_FALLTHROUGH; 112 case TargetTransformInfo::CacheLevel::L2D: 113 return 8; 114 } 115 116 llvm_unreachable("Unknown TargetTransformInfo::CacheLevel"); 117 } 118 119 unsigned X86TTIImpl::getNumberOfRegisters(unsigned ClassID) const { 120 bool Vector = (ClassID == 1); 121 if (Vector && !ST->hasSSE1()) 122 return 0; 123 124 if (ST->is64Bit()) { 125 if (Vector && ST->hasAVX512()) 126 return 32; 127 return 16; 128 } 129 return 8; 130 } 131 132 TypeSize 133 X86TTIImpl::getRegisterBitWidth(TargetTransformInfo::RegisterKind K) const { 134 unsigned PreferVectorWidth = ST->getPreferVectorWidth(); 135 switch (K) { 136 case TargetTransformInfo::RGK_Scalar: 137 return TypeSize::getFixed(ST->is64Bit() ? 64 : 32); 138 case TargetTransformInfo::RGK_FixedWidthVector: 139 if (ST->hasAVX512() && PreferVectorWidth >= 512) 140 return TypeSize::getFixed(512); 141 if (ST->hasAVX() && PreferVectorWidth >= 256) 142 return TypeSize::getFixed(256); 143 if (ST->hasSSE1() && PreferVectorWidth >= 128) 144 return TypeSize::getFixed(128); 145 return TypeSize::getFixed(0); 146 case TargetTransformInfo::RGK_ScalableVector: 147 return TypeSize::getScalable(0); 148 } 149 150 llvm_unreachable("Unsupported register kind"); 151 } 152 153 unsigned X86TTIImpl::getLoadStoreVecRegBitWidth(unsigned) const { 154 return getRegisterBitWidth(TargetTransformInfo::RGK_FixedWidthVector) 155 .getFixedSize(); 156 } 157 158 unsigned X86TTIImpl::getMaxInterleaveFactor(unsigned VF) { 159 // If the loop will not be vectorized, don't interleave the loop. 160 // Let regular unroll to unroll the loop, which saves the overflow 161 // check and memory check cost. 162 if (VF == 1) 163 return 1; 164 165 if (ST->isAtom()) 166 return 1; 167 168 // Sandybridge and Haswell have multiple execution ports and pipelined 169 // vector units. 170 if (ST->hasAVX()) 171 return 4; 172 173 return 2; 174 } 175 176 InstructionCost X86TTIImpl::getArithmeticInstrCost( 177 unsigned Opcode, Type *Ty, TTI::TargetCostKind CostKind, 178 TTI::OperandValueKind Op1Info, TTI::OperandValueKind Op2Info, 179 TTI::OperandValueProperties Opd1PropInfo, 180 TTI::OperandValueProperties Opd2PropInfo, ArrayRef<const Value *> Args, 181 const Instruction *CxtI) { 182 // TODO: Handle more cost kinds. 183 if (CostKind != TTI::TCK_RecipThroughput) 184 return BaseT::getArithmeticInstrCost(Opcode, Ty, CostKind, Op1Info, 185 Op2Info, Opd1PropInfo, 186 Opd2PropInfo, Args, CxtI); 187 // Legalize the type. 188 std::pair<InstructionCost, MVT> LT = TLI->getTypeLegalizationCost(DL, Ty); 189 190 int ISD = TLI->InstructionOpcodeToISD(Opcode); 191 assert(ISD && "Invalid opcode"); 192 193 static const CostTblEntry GLMCostTable[] = { 194 { ISD::FDIV, MVT::f32, 18 }, // divss 195 { ISD::FDIV, MVT::v4f32, 35 }, // divps 196 { ISD::FDIV, MVT::f64, 33 }, // divsd 197 { ISD::FDIV, MVT::v2f64, 65 }, // divpd 198 }; 199 200 if (ST->useGLMDivSqrtCosts()) 201 if (const auto *Entry = CostTableLookup(GLMCostTable, ISD, 202 LT.second)) 203 return LT.first * Entry->Cost; 204 205 static const CostTblEntry SLMCostTable[] = { 206 { ISD::MUL, MVT::v4i32, 11 }, // pmulld 207 { ISD::MUL, MVT::v8i16, 2 }, // pmullw 208 { ISD::MUL, MVT::v16i8, 14 }, // extend/pmullw/trunc sequence. 209 { ISD::FMUL, MVT::f64, 2 }, // mulsd 210 { ISD::FMUL, MVT::v2f64, 4 }, // mulpd 211 { ISD::FMUL, MVT::v4f32, 2 }, // mulps 212 { ISD::FDIV, MVT::f32, 17 }, // divss 213 { ISD::FDIV, MVT::v4f32, 39 }, // divps 214 { ISD::FDIV, MVT::f64, 32 }, // divsd 215 { ISD::FDIV, MVT::v2f64, 69 }, // divpd 216 { ISD::FADD, MVT::v2f64, 2 }, // addpd 217 { ISD::FSUB, MVT::v2f64, 2 }, // subpd 218 // v2i64/v4i64 mul is custom lowered as a series of long: 219 // multiplies(3), shifts(3) and adds(2) 220 // slm muldq version throughput is 2 and addq throughput 4 221 // thus: 3X2 (muldq throughput) + 3X1 (shift throughput) + 222 // 3X4 (addq throughput) = 17 223 { ISD::MUL, MVT::v2i64, 17 }, 224 // slm addq\subq throughput is 4 225 { ISD::ADD, MVT::v2i64, 4 }, 226 { ISD::SUB, MVT::v2i64, 4 }, 227 }; 228 229 if (ST->isSLM()) { 230 if (Args.size() == 2 && ISD == ISD::MUL && LT.second == MVT::v4i32) { 231 // Check if the operands can be shrinked into a smaller datatype. 232 bool Op1Signed = false; 233 unsigned Op1MinSize = BaseT::minRequiredElementSize(Args[0], Op1Signed); 234 bool Op2Signed = false; 235 unsigned Op2MinSize = BaseT::minRequiredElementSize(Args[1], Op2Signed); 236 237 bool SignedMode = Op1Signed || Op2Signed; 238 unsigned OpMinSize = std::max(Op1MinSize, Op2MinSize); 239 240 if (OpMinSize <= 7) 241 return LT.first * 3; // pmullw/sext 242 if (!SignedMode && OpMinSize <= 8) 243 return LT.first * 3; // pmullw/zext 244 if (OpMinSize <= 15) 245 return LT.first * 5; // pmullw/pmulhw/pshuf 246 if (!SignedMode && OpMinSize <= 16) 247 return LT.first * 5; // pmullw/pmulhw/pshuf 248 } 249 250 if (const auto *Entry = CostTableLookup(SLMCostTable, ISD, 251 LT.second)) { 252 return LT.first * Entry->Cost; 253 } 254 } 255 256 if ((ISD == ISD::SDIV || ISD == ISD::SREM || ISD == ISD::UDIV || 257 ISD == ISD::UREM) && 258 (Op2Info == TargetTransformInfo::OK_UniformConstantValue || 259 Op2Info == TargetTransformInfo::OK_NonUniformConstantValue) && 260 Opd2PropInfo == TargetTransformInfo::OP_PowerOf2) { 261 if (ISD == ISD::SDIV || ISD == ISD::SREM) { 262 // On X86, vector signed division by constants power-of-two are 263 // normally expanded to the sequence SRA + SRL + ADD + SRA. 264 // The OperandValue properties may not be the same as that of the previous 265 // operation; conservatively assume OP_None. 266 InstructionCost Cost = 267 2 * getArithmeticInstrCost(Instruction::AShr, Ty, CostKind, Op1Info, 268 Op2Info, TargetTransformInfo::OP_None, 269 TargetTransformInfo::OP_None); 270 Cost += getArithmeticInstrCost(Instruction::LShr, Ty, CostKind, Op1Info, 271 Op2Info, 272 TargetTransformInfo::OP_None, 273 TargetTransformInfo::OP_None); 274 Cost += getArithmeticInstrCost(Instruction::Add, Ty, CostKind, Op1Info, 275 Op2Info, 276 TargetTransformInfo::OP_None, 277 TargetTransformInfo::OP_None); 278 279 if (ISD == ISD::SREM) { 280 // For SREM: (X % C) is the equivalent of (X - (X/C)*C) 281 Cost += getArithmeticInstrCost(Instruction::Mul, Ty, CostKind, Op1Info, 282 Op2Info); 283 Cost += getArithmeticInstrCost(Instruction::Sub, Ty, CostKind, Op1Info, 284 Op2Info); 285 } 286 287 return Cost; 288 } 289 290 // Vector unsigned division/remainder will be simplified to shifts/masks. 291 if (ISD == ISD::UDIV) 292 return getArithmeticInstrCost(Instruction::LShr, Ty, CostKind, 293 Op1Info, Op2Info, 294 TargetTransformInfo::OP_None, 295 TargetTransformInfo::OP_None); 296 297 else // UREM 298 return getArithmeticInstrCost(Instruction::And, Ty, CostKind, 299 Op1Info, Op2Info, 300 TargetTransformInfo::OP_None, 301 TargetTransformInfo::OP_None); 302 } 303 304 static const CostTblEntry AVX512BWUniformConstCostTable[] = { 305 { ISD::SHL, MVT::v64i8, 2 }, // psllw + pand. 306 { ISD::SRL, MVT::v64i8, 2 }, // psrlw + pand. 307 { ISD::SRA, MVT::v64i8, 4 }, // psrlw, pand, pxor, psubb. 308 }; 309 310 if (Op2Info == TargetTransformInfo::OK_UniformConstantValue && 311 ST->hasBWI()) { 312 if (const auto *Entry = CostTableLookup(AVX512BWUniformConstCostTable, ISD, 313 LT.second)) 314 return LT.first * Entry->Cost; 315 } 316 317 static const CostTblEntry AVX512UniformConstCostTable[] = { 318 { ISD::SRA, MVT::v2i64, 1 }, 319 { ISD::SRA, MVT::v4i64, 1 }, 320 { ISD::SRA, MVT::v8i64, 1 }, 321 322 { ISD::SHL, MVT::v64i8, 4 }, // psllw + pand. 323 { ISD::SRL, MVT::v64i8, 4 }, // psrlw + pand. 324 { ISD::SRA, MVT::v64i8, 8 }, // psrlw, pand, pxor, psubb. 325 326 { ISD::SDIV, MVT::v16i32, 6 }, // pmuludq sequence 327 { ISD::SREM, MVT::v16i32, 8 }, // pmuludq+mul+sub sequence 328 { ISD::UDIV, MVT::v16i32, 5 }, // pmuludq sequence 329 { ISD::UREM, MVT::v16i32, 7 }, // pmuludq+mul+sub sequence 330 }; 331 332 if (Op2Info == TargetTransformInfo::OK_UniformConstantValue && 333 ST->hasAVX512()) { 334 if (const auto *Entry = CostTableLookup(AVX512UniformConstCostTable, ISD, 335 LT.second)) 336 return LT.first * Entry->Cost; 337 } 338 339 static const CostTblEntry AVX2UniformConstCostTable[] = { 340 { ISD::SHL, MVT::v32i8, 2 }, // psllw + pand. 341 { ISD::SRL, MVT::v32i8, 2 }, // psrlw + pand. 342 { ISD::SRA, MVT::v32i8, 4 }, // psrlw, pand, pxor, psubb. 343 344 { ISD::SRA, MVT::v4i64, 4 }, // 2 x psrad + shuffle. 345 346 { ISD::SDIV, MVT::v8i32, 6 }, // pmuludq sequence 347 { ISD::SREM, MVT::v8i32, 8 }, // pmuludq+mul+sub sequence 348 { ISD::UDIV, MVT::v8i32, 5 }, // pmuludq sequence 349 { ISD::UREM, MVT::v8i32, 7 }, // pmuludq+mul+sub sequence 350 }; 351 352 if (Op2Info == TargetTransformInfo::OK_UniformConstantValue && 353 ST->hasAVX2()) { 354 if (const auto *Entry = CostTableLookup(AVX2UniformConstCostTable, ISD, 355 LT.second)) 356 return LT.first * Entry->Cost; 357 } 358 359 static const CostTblEntry SSE2UniformConstCostTable[] = { 360 { ISD::SHL, MVT::v16i8, 2 }, // psllw + pand. 361 { ISD::SRL, MVT::v16i8, 2 }, // psrlw + pand. 362 { ISD::SRA, MVT::v16i8, 4 }, // psrlw, pand, pxor, psubb. 363 364 { ISD::SHL, MVT::v32i8, 4+2 }, // 2*(psllw + pand) + split. 365 { ISD::SRL, MVT::v32i8, 4+2 }, // 2*(psrlw + pand) + split. 366 { ISD::SRA, MVT::v32i8, 8+2 }, // 2*(psrlw, pand, pxor, psubb) + split. 367 368 { ISD::SDIV, MVT::v8i32, 12+2 }, // 2*pmuludq sequence + split. 369 { ISD::SREM, MVT::v8i32, 16+2 }, // 2*pmuludq+mul+sub sequence + split. 370 { ISD::SDIV, MVT::v4i32, 6 }, // pmuludq sequence 371 { ISD::SREM, MVT::v4i32, 8 }, // pmuludq+mul+sub sequence 372 { ISD::UDIV, MVT::v8i32, 10+2 }, // 2*pmuludq sequence + split. 373 { ISD::UREM, MVT::v8i32, 14+2 }, // 2*pmuludq+mul+sub sequence + split. 374 { ISD::UDIV, MVT::v4i32, 5 }, // pmuludq sequence 375 { ISD::UREM, MVT::v4i32, 7 }, // pmuludq+mul+sub sequence 376 }; 377 378 // XOP has faster vXi8 shifts. 379 if (Op2Info == TargetTransformInfo::OK_UniformConstantValue && 380 ST->hasSSE2() && !ST->hasXOP()) { 381 if (const auto *Entry = 382 CostTableLookup(SSE2UniformConstCostTable, ISD, LT.second)) 383 return LT.first * Entry->Cost; 384 } 385 386 static const CostTblEntry AVX512BWConstCostTable[] = { 387 { ISD::SDIV, MVT::v64i8, 14 }, // 2*ext+2*pmulhw sequence 388 { ISD::SREM, MVT::v64i8, 16 }, // 2*ext+2*pmulhw+mul+sub sequence 389 { ISD::UDIV, MVT::v64i8, 14 }, // 2*ext+2*pmulhw sequence 390 { ISD::UREM, MVT::v64i8, 16 }, // 2*ext+2*pmulhw+mul+sub sequence 391 { ISD::SDIV, MVT::v32i16, 6 }, // vpmulhw sequence 392 { ISD::SREM, MVT::v32i16, 8 }, // vpmulhw+mul+sub sequence 393 { ISD::UDIV, MVT::v32i16, 6 }, // vpmulhuw sequence 394 { ISD::UREM, MVT::v32i16, 8 }, // vpmulhuw+mul+sub sequence 395 }; 396 397 if ((Op2Info == TargetTransformInfo::OK_UniformConstantValue || 398 Op2Info == TargetTransformInfo::OK_NonUniformConstantValue) && 399 ST->hasBWI()) { 400 if (const auto *Entry = 401 CostTableLookup(AVX512BWConstCostTable, ISD, LT.second)) 402 return LT.first * Entry->Cost; 403 } 404 405 static const CostTblEntry AVX512ConstCostTable[] = { 406 { ISD::SDIV, MVT::v16i32, 15 }, // vpmuldq sequence 407 { ISD::SREM, MVT::v16i32, 17 }, // vpmuldq+mul+sub sequence 408 { ISD::UDIV, MVT::v16i32, 15 }, // vpmuludq sequence 409 { ISD::UREM, MVT::v16i32, 17 }, // vpmuludq+mul+sub sequence 410 { ISD::SDIV, MVT::v64i8, 28 }, // 4*ext+4*pmulhw sequence 411 { ISD::SREM, MVT::v64i8, 32 }, // 4*ext+4*pmulhw+mul+sub sequence 412 { ISD::UDIV, MVT::v64i8, 28 }, // 4*ext+4*pmulhw sequence 413 { ISD::UREM, MVT::v64i8, 32 }, // 4*ext+4*pmulhw+mul+sub sequence 414 { ISD::SDIV, MVT::v32i16, 12 }, // 2*vpmulhw sequence 415 { ISD::SREM, MVT::v32i16, 16 }, // 2*vpmulhw+mul+sub sequence 416 { ISD::UDIV, MVT::v32i16, 12 }, // 2*vpmulhuw sequence 417 { ISD::UREM, MVT::v32i16, 16 }, // 2*vpmulhuw+mul+sub sequence 418 }; 419 420 if ((Op2Info == TargetTransformInfo::OK_UniformConstantValue || 421 Op2Info == TargetTransformInfo::OK_NonUniformConstantValue) && 422 ST->hasAVX512()) { 423 if (const auto *Entry = 424 CostTableLookup(AVX512ConstCostTable, ISD, LT.second)) 425 return LT.first * Entry->Cost; 426 } 427 428 static const CostTblEntry AVX2ConstCostTable[] = { 429 { ISD::SDIV, MVT::v32i8, 14 }, // 2*ext+2*pmulhw sequence 430 { ISD::SREM, MVT::v32i8, 16 }, // 2*ext+2*pmulhw+mul+sub sequence 431 { ISD::UDIV, MVT::v32i8, 14 }, // 2*ext+2*pmulhw sequence 432 { ISD::UREM, MVT::v32i8, 16 }, // 2*ext+2*pmulhw+mul+sub sequence 433 { ISD::SDIV, MVT::v16i16, 6 }, // vpmulhw sequence 434 { ISD::SREM, MVT::v16i16, 8 }, // vpmulhw+mul+sub sequence 435 { ISD::UDIV, MVT::v16i16, 6 }, // vpmulhuw sequence 436 { ISD::UREM, MVT::v16i16, 8 }, // vpmulhuw+mul+sub sequence 437 { ISD::SDIV, MVT::v8i32, 15 }, // vpmuldq sequence 438 { ISD::SREM, MVT::v8i32, 19 }, // vpmuldq+mul+sub sequence 439 { ISD::UDIV, MVT::v8i32, 15 }, // vpmuludq sequence 440 { ISD::UREM, MVT::v8i32, 19 }, // vpmuludq+mul+sub sequence 441 }; 442 443 if ((Op2Info == TargetTransformInfo::OK_UniformConstantValue || 444 Op2Info == TargetTransformInfo::OK_NonUniformConstantValue) && 445 ST->hasAVX2()) { 446 if (const auto *Entry = CostTableLookup(AVX2ConstCostTable, ISD, LT.second)) 447 return LT.first * Entry->Cost; 448 } 449 450 static const CostTblEntry SSE2ConstCostTable[] = { 451 { ISD::SDIV, MVT::v32i8, 28+2 }, // 4*ext+4*pmulhw sequence + split. 452 { ISD::SREM, MVT::v32i8, 32+2 }, // 4*ext+4*pmulhw+mul+sub sequence + split. 453 { ISD::SDIV, MVT::v16i8, 14 }, // 2*ext+2*pmulhw sequence 454 { ISD::SREM, MVT::v16i8, 16 }, // 2*ext+2*pmulhw+mul+sub sequence 455 { ISD::UDIV, MVT::v32i8, 28+2 }, // 4*ext+4*pmulhw sequence + split. 456 { ISD::UREM, MVT::v32i8, 32+2 }, // 4*ext+4*pmulhw+mul+sub sequence + split. 457 { ISD::UDIV, MVT::v16i8, 14 }, // 2*ext+2*pmulhw sequence 458 { ISD::UREM, MVT::v16i8, 16 }, // 2*ext+2*pmulhw+mul+sub sequence 459 { ISD::SDIV, MVT::v16i16, 12+2 }, // 2*pmulhw sequence + split. 460 { ISD::SREM, MVT::v16i16, 16+2 }, // 2*pmulhw+mul+sub sequence + split. 461 { ISD::SDIV, MVT::v8i16, 6 }, // pmulhw sequence 462 { ISD::SREM, MVT::v8i16, 8 }, // pmulhw+mul+sub sequence 463 { ISD::UDIV, MVT::v16i16, 12+2 }, // 2*pmulhuw sequence + split. 464 { ISD::UREM, MVT::v16i16, 16+2 }, // 2*pmulhuw+mul+sub sequence + split. 465 { ISD::UDIV, MVT::v8i16, 6 }, // pmulhuw sequence 466 { ISD::UREM, MVT::v8i16, 8 }, // pmulhuw+mul+sub sequence 467 { ISD::SDIV, MVT::v8i32, 38+2 }, // 2*pmuludq sequence + split. 468 { ISD::SREM, MVT::v8i32, 48+2 }, // 2*pmuludq+mul+sub sequence + split. 469 { ISD::SDIV, MVT::v4i32, 19 }, // pmuludq sequence 470 { ISD::SREM, MVT::v4i32, 24 }, // pmuludq+mul+sub sequence 471 { ISD::UDIV, MVT::v8i32, 30+2 }, // 2*pmuludq sequence + split. 472 { ISD::UREM, MVT::v8i32, 40+2 }, // 2*pmuludq+mul+sub sequence + split. 473 { ISD::UDIV, MVT::v4i32, 15 }, // pmuludq sequence 474 { ISD::UREM, MVT::v4i32, 20 }, // pmuludq+mul+sub sequence 475 }; 476 477 if ((Op2Info == TargetTransformInfo::OK_UniformConstantValue || 478 Op2Info == TargetTransformInfo::OK_NonUniformConstantValue) && 479 ST->hasSSE2()) { 480 // pmuldq sequence. 481 if (ISD == ISD::SDIV && LT.second == MVT::v8i32 && ST->hasAVX()) 482 return LT.first * 32; 483 if (ISD == ISD::SREM && LT.second == MVT::v8i32 && ST->hasAVX()) 484 return LT.first * 38; 485 if (ISD == ISD::SDIV && LT.second == MVT::v4i32 && ST->hasSSE41()) 486 return LT.first * 15; 487 if (ISD == ISD::SREM && LT.second == MVT::v4i32 && ST->hasSSE41()) 488 return LT.first * 20; 489 490 if (const auto *Entry = CostTableLookup(SSE2ConstCostTable, ISD, LT.second)) 491 return LT.first * Entry->Cost; 492 } 493 494 static const CostTblEntry AVX512BWShiftCostTable[] = { 495 { ISD::SHL, MVT::v8i16, 1 }, // vpsllvw 496 { ISD::SRL, MVT::v8i16, 1 }, // vpsrlvw 497 { ISD::SRA, MVT::v8i16, 1 }, // vpsravw 498 499 { ISD::SHL, MVT::v16i16, 1 }, // vpsllvw 500 { ISD::SRL, MVT::v16i16, 1 }, // vpsrlvw 501 { ISD::SRA, MVT::v16i16, 1 }, // vpsravw 502 503 { ISD::SHL, MVT::v32i16, 1 }, // vpsllvw 504 { ISD::SRL, MVT::v32i16, 1 }, // vpsrlvw 505 { ISD::SRA, MVT::v32i16, 1 }, // vpsravw 506 }; 507 508 if (ST->hasBWI()) 509 if (const auto *Entry = CostTableLookup(AVX512BWShiftCostTable, ISD, LT.second)) 510 return LT.first * Entry->Cost; 511 512 static const CostTblEntry AVX2UniformCostTable[] = { 513 // Uniform splats are cheaper for the following instructions. 514 { ISD::SHL, MVT::v16i16, 1 }, // psllw. 515 { ISD::SRL, MVT::v16i16, 1 }, // psrlw. 516 { ISD::SRA, MVT::v16i16, 1 }, // psraw. 517 { ISD::SHL, MVT::v32i16, 2 }, // 2*psllw. 518 { ISD::SRL, MVT::v32i16, 2 }, // 2*psrlw. 519 { ISD::SRA, MVT::v32i16, 2 }, // 2*psraw. 520 }; 521 522 if (ST->hasAVX2() && 523 ((Op2Info == TargetTransformInfo::OK_UniformConstantValue) || 524 (Op2Info == TargetTransformInfo::OK_UniformValue))) { 525 if (const auto *Entry = 526 CostTableLookup(AVX2UniformCostTable, ISD, LT.second)) 527 return LT.first * Entry->Cost; 528 } 529 530 static const CostTblEntry SSE2UniformCostTable[] = { 531 // Uniform splats are cheaper for the following instructions. 532 { ISD::SHL, MVT::v8i16, 1 }, // psllw. 533 { ISD::SHL, MVT::v4i32, 1 }, // pslld 534 { ISD::SHL, MVT::v2i64, 1 }, // psllq. 535 536 { ISD::SRL, MVT::v8i16, 1 }, // psrlw. 537 { ISD::SRL, MVT::v4i32, 1 }, // psrld. 538 { ISD::SRL, MVT::v2i64, 1 }, // psrlq. 539 540 { ISD::SRA, MVT::v8i16, 1 }, // psraw. 541 { ISD::SRA, MVT::v4i32, 1 }, // psrad. 542 }; 543 544 if (ST->hasSSE2() && 545 ((Op2Info == TargetTransformInfo::OK_UniformConstantValue) || 546 (Op2Info == TargetTransformInfo::OK_UniformValue))) { 547 if (const auto *Entry = 548 CostTableLookup(SSE2UniformCostTable, ISD, LT.second)) 549 return LT.first * Entry->Cost; 550 } 551 552 static const CostTblEntry AVX512DQCostTable[] = { 553 { ISD::MUL, MVT::v2i64, 1 }, 554 { ISD::MUL, MVT::v4i64, 1 }, 555 { ISD::MUL, MVT::v8i64, 1 } 556 }; 557 558 // Look for AVX512DQ lowering tricks for custom cases. 559 if (ST->hasDQI()) 560 if (const auto *Entry = CostTableLookup(AVX512DQCostTable, ISD, LT.second)) 561 return LT.first * Entry->Cost; 562 563 static const CostTblEntry AVX512BWCostTable[] = { 564 { ISD::SHL, MVT::v64i8, 11 }, // vpblendvb sequence. 565 { ISD::SRL, MVT::v64i8, 11 }, // vpblendvb sequence. 566 { ISD::SRA, MVT::v64i8, 24 }, // vpblendvb sequence. 567 568 { ISD::MUL, MVT::v64i8, 11 }, // extend/pmullw/trunc sequence. 569 { ISD::MUL, MVT::v32i8, 4 }, // extend/pmullw/trunc sequence. 570 { ISD::MUL, MVT::v16i8, 4 }, // extend/pmullw/trunc sequence. 571 }; 572 573 // Look for AVX512BW lowering tricks for custom cases. 574 if (ST->hasBWI()) 575 if (const auto *Entry = CostTableLookup(AVX512BWCostTable, ISD, LT.second)) 576 return LT.first * Entry->Cost; 577 578 static const CostTblEntry AVX512CostTable[] = { 579 { ISD::SHL, MVT::v16i32, 1 }, 580 { ISD::SRL, MVT::v16i32, 1 }, 581 { ISD::SRA, MVT::v16i32, 1 }, 582 583 { ISD::SHL, MVT::v8i64, 1 }, 584 { ISD::SRL, MVT::v8i64, 1 }, 585 586 { ISD::SRA, MVT::v2i64, 1 }, 587 { ISD::SRA, MVT::v4i64, 1 }, 588 { ISD::SRA, MVT::v8i64, 1 }, 589 590 { ISD::MUL, MVT::v64i8, 26 }, // extend/pmullw/trunc sequence. 591 { ISD::MUL, MVT::v32i8, 13 }, // extend/pmullw/trunc sequence. 592 { ISD::MUL, MVT::v16i8, 5 }, // extend/pmullw/trunc sequence. 593 { ISD::MUL, MVT::v16i32, 1 }, // pmulld (Skylake from agner.org) 594 { ISD::MUL, MVT::v8i32, 1 }, // pmulld (Skylake from agner.org) 595 { ISD::MUL, MVT::v4i32, 1 }, // pmulld (Skylake from agner.org) 596 { ISD::MUL, MVT::v8i64, 8 }, // 3*pmuludq/3*shift/2*add 597 598 { ISD::FADD, MVT::v8f64, 1 }, // Skylake from http://www.agner.org/ 599 { ISD::FSUB, MVT::v8f64, 1 }, // Skylake from http://www.agner.org/ 600 { ISD::FMUL, MVT::v8f64, 1 }, // Skylake from http://www.agner.org/ 601 602 { ISD::FADD, MVT::v16f32, 1 }, // Skylake from http://www.agner.org/ 603 { ISD::FSUB, MVT::v16f32, 1 }, // Skylake from http://www.agner.org/ 604 { ISD::FMUL, MVT::v16f32, 1 }, // Skylake from http://www.agner.org/ 605 }; 606 607 if (ST->hasAVX512()) 608 if (const auto *Entry = CostTableLookup(AVX512CostTable, ISD, LT.second)) 609 return LT.first * Entry->Cost; 610 611 static const CostTblEntry AVX2ShiftCostTable[] = { 612 // Shifts on v4i64/v8i32 on AVX2 is legal even though we declare to 613 // customize them to detect the cases where shift amount is a scalar one. 614 { ISD::SHL, MVT::v4i32, 1 }, 615 { ISD::SRL, MVT::v4i32, 1 }, 616 { ISD::SRA, MVT::v4i32, 1 }, 617 { ISD::SHL, MVT::v8i32, 1 }, 618 { ISD::SRL, MVT::v8i32, 1 }, 619 { ISD::SRA, MVT::v8i32, 1 }, 620 { ISD::SHL, MVT::v2i64, 1 }, 621 { ISD::SRL, MVT::v2i64, 1 }, 622 { ISD::SHL, MVT::v4i64, 1 }, 623 { ISD::SRL, MVT::v4i64, 1 }, 624 }; 625 626 if (ST->hasAVX512()) { 627 if (ISD == ISD::SHL && LT.second == MVT::v32i16 && 628 (Op2Info == TargetTransformInfo::OK_UniformConstantValue || 629 Op2Info == TargetTransformInfo::OK_NonUniformConstantValue)) 630 // On AVX512, a packed v32i16 shift left by a constant build_vector 631 // is lowered into a vector multiply (vpmullw). 632 return getArithmeticInstrCost(Instruction::Mul, Ty, CostKind, 633 Op1Info, Op2Info, 634 TargetTransformInfo::OP_None, 635 TargetTransformInfo::OP_None); 636 } 637 638 // Look for AVX2 lowering tricks. 639 if (ST->hasAVX2()) { 640 if (ISD == ISD::SHL && LT.second == MVT::v16i16 && 641 (Op2Info == TargetTransformInfo::OK_UniformConstantValue || 642 Op2Info == TargetTransformInfo::OK_NonUniformConstantValue)) 643 // On AVX2, a packed v16i16 shift left by a constant build_vector 644 // is lowered into a vector multiply (vpmullw). 645 return getArithmeticInstrCost(Instruction::Mul, Ty, CostKind, 646 Op1Info, Op2Info, 647 TargetTransformInfo::OP_None, 648 TargetTransformInfo::OP_None); 649 650 if (const auto *Entry = CostTableLookup(AVX2ShiftCostTable, ISD, LT.second)) 651 return LT.first * Entry->Cost; 652 } 653 654 static const CostTblEntry XOPShiftCostTable[] = { 655 // 128bit shifts take 1cy, but right shifts require negation beforehand. 656 { ISD::SHL, MVT::v16i8, 1 }, 657 { ISD::SRL, MVT::v16i8, 2 }, 658 { ISD::SRA, MVT::v16i8, 2 }, 659 { ISD::SHL, MVT::v8i16, 1 }, 660 { ISD::SRL, MVT::v8i16, 2 }, 661 { ISD::SRA, MVT::v8i16, 2 }, 662 { ISD::SHL, MVT::v4i32, 1 }, 663 { ISD::SRL, MVT::v4i32, 2 }, 664 { ISD::SRA, MVT::v4i32, 2 }, 665 { ISD::SHL, MVT::v2i64, 1 }, 666 { ISD::SRL, MVT::v2i64, 2 }, 667 { ISD::SRA, MVT::v2i64, 2 }, 668 // 256bit shifts require splitting if AVX2 didn't catch them above. 669 { ISD::SHL, MVT::v32i8, 2+2 }, 670 { ISD::SRL, MVT::v32i8, 4+2 }, 671 { ISD::SRA, MVT::v32i8, 4+2 }, 672 { ISD::SHL, MVT::v16i16, 2+2 }, 673 { ISD::SRL, MVT::v16i16, 4+2 }, 674 { ISD::SRA, MVT::v16i16, 4+2 }, 675 { ISD::SHL, MVT::v8i32, 2+2 }, 676 { ISD::SRL, MVT::v8i32, 4+2 }, 677 { ISD::SRA, MVT::v8i32, 4+2 }, 678 { ISD::SHL, MVT::v4i64, 2+2 }, 679 { ISD::SRL, MVT::v4i64, 4+2 }, 680 { ISD::SRA, MVT::v4i64, 4+2 }, 681 }; 682 683 // Look for XOP lowering tricks. 684 if (ST->hasXOP()) { 685 // If the right shift is constant then we'll fold the negation so 686 // it's as cheap as a left shift. 687 int ShiftISD = ISD; 688 if ((ShiftISD == ISD::SRL || ShiftISD == ISD::SRA) && 689 (Op2Info == TargetTransformInfo::OK_UniformConstantValue || 690 Op2Info == TargetTransformInfo::OK_NonUniformConstantValue)) 691 ShiftISD = ISD::SHL; 692 if (const auto *Entry = 693 CostTableLookup(XOPShiftCostTable, ShiftISD, LT.second)) 694 return LT.first * Entry->Cost; 695 } 696 697 static const CostTblEntry SSE2UniformShiftCostTable[] = { 698 // Uniform splats are cheaper for the following instructions. 699 { ISD::SHL, MVT::v16i16, 2+2 }, // 2*psllw + split. 700 { ISD::SHL, MVT::v8i32, 2+2 }, // 2*pslld + split. 701 { ISD::SHL, MVT::v4i64, 2+2 }, // 2*psllq + split. 702 703 { ISD::SRL, MVT::v16i16, 2+2 }, // 2*psrlw + split. 704 { ISD::SRL, MVT::v8i32, 2+2 }, // 2*psrld + split. 705 { ISD::SRL, MVT::v4i64, 2+2 }, // 2*psrlq + split. 706 707 { ISD::SRA, MVT::v16i16, 2+2 }, // 2*psraw + split. 708 { ISD::SRA, MVT::v8i32, 2+2 }, // 2*psrad + split. 709 { ISD::SRA, MVT::v2i64, 4 }, // 2*psrad + shuffle. 710 { ISD::SRA, MVT::v4i64, 8+2 }, // 2*(2*psrad + shuffle) + split. 711 }; 712 713 if (ST->hasSSE2() && 714 ((Op2Info == TargetTransformInfo::OK_UniformConstantValue) || 715 (Op2Info == TargetTransformInfo::OK_UniformValue))) { 716 717 // Handle AVX2 uniform v4i64 ISD::SRA, it's not worth a table. 718 if (ISD == ISD::SRA && LT.second == MVT::v4i64 && ST->hasAVX2()) 719 return LT.first * 4; // 2*psrad + shuffle. 720 721 if (const auto *Entry = 722 CostTableLookup(SSE2UniformShiftCostTable, ISD, LT.second)) 723 return LT.first * Entry->Cost; 724 } 725 726 if (ISD == ISD::SHL && 727 Op2Info == TargetTransformInfo::OK_NonUniformConstantValue) { 728 MVT VT = LT.second; 729 // Vector shift left by non uniform constant can be lowered 730 // into vector multiply. 731 if (((VT == MVT::v8i16 || VT == MVT::v4i32) && ST->hasSSE2()) || 732 ((VT == MVT::v16i16 || VT == MVT::v8i32) && ST->hasAVX())) 733 ISD = ISD::MUL; 734 } 735 736 static const CostTblEntry AVX2CostTable[] = { 737 { ISD::SHL, MVT::v32i8, 11 }, // vpblendvb sequence. 738 { ISD::SHL, MVT::v64i8, 22 }, // 2*vpblendvb sequence. 739 { ISD::SHL, MVT::v16i16, 10 }, // extend/vpsrlvd/pack sequence. 740 { ISD::SHL, MVT::v32i16, 20 }, // 2*extend/vpsrlvd/pack sequence. 741 742 { ISD::SRL, MVT::v32i8, 11 }, // vpblendvb sequence. 743 { ISD::SRL, MVT::v64i8, 22 }, // 2*vpblendvb sequence. 744 { ISD::SRL, MVT::v16i16, 10 }, // extend/vpsrlvd/pack sequence. 745 { ISD::SRL, MVT::v32i16, 20 }, // 2*extend/vpsrlvd/pack sequence. 746 747 { ISD::SRA, MVT::v32i8, 24 }, // vpblendvb sequence. 748 { ISD::SRA, MVT::v64i8, 48 }, // 2*vpblendvb sequence. 749 { ISD::SRA, MVT::v16i16, 10 }, // extend/vpsravd/pack sequence. 750 { ISD::SRA, MVT::v32i16, 20 }, // 2*extend/vpsravd/pack sequence. 751 { ISD::SRA, MVT::v2i64, 4 }, // srl/xor/sub sequence. 752 { ISD::SRA, MVT::v4i64, 4 }, // srl/xor/sub sequence. 753 754 { ISD::SUB, MVT::v32i8, 1 }, // psubb 755 { ISD::ADD, MVT::v32i8, 1 }, // paddb 756 { ISD::SUB, MVT::v16i16, 1 }, // psubw 757 { ISD::ADD, MVT::v16i16, 1 }, // paddw 758 { ISD::SUB, MVT::v8i32, 1 }, // psubd 759 { ISD::ADD, MVT::v8i32, 1 }, // paddd 760 { ISD::SUB, MVT::v4i64, 1 }, // psubq 761 { ISD::ADD, MVT::v4i64, 1 }, // paddq 762 763 { ISD::MUL, MVT::v32i8, 17 }, // extend/pmullw/trunc sequence. 764 { ISD::MUL, MVT::v16i8, 7 }, // extend/pmullw/trunc sequence. 765 { ISD::MUL, MVT::v16i16, 1 }, // pmullw 766 { ISD::MUL, MVT::v8i32, 2 }, // pmulld (Haswell from agner.org) 767 { ISD::MUL, MVT::v4i64, 8 }, // 3*pmuludq/3*shift/2*add 768 769 { ISD::FADD, MVT::v4f64, 1 }, // Haswell from http://www.agner.org/ 770 { ISD::FADD, MVT::v8f32, 1 }, // Haswell from http://www.agner.org/ 771 { ISD::FSUB, MVT::v4f64, 1 }, // Haswell from http://www.agner.org/ 772 { ISD::FSUB, MVT::v8f32, 1 }, // Haswell from http://www.agner.org/ 773 { ISD::FMUL, MVT::v4f64, 1 }, // Haswell from http://www.agner.org/ 774 { ISD::FMUL, MVT::v8f32, 1 }, // Haswell from http://www.agner.org/ 775 776 { ISD::FDIV, MVT::f32, 7 }, // Haswell from http://www.agner.org/ 777 { ISD::FDIV, MVT::v4f32, 7 }, // Haswell from http://www.agner.org/ 778 { ISD::FDIV, MVT::v8f32, 14 }, // Haswell from http://www.agner.org/ 779 { ISD::FDIV, MVT::f64, 14 }, // Haswell from http://www.agner.org/ 780 { ISD::FDIV, MVT::v2f64, 14 }, // Haswell from http://www.agner.org/ 781 { ISD::FDIV, MVT::v4f64, 28 }, // Haswell from http://www.agner.org/ 782 }; 783 784 // Look for AVX2 lowering tricks for custom cases. 785 if (ST->hasAVX2()) 786 if (const auto *Entry = CostTableLookup(AVX2CostTable, ISD, LT.second)) 787 return LT.first * Entry->Cost; 788 789 static const CostTblEntry AVX1CostTable[] = { 790 // We don't have to scalarize unsupported ops. We can issue two half-sized 791 // operations and we only need to extract the upper YMM half. 792 // Two ops + 1 extract + 1 insert = 4. 793 { ISD::MUL, MVT::v16i16, 4 }, 794 { ISD::MUL, MVT::v8i32, 4 }, 795 { ISD::SUB, MVT::v32i8, 4 }, 796 { ISD::ADD, MVT::v32i8, 4 }, 797 { ISD::SUB, MVT::v16i16, 4 }, 798 { ISD::ADD, MVT::v16i16, 4 }, 799 { ISD::SUB, MVT::v8i32, 4 }, 800 { ISD::ADD, MVT::v8i32, 4 }, 801 { ISD::SUB, MVT::v4i64, 4 }, 802 { ISD::ADD, MVT::v4i64, 4 }, 803 804 // A v4i64 multiply is custom lowered as two split v2i64 vectors that then 805 // are lowered as a series of long multiplies(3), shifts(3) and adds(2) 806 // Because we believe v4i64 to be a legal type, we must also include the 807 // extract+insert in the cost table. Therefore, the cost here is 18 808 // instead of 8. 809 { ISD::MUL, MVT::v4i64, 18 }, 810 811 { ISD::MUL, MVT::v32i8, 26 }, // extend/pmullw/trunc sequence. 812 813 { ISD::FDIV, MVT::f32, 14 }, // SNB from http://www.agner.org/ 814 { ISD::FDIV, MVT::v4f32, 14 }, // SNB from http://www.agner.org/ 815 { ISD::FDIV, MVT::v8f32, 28 }, // SNB from http://www.agner.org/ 816 { ISD::FDIV, MVT::f64, 22 }, // SNB from http://www.agner.org/ 817 { ISD::FDIV, MVT::v2f64, 22 }, // SNB from http://www.agner.org/ 818 { ISD::FDIV, MVT::v4f64, 44 }, // SNB from http://www.agner.org/ 819 }; 820 821 if (ST->hasAVX()) 822 if (const auto *Entry = CostTableLookup(AVX1CostTable, ISD, LT.second)) 823 return LT.first * Entry->Cost; 824 825 static const CostTblEntry SSE42CostTable[] = { 826 { ISD::FADD, MVT::f64, 1 }, // Nehalem from http://www.agner.org/ 827 { ISD::FADD, MVT::f32, 1 }, // Nehalem from http://www.agner.org/ 828 { ISD::FADD, MVT::v2f64, 1 }, // Nehalem from http://www.agner.org/ 829 { ISD::FADD, MVT::v4f32, 1 }, // Nehalem from http://www.agner.org/ 830 831 { ISD::FSUB, MVT::f64, 1 }, // Nehalem from http://www.agner.org/ 832 { ISD::FSUB, MVT::f32 , 1 }, // Nehalem from http://www.agner.org/ 833 { ISD::FSUB, MVT::v2f64, 1 }, // Nehalem from http://www.agner.org/ 834 { ISD::FSUB, MVT::v4f32, 1 }, // Nehalem from http://www.agner.org/ 835 836 { ISD::FMUL, MVT::f64, 1 }, // Nehalem from http://www.agner.org/ 837 { ISD::FMUL, MVT::f32, 1 }, // Nehalem from http://www.agner.org/ 838 { ISD::FMUL, MVT::v2f64, 1 }, // Nehalem from http://www.agner.org/ 839 { ISD::FMUL, MVT::v4f32, 1 }, // Nehalem from http://www.agner.org/ 840 841 { ISD::FDIV, MVT::f32, 14 }, // Nehalem from http://www.agner.org/ 842 { ISD::FDIV, MVT::v4f32, 14 }, // Nehalem from http://www.agner.org/ 843 { ISD::FDIV, MVT::f64, 22 }, // Nehalem from http://www.agner.org/ 844 { ISD::FDIV, MVT::v2f64, 22 }, // Nehalem from http://www.agner.org/ 845 }; 846 847 if (ST->hasSSE42()) 848 if (const auto *Entry = CostTableLookup(SSE42CostTable, ISD, LT.second)) 849 return LT.first * Entry->Cost; 850 851 static const CostTblEntry SSE41CostTable[] = { 852 { ISD::SHL, MVT::v16i8, 11 }, // pblendvb sequence. 853 { ISD::SHL, MVT::v32i8, 2*11+2 }, // pblendvb sequence + split. 854 { ISD::SHL, MVT::v8i16, 14 }, // pblendvb sequence. 855 { ISD::SHL, MVT::v16i16, 2*14+2 }, // pblendvb sequence + split. 856 { ISD::SHL, MVT::v4i32, 4 }, // pslld/paddd/cvttps2dq/pmulld 857 { ISD::SHL, MVT::v8i32, 2*4+2 }, // pslld/paddd/cvttps2dq/pmulld + split 858 859 { ISD::SRL, MVT::v16i8, 12 }, // pblendvb sequence. 860 { ISD::SRL, MVT::v32i8, 2*12+2 }, // pblendvb sequence + split. 861 { ISD::SRL, MVT::v8i16, 14 }, // pblendvb sequence. 862 { ISD::SRL, MVT::v16i16, 2*14+2 }, // pblendvb sequence + split. 863 { ISD::SRL, MVT::v4i32, 11 }, // Shift each lane + blend. 864 { ISD::SRL, MVT::v8i32, 2*11+2 }, // Shift each lane + blend + split. 865 866 { ISD::SRA, MVT::v16i8, 24 }, // pblendvb sequence. 867 { ISD::SRA, MVT::v32i8, 2*24+2 }, // pblendvb sequence + split. 868 { ISD::SRA, MVT::v8i16, 14 }, // pblendvb sequence. 869 { ISD::SRA, MVT::v16i16, 2*14+2 }, // pblendvb sequence + split. 870 { ISD::SRA, MVT::v4i32, 12 }, // Shift each lane + blend. 871 { ISD::SRA, MVT::v8i32, 2*12+2 }, // Shift each lane + blend + split. 872 873 { ISD::MUL, MVT::v4i32, 2 } // pmulld (Nehalem from agner.org) 874 }; 875 876 if (ST->hasSSE41()) 877 if (const auto *Entry = CostTableLookup(SSE41CostTable, ISD, LT.second)) 878 return LT.first * Entry->Cost; 879 880 static const CostTblEntry SSE2CostTable[] = { 881 // We don't correctly identify costs of casts because they are marked as 882 // custom. 883 { ISD::SHL, MVT::v16i8, 26 }, // cmpgtb sequence. 884 { ISD::SHL, MVT::v8i16, 32 }, // cmpgtb sequence. 885 { ISD::SHL, MVT::v4i32, 2*5 }, // We optimized this using mul. 886 { ISD::SHL, MVT::v2i64, 4 }, // splat+shuffle sequence. 887 { ISD::SHL, MVT::v4i64, 2*4+2 }, // splat+shuffle sequence + split. 888 889 { ISD::SRL, MVT::v16i8, 26 }, // cmpgtb sequence. 890 { ISD::SRL, MVT::v8i16, 32 }, // cmpgtb sequence. 891 { ISD::SRL, MVT::v4i32, 16 }, // Shift each lane + blend. 892 { ISD::SRL, MVT::v2i64, 4 }, // splat+shuffle sequence. 893 { ISD::SRL, MVT::v4i64, 2*4+2 }, // splat+shuffle sequence + split. 894 895 { ISD::SRA, MVT::v16i8, 54 }, // unpacked cmpgtb sequence. 896 { ISD::SRA, MVT::v8i16, 32 }, // cmpgtb sequence. 897 { ISD::SRA, MVT::v4i32, 16 }, // Shift each lane + blend. 898 { ISD::SRA, MVT::v2i64, 12 }, // srl/xor/sub sequence. 899 { ISD::SRA, MVT::v4i64, 2*12+2 }, // srl/xor/sub sequence+split. 900 901 { ISD::MUL, MVT::v16i8, 12 }, // extend/pmullw/trunc sequence. 902 { ISD::MUL, MVT::v8i16, 1 }, // pmullw 903 { ISD::MUL, MVT::v4i32, 6 }, // 3*pmuludq/4*shuffle 904 { ISD::MUL, MVT::v2i64, 8 }, // 3*pmuludq/3*shift/2*add 905 906 { ISD::FDIV, MVT::f32, 23 }, // Pentium IV from http://www.agner.org/ 907 { ISD::FDIV, MVT::v4f32, 39 }, // Pentium IV from http://www.agner.org/ 908 { ISD::FDIV, MVT::f64, 38 }, // Pentium IV from http://www.agner.org/ 909 { ISD::FDIV, MVT::v2f64, 69 }, // Pentium IV from http://www.agner.org/ 910 911 { ISD::FADD, MVT::f32, 2 }, // Pentium IV from http://www.agner.org/ 912 { ISD::FADD, MVT::f64, 2 }, // Pentium IV from http://www.agner.org/ 913 914 { ISD::FSUB, MVT::f32, 2 }, // Pentium IV from http://www.agner.org/ 915 { ISD::FSUB, MVT::f64, 2 }, // Pentium IV from http://www.agner.org/ 916 }; 917 918 if (ST->hasSSE2()) 919 if (const auto *Entry = CostTableLookup(SSE2CostTable, ISD, LT.second)) 920 return LT.first * Entry->Cost; 921 922 static const CostTblEntry SSE1CostTable[] = { 923 { ISD::FDIV, MVT::f32, 17 }, // Pentium III from http://www.agner.org/ 924 { ISD::FDIV, MVT::v4f32, 34 }, // Pentium III from http://www.agner.org/ 925 926 { ISD::FADD, MVT::f32, 1 }, // Pentium III from http://www.agner.org/ 927 { ISD::FADD, MVT::v4f32, 2 }, // Pentium III from http://www.agner.org/ 928 929 { ISD::FSUB, MVT::f32, 1 }, // Pentium III from http://www.agner.org/ 930 { ISD::FSUB, MVT::v4f32, 2 }, // Pentium III from http://www.agner.org/ 931 932 { ISD::ADD, MVT::i8, 1 }, // Pentium III from http://www.agner.org/ 933 { ISD::ADD, MVT::i16, 1 }, // Pentium III from http://www.agner.org/ 934 { ISD::ADD, MVT::i32, 1 }, // Pentium III from http://www.agner.org/ 935 936 { ISD::SUB, MVT::i8, 1 }, // Pentium III from http://www.agner.org/ 937 { ISD::SUB, MVT::i16, 1 }, // Pentium III from http://www.agner.org/ 938 { ISD::SUB, MVT::i32, 1 }, // Pentium III from http://www.agner.org/ 939 }; 940 941 if (ST->hasSSE1()) 942 if (const auto *Entry = CostTableLookup(SSE1CostTable, ISD, LT.second)) 943 return LT.first * Entry->Cost; 944 945 // It is not a good idea to vectorize division. We have to scalarize it and 946 // in the process we will often end up having to spilling regular 947 // registers. The overhead of division is going to dominate most kernels 948 // anyways so try hard to prevent vectorization of division - it is 949 // generally a bad idea. Assume somewhat arbitrarily that we have to be able 950 // to hide "20 cycles" for each lane. 951 if (LT.second.isVector() && (ISD == ISD::SDIV || ISD == ISD::SREM || 952 ISD == ISD::UDIV || ISD == ISD::UREM)) { 953 InstructionCost ScalarCost = getArithmeticInstrCost( 954 Opcode, Ty->getScalarType(), CostKind, Op1Info, Op2Info, 955 TargetTransformInfo::OP_None, TargetTransformInfo::OP_None); 956 return 20 * LT.first * LT.second.getVectorNumElements() * ScalarCost; 957 } 958 959 // Fallback to the default implementation. 960 return BaseT::getArithmeticInstrCost(Opcode, Ty, CostKind, Op1Info, Op2Info); 961 } 962 963 InstructionCost X86TTIImpl::getShuffleCost(TTI::ShuffleKind Kind, 964 VectorType *BaseTp, 965 ArrayRef<int> Mask, int Index, 966 VectorType *SubTp) { 967 // 64-bit packed float vectors (v2f32) are widened to type v4f32. 968 // 64-bit packed integer vectors (v2i32) are widened to type v4i32. 969 std::pair<InstructionCost, MVT> LT = TLI->getTypeLegalizationCost(DL, BaseTp); 970 971 Kind = improveShuffleKindFromMask(Kind, Mask); 972 // Treat Transpose as 2-op shuffles - there's no difference in lowering. 973 if (Kind == TTI::SK_Transpose) 974 Kind = TTI::SK_PermuteTwoSrc; 975 976 // For Broadcasts we are splatting the first element from the first input 977 // register, so only need to reference that input and all the output 978 // registers are the same. 979 if (Kind == TTI::SK_Broadcast) 980 LT.first = 1; 981 982 // Subvector extractions are free if they start at the beginning of a 983 // vector and cheap if the subvectors are aligned. 984 if (Kind == TTI::SK_ExtractSubvector && LT.second.isVector()) { 985 int NumElts = LT.second.getVectorNumElements(); 986 if ((Index % NumElts) == 0) 987 return 0; 988 std::pair<InstructionCost, MVT> SubLT = 989 TLI->getTypeLegalizationCost(DL, SubTp); 990 if (SubLT.second.isVector()) { 991 int NumSubElts = SubLT.second.getVectorNumElements(); 992 if ((Index % NumSubElts) == 0 && (NumElts % NumSubElts) == 0) 993 return SubLT.first; 994 // Handle some cases for widening legalization. For now we only handle 995 // cases where the original subvector was naturally aligned and evenly 996 // fit in its legalized subvector type. 997 // FIXME: Remove some of the alignment restrictions. 998 // FIXME: We can use permq for 64-bit or larger extracts from 256-bit 999 // vectors. 1000 int OrigSubElts = cast<FixedVectorType>(SubTp)->getNumElements(); 1001 if (NumSubElts > OrigSubElts && (Index % OrigSubElts) == 0 && 1002 (NumSubElts % OrigSubElts) == 0 && 1003 LT.second.getVectorElementType() == 1004 SubLT.second.getVectorElementType() && 1005 LT.second.getVectorElementType().getSizeInBits() == 1006 BaseTp->getElementType()->getPrimitiveSizeInBits()) { 1007 assert(NumElts >= NumSubElts && NumElts > OrigSubElts && 1008 "Unexpected number of elements!"); 1009 auto *VecTy = FixedVectorType::get(BaseTp->getElementType(), 1010 LT.second.getVectorNumElements()); 1011 auto *SubTy = FixedVectorType::get(BaseTp->getElementType(), 1012 SubLT.second.getVectorNumElements()); 1013 int ExtractIndex = alignDown((Index % NumElts), NumSubElts); 1014 InstructionCost ExtractCost = getShuffleCost( 1015 TTI::SK_ExtractSubvector, VecTy, None, ExtractIndex, SubTy); 1016 1017 // If the original size is 32-bits or more, we can use pshufd. Otherwise 1018 // if we have SSSE3 we can use pshufb. 1019 if (SubTp->getPrimitiveSizeInBits() >= 32 || ST->hasSSSE3()) 1020 return ExtractCost + 1; // pshufd or pshufb 1021 1022 assert(SubTp->getPrimitiveSizeInBits() == 16 && 1023 "Unexpected vector size"); 1024 1025 return ExtractCost + 2; // worst case pshufhw + pshufd 1026 } 1027 } 1028 } 1029 1030 // Subvector insertions are cheap if the subvectors are aligned. 1031 // Note that in general, the insertion starting at the beginning of a vector 1032 // isn't free, because we need to preserve the rest of the wide vector. 1033 if (Kind == TTI::SK_InsertSubvector && LT.second.isVector()) { 1034 int NumElts = LT.second.getVectorNumElements(); 1035 std::pair<InstructionCost, MVT> SubLT = 1036 TLI->getTypeLegalizationCost(DL, SubTp); 1037 if (SubLT.second.isVector()) { 1038 int NumSubElts = SubLT.second.getVectorNumElements(); 1039 if ((Index % NumSubElts) == 0 && (NumElts % NumSubElts) == 0) 1040 return SubLT.first; 1041 } 1042 } 1043 1044 // Handle some common (illegal) sub-vector types as they are often very cheap 1045 // to shuffle even on targets without PSHUFB. 1046 EVT VT = TLI->getValueType(DL, BaseTp); 1047 if (VT.isSimple() && VT.isVector() && VT.getSizeInBits() < 128 && 1048 !ST->hasSSSE3()) { 1049 static const CostTblEntry SSE2SubVectorShuffleTbl[] = { 1050 {TTI::SK_Broadcast, MVT::v4i16, 1}, // pshuflw 1051 {TTI::SK_Broadcast, MVT::v2i16, 1}, // pshuflw 1052 {TTI::SK_Broadcast, MVT::v8i8, 2}, // punpck/pshuflw 1053 {TTI::SK_Broadcast, MVT::v4i8, 2}, // punpck/pshuflw 1054 {TTI::SK_Broadcast, MVT::v2i8, 1}, // punpck 1055 1056 {TTI::SK_Reverse, MVT::v4i16, 1}, // pshuflw 1057 {TTI::SK_Reverse, MVT::v2i16, 1}, // pshuflw 1058 {TTI::SK_Reverse, MVT::v4i8, 3}, // punpck/pshuflw/packus 1059 {TTI::SK_Reverse, MVT::v2i8, 1}, // punpck 1060 1061 {TTI::SK_PermuteTwoSrc, MVT::v4i16, 2}, // punpck/pshuflw 1062 {TTI::SK_PermuteTwoSrc, MVT::v2i16, 2}, // punpck/pshuflw 1063 {TTI::SK_PermuteTwoSrc, MVT::v8i8, 7}, // punpck/pshuflw 1064 {TTI::SK_PermuteTwoSrc, MVT::v4i8, 4}, // punpck/pshuflw 1065 {TTI::SK_PermuteTwoSrc, MVT::v2i8, 2}, // punpck 1066 1067 {TTI::SK_PermuteSingleSrc, MVT::v4i16, 1}, // pshuflw 1068 {TTI::SK_PermuteSingleSrc, MVT::v2i16, 1}, // pshuflw 1069 {TTI::SK_PermuteSingleSrc, MVT::v8i8, 5}, // punpck/pshuflw 1070 {TTI::SK_PermuteSingleSrc, MVT::v4i8, 3}, // punpck/pshuflw 1071 {TTI::SK_PermuteSingleSrc, MVT::v2i8, 1}, // punpck 1072 }; 1073 1074 if (ST->hasSSE2()) 1075 if (const auto *Entry = 1076 CostTableLookup(SSE2SubVectorShuffleTbl, Kind, VT.getSimpleVT())) 1077 return Entry->Cost; 1078 } 1079 1080 // We are going to permute multiple sources and the result will be in multiple 1081 // destinations. Providing an accurate cost only for splits where the element 1082 // type remains the same. 1083 if (Kind == TTI::SK_PermuteSingleSrc && LT.first != 1) { 1084 MVT LegalVT = LT.second; 1085 if (LegalVT.isVector() && 1086 LegalVT.getVectorElementType().getSizeInBits() == 1087 BaseTp->getElementType()->getPrimitiveSizeInBits() && 1088 LegalVT.getVectorNumElements() < 1089 cast<FixedVectorType>(BaseTp)->getNumElements()) { 1090 1091 unsigned VecTySize = DL.getTypeStoreSize(BaseTp); 1092 unsigned LegalVTSize = LegalVT.getStoreSize(); 1093 // Number of source vectors after legalization: 1094 unsigned NumOfSrcs = (VecTySize + LegalVTSize - 1) / LegalVTSize; 1095 // Number of destination vectors after legalization: 1096 InstructionCost NumOfDests = LT.first; 1097 1098 auto *SingleOpTy = FixedVectorType::get(BaseTp->getElementType(), 1099 LegalVT.getVectorNumElements()); 1100 1101 InstructionCost NumOfShuffles = (NumOfSrcs - 1) * NumOfDests; 1102 return NumOfShuffles * getShuffleCost(TTI::SK_PermuteTwoSrc, SingleOpTy, 1103 None, 0, nullptr); 1104 } 1105 1106 return BaseT::getShuffleCost(Kind, BaseTp, Mask, Index, SubTp); 1107 } 1108 1109 // For 2-input shuffles, we must account for splitting the 2 inputs into many. 1110 if (Kind == TTI::SK_PermuteTwoSrc && LT.first != 1) { 1111 // We assume that source and destination have the same vector type. 1112 InstructionCost NumOfDests = LT.first; 1113 InstructionCost NumOfShufflesPerDest = LT.first * 2 - 1; 1114 LT.first = NumOfDests * NumOfShufflesPerDest; 1115 } 1116 1117 static const CostTblEntry AVX512VBMIShuffleTbl[] = { 1118 {TTI::SK_Reverse, MVT::v64i8, 1}, // vpermb 1119 {TTI::SK_Reverse, MVT::v32i8, 1}, // vpermb 1120 1121 {TTI::SK_PermuteSingleSrc, MVT::v64i8, 1}, // vpermb 1122 {TTI::SK_PermuteSingleSrc, MVT::v32i8, 1}, // vpermb 1123 1124 {TTI::SK_PermuteTwoSrc, MVT::v64i8, 2}, // vpermt2b 1125 {TTI::SK_PermuteTwoSrc, MVT::v32i8, 2}, // vpermt2b 1126 {TTI::SK_PermuteTwoSrc, MVT::v16i8, 2} // vpermt2b 1127 }; 1128 1129 if (ST->hasVBMI()) 1130 if (const auto *Entry = 1131 CostTableLookup(AVX512VBMIShuffleTbl, Kind, LT.second)) 1132 return LT.first * Entry->Cost; 1133 1134 static const CostTblEntry AVX512BWShuffleTbl[] = { 1135 {TTI::SK_Broadcast, MVT::v32i16, 1}, // vpbroadcastw 1136 {TTI::SK_Broadcast, MVT::v64i8, 1}, // vpbroadcastb 1137 1138 {TTI::SK_Reverse, MVT::v32i16, 2}, // vpermw 1139 {TTI::SK_Reverse, MVT::v16i16, 2}, // vpermw 1140 {TTI::SK_Reverse, MVT::v64i8, 2}, // pshufb + vshufi64x2 1141 1142 {TTI::SK_PermuteSingleSrc, MVT::v32i16, 2}, // vpermw 1143 {TTI::SK_PermuteSingleSrc, MVT::v16i16, 2}, // vpermw 1144 {TTI::SK_PermuteSingleSrc, MVT::v64i8, 8}, // extend to v32i16 1145 1146 {TTI::SK_PermuteTwoSrc, MVT::v32i16, 2}, // vpermt2w 1147 {TTI::SK_PermuteTwoSrc, MVT::v16i16, 2}, // vpermt2w 1148 {TTI::SK_PermuteTwoSrc, MVT::v8i16, 2}, // vpermt2w 1149 {TTI::SK_PermuteTwoSrc, MVT::v64i8, 19}, // 6 * v32i8 + 1 1150 1151 {TTI::SK_Select, MVT::v32i16, 1}, // vblendmw 1152 {TTI::SK_Select, MVT::v64i8, 1}, // vblendmb 1153 }; 1154 1155 if (ST->hasBWI()) 1156 if (const auto *Entry = 1157 CostTableLookup(AVX512BWShuffleTbl, Kind, LT.second)) 1158 return LT.first * Entry->Cost; 1159 1160 static const CostTblEntry AVX512ShuffleTbl[] = { 1161 {TTI::SK_Broadcast, MVT::v8f64, 1}, // vbroadcastpd 1162 {TTI::SK_Broadcast, MVT::v16f32, 1}, // vbroadcastps 1163 {TTI::SK_Broadcast, MVT::v8i64, 1}, // vpbroadcastq 1164 {TTI::SK_Broadcast, MVT::v16i32, 1}, // vpbroadcastd 1165 {TTI::SK_Broadcast, MVT::v32i16, 1}, // vpbroadcastw 1166 {TTI::SK_Broadcast, MVT::v64i8, 1}, // vpbroadcastb 1167 1168 {TTI::SK_Reverse, MVT::v8f64, 1}, // vpermpd 1169 {TTI::SK_Reverse, MVT::v16f32, 1}, // vpermps 1170 {TTI::SK_Reverse, MVT::v8i64, 1}, // vpermq 1171 {TTI::SK_Reverse, MVT::v16i32, 1}, // vpermd 1172 {TTI::SK_Reverse, MVT::v32i16, 7}, // per mca 1173 {TTI::SK_Reverse, MVT::v64i8, 7}, // per mca 1174 1175 {TTI::SK_PermuteSingleSrc, MVT::v8f64, 1}, // vpermpd 1176 {TTI::SK_PermuteSingleSrc, MVT::v4f64, 1}, // vpermpd 1177 {TTI::SK_PermuteSingleSrc, MVT::v2f64, 1}, // vpermpd 1178 {TTI::SK_PermuteSingleSrc, MVT::v16f32, 1}, // vpermps 1179 {TTI::SK_PermuteSingleSrc, MVT::v8f32, 1}, // vpermps 1180 {TTI::SK_PermuteSingleSrc, MVT::v4f32, 1}, // vpermps 1181 {TTI::SK_PermuteSingleSrc, MVT::v8i64, 1}, // vpermq 1182 {TTI::SK_PermuteSingleSrc, MVT::v4i64, 1}, // vpermq 1183 {TTI::SK_PermuteSingleSrc, MVT::v2i64, 1}, // vpermq 1184 {TTI::SK_PermuteSingleSrc, MVT::v16i32, 1}, // vpermd 1185 {TTI::SK_PermuteSingleSrc, MVT::v8i32, 1}, // vpermd 1186 {TTI::SK_PermuteSingleSrc, MVT::v4i32, 1}, // vpermd 1187 {TTI::SK_PermuteSingleSrc, MVT::v16i8, 1}, // pshufb 1188 1189 {TTI::SK_PermuteTwoSrc, MVT::v8f64, 1}, // vpermt2pd 1190 {TTI::SK_PermuteTwoSrc, MVT::v16f32, 1}, // vpermt2ps 1191 {TTI::SK_PermuteTwoSrc, MVT::v8i64, 1}, // vpermt2q 1192 {TTI::SK_PermuteTwoSrc, MVT::v16i32, 1}, // vpermt2d 1193 {TTI::SK_PermuteTwoSrc, MVT::v4f64, 1}, // vpermt2pd 1194 {TTI::SK_PermuteTwoSrc, MVT::v8f32, 1}, // vpermt2ps 1195 {TTI::SK_PermuteTwoSrc, MVT::v4i64, 1}, // vpermt2q 1196 {TTI::SK_PermuteTwoSrc, MVT::v8i32, 1}, // vpermt2d 1197 {TTI::SK_PermuteTwoSrc, MVT::v2f64, 1}, // vpermt2pd 1198 {TTI::SK_PermuteTwoSrc, MVT::v4f32, 1}, // vpermt2ps 1199 {TTI::SK_PermuteTwoSrc, MVT::v2i64, 1}, // vpermt2q 1200 {TTI::SK_PermuteTwoSrc, MVT::v4i32, 1}, // vpermt2d 1201 1202 // FIXME: This just applies the type legalization cost rules above 1203 // assuming these completely split. 1204 {TTI::SK_PermuteSingleSrc, MVT::v32i16, 14}, 1205 {TTI::SK_PermuteSingleSrc, MVT::v64i8, 14}, 1206 {TTI::SK_PermuteTwoSrc, MVT::v32i16, 42}, 1207 {TTI::SK_PermuteTwoSrc, MVT::v64i8, 42}, 1208 1209 {TTI::SK_Select, MVT::v32i16, 1}, // vpternlogq 1210 {TTI::SK_Select, MVT::v64i8, 1}, // vpternlogq 1211 {TTI::SK_Select, MVT::v8f64, 1}, // vblendmpd 1212 {TTI::SK_Select, MVT::v16f32, 1}, // vblendmps 1213 {TTI::SK_Select, MVT::v8i64, 1}, // vblendmq 1214 {TTI::SK_Select, MVT::v16i32, 1}, // vblendmd 1215 }; 1216 1217 if (ST->hasAVX512()) 1218 if (const auto *Entry = CostTableLookup(AVX512ShuffleTbl, Kind, LT.second)) 1219 return LT.first * Entry->Cost; 1220 1221 static const CostTblEntry AVX2ShuffleTbl[] = { 1222 {TTI::SK_Broadcast, MVT::v4f64, 1}, // vbroadcastpd 1223 {TTI::SK_Broadcast, MVT::v8f32, 1}, // vbroadcastps 1224 {TTI::SK_Broadcast, MVT::v4i64, 1}, // vpbroadcastq 1225 {TTI::SK_Broadcast, MVT::v8i32, 1}, // vpbroadcastd 1226 {TTI::SK_Broadcast, MVT::v16i16, 1}, // vpbroadcastw 1227 {TTI::SK_Broadcast, MVT::v32i8, 1}, // vpbroadcastb 1228 1229 {TTI::SK_Reverse, MVT::v4f64, 1}, // vpermpd 1230 {TTI::SK_Reverse, MVT::v8f32, 1}, // vpermps 1231 {TTI::SK_Reverse, MVT::v4i64, 1}, // vpermq 1232 {TTI::SK_Reverse, MVT::v8i32, 1}, // vpermd 1233 {TTI::SK_Reverse, MVT::v16i16, 2}, // vperm2i128 + pshufb 1234 {TTI::SK_Reverse, MVT::v32i8, 2}, // vperm2i128 + pshufb 1235 1236 {TTI::SK_Select, MVT::v16i16, 1}, // vpblendvb 1237 {TTI::SK_Select, MVT::v32i8, 1}, // vpblendvb 1238 1239 {TTI::SK_PermuteSingleSrc, MVT::v4f64, 1}, // vpermpd 1240 {TTI::SK_PermuteSingleSrc, MVT::v8f32, 1}, // vpermps 1241 {TTI::SK_PermuteSingleSrc, MVT::v4i64, 1}, // vpermq 1242 {TTI::SK_PermuteSingleSrc, MVT::v8i32, 1}, // vpermd 1243 {TTI::SK_PermuteSingleSrc, MVT::v16i16, 4}, // vperm2i128 + 2*vpshufb 1244 // + vpblendvb 1245 {TTI::SK_PermuteSingleSrc, MVT::v32i8, 4}, // vperm2i128 + 2*vpshufb 1246 // + vpblendvb 1247 1248 {TTI::SK_PermuteTwoSrc, MVT::v4f64, 3}, // 2*vpermpd + vblendpd 1249 {TTI::SK_PermuteTwoSrc, MVT::v8f32, 3}, // 2*vpermps + vblendps 1250 {TTI::SK_PermuteTwoSrc, MVT::v4i64, 3}, // 2*vpermq + vpblendd 1251 {TTI::SK_PermuteTwoSrc, MVT::v8i32, 3}, // 2*vpermd + vpblendd 1252 {TTI::SK_PermuteTwoSrc, MVT::v16i16, 7}, // 2*vperm2i128 + 4*vpshufb 1253 // + vpblendvb 1254 {TTI::SK_PermuteTwoSrc, MVT::v32i8, 7}, // 2*vperm2i128 + 4*vpshufb 1255 // + vpblendvb 1256 }; 1257 1258 if (ST->hasAVX2()) 1259 if (const auto *Entry = CostTableLookup(AVX2ShuffleTbl, Kind, LT.second)) 1260 return LT.first * Entry->Cost; 1261 1262 static const CostTblEntry XOPShuffleTbl[] = { 1263 {TTI::SK_PermuteSingleSrc, MVT::v4f64, 2}, // vperm2f128 + vpermil2pd 1264 {TTI::SK_PermuteSingleSrc, MVT::v8f32, 2}, // vperm2f128 + vpermil2ps 1265 {TTI::SK_PermuteSingleSrc, MVT::v4i64, 2}, // vperm2f128 + vpermil2pd 1266 {TTI::SK_PermuteSingleSrc, MVT::v8i32, 2}, // vperm2f128 + vpermil2ps 1267 {TTI::SK_PermuteSingleSrc, MVT::v16i16, 4}, // vextractf128 + 2*vpperm 1268 // + vinsertf128 1269 {TTI::SK_PermuteSingleSrc, MVT::v32i8, 4}, // vextractf128 + 2*vpperm 1270 // + vinsertf128 1271 1272 {TTI::SK_PermuteTwoSrc, MVT::v16i16, 9}, // 2*vextractf128 + 6*vpperm 1273 // + vinsertf128 1274 {TTI::SK_PermuteTwoSrc, MVT::v8i16, 1}, // vpperm 1275 {TTI::SK_PermuteTwoSrc, MVT::v32i8, 9}, // 2*vextractf128 + 6*vpperm 1276 // + vinsertf128 1277 {TTI::SK_PermuteTwoSrc, MVT::v16i8, 1}, // vpperm 1278 }; 1279 1280 if (ST->hasXOP()) 1281 if (const auto *Entry = CostTableLookup(XOPShuffleTbl, Kind, LT.second)) 1282 return LT.first * Entry->Cost; 1283 1284 static const CostTblEntry AVX1ShuffleTbl[] = { 1285 {TTI::SK_Broadcast, MVT::v4f64, 2}, // vperm2f128 + vpermilpd 1286 {TTI::SK_Broadcast, MVT::v8f32, 2}, // vperm2f128 + vpermilps 1287 {TTI::SK_Broadcast, MVT::v4i64, 2}, // vperm2f128 + vpermilpd 1288 {TTI::SK_Broadcast, MVT::v8i32, 2}, // vperm2f128 + vpermilps 1289 {TTI::SK_Broadcast, MVT::v16i16, 3}, // vpshuflw + vpshufd + vinsertf128 1290 {TTI::SK_Broadcast, MVT::v32i8, 2}, // vpshufb + vinsertf128 1291 1292 {TTI::SK_Reverse, MVT::v4f64, 2}, // vperm2f128 + vpermilpd 1293 {TTI::SK_Reverse, MVT::v8f32, 2}, // vperm2f128 + vpermilps 1294 {TTI::SK_Reverse, MVT::v4i64, 2}, // vperm2f128 + vpermilpd 1295 {TTI::SK_Reverse, MVT::v8i32, 2}, // vperm2f128 + vpermilps 1296 {TTI::SK_Reverse, MVT::v16i16, 4}, // vextractf128 + 2*pshufb 1297 // + vinsertf128 1298 {TTI::SK_Reverse, MVT::v32i8, 4}, // vextractf128 + 2*pshufb 1299 // + vinsertf128 1300 1301 {TTI::SK_Select, MVT::v4i64, 1}, // vblendpd 1302 {TTI::SK_Select, MVT::v4f64, 1}, // vblendpd 1303 {TTI::SK_Select, MVT::v8i32, 1}, // vblendps 1304 {TTI::SK_Select, MVT::v8f32, 1}, // vblendps 1305 {TTI::SK_Select, MVT::v16i16, 3}, // vpand + vpandn + vpor 1306 {TTI::SK_Select, MVT::v32i8, 3}, // vpand + vpandn + vpor 1307 1308 {TTI::SK_PermuteSingleSrc, MVT::v4f64, 2}, // vperm2f128 + vshufpd 1309 {TTI::SK_PermuteSingleSrc, MVT::v4i64, 2}, // vperm2f128 + vshufpd 1310 {TTI::SK_PermuteSingleSrc, MVT::v8f32, 4}, // 2*vperm2f128 + 2*vshufps 1311 {TTI::SK_PermuteSingleSrc, MVT::v8i32, 4}, // 2*vperm2f128 + 2*vshufps 1312 {TTI::SK_PermuteSingleSrc, MVT::v16i16, 8}, // vextractf128 + 4*pshufb 1313 // + 2*por + vinsertf128 1314 {TTI::SK_PermuteSingleSrc, MVT::v32i8, 8}, // vextractf128 + 4*pshufb 1315 // + 2*por + vinsertf128 1316 1317 {TTI::SK_PermuteTwoSrc, MVT::v4f64, 3}, // 2*vperm2f128 + vshufpd 1318 {TTI::SK_PermuteTwoSrc, MVT::v4i64, 3}, // 2*vperm2f128 + vshufpd 1319 {TTI::SK_PermuteTwoSrc, MVT::v8f32, 4}, // 2*vperm2f128 + 2*vshufps 1320 {TTI::SK_PermuteTwoSrc, MVT::v8i32, 4}, // 2*vperm2f128 + 2*vshufps 1321 {TTI::SK_PermuteTwoSrc, MVT::v16i16, 15}, // 2*vextractf128 + 8*pshufb 1322 // + 4*por + vinsertf128 1323 {TTI::SK_PermuteTwoSrc, MVT::v32i8, 15}, // 2*vextractf128 + 8*pshufb 1324 // + 4*por + vinsertf128 1325 }; 1326 1327 if (ST->hasAVX()) 1328 if (const auto *Entry = CostTableLookup(AVX1ShuffleTbl, Kind, LT.second)) 1329 return LT.first * Entry->Cost; 1330 1331 static const CostTblEntry SSE41ShuffleTbl[] = { 1332 {TTI::SK_Select, MVT::v2i64, 1}, // pblendw 1333 {TTI::SK_Select, MVT::v2f64, 1}, // movsd 1334 {TTI::SK_Select, MVT::v4i32, 1}, // pblendw 1335 {TTI::SK_Select, MVT::v4f32, 1}, // blendps 1336 {TTI::SK_Select, MVT::v8i16, 1}, // pblendw 1337 {TTI::SK_Select, MVT::v16i8, 1} // pblendvb 1338 }; 1339 1340 if (ST->hasSSE41()) 1341 if (const auto *Entry = CostTableLookup(SSE41ShuffleTbl, Kind, LT.second)) 1342 return LT.first * Entry->Cost; 1343 1344 static const CostTblEntry SSSE3ShuffleTbl[] = { 1345 {TTI::SK_Broadcast, MVT::v8i16, 1}, // pshufb 1346 {TTI::SK_Broadcast, MVT::v16i8, 1}, // pshufb 1347 1348 {TTI::SK_Reverse, MVT::v8i16, 1}, // pshufb 1349 {TTI::SK_Reverse, MVT::v16i8, 1}, // pshufb 1350 1351 {TTI::SK_Select, MVT::v8i16, 3}, // 2*pshufb + por 1352 {TTI::SK_Select, MVT::v16i8, 3}, // 2*pshufb + por 1353 1354 {TTI::SK_PermuteSingleSrc, MVT::v8i16, 1}, // pshufb 1355 {TTI::SK_PermuteSingleSrc, MVT::v16i8, 1}, // pshufb 1356 1357 {TTI::SK_PermuteTwoSrc, MVT::v8i16, 3}, // 2*pshufb + por 1358 {TTI::SK_PermuteTwoSrc, MVT::v16i8, 3}, // 2*pshufb + por 1359 }; 1360 1361 if (ST->hasSSSE3()) 1362 if (const auto *Entry = CostTableLookup(SSSE3ShuffleTbl, Kind, LT.second)) 1363 return LT.first * Entry->Cost; 1364 1365 static const CostTblEntry SSE2ShuffleTbl[] = { 1366 {TTI::SK_Broadcast, MVT::v2f64, 1}, // shufpd 1367 {TTI::SK_Broadcast, MVT::v2i64, 1}, // pshufd 1368 {TTI::SK_Broadcast, MVT::v4i32, 1}, // pshufd 1369 {TTI::SK_Broadcast, MVT::v8i16, 2}, // pshuflw + pshufd 1370 {TTI::SK_Broadcast, MVT::v16i8, 3}, // unpck + pshuflw + pshufd 1371 1372 {TTI::SK_Reverse, MVT::v2f64, 1}, // shufpd 1373 {TTI::SK_Reverse, MVT::v2i64, 1}, // pshufd 1374 {TTI::SK_Reverse, MVT::v4i32, 1}, // pshufd 1375 {TTI::SK_Reverse, MVT::v8i16, 3}, // pshuflw + pshufhw + pshufd 1376 {TTI::SK_Reverse, MVT::v16i8, 9}, // 2*pshuflw + 2*pshufhw 1377 // + 2*pshufd + 2*unpck + packus 1378 1379 {TTI::SK_Select, MVT::v2i64, 1}, // movsd 1380 {TTI::SK_Select, MVT::v2f64, 1}, // movsd 1381 {TTI::SK_Select, MVT::v4i32, 2}, // 2*shufps 1382 {TTI::SK_Select, MVT::v8i16, 3}, // pand + pandn + por 1383 {TTI::SK_Select, MVT::v16i8, 3}, // pand + pandn + por 1384 1385 {TTI::SK_PermuteSingleSrc, MVT::v2f64, 1}, // shufpd 1386 {TTI::SK_PermuteSingleSrc, MVT::v2i64, 1}, // pshufd 1387 {TTI::SK_PermuteSingleSrc, MVT::v4i32, 1}, // pshufd 1388 {TTI::SK_PermuteSingleSrc, MVT::v8i16, 5}, // 2*pshuflw + 2*pshufhw 1389 // + pshufd/unpck 1390 { TTI::SK_PermuteSingleSrc, MVT::v16i8, 10 }, // 2*pshuflw + 2*pshufhw 1391 // + 2*pshufd + 2*unpck + 2*packus 1392 1393 { TTI::SK_PermuteTwoSrc, MVT::v2f64, 1 }, // shufpd 1394 { TTI::SK_PermuteTwoSrc, MVT::v2i64, 1 }, // shufpd 1395 { TTI::SK_PermuteTwoSrc, MVT::v4i32, 2 }, // 2*{unpck,movsd,pshufd} 1396 { TTI::SK_PermuteTwoSrc, MVT::v8i16, 8 }, // blend+permute 1397 { TTI::SK_PermuteTwoSrc, MVT::v16i8, 13 }, // blend+permute 1398 }; 1399 1400 if (ST->hasSSE2()) 1401 if (const auto *Entry = CostTableLookup(SSE2ShuffleTbl, Kind, LT.second)) 1402 return LT.first * Entry->Cost; 1403 1404 static const CostTblEntry SSE1ShuffleTbl[] = { 1405 { TTI::SK_Broadcast, MVT::v4f32, 1 }, // shufps 1406 { TTI::SK_Reverse, MVT::v4f32, 1 }, // shufps 1407 { TTI::SK_Select, MVT::v4f32, 2 }, // 2*shufps 1408 { TTI::SK_PermuteSingleSrc, MVT::v4f32, 1 }, // shufps 1409 { TTI::SK_PermuteTwoSrc, MVT::v4f32, 2 }, // 2*shufps 1410 }; 1411 1412 if (ST->hasSSE1()) 1413 if (const auto *Entry = CostTableLookup(SSE1ShuffleTbl, Kind, LT.second)) 1414 return LT.first * Entry->Cost; 1415 1416 return BaseT::getShuffleCost(Kind, BaseTp, Mask, Index, SubTp); 1417 } 1418 1419 InstructionCost X86TTIImpl::getCastInstrCost(unsigned Opcode, Type *Dst, 1420 Type *Src, 1421 TTI::CastContextHint CCH, 1422 TTI::TargetCostKind CostKind, 1423 const Instruction *I) { 1424 int ISD = TLI->InstructionOpcodeToISD(Opcode); 1425 assert(ISD && "Invalid opcode"); 1426 1427 // TODO: Allow non-throughput costs that aren't binary. 1428 auto AdjustCost = [&CostKind](InstructionCost Cost) -> InstructionCost { 1429 if (CostKind != TTI::TCK_RecipThroughput) 1430 return Cost == 0 ? 0 : 1; 1431 return Cost; 1432 }; 1433 1434 // FIXME: Need a better design of the cost table to handle non-simple types of 1435 // potential massive combinations (elem_num x src_type x dst_type). 1436 1437 static const TypeConversionCostTblEntry AVX512BWConversionTbl[] { 1438 { ISD::SIGN_EXTEND, MVT::v32i16, MVT::v32i8, 1 }, 1439 { ISD::ZERO_EXTEND, MVT::v32i16, MVT::v32i8, 1 }, 1440 1441 // Mask sign extend has an instruction. 1442 { ISD::SIGN_EXTEND, MVT::v2i8, MVT::v2i1, 1 }, 1443 { ISD::SIGN_EXTEND, MVT::v2i16, MVT::v2i1, 1 }, 1444 { ISD::SIGN_EXTEND, MVT::v4i8, MVT::v4i1, 1 }, 1445 { ISD::SIGN_EXTEND, MVT::v4i16, MVT::v4i1, 1 }, 1446 { ISD::SIGN_EXTEND, MVT::v8i8, MVT::v8i1, 1 }, 1447 { ISD::SIGN_EXTEND, MVT::v8i16, MVT::v8i1, 1 }, 1448 { ISD::SIGN_EXTEND, MVT::v16i8, MVT::v16i1, 1 }, 1449 { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i1, 1 }, 1450 { ISD::SIGN_EXTEND, MVT::v32i8, MVT::v32i1, 1 }, 1451 { ISD::SIGN_EXTEND, MVT::v32i16, MVT::v32i1, 1 }, 1452 { ISD::SIGN_EXTEND, MVT::v64i8, MVT::v64i1, 1 }, 1453 1454 // Mask zero extend is a sext + shift. 1455 { ISD::ZERO_EXTEND, MVT::v2i8, MVT::v2i1, 2 }, 1456 { ISD::ZERO_EXTEND, MVT::v2i16, MVT::v2i1, 2 }, 1457 { ISD::ZERO_EXTEND, MVT::v4i8, MVT::v4i1, 2 }, 1458 { ISD::ZERO_EXTEND, MVT::v4i16, MVT::v4i1, 2 }, 1459 { ISD::ZERO_EXTEND, MVT::v8i8, MVT::v8i1, 2 }, 1460 { ISD::ZERO_EXTEND, MVT::v8i16, MVT::v8i1, 2 }, 1461 { ISD::ZERO_EXTEND, MVT::v16i8, MVT::v16i1, 2 }, 1462 { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i1, 2 }, 1463 { ISD::ZERO_EXTEND, MVT::v32i8, MVT::v32i1, 2 }, 1464 { ISD::ZERO_EXTEND, MVT::v32i16, MVT::v32i1, 2 }, 1465 { ISD::ZERO_EXTEND, MVT::v64i8, MVT::v64i1, 2 }, 1466 1467 { ISD::TRUNCATE, MVT::v32i8, MVT::v32i16, 2 }, 1468 { ISD::TRUNCATE, MVT::v16i8, MVT::v16i16, 2 }, // widen to zmm 1469 { ISD::TRUNCATE, MVT::v2i1, MVT::v2i8, 2 }, // widen to zmm 1470 { ISD::TRUNCATE, MVT::v2i1, MVT::v2i16, 2 }, // widen to zmm 1471 { ISD::TRUNCATE, MVT::v4i1, MVT::v4i8, 2 }, // widen to zmm 1472 { ISD::TRUNCATE, MVT::v4i1, MVT::v4i16, 2 }, // widen to zmm 1473 { ISD::TRUNCATE, MVT::v8i1, MVT::v8i8, 2 }, // widen to zmm 1474 { ISD::TRUNCATE, MVT::v8i1, MVT::v8i16, 2 }, // widen to zmm 1475 { ISD::TRUNCATE, MVT::v16i1, MVT::v16i8, 2 }, // widen to zmm 1476 { ISD::TRUNCATE, MVT::v16i1, MVT::v16i16, 2 }, // widen to zmm 1477 { ISD::TRUNCATE, MVT::v32i1, MVT::v32i8, 2 }, // widen to zmm 1478 { ISD::TRUNCATE, MVT::v32i1, MVT::v32i16, 2 }, 1479 { ISD::TRUNCATE, MVT::v64i1, MVT::v64i8, 2 }, 1480 }; 1481 1482 static const TypeConversionCostTblEntry AVX512DQConversionTbl[] = { 1483 { ISD::SINT_TO_FP, MVT::v8f32, MVT::v8i64, 1 }, 1484 { ISD::SINT_TO_FP, MVT::v8f64, MVT::v8i64, 1 }, 1485 1486 { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i64, 1 }, 1487 { ISD::UINT_TO_FP, MVT::v8f64, MVT::v8i64, 1 }, 1488 1489 { ISD::FP_TO_SINT, MVT::v8i64, MVT::v8f32, 1 }, 1490 { ISD::FP_TO_SINT, MVT::v8i64, MVT::v8f64, 1 }, 1491 1492 { ISD::FP_TO_UINT, MVT::v8i64, MVT::v8f32, 1 }, 1493 { ISD::FP_TO_UINT, MVT::v8i64, MVT::v8f64, 1 }, 1494 }; 1495 1496 // TODO: For AVX512DQ + AVX512VL, we also have cheap casts for 128-bit and 1497 // 256-bit wide vectors. 1498 1499 static const TypeConversionCostTblEntry AVX512FConversionTbl[] = { 1500 { ISD::FP_EXTEND, MVT::v8f64, MVT::v8f32, 1 }, 1501 { ISD::FP_EXTEND, MVT::v8f64, MVT::v16f32, 3 }, 1502 { ISD::FP_ROUND, MVT::v8f32, MVT::v8f64, 1 }, 1503 1504 { ISD::TRUNCATE, MVT::v2i1, MVT::v2i8, 3 }, // sext+vpslld+vptestmd 1505 { ISD::TRUNCATE, MVT::v4i1, MVT::v4i8, 3 }, // sext+vpslld+vptestmd 1506 { ISD::TRUNCATE, MVT::v8i1, MVT::v8i8, 3 }, // sext+vpslld+vptestmd 1507 { ISD::TRUNCATE, MVT::v16i1, MVT::v16i8, 3 }, // sext+vpslld+vptestmd 1508 { ISD::TRUNCATE, MVT::v2i1, MVT::v2i16, 3 }, // sext+vpsllq+vptestmq 1509 { ISD::TRUNCATE, MVT::v4i1, MVT::v4i16, 3 }, // sext+vpsllq+vptestmq 1510 { ISD::TRUNCATE, MVT::v8i1, MVT::v8i16, 3 }, // sext+vpsllq+vptestmq 1511 { ISD::TRUNCATE, MVT::v16i1, MVT::v16i16, 3 }, // sext+vpslld+vptestmd 1512 { ISD::TRUNCATE, MVT::v2i1, MVT::v2i32, 2 }, // zmm vpslld+vptestmd 1513 { ISD::TRUNCATE, MVT::v4i1, MVT::v4i32, 2 }, // zmm vpslld+vptestmd 1514 { ISD::TRUNCATE, MVT::v8i1, MVT::v8i32, 2 }, // zmm vpslld+vptestmd 1515 { ISD::TRUNCATE, MVT::v16i1, MVT::v16i32, 2 }, // vpslld+vptestmd 1516 { ISD::TRUNCATE, MVT::v2i1, MVT::v2i64, 2 }, // zmm vpsllq+vptestmq 1517 { ISD::TRUNCATE, MVT::v4i1, MVT::v4i64, 2 }, // zmm vpsllq+vptestmq 1518 { ISD::TRUNCATE, MVT::v8i1, MVT::v8i64, 2 }, // vpsllq+vptestmq 1519 { ISD::TRUNCATE, MVT::v16i8, MVT::v16i32, 2 }, 1520 { ISD::TRUNCATE, MVT::v16i16, MVT::v16i32, 2 }, 1521 { ISD::TRUNCATE, MVT::v8i8, MVT::v8i64, 2 }, 1522 { ISD::TRUNCATE, MVT::v8i16, MVT::v8i64, 2 }, 1523 { ISD::TRUNCATE, MVT::v8i32, MVT::v8i64, 1 }, 1524 { ISD::TRUNCATE, MVT::v4i32, MVT::v4i64, 1 }, // zmm vpmovqd 1525 { ISD::TRUNCATE, MVT::v16i8, MVT::v16i64, 5 },// 2*vpmovqd+concat+vpmovdb 1526 1527 { ISD::TRUNCATE, MVT::v16i8, MVT::v16i16, 3 }, // extend to v16i32 1528 { ISD::TRUNCATE, MVT::v32i8, MVT::v32i16, 8 }, 1529 1530 // Sign extend is zmm vpternlogd+vptruncdb. 1531 // Zero extend is zmm broadcast load+vptruncdw. 1532 { ISD::SIGN_EXTEND, MVT::v2i8, MVT::v2i1, 3 }, 1533 { ISD::ZERO_EXTEND, MVT::v2i8, MVT::v2i1, 4 }, 1534 { ISD::SIGN_EXTEND, MVT::v4i8, MVT::v4i1, 3 }, 1535 { ISD::ZERO_EXTEND, MVT::v4i8, MVT::v4i1, 4 }, 1536 { ISD::SIGN_EXTEND, MVT::v8i8, MVT::v8i1, 3 }, 1537 { ISD::ZERO_EXTEND, MVT::v8i8, MVT::v8i1, 4 }, 1538 { ISD::SIGN_EXTEND, MVT::v16i8, MVT::v16i1, 3 }, 1539 { ISD::ZERO_EXTEND, MVT::v16i8, MVT::v16i1, 4 }, 1540 1541 // Sign extend is zmm vpternlogd+vptruncdw. 1542 // Zero extend is zmm vpternlogd+vptruncdw+vpsrlw. 1543 { ISD::SIGN_EXTEND, MVT::v2i16, MVT::v2i1, 3 }, 1544 { ISD::ZERO_EXTEND, MVT::v2i16, MVT::v2i1, 4 }, 1545 { ISD::SIGN_EXTEND, MVT::v4i16, MVT::v4i1, 3 }, 1546 { ISD::ZERO_EXTEND, MVT::v4i16, MVT::v4i1, 4 }, 1547 { ISD::SIGN_EXTEND, MVT::v8i16, MVT::v8i1, 3 }, 1548 { ISD::ZERO_EXTEND, MVT::v8i16, MVT::v8i1, 4 }, 1549 { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i1, 3 }, 1550 { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i1, 4 }, 1551 1552 { ISD::SIGN_EXTEND, MVT::v2i32, MVT::v2i1, 1 }, // zmm vpternlogd 1553 { ISD::ZERO_EXTEND, MVT::v2i32, MVT::v2i1, 2 }, // zmm vpternlogd+psrld 1554 { ISD::SIGN_EXTEND, MVT::v4i32, MVT::v4i1, 1 }, // zmm vpternlogd 1555 { ISD::ZERO_EXTEND, MVT::v4i32, MVT::v4i1, 2 }, // zmm vpternlogd+psrld 1556 { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i1, 1 }, // zmm vpternlogd 1557 { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i1, 2 }, // zmm vpternlogd+psrld 1558 { ISD::SIGN_EXTEND, MVT::v2i64, MVT::v2i1, 1 }, // zmm vpternlogq 1559 { ISD::ZERO_EXTEND, MVT::v2i64, MVT::v2i1, 2 }, // zmm vpternlogq+psrlq 1560 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i1, 1 }, // zmm vpternlogq 1561 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i1, 2 }, // zmm vpternlogq+psrlq 1562 1563 { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i1, 1 }, // vpternlogd 1564 { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i1, 2 }, // vpternlogd+psrld 1565 { ISD::SIGN_EXTEND, MVT::v8i64, MVT::v8i1, 1 }, // vpternlogq 1566 { ISD::ZERO_EXTEND, MVT::v8i64, MVT::v8i1, 2 }, // vpternlogq+psrlq 1567 1568 { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i8, 1 }, 1569 { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i8, 1 }, 1570 { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i16, 1 }, 1571 { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i16, 1 }, 1572 { ISD::SIGN_EXTEND, MVT::v8i64, MVT::v8i8, 1 }, 1573 { ISD::ZERO_EXTEND, MVT::v8i64, MVT::v8i8, 1 }, 1574 { ISD::SIGN_EXTEND, MVT::v8i64, MVT::v8i16, 1 }, 1575 { ISD::ZERO_EXTEND, MVT::v8i64, MVT::v8i16, 1 }, 1576 { ISD::SIGN_EXTEND, MVT::v8i64, MVT::v8i32, 1 }, 1577 { ISD::ZERO_EXTEND, MVT::v8i64, MVT::v8i32, 1 }, 1578 1579 { ISD::SIGN_EXTEND, MVT::v32i16, MVT::v32i8, 3 }, // FIXME: May not be right 1580 { ISD::ZERO_EXTEND, MVT::v32i16, MVT::v32i8, 3 }, // FIXME: May not be right 1581 1582 { ISD::SINT_TO_FP, MVT::v8f64, MVT::v8i1, 4 }, 1583 { ISD::SINT_TO_FP, MVT::v16f32, MVT::v16i1, 3 }, 1584 { ISD::SINT_TO_FP, MVT::v8f64, MVT::v8i8, 2 }, 1585 { ISD::SINT_TO_FP, MVT::v16f32, MVT::v16i8, 2 }, 1586 { ISD::SINT_TO_FP, MVT::v8f64, MVT::v8i16, 2 }, 1587 { ISD::SINT_TO_FP, MVT::v16f32, MVT::v16i16, 2 }, 1588 { ISD::SINT_TO_FP, MVT::v16f32, MVT::v16i32, 1 }, 1589 { ISD::SINT_TO_FP, MVT::v8f64, MVT::v8i32, 1 }, 1590 1591 { ISD::UINT_TO_FP, MVT::v8f64, MVT::v8i1, 4 }, 1592 { ISD::UINT_TO_FP, MVT::v16f32, MVT::v16i1, 3 }, 1593 { ISD::UINT_TO_FP, MVT::v8f64, MVT::v8i8, 2 }, 1594 { ISD::UINT_TO_FP, MVT::v16f32, MVT::v16i8, 2 }, 1595 { ISD::UINT_TO_FP, MVT::v8f64, MVT::v8i16, 2 }, 1596 { ISD::UINT_TO_FP, MVT::v16f32, MVT::v16i16, 2 }, 1597 { ISD::UINT_TO_FP, MVT::v8f64, MVT::v8i32, 1 }, 1598 { ISD::UINT_TO_FP, MVT::v16f32, MVT::v16i32, 1 }, 1599 { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i64, 26 }, 1600 { ISD::UINT_TO_FP, MVT::v8f64, MVT::v8i64, 5 }, 1601 1602 { ISD::FP_TO_SINT, MVT::v8i8, MVT::v8f64, 3 }, 1603 { ISD::FP_TO_SINT, MVT::v8i16, MVT::v8f64, 3 }, 1604 { ISD::FP_TO_SINT, MVT::v16i8, MVT::v16f32, 3 }, 1605 { ISD::FP_TO_SINT, MVT::v16i16, MVT::v16f32, 3 }, 1606 1607 { ISD::FP_TO_UINT, MVT::v8i32, MVT::v8f64, 1 }, 1608 { ISD::FP_TO_UINT, MVT::v8i16, MVT::v8f64, 3 }, 1609 { ISD::FP_TO_UINT, MVT::v8i8, MVT::v8f64, 3 }, 1610 { ISD::FP_TO_UINT, MVT::v16i32, MVT::v16f32, 1 }, 1611 { ISD::FP_TO_UINT, MVT::v16i16, MVT::v16f32, 3 }, 1612 { ISD::FP_TO_UINT, MVT::v16i8, MVT::v16f32, 3 }, 1613 }; 1614 1615 static const TypeConversionCostTblEntry AVX512BWVLConversionTbl[] { 1616 // Mask sign extend has an instruction. 1617 { ISD::SIGN_EXTEND, MVT::v2i8, MVT::v2i1, 1 }, 1618 { ISD::SIGN_EXTEND, MVT::v2i16, MVT::v2i1, 1 }, 1619 { ISD::SIGN_EXTEND, MVT::v4i8, MVT::v4i1, 1 }, 1620 { ISD::SIGN_EXTEND, MVT::v4i16, MVT::v4i1, 1 }, 1621 { ISD::SIGN_EXTEND, MVT::v8i8, MVT::v8i1, 1 }, 1622 { ISD::SIGN_EXTEND, MVT::v8i16, MVT::v8i1, 1 }, 1623 { ISD::SIGN_EXTEND, MVT::v16i8, MVT::v16i1, 1 }, 1624 { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i1, 1 }, 1625 { ISD::SIGN_EXTEND, MVT::v32i8, MVT::v32i1, 1 }, 1626 1627 // Mask zero extend is a sext + shift. 1628 { ISD::ZERO_EXTEND, MVT::v2i8, MVT::v2i1, 2 }, 1629 { ISD::ZERO_EXTEND, MVT::v2i16, MVT::v2i1, 2 }, 1630 { ISD::ZERO_EXTEND, MVT::v4i8, MVT::v4i1, 2 }, 1631 { ISD::ZERO_EXTEND, MVT::v4i16, MVT::v4i1, 2 }, 1632 { ISD::ZERO_EXTEND, MVT::v8i8, MVT::v8i1, 2 }, 1633 { ISD::ZERO_EXTEND, MVT::v8i16, MVT::v8i1, 2 }, 1634 { ISD::ZERO_EXTEND, MVT::v16i8, MVT::v16i1, 2 }, 1635 { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i1, 2 }, 1636 { ISD::ZERO_EXTEND, MVT::v32i8, MVT::v32i1, 2 }, 1637 1638 { ISD::TRUNCATE, MVT::v16i8, MVT::v16i16, 2 }, 1639 { ISD::TRUNCATE, MVT::v2i1, MVT::v2i8, 2 }, // vpsllw+vptestmb 1640 { ISD::TRUNCATE, MVT::v2i1, MVT::v2i16, 2 }, // vpsllw+vptestmw 1641 { ISD::TRUNCATE, MVT::v4i1, MVT::v4i8, 2 }, // vpsllw+vptestmb 1642 { ISD::TRUNCATE, MVT::v4i1, MVT::v4i16, 2 }, // vpsllw+vptestmw 1643 { ISD::TRUNCATE, MVT::v8i1, MVT::v8i8, 2 }, // vpsllw+vptestmb 1644 { ISD::TRUNCATE, MVT::v8i1, MVT::v8i16, 2 }, // vpsllw+vptestmw 1645 { ISD::TRUNCATE, MVT::v16i1, MVT::v16i8, 2 }, // vpsllw+vptestmb 1646 { ISD::TRUNCATE, MVT::v16i1, MVT::v16i16, 2 }, // vpsllw+vptestmw 1647 { ISD::TRUNCATE, MVT::v32i1, MVT::v32i8, 2 }, // vpsllw+vptestmb 1648 }; 1649 1650 static const TypeConversionCostTblEntry AVX512DQVLConversionTbl[] = { 1651 { ISD::SINT_TO_FP, MVT::v2f32, MVT::v2i64, 1 }, 1652 { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i64, 1 }, 1653 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i64, 1 }, 1654 { ISD::SINT_TO_FP, MVT::v4f64, MVT::v4i64, 1 }, 1655 1656 { ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i64, 1 }, 1657 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i64, 1 }, 1658 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i64, 1 }, 1659 { ISD::UINT_TO_FP, MVT::v4f64, MVT::v4i64, 1 }, 1660 1661 { ISD::FP_TO_SINT, MVT::v2i64, MVT::v2f32, 1 }, 1662 { ISD::FP_TO_SINT, MVT::v4i64, MVT::v4f32, 1 }, 1663 { ISD::FP_TO_SINT, MVT::v2i64, MVT::v2f64, 1 }, 1664 { ISD::FP_TO_SINT, MVT::v4i64, MVT::v4f64, 1 }, 1665 1666 { ISD::FP_TO_UINT, MVT::v2i64, MVT::v2f32, 1 }, 1667 { ISD::FP_TO_UINT, MVT::v4i64, MVT::v4f32, 1 }, 1668 { ISD::FP_TO_UINT, MVT::v2i64, MVT::v2f64, 1 }, 1669 { ISD::FP_TO_UINT, MVT::v4i64, MVT::v4f64, 1 }, 1670 }; 1671 1672 static const TypeConversionCostTblEntry AVX512VLConversionTbl[] = { 1673 { ISD::TRUNCATE, MVT::v2i1, MVT::v2i8, 3 }, // sext+vpslld+vptestmd 1674 { ISD::TRUNCATE, MVT::v4i1, MVT::v4i8, 3 }, // sext+vpslld+vptestmd 1675 { ISD::TRUNCATE, MVT::v8i1, MVT::v8i8, 3 }, // sext+vpslld+vptestmd 1676 { ISD::TRUNCATE, MVT::v16i1, MVT::v16i8, 8 }, // split+2*v8i8 1677 { ISD::TRUNCATE, MVT::v2i1, MVT::v2i16, 3 }, // sext+vpsllq+vptestmq 1678 { ISD::TRUNCATE, MVT::v4i1, MVT::v4i16, 3 }, // sext+vpsllq+vptestmq 1679 { ISD::TRUNCATE, MVT::v8i1, MVT::v8i16, 3 }, // sext+vpsllq+vptestmq 1680 { ISD::TRUNCATE, MVT::v16i1, MVT::v16i16, 8 }, // split+2*v8i16 1681 { ISD::TRUNCATE, MVT::v2i1, MVT::v2i32, 2 }, // vpslld+vptestmd 1682 { ISD::TRUNCATE, MVT::v4i1, MVT::v4i32, 2 }, // vpslld+vptestmd 1683 { ISD::TRUNCATE, MVT::v8i1, MVT::v8i32, 2 }, // vpslld+vptestmd 1684 { ISD::TRUNCATE, MVT::v2i1, MVT::v2i64, 2 }, // vpsllq+vptestmq 1685 { ISD::TRUNCATE, MVT::v4i1, MVT::v4i64, 2 }, // vpsllq+vptestmq 1686 { ISD::TRUNCATE, MVT::v4i32, MVT::v4i64, 1 }, // vpmovqd 1687 1688 // sign extend is vpcmpeq+maskedmove+vpmovdw+vpacksswb 1689 // zero extend is vpcmpeq+maskedmove+vpmovdw+vpsrlw+vpackuswb 1690 { ISD::SIGN_EXTEND, MVT::v2i8, MVT::v2i1, 5 }, 1691 { ISD::ZERO_EXTEND, MVT::v2i8, MVT::v2i1, 6 }, 1692 { ISD::SIGN_EXTEND, MVT::v4i8, MVT::v4i1, 5 }, 1693 { ISD::ZERO_EXTEND, MVT::v4i8, MVT::v4i1, 6 }, 1694 { ISD::SIGN_EXTEND, MVT::v8i8, MVT::v8i1, 5 }, 1695 { ISD::ZERO_EXTEND, MVT::v8i8, MVT::v8i1, 6 }, 1696 { ISD::SIGN_EXTEND, MVT::v16i8, MVT::v16i1, 10 }, 1697 { ISD::ZERO_EXTEND, MVT::v16i8, MVT::v16i1, 12 }, 1698 1699 // sign extend is vpcmpeq+maskedmove+vpmovdw 1700 // zero extend is vpcmpeq+maskedmove+vpmovdw+vpsrlw 1701 { ISD::SIGN_EXTEND, MVT::v2i16, MVT::v2i1, 4 }, 1702 { ISD::ZERO_EXTEND, MVT::v2i16, MVT::v2i1, 5 }, 1703 { ISD::SIGN_EXTEND, MVT::v4i16, MVT::v4i1, 4 }, 1704 { ISD::ZERO_EXTEND, MVT::v4i16, MVT::v4i1, 5 }, 1705 { ISD::SIGN_EXTEND, MVT::v8i16, MVT::v8i1, 4 }, 1706 { ISD::ZERO_EXTEND, MVT::v8i16, MVT::v8i1, 5 }, 1707 { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i1, 10 }, 1708 { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i1, 12 }, 1709 1710 { ISD::SIGN_EXTEND, MVT::v2i32, MVT::v2i1, 1 }, // vpternlogd 1711 { ISD::ZERO_EXTEND, MVT::v2i32, MVT::v2i1, 2 }, // vpternlogd+psrld 1712 { ISD::SIGN_EXTEND, MVT::v4i32, MVT::v4i1, 1 }, // vpternlogd 1713 { ISD::ZERO_EXTEND, MVT::v4i32, MVT::v4i1, 2 }, // vpternlogd+psrld 1714 { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i1, 1 }, // vpternlogd 1715 { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i1, 2 }, // vpternlogd+psrld 1716 { ISD::SIGN_EXTEND, MVT::v2i64, MVT::v2i1, 1 }, // vpternlogq 1717 { ISD::ZERO_EXTEND, MVT::v2i64, MVT::v2i1, 2 }, // vpternlogq+psrlq 1718 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i1, 1 }, // vpternlogq 1719 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i1, 2 }, // vpternlogq+psrlq 1720 1721 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i8, 2 }, 1722 { ISD::UINT_TO_FP, MVT::v4f64, MVT::v4i8, 2 }, 1723 { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i8, 2 }, 1724 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i16, 5 }, 1725 { ISD::UINT_TO_FP, MVT::v4f64, MVT::v4i16, 2 }, 1726 { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i16, 2 }, 1727 { ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i32, 2 }, 1728 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i32, 1 }, 1729 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i32, 1 }, 1730 { ISD::UINT_TO_FP, MVT::v4f64, MVT::v4i32, 1 }, 1731 { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i32, 1 }, 1732 { ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i64, 5 }, 1733 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i64, 5 }, 1734 { ISD::UINT_TO_FP, MVT::v4f64, MVT::v4i64, 5 }, 1735 1736 { ISD::UINT_TO_FP, MVT::f32, MVT::i64, 1 }, 1737 { ISD::UINT_TO_FP, MVT::f64, MVT::i64, 1 }, 1738 1739 { ISD::FP_TO_SINT, MVT::v8i8, MVT::v8f32, 3 }, 1740 { ISD::FP_TO_UINT, MVT::v8i8, MVT::v8f32, 3 }, 1741 1742 { ISD::FP_TO_UINT, MVT::i64, MVT::f32, 1 }, 1743 { ISD::FP_TO_UINT, MVT::i64, MVT::f64, 1 }, 1744 1745 { ISD::FP_TO_UINT, MVT::v2i32, MVT::v2f32, 1 }, 1746 { ISD::FP_TO_UINT, MVT::v4i32, MVT::v4f32, 1 }, 1747 { ISD::FP_TO_UINT, MVT::v2i32, MVT::v2f64, 1 }, 1748 { ISD::FP_TO_UINT, MVT::v4i32, MVT::v4f64, 1 }, 1749 { ISD::FP_TO_UINT, MVT::v8i32, MVT::v8f32, 1 }, 1750 }; 1751 1752 static const TypeConversionCostTblEntry AVX2ConversionTbl[] = { 1753 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i1, 3 }, 1754 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i1, 3 }, 1755 { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i1, 3 }, 1756 { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i1, 3 }, 1757 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i8, 1 }, 1758 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i8, 1 }, 1759 { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i8, 1 }, 1760 { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i8, 1 }, 1761 { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i1, 1 }, 1762 { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i1, 1 }, 1763 { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i8, 1 }, 1764 { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i8, 1 }, 1765 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i16, 1 }, 1766 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i16, 1 }, 1767 { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i16, 1 }, 1768 { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i16, 1 }, 1769 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i32, 1 }, 1770 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i32, 1 }, 1771 { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i16, 3 }, 1772 { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i16, 3 }, 1773 1774 { ISD::TRUNCATE, MVT::v4i32, MVT::v4i64, 2 }, 1775 { ISD::TRUNCATE, MVT::v8i1, MVT::v8i32, 2 }, 1776 1777 { ISD::TRUNCATE, MVT::v4i8, MVT::v4i64, 2 }, 1778 { ISD::TRUNCATE, MVT::v4i16, MVT::v4i64, 2 }, 1779 { ISD::TRUNCATE, MVT::v8i8, MVT::v8i32, 2 }, 1780 { ISD::TRUNCATE, MVT::v8i16, MVT::v8i32, 2 }, 1781 1782 { ISD::FP_EXTEND, MVT::v8f64, MVT::v8f32, 3 }, 1783 { ISD::FP_ROUND, MVT::v8f32, MVT::v8f64, 3 }, 1784 1785 { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i32, 8 }, 1786 }; 1787 1788 static const TypeConversionCostTblEntry AVXConversionTbl[] = { 1789 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i1, 6 }, 1790 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i1, 4 }, 1791 { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i1, 7 }, 1792 { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i1, 4 }, 1793 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i8, 4 }, 1794 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i8, 4 }, 1795 { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i8, 4 }, 1796 { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i8, 4 }, 1797 { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i1, 4 }, 1798 { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i1, 4 }, 1799 { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i8, 4 }, 1800 { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i8, 4 }, 1801 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i16, 4 }, 1802 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i16, 3 }, 1803 { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i16, 4 }, 1804 { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i16, 4 }, 1805 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i32, 4 }, 1806 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i32, 4 }, 1807 1808 { ISD::TRUNCATE, MVT::v4i1, MVT::v4i64, 4 }, 1809 { ISD::TRUNCATE, MVT::v8i1, MVT::v8i32, 5 }, 1810 { ISD::TRUNCATE, MVT::v16i1, MVT::v16i16, 4 }, 1811 { ISD::TRUNCATE, MVT::v8i1, MVT::v8i64, 9 }, 1812 { ISD::TRUNCATE, MVT::v16i1, MVT::v16i64, 11 }, 1813 1814 { ISD::TRUNCATE, MVT::v16i8, MVT::v16i16, 4 }, 1815 { ISD::TRUNCATE, MVT::v8i8, MVT::v8i32, 4 }, 1816 { ISD::TRUNCATE, MVT::v8i16, MVT::v8i32, 5 }, 1817 { ISD::TRUNCATE, MVT::v4i8, MVT::v4i64, 4 }, 1818 { ISD::TRUNCATE, MVT::v4i16, MVT::v4i64, 4 }, 1819 { ISD::TRUNCATE, MVT::v4i32, MVT::v4i64, 2 }, 1820 { ISD::TRUNCATE, MVT::v8i8, MVT::v8i64, 11 }, 1821 { ISD::TRUNCATE, MVT::v8i16, MVT::v8i64, 9 }, 1822 { ISD::TRUNCATE, MVT::v8i32, MVT::v8i64, 3 }, 1823 { ISD::TRUNCATE, MVT::v16i8, MVT::v16i64, 11 }, 1824 1825 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i1, 3 }, 1826 { ISD::SINT_TO_FP, MVT::v4f64, MVT::v4i1, 3 }, 1827 { ISD::SINT_TO_FP, MVT::v8f32, MVT::v8i1, 8 }, 1828 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i8, 3 }, 1829 { ISD::SINT_TO_FP, MVT::v4f64, MVT::v4i8, 3 }, 1830 { ISD::SINT_TO_FP, MVT::v8f32, MVT::v8i8, 8 }, 1831 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i16, 3 }, 1832 { ISD::SINT_TO_FP, MVT::v4f64, MVT::v4i16, 3 }, 1833 { ISD::SINT_TO_FP, MVT::v8f32, MVT::v8i16, 5 }, 1834 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i32, 1 }, 1835 { ISD::SINT_TO_FP, MVT::v4f64, MVT::v4i32, 1 }, 1836 { ISD::SINT_TO_FP, MVT::v8f32, MVT::v8i32, 1 }, 1837 1838 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i1, 7 }, 1839 { ISD::UINT_TO_FP, MVT::v4f64, MVT::v4i1, 7 }, 1840 { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i1, 6 }, 1841 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i8, 2 }, 1842 { ISD::UINT_TO_FP, MVT::v4f64, MVT::v4i8, 2 }, 1843 { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i8, 5 }, 1844 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i16, 2 }, 1845 { ISD::UINT_TO_FP, MVT::v4f64, MVT::v4i16, 2 }, 1846 { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i16, 5 }, 1847 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i32, 6 }, 1848 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i32, 6 }, 1849 { ISD::UINT_TO_FP, MVT::v4f64, MVT::v4i32, 6 }, 1850 { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i32, 9 }, 1851 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i64, 5 }, 1852 { ISD::UINT_TO_FP, MVT::v4f64, MVT::v4i64, 6 }, 1853 // The generic code to compute the scalar overhead is currently broken. 1854 // Workaround this limitation by estimating the scalarization overhead 1855 // here. We have roughly 10 instructions per scalar element. 1856 // Multiply that by the vector width. 1857 // FIXME: remove that when PR19268 is fixed. 1858 { ISD::SINT_TO_FP, MVT::v4f64, MVT::v4i64, 13 }, 1859 { ISD::SINT_TO_FP, MVT::v4f64, MVT::v4i64, 13 }, 1860 1861 { ISD::FP_TO_SINT, MVT::v8i8, MVT::v8f32, 4 }, 1862 { ISD::FP_TO_SINT, MVT::v4i8, MVT::v4f64, 3 }, 1863 { ISD::FP_TO_SINT, MVT::v4i16, MVT::v4f64, 2 }, 1864 { ISD::FP_TO_SINT, MVT::v8i16, MVT::v8f32, 3 }, 1865 1866 { ISD::FP_TO_UINT, MVT::v4i8, MVT::v4f64, 3 }, 1867 { ISD::FP_TO_UINT, MVT::v4i16, MVT::v4f64, 2 }, 1868 { ISD::FP_TO_UINT, MVT::v8i8, MVT::v8f32, 4 }, 1869 { ISD::FP_TO_UINT, MVT::v8i16, MVT::v8f32, 3 }, 1870 // This node is expanded into scalarized operations but BasicTTI is overly 1871 // optimistic estimating its cost. It computes 3 per element (one 1872 // vector-extract, one scalar conversion and one vector-insert). The 1873 // problem is that the inserts form a read-modify-write chain so latency 1874 // should be factored in too. Inflating the cost per element by 1. 1875 { ISD::FP_TO_UINT, MVT::v8i32, MVT::v8f32, 8*4 }, 1876 { ISD::FP_TO_UINT, MVT::v4i32, MVT::v4f64, 4*4 }, 1877 1878 { ISD::FP_EXTEND, MVT::v4f64, MVT::v4f32, 1 }, 1879 { ISD::FP_ROUND, MVT::v4f32, MVT::v4f64, 1 }, 1880 }; 1881 1882 static const TypeConversionCostTblEntry SSE41ConversionTbl[] = { 1883 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i8, 2 }, 1884 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i8, 2 }, 1885 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i16, 2 }, 1886 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i16, 2 }, 1887 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i32, 2 }, 1888 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i32, 2 }, 1889 1890 { ISD::ZERO_EXTEND, MVT::v4i16, MVT::v4i8, 1 }, 1891 { ISD::SIGN_EXTEND, MVT::v4i16, MVT::v4i8, 2 }, 1892 { ISD::ZERO_EXTEND, MVT::v4i32, MVT::v4i8, 1 }, 1893 { ISD::SIGN_EXTEND, MVT::v4i32, MVT::v4i8, 1 }, 1894 { ISD::ZERO_EXTEND, MVT::v8i16, MVT::v8i8, 1 }, 1895 { ISD::SIGN_EXTEND, MVT::v8i16, MVT::v8i8, 1 }, 1896 { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i8, 2 }, 1897 { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i8, 2 }, 1898 { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i8, 2 }, 1899 { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i8, 2 }, 1900 { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i8, 4 }, 1901 { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i8, 4 }, 1902 { ISD::ZERO_EXTEND, MVT::v4i32, MVT::v4i16, 1 }, 1903 { ISD::SIGN_EXTEND, MVT::v4i32, MVT::v4i16, 1 }, 1904 { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i16, 2 }, 1905 { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i16, 2 }, 1906 { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i16, 4 }, 1907 { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i16, 4 }, 1908 1909 // These truncates end up widening elements. 1910 { ISD::TRUNCATE, MVT::v2i1, MVT::v2i8, 1 }, // PMOVXZBQ 1911 { ISD::TRUNCATE, MVT::v2i1, MVT::v2i16, 1 }, // PMOVXZWQ 1912 { ISD::TRUNCATE, MVT::v4i1, MVT::v4i8, 1 }, // PMOVXZBD 1913 1914 { ISD::TRUNCATE, MVT::v2i8, MVT::v2i16, 1 }, 1915 { ISD::TRUNCATE, MVT::v4i8, MVT::v4i16, 1 }, 1916 { ISD::TRUNCATE, MVT::v8i8, MVT::v8i16, 1 }, 1917 { ISD::TRUNCATE, MVT::v4i8, MVT::v4i32, 1 }, 1918 { ISD::TRUNCATE, MVT::v4i16, MVT::v4i32, 1 }, 1919 { ISD::TRUNCATE, MVT::v8i8, MVT::v8i32, 3 }, 1920 { ISD::TRUNCATE, MVT::v8i16, MVT::v8i32, 3 }, 1921 { ISD::TRUNCATE, MVT::v16i16, MVT::v16i32, 6 }, 1922 { ISD::TRUNCATE, MVT::v2i8, MVT::v2i64, 1 }, // PSHUFB 1923 1924 { ISD::UINT_TO_FP, MVT::f32, MVT::i64, 4 }, 1925 { ISD::UINT_TO_FP, MVT::f64, MVT::i64, 4 }, 1926 1927 { ISD::FP_TO_SINT, MVT::v2i8, MVT::v2f32, 3 }, 1928 { ISD::FP_TO_SINT, MVT::v2i8, MVT::v2f64, 3 }, 1929 1930 { ISD::FP_TO_UINT, MVT::v2i8, MVT::v2f32, 3 }, 1931 { ISD::FP_TO_UINT, MVT::v2i8, MVT::v2f64, 3 }, 1932 { ISD::FP_TO_UINT, MVT::v4i16, MVT::v4f32, 2 }, 1933 }; 1934 1935 static const TypeConversionCostTblEntry SSE2ConversionTbl[] = { 1936 // These are somewhat magic numbers justified by looking at the output of 1937 // Intel's IACA, running some kernels and making sure when we take 1938 // legalization into account the throughput will be overestimated. 1939 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v16i8, 8 }, 1940 { ISD::SINT_TO_FP, MVT::v2f64, MVT::v16i8, 16*10 }, 1941 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v8i16, 15 }, 1942 { ISD::SINT_TO_FP, MVT::v2f64, MVT::v8i16, 8*10 }, 1943 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i32, 5 }, 1944 { ISD::SINT_TO_FP, MVT::v2f64, MVT::v4i32, 2*10 }, 1945 { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i32, 2*10 }, 1946 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v2i64, 15 }, 1947 { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i64, 2*10 }, 1948 1949 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v16i8, 16*10 }, 1950 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v16i8, 8 }, 1951 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v8i16, 15 }, 1952 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v8i16, 8*10 }, 1953 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v4i32, 4*10 }, 1954 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i32, 8 }, 1955 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i64, 6 }, 1956 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v2i64, 15 }, 1957 1958 { ISD::FP_TO_SINT, MVT::v2i8, MVT::v2f32, 4 }, 1959 { ISD::FP_TO_SINT, MVT::v2i16, MVT::v2f32, 2 }, 1960 { ISD::FP_TO_SINT, MVT::v4i8, MVT::v4f32, 3 }, 1961 { ISD::FP_TO_SINT, MVT::v4i16, MVT::v4f32, 2 }, 1962 { ISD::FP_TO_SINT, MVT::v2i16, MVT::v2f64, 2 }, 1963 { ISD::FP_TO_SINT, MVT::v2i8, MVT::v2f64, 4 }, 1964 1965 { ISD::FP_TO_SINT, MVT::v2i32, MVT::v2f64, 1 }, 1966 1967 { ISD::UINT_TO_FP, MVT::f32, MVT::i64, 6 }, 1968 { ISD::UINT_TO_FP, MVT::f64, MVT::i64, 6 }, 1969 1970 { ISD::FP_TO_UINT, MVT::i64, MVT::f32, 4 }, 1971 { ISD::FP_TO_UINT, MVT::i64, MVT::f64, 4 }, 1972 { ISD::FP_TO_UINT, MVT::v2i8, MVT::v2f32, 4 }, 1973 { ISD::FP_TO_UINT, MVT::v2i8, MVT::v2f64, 4 }, 1974 { ISD::FP_TO_UINT, MVT::v4i8, MVT::v4f32, 3 }, 1975 { ISD::FP_TO_UINT, MVT::v2i16, MVT::v2f32, 2 }, 1976 { ISD::FP_TO_UINT, MVT::v2i16, MVT::v2f64, 2 }, 1977 { ISD::FP_TO_UINT, MVT::v4i16, MVT::v4f32, 4 }, 1978 1979 { ISD::ZERO_EXTEND, MVT::v4i16, MVT::v4i8, 1 }, 1980 { ISD::SIGN_EXTEND, MVT::v4i16, MVT::v4i8, 6 }, 1981 { ISD::ZERO_EXTEND, MVT::v4i32, MVT::v4i8, 2 }, 1982 { ISD::SIGN_EXTEND, MVT::v4i32, MVT::v4i8, 3 }, 1983 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i8, 4 }, 1984 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i8, 8 }, 1985 { ISD::ZERO_EXTEND, MVT::v8i16, MVT::v8i8, 1 }, 1986 { ISD::SIGN_EXTEND, MVT::v8i16, MVT::v8i8, 2 }, 1987 { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i8, 6 }, 1988 { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i8, 6 }, 1989 { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i8, 3 }, 1990 { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i8, 4 }, 1991 { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i8, 9 }, 1992 { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i8, 12 }, 1993 { ISD::ZERO_EXTEND, MVT::v4i32, MVT::v4i16, 1 }, 1994 { ISD::SIGN_EXTEND, MVT::v4i32, MVT::v4i16, 2 }, 1995 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i16, 3 }, 1996 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i16, 10 }, 1997 { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i16, 3 }, 1998 { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i16, 4 }, 1999 { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i16, 6 }, 2000 { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i16, 8 }, 2001 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i32, 3 }, 2002 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i32, 5 }, 2003 2004 // These truncates are really widening elements. 2005 { ISD::TRUNCATE, MVT::v2i1, MVT::v2i32, 1 }, // PSHUFD 2006 { ISD::TRUNCATE, MVT::v2i1, MVT::v2i16, 2 }, // PUNPCKLWD+DQ 2007 { ISD::TRUNCATE, MVT::v2i1, MVT::v2i8, 3 }, // PUNPCKLBW+WD+PSHUFD 2008 { ISD::TRUNCATE, MVT::v4i1, MVT::v4i16, 1 }, // PUNPCKLWD 2009 { ISD::TRUNCATE, MVT::v4i1, MVT::v4i8, 2 }, // PUNPCKLBW+WD 2010 { ISD::TRUNCATE, MVT::v8i1, MVT::v8i8, 1 }, // PUNPCKLBW 2011 2012 { ISD::TRUNCATE, MVT::v2i8, MVT::v2i16, 2 }, // PAND+PACKUSWB 2013 { ISD::TRUNCATE, MVT::v4i8, MVT::v4i16, 2 }, // PAND+PACKUSWB 2014 { ISD::TRUNCATE, MVT::v8i8, MVT::v8i16, 2 }, // PAND+PACKUSWB 2015 { ISD::TRUNCATE, MVT::v16i8, MVT::v16i16, 3 }, 2016 { ISD::TRUNCATE, MVT::v2i8, MVT::v2i32, 3 }, // PAND+2*PACKUSWB 2017 { ISD::TRUNCATE, MVT::v2i16, MVT::v2i32, 1 }, 2018 { ISD::TRUNCATE, MVT::v4i8, MVT::v4i32, 3 }, 2019 { ISD::TRUNCATE, MVT::v4i16, MVT::v4i32, 3 }, 2020 { ISD::TRUNCATE, MVT::v8i8, MVT::v8i32, 4 }, 2021 { ISD::TRUNCATE, MVT::v16i8, MVT::v16i32, 7 }, 2022 { ISD::TRUNCATE, MVT::v8i16, MVT::v8i32, 5 }, 2023 { ISD::TRUNCATE, MVT::v16i16, MVT::v16i32, 10 }, 2024 { ISD::TRUNCATE, MVT::v2i8, MVT::v2i64, 4 }, // PAND+3*PACKUSWB 2025 { ISD::TRUNCATE, MVT::v2i16, MVT::v2i64, 2 }, // PSHUFD+PSHUFLW 2026 { ISD::TRUNCATE, MVT::v2i32, MVT::v2i64, 1 }, // PSHUFD 2027 }; 2028 2029 std::pair<InstructionCost, MVT> LTSrc = TLI->getTypeLegalizationCost(DL, Src); 2030 std::pair<InstructionCost, MVT> LTDest = 2031 TLI->getTypeLegalizationCost(DL, Dst); 2032 2033 if (ST->hasSSE2() && !ST->hasAVX()) { 2034 if (const auto *Entry = ConvertCostTableLookup(SSE2ConversionTbl, ISD, 2035 LTDest.second, LTSrc.second)) 2036 return AdjustCost(LTSrc.first * Entry->Cost); 2037 } 2038 2039 EVT SrcTy = TLI->getValueType(DL, Src); 2040 EVT DstTy = TLI->getValueType(DL, Dst); 2041 2042 // The function getSimpleVT only handles simple value types. 2043 if (!SrcTy.isSimple() || !DstTy.isSimple()) 2044 return AdjustCost(BaseT::getCastInstrCost(Opcode, Dst, Src, CCH, CostKind)); 2045 2046 MVT SimpleSrcTy = SrcTy.getSimpleVT(); 2047 MVT SimpleDstTy = DstTy.getSimpleVT(); 2048 2049 if (ST->useAVX512Regs()) { 2050 if (ST->hasBWI()) 2051 if (const auto *Entry = ConvertCostTableLookup(AVX512BWConversionTbl, ISD, 2052 SimpleDstTy, SimpleSrcTy)) 2053 return AdjustCost(Entry->Cost); 2054 2055 if (ST->hasDQI()) 2056 if (const auto *Entry = ConvertCostTableLookup(AVX512DQConversionTbl, ISD, 2057 SimpleDstTy, SimpleSrcTy)) 2058 return AdjustCost(Entry->Cost); 2059 2060 if (ST->hasAVX512()) 2061 if (const auto *Entry = ConvertCostTableLookup(AVX512FConversionTbl, ISD, 2062 SimpleDstTy, SimpleSrcTy)) 2063 return AdjustCost(Entry->Cost); 2064 } 2065 2066 if (ST->hasBWI()) 2067 if (const auto *Entry = ConvertCostTableLookup(AVX512BWVLConversionTbl, ISD, 2068 SimpleDstTy, SimpleSrcTy)) 2069 return AdjustCost(Entry->Cost); 2070 2071 if (ST->hasDQI()) 2072 if (const auto *Entry = ConvertCostTableLookup(AVX512DQVLConversionTbl, ISD, 2073 SimpleDstTy, SimpleSrcTy)) 2074 return AdjustCost(Entry->Cost); 2075 2076 if (ST->hasAVX512()) 2077 if (const auto *Entry = ConvertCostTableLookup(AVX512VLConversionTbl, ISD, 2078 SimpleDstTy, SimpleSrcTy)) 2079 return AdjustCost(Entry->Cost); 2080 2081 if (ST->hasAVX2()) { 2082 if (const auto *Entry = ConvertCostTableLookup(AVX2ConversionTbl, ISD, 2083 SimpleDstTy, SimpleSrcTy)) 2084 return AdjustCost(Entry->Cost); 2085 } 2086 2087 if (ST->hasAVX()) { 2088 if (const auto *Entry = ConvertCostTableLookup(AVXConversionTbl, ISD, 2089 SimpleDstTy, SimpleSrcTy)) 2090 return AdjustCost(Entry->Cost); 2091 } 2092 2093 if (ST->hasSSE41()) { 2094 if (const auto *Entry = ConvertCostTableLookup(SSE41ConversionTbl, ISD, 2095 SimpleDstTy, SimpleSrcTy)) 2096 return AdjustCost(Entry->Cost); 2097 } 2098 2099 if (ST->hasSSE2()) { 2100 if (const auto *Entry = ConvertCostTableLookup(SSE2ConversionTbl, ISD, 2101 SimpleDstTy, SimpleSrcTy)) 2102 return AdjustCost(Entry->Cost); 2103 } 2104 2105 return AdjustCost( 2106 BaseT::getCastInstrCost(Opcode, Dst, Src, CCH, CostKind, I)); 2107 } 2108 2109 InstructionCost X86TTIImpl::getCmpSelInstrCost(unsigned Opcode, Type *ValTy, 2110 Type *CondTy, 2111 CmpInst::Predicate VecPred, 2112 TTI::TargetCostKind CostKind, 2113 const Instruction *I) { 2114 // TODO: Handle other cost kinds. 2115 if (CostKind != TTI::TCK_RecipThroughput) 2116 return BaseT::getCmpSelInstrCost(Opcode, ValTy, CondTy, VecPred, CostKind, 2117 I); 2118 2119 // Legalize the type. 2120 std::pair<InstructionCost, MVT> LT = TLI->getTypeLegalizationCost(DL, ValTy); 2121 2122 MVT MTy = LT.second; 2123 2124 int ISD = TLI->InstructionOpcodeToISD(Opcode); 2125 assert(ISD && "Invalid opcode"); 2126 2127 unsigned ExtraCost = 0; 2128 if (I && (Opcode == Instruction::ICmp || Opcode == Instruction::FCmp)) { 2129 // Some vector comparison predicates cost extra instructions. 2130 if (MTy.isVector() && 2131 !((ST->hasXOP() && (!ST->hasAVX2() || MTy.is128BitVector())) || 2132 (ST->hasAVX512() && 32 <= MTy.getScalarSizeInBits()) || 2133 ST->hasBWI())) { 2134 switch (cast<CmpInst>(I)->getPredicate()) { 2135 case CmpInst::Predicate::ICMP_NE: 2136 // xor(cmpeq(x,y),-1) 2137 ExtraCost = 1; 2138 break; 2139 case CmpInst::Predicate::ICMP_SGE: 2140 case CmpInst::Predicate::ICMP_SLE: 2141 // xor(cmpgt(x,y),-1) 2142 ExtraCost = 1; 2143 break; 2144 case CmpInst::Predicate::ICMP_ULT: 2145 case CmpInst::Predicate::ICMP_UGT: 2146 // cmpgt(xor(x,signbit),xor(y,signbit)) 2147 // xor(cmpeq(pmaxu(x,y),x),-1) 2148 ExtraCost = 2; 2149 break; 2150 case CmpInst::Predicate::ICMP_ULE: 2151 case CmpInst::Predicate::ICMP_UGE: 2152 if ((ST->hasSSE41() && MTy.getScalarSizeInBits() == 32) || 2153 (ST->hasSSE2() && MTy.getScalarSizeInBits() < 32)) { 2154 // cmpeq(psubus(x,y),0) 2155 // cmpeq(pminu(x,y),x) 2156 ExtraCost = 1; 2157 } else { 2158 // xor(cmpgt(xor(x,signbit),xor(y,signbit)),-1) 2159 ExtraCost = 3; 2160 } 2161 break; 2162 default: 2163 break; 2164 } 2165 } 2166 } 2167 2168 static const CostTblEntry SLMCostTbl[] = { 2169 // slm pcmpeq/pcmpgt throughput is 2 2170 { ISD::SETCC, MVT::v2i64, 2 }, 2171 }; 2172 2173 static const CostTblEntry AVX512BWCostTbl[] = { 2174 { ISD::SETCC, MVT::v32i16, 1 }, 2175 { ISD::SETCC, MVT::v64i8, 1 }, 2176 2177 { ISD::SELECT, MVT::v32i16, 1 }, 2178 { ISD::SELECT, MVT::v64i8, 1 }, 2179 }; 2180 2181 static const CostTblEntry AVX512CostTbl[] = { 2182 { ISD::SETCC, MVT::v8i64, 1 }, 2183 { ISD::SETCC, MVT::v16i32, 1 }, 2184 { ISD::SETCC, MVT::v8f64, 1 }, 2185 { ISD::SETCC, MVT::v16f32, 1 }, 2186 2187 { ISD::SELECT, MVT::v8i64, 1 }, 2188 { ISD::SELECT, MVT::v16i32, 1 }, 2189 { ISD::SELECT, MVT::v8f64, 1 }, 2190 { ISD::SELECT, MVT::v16f32, 1 }, 2191 2192 { ISD::SETCC, MVT::v32i16, 2 }, // FIXME: should probably be 4 2193 { ISD::SETCC, MVT::v64i8, 2 }, // FIXME: should probably be 4 2194 2195 { ISD::SELECT, MVT::v32i16, 2 }, // FIXME: should be 3 2196 { ISD::SELECT, MVT::v64i8, 2 }, // FIXME: should be 3 2197 }; 2198 2199 static const CostTblEntry AVX2CostTbl[] = { 2200 { ISD::SETCC, MVT::v4i64, 1 }, 2201 { ISD::SETCC, MVT::v8i32, 1 }, 2202 { ISD::SETCC, MVT::v16i16, 1 }, 2203 { ISD::SETCC, MVT::v32i8, 1 }, 2204 2205 { ISD::SELECT, MVT::v4i64, 1 }, // pblendvb 2206 { ISD::SELECT, MVT::v8i32, 1 }, // pblendvb 2207 { ISD::SELECT, MVT::v16i16, 1 }, // pblendvb 2208 { ISD::SELECT, MVT::v32i8, 1 }, // pblendvb 2209 }; 2210 2211 static const CostTblEntry AVX1CostTbl[] = { 2212 { ISD::SETCC, MVT::v4f64, 1 }, 2213 { ISD::SETCC, MVT::v8f32, 1 }, 2214 // AVX1 does not support 8-wide integer compare. 2215 { ISD::SETCC, MVT::v4i64, 4 }, 2216 { ISD::SETCC, MVT::v8i32, 4 }, 2217 { ISD::SETCC, MVT::v16i16, 4 }, 2218 { ISD::SETCC, MVT::v32i8, 4 }, 2219 2220 { ISD::SELECT, MVT::v4f64, 1 }, // vblendvpd 2221 { ISD::SELECT, MVT::v8f32, 1 }, // vblendvps 2222 { ISD::SELECT, MVT::v4i64, 1 }, // vblendvpd 2223 { ISD::SELECT, MVT::v8i32, 1 }, // vblendvps 2224 { ISD::SELECT, MVT::v16i16, 3 }, // vandps + vandnps + vorps 2225 { ISD::SELECT, MVT::v32i8, 3 }, // vandps + vandnps + vorps 2226 }; 2227 2228 static const CostTblEntry SSE42CostTbl[] = { 2229 { ISD::SETCC, MVT::v2f64, 1 }, 2230 { ISD::SETCC, MVT::v4f32, 1 }, 2231 { ISD::SETCC, MVT::v2i64, 1 }, 2232 }; 2233 2234 static const CostTblEntry SSE41CostTbl[] = { 2235 { ISD::SELECT, MVT::v2f64, 1 }, // blendvpd 2236 { ISD::SELECT, MVT::v4f32, 1 }, // blendvps 2237 { ISD::SELECT, MVT::v2i64, 1 }, // pblendvb 2238 { ISD::SELECT, MVT::v4i32, 1 }, // pblendvb 2239 { ISD::SELECT, MVT::v8i16, 1 }, // pblendvb 2240 { ISD::SELECT, MVT::v16i8, 1 }, // pblendvb 2241 }; 2242 2243 static const CostTblEntry SSE2CostTbl[] = { 2244 { ISD::SETCC, MVT::v2f64, 2 }, 2245 { ISD::SETCC, MVT::f64, 1 }, 2246 { ISD::SETCC, MVT::v2i64, 8 }, 2247 { ISD::SETCC, MVT::v4i32, 1 }, 2248 { ISD::SETCC, MVT::v8i16, 1 }, 2249 { ISD::SETCC, MVT::v16i8, 1 }, 2250 2251 { ISD::SELECT, MVT::v2f64, 3 }, // andpd + andnpd + orpd 2252 { ISD::SELECT, MVT::v2i64, 3 }, // pand + pandn + por 2253 { ISD::SELECT, MVT::v4i32, 3 }, // pand + pandn + por 2254 { ISD::SELECT, MVT::v8i16, 3 }, // pand + pandn + por 2255 { ISD::SELECT, MVT::v16i8, 3 }, // pand + pandn + por 2256 }; 2257 2258 static const CostTblEntry SSE1CostTbl[] = { 2259 { ISD::SETCC, MVT::v4f32, 2 }, 2260 { ISD::SETCC, MVT::f32, 1 }, 2261 2262 { ISD::SELECT, MVT::v4f32, 3 }, // andps + andnps + orps 2263 }; 2264 2265 if (ST->isSLM()) 2266 if (const auto *Entry = CostTableLookup(SLMCostTbl, ISD, MTy)) 2267 return LT.first * (ExtraCost + Entry->Cost); 2268 2269 if (ST->hasBWI()) 2270 if (const auto *Entry = CostTableLookup(AVX512BWCostTbl, ISD, MTy)) 2271 return LT.first * (ExtraCost + Entry->Cost); 2272 2273 if (ST->hasAVX512()) 2274 if (const auto *Entry = CostTableLookup(AVX512CostTbl, ISD, MTy)) 2275 return LT.first * (ExtraCost + Entry->Cost); 2276 2277 if (ST->hasAVX2()) 2278 if (const auto *Entry = CostTableLookup(AVX2CostTbl, ISD, MTy)) 2279 return LT.first * (ExtraCost + Entry->Cost); 2280 2281 if (ST->hasAVX()) 2282 if (const auto *Entry = CostTableLookup(AVX1CostTbl, ISD, MTy)) 2283 return LT.first * (ExtraCost + Entry->Cost); 2284 2285 if (ST->hasSSE42()) 2286 if (const auto *Entry = CostTableLookup(SSE42CostTbl, ISD, MTy)) 2287 return LT.first * (ExtraCost + Entry->Cost); 2288 2289 if (ST->hasSSE41()) 2290 if (const auto *Entry = CostTableLookup(SSE41CostTbl, ISD, MTy)) 2291 return LT.first * (ExtraCost + Entry->Cost); 2292 2293 if (ST->hasSSE2()) 2294 if (const auto *Entry = CostTableLookup(SSE2CostTbl, ISD, MTy)) 2295 return LT.first * (ExtraCost + Entry->Cost); 2296 2297 if (ST->hasSSE1()) 2298 if (const auto *Entry = CostTableLookup(SSE1CostTbl, ISD, MTy)) 2299 return LT.first * (ExtraCost + Entry->Cost); 2300 2301 return BaseT::getCmpSelInstrCost(Opcode, ValTy, CondTy, VecPred, CostKind, I); 2302 } 2303 2304 unsigned X86TTIImpl::getAtomicMemIntrinsicMaxElementSize() const { return 16; } 2305 2306 InstructionCost 2307 X86TTIImpl::getTypeBasedIntrinsicInstrCost(const IntrinsicCostAttributes &ICA, 2308 TTI::TargetCostKind CostKind) { 2309 2310 // Costs should match the codegen from: 2311 // BITREVERSE: llvm\test\CodeGen\X86\vector-bitreverse.ll 2312 // BSWAP: llvm\test\CodeGen\X86\bswap-vector.ll 2313 // CTLZ: llvm\test\CodeGen\X86\vector-lzcnt-*.ll 2314 // CTPOP: llvm\test\CodeGen\X86\vector-popcnt-*.ll 2315 // CTTZ: llvm\test\CodeGen\X86\vector-tzcnt-*.ll 2316 2317 // TODO: Overflow intrinsics (*ADDO, *SUBO, *MULO) with vector types are not 2318 // specialized in these tables yet. 2319 static const CostTblEntry AVX512CDCostTbl[] = { 2320 { ISD::CTLZ, MVT::v8i64, 1 }, 2321 { ISD::CTLZ, MVT::v16i32, 1 }, 2322 { ISD::CTLZ, MVT::v32i16, 8 }, 2323 { ISD::CTLZ, MVT::v64i8, 20 }, 2324 { ISD::CTLZ, MVT::v4i64, 1 }, 2325 { ISD::CTLZ, MVT::v8i32, 1 }, 2326 { ISD::CTLZ, MVT::v16i16, 4 }, 2327 { ISD::CTLZ, MVT::v32i8, 10 }, 2328 { ISD::CTLZ, MVT::v2i64, 1 }, 2329 { ISD::CTLZ, MVT::v4i32, 1 }, 2330 { ISD::CTLZ, MVT::v8i16, 4 }, 2331 { ISD::CTLZ, MVT::v16i8, 4 }, 2332 }; 2333 static const CostTblEntry AVX512BWCostTbl[] = { 2334 { ISD::ABS, MVT::v32i16, 1 }, 2335 { ISD::ABS, MVT::v64i8, 1 }, 2336 { ISD::BITREVERSE, MVT::v8i64, 5 }, 2337 { ISD::BITREVERSE, MVT::v16i32, 5 }, 2338 { ISD::BITREVERSE, MVT::v32i16, 5 }, 2339 { ISD::BITREVERSE, MVT::v64i8, 5 }, 2340 { ISD::CTLZ, MVT::v8i64, 23 }, 2341 { ISD::CTLZ, MVT::v16i32, 22 }, 2342 { ISD::CTLZ, MVT::v32i16, 18 }, 2343 { ISD::CTLZ, MVT::v64i8, 17 }, 2344 { ISD::CTPOP, MVT::v8i64, 7 }, 2345 { ISD::CTPOP, MVT::v16i32, 11 }, 2346 { ISD::CTPOP, MVT::v32i16, 9 }, 2347 { ISD::CTPOP, MVT::v64i8, 6 }, 2348 { ISD::CTTZ, MVT::v8i64, 10 }, 2349 { ISD::CTTZ, MVT::v16i32, 14 }, 2350 { ISD::CTTZ, MVT::v32i16, 12 }, 2351 { ISD::CTTZ, MVT::v64i8, 9 }, 2352 { ISD::SADDSAT, MVT::v32i16, 1 }, 2353 { ISD::SADDSAT, MVT::v64i8, 1 }, 2354 { ISD::SMAX, MVT::v32i16, 1 }, 2355 { ISD::SMAX, MVT::v64i8, 1 }, 2356 { ISD::SMIN, MVT::v32i16, 1 }, 2357 { ISD::SMIN, MVT::v64i8, 1 }, 2358 { ISD::SSUBSAT, MVT::v32i16, 1 }, 2359 { ISD::SSUBSAT, MVT::v64i8, 1 }, 2360 { ISD::UADDSAT, MVT::v32i16, 1 }, 2361 { ISD::UADDSAT, MVT::v64i8, 1 }, 2362 { ISD::UMAX, MVT::v32i16, 1 }, 2363 { ISD::UMAX, MVT::v64i8, 1 }, 2364 { ISD::UMIN, MVT::v32i16, 1 }, 2365 { ISD::UMIN, MVT::v64i8, 1 }, 2366 { ISD::USUBSAT, MVT::v32i16, 1 }, 2367 { ISD::USUBSAT, MVT::v64i8, 1 }, 2368 }; 2369 static const CostTblEntry AVX512CostTbl[] = { 2370 { ISD::ABS, MVT::v8i64, 1 }, 2371 { ISD::ABS, MVT::v16i32, 1 }, 2372 { ISD::ABS, MVT::v32i16, 2 }, // FIXME: include split 2373 { ISD::ABS, MVT::v64i8, 2 }, // FIXME: include split 2374 { ISD::ABS, MVT::v4i64, 1 }, 2375 { ISD::ABS, MVT::v2i64, 1 }, 2376 { ISD::BITREVERSE, MVT::v8i64, 36 }, 2377 { ISD::BITREVERSE, MVT::v16i32, 24 }, 2378 { ISD::BITREVERSE, MVT::v32i16, 10 }, 2379 { ISD::BITREVERSE, MVT::v64i8, 10 }, 2380 { ISD::CTLZ, MVT::v8i64, 29 }, 2381 { ISD::CTLZ, MVT::v16i32, 35 }, 2382 { ISD::CTLZ, MVT::v32i16, 28 }, 2383 { ISD::CTLZ, MVT::v64i8, 18 }, 2384 { ISD::CTPOP, MVT::v8i64, 16 }, 2385 { ISD::CTPOP, MVT::v16i32, 24 }, 2386 { ISD::CTPOP, MVT::v32i16, 18 }, 2387 { ISD::CTPOP, MVT::v64i8, 12 }, 2388 { ISD::CTTZ, MVT::v8i64, 20 }, 2389 { ISD::CTTZ, MVT::v16i32, 28 }, 2390 { ISD::CTTZ, MVT::v32i16, 24 }, 2391 { ISD::CTTZ, MVT::v64i8, 18 }, 2392 { ISD::SMAX, MVT::v8i64, 1 }, 2393 { ISD::SMAX, MVT::v16i32, 1 }, 2394 { ISD::SMAX, MVT::v32i16, 2 }, // FIXME: include split 2395 { ISD::SMAX, MVT::v64i8, 2 }, // FIXME: include split 2396 { ISD::SMAX, MVT::v4i64, 1 }, 2397 { ISD::SMAX, MVT::v2i64, 1 }, 2398 { ISD::SMIN, MVT::v8i64, 1 }, 2399 { ISD::SMIN, MVT::v16i32, 1 }, 2400 { ISD::SMIN, MVT::v32i16, 2 }, // FIXME: include split 2401 { ISD::SMIN, MVT::v64i8, 2 }, // FIXME: include split 2402 { ISD::SMIN, MVT::v4i64, 1 }, 2403 { ISD::SMIN, MVT::v2i64, 1 }, 2404 { ISD::UMAX, MVT::v8i64, 1 }, 2405 { ISD::UMAX, MVT::v16i32, 1 }, 2406 { ISD::UMAX, MVT::v32i16, 2 }, // FIXME: include split 2407 { ISD::UMAX, MVT::v64i8, 2 }, // FIXME: include split 2408 { ISD::UMAX, MVT::v4i64, 1 }, 2409 { ISD::UMAX, MVT::v2i64, 1 }, 2410 { ISD::UMIN, MVT::v8i64, 1 }, 2411 { ISD::UMIN, MVT::v16i32, 1 }, 2412 { ISD::UMIN, MVT::v32i16, 2 }, // FIXME: include split 2413 { ISD::UMIN, MVT::v64i8, 2 }, // FIXME: include split 2414 { ISD::UMIN, MVT::v4i64, 1 }, 2415 { ISD::UMIN, MVT::v2i64, 1 }, 2416 { ISD::USUBSAT, MVT::v16i32, 2 }, // pmaxud + psubd 2417 { ISD::USUBSAT, MVT::v2i64, 2 }, // pmaxuq + psubq 2418 { ISD::USUBSAT, MVT::v4i64, 2 }, // pmaxuq + psubq 2419 { ISD::USUBSAT, MVT::v8i64, 2 }, // pmaxuq + psubq 2420 { ISD::UADDSAT, MVT::v16i32, 3 }, // not + pminud + paddd 2421 { ISD::UADDSAT, MVT::v2i64, 3 }, // not + pminuq + paddq 2422 { ISD::UADDSAT, MVT::v4i64, 3 }, // not + pminuq + paddq 2423 { ISD::UADDSAT, MVT::v8i64, 3 }, // not + pminuq + paddq 2424 { ISD::SADDSAT, MVT::v32i16, 2 }, // FIXME: include split 2425 { ISD::SADDSAT, MVT::v64i8, 2 }, // FIXME: include split 2426 { ISD::SSUBSAT, MVT::v32i16, 2 }, // FIXME: include split 2427 { ISD::SSUBSAT, MVT::v64i8, 2 }, // FIXME: include split 2428 { ISD::UADDSAT, MVT::v32i16, 2 }, // FIXME: include split 2429 { ISD::UADDSAT, MVT::v64i8, 2 }, // FIXME: include split 2430 { ISD::USUBSAT, MVT::v32i16, 2 }, // FIXME: include split 2431 { ISD::USUBSAT, MVT::v64i8, 2 }, // FIXME: include split 2432 { ISD::FMAXNUM, MVT::f32, 2 }, 2433 { ISD::FMAXNUM, MVT::v4f32, 2 }, 2434 { ISD::FMAXNUM, MVT::v8f32, 2 }, 2435 { ISD::FMAXNUM, MVT::v16f32, 2 }, 2436 { ISD::FMAXNUM, MVT::f64, 2 }, 2437 { ISD::FMAXNUM, MVT::v2f64, 2 }, 2438 { ISD::FMAXNUM, MVT::v4f64, 2 }, 2439 { ISD::FMAXNUM, MVT::v8f64, 2 }, 2440 }; 2441 static const CostTblEntry XOPCostTbl[] = { 2442 { ISD::BITREVERSE, MVT::v4i64, 4 }, 2443 { ISD::BITREVERSE, MVT::v8i32, 4 }, 2444 { ISD::BITREVERSE, MVT::v16i16, 4 }, 2445 { ISD::BITREVERSE, MVT::v32i8, 4 }, 2446 { ISD::BITREVERSE, MVT::v2i64, 1 }, 2447 { ISD::BITREVERSE, MVT::v4i32, 1 }, 2448 { ISD::BITREVERSE, MVT::v8i16, 1 }, 2449 { ISD::BITREVERSE, MVT::v16i8, 1 }, 2450 { ISD::BITREVERSE, MVT::i64, 3 }, 2451 { ISD::BITREVERSE, MVT::i32, 3 }, 2452 { ISD::BITREVERSE, MVT::i16, 3 }, 2453 { ISD::BITREVERSE, MVT::i8, 3 } 2454 }; 2455 static const CostTblEntry AVX2CostTbl[] = { 2456 { ISD::ABS, MVT::v4i64, 2 }, // VBLENDVPD(X,VPSUBQ(0,X),X) 2457 { ISD::ABS, MVT::v8i32, 1 }, 2458 { ISD::ABS, MVT::v16i16, 1 }, 2459 { ISD::ABS, MVT::v32i8, 1 }, 2460 { ISD::BITREVERSE, MVT::v4i64, 5 }, 2461 { ISD::BITREVERSE, MVT::v8i32, 5 }, 2462 { ISD::BITREVERSE, MVT::v16i16, 5 }, 2463 { ISD::BITREVERSE, MVT::v32i8, 5 }, 2464 { ISD::BSWAP, MVT::v4i64, 1 }, 2465 { ISD::BSWAP, MVT::v8i32, 1 }, 2466 { ISD::BSWAP, MVT::v16i16, 1 }, 2467 { ISD::CTLZ, MVT::v4i64, 23 }, 2468 { ISD::CTLZ, MVT::v8i32, 18 }, 2469 { ISD::CTLZ, MVT::v16i16, 14 }, 2470 { ISD::CTLZ, MVT::v32i8, 9 }, 2471 { ISD::CTPOP, MVT::v4i64, 7 }, 2472 { ISD::CTPOP, MVT::v8i32, 11 }, 2473 { ISD::CTPOP, MVT::v16i16, 9 }, 2474 { ISD::CTPOP, MVT::v32i8, 6 }, 2475 { ISD::CTTZ, MVT::v4i64, 10 }, 2476 { ISD::CTTZ, MVT::v8i32, 14 }, 2477 { ISD::CTTZ, MVT::v16i16, 12 }, 2478 { ISD::CTTZ, MVT::v32i8, 9 }, 2479 { ISD::SADDSAT, MVT::v16i16, 1 }, 2480 { ISD::SADDSAT, MVT::v32i8, 1 }, 2481 { ISD::SMAX, MVT::v8i32, 1 }, 2482 { ISD::SMAX, MVT::v16i16, 1 }, 2483 { ISD::SMAX, MVT::v32i8, 1 }, 2484 { ISD::SMIN, MVT::v8i32, 1 }, 2485 { ISD::SMIN, MVT::v16i16, 1 }, 2486 { ISD::SMIN, MVT::v32i8, 1 }, 2487 { ISD::SSUBSAT, MVT::v16i16, 1 }, 2488 { ISD::SSUBSAT, MVT::v32i8, 1 }, 2489 { ISD::UADDSAT, MVT::v16i16, 1 }, 2490 { ISD::UADDSAT, MVT::v32i8, 1 }, 2491 { ISD::UADDSAT, MVT::v8i32, 3 }, // not + pminud + paddd 2492 { ISD::UMAX, MVT::v8i32, 1 }, 2493 { ISD::UMAX, MVT::v16i16, 1 }, 2494 { ISD::UMAX, MVT::v32i8, 1 }, 2495 { ISD::UMIN, MVT::v8i32, 1 }, 2496 { ISD::UMIN, MVT::v16i16, 1 }, 2497 { ISD::UMIN, MVT::v32i8, 1 }, 2498 { ISD::USUBSAT, MVT::v16i16, 1 }, 2499 { ISD::USUBSAT, MVT::v32i8, 1 }, 2500 { ISD::USUBSAT, MVT::v8i32, 2 }, // pmaxud + psubd 2501 { ISD::FMAXNUM, MVT::v8f32, 3 }, // MAXPS + CMPUNORDPS + BLENDVPS 2502 { ISD::FMAXNUM, MVT::v4f64, 3 }, // MAXPD + CMPUNORDPD + BLENDVPD 2503 { ISD::FSQRT, MVT::f32, 7 }, // Haswell from http://www.agner.org/ 2504 { ISD::FSQRT, MVT::v4f32, 7 }, // Haswell from http://www.agner.org/ 2505 { ISD::FSQRT, MVT::v8f32, 14 }, // Haswell from http://www.agner.org/ 2506 { ISD::FSQRT, MVT::f64, 14 }, // Haswell from http://www.agner.org/ 2507 { ISD::FSQRT, MVT::v2f64, 14 }, // Haswell from http://www.agner.org/ 2508 { ISD::FSQRT, MVT::v4f64, 28 }, // Haswell from http://www.agner.org/ 2509 }; 2510 static const CostTblEntry AVX1CostTbl[] = { 2511 { ISD::ABS, MVT::v4i64, 5 }, // VBLENDVPD(X,VPSUBQ(0,X),X) 2512 { ISD::ABS, MVT::v8i32, 3 }, 2513 { ISD::ABS, MVT::v16i16, 3 }, 2514 { ISD::ABS, MVT::v32i8, 3 }, 2515 { ISD::BITREVERSE, MVT::v4i64, 12 }, // 2 x 128-bit Op + extract/insert 2516 { ISD::BITREVERSE, MVT::v8i32, 12 }, // 2 x 128-bit Op + extract/insert 2517 { ISD::BITREVERSE, MVT::v16i16, 12 }, // 2 x 128-bit Op + extract/insert 2518 { ISD::BITREVERSE, MVT::v32i8, 12 }, // 2 x 128-bit Op + extract/insert 2519 { ISD::BSWAP, MVT::v4i64, 4 }, 2520 { ISD::BSWAP, MVT::v8i32, 4 }, 2521 { ISD::BSWAP, MVT::v16i16, 4 }, 2522 { ISD::CTLZ, MVT::v4i64, 48 }, // 2 x 128-bit Op + extract/insert 2523 { ISD::CTLZ, MVT::v8i32, 38 }, // 2 x 128-bit Op + extract/insert 2524 { ISD::CTLZ, MVT::v16i16, 30 }, // 2 x 128-bit Op + extract/insert 2525 { ISD::CTLZ, MVT::v32i8, 20 }, // 2 x 128-bit Op + extract/insert 2526 { ISD::CTPOP, MVT::v4i64, 16 }, // 2 x 128-bit Op + extract/insert 2527 { ISD::CTPOP, MVT::v8i32, 24 }, // 2 x 128-bit Op + extract/insert 2528 { ISD::CTPOP, MVT::v16i16, 20 }, // 2 x 128-bit Op + extract/insert 2529 { ISD::CTPOP, MVT::v32i8, 14 }, // 2 x 128-bit Op + extract/insert 2530 { ISD::CTTZ, MVT::v4i64, 22 }, // 2 x 128-bit Op + extract/insert 2531 { ISD::CTTZ, MVT::v8i32, 30 }, // 2 x 128-bit Op + extract/insert 2532 { ISD::CTTZ, MVT::v16i16, 26 }, // 2 x 128-bit Op + extract/insert 2533 { ISD::CTTZ, MVT::v32i8, 20 }, // 2 x 128-bit Op + extract/insert 2534 { ISD::SADDSAT, MVT::v16i16, 4 }, // 2 x 128-bit Op + extract/insert 2535 { ISD::SADDSAT, MVT::v32i8, 4 }, // 2 x 128-bit Op + extract/insert 2536 { ISD::SMAX, MVT::v8i32, 4 }, // 2 x 128-bit Op + extract/insert 2537 { ISD::SMAX, MVT::v16i16, 4 }, // 2 x 128-bit Op + extract/insert 2538 { ISD::SMAX, MVT::v32i8, 4 }, // 2 x 128-bit Op + extract/insert 2539 { ISD::SMIN, MVT::v8i32, 4 }, // 2 x 128-bit Op + extract/insert 2540 { ISD::SMIN, MVT::v16i16, 4 }, // 2 x 128-bit Op + extract/insert 2541 { ISD::SMIN, MVT::v32i8, 4 }, // 2 x 128-bit Op + extract/insert 2542 { ISD::SSUBSAT, MVT::v16i16, 4 }, // 2 x 128-bit Op + extract/insert 2543 { ISD::SSUBSAT, MVT::v32i8, 4 }, // 2 x 128-bit Op + extract/insert 2544 { ISD::UADDSAT, MVT::v16i16, 4 }, // 2 x 128-bit Op + extract/insert 2545 { ISD::UADDSAT, MVT::v32i8, 4 }, // 2 x 128-bit Op + extract/insert 2546 { ISD::UADDSAT, MVT::v8i32, 8 }, // 2 x 128-bit Op + extract/insert 2547 { ISD::UMAX, MVT::v8i32, 4 }, // 2 x 128-bit Op + extract/insert 2548 { ISD::UMAX, MVT::v16i16, 4 }, // 2 x 128-bit Op + extract/insert 2549 { ISD::UMAX, MVT::v32i8, 4 }, // 2 x 128-bit Op + extract/insert 2550 { ISD::UMIN, MVT::v8i32, 4 }, // 2 x 128-bit Op + extract/insert 2551 { ISD::UMIN, MVT::v16i16, 4 }, // 2 x 128-bit Op + extract/insert 2552 { ISD::UMIN, MVT::v32i8, 4 }, // 2 x 128-bit Op + extract/insert 2553 { ISD::USUBSAT, MVT::v16i16, 4 }, // 2 x 128-bit Op + extract/insert 2554 { ISD::USUBSAT, MVT::v32i8, 4 }, // 2 x 128-bit Op + extract/insert 2555 { ISD::USUBSAT, MVT::v8i32, 6 }, // 2 x 128-bit Op + extract/insert 2556 { ISD::FMAXNUM, MVT::f32, 3 }, // MAXSS + CMPUNORDSS + BLENDVPS 2557 { ISD::FMAXNUM, MVT::v4f32, 3 }, // MAXPS + CMPUNORDPS + BLENDVPS 2558 { ISD::FMAXNUM, MVT::v8f32, 5 }, // MAXPS + CMPUNORDPS + BLENDVPS + ? 2559 { ISD::FMAXNUM, MVT::f64, 3 }, // MAXSD + CMPUNORDSD + BLENDVPD 2560 { ISD::FMAXNUM, MVT::v2f64, 3 }, // MAXPD + CMPUNORDPD + BLENDVPD 2561 { ISD::FMAXNUM, MVT::v4f64, 5 }, // MAXPD + CMPUNORDPD + BLENDVPD + ? 2562 { ISD::FSQRT, MVT::f32, 14 }, // SNB from http://www.agner.org/ 2563 { ISD::FSQRT, MVT::v4f32, 14 }, // SNB from http://www.agner.org/ 2564 { ISD::FSQRT, MVT::v8f32, 28 }, // SNB from http://www.agner.org/ 2565 { ISD::FSQRT, MVT::f64, 21 }, // SNB from http://www.agner.org/ 2566 { ISD::FSQRT, MVT::v2f64, 21 }, // SNB from http://www.agner.org/ 2567 { ISD::FSQRT, MVT::v4f64, 43 }, // SNB from http://www.agner.org/ 2568 }; 2569 static const CostTblEntry GLMCostTbl[] = { 2570 { ISD::FSQRT, MVT::f32, 19 }, // sqrtss 2571 { ISD::FSQRT, MVT::v4f32, 37 }, // sqrtps 2572 { ISD::FSQRT, MVT::f64, 34 }, // sqrtsd 2573 { ISD::FSQRT, MVT::v2f64, 67 }, // sqrtpd 2574 }; 2575 static const CostTblEntry SLMCostTbl[] = { 2576 { ISD::FSQRT, MVT::f32, 20 }, // sqrtss 2577 { ISD::FSQRT, MVT::v4f32, 40 }, // sqrtps 2578 { ISD::FSQRT, MVT::f64, 35 }, // sqrtsd 2579 { ISD::FSQRT, MVT::v2f64, 70 }, // sqrtpd 2580 }; 2581 static const CostTblEntry SSE42CostTbl[] = { 2582 { ISD::USUBSAT, MVT::v4i32, 2 }, // pmaxud + psubd 2583 { ISD::UADDSAT, MVT::v4i32, 3 }, // not + pminud + paddd 2584 { ISD::FSQRT, MVT::f32, 18 }, // Nehalem from http://www.agner.org/ 2585 { ISD::FSQRT, MVT::v4f32, 18 }, // Nehalem from http://www.agner.org/ 2586 }; 2587 static const CostTblEntry SSE41CostTbl[] = { 2588 { ISD::ABS, MVT::v2i64, 2 }, // BLENDVPD(X,PSUBQ(0,X),X) 2589 { ISD::SMAX, MVT::v4i32, 1 }, 2590 { ISD::SMAX, MVT::v16i8, 1 }, 2591 { ISD::SMIN, MVT::v4i32, 1 }, 2592 { ISD::SMIN, MVT::v16i8, 1 }, 2593 { ISD::UMAX, MVT::v4i32, 1 }, 2594 { ISD::UMAX, MVT::v8i16, 1 }, 2595 { ISD::UMIN, MVT::v4i32, 1 }, 2596 { ISD::UMIN, MVT::v8i16, 1 }, 2597 }; 2598 static const CostTblEntry SSSE3CostTbl[] = { 2599 { ISD::ABS, MVT::v4i32, 1 }, 2600 { ISD::ABS, MVT::v8i16, 1 }, 2601 { ISD::ABS, MVT::v16i8, 1 }, 2602 { ISD::BITREVERSE, MVT::v2i64, 5 }, 2603 { ISD::BITREVERSE, MVT::v4i32, 5 }, 2604 { ISD::BITREVERSE, MVT::v8i16, 5 }, 2605 { ISD::BITREVERSE, MVT::v16i8, 5 }, 2606 { ISD::BSWAP, MVT::v2i64, 1 }, 2607 { ISD::BSWAP, MVT::v4i32, 1 }, 2608 { ISD::BSWAP, MVT::v8i16, 1 }, 2609 { ISD::CTLZ, MVT::v2i64, 23 }, 2610 { ISD::CTLZ, MVT::v4i32, 18 }, 2611 { ISD::CTLZ, MVT::v8i16, 14 }, 2612 { ISD::CTLZ, MVT::v16i8, 9 }, 2613 { ISD::CTPOP, MVT::v2i64, 7 }, 2614 { ISD::CTPOP, MVT::v4i32, 11 }, 2615 { ISD::CTPOP, MVT::v8i16, 9 }, 2616 { ISD::CTPOP, MVT::v16i8, 6 }, 2617 { ISD::CTTZ, MVT::v2i64, 10 }, 2618 { ISD::CTTZ, MVT::v4i32, 14 }, 2619 { ISD::CTTZ, MVT::v8i16, 12 }, 2620 { ISD::CTTZ, MVT::v16i8, 9 } 2621 }; 2622 static const CostTblEntry SSE2CostTbl[] = { 2623 { ISD::ABS, MVT::v2i64, 4 }, 2624 { ISD::ABS, MVT::v4i32, 3 }, 2625 { ISD::ABS, MVT::v8i16, 2 }, 2626 { ISD::ABS, MVT::v16i8, 2 }, 2627 { ISD::BITREVERSE, MVT::v2i64, 29 }, 2628 { ISD::BITREVERSE, MVT::v4i32, 27 }, 2629 { ISD::BITREVERSE, MVT::v8i16, 27 }, 2630 { ISD::BITREVERSE, MVT::v16i8, 20 }, 2631 { ISD::BSWAP, MVT::v2i64, 7 }, 2632 { ISD::BSWAP, MVT::v4i32, 7 }, 2633 { ISD::BSWAP, MVT::v8i16, 7 }, 2634 { ISD::CTLZ, MVT::v2i64, 25 }, 2635 { ISD::CTLZ, MVT::v4i32, 26 }, 2636 { ISD::CTLZ, MVT::v8i16, 20 }, 2637 { ISD::CTLZ, MVT::v16i8, 17 }, 2638 { ISD::CTPOP, MVT::v2i64, 12 }, 2639 { ISD::CTPOP, MVT::v4i32, 15 }, 2640 { ISD::CTPOP, MVT::v8i16, 13 }, 2641 { ISD::CTPOP, MVT::v16i8, 10 }, 2642 { ISD::CTTZ, MVT::v2i64, 14 }, 2643 { ISD::CTTZ, MVT::v4i32, 18 }, 2644 { ISD::CTTZ, MVT::v8i16, 16 }, 2645 { ISD::CTTZ, MVT::v16i8, 13 }, 2646 { ISD::SADDSAT, MVT::v8i16, 1 }, 2647 { ISD::SADDSAT, MVT::v16i8, 1 }, 2648 { ISD::SMAX, MVT::v8i16, 1 }, 2649 { ISD::SMIN, MVT::v8i16, 1 }, 2650 { ISD::SSUBSAT, MVT::v8i16, 1 }, 2651 { ISD::SSUBSAT, MVT::v16i8, 1 }, 2652 { ISD::UADDSAT, MVT::v8i16, 1 }, 2653 { ISD::UADDSAT, MVT::v16i8, 1 }, 2654 { ISD::UMAX, MVT::v8i16, 2 }, 2655 { ISD::UMAX, MVT::v16i8, 1 }, 2656 { ISD::UMIN, MVT::v8i16, 2 }, 2657 { ISD::UMIN, MVT::v16i8, 1 }, 2658 { ISD::USUBSAT, MVT::v8i16, 1 }, 2659 { ISD::USUBSAT, MVT::v16i8, 1 }, 2660 { ISD::FMAXNUM, MVT::f64, 4 }, 2661 { ISD::FMAXNUM, MVT::v2f64, 4 }, 2662 { ISD::FSQRT, MVT::f64, 32 }, // Nehalem from http://www.agner.org/ 2663 { ISD::FSQRT, MVT::v2f64, 32 }, // Nehalem from http://www.agner.org/ 2664 }; 2665 static const CostTblEntry SSE1CostTbl[] = { 2666 { ISD::FMAXNUM, MVT::f32, 4 }, 2667 { ISD::FMAXNUM, MVT::v4f32, 4 }, 2668 { ISD::FSQRT, MVT::f32, 28 }, // Pentium III from http://www.agner.org/ 2669 { ISD::FSQRT, MVT::v4f32, 56 }, // Pentium III from http://www.agner.org/ 2670 }; 2671 static const CostTblEntry BMI64CostTbl[] = { // 64-bit targets 2672 { ISD::CTTZ, MVT::i64, 1 }, 2673 }; 2674 static const CostTblEntry BMI32CostTbl[] = { // 32 or 64-bit targets 2675 { ISD::CTTZ, MVT::i32, 1 }, 2676 { ISD::CTTZ, MVT::i16, 1 }, 2677 { ISD::CTTZ, MVT::i8, 1 }, 2678 }; 2679 static const CostTblEntry LZCNT64CostTbl[] = { // 64-bit targets 2680 { ISD::CTLZ, MVT::i64, 1 }, 2681 }; 2682 static const CostTblEntry LZCNT32CostTbl[] = { // 32 or 64-bit targets 2683 { ISD::CTLZ, MVT::i32, 1 }, 2684 { ISD::CTLZ, MVT::i16, 1 }, 2685 { ISD::CTLZ, MVT::i8, 1 }, 2686 }; 2687 static const CostTblEntry POPCNT64CostTbl[] = { // 64-bit targets 2688 { ISD::CTPOP, MVT::i64, 1 }, 2689 }; 2690 static const CostTblEntry POPCNT32CostTbl[] = { // 32 or 64-bit targets 2691 { ISD::CTPOP, MVT::i32, 1 }, 2692 { ISD::CTPOP, MVT::i16, 1 }, 2693 { ISD::CTPOP, MVT::i8, 1 }, 2694 }; 2695 static const CostTblEntry X64CostTbl[] = { // 64-bit targets 2696 { ISD::ABS, MVT::i64, 2 }, // SUB+CMOV 2697 { ISD::BITREVERSE, MVT::i64, 14 }, 2698 { ISD::CTLZ, MVT::i64, 4 }, // BSR+XOR or BSR+XOR+CMOV 2699 { ISD::CTTZ, MVT::i64, 3 }, // TEST+BSF+CMOV/BRANCH 2700 { ISD::CTPOP, MVT::i64, 10 }, 2701 { ISD::SADDO, MVT::i64, 1 }, 2702 { ISD::UADDO, MVT::i64, 1 }, 2703 { ISD::UMULO, MVT::i64, 2 }, // mulq + seto 2704 }; 2705 static const CostTblEntry X86CostTbl[] = { // 32 or 64-bit targets 2706 { ISD::ABS, MVT::i32, 2 }, // SUB+CMOV 2707 { ISD::ABS, MVT::i16, 2 }, // SUB+CMOV 2708 { ISD::BITREVERSE, MVT::i32, 14 }, 2709 { ISD::BITREVERSE, MVT::i16, 14 }, 2710 { ISD::BITREVERSE, MVT::i8, 11 }, 2711 { ISD::CTLZ, MVT::i32, 4 }, // BSR+XOR or BSR+XOR+CMOV 2712 { ISD::CTLZ, MVT::i16, 4 }, // BSR+XOR or BSR+XOR+CMOV 2713 { ISD::CTLZ, MVT::i8, 4 }, // BSR+XOR or BSR+XOR+CMOV 2714 { ISD::CTTZ, MVT::i32, 3 }, // TEST+BSF+CMOV/BRANCH 2715 { ISD::CTTZ, MVT::i16, 3 }, // TEST+BSF+CMOV/BRANCH 2716 { ISD::CTTZ, MVT::i8, 3 }, // TEST+BSF+CMOV/BRANCH 2717 { ISD::CTPOP, MVT::i32, 8 }, 2718 { ISD::CTPOP, MVT::i16, 9 }, 2719 { ISD::CTPOP, MVT::i8, 7 }, 2720 { ISD::SADDO, MVT::i32, 1 }, 2721 { ISD::SADDO, MVT::i16, 1 }, 2722 { ISD::SADDO, MVT::i8, 1 }, 2723 { ISD::UADDO, MVT::i32, 1 }, 2724 { ISD::UADDO, MVT::i16, 1 }, 2725 { ISD::UADDO, MVT::i8, 1 }, 2726 { ISD::UMULO, MVT::i32, 2 }, // mul + seto 2727 { ISD::UMULO, MVT::i16, 2 }, 2728 { ISD::UMULO, MVT::i8, 2 }, 2729 }; 2730 2731 Type *RetTy = ICA.getReturnType(); 2732 Type *OpTy = RetTy; 2733 Intrinsic::ID IID = ICA.getID(); 2734 unsigned ISD = ISD::DELETED_NODE; 2735 switch (IID) { 2736 default: 2737 break; 2738 case Intrinsic::abs: 2739 ISD = ISD::ABS; 2740 break; 2741 case Intrinsic::bitreverse: 2742 ISD = ISD::BITREVERSE; 2743 break; 2744 case Intrinsic::bswap: 2745 ISD = ISD::BSWAP; 2746 break; 2747 case Intrinsic::ctlz: 2748 ISD = ISD::CTLZ; 2749 break; 2750 case Intrinsic::ctpop: 2751 ISD = ISD::CTPOP; 2752 break; 2753 case Intrinsic::cttz: 2754 ISD = ISD::CTTZ; 2755 break; 2756 case Intrinsic::maxnum: 2757 case Intrinsic::minnum: 2758 // FMINNUM has same costs so don't duplicate. 2759 ISD = ISD::FMAXNUM; 2760 break; 2761 case Intrinsic::sadd_sat: 2762 ISD = ISD::SADDSAT; 2763 break; 2764 case Intrinsic::smax: 2765 ISD = ISD::SMAX; 2766 break; 2767 case Intrinsic::smin: 2768 ISD = ISD::SMIN; 2769 break; 2770 case Intrinsic::ssub_sat: 2771 ISD = ISD::SSUBSAT; 2772 break; 2773 case Intrinsic::uadd_sat: 2774 ISD = ISD::UADDSAT; 2775 break; 2776 case Intrinsic::umax: 2777 ISD = ISD::UMAX; 2778 break; 2779 case Intrinsic::umin: 2780 ISD = ISD::UMIN; 2781 break; 2782 case Intrinsic::usub_sat: 2783 ISD = ISD::USUBSAT; 2784 break; 2785 case Intrinsic::sqrt: 2786 ISD = ISD::FSQRT; 2787 break; 2788 case Intrinsic::sadd_with_overflow: 2789 case Intrinsic::ssub_with_overflow: 2790 // SSUBO has same costs so don't duplicate. 2791 ISD = ISD::SADDO; 2792 OpTy = RetTy->getContainedType(0); 2793 break; 2794 case Intrinsic::uadd_with_overflow: 2795 case Intrinsic::usub_with_overflow: 2796 // USUBO has same costs so don't duplicate. 2797 ISD = ISD::UADDO; 2798 OpTy = RetTy->getContainedType(0); 2799 break; 2800 case Intrinsic::umul_with_overflow: 2801 case Intrinsic::smul_with_overflow: 2802 // SMULO has same costs so don't duplicate. 2803 ISD = ISD::UMULO; 2804 OpTy = RetTy->getContainedType(0); 2805 break; 2806 } 2807 2808 if (ISD != ISD::DELETED_NODE) { 2809 // Legalize the type. 2810 std::pair<InstructionCost, MVT> LT = TLI->getTypeLegalizationCost(DL, OpTy); 2811 MVT MTy = LT.second; 2812 2813 // Attempt to lookup cost. 2814 if (ISD == ISD::BITREVERSE && ST->hasGFNI() && ST->hasSSSE3() && 2815 MTy.isVector()) { 2816 // With PSHUFB the code is very similar for all types. If we have integer 2817 // byte operations, we just need a GF2P8AFFINEQB for vXi8. For other types 2818 // we also need a PSHUFB. 2819 unsigned Cost = MTy.getVectorElementType() == MVT::i8 ? 1 : 2; 2820 2821 // Without byte operations, we need twice as many GF2P8AFFINEQB and PSHUFB 2822 // instructions. We also need an extract and an insert. 2823 if (!(MTy.is128BitVector() || (ST->hasAVX2() && MTy.is256BitVector()) || 2824 (ST->hasBWI() && MTy.is512BitVector()))) 2825 Cost = Cost * 2 + 2; 2826 2827 return LT.first * Cost; 2828 } 2829 2830 auto adjustTableCost = [](const CostTblEntry &Entry, 2831 InstructionCost LegalizationCost, 2832 FastMathFlags FMF) { 2833 // If there are no NANs to deal with, then these are reduced to a 2834 // single MIN** or MAX** instruction instead of the MIN/CMP/SELECT that we 2835 // assume is used in the non-fast case. 2836 if (Entry.ISD == ISD::FMAXNUM || Entry.ISD == ISD::FMINNUM) { 2837 if (FMF.noNaNs()) 2838 return LegalizationCost * 1; 2839 } 2840 return LegalizationCost * (int)Entry.Cost; 2841 }; 2842 2843 if (ST->useGLMDivSqrtCosts()) 2844 if (const auto *Entry = CostTableLookup(GLMCostTbl, ISD, MTy)) 2845 return adjustTableCost(*Entry, LT.first, ICA.getFlags()); 2846 2847 if (ST->isSLM()) 2848 if (const auto *Entry = CostTableLookup(SLMCostTbl, ISD, MTy)) 2849 return adjustTableCost(*Entry, LT.first, ICA.getFlags()); 2850 2851 if (ST->hasCDI()) 2852 if (const auto *Entry = CostTableLookup(AVX512CDCostTbl, ISD, MTy)) 2853 return adjustTableCost(*Entry, LT.first, ICA.getFlags()); 2854 2855 if (ST->hasBWI()) 2856 if (const auto *Entry = CostTableLookup(AVX512BWCostTbl, ISD, MTy)) 2857 return adjustTableCost(*Entry, LT.first, ICA.getFlags()); 2858 2859 if (ST->hasAVX512()) 2860 if (const auto *Entry = CostTableLookup(AVX512CostTbl, ISD, MTy)) 2861 return adjustTableCost(*Entry, LT.first, ICA.getFlags()); 2862 2863 if (ST->hasXOP()) 2864 if (const auto *Entry = CostTableLookup(XOPCostTbl, ISD, MTy)) 2865 return adjustTableCost(*Entry, LT.first, ICA.getFlags()); 2866 2867 if (ST->hasAVX2()) 2868 if (const auto *Entry = CostTableLookup(AVX2CostTbl, ISD, MTy)) 2869 return adjustTableCost(*Entry, LT.first, ICA.getFlags()); 2870 2871 if (ST->hasAVX()) 2872 if (const auto *Entry = CostTableLookup(AVX1CostTbl, ISD, MTy)) 2873 return adjustTableCost(*Entry, LT.first, ICA.getFlags()); 2874 2875 if (ST->hasSSE42()) 2876 if (const auto *Entry = CostTableLookup(SSE42CostTbl, ISD, MTy)) 2877 return adjustTableCost(*Entry, LT.first, ICA.getFlags()); 2878 2879 if (ST->hasSSE41()) 2880 if (const auto *Entry = CostTableLookup(SSE41CostTbl, ISD, MTy)) 2881 return adjustTableCost(*Entry, LT.first, ICA.getFlags()); 2882 2883 if (ST->hasSSSE3()) 2884 if (const auto *Entry = CostTableLookup(SSSE3CostTbl, ISD, MTy)) 2885 return adjustTableCost(*Entry, LT.first, ICA.getFlags()); 2886 2887 if (ST->hasSSE2()) 2888 if (const auto *Entry = CostTableLookup(SSE2CostTbl, ISD, MTy)) 2889 return adjustTableCost(*Entry, LT.first, ICA.getFlags()); 2890 2891 if (ST->hasSSE1()) 2892 if (const auto *Entry = CostTableLookup(SSE1CostTbl, ISD, MTy)) 2893 return adjustTableCost(*Entry, LT.first, ICA.getFlags()); 2894 2895 if (ST->hasBMI()) { 2896 if (ST->is64Bit()) 2897 if (const auto *Entry = CostTableLookup(BMI64CostTbl, ISD, MTy)) 2898 return adjustTableCost(*Entry, LT.first, ICA.getFlags()); 2899 2900 if (const auto *Entry = CostTableLookup(BMI32CostTbl, ISD, MTy)) 2901 return adjustTableCost(*Entry, LT.first, ICA.getFlags()); 2902 } 2903 2904 if (ST->hasLZCNT()) { 2905 if (ST->is64Bit()) 2906 if (const auto *Entry = CostTableLookup(LZCNT64CostTbl, ISD, MTy)) 2907 return adjustTableCost(*Entry, LT.first, ICA.getFlags()); 2908 2909 if (const auto *Entry = CostTableLookup(LZCNT32CostTbl, ISD, MTy)) 2910 return adjustTableCost(*Entry, LT.first, ICA.getFlags()); 2911 } 2912 2913 if (ST->hasPOPCNT()) { 2914 if (ST->is64Bit()) 2915 if (const auto *Entry = CostTableLookup(POPCNT64CostTbl, ISD, MTy)) 2916 return adjustTableCost(*Entry, LT.first, ICA.getFlags()); 2917 2918 if (const auto *Entry = CostTableLookup(POPCNT32CostTbl, ISD, MTy)) 2919 return adjustTableCost(*Entry, LT.first, ICA.getFlags()); 2920 } 2921 2922 // TODO - add BMI (TZCNT) scalar handling 2923 2924 if (ST->is64Bit()) 2925 if (const auto *Entry = CostTableLookup(X64CostTbl, ISD, MTy)) 2926 return adjustTableCost(*Entry, LT.first, ICA.getFlags()); 2927 2928 if (const auto *Entry = CostTableLookup(X86CostTbl, ISD, MTy)) 2929 return adjustTableCost(*Entry, LT.first, ICA.getFlags()); 2930 } 2931 2932 return BaseT::getIntrinsicInstrCost(ICA, CostKind); 2933 } 2934 2935 InstructionCost 2936 X86TTIImpl::getIntrinsicInstrCost(const IntrinsicCostAttributes &ICA, 2937 TTI::TargetCostKind CostKind) { 2938 if (ICA.isTypeBasedOnly()) 2939 return getTypeBasedIntrinsicInstrCost(ICA, CostKind); 2940 2941 static const CostTblEntry AVX512CostTbl[] = { 2942 { ISD::ROTL, MVT::v8i64, 1 }, 2943 { ISD::ROTL, MVT::v4i64, 1 }, 2944 { ISD::ROTL, MVT::v2i64, 1 }, 2945 { ISD::ROTL, MVT::v16i32, 1 }, 2946 { ISD::ROTL, MVT::v8i32, 1 }, 2947 { ISD::ROTL, MVT::v4i32, 1 }, 2948 { ISD::ROTR, MVT::v8i64, 1 }, 2949 { ISD::ROTR, MVT::v4i64, 1 }, 2950 { ISD::ROTR, MVT::v2i64, 1 }, 2951 { ISD::ROTR, MVT::v16i32, 1 }, 2952 { ISD::ROTR, MVT::v8i32, 1 }, 2953 { ISD::ROTR, MVT::v4i32, 1 } 2954 }; 2955 // XOP: ROTL = VPROT(X,Y), ROTR = VPROT(X,SUB(0,Y)) 2956 static const CostTblEntry XOPCostTbl[] = { 2957 { ISD::ROTL, MVT::v4i64, 4 }, 2958 { ISD::ROTL, MVT::v8i32, 4 }, 2959 { ISD::ROTL, MVT::v16i16, 4 }, 2960 { ISD::ROTL, MVT::v32i8, 4 }, 2961 { ISD::ROTL, MVT::v2i64, 1 }, 2962 { ISD::ROTL, MVT::v4i32, 1 }, 2963 { ISD::ROTL, MVT::v8i16, 1 }, 2964 { ISD::ROTL, MVT::v16i8, 1 }, 2965 { ISD::ROTR, MVT::v4i64, 6 }, 2966 { ISD::ROTR, MVT::v8i32, 6 }, 2967 { ISD::ROTR, MVT::v16i16, 6 }, 2968 { ISD::ROTR, MVT::v32i8, 6 }, 2969 { ISD::ROTR, MVT::v2i64, 2 }, 2970 { ISD::ROTR, MVT::v4i32, 2 }, 2971 { ISD::ROTR, MVT::v8i16, 2 }, 2972 { ISD::ROTR, MVT::v16i8, 2 } 2973 }; 2974 static const CostTblEntry X64CostTbl[] = { // 64-bit targets 2975 { ISD::ROTL, MVT::i64, 1 }, 2976 { ISD::ROTR, MVT::i64, 1 }, 2977 { ISD::FSHL, MVT::i64, 4 } 2978 }; 2979 static const CostTblEntry X86CostTbl[] = { // 32 or 64-bit targets 2980 { ISD::ROTL, MVT::i32, 1 }, 2981 { ISD::ROTL, MVT::i16, 1 }, 2982 { ISD::ROTL, MVT::i8, 1 }, 2983 { ISD::ROTR, MVT::i32, 1 }, 2984 { ISD::ROTR, MVT::i16, 1 }, 2985 { ISD::ROTR, MVT::i8, 1 }, 2986 { ISD::FSHL, MVT::i32, 4 }, 2987 { ISD::FSHL, MVT::i16, 4 }, 2988 { ISD::FSHL, MVT::i8, 4 } 2989 }; 2990 2991 Intrinsic::ID IID = ICA.getID(); 2992 Type *RetTy = ICA.getReturnType(); 2993 const SmallVectorImpl<const Value *> &Args = ICA.getArgs(); 2994 unsigned ISD = ISD::DELETED_NODE; 2995 switch (IID) { 2996 default: 2997 break; 2998 case Intrinsic::fshl: 2999 ISD = ISD::FSHL; 3000 if (Args[0] == Args[1]) 3001 ISD = ISD::ROTL; 3002 break; 3003 case Intrinsic::fshr: 3004 // FSHR has same costs so don't duplicate. 3005 ISD = ISD::FSHL; 3006 if (Args[0] == Args[1]) 3007 ISD = ISD::ROTR; 3008 break; 3009 } 3010 3011 if (ISD != ISD::DELETED_NODE) { 3012 // Legalize the type. 3013 std::pair<InstructionCost, MVT> LT = 3014 TLI->getTypeLegalizationCost(DL, RetTy); 3015 MVT MTy = LT.second; 3016 3017 // Attempt to lookup cost. 3018 if (ST->hasAVX512()) 3019 if (const auto *Entry = CostTableLookup(AVX512CostTbl, ISD, MTy)) 3020 return LT.first * Entry->Cost; 3021 3022 if (ST->hasXOP()) 3023 if (const auto *Entry = CostTableLookup(XOPCostTbl, ISD, MTy)) 3024 return LT.first * Entry->Cost; 3025 3026 if (ST->is64Bit()) 3027 if (const auto *Entry = CostTableLookup(X64CostTbl, ISD, MTy)) 3028 return LT.first * Entry->Cost; 3029 3030 if (const auto *Entry = CostTableLookup(X86CostTbl, ISD, MTy)) 3031 return LT.first * Entry->Cost; 3032 } 3033 3034 return BaseT::getIntrinsicInstrCost(ICA, CostKind); 3035 } 3036 3037 InstructionCost X86TTIImpl::getVectorInstrCost(unsigned Opcode, Type *Val, 3038 unsigned Index) { 3039 static const CostTblEntry SLMCostTbl[] = { 3040 { ISD::EXTRACT_VECTOR_ELT, MVT::i8, 4 }, 3041 { ISD::EXTRACT_VECTOR_ELT, MVT::i16, 4 }, 3042 { ISD::EXTRACT_VECTOR_ELT, MVT::i32, 4 }, 3043 { ISD::EXTRACT_VECTOR_ELT, MVT::i64, 7 } 3044 }; 3045 3046 assert(Val->isVectorTy() && "This must be a vector type"); 3047 Type *ScalarType = Val->getScalarType(); 3048 int RegisterFileMoveCost = 0; 3049 3050 if (Index != -1U && (Opcode == Instruction::ExtractElement || 3051 Opcode == Instruction::InsertElement)) { 3052 // Legalize the type. 3053 std::pair<InstructionCost, MVT> LT = TLI->getTypeLegalizationCost(DL, Val); 3054 3055 // This type is legalized to a scalar type. 3056 if (!LT.second.isVector()) 3057 return 0; 3058 3059 // The type may be split. Normalize the index to the new type. 3060 unsigned NumElts = LT.second.getVectorNumElements(); 3061 unsigned SubNumElts = NumElts; 3062 Index = Index % NumElts; 3063 3064 // For >128-bit vectors, we need to extract higher 128-bit subvectors. 3065 // For inserts, we also need to insert the subvector back. 3066 if (LT.second.getSizeInBits() > 128) { 3067 assert((LT.second.getSizeInBits() % 128) == 0 && "Illegal vector"); 3068 unsigned NumSubVecs = LT.second.getSizeInBits() / 128; 3069 SubNumElts = NumElts / NumSubVecs; 3070 if (SubNumElts <= Index) { 3071 RegisterFileMoveCost += (Opcode == Instruction::InsertElement ? 2 : 1); 3072 Index %= SubNumElts; 3073 } 3074 } 3075 3076 if (Index == 0) { 3077 // Floating point scalars are already located in index #0. 3078 // Many insertions to #0 can fold away for scalar fp-ops, so let's assume 3079 // true for all. 3080 if (ScalarType->isFloatingPointTy()) 3081 return RegisterFileMoveCost; 3082 3083 // Assume movd/movq XMM -> GPR is relatively cheap on all targets. 3084 if (ScalarType->isIntegerTy() && Opcode == Instruction::ExtractElement) 3085 return 1 + RegisterFileMoveCost; 3086 } 3087 3088 int ISD = TLI->InstructionOpcodeToISD(Opcode); 3089 assert(ISD && "Unexpected vector opcode"); 3090 MVT MScalarTy = LT.second.getScalarType(); 3091 if (ST->isSLM()) 3092 if (auto *Entry = CostTableLookup(SLMCostTbl, ISD, MScalarTy)) 3093 return Entry->Cost + RegisterFileMoveCost; 3094 3095 // Assume pinsr/pextr XMM <-> GPR is relatively cheap on all targets. 3096 if ((MScalarTy == MVT::i16 && ST->hasSSE2()) || 3097 (MScalarTy.isInteger() && ST->hasSSE41())) 3098 return 1 + RegisterFileMoveCost; 3099 3100 // Assume insertps is relatively cheap on all targets. 3101 if (MScalarTy == MVT::f32 && ST->hasSSE41() && 3102 Opcode == Instruction::InsertElement) 3103 return 1 + RegisterFileMoveCost; 3104 3105 // For extractions we just need to shuffle the element to index 0, which 3106 // should be very cheap (assume cost = 1). For insertions we need to shuffle 3107 // the elements to its destination. In both cases we must handle the 3108 // subvector move(s). 3109 // If the vector type is already less than 128-bits then don't reduce it. 3110 // TODO: Under what circumstances should we shuffle using the full width? 3111 InstructionCost ShuffleCost = 1; 3112 if (Opcode == Instruction::InsertElement) { 3113 auto *SubTy = cast<VectorType>(Val); 3114 EVT VT = TLI->getValueType(DL, Val); 3115 if (VT.getScalarType() != MScalarTy || VT.getSizeInBits() >= 128) 3116 SubTy = FixedVectorType::get(ScalarType, SubNumElts); 3117 ShuffleCost = 3118 getShuffleCost(TTI::SK_PermuteTwoSrc, SubTy, None, 0, SubTy); 3119 } 3120 int IntOrFpCost = ScalarType->isFloatingPointTy() ? 0 : 1; 3121 return ShuffleCost + IntOrFpCost + RegisterFileMoveCost; 3122 } 3123 3124 // Add to the base cost if we know that the extracted element of a vector is 3125 // destined to be moved to and used in the integer register file. 3126 if (Opcode == Instruction::ExtractElement && ScalarType->isPointerTy()) 3127 RegisterFileMoveCost += 1; 3128 3129 return BaseT::getVectorInstrCost(Opcode, Val, Index) + RegisterFileMoveCost; 3130 } 3131 3132 InstructionCost X86TTIImpl::getScalarizationOverhead(VectorType *Ty, 3133 const APInt &DemandedElts, 3134 bool Insert, 3135 bool Extract) { 3136 InstructionCost Cost = 0; 3137 3138 // For insertions, a ISD::BUILD_VECTOR style vector initialization can be much 3139 // cheaper than an accumulation of ISD::INSERT_VECTOR_ELT. 3140 if (Insert) { 3141 std::pair<InstructionCost, MVT> LT = TLI->getTypeLegalizationCost(DL, Ty); 3142 MVT MScalarTy = LT.second.getScalarType(); 3143 3144 if ((MScalarTy == MVT::i16 && ST->hasSSE2()) || 3145 (MScalarTy.isInteger() && ST->hasSSE41()) || 3146 (MScalarTy == MVT::f32 && ST->hasSSE41())) { 3147 // For types we can insert directly, insertion into 128-bit sub vectors is 3148 // cheap, followed by a cheap chain of concatenations. 3149 if (LT.second.getSizeInBits() <= 128) { 3150 Cost += 3151 BaseT::getScalarizationOverhead(Ty, DemandedElts, Insert, false); 3152 } else { 3153 // In each 128-lane, if at least one index is demanded but not all 3154 // indices are demanded and this 128-lane is not the first 128-lane of 3155 // the legalized-vector, then this 128-lane needs a extracti128; If in 3156 // each 128-lane, there is at least one demanded index, this 128-lane 3157 // needs a inserti128. 3158 3159 // The following cases will help you build a better understanding: 3160 // Assume we insert several elements into a v8i32 vector in avx2, 3161 // Case#1: inserting into 1th index needs vpinsrd + inserti128. 3162 // Case#2: inserting into 5th index needs extracti128 + vpinsrd + 3163 // inserti128. 3164 // Case#3: inserting into 4,5,6,7 index needs 4*vpinsrd + inserti128. 3165 const int CostValue = *LT.first.getValue(); 3166 assert(CostValue >= 0 && "Negative cost!"); 3167 unsigned Num128Lanes = LT.second.getSizeInBits() / 128 * CostValue; 3168 unsigned NumElts = LT.second.getVectorNumElements() * CostValue; 3169 APInt WidenedDemandedElts = DemandedElts.zextOrSelf(NumElts); 3170 unsigned Scale = NumElts / Num128Lanes; 3171 // We iterate each 128-lane, and check if we need a 3172 // extracti128/inserti128 for this 128-lane. 3173 for (unsigned I = 0; I < NumElts; I += Scale) { 3174 APInt Mask = WidenedDemandedElts.getBitsSet(NumElts, I, I + Scale); 3175 APInt MaskedDE = Mask & WidenedDemandedElts; 3176 unsigned Population = MaskedDE.countPopulation(); 3177 Cost += (Population > 0 && Population != Scale && 3178 I % LT.second.getVectorNumElements() != 0); 3179 Cost += Population > 0; 3180 } 3181 Cost += DemandedElts.countPopulation(); 3182 3183 // For vXf32 cases, insertion into the 0'th index in each v4f32 3184 // 128-bit vector is free. 3185 // NOTE: This assumes legalization widens vXf32 vectors. 3186 if (MScalarTy == MVT::f32) 3187 for (unsigned i = 0, e = cast<FixedVectorType>(Ty)->getNumElements(); 3188 i < e; i += 4) 3189 if (DemandedElts[i]) 3190 Cost--; 3191 } 3192 } else if (LT.second.isVector()) { 3193 // Without fast insertion, we need to use MOVD/MOVQ to pass each demanded 3194 // integer element as a SCALAR_TO_VECTOR, then we build the vector as a 3195 // series of UNPCK followed by CONCAT_VECTORS - all of these can be 3196 // considered cheap. 3197 if (Ty->isIntOrIntVectorTy()) 3198 Cost += DemandedElts.countPopulation(); 3199 3200 // Get the smaller of the legalized or original pow2-extended number of 3201 // vector elements, which represents the number of unpacks we'll end up 3202 // performing. 3203 unsigned NumElts = LT.second.getVectorNumElements(); 3204 unsigned Pow2Elts = 3205 PowerOf2Ceil(cast<FixedVectorType>(Ty)->getNumElements()); 3206 Cost += (std::min<unsigned>(NumElts, Pow2Elts) - 1) * LT.first; 3207 } 3208 } 3209 3210 // TODO: Use default extraction for now, but we should investigate extending this 3211 // to handle repeated subvector extraction. 3212 if (Extract) 3213 Cost += BaseT::getScalarizationOverhead(Ty, DemandedElts, false, Extract); 3214 3215 return Cost; 3216 } 3217 3218 InstructionCost X86TTIImpl::getMemoryOpCost(unsigned Opcode, Type *Src, 3219 MaybeAlign Alignment, 3220 unsigned AddressSpace, 3221 TTI::TargetCostKind CostKind, 3222 const Instruction *I) { 3223 // TODO: Handle other cost kinds. 3224 if (CostKind != TTI::TCK_RecipThroughput) { 3225 if (auto *SI = dyn_cast_or_null<StoreInst>(I)) { 3226 // Store instruction with index and scale costs 2 Uops. 3227 // Check the preceding GEP to identify non-const indices. 3228 if (auto *GEP = dyn_cast<GetElementPtrInst>(SI->getPointerOperand())) { 3229 if (!all_of(GEP->indices(), [](Value *V) { return isa<Constant>(V); })) 3230 return TTI::TCC_Basic * 2; 3231 } 3232 } 3233 return TTI::TCC_Basic; 3234 } 3235 3236 assert((Opcode == Instruction::Load || Opcode == Instruction::Store) && 3237 "Invalid Opcode"); 3238 // Type legalization can't handle structs 3239 if (TLI->getValueType(DL, Src, true) == MVT::Other) 3240 return BaseT::getMemoryOpCost(Opcode, Src, Alignment, AddressSpace, 3241 CostKind); 3242 3243 // Handle non-power-of-two vectors such as <3 x float> and <48 x i16> 3244 if (auto *VTy = dyn_cast<FixedVectorType>(Src)) { 3245 const unsigned NumElem = VTy->getNumElements(); 3246 if (!isPowerOf2_32(NumElem)) { 3247 // Factorize NumElem into sum of power-of-two. 3248 InstructionCost Cost = 0; 3249 unsigned NumElemDone = 0; 3250 for (unsigned NumElemLeft = NumElem, Factor; 3251 Factor = PowerOf2Floor(NumElemLeft), NumElemLeft > 0; 3252 NumElemLeft -= Factor) { 3253 Type *SubTy = FixedVectorType::get(VTy->getScalarType(), Factor); 3254 unsigned SubTyBytes = SubTy->getPrimitiveSizeInBits() / 8; 3255 3256 Cost += 3257 getMemoryOpCost(Opcode, SubTy, Alignment, AddressSpace, CostKind); 3258 3259 std::pair<InstructionCost, MVT> LST = 3260 TLI->getTypeLegalizationCost(DL, SubTy); 3261 if (!LST.second.isVector()) { 3262 APInt DemandedElts = 3263 APInt::getBitsSet(NumElem, NumElemDone, NumElemDone + Factor); 3264 Cost += getScalarizationOverhead(VTy, DemandedElts, 3265 Opcode == Instruction::Load, 3266 Opcode == Instruction::Store); 3267 } 3268 3269 NumElemDone += Factor; 3270 Alignment = commonAlignment(Alignment.valueOrOne(), SubTyBytes); 3271 } 3272 assert(NumElemDone == NumElem && "Processed wrong element count?"); 3273 return Cost; 3274 } 3275 } 3276 3277 // Legalize the type. 3278 std::pair<InstructionCost, MVT> LT = TLI->getTypeLegalizationCost(DL, Src); 3279 3280 // Each load/store unit costs 1. 3281 InstructionCost Cost = LT.first * 1; 3282 3283 // This isn't exactly right. We're using slow unaligned 32-byte accesses as a 3284 // proxy for a double-pumped AVX memory interface such as on Sandybridge. 3285 if (LT.second.getStoreSize() == 32 && ST->isUnalignedMem32Slow()) 3286 Cost *= 2; 3287 3288 return Cost; 3289 } 3290 3291 InstructionCost 3292 X86TTIImpl::getMaskedMemoryOpCost(unsigned Opcode, Type *SrcTy, Align Alignment, 3293 unsigned AddressSpace, 3294 TTI::TargetCostKind CostKind) { 3295 bool IsLoad = (Instruction::Load == Opcode); 3296 bool IsStore = (Instruction::Store == Opcode); 3297 3298 auto *SrcVTy = dyn_cast<FixedVectorType>(SrcTy); 3299 if (!SrcVTy) 3300 // To calculate scalar take the regular cost, without mask 3301 return getMemoryOpCost(Opcode, SrcTy, Alignment, AddressSpace, CostKind); 3302 3303 unsigned NumElem = SrcVTy->getNumElements(); 3304 auto *MaskTy = 3305 FixedVectorType::get(Type::getInt8Ty(SrcVTy->getContext()), NumElem); 3306 if ((IsLoad && !isLegalMaskedLoad(SrcVTy, Alignment)) || 3307 (IsStore && !isLegalMaskedStore(SrcVTy, Alignment)) || 3308 !isPowerOf2_32(NumElem)) { 3309 // Scalarization 3310 APInt DemandedElts = APInt::getAllOnesValue(NumElem); 3311 InstructionCost MaskSplitCost = 3312 getScalarizationOverhead(MaskTy, DemandedElts, false, true); 3313 InstructionCost ScalarCompareCost = getCmpSelInstrCost( 3314 Instruction::ICmp, Type::getInt8Ty(SrcVTy->getContext()), nullptr, 3315 CmpInst::BAD_ICMP_PREDICATE, CostKind); 3316 InstructionCost BranchCost = getCFInstrCost(Instruction::Br, CostKind); 3317 InstructionCost MaskCmpCost = NumElem * (BranchCost + ScalarCompareCost); 3318 InstructionCost ValueSplitCost = 3319 getScalarizationOverhead(SrcVTy, DemandedElts, IsLoad, IsStore); 3320 InstructionCost MemopCost = 3321 NumElem * BaseT::getMemoryOpCost(Opcode, SrcVTy->getScalarType(), 3322 Alignment, AddressSpace, CostKind); 3323 return MemopCost + ValueSplitCost + MaskSplitCost + MaskCmpCost; 3324 } 3325 3326 // Legalize the type. 3327 std::pair<InstructionCost, MVT> LT = TLI->getTypeLegalizationCost(DL, SrcVTy); 3328 auto VT = TLI->getValueType(DL, SrcVTy); 3329 InstructionCost Cost = 0; 3330 if (VT.isSimple() && LT.second != VT.getSimpleVT() && 3331 LT.second.getVectorNumElements() == NumElem) 3332 // Promotion requires expand/truncate for data and a shuffle for mask. 3333 Cost += getShuffleCost(TTI::SK_PermuteTwoSrc, SrcVTy, None, 0, nullptr) + 3334 getShuffleCost(TTI::SK_PermuteTwoSrc, MaskTy, None, 0, nullptr); 3335 3336 else if (LT.second.getVectorNumElements() > NumElem) { 3337 auto *NewMaskTy = FixedVectorType::get(MaskTy->getElementType(), 3338 LT.second.getVectorNumElements()); 3339 // Expanding requires fill mask with zeroes 3340 Cost += getShuffleCost(TTI::SK_InsertSubvector, NewMaskTy, None, 0, MaskTy); 3341 } 3342 3343 // Pre-AVX512 - each maskmov load costs 2 + store costs ~8. 3344 if (!ST->hasAVX512()) 3345 return Cost + LT.first * (IsLoad ? 2 : 8); 3346 3347 // AVX-512 masked load/store is cheapper 3348 return Cost + LT.first; 3349 } 3350 3351 InstructionCost X86TTIImpl::getAddressComputationCost(Type *Ty, 3352 ScalarEvolution *SE, 3353 const SCEV *Ptr) { 3354 // Address computations in vectorized code with non-consecutive addresses will 3355 // likely result in more instructions compared to scalar code where the 3356 // computation can more often be merged into the index mode. The resulting 3357 // extra micro-ops can significantly decrease throughput. 3358 const unsigned NumVectorInstToHideOverhead = 10; 3359 3360 // Cost modeling of Strided Access Computation is hidden by the indexing 3361 // modes of X86 regardless of the stride value. We dont believe that there 3362 // is a difference between constant strided access in gerenal and constant 3363 // strided value which is less than or equal to 64. 3364 // Even in the case of (loop invariant) stride whose value is not known at 3365 // compile time, the address computation will not incur more than one extra 3366 // ADD instruction. 3367 if (Ty->isVectorTy() && SE) { 3368 if (!BaseT::isStridedAccess(Ptr)) 3369 return NumVectorInstToHideOverhead; 3370 if (!BaseT::getConstantStrideStep(SE, Ptr)) 3371 return 1; 3372 } 3373 3374 return BaseT::getAddressComputationCost(Ty, SE, Ptr); 3375 } 3376 3377 InstructionCost 3378 X86TTIImpl::getArithmeticReductionCost(unsigned Opcode, VectorType *ValTy, 3379 bool IsPairwise, 3380 TTI::TargetCostKind CostKind) { 3381 // Just use the default implementation for pair reductions. 3382 if (IsPairwise) 3383 return BaseT::getArithmeticReductionCost(Opcode, ValTy, IsPairwise, CostKind); 3384 3385 // We use the Intel Architecture Code Analyzer(IACA) to measure the throughput 3386 // and make it as the cost. 3387 3388 static const CostTblEntry SLMCostTblNoPairWise[] = { 3389 { ISD::FADD, MVT::v2f64, 3 }, 3390 { ISD::ADD, MVT::v2i64, 5 }, 3391 }; 3392 3393 static const CostTblEntry SSE2CostTblNoPairWise[] = { 3394 { ISD::FADD, MVT::v2f64, 2 }, 3395 { ISD::FADD, MVT::v2f32, 2 }, 3396 { ISD::FADD, MVT::v4f32, 4 }, 3397 { ISD::ADD, MVT::v2i64, 2 }, // The data reported by the IACA tool is "1.6". 3398 { ISD::ADD, MVT::v2i32, 2 }, // FIXME: chosen to be less than v4i32 3399 { ISD::ADD, MVT::v4i32, 3 }, // The data reported by the IACA tool is "3.3". 3400 { ISD::ADD, MVT::v2i16, 2 }, // The data reported by the IACA tool is "4.3". 3401 { ISD::ADD, MVT::v4i16, 3 }, // The data reported by the IACA tool is "4.3". 3402 { ISD::ADD, MVT::v8i16, 4 }, // The data reported by the IACA tool is "4.3". 3403 { ISD::ADD, MVT::v2i8, 2 }, 3404 { ISD::ADD, MVT::v4i8, 2 }, 3405 { ISD::ADD, MVT::v8i8, 2 }, 3406 { ISD::ADD, MVT::v16i8, 3 }, 3407 }; 3408 3409 static const CostTblEntry AVX1CostTblNoPairWise[] = { 3410 { ISD::FADD, MVT::v4f64, 3 }, 3411 { ISD::FADD, MVT::v4f32, 3 }, 3412 { ISD::FADD, MVT::v8f32, 4 }, 3413 { ISD::ADD, MVT::v2i64, 1 }, // The data reported by the IACA tool is "1.5". 3414 { ISD::ADD, MVT::v4i64, 3 }, 3415 { ISD::ADD, MVT::v8i32, 5 }, 3416 { ISD::ADD, MVT::v16i16, 5 }, 3417 { ISD::ADD, MVT::v32i8, 4 }, 3418 }; 3419 3420 int ISD = TLI->InstructionOpcodeToISD(Opcode); 3421 assert(ISD && "Invalid opcode"); 3422 3423 // Before legalizing the type, give a chance to look up illegal narrow types 3424 // in the table. 3425 // FIXME: Is there a better way to do this? 3426 EVT VT = TLI->getValueType(DL, ValTy); 3427 if (VT.isSimple()) { 3428 MVT MTy = VT.getSimpleVT(); 3429 if (ST->isSLM()) 3430 if (const auto *Entry = CostTableLookup(SLMCostTblNoPairWise, ISD, MTy)) 3431 return Entry->Cost; 3432 3433 if (ST->hasAVX()) 3434 if (const auto *Entry = CostTableLookup(AVX1CostTblNoPairWise, ISD, MTy)) 3435 return Entry->Cost; 3436 3437 if (ST->hasSSE2()) 3438 if (const auto *Entry = CostTableLookup(SSE2CostTblNoPairWise, ISD, MTy)) 3439 return Entry->Cost; 3440 } 3441 3442 std::pair<InstructionCost, MVT> LT = TLI->getTypeLegalizationCost(DL, ValTy); 3443 3444 MVT MTy = LT.second; 3445 3446 auto *ValVTy = cast<FixedVectorType>(ValTy); 3447 3448 // Special case: vXi8 mul reductions are performed as vXi16. 3449 if (ISD == ISD::MUL && MTy.getScalarType() == MVT::i8) { 3450 auto *WideSclTy = IntegerType::get(ValVTy->getContext(), 16); 3451 auto *WideVecTy = FixedVectorType::get(WideSclTy, ValVTy->getNumElements()); 3452 return getCastInstrCost(Instruction::ZExt, WideVecTy, ValTy, 3453 TargetTransformInfo::CastContextHint::None, 3454 CostKind) + 3455 getArithmeticReductionCost(Opcode, WideVecTy, IsPairwise, CostKind); 3456 } 3457 3458 InstructionCost ArithmeticCost = 0; 3459 if (LT.first != 1 && MTy.isVector() && 3460 MTy.getVectorNumElements() < ValVTy->getNumElements()) { 3461 // Type needs to be split. We need LT.first - 1 arithmetic ops. 3462 auto *SingleOpTy = FixedVectorType::get(ValVTy->getElementType(), 3463 MTy.getVectorNumElements()); 3464 ArithmeticCost = getArithmeticInstrCost(Opcode, SingleOpTy, CostKind); 3465 ArithmeticCost *= LT.first - 1; 3466 } 3467 3468 if (ST->isSLM()) 3469 if (const auto *Entry = CostTableLookup(SLMCostTblNoPairWise, ISD, MTy)) 3470 return ArithmeticCost + Entry->Cost; 3471 3472 if (ST->hasAVX()) 3473 if (const auto *Entry = CostTableLookup(AVX1CostTblNoPairWise, ISD, MTy)) 3474 return ArithmeticCost + Entry->Cost; 3475 3476 if (ST->hasSSE2()) 3477 if (const auto *Entry = CostTableLookup(SSE2CostTblNoPairWise, ISD, MTy)) 3478 return ArithmeticCost + Entry->Cost; 3479 3480 // FIXME: These assume a naive kshift+binop lowering, which is probably 3481 // conservative in most cases. 3482 static const CostTblEntry AVX512BoolReduction[] = { 3483 { ISD::AND, MVT::v2i1, 3 }, 3484 { ISD::AND, MVT::v4i1, 5 }, 3485 { ISD::AND, MVT::v8i1, 7 }, 3486 { ISD::AND, MVT::v16i1, 9 }, 3487 { ISD::AND, MVT::v32i1, 11 }, 3488 { ISD::AND, MVT::v64i1, 13 }, 3489 { ISD::OR, MVT::v2i1, 3 }, 3490 { ISD::OR, MVT::v4i1, 5 }, 3491 { ISD::OR, MVT::v8i1, 7 }, 3492 { ISD::OR, MVT::v16i1, 9 }, 3493 { ISD::OR, MVT::v32i1, 11 }, 3494 { ISD::OR, MVT::v64i1, 13 }, 3495 }; 3496 3497 static const CostTblEntry AVX2BoolReduction[] = { 3498 { ISD::AND, MVT::v16i16, 2 }, // vpmovmskb + cmp 3499 { ISD::AND, MVT::v32i8, 2 }, // vpmovmskb + cmp 3500 { ISD::OR, MVT::v16i16, 2 }, // vpmovmskb + cmp 3501 { ISD::OR, MVT::v32i8, 2 }, // vpmovmskb + cmp 3502 }; 3503 3504 static const CostTblEntry AVX1BoolReduction[] = { 3505 { ISD::AND, MVT::v4i64, 2 }, // vmovmskpd + cmp 3506 { ISD::AND, MVT::v8i32, 2 }, // vmovmskps + cmp 3507 { ISD::AND, MVT::v16i16, 4 }, // vextractf128 + vpand + vpmovmskb + cmp 3508 { ISD::AND, MVT::v32i8, 4 }, // vextractf128 + vpand + vpmovmskb + cmp 3509 { ISD::OR, MVT::v4i64, 2 }, // vmovmskpd + cmp 3510 { ISD::OR, MVT::v8i32, 2 }, // vmovmskps + cmp 3511 { ISD::OR, MVT::v16i16, 4 }, // vextractf128 + vpor + vpmovmskb + cmp 3512 { ISD::OR, MVT::v32i8, 4 }, // vextractf128 + vpor + vpmovmskb + cmp 3513 }; 3514 3515 static const CostTblEntry SSE2BoolReduction[] = { 3516 { ISD::AND, MVT::v2i64, 2 }, // movmskpd + cmp 3517 { ISD::AND, MVT::v4i32, 2 }, // movmskps + cmp 3518 { ISD::AND, MVT::v8i16, 2 }, // pmovmskb + cmp 3519 { ISD::AND, MVT::v16i8, 2 }, // pmovmskb + cmp 3520 { ISD::OR, MVT::v2i64, 2 }, // movmskpd + cmp 3521 { ISD::OR, MVT::v4i32, 2 }, // movmskps + cmp 3522 { ISD::OR, MVT::v8i16, 2 }, // pmovmskb + cmp 3523 { ISD::OR, MVT::v16i8, 2 }, // pmovmskb + cmp 3524 }; 3525 3526 // Handle bool allof/anyof patterns. 3527 if (ValVTy->getElementType()->isIntegerTy(1)) { 3528 InstructionCost ArithmeticCost = 0; 3529 if (LT.first != 1 && MTy.isVector() && 3530 MTy.getVectorNumElements() < ValVTy->getNumElements()) { 3531 // Type needs to be split. We need LT.first - 1 arithmetic ops. 3532 auto *SingleOpTy = FixedVectorType::get(ValVTy->getElementType(), 3533 MTy.getVectorNumElements()); 3534 ArithmeticCost = getArithmeticInstrCost(Opcode, SingleOpTy, CostKind); 3535 ArithmeticCost *= LT.first - 1; 3536 } 3537 3538 if (ST->hasAVX512()) 3539 if (const auto *Entry = CostTableLookup(AVX512BoolReduction, ISD, MTy)) 3540 return ArithmeticCost + Entry->Cost; 3541 if (ST->hasAVX2()) 3542 if (const auto *Entry = CostTableLookup(AVX2BoolReduction, ISD, MTy)) 3543 return ArithmeticCost + Entry->Cost; 3544 if (ST->hasAVX()) 3545 if (const auto *Entry = CostTableLookup(AVX1BoolReduction, ISD, MTy)) 3546 return ArithmeticCost + Entry->Cost; 3547 if (ST->hasSSE2()) 3548 if (const auto *Entry = CostTableLookup(SSE2BoolReduction, ISD, MTy)) 3549 return ArithmeticCost + Entry->Cost; 3550 3551 return BaseT::getArithmeticReductionCost(Opcode, ValVTy, IsPairwise, 3552 CostKind); 3553 } 3554 3555 unsigned NumVecElts = ValVTy->getNumElements(); 3556 unsigned ScalarSize = ValVTy->getScalarSizeInBits(); 3557 3558 // Special case power of 2 reductions where the scalar type isn't changed 3559 // by type legalization. 3560 if (!isPowerOf2_32(NumVecElts) || ScalarSize != MTy.getScalarSizeInBits()) 3561 return BaseT::getArithmeticReductionCost(Opcode, ValVTy, IsPairwise, 3562 CostKind); 3563 3564 InstructionCost ReductionCost = 0; 3565 3566 auto *Ty = ValVTy; 3567 if (LT.first != 1 && MTy.isVector() && 3568 MTy.getVectorNumElements() < ValVTy->getNumElements()) { 3569 // Type needs to be split. We need LT.first - 1 arithmetic ops. 3570 Ty = FixedVectorType::get(ValVTy->getElementType(), 3571 MTy.getVectorNumElements()); 3572 ReductionCost = getArithmeticInstrCost(Opcode, Ty, CostKind); 3573 ReductionCost *= LT.first - 1; 3574 NumVecElts = MTy.getVectorNumElements(); 3575 } 3576 3577 // Now handle reduction with the legal type, taking into account size changes 3578 // at each level. 3579 while (NumVecElts > 1) { 3580 // Determine the size of the remaining vector we need to reduce. 3581 unsigned Size = NumVecElts * ScalarSize; 3582 NumVecElts /= 2; 3583 // If we're reducing from 256/512 bits, use an extract_subvector. 3584 if (Size > 128) { 3585 auto *SubTy = FixedVectorType::get(ValVTy->getElementType(), NumVecElts); 3586 ReductionCost += 3587 getShuffleCost(TTI::SK_ExtractSubvector, Ty, None, NumVecElts, SubTy); 3588 Ty = SubTy; 3589 } else if (Size == 128) { 3590 // Reducing from 128 bits is a permute of v2f64/v2i64. 3591 FixedVectorType *ShufTy; 3592 if (ValVTy->isFloatingPointTy()) 3593 ShufTy = 3594 FixedVectorType::get(Type::getDoubleTy(ValVTy->getContext()), 2); 3595 else 3596 ShufTy = 3597 FixedVectorType::get(Type::getInt64Ty(ValVTy->getContext()), 2); 3598 ReductionCost += 3599 getShuffleCost(TTI::SK_PermuteSingleSrc, ShufTy, None, 0, nullptr); 3600 } else if (Size == 64) { 3601 // Reducing from 64 bits is a shuffle of v4f32/v4i32. 3602 FixedVectorType *ShufTy; 3603 if (ValVTy->isFloatingPointTy()) 3604 ShufTy = 3605 FixedVectorType::get(Type::getFloatTy(ValVTy->getContext()), 4); 3606 else 3607 ShufTy = 3608 FixedVectorType::get(Type::getInt32Ty(ValVTy->getContext()), 4); 3609 ReductionCost += 3610 getShuffleCost(TTI::SK_PermuteSingleSrc, ShufTy, None, 0, nullptr); 3611 } else { 3612 // Reducing from smaller size is a shift by immediate. 3613 auto *ShiftTy = FixedVectorType::get( 3614 Type::getIntNTy(ValVTy->getContext(), Size), 128 / Size); 3615 ReductionCost += getArithmeticInstrCost( 3616 Instruction::LShr, ShiftTy, CostKind, 3617 TargetTransformInfo::OK_AnyValue, 3618 TargetTransformInfo::OK_UniformConstantValue, 3619 TargetTransformInfo::OP_None, TargetTransformInfo::OP_None); 3620 } 3621 3622 // Add the arithmetic op for this level. 3623 ReductionCost += getArithmeticInstrCost(Opcode, Ty, CostKind); 3624 } 3625 3626 // Add the final extract element to the cost. 3627 return ReductionCost + getVectorInstrCost(Instruction::ExtractElement, Ty, 0); 3628 } 3629 3630 InstructionCost X86TTIImpl::getMinMaxCost(Type *Ty, Type *CondTy, 3631 bool IsUnsigned) { 3632 std::pair<InstructionCost, MVT> LT = TLI->getTypeLegalizationCost(DL, Ty); 3633 3634 MVT MTy = LT.second; 3635 3636 int ISD; 3637 if (Ty->isIntOrIntVectorTy()) { 3638 ISD = IsUnsigned ? ISD::UMIN : ISD::SMIN; 3639 } else { 3640 assert(Ty->isFPOrFPVectorTy() && 3641 "Expected float point or integer vector type."); 3642 ISD = ISD::FMINNUM; 3643 } 3644 3645 static const CostTblEntry SSE1CostTbl[] = { 3646 {ISD::FMINNUM, MVT::v4f32, 1}, 3647 }; 3648 3649 static const CostTblEntry SSE2CostTbl[] = { 3650 {ISD::FMINNUM, MVT::v2f64, 1}, 3651 {ISD::SMIN, MVT::v8i16, 1}, 3652 {ISD::UMIN, MVT::v16i8, 1}, 3653 }; 3654 3655 static const CostTblEntry SSE41CostTbl[] = { 3656 {ISD::SMIN, MVT::v4i32, 1}, 3657 {ISD::UMIN, MVT::v4i32, 1}, 3658 {ISD::UMIN, MVT::v8i16, 1}, 3659 {ISD::SMIN, MVT::v16i8, 1}, 3660 }; 3661 3662 static const CostTblEntry SSE42CostTbl[] = { 3663 {ISD::UMIN, MVT::v2i64, 3}, // xor+pcmpgtq+blendvpd 3664 }; 3665 3666 static const CostTblEntry AVX1CostTbl[] = { 3667 {ISD::FMINNUM, MVT::v8f32, 1}, 3668 {ISD::FMINNUM, MVT::v4f64, 1}, 3669 {ISD::SMIN, MVT::v8i32, 3}, 3670 {ISD::UMIN, MVT::v8i32, 3}, 3671 {ISD::SMIN, MVT::v16i16, 3}, 3672 {ISD::UMIN, MVT::v16i16, 3}, 3673 {ISD::SMIN, MVT::v32i8, 3}, 3674 {ISD::UMIN, MVT::v32i8, 3}, 3675 }; 3676 3677 static const CostTblEntry AVX2CostTbl[] = { 3678 {ISD::SMIN, MVT::v8i32, 1}, 3679 {ISD::UMIN, MVT::v8i32, 1}, 3680 {ISD::SMIN, MVT::v16i16, 1}, 3681 {ISD::UMIN, MVT::v16i16, 1}, 3682 {ISD::SMIN, MVT::v32i8, 1}, 3683 {ISD::UMIN, MVT::v32i8, 1}, 3684 }; 3685 3686 static const CostTblEntry AVX512CostTbl[] = { 3687 {ISD::FMINNUM, MVT::v16f32, 1}, 3688 {ISD::FMINNUM, MVT::v8f64, 1}, 3689 {ISD::SMIN, MVT::v2i64, 1}, 3690 {ISD::UMIN, MVT::v2i64, 1}, 3691 {ISD::SMIN, MVT::v4i64, 1}, 3692 {ISD::UMIN, MVT::v4i64, 1}, 3693 {ISD::SMIN, MVT::v8i64, 1}, 3694 {ISD::UMIN, MVT::v8i64, 1}, 3695 {ISD::SMIN, MVT::v16i32, 1}, 3696 {ISD::UMIN, MVT::v16i32, 1}, 3697 }; 3698 3699 static const CostTblEntry AVX512BWCostTbl[] = { 3700 {ISD::SMIN, MVT::v32i16, 1}, 3701 {ISD::UMIN, MVT::v32i16, 1}, 3702 {ISD::SMIN, MVT::v64i8, 1}, 3703 {ISD::UMIN, MVT::v64i8, 1}, 3704 }; 3705 3706 // If we have a native MIN/MAX instruction for this type, use it. 3707 if (ST->hasBWI()) 3708 if (const auto *Entry = CostTableLookup(AVX512BWCostTbl, ISD, MTy)) 3709 return LT.first * Entry->Cost; 3710 3711 if (ST->hasAVX512()) 3712 if (const auto *Entry = CostTableLookup(AVX512CostTbl, ISD, MTy)) 3713 return LT.first * Entry->Cost; 3714 3715 if (ST->hasAVX2()) 3716 if (const auto *Entry = CostTableLookup(AVX2CostTbl, ISD, MTy)) 3717 return LT.first * Entry->Cost; 3718 3719 if (ST->hasAVX()) 3720 if (const auto *Entry = CostTableLookup(AVX1CostTbl, ISD, MTy)) 3721 return LT.first * Entry->Cost; 3722 3723 if (ST->hasSSE42()) 3724 if (const auto *Entry = CostTableLookup(SSE42CostTbl, ISD, MTy)) 3725 return LT.first * Entry->Cost; 3726 3727 if (ST->hasSSE41()) 3728 if (const auto *Entry = CostTableLookup(SSE41CostTbl, ISD, MTy)) 3729 return LT.first * Entry->Cost; 3730 3731 if (ST->hasSSE2()) 3732 if (const auto *Entry = CostTableLookup(SSE2CostTbl, ISD, MTy)) 3733 return LT.first * Entry->Cost; 3734 3735 if (ST->hasSSE1()) 3736 if (const auto *Entry = CostTableLookup(SSE1CostTbl, ISD, MTy)) 3737 return LT.first * Entry->Cost; 3738 3739 unsigned CmpOpcode; 3740 if (Ty->isFPOrFPVectorTy()) { 3741 CmpOpcode = Instruction::FCmp; 3742 } else { 3743 assert(Ty->isIntOrIntVectorTy() && 3744 "expecting floating point or integer type for min/max reduction"); 3745 CmpOpcode = Instruction::ICmp; 3746 } 3747 3748 TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 3749 // Otherwise fall back to cmp+select. 3750 InstructionCost Result = 3751 getCmpSelInstrCost(CmpOpcode, Ty, CondTy, CmpInst::BAD_ICMP_PREDICATE, 3752 CostKind) + 3753 getCmpSelInstrCost(Instruction::Select, Ty, CondTy, 3754 CmpInst::BAD_ICMP_PREDICATE, CostKind); 3755 return Result; 3756 } 3757 3758 InstructionCost 3759 X86TTIImpl::getMinMaxReductionCost(VectorType *ValTy, VectorType *CondTy, 3760 bool IsPairwise, bool IsUnsigned, 3761 TTI::TargetCostKind CostKind) { 3762 // Just use the default implementation for pair reductions. 3763 if (IsPairwise) 3764 return BaseT::getMinMaxReductionCost(ValTy, CondTy, IsPairwise, IsUnsigned, 3765 CostKind); 3766 3767 std::pair<InstructionCost, MVT> LT = TLI->getTypeLegalizationCost(DL, ValTy); 3768 3769 MVT MTy = LT.second; 3770 3771 int ISD; 3772 if (ValTy->isIntOrIntVectorTy()) { 3773 ISD = IsUnsigned ? ISD::UMIN : ISD::SMIN; 3774 } else { 3775 assert(ValTy->isFPOrFPVectorTy() && 3776 "Expected float point or integer vector type."); 3777 ISD = ISD::FMINNUM; 3778 } 3779 3780 // We use the Intel Architecture Code Analyzer(IACA) to measure the throughput 3781 // and make it as the cost. 3782 3783 static const CostTblEntry SSE2CostTblNoPairWise[] = { 3784 {ISD::UMIN, MVT::v2i16, 5}, // need pxors to use pminsw/pmaxsw 3785 {ISD::UMIN, MVT::v4i16, 7}, // need pxors to use pminsw/pmaxsw 3786 {ISD::UMIN, MVT::v8i16, 9}, // need pxors to use pminsw/pmaxsw 3787 }; 3788 3789 static const CostTblEntry SSE41CostTblNoPairWise[] = { 3790 {ISD::SMIN, MVT::v2i16, 3}, // same as sse2 3791 {ISD::SMIN, MVT::v4i16, 5}, // same as sse2 3792 {ISD::UMIN, MVT::v2i16, 5}, // same as sse2 3793 {ISD::UMIN, MVT::v4i16, 7}, // same as sse2 3794 {ISD::SMIN, MVT::v8i16, 4}, // phminposuw+xor 3795 {ISD::UMIN, MVT::v8i16, 4}, // FIXME: umin is cheaper than umax 3796 {ISD::SMIN, MVT::v2i8, 3}, // pminsb 3797 {ISD::SMIN, MVT::v4i8, 5}, // pminsb 3798 {ISD::SMIN, MVT::v8i8, 7}, // pminsb 3799 {ISD::SMIN, MVT::v16i8, 6}, 3800 {ISD::UMIN, MVT::v2i8, 3}, // same as sse2 3801 {ISD::UMIN, MVT::v4i8, 5}, // same as sse2 3802 {ISD::UMIN, MVT::v8i8, 7}, // same as sse2 3803 {ISD::UMIN, MVT::v16i8, 6}, // FIXME: umin is cheaper than umax 3804 }; 3805 3806 static const CostTblEntry AVX1CostTblNoPairWise[] = { 3807 {ISD::SMIN, MVT::v16i16, 6}, 3808 {ISD::UMIN, MVT::v16i16, 6}, // FIXME: umin is cheaper than umax 3809 {ISD::SMIN, MVT::v32i8, 8}, 3810 {ISD::UMIN, MVT::v32i8, 8}, 3811 }; 3812 3813 static const CostTblEntry AVX512BWCostTblNoPairWise[] = { 3814 {ISD::SMIN, MVT::v32i16, 8}, 3815 {ISD::UMIN, MVT::v32i16, 8}, // FIXME: umin is cheaper than umax 3816 {ISD::SMIN, MVT::v64i8, 10}, 3817 {ISD::UMIN, MVT::v64i8, 10}, 3818 }; 3819 3820 // Before legalizing the type, give a chance to look up illegal narrow types 3821 // in the table. 3822 // FIXME: Is there a better way to do this? 3823 EVT VT = TLI->getValueType(DL, ValTy); 3824 if (VT.isSimple()) { 3825 MVT MTy = VT.getSimpleVT(); 3826 if (ST->hasBWI()) 3827 if (const auto *Entry = CostTableLookup(AVX512BWCostTblNoPairWise, ISD, MTy)) 3828 return Entry->Cost; 3829 3830 if (ST->hasAVX()) 3831 if (const auto *Entry = CostTableLookup(AVX1CostTblNoPairWise, ISD, MTy)) 3832 return Entry->Cost; 3833 3834 if (ST->hasSSE41()) 3835 if (const auto *Entry = CostTableLookup(SSE41CostTblNoPairWise, ISD, MTy)) 3836 return Entry->Cost; 3837 3838 if (ST->hasSSE2()) 3839 if (const auto *Entry = CostTableLookup(SSE2CostTblNoPairWise, ISD, MTy)) 3840 return Entry->Cost; 3841 } 3842 3843 auto *ValVTy = cast<FixedVectorType>(ValTy); 3844 unsigned NumVecElts = ValVTy->getNumElements(); 3845 3846 auto *Ty = ValVTy; 3847 InstructionCost MinMaxCost = 0; 3848 if (LT.first != 1 && MTy.isVector() && 3849 MTy.getVectorNumElements() < ValVTy->getNumElements()) { 3850 // Type needs to be split. We need LT.first - 1 operations ops. 3851 Ty = FixedVectorType::get(ValVTy->getElementType(), 3852 MTy.getVectorNumElements()); 3853 auto *SubCondTy = FixedVectorType::get(CondTy->getElementType(), 3854 MTy.getVectorNumElements()); 3855 MinMaxCost = getMinMaxCost(Ty, SubCondTy, IsUnsigned); 3856 MinMaxCost *= LT.first - 1; 3857 NumVecElts = MTy.getVectorNumElements(); 3858 } 3859 3860 if (ST->hasBWI()) 3861 if (const auto *Entry = CostTableLookup(AVX512BWCostTblNoPairWise, ISD, MTy)) 3862 return MinMaxCost + Entry->Cost; 3863 3864 if (ST->hasAVX()) 3865 if (const auto *Entry = CostTableLookup(AVX1CostTblNoPairWise, ISD, MTy)) 3866 return MinMaxCost + Entry->Cost; 3867 3868 if (ST->hasSSE41()) 3869 if (const auto *Entry = CostTableLookup(SSE41CostTblNoPairWise, ISD, MTy)) 3870 return MinMaxCost + Entry->Cost; 3871 3872 if (ST->hasSSE2()) 3873 if (const auto *Entry = CostTableLookup(SSE2CostTblNoPairWise, ISD, MTy)) 3874 return MinMaxCost + Entry->Cost; 3875 3876 unsigned ScalarSize = ValTy->getScalarSizeInBits(); 3877 3878 // Special case power of 2 reductions where the scalar type isn't changed 3879 // by type legalization. 3880 if (!isPowerOf2_32(ValVTy->getNumElements()) || 3881 ScalarSize != MTy.getScalarSizeInBits()) 3882 return BaseT::getMinMaxReductionCost(ValTy, CondTy, IsPairwise, IsUnsigned, 3883 CostKind); 3884 3885 // Now handle reduction with the legal type, taking into account size changes 3886 // at each level. 3887 while (NumVecElts > 1) { 3888 // Determine the size of the remaining vector we need to reduce. 3889 unsigned Size = NumVecElts * ScalarSize; 3890 NumVecElts /= 2; 3891 // If we're reducing from 256/512 bits, use an extract_subvector. 3892 if (Size > 128) { 3893 auto *SubTy = FixedVectorType::get(ValVTy->getElementType(), NumVecElts); 3894 MinMaxCost += 3895 getShuffleCost(TTI::SK_ExtractSubvector, Ty, None, NumVecElts, SubTy); 3896 Ty = SubTy; 3897 } else if (Size == 128) { 3898 // Reducing from 128 bits is a permute of v2f64/v2i64. 3899 VectorType *ShufTy; 3900 if (ValTy->isFloatingPointTy()) 3901 ShufTy = 3902 FixedVectorType::get(Type::getDoubleTy(ValTy->getContext()), 2); 3903 else 3904 ShufTy = FixedVectorType::get(Type::getInt64Ty(ValTy->getContext()), 2); 3905 MinMaxCost += 3906 getShuffleCost(TTI::SK_PermuteSingleSrc, ShufTy, None, 0, nullptr); 3907 } else if (Size == 64) { 3908 // Reducing from 64 bits is a shuffle of v4f32/v4i32. 3909 FixedVectorType *ShufTy; 3910 if (ValTy->isFloatingPointTy()) 3911 ShufTy = FixedVectorType::get(Type::getFloatTy(ValTy->getContext()), 4); 3912 else 3913 ShufTy = FixedVectorType::get(Type::getInt32Ty(ValTy->getContext()), 4); 3914 MinMaxCost += 3915 getShuffleCost(TTI::SK_PermuteSingleSrc, ShufTy, None, 0, nullptr); 3916 } else { 3917 // Reducing from smaller size is a shift by immediate. 3918 auto *ShiftTy = FixedVectorType::get( 3919 Type::getIntNTy(ValTy->getContext(), Size), 128 / Size); 3920 MinMaxCost += getArithmeticInstrCost( 3921 Instruction::LShr, ShiftTy, TTI::TCK_RecipThroughput, 3922 TargetTransformInfo::OK_AnyValue, 3923 TargetTransformInfo::OK_UniformConstantValue, 3924 TargetTransformInfo::OP_None, TargetTransformInfo::OP_None); 3925 } 3926 3927 // Add the arithmetic op for this level. 3928 auto *SubCondTy = 3929 FixedVectorType::get(CondTy->getElementType(), Ty->getNumElements()); 3930 MinMaxCost += getMinMaxCost(Ty, SubCondTy, IsUnsigned); 3931 } 3932 3933 // Add the final extract element to the cost. 3934 return MinMaxCost + getVectorInstrCost(Instruction::ExtractElement, Ty, 0); 3935 } 3936 3937 /// Calculate the cost of materializing a 64-bit value. This helper 3938 /// method might only calculate a fraction of a larger immediate. Therefore it 3939 /// is valid to return a cost of ZERO. 3940 InstructionCost X86TTIImpl::getIntImmCost(int64_t Val) { 3941 if (Val == 0) 3942 return TTI::TCC_Free; 3943 3944 if (isInt<32>(Val)) 3945 return TTI::TCC_Basic; 3946 3947 return 2 * TTI::TCC_Basic; 3948 } 3949 3950 InstructionCost X86TTIImpl::getIntImmCost(const APInt &Imm, Type *Ty, 3951 TTI::TargetCostKind CostKind) { 3952 assert(Ty->isIntegerTy()); 3953 3954 unsigned BitSize = Ty->getPrimitiveSizeInBits(); 3955 if (BitSize == 0) 3956 return ~0U; 3957 3958 // Never hoist constants larger than 128bit, because this might lead to 3959 // incorrect code generation or assertions in codegen. 3960 // Fixme: Create a cost model for types larger than i128 once the codegen 3961 // issues have been fixed. 3962 if (BitSize > 128) 3963 return TTI::TCC_Free; 3964 3965 if (Imm == 0) 3966 return TTI::TCC_Free; 3967 3968 // Sign-extend all constants to a multiple of 64-bit. 3969 APInt ImmVal = Imm; 3970 if (BitSize % 64 != 0) 3971 ImmVal = Imm.sext(alignTo(BitSize, 64)); 3972 3973 // Split the constant into 64-bit chunks and calculate the cost for each 3974 // chunk. 3975 InstructionCost Cost = 0; 3976 for (unsigned ShiftVal = 0; ShiftVal < BitSize; ShiftVal += 64) { 3977 APInt Tmp = ImmVal.ashr(ShiftVal).sextOrTrunc(64); 3978 int64_t Val = Tmp.getSExtValue(); 3979 Cost += getIntImmCost(Val); 3980 } 3981 // We need at least one instruction to materialize the constant. 3982 return std::max<InstructionCost>(1, Cost); 3983 } 3984 3985 InstructionCost X86TTIImpl::getIntImmCostInst(unsigned Opcode, unsigned Idx, 3986 const APInt &Imm, Type *Ty, 3987 TTI::TargetCostKind CostKind, 3988 Instruction *Inst) { 3989 assert(Ty->isIntegerTy()); 3990 3991 unsigned BitSize = Ty->getPrimitiveSizeInBits(); 3992 // There is no cost model for constants with a bit size of 0. Return TCC_Free 3993 // here, so that constant hoisting will ignore this constant. 3994 if (BitSize == 0) 3995 return TTI::TCC_Free; 3996 3997 unsigned ImmIdx = ~0U; 3998 switch (Opcode) { 3999 default: 4000 return TTI::TCC_Free; 4001 case Instruction::GetElementPtr: 4002 // Always hoist the base address of a GetElementPtr. This prevents the 4003 // creation of new constants for every base constant that gets constant 4004 // folded with the offset. 4005 if (Idx == 0) 4006 return 2 * TTI::TCC_Basic; 4007 return TTI::TCC_Free; 4008 case Instruction::Store: 4009 ImmIdx = 0; 4010 break; 4011 case Instruction::ICmp: 4012 // This is an imperfect hack to prevent constant hoisting of 4013 // compares that might be trying to check if a 64-bit value fits in 4014 // 32-bits. The backend can optimize these cases using a right shift by 32. 4015 // Ideally we would check the compare predicate here. There also other 4016 // similar immediates the backend can use shifts for. 4017 if (Idx == 1 && Imm.getBitWidth() == 64) { 4018 uint64_t ImmVal = Imm.getZExtValue(); 4019 if (ImmVal == 0x100000000ULL || ImmVal == 0xffffffff) 4020 return TTI::TCC_Free; 4021 } 4022 ImmIdx = 1; 4023 break; 4024 case Instruction::And: 4025 // We support 64-bit ANDs with immediates with 32-bits of leading zeroes 4026 // by using a 32-bit operation with implicit zero extension. Detect such 4027 // immediates here as the normal path expects bit 31 to be sign extended. 4028 if (Idx == 1 && Imm.getBitWidth() == 64 && isUInt<32>(Imm.getZExtValue())) 4029 return TTI::TCC_Free; 4030 ImmIdx = 1; 4031 break; 4032 case Instruction::Add: 4033 case Instruction::Sub: 4034 // For add/sub, we can use the opposite instruction for INT32_MIN. 4035 if (Idx == 1 && Imm.getBitWidth() == 64 && Imm.getZExtValue() == 0x80000000) 4036 return TTI::TCC_Free; 4037 ImmIdx = 1; 4038 break; 4039 case Instruction::UDiv: 4040 case Instruction::SDiv: 4041 case Instruction::URem: 4042 case Instruction::SRem: 4043 // Division by constant is typically expanded later into a different 4044 // instruction sequence. This completely changes the constants. 4045 // Report them as "free" to stop ConstantHoist from marking them as opaque. 4046 return TTI::TCC_Free; 4047 case Instruction::Mul: 4048 case Instruction::Or: 4049 case Instruction::Xor: 4050 ImmIdx = 1; 4051 break; 4052 // Always return TCC_Free for the shift value of a shift instruction. 4053 case Instruction::Shl: 4054 case Instruction::LShr: 4055 case Instruction::AShr: 4056 if (Idx == 1) 4057 return TTI::TCC_Free; 4058 break; 4059 case Instruction::Trunc: 4060 case Instruction::ZExt: 4061 case Instruction::SExt: 4062 case Instruction::IntToPtr: 4063 case Instruction::PtrToInt: 4064 case Instruction::BitCast: 4065 case Instruction::PHI: 4066 case Instruction::Call: 4067 case Instruction::Select: 4068 case Instruction::Ret: 4069 case Instruction::Load: 4070 break; 4071 } 4072 4073 if (Idx == ImmIdx) { 4074 int NumConstants = divideCeil(BitSize, 64); 4075 InstructionCost Cost = X86TTIImpl::getIntImmCost(Imm, Ty, CostKind); 4076 return (Cost <= NumConstants * TTI::TCC_Basic) 4077 ? static_cast<int>(TTI::TCC_Free) 4078 : Cost; 4079 } 4080 4081 return X86TTIImpl::getIntImmCost(Imm, Ty, CostKind); 4082 } 4083 4084 InstructionCost X86TTIImpl::getIntImmCostIntrin(Intrinsic::ID IID, unsigned Idx, 4085 const APInt &Imm, Type *Ty, 4086 TTI::TargetCostKind CostKind) { 4087 assert(Ty->isIntegerTy()); 4088 4089 unsigned BitSize = Ty->getPrimitiveSizeInBits(); 4090 // There is no cost model for constants with a bit size of 0. Return TCC_Free 4091 // here, so that constant hoisting will ignore this constant. 4092 if (BitSize == 0) 4093 return TTI::TCC_Free; 4094 4095 switch (IID) { 4096 default: 4097 return TTI::TCC_Free; 4098 case Intrinsic::sadd_with_overflow: 4099 case Intrinsic::uadd_with_overflow: 4100 case Intrinsic::ssub_with_overflow: 4101 case Intrinsic::usub_with_overflow: 4102 case Intrinsic::smul_with_overflow: 4103 case Intrinsic::umul_with_overflow: 4104 if ((Idx == 1) && Imm.getBitWidth() <= 64 && isInt<32>(Imm.getSExtValue())) 4105 return TTI::TCC_Free; 4106 break; 4107 case Intrinsic::experimental_stackmap: 4108 if ((Idx < 2) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue()))) 4109 return TTI::TCC_Free; 4110 break; 4111 case Intrinsic::experimental_patchpoint_void: 4112 case Intrinsic::experimental_patchpoint_i64: 4113 if ((Idx < 4) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue()))) 4114 return TTI::TCC_Free; 4115 break; 4116 } 4117 return X86TTIImpl::getIntImmCost(Imm, Ty, CostKind); 4118 } 4119 4120 InstructionCost X86TTIImpl::getCFInstrCost(unsigned Opcode, 4121 TTI::TargetCostKind CostKind, 4122 const Instruction *I) { 4123 if (CostKind != TTI::TCK_RecipThroughput) 4124 return Opcode == Instruction::PHI ? 0 : 1; 4125 // Branches are assumed to be predicted. 4126 return 0; 4127 } 4128 4129 int X86TTIImpl::getGatherOverhead() const { 4130 // Some CPUs have more overhead for gather. The specified overhead is relative 4131 // to the Load operation. "2" is the number provided by Intel architects. This 4132 // parameter is used for cost estimation of Gather Op and comparison with 4133 // other alternatives. 4134 // TODO: Remove the explicit hasAVX512()?, That would mean we would only 4135 // enable gather with a -march. 4136 if (ST->hasAVX512() || (ST->hasAVX2() && ST->hasFastGather())) 4137 return 2; 4138 4139 return 1024; 4140 } 4141 4142 int X86TTIImpl::getScatterOverhead() const { 4143 if (ST->hasAVX512()) 4144 return 2; 4145 4146 return 1024; 4147 } 4148 4149 // Return an average cost of Gather / Scatter instruction, maybe improved later. 4150 // FIXME: Add TargetCostKind support. 4151 InstructionCost X86TTIImpl::getGSVectorCost(unsigned Opcode, Type *SrcVTy, 4152 const Value *Ptr, Align Alignment, 4153 unsigned AddressSpace) { 4154 4155 assert(isa<VectorType>(SrcVTy) && "Unexpected type in getGSVectorCost"); 4156 unsigned VF = cast<FixedVectorType>(SrcVTy)->getNumElements(); 4157 4158 // Try to reduce index size from 64 bit (default for GEP) 4159 // to 32. It is essential for VF 16. If the index can't be reduced to 32, the 4160 // operation will use 16 x 64 indices which do not fit in a zmm and needs 4161 // to split. Also check that the base pointer is the same for all lanes, 4162 // and that there's at most one variable index. 4163 auto getIndexSizeInBits = [](const Value *Ptr, const DataLayout &DL) { 4164 unsigned IndexSize = DL.getPointerSizeInBits(); 4165 const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr); 4166 if (IndexSize < 64 || !GEP) 4167 return IndexSize; 4168 4169 unsigned NumOfVarIndices = 0; 4170 const Value *Ptrs = GEP->getPointerOperand(); 4171 if (Ptrs->getType()->isVectorTy() && !getSplatValue(Ptrs)) 4172 return IndexSize; 4173 for (unsigned i = 1; i < GEP->getNumOperands(); ++i) { 4174 if (isa<Constant>(GEP->getOperand(i))) 4175 continue; 4176 Type *IndxTy = GEP->getOperand(i)->getType(); 4177 if (auto *IndexVTy = dyn_cast<VectorType>(IndxTy)) 4178 IndxTy = IndexVTy->getElementType(); 4179 if ((IndxTy->getPrimitiveSizeInBits() == 64 && 4180 !isa<SExtInst>(GEP->getOperand(i))) || 4181 ++NumOfVarIndices > 1) 4182 return IndexSize; // 64 4183 } 4184 return (unsigned)32; 4185 }; 4186 4187 // Trying to reduce IndexSize to 32 bits for vector 16. 4188 // By default the IndexSize is equal to pointer size. 4189 unsigned IndexSize = (ST->hasAVX512() && VF >= 16) 4190 ? getIndexSizeInBits(Ptr, DL) 4191 : DL.getPointerSizeInBits(); 4192 4193 auto *IndexVTy = FixedVectorType::get( 4194 IntegerType::get(SrcVTy->getContext(), IndexSize), VF); 4195 std::pair<InstructionCost, MVT> IdxsLT = 4196 TLI->getTypeLegalizationCost(DL, IndexVTy); 4197 std::pair<InstructionCost, MVT> SrcLT = 4198 TLI->getTypeLegalizationCost(DL, SrcVTy); 4199 InstructionCost::CostType SplitFactor = 4200 *std::max(IdxsLT.first, SrcLT.first).getValue(); 4201 if (SplitFactor > 1) { 4202 // Handle splitting of vector of pointers 4203 auto *SplitSrcTy = 4204 FixedVectorType::get(SrcVTy->getScalarType(), VF / SplitFactor); 4205 return SplitFactor * getGSVectorCost(Opcode, SplitSrcTy, Ptr, Alignment, 4206 AddressSpace); 4207 } 4208 4209 // The gather / scatter cost is given by Intel architects. It is a rough 4210 // number since we are looking at one instruction in a time. 4211 const int GSOverhead = (Opcode == Instruction::Load) 4212 ? getGatherOverhead() 4213 : getScatterOverhead(); 4214 return GSOverhead + VF * getMemoryOpCost(Opcode, SrcVTy->getScalarType(), 4215 MaybeAlign(Alignment), AddressSpace, 4216 TTI::TCK_RecipThroughput); 4217 } 4218 4219 /// Return the cost of full scalarization of gather / scatter operation. 4220 /// 4221 /// Opcode - Load or Store instruction. 4222 /// SrcVTy - The type of the data vector that should be gathered or scattered. 4223 /// VariableMask - The mask is non-constant at compile time. 4224 /// Alignment - Alignment for one element. 4225 /// AddressSpace - pointer[s] address space. 4226 /// 4227 /// FIXME: Add TargetCostKind support. 4228 InstructionCost X86TTIImpl::getGSScalarCost(unsigned Opcode, Type *SrcVTy, 4229 bool VariableMask, Align Alignment, 4230 unsigned AddressSpace) { 4231 unsigned VF = cast<FixedVectorType>(SrcVTy)->getNumElements(); 4232 APInt DemandedElts = APInt::getAllOnesValue(VF); 4233 TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 4234 4235 InstructionCost MaskUnpackCost = 0; 4236 if (VariableMask) { 4237 auto *MaskTy = 4238 FixedVectorType::get(Type::getInt1Ty(SrcVTy->getContext()), VF); 4239 MaskUnpackCost = 4240 getScalarizationOverhead(MaskTy, DemandedElts, false, true); 4241 InstructionCost ScalarCompareCost = getCmpSelInstrCost( 4242 Instruction::ICmp, Type::getInt1Ty(SrcVTy->getContext()), nullptr, 4243 CmpInst::BAD_ICMP_PREDICATE, CostKind); 4244 InstructionCost BranchCost = getCFInstrCost(Instruction::Br, CostKind); 4245 MaskUnpackCost += VF * (BranchCost + ScalarCompareCost); 4246 } 4247 4248 // The cost of the scalar loads/stores. 4249 InstructionCost MemoryOpCost = 4250 VF * getMemoryOpCost(Opcode, SrcVTy->getScalarType(), 4251 MaybeAlign(Alignment), AddressSpace, CostKind); 4252 4253 InstructionCost InsertExtractCost = 0; 4254 if (Opcode == Instruction::Load) 4255 for (unsigned i = 0; i < VF; ++i) 4256 // Add the cost of inserting each scalar load into the vector 4257 InsertExtractCost += 4258 getVectorInstrCost(Instruction::InsertElement, SrcVTy, i); 4259 else 4260 for (unsigned i = 0; i < VF; ++i) 4261 // Add the cost of extracting each element out of the data vector 4262 InsertExtractCost += 4263 getVectorInstrCost(Instruction::ExtractElement, SrcVTy, i); 4264 4265 return MemoryOpCost + MaskUnpackCost + InsertExtractCost; 4266 } 4267 4268 /// Calculate the cost of Gather / Scatter operation 4269 InstructionCost X86TTIImpl::getGatherScatterOpCost( 4270 unsigned Opcode, Type *SrcVTy, const Value *Ptr, bool VariableMask, 4271 Align Alignment, TTI::TargetCostKind CostKind, 4272 const Instruction *I = nullptr) { 4273 if (CostKind != TTI::TCK_RecipThroughput) { 4274 if ((Opcode == Instruction::Load && 4275 isLegalMaskedGather(SrcVTy, Align(Alignment))) || 4276 (Opcode == Instruction::Store && 4277 isLegalMaskedScatter(SrcVTy, Align(Alignment)))) 4278 return 1; 4279 return BaseT::getGatherScatterOpCost(Opcode, SrcVTy, Ptr, VariableMask, 4280 Alignment, CostKind, I); 4281 } 4282 4283 assert(SrcVTy->isVectorTy() && "Unexpected data type for Gather/Scatter"); 4284 unsigned VF = cast<FixedVectorType>(SrcVTy)->getNumElements(); 4285 PointerType *PtrTy = dyn_cast<PointerType>(Ptr->getType()); 4286 if (!PtrTy && Ptr->getType()->isVectorTy()) 4287 PtrTy = dyn_cast<PointerType>( 4288 cast<VectorType>(Ptr->getType())->getElementType()); 4289 assert(PtrTy && "Unexpected type for Ptr argument"); 4290 unsigned AddressSpace = PtrTy->getAddressSpace(); 4291 4292 bool Scalarize = false; 4293 if ((Opcode == Instruction::Load && 4294 !isLegalMaskedGather(SrcVTy, Align(Alignment))) || 4295 (Opcode == Instruction::Store && 4296 !isLegalMaskedScatter(SrcVTy, Align(Alignment)))) 4297 Scalarize = true; 4298 // Gather / Scatter for vector 2 is not profitable on KNL / SKX 4299 // Vector-4 of gather/scatter instruction does not exist on KNL. 4300 // We can extend it to 8 elements, but zeroing upper bits of 4301 // the mask vector will add more instructions. Right now we give the scalar 4302 // cost of vector-4 for KNL. TODO: Check, maybe the gather/scatter instruction 4303 // is better in the VariableMask case. 4304 if (ST->hasAVX512() && (VF == 2 || (VF == 4 && !ST->hasVLX()))) 4305 Scalarize = true; 4306 4307 if (Scalarize) 4308 return getGSScalarCost(Opcode, SrcVTy, VariableMask, Alignment, 4309 AddressSpace); 4310 4311 return getGSVectorCost(Opcode, SrcVTy, Ptr, Alignment, AddressSpace); 4312 } 4313 4314 bool X86TTIImpl::isLSRCostLess(TargetTransformInfo::LSRCost &C1, 4315 TargetTransformInfo::LSRCost &C2) { 4316 // X86 specific here are "instruction number 1st priority". 4317 return std::tie(C1.Insns, C1.NumRegs, C1.AddRecCost, 4318 C1.NumIVMuls, C1.NumBaseAdds, 4319 C1.ScaleCost, C1.ImmCost, C1.SetupCost) < 4320 std::tie(C2.Insns, C2.NumRegs, C2.AddRecCost, 4321 C2.NumIVMuls, C2.NumBaseAdds, 4322 C2.ScaleCost, C2.ImmCost, C2.SetupCost); 4323 } 4324 4325 bool X86TTIImpl::canMacroFuseCmp() { 4326 return ST->hasMacroFusion() || ST->hasBranchFusion(); 4327 } 4328 4329 bool X86TTIImpl::isLegalMaskedLoad(Type *DataTy, Align Alignment) { 4330 if (!ST->hasAVX()) 4331 return false; 4332 4333 // The backend can't handle a single element vector. 4334 if (isa<VectorType>(DataTy) && 4335 cast<FixedVectorType>(DataTy)->getNumElements() == 1) 4336 return false; 4337 Type *ScalarTy = DataTy->getScalarType(); 4338 4339 if (ScalarTy->isPointerTy()) 4340 return true; 4341 4342 if (ScalarTy->isFloatTy() || ScalarTy->isDoubleTy()) 4343 return true; 4344 4345 if (!ScalarTy->isIntegerTy()) 4346 return false; 4347 4348 unsigned IntWidth = ScalarTy->getIntegerBitWidth(); 4349 return IntWidth == 32 || IntWidth == 64 || 4350 ((IntWidth == 8 || IntWidth == 16) && ST->hasBWI()); 4351 } 4352 4353 bool X86TTIImpl::isLegalMaskedStore(Type *DataType, Align Alignment) { 4354 return isLegalMaskedLoad(DataType, Alignment); 4355 } 4356 4357 bool X86TTIImpl::isLegalNTLoad(Type *DataType, Align Alignment) { 4358 unsigned DataSize = DL.getTypeStoreSize(DataType); 4359 // The only supported nontemporal loads are for aligned vectors of 16 or 32 4360 // bytes. Note that 32-byte nontemporal vector loads are supported by AVX2 4361 // (the equivalent stores only require AVX). 4362 if (Alignment >= DataSize && (DataSize == 16 || DataSize == 32)) 4363 return DataSize == 16 ? ST->hasSSE1() : ST->hasAVX2(); 4364 4365 return false; 4366 } 4367 4368 bool X86TTIImpl::isLegalNTStore(Type *DataType, Align Alignment) { 4369 unsigned DataSize = DL.getTypeStoreSize(DataType); 4370 4371 // SSE4A supports nontemporal stores of float and double at arbitrary 4372 // alignment. 4373 if (ST->hasSSE4A() && (DataType->isFloatTy() || DataType->isDoubleTy())) 4374 return true; 4375 4376 // Besides the SSE4A subtarget exception above, only aligned stores are 4377 // available nontemporaly on any other subtarget. And only stores with a size 4378 // of 4..32 bytes (powers of 2, only) are permitted. 4379 if (Alignment < DataSize || DataSize < 4 || DataSize > 32 || 4380 !isPowerOf2_32(DataSize)) 4381 return false; 4382 4383 // 32-byte vector nontemporal stores are supported by AVX (the equivalent 4384 // loads require AVX2). 4385 if (DataSize == 32) 4386 return ST->hasAVX(); 4387 else if (DataSize == 16) 4388 return ST->hasSSE1(); 4389 return true; 4390 } 4391 4392 bool X86TTIImpl::isLegalMaskedExpandLoad(Type *DataTy) { 4393 if (!isa<VectorType>(DataTy)) 4394 return false; 4395 4396 if (!ST->hasAVX512()) 4397 return false; 4398 4399 // The backend can't handle a single element vector. 4400 if (cast<FixedVectorType>(DataTy)->getNumElements() == 1) 4401 return false; 4402 4403 Type *ScalarTy = cast<VectorType>(DataTy)->getElementType(); 4404 4405 if (ScalarTy->isFloatTy() || ScalarTy->isDoubleTy()) 4406 return true; 4407 4408 if (!ScalarTy->isIntegerTy()) 4409 return false; 4410 4411 unsigned IntWidth = ScalarTy->getIntegerBitWidth(); 4412 return IntWidth == 32 || IntWidth == 64 || 4413 ((IntWidth == 8 || IntWidth == 16) && ST->hasVBMI2()); 4414 } 4415 4416 bool X86TTIImpl::isLegalMaskedCompressStore(Type *DataTy) { 4417 return isLegalMaskedExpandLoad(DataTy); 4418 } 4419 4420 bool X86TTIImpl::isLegalMaskedGather(Type *DataTy, Align Alignment) { 4421 // Some CPUs have better gather performance than others. 4422 // TODO: Remove the explicit ST->hasAVX512()?, That would mean we would only 4423 // enable gather with a -march. 4424 if (!(ST->hasAVX512() || (ST->hasFastGather() && ST->hasAVX2()))) 4425 return false; 4426 4427 // This function is called now in two cases: from the Loop Vectorizer 4428 // and from the Scalarizer. 4429 // When the Loop Vectorizer asks about legality of the feature, 4430 // the vectorization factor is not calculated yet. The Loop Vectorizer 4431 // sends a scalar type and the decision is based on the width of the 4432 // scalar element. 4433 // Later on, the cost model will estimate usage this intrinsic based on 4434 // the vector type. 4435 // The Scalarizer asks again about legality. It sends a vector type. 4436 // In this case we can reject non-power-of-2 vectors. 4437 // We also reject single element vectors as the type legalizer can't 4438 // scalarize it. 4439 if (auto *DataVTy = dyn_cast<FixedVectorType>(DataTy)) { 4440 unsigned NumElts = DataVTy->getNumElements(); 4441 if (NumElts == 1) 4442 return false; 4443 } 4444 Type *ScalarTy = DataTy->getScalarType(); 4445 if (ScalarTy->isPointerTy()) 4446 return true; 4447 4448 if (ScalarTy->isFloatTy() || ScalarTy->isDoubleTy()) 4449 return true; 4450 4451 if (!ScalarTy->isIntegerTy()) 4452 return false; 4453 4454 unsigned IntWidth = ScalarTy->getIntegerBitWidth(); 4455 return IntWidth == 32 || IntWidth == 64; 4456 } 4457 4458 bool X86TTIImpl::isLegalMaskedScatter(Type *DataType, Align Alignment) { 4459 // AVX2 doesn't support scatter 4460 if (!ST->hasAVX512()) 4461 return false; 4462 return isLegalMaskedGather(DataType, Alignment); 4463 } 4464 4465 bool X86TTIImpl::hasDivRemOp(Type *DataType, bool IsSigned) { 4466 EVT VT = TLI->getValueType(DL, DataType); 4467 return TLI->isOperationLegal(IsSigned ? ISD::SDIVREM : ISD::UDIVREM, VT); 4468 } 4469 4470 bool X86TTIImpl::isFCmpOrdCheaperThanFCmpZero(Type *Ty) { 4471 return false; 4472 } 4473 4474 bool X86TTIImpl::areInlineCompatible(const Function *Caller, 4475 const Function *Callee) const { 4476 const TargetMachine &TM = getTLI()->getTargetMachine(); 4477 4478 // Work this as a subsetting of subtarget features. 4479 const FeatureBitset &CallerBits = 4480 TM.getSubtargetImpl(*Caller)->getFeatureBits(); 4481 const FeatureBitset &CalleeBits = 4482 TM.getSubtargetImpl(*Callee)->getFeatureBits(); 4483 4484 FeatureBitset RealCallerBits = CallerBits & ~InlineFeatureIgnoreList; 4485 FeatureBitset RealCalleeBits = CalleeBits & ~InlineFeatureIgnoreList; 4486 return (RealCallerBits & RealCalleeBits) == RealCalleeBits; 4487 } 4488 4489 bool X86TTIImpl::areFunctionArgsABICompatible( 4490 const Function *Caller, const Function *Callee, 4491 SmallPtrSetImpl<Argument *> &Args) const { 4492 if (!BaseT::areFunctionArgsABICompatible(Caller, Callee, Args)) 4493 return false; 4494 4495 // If we get here, we know the target features match. If one function 4496 // considers 512-bit vectors legal and the other does not, consider them 4497 // incompatible. 4498 const TargetMachine &TM = getTLI()->getTargetMachine(); 4499 4500 if (TM.getSubtarget<X86Subtarget>(*Caller).useAVX512Regs() == 4501 TM.getSubtarget<X86Subtarget>(*Callee).useAVX512Regs()) 4502 return true; 4503 4504 // Consider the arguments compatible if they aren't vectors or aggregates. 4505 // FIXME: Look at the size of vectors. 4506 // FIXME: Look at the element types of aggregates to see if there are vectors. 4507 // FIXME: The API of this function seems intended to allow arguments 4508 // to be removed from the set, but the caller doesn't check if the set 4509 // becomes empty so that may not work in practice. 4510 return llvm::none_of(Args, [](Argument *A) { 4511 auto *EltTy = cast<PointerType>(A->getType())->getElementType(); 4512 return EltTy->isVectorTy() || EltTy->isAggregateType(); 4513 }); 4514 } 4515 4516 X86TTIImpl::TTI::MemCmpExpansionOptions 4517 X86TTIImpl::enableMemCmpExpansion(bool OptSize, bool IsZeroCmp) const { 4518 TTI::MemCmpExpansionOptions Options; 4519 Options.MaxNumLoads = TLI->getMaxExpandSizeMemcmp(OptSize); 4520 Options.NumLoadsPerBlock = 2; 4521 // All GPR and vector loads can be unaligned. 4522 Options.AllowOverlappingLoads = true; 4523 if (IsZeroCmp) { 4524 // Only enable vector loads for equality comparison. Right now the vector 4525 // version is not as fast for three way compare (see #33329). 4526 const unsigned PreferredWidth = ST->getPreferVectorWidth(); 4527 if (PreferredWidth >= 512 && ST->hasAVX512()) Options.LoadSizes.push_back(64); 4528 if (PreferredWidth >= 256 && ST->hasAVX()) Options.LoadSizes.push_back(32); 4529 if (PreferredWidth >= 128 && ST->hasSSE2()) Options.LoadSizes.push_back(16); 4530 } 4531 if (ST->is64Bit()) { 4532 Options.LoadSizes.push_back(8); 4533 } 4534 Options.LoadSizes.push_back(4); 4535 Options.LoadSizes.push_back(2); 4536 Options.LoadSizes.push_back(1); 4537 return Options; 4538 } 4539 4540 bool X86TTIImpl::enableInterleavedAccessVectorization() { 4541 // TODO: We expect this to be beneficial regardless of arch, 4542 // but there are currently some unexplained performance artifacts on Atom. 4543 // As a temporary solution, disable on Atom. 4544 return !(ST->isAtom()); 4545 } 4546 4547 // Get estimation for interleaved load/store operations for AVX2. 4548 // \p Factor is the interleaved-access factor (stride) - number of 4549 // (interleaved) elements in the group. 4550 // \p Indices contains the indices for a strided load: when the 4551 // interleaved load has gaps they indicate which elements are used. 4552 // If Indices is empty (or if the number of indices is equal to the size 4553 // of the interleaved-access as given in \p Factor) the access has no gaps. 4554 // 4555 // As opposed to AVX-512, AVX2 does not have generic shuffles that allow 4556 // computing the cost using a generic formula as a function of generic 4557 // shuffles. We therefore use a lookup table instead, filled according to 4558 // the instruction sequences that codegen currently generates. 4559 InstructionCost X86TTIImpl::getInterleavedMemoryOpCostAVX2( 4560 unsigned Opcode, FixedVectorType *VecTy, unsigned Factor, 4561 ArrayRef<unsigned> Indices, Align Alignment, unsigned AddressSpace, 4562 TTI::TargetCostKind CostKind, bool UseMaskForCond, bool UseMaskForGaps) { 4563 4564 if (UseMaskForCond || UseMaskForGaps) 4565 return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices, 4566 Alignment, AddressSpace, CostKind, 4567 UseMaskForCond, UseMaskForGaps); 4568 4569 // We currently Support only fully-interleaved groups, with no gaps. 4570 // TODO: Support also strided loads (interleaved-groups with gaps). 4571 if (Indices.size() && Indices.size() != Factor) 4572 return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices, 4573 Alignment, AddressSpace, 4574 CostKind); 4575 4576 // VecTy for interleave memop is <VF*Factor x Elt>. 4577 // So, for VF=4, Interleave Factor = 3, Element type = i32 we have 4578 // VecTy = <12 x i32>. 4579 MVT LegalVT = getTLI()->getTypeLegalizationCost(DL, VecTy).second; 4580 4581 // This function can be called with VecTy=<6xi128>, Factor=3, in which case 4582 // the VF=2, while v2i128 is an unsupported MVT vector type 4583 // (see MachineValueType.h::getVectorVT()). 4584 if (!LegalVT.isVector()) 4585 return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices, 4586 Alignment, AddressSpace, 4587 CostKind); 4588 4589 unsigned VF = VecTy->getNumElements() / Factor; 4590 Type *ScalarTy = VecTy->getElementType(); 4591 4592 // Calculate the number of memory operations (NumOfMemOps), required 4593 // for load/store the VecTy. 4594 unsigned VecTySize = DL.getTypeStoreSize(VecTy); 4595 unsigned LegalVTSize = LegalVT.getStoreSize(); 4596 unsigned NumOfMemOps = (VecTySize + LegalVTSize - 1) / LegalVTSize; 4597 4598 // Get the cost of one memory operation. 4599 auto *SingleMemOpTy = FixedVectorType::get(VecTy->getElementType(), 4600 LegalVT.getVectorNumElements()); 4601 InstructionCost MemOpCost = getMemoryOpCost( 4602 Opcode, SingleMemOpTy, MaybeAlign(Alignment), AddressSpace, CostKind); 4603 4604 auto *VT = FixedVectorType::get(ScalarTy, VF); 4605 EVT ETy = TLI->getValueType(DL, VT); 4606 if (!ETy.isSimple()) 4607 return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices, 4608 Alignment, AddressSpace, 4609 CostKind); 4610 4611 // TODO: Complete for other data-types and strides. 4612 // Each combination of Stride, ElementTy and VF results in a different 4613 // sequence; The cost tables are therefore accessed with: 4614 // Factor (stride) and VectorType=VFxElemType. 4615 // The Cost accounts only for the shuffle sequence; 4616 // The cost of the loads/stores is accounted for separately. 4617 // 4618 static const CostTblEntry AVX2InterleavedLoadTbl[] = { 4619 { 2, MVT::v4i64, 6 }, //(load 8i64 and) deinterleave into 2 x 4i64 4620 { 2, MVT::v4f64, 6 }, //(load 8f64 and) deinterleave into 2 x 4f64 4621 4622 { 3, MVT::v2i8, 10 }, //(load 6i8 and) deinterleave into 3 x 2i8 4623 { 3, MVT::v4i8, 4 }, //(load 12i8 and) deinterleave into 3 x 4i8 4624 { 3, MVT::v8i8, 9 }, //(load 24i8 and) deinterleave into 3 x 8i8 4625 { 3, MVT::v16i8, 11}, //(load 48i8 and) deinterleave into 3 x 16i8 4626 { 3, MVT::v32i8, 13}, //(load 96i8 and) deinterleave into 3 x 32i8 4627 { 3, MVT::v8f32, 17 }, //(load 24f32 and)deinterleave into 3 x 8f32 4628 4629 { 4, MVT::v2i8, 12 }, //(load 8i8 and) deinterleave into 4 x 2i8 4630 { 4, MVT::v4i8, 4 }, //(load 16i8 and) deinterleave into 4 x 4i8 4631 { 4, MVT::v8i8, 20 }, //(load 32i8 and) deinterleave into 4 x 8i8 4632 { 4, MVT::v16i8, 39 }, //(load 64i8 and) deinterleave into 4 x 16i8 4633 { 4, MVT::v32i8, 80 }, //(load 128i8 and) deinterleave into 4 x 32i8 4634 4635 { 8, MVT::v8f32, 40 } //(load 64f32 and)deinterleave into 8 x 8f32 4636 }; 4637 4638 static const CostTblEntry AVX2InterleavedStoreTbl[] = { 4639 { 2, MVT::v4i64, 6 }, //interleave into 2 x 4i64 into 8i64 (and store) 4640 { 2, MVT::v4f64, 6 }, //interleave into 2 x 4f64 into 8f64 (and store) 4641 4642 { 3, MVT::v2i8, 7 }, //interleave 3 x 2i8 into 6i8 (and store) 4643 { 3, MVT::v4i8, 8 }, //interleave 3 x 4i8 into 12i8 (and store) 4644 { 3, MVT::v8i8, 11 }, //interleave 3 x 8i8 into 24i8 (and store) 4645 { 3, MVT::v16i8, 11 }, //interleave 3 x 16i8 into 48i8 (and store) 4646 { 3, MVT::v32i8, 13 }, //interleave 3 x 32i8 into 96i8 (and store) 4647 4648 { 4, MVT::v2i8, 12 }, //interleave 4 x 2i8 into 8i8 (and store) 4649 { 4, MVT::v4i8, 9 }, //interleave 4 x 4i8 into 16i8 (and store) 4650 { 4, MVT::v8i8, 10 }, //interleave 4 x 8i8 into 32i8 (and store) 4651 { 4, MVT::v16i8, 10 }, //interleave 4 x 16i8 into 64i8 (and store) 4652 { 4, MVT::v32i8, 12 } //interleave 4 x 32i8 into 128i8 (and store) 4653 }; 4654 4655 if (Opcode == Instruction::Load) { 4656 if (const auto *Entry = 4657 CostTableLookup(AVX2InterleavedLoadTbl, Factor, ETy.getSimpleVT())) 4658 return NumOfMemOps * MemOpCost + Entry->Cost; 4659 } else { 4660 assert(Opcode == Instruction::Store && 4661 "Expected Store Instruction at this point"); 4662 if (const auto *Entry = 4663 CostTableLookup(AVX2InterleavedStoreTbl, Factor, ETy.getSimpleVT())) 4664 return NumOfMemOps * MemOpCost + Entry->Cost; 4665 } 4666 4667 return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices, 4668 Alignment, AddressSpace, CostKind); 4669 } 4670 4671 // Get estimation for interleaved load/store operations and strided load. 4672 // \p Indices contains indices for strided load. 4673 // \p Factor - the factor of interleaving. 4674 // AVX-512 provides 3-src shuffles that significantly reduces the cost. 4675 InstructionCost X86TTIImpl::getInterleavedMemoryOpCostAVX512( 4676 unsigned Opcode, FixedVectorType *VecTy, unsigned Factor, 4677 ArrayRef<unsigned> Indices, Align Alignment, unsigned AddressSpace, 4678 TTI::TargetCostKind CostKind, bool UseMaskForCond, bool UseMaskForGaps) { 4679 4680 if (UseMaskForCond || UseMaskForGaps) 4681 return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices, 4682 Alignment, AddressSpace, CostKind, 4683 UseMaskForCond, UseMaskForGaps); 4684 4685 // VecTy for interleave memop is <VF*Factor x Elt>. 4686 // So, for VF=4, Interleave Factor = 3, Element type = i32 we have 4687 // VecTy = <12 x i32>. 4688 4689 // Calculate the number of memory operations (NumOfMemOps), required 4690 // for load/store the VecTy. 4691 MVT LegalVT = getTLI()->getTypeLegalizationCost(DL, VecTy).second; 4692 unsigned VecTySize = DL.getTypeStoreSize(VecTy); 4693 unsigned LegalVTSize = LegalVT.getStoreSize(); 4694 unsigned NumOfMemOps = (VecTySize + LegalVTSize - 1) / LegalVTSize; 4695 4696 // Get the cost of one memory operation. 4697 auto *SingleMemOpTy = FixedVectorType::get(VecTy->getElementType(), 4698 LegalVT.getVectorNumElements()); 4699 InstructionCost MemOpCost = getMemoryOpCost( 4700 Opcode, SingleMemOpTy, MaybeAlign(Alignment), AddressSpace, CostKind); 4701 4702 unsigned VF = VecTy->getNumElements() / Factor; 4703 MVT VT = MVT::getVectorVT(MVT::getVT(VecTy->getScalarType()), VF); 4704 4705 if (Opcode == Instruction::Load) { 4706 // The tables (AVX512InterleavedLoadTbl and AVX512InterleavedStoreTbl) 4707 // contain the cost of the optimized shuffle sequence that the 4708 // X86InterleavedAccess pass will generate. 4709 // The cost of loads and stores are computed separately from the table. 4710 4711 // X86InterleavedAccess support only the following interleaved-access group. 4712 static const CostTblEntry AVX512InterleavedLoadTbl[] = { 4713 {3, MVT::v16i8, 12}, //(load 48i8 and) deinterleave into 3 x 16i8 4714 {3, MVT::v32i8, 14}, //(load 96i8 and) deinterleave into 3 x 32i8 4715 {3, MVT::v64i8, 22}, //(load 96i8 and) deinterleave into 3 x 32i8 4716 }; 4717 4718 if (const auto *Entry = 4719 CostTableLookup(AVX512InterleavedLoadTbl, Factor, VT)) 4720 return NumOfMemOps * MemOpCost + Entry->Cost; 4721 //If an entry does not exist, fallback to the default implementation. 4722 4723 // Kind of shuffle depends on number of loaded values. 4724 // If we load the entire data in one register, we can use a 1-src shuffle. 4725 // Otherwise, we'll merge 2 sources in each operation. 4726 TTI::ShuffleKind ShuffleKind = 4727 (NumOfMemOps > 1) ? TTI::SK_PermuteTwoSrc : TTI::SK_PermuteSingleSrc; 4728 4729 InstructionCost ShuffleCost = 4730 getShuffleCost(ShuffleKind, SingleMemOpTy, None, 0, nullptr); 4731 4732 unsigned NumOfLoadsInInterleaveGrp = 4733 Indices.size() ? Indices.size() : Factor; 4734 auto *ResultTy = FixedVectorType::get(VecTy->getElementType(), 4735 VecTy->getNumElements() / Factor); 4736 InstructionCost NumOfResults = 4737 getTLI()->getTypeLegalizationCost(DL, ResultTy).first * 4738 NumOfLoadsInInterleaveGrp; 4739 4740 // About a half of the loads may be folded in shuffles when we have only 4741 // one result. If we have more than one result, we do not fold loads at all. 4742 unsigned NumOfUnfoldedLoads = 4743 NumOfResults > 1 ? NumOfMemOps : NumOfMemOps / 2; 4744 4745 // Get a number of shuffle operations per result. 4746 unsigned NumOfShufflesPerResult = 4747 std::max((unsigned)1, (unsigned)(NumOfMemOps - 1)); 4748 4749 // The SK_MergeTwoSrc shuffle clobbers one of src operands. 4750 // When we have more than one destination, we need additional instructions 4751 // to keep sources. 4752 InstructionCost NumOfMoves = 0; 4753 if (NumOfResults > 1 && ShuffleKind == TTI::SK_PermuteTwoSrc) 4754 NumOfMoves = NumOfResults * NumOfShufflesPerResult / 2; 4755 4756 InstructionCost Cost = NumOfResults * NumOfShufflesPerResult * ShuffleCost + 4757 NumOfUnfoldedLoads * MemOpCost + NumOfMoves; 4758 4759 return Cost; 4760 } 4761 4762 // Store. 4763 assert(Opcode == Instruction::Store && 4764 "Expected Store Instruction at this point"); 4765 // X86InterleavedAccess support only the following interleaved-access group. 4766 static const CostTblEntry AVX512InterleavedStoreTbl[] = { 4767 {3, MVT::v16i8, 12}, // interleave 3 x 16i8 into 48i8 (and store) 4768 {3, MVT::v32i8, 14}, // interleave 3 x 32i8 into 96i8 (and store) 4769 {3, MVT::v64i8, 26}, // interleave 3 x 64i8 into 96i8 (and store) 4770 4771 {4, MVT::v8i8, 10}, // interleave 4 x 8i8 into 32i8 (and store) 4772 {4, MVT::v16i8, 11}, // interleave 4 x 16i8 into 64i8 (and store) 4773 {4, MVT::v32i8, 14}, // interleave 4 x 32i8 into 128i8 (and store) 4774 {4, MVT::v64i8, 24} // interleave 4 x 32i8 into 256i8 (and store) 4775 }; 4776 4777 if (const auto *Entry = 4778 CostTableLookup(AVX512InterleavedStoreTbl, Factor, VT)) 4779 return NumOfMemOps * MemOpCost + Entry->Cost; 4780 //If an entry does not exist, fallback to the default implementation. 4781 4782 // There is no strided stores meanwhile. And store can't be folded in 4783 // shuffle. 4784 unsigned NumOfSources = Factor; // The number of values to be merged. 4785 InstructionCost ShuffleCost = 4786 getShuffleCost(TTI::SK_PermuteTwoSrc, SingleMemOpTy, None, 0, nullptr); 4787 unsigned NumOfShufflesPerStore = NumOfSources - 1; 4788 4789 // The SK_MergeTwoSrc shuffle clobbers one of src operands. 4790 // We need additional instructions to keep sources. 4791 unsigned NumOfMoves = NumOfMemOps * NumOfShufflesPerStore / 2; 4792 InstructionCost Cost = 4793 NumOfMemOps * (MemOpCost + NumOfShufflesPerStore * ShuffleCost) + 4794 NumOfMoves; 4795 return Cost; 4796 } 4797 4798 InstructionCost X86TTIImpl::getInterleavedMemoryOpCost( 4799 unsigned Opcode, Type *VecTy, unsigned Factor, ArrayRef<unsigned> Indices, 4800 Align Alignment, unsigned AddressSpace, TTI::TargetCostKind CostKind, 4801 bool UseMaskForCond, bool UseMaskForGaps) { 4802 auto isSupportedOnAVX512 = [](Type *VecTy, bool HasBW) { 4803 Type *EltTy = cast<VectorType>(VecTy)->getElementType(); 4804 if (EltTy->isFloatTy() || EltTy->isDoubleTy() || EltTy->isIntegerTy(64) || 4805 EltTy->isIntegerTy(32) || EltTy->isPointerTy()) 4806 return true; 4807 if (EltTy->isIntegerTy(16) || EltTy->isIntegerTy(8)) 4808 return HasBW; 4809 return false; 4810 }; 4811 if (ST->hasAVX512() && isSupportedOnAVX512(VecTy, ST->hasBWI())) 4812 return getInterleavedMemoryOpCostAVX512( 4813 Opcode, cast<FixedVectorType>(VecTy), Factor, Indices, Alignment, 4814 AddressSpace, CostKind, UseMaskForCond, UseMaskForGaps); 4815 if (ST->hasAVX2()) 4816 return getInterleavedMemoryOpCostAVX2( 4817 Opcode, cast<FixedVectorType>(VecTy), Factor, Indices, Alignment, 4818 AddressSpace, CostKind, UseMaskForCond, UseMaskForGaps); 4819 4820 return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices, 4821 Alignment, AddressSpace, CostKind, 4822 UseMaskForCond, UseMaskForGaps); 4823 } 4824