1 //===-- X86TargetTransformInfo.cpp - X86 specific TTI pass ----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 /// \file
9 /// This file implements a TargetTransformInfo analysis pass specific to the
10 /// X86 target machine. It uses the target's detailed information to provide
11 /// more precise answers to certain TTI queries, while letting the target
12 /// independent and default TTI implementations handle the rest.
13 ///
14 //===----------------------------------------------------------------------===//
15 /// About Cost Model numbers used below it's necessary to say the following:
16 /// the numbers correspond to some "generic" X86 CPU instead of usage of
17 /// concrete CPU model. Usually the numbers correspond to CPU where the feature
18 /// apeared at the first time. For example, if we do Subtarget.hasSSE42() in
19 /// the lookups below the cost is based on Nehalem as that was the first CPU
20 /// to support that feature level and thus has most likely the worst case cost.
21 /// Some examples of other technologies/CPUs:
22 ///   SSE 3   - Pentium4 / Athlon64
23 ///   SSE 4.1 - Penryn
24 ///   SSE 4.2 - Nehalem
25 ///   AVX     - Sandy Bridge
26 ///   AVX2    - Haswell
27 ///   AVX-512 - Xeon Phi / Skylake
28 /// And some examples of instruction target dependent costs (latency)
29 ///                   divss     sqrtss          rsqrtss
30 ///   AMD K7            11-16     19              3
31 ///   Piledriver        9-24      13-15           5
32 ///   Jaguar            14        16              2
33 ///   Pentium II,III    18        30              2
34 ///   Nehalem           7-14      7-18            3
35 ///   Haswell           10-13     11              5
36 /// TODO: Develop and implement  the target dependent cost model and
37 /// specialize cost numbers for different Cost Model Targets such as throughput,
38 /// code size, latency and uop count.
39 //===----------------------------------------------------------------------===//
40 
41 #include "X86TargetTransformInfo.h"
42 #include "llvm/Analysis/TargetTransformInfo.h"
43 #include "llvm/CodeGen/BasicTTIImpl.h"
44 #include "llvm/CodeGen/CostTable.h"
45 #include "llvm/CodeGen/TargetLowering.h"
46 #include "llvm/IR/IntrinsicInst.h"
47 #include "llvm/Support/Debug.h"
48 
49 using namespace llvm;
50 
51 #define DEBUG_TYPE "x86tti"
52 
53 //===----------------------------------------------------------------------===//
54 //
55 // X86 cost model.
56 //
57 //===----------------------------------------------------------------------===//
58 
59 TargetTransformInfo::PopcntSupportKind
60 X86TTIImpl::getPopcntSupport(unsigned TyWidth) {
61   assert(isPowerOf2_32(TyWidth) && "Ty width must be power of 2");
62   // TODO: Currently the __builtin_popcount() implementation using SSE3
63   //   instructions is inefficient. Once the problem is fixed, we should
64   //   call ST->hasSSE3() instead of ST->hasPOPCNT().
65   return ST->hasPOPCNT() ? TTI::PSK_FastHardware : TTI::PSK_Software;
66 }
67 
68 llvm::Optional<unsigned> X86TTIImpl::getCacheSize(
69   TargetTransformInfo::CacheLevel Level) const {
70   switch (Level) {
71   case TargetTransformInfo::CacheLevel::L1D:
72     //   - Penryn
73     //   - Nehalem
74     //   - Westmere
75     //   - Sandy Bridge
76     //   - Ivy Bridge
77     //   - Haswell
78     //   - Broadwell
79     //   - Skylake
80     //   - Kabylake
81     return 32 * 1024;  //  32 KByte
82   case TargetTransformInfo::CacheLevel::L2D:
83     //   - Penryn
84     //   - Nehalem
85     //   - Westmere
86     //   - Sandy Bridge
87     //   - Ivy Bridge
88     //   - Haswell
89     //   - Broadwell
90     //   - Skylake
91     //   - Kabylake
92     return 256 * 1024; // 256 KByte
93   }
94 
95   llvm_unreachable("Unknown TargetTransformInfo::CacheLevel");
96 }
97 
98 llvm::Optional<unsigned> X86TTIImpl::getCacheAssociativity(
99   TargetTransformInfo::CacheLevel Level) const {
100   //   - Penryn
101   //   - Nehalem
102   //   - Westmere
103   //   - Sandy Bridge
104   //   - Ivy Bridge
105   //   - Haswell
106   //   - Broadwell
107   //   - Skylake
108   //   - Kabylake
109   switch (Level) {
110   case TargetTransformInfo::CacheLevel::L1D:
111     LLVM_FALLTHROUGH;
112   case TargetTransformInfo::CacheLevel::L2D:
113     return 8;
114   }
115 
116   llvm_unreachable("Unknown TargetTransformInfo::CacheLevel");
117 }
118 
119 unsigned X86TTIImpl::getNumberOfRegisters(unsigned ClassID) const {
120   bool Vector = (ClassID == 1);
121   if (Vector && !ST->hasSSE1())
122     return 0;
123 
124   if (ST->is64Bit()) {
125     if (Vector && ST->hasAVX512())
126       return 32;
127     return 16;
128   }
129   return 8;
130 }
131 
132 TypeSize
133 X86TTIImpl::getRegisterBitWidth(TargetTransformInfo::RegisterKind K) const {
134   unsigned PreferVectorWidth = ST->getPreferVectorWidth();
135   switch (K) {
136   case TargetTransformInfo::RGK_Scalar:
137     return TypeSize::getFixed(ST->is64Bit() ? 64 : 32);
138   case TargetTransformInfo::RGK_FixedWidthVector:
139     if (ST->hasAVX512() && PreferVectorWidth >= 512)
140       return TypeSize::getFixed(512);
141     if (ST->hasAVX() && PreferVectorWidth >= 256)
142       return TypeSize::getFixed(256);
143     if (ST->hasSSE1() && PreferVectorWidth >= 128)
144       return TypeSize::getFixed(128);
145     return TypeSize::getFixed(0);
146   case TargetTransformInfo::RGK_ScalableVector:
147     return TypeSize::getScalable(0);
148   }
149 
150   llvm_unreachable("Unsupported register kind");
151 }
152 
153 unsigned X86TTIImpl::getLoadStoreVecRegBitWidth(unsigned) const {
154   return getRegisterBitWidth(TargetTransformInfo::RGK_FixedWidthVector)
155       .getFixedSize();
156 }
157 
158 unsigned X86TTIImpl::getMaxInterleaveFactor(unsigned VF) {
159   // If the loop will not be vectorized, don't interleave the loop.
160   // Let regular unroll to unroll the loop, which saves the overflow
161   // check and memory check cost.
162   if (VF == 1)
163     return 1;
164 
165   if (ST->isAtom())
166     return 1;
167 
168   // Sandybridge and Haswell have multiple execution ports and pipelined
169   // vector units.
170   if (ST->hasAVX())
171     return 4;
172 
173   return 2;
174 }
175 
176 int X86TTIImpl::getArithmeticInstrCost(unsigned Opcode, Type *Ty,
177                                        TTI::TargetCostKind CostKind,
178                                        TTI::OperandValueKind Op1Info,
179                                        TTI::OperandValueKind Op2Info,
180                                        TTI::OperandValueProperties Opd1PropInfo,
181                                        TTI::OperandValueProperties Opd2PropInfo,
182                                        ArrayRef<const Value *> Args,
183                                        const Instruction *CxtI) {
184   // TODO: Handle more cost kinds.
185   if (CostKind != TTI::TCK_RecipThroughput)
186     return BaseT::getArithmeticInstrCost(Opcode, Ty, CostKind, Op1Info,
187                                          Op2Info, Opd1PropInfo,
188                                          Opd2PropInfo, Args, CxtI);
189   // Legalize the type.
190   std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Ty);
191 
192   int ISD = TLI->InstructionOpcodeToISD(Opcode);
193   assert(ISD && "Invalid opcode");
194 
195   static const CostTblEntry GLMCostTable[] = {
196     { ISD::FDIV,  MVT::f32,   18 }, // divss
197     { ISD::FDIV,  MVT::v4f32, 35 }, // divps
198     { ISD::FDIV,  MVT::f64,   33 }, // divsd
199     { ISD::FDIV,  MVT::v2f64, 65 }, // divpd
200   };
201 
202   if (ST->useGLMDivSqrtCosts())
203     if (const auto *Entry = CostTableLookup(GLMCostTable, ISD,
204                                             LT.second))
205       return LT.first * Entry->Cost;
206 
207   static const CostTblEntry SLMCostTable[] = {
208     { ISD::MUL,   MVT::v4i32, 11 }, // pmulld
209     { ISD::MUL,   MVT::v8i16, 2  }, // pmullw
210     { ISD::MUL,   MVT::v16i8, 14 }, // extend/pmullw/trunc sequence.
211     { ISD::FMUL,  MVT::f64,   2  }, // mulsd
212     { ISD::FMUL,  MVT::v2f64, 4  }, // mulpd
213     { ISD::FMUL,  MVT::v4f32, 2  }, // mulps
214     { ISD::FDIV,  MVT::f32,   17 }, // divss
215     { ISD::FDIV,  MVT::v4f32, 39 }, // divps
216     { ISD::FDIV,  MVT::f64,   32 }, // divsd
217     { ISD::FDIV,  MVT::v2f64, 69 }, // divpd
218     { ISD::FADD,  MVT::v2f64, 2  }, // addpd
219     { ISD::FSUB,  MVT::v2f64, 2  }, // subpd
220     // v2i64/v4i64 mul is custom lowered as a series of long:
221     // multiplies(3), shifts(3) and adds(2)
222     // slm muldq version throughput is 2 and addq throughput 4
223     // thus: 3X2 (muldq throughput) + 3X1 (shift throughput) +
224     //       3X4 (addq throughput) = 17
225     { ISD::MUL,   MVT::v2i64, 17 },
226     // slm addq\subq throughput is 4
227     { ISD::ADD,   MVT::v2i64, 4  },
228     { ISD::SUB,   MVT::v2i64, 4  },
229   };
230 
231   if (ST->isSLM()) {
232     if (Args.size() == 2 && ISD == ISD::MUL && LT.second == MVT::v4i32) {
233       // Check if the operands can be shrinked into a smaller datatype.
234       bool Op1Signed = false;
235       unsigned Op1MinSize = BaseT::minRequiredElementSize(Args[0], Op1Signed);
236       bool Op2Signed = false;
237       unsigned Op2MinSize = BaseT::minRequiredElementSize(Args[1], Op2Signed);
238 
239       bool SignedMode = Op1Signed || Op2Signed;
240       unsigned OpMinSize = std::max(Op1MinSize, Op2MinSize);
241 
242       if (OpMinSize <= 7)
243         return LT.first * 3; // pmullw/sext
244       if (!SignedMode && OpMinSize <= 8)
245         return LT.first * 3; // pmullw/zext
246       if (OpMinSize <= 15)
247         return LT.first * 5; // pmullw/pmulhw/pshuf
248       if (!SignedMode && OpMinSize <= 16)
249         return LT.first * 5; // pmullw/pmulhw/pshuf
250     }
251 
252     if (const auto *Entry = CostTableLookup(SLMCostTable, ISD,
253                                             LT.second)) {
254       return LT.first * Entry->Cost;
255     }
256   }
257 
258   if ((ISD == ISD::SDIV || ISD == ISD::SREM || ISD == ISD::UDIV ||
259        ISD == ISD::UREM) &&
260       (Op2Info == TargetTransformInfo::OK_UniformConstantValue ||
261        Op2Info == TargetTransformInfo::OK_NonUniformConstantValue) &&
262       Opd2PropInfo == TargetTransformInfo::OP_PowerOf2) {
263     if (ISD == ISD::SDIV || ISD == ISD::SREM) {
264       // On X86, vector signed division by constants power-of-two are
265       // normally expanded to the sequence SRA + SRL + ADD + SRA.
266       // The OperandValue properties may not be the same as that of the previous
267       // operation; conservatively assume OP_None.
268       int Cost =
269           2 * getArithmeticInstrCost(Instruction::AShr, Ty, CostKind, Op1Info,
270                                      Op2Info,
271                                      TargetTransformInfo::OP_None,
272                                      TargetTransformInfo::OP_None);
273       Cost += getArithmeticInstrCost(Instruction::LShr, Ty, CostKind, Op1Info,
274                                      Op2Info,
275                                      TargetTransformInfo::OP_None,
276                                      TargetTransformInfo::OP_None);
277       Cost += getArithmeticInstrCost(Instruction::Add, Ty, CostKind, Op1Info,
278                                      Op2Info,
279                                      TargetTransformInfo::OP_None,
280                                      TargetTransformInfo::OP_None);
281 
282       if (ISD == ISD::SREM) {
283         // For SREM: (X % C) is the equivalent of (X - (X/C)*C)
284         Cost += getArithmeticInstrCost(Instruction::Mul, Ty, CostKind, Op1Info,
285                                        Op2Info);
286         Cost += getArithmeticInstrCost(Instruction::Sub, Ty, CostKind, Op1Info,
287                                        Op2Info);
288       }
289 
290       return Cost;
291     }
292 
293     // Vector unsigned division/remainder will be simplified to shifts/masks.
294     if (ISD == ISD::UDIV)
295       return getArithmeticInstrCost(Instruction::LShr, Ty, CostKind,
296                                     Op1Info, Op2Info,
297                                     TargetTransformInfo::OP_None,
298                                     TargetTransformInfo::OP_None);
299 
300     else // UREM
301       return getArithmeticInstrCost(Instruction::And, Ty, CostKind,
302                                     Op1Info, Op2Info,
303                                     TargetTransformInfo::OP_None,
304                                     TargetTransformInfo::OP_None);
305   }
306 
307   static const CostTblEntry AVX512BWUniformConstCostTable[] = {
308     { ISD::SHL,  MVT::v64i8,   2 }, // psllw + pand.
309     { ISD::SRL,  MVT::v64i8,   2 }, // psrlw + pand.
310     { ISD::SRA,  MVT::v64i8,   4 }, // psrlw, pand, pxor, psubb.
311   };
312 
313   if (Op2Info == TargetTransformInfo::OK_UniformConstantValue &&
314       ST->hasBWI()) {
315     if (const auto *Entry = CostTableLookup(AVX512BWUniformConstCostTable, ISD,
316                                             LT.second))
317       return LT.first * Entry->Cost;
318   }
319 
320   static const CostTblEntry AVX512UniformConstCostTable[] = {
321     { ISD::SRA,  MVT::v2i64,   1 },
322     { ISD::SRA,  MVT::v4i64,   1 },
323     { ISD::SRA,  MVT::v8i64,   1 },
324 
325     { ISD::SHL,  MVT::v64i8,   4 }, // psllw + pand.
326     { ISD::SRL,  MVT::v64i8,   4 }, // psrlw + pand.
327     { ISD::SRA,  MVT::v64i8,   8 }, // psrlw, pand, pxor, psubb.
328 
329     { ISD::SDIV, MVT::v16i32,  6 }, // pmuludq sequence
330     { ISD::SREM, MVT::v16i32,  8 }, // pmuludq+mul+sub sequence
331     { ISD::UDIV, MVT::v16i32,  5 }, // pmuludq sequence
332     { ISD::UREM, MVT::v16i32,  7 }, // pmuludq+mul+sub sequence
333   };
334 
335   if (Op2Info == TargetTransformInfo::OK_UniformConstantValue &&
336       ST->hasAVX512()) {
337     if (const auto *Entry = CostTableLookup(AVX512UniformConstCostTable, ISD,
338                                             LT.second))
339       return LT.first * Entry->Cost;
340   }
341 
342   static const CostTblEntry AVX2UniformConstCostTable[] = {
343     { ISD::SHL,  MVT::v32i8,   2 }, // psllw + pand.
344     { ISD::SRL,  MVT::v32i8,   2 }, // psrlw + pand.
345     { ISD::SRA,  MVT::v32i8,   4 }, // psrlw, pand, pxor, psubb.
346 
347     { ISD::SRA,  MVT::v4i64,   4 }, // 2 x psrad + shuffle.
348 
349     { ISD::SDIV, MVT::v8i32,   6 }, // pmuludq sequence
350     { ISD::SREM, MVT::v8i32,   8 }, // pmuludq+mul+sub sequence
351     { ISD::UDIV, MVT::v8i32,   5 }, // pmuludq sequence
352     { ISD::UREM, MVT::v8i32,   7 }, // pmuludq+mul+sub sequence
353   };
354 
355   if (Op2Info == TargetTransformInfo::OK_UniformConstantValue &&
356       ST->hasAVX2()) {
357     if (const auto *Entry = CostTableLookup(AVX2UniformConstCostTable, ISD,
358                                             LT.second))
359       return LT.first * Entry->Cost;
360   }
361 
362   static const CostTblEntry SSE2UniformConstCostTable[] = {
363     { ISD::SHL,  MVT::v16i8,     2 }, // psllw + pand.
364     { ISD::SRL,  MVT::v16i8,     2 }, // psrlw + pand.
365     { ISD::SRA,  MVT::v16i8,     4 }, // psrlw, pand, pxor, psubb.
366 
367     { ISD::SHL,  MVT::v32i8,   4+2 }, // 2*(psllw + pand) + split.
368     { ISD::SRL,  MVT::v32i8,   4+2 }, // 2*(psrlw + pand) + split.
369     { ISD::SRA,  MVT::v32i8,   8+2 }, // 2*(psrlw, pand, pxor, psubb) + split.
370 
371     { ISD::SDIV, MVT::v8i32,  12+2 }, // 2*pmuludq sequence + split.
372     { ISD::SREM, MVT::v8i32,  16+2 }, // 2*pmuludq+mul+sub sequence + split.
373     { ISD::SDIV, MVT::v4i32,     6 }, // pmuludq sequence
374     { ISD::SREM, MVT::v4i32,     8 }, // pmuludq+mul+sub sequence
375     { ISD::UDIV, MVT::v8i32,  10+2 }, // 2*pmuludq sequence + split.
376     { ISD::UREM, MVT::v8i32,  14+2 }, // 2*pmuludq+mul+sub sequence + split.
377     { ISD::UDIV, MVT::v4i32,     5 }, // pmuludq sequence
378     { ISD::UREM, MVT::v4i32,     7 }, // pmuludq+mul+sub sequence
379   };
380 
381   // XOP has faster vXi8 shifts.
382   if (Op2Info == TargetTransformInfo::OK_UniformConstantValue &&
383       ST->hasSSE2() && !ST->hasXOP()) {
384     if (const auto *Entry =
385             CostTableLookup(SSE2UniformConstCostTable, ISD, LT.second))
386       return LT.first * Entry->Cost;
387   }
388 
389   static const CostTblEntry AVX512BWConstCostTable[] = {
390     { ISD::SDIV, MVT::v64i8,  14 }, // 2*ext+2*pmulhw sequence
391     { ISD::SREM, MVT::v64i8,  16 }, // 2*ext+2*pmulhw+mul+sub sequence
392     { ISD::UDIV, MVT::v64i8,  14 }, // 2*ext+2*pmulhw sequence
393     { ISD::UREM, MVT::v64i8,  16 }, // 2*ext+2*pmulhw+mul+sub sequence
394     { ISD::SDIV, MVT::v32i16,  6 }, // vpmulhw sequence
395     { ISD::SREM, MVT::v32i16,  8 }, // vpmulhw+mul+sub sequence
396     { ISD::UDIV, MVT::v32i16,  6 }, // vpmulhuw sequence
397     { ISD::UREM, MVT::v32i16,  8 }, // vpmulhuw+mul+sub sequence
398   };
399 
400   if ((Op2Info == TargetTransformInfo::OK_UniformConstantValue ||
401        Op2Info == TargetTransformInfo::OK_NonUniformConstantValue) &&
402       ST->hasBWI()) {
403     if (const auto *Entry =
404             CostTableLookup(AVX512BWConstCostTable, ISD, LT.second))
405       return LT.first * Entry->Cost;
406   }
407 
408   static const CostTblEntry AVX512ConstCostTable[] = {
409     { ISD::SDIV, MVT::v16i32, 15 }, // vpmuldq sequence
410     { ISD::SREM, MVT::v16i32, 17 }, // vpmuldq+mul+sub sequence
411     { ISD::UDIV, MVT::v16i32, 15 }, // vpmuludq sequence
412     { ISD::UREM, MVT::v16i32, 17 }, // vpmuludq+mul+sub sequence
413     { ISD::SDIV, MVT::v64i8,  28 }, // 4*ext+4*pmulhw sequence
414     { ISD::SREM, MVT::v64i8,  32 }, // 4*ext+4*pmulhw+mul+sub sequence
415     { ISD::UDIV, MVT::v64i8,  28 }, // 4*ext+4*pmulhw sequence
416     { ISD::UREM, MVT::v64i8,  32 }, // 4*ext+4*pmulhw+mul+sub sequence
417     { ISD::SDIV, MVT::v32i16, 12 }, // 2*vpmulhw sequence
418     { ISD::SREM, MVT::v32i16, 16 }, // 2*vpmulhw+mul+sub sequence
419     { ISD::UDIV, MVT::v32i16, 12 }, // 2*vpmulhuw sequence
420     { ISD::UREM, MVT::v32i16, 16 }, // 2*vpmulhuw+mul+sub sequence
421   };
422 
423   if ((Op2Info == TargetTransformInfo::OK_UniformConstantValue ||
424        Op2Info == TargetTransformInfo::OK_NonUniformConstantValue) &&
425       ST->hasAVX512()) {
426     if (const auto *Entry =
427             CostTableLookup(AVX512ConstCostTable, ISD, LT.second))
428       return LT.first * Entry->Cost;
429   }
430 
431   static const CostTblEntry AVX2ConstCostTable[] = {
432     { ISD::SDIV, MVT::v32i8,  14 }, // 2*ext+2*pmulhw sequence
433     { ISD::SREM, MVT::v32i8,  16 }, // 2*ext+2*pmulhw+mul+sub sequence
434     { ISD::UDIV, MVT::v32i8,  14 }, // 2*ext+2*pmulhw sequence
435     { ISD::UREM, MVT::v32i8,  16 }, // 2*ext+2*pmulhw+mul+sub sequence
436     { ISD::SDIV, MVT::v16i16,  6 }, // vpmulhw sequence
437     { ISD::SREM, MVT::v16i16,  8 }, // vpmulhw+mul+sub sequence
438     { ISD::UDIV, MVT::v16i16,  6 }, // vpmulhuw sequence
439     { ISD::UREM, MVT::v16i16,  8 }, // vpmulhuw+mul+sub sequence
440     { ISD::SDIV, MVT::v8i32,  15 }, // vpmuldq sequence
441     { ISD::SREM, MVT::v8i32,  19 }, // vpmuldq+mul+sub sequence
442     { ISD::UDIV, MVT::v8i32,  15 }, // vpmuludq sequence
443     { ISD::UREM, MVT::v8i32,  19 }, // vpmuludq+mul+sub sequence
444   };
445 
446   if ((Op2Info == TargetTransformInfo::OK_UniformConstantValue ||
447        Op2Info == TargetTransformInfo::OK_NonUniformConstantValue) &&
448       ST->hasAVX2()) {
449     if (const auto *Entry = CostTableLookup(AVX2ConstCostTable, ISD, LT.second))
450       return LT.first * Entry->Cost;
451   }
452 
453   static const CostTblEntry SSE2ConstCostTable[] = {
454     { ISD::SDIV, MVT::v32i8,  28+2 }, // 4*ext+4*pmulhw sequence + split.
455     { ISD::SREM, MVT::v32i8,  32+2 }, // 4*ext+4*pmulhw+mul+sub sequence + split.
456     { ISD::SDIV, MVT::v16i8,    14 }, // 2*ext+2*pmulhw sequence
457     { ISD::SREM, MVT::v16i8,    16 }, // 2*ext+2*pmulhw+mul+sub sequence
458     { ISD::UDIV, MVT::v32i8,  28+2 }, // 4*ext+4*pmulhw sequence + split.
459     { ISD::UREM, MVT::v32i8,  32+2 }, // 4*ext+4*pmulhw+mul+sub sequence + split.
460     { ISD::UDIV, MVT::v16i8,    14 }, // 2*ext+2*pmulhw sequence
461     { ISD::UREM, MVT::v16i8,    16 }, // 2*ext+2*pmulhw+mul+sub sequence
462     { ISD::SDIV, MVT::v16i16, 12+2 }, // 2*pmulhw sequence + split.
463     { ISD::SREM, MVT::v16i16, 16+2 }, // 2*pmulhw+mul+sub sequence + split.
464     { ISD::SDIV, MVT::v8i16,     6 }, // pmulhw sequence
465     { ISD::SREM, MVT::v8i16,     8 }, // pmulhw+mul+sub sequence
466     { ISD::UDIV, MVT::v16i16, 12+2 }, // 2*pmulhuw sequence + split.
467     { ISD::UREM, MVT::v16i16, 16+2 }, // 2*pmulhuw+mul+sub sequence + split.
468     { ISD::UDIV, MVT::v8i16,     6 }, // pmulhuw sequence
469     { ISD::UREM, MVT::v8i16,     8 }, // pmulhuw+mul+sub sequence
470     { ISD::SDIV, MVT::v8i32,  38+2 }, // 2*pmuludq sequence + split.
471     { ISD::SREM, MVT::v8i32,  48+2 }, // 2*pmuludq+mul+sub sequence + split.
472     { ISD::SDIV, MVT::v4i32,    19 }, // pmuludq sequence
473     { ISD::SREM, MVT::v4i32,    24 }, // pmuludq+mul+sub sequence
474     { ISD::UDIV, MVT::v8i32,  30+2 }, // 2*pmuludq sequence + split.
475     { ISD::UREM, MVT::v8i32,  40+2 }, // 2*pmuludq+mul+sub sequence + split.
476     { ISD::UDIV, MVT::v4i32,    15 }, // pmuludq sequence
477     { ISD::UREM, MVT::v4i32,    20 }, // pmuludq+mul+sub sequence
478   };
479 
480   if ((Op2Info == TargetTransformInfo::OK_UniformConstantValue ||
481        Op2Info == TargetTransformInfo::OK_NonUniformConstantValue) &&
482       ST->hasSSE2()) {
483     // pmuldq sequence.
484     if (ISD == ISD::SDIV && LT.second == MVT::v8i32 && ST->hasAVX())
485       return LT.first * 32;
486     if (ISD == ISD::SREM && LT.second == MVT::v8i32 && ST->hasAVX())
487       return LT.first * 38;
488     if (ISD == ISD::SDIV && LT.second == MVT::v4i32 && ST->hasSSE41())
489       return LT.first * 15;
490     if (ISD == ISD::SREM && LT.second == MVT::v4i32 && ST->hasSSE41())
491       return LT.first * 20;
492 
493     if (const auto *Entry = CostTableLookup(SSE2ConstCostTable, ISD, LT.second))
494       return LT.first * Entry->Cost;
495   }
496 
497   static const CostTblEntry AVX512BWShiftCostTable[] = {
498     { ISD::SHL,   MVT::v8i16,      1 }, // vpsllvw
499     { ISD::SRL,   MVT::v8i16,      1 }, // vpsrlvw
500     { ISD::SRA,   MVT::v8i16,      1 }, // vpsravw
501 
502     { ISD::SHL,   MVT::v16i16,     1 }, // vpsllvw
503     { ISD::SRL,   MVT::v16i16,     1 }, // vpsrlvw
504     { ISD::SRA,   MVT::v16i16,     1 }, // vpsravw
505 
506     { ISD::SHL,   MVT::v32i16,     1 }, // vpsllvw
507     { ISD::SRL,   MVT::v32i16,     1 }, // vpsrlvw
508     { ISD::SRA,   MVT::v32i16,     1 }, // vpsravw
509   };
510 
511   if (ST->hasBWI())
512     if (const auto *Entry = CostTableLookup(AVX512BWShiftCostTable, ISD, LT.second))
513       return LT.first * Entry->Cost;
514 
515   static const CostTblEntry AVX2UniformCostTable[] = {
516     // Uniform splats are cheaper for the following instructions.
517     { ISD::SHL,  MVT::v16i16, 1 }, // psllw.
518     { ISD::SRL,  MVT::v16i16, 1 }, // psrlw.
519     { ISD::SRA,  MVT::v16i16, 1 }, // psraw.
520     { ISD::SHL,  MVT::v32i16, 2 }, // 2*psllw.
521     { ISD::SRL,  MVT::v32i16, 2 }, // 2*psrlw.
522     { ISD::SRA,  MVT::v32i16, 2 }, // 2*psraw.
523   };
524 
525   if (ST->hasAVX2() &&
526       ((Op2Info == TargetTransformInfo::OK_UniformConstantValue) ||
527        (Op2Info == TargetTransformInfo::OK_UniformValue))) {
528     if (const auto *Entry =
529             CostTableLookup(AVX2UniformCostTable, ISD, LT.second))
530       return LT.first * Entry->Cost;
531   }
532 
533   static const CostTblEntry SSE2UniformCostTable[] = {
534     // Uniform splats are cheaper for the following instructions.
535     { ISD::SHL,  MVT::v8i16,  1 }, // psllw.
536     { ISD::SHL,  MVT::v4i32,  1 }, // pslld
537     { ISD::SHL,  MVT::v2i64,  1 }, // psllq.
538 
539     { ISD::SRL,  MVT::v8i16,  1 }, // psrlw.
540     { ISD::SRL,  MVT::v4i32,  1 }, // psrld.
541     { ISD::SRL,  MVT::v2i64,  1 }, // psrlq.
542 
543     { ISD::SRA,  MVT::v8i16,  1 }, // psraw.
544     { ISD::SRA,  MVT::v4i32,  1 }, // psrad.
545   };
546 
547   if (ST->hasSSE2() &&
548       ((Op2Info == TargetTransformInfo::OK_UniformConstantValue) ||
549        (Op2Info == TargetTransformInfo::OK_UniformValue))) {
550     if (const auto *Entry =
551             CostTableLookup(SSE2UniformCostTable, ISD, LT.second))
552       return LT.first * Entry->Cost;
553   }
554 
555   static const CostTblEntry AVX512DQCostTable[] = {
556     { ISD::MUL,  MVT::v2i64, 1 },
557     { ISD::MUL,  MVT::v4i64, 1 },
558     { ISD::MUL,  MVT::v8i64, 1 }
559   };
560 
561   // Look for AVX512DQ lowering tricks for custom cases.
562   if (ST->hasDQI())
563     if (const auto *Entry = CostTableLookup(AVX512DQCostTable, ISD, LT.second))
564       return LT.first * Entry->Cost;
565 
566   static const CostTblEntry AVX512BWCostTable[] = {
567     { ISD::SHL,   MVT::v64i8,     11 }, // vpblendvb sequence.
568     { ISD::SRL,   MVT::v64i8,     11 }, // vpblendvb sequence.
569     { ISD::SRA,   MVT::v64i8,     24 }, // vpblendvb sequence.
570 
571     { ISD::MUL,   MVT::v64i8,     11 }, // extend/pmullw/trunc sequence.
572     { ISD::MUL,   MVT::v32i8,      4 }, // extend/pmullw/trunc sequence.
573     { ISD::MUL,   MVT::v16i8,      4 }, // extend/pmullw/trunc sequence.
574   };
575 
576   // Look for AVX512BW lowering tricks for custom cases.
577   if (ST->hasBWI())
578     if (const auto *Entry = CostTableLookup(AVX512BWCostTable, ISD, LT.second))
579       return LT.first * Entry->Cost;
580 
581   static const CostTblEntry AVX512CostTable[] = {
582     { ISD::SHL,     MVT::v16i32,     1 },
583     { ISD::SRL,     MVT::v16i32,     1 },
584     { ISD::SRA,     MVT::v16i32,     1 },
585 
586     { ISD::SHL,     MVT::v8i64,      1 },
587     { ISD::SRL,     MVT::v8i64,      1 },
588 
589     { ISD::SRA,     MVT::v2i64,      1 },
590     { ISD::SRA,     MVT::v4i64,      1 },
591     { ISD::SRA,     MVT::v8i64,      1 },
592 
593     { ISD::MUL,     MVT::v64i8,     26 }, // extend/pmullw/trunc sequence.
594     { ISD::MUL,     MVT::v32i8,     13 }, // extend/pmullw/trunc sequence.
595     { ISD::MUL,     MVT::v16i8,      5 }, // extend/pmullw/trunc sequence.
596     { ISD::MUL,     MVT::v16i32,     1 }, // pmulld (Skylake from agner.org)
597     { ISD::MUL,     MVT::v8i32,      1 }, // pmulld (Skylake from agner.org)
598     { ISD::MUL,     MVT::v4i32,      1 }, // pmulld (Skylake from agner.org)
599     { ISD::MUL,     MVT::v8i64,      8 }, // 3*pmuludq/3*shift/2*add
600 
601     { ISD::FADD,    MVT::v8f64,      1 }, // Skylake from http://www.agner.org/
602     { ISD::FSUB,    MVT::v8f64,      1 }, // Skylake from http://www.agner.org/
603     { ISD::FMUL,    MVT::v8f64,      1 }, // Skylake from http://www.agner.org/
604 
605     { ISD::FADD,    MVT::v16f32,     1 }, // Skylake from http://www.agner.org/
606     { ISD::FSUB,    MVT::v16f32,     1 }, // Skylake from http://www.agner.org/
607     { ISD::FMUL,    MVT::v16f32,     1 }, // Skylake from http://www.agner.org/
608   };
609 
610   if (ST->hasAVX512())
611     if (const auto *Entry = CostTableLookup(AVX512CostTable, ISD, LT.second))
612       return LT.first * Entry->Cost;
613 
614   static const CostTblEntry AVX2ShiftCostTable[] = {
615     // Shifts on v4i64/v8i32 on AVX2 is legal even though we declare to
616     // customize them to detect the cases where shift amount is a scalar one.
617     { ISD::SHL,     MVT::v4i32,    1 },
618     { ISD::SRL,     MVT::v4i32,    1 },
619     { ISD::SRA,     MVT::v4i32,    1 },
620     { ISD::SHL,     MVT::v8i32,    1 },
621     { ISD::SRL,     MVT::v8i32,    1 },
622     { ISD::SRA,     MVT::v8i32,    1 },
623     { ISD::SHL,     MVT::v2i64,    1 },
624     { ISD::SRL,     MVT::v2i64,    1 },
625     { ISD::SHL,     MVT::v4i64,    1 },
626     { ISD::SRL,     MVT::v4i64,    1 },
627   };
628 
629   if (ST->hasAVX512()) {
630     if (ISD == ISD::SHL && LT.second == MVT::v32i16 &&
631         (Op2Info == TargetTransformInfo::OK_UniformConstantValue ||
632          Op2Info == TargetTransformInfo::OK_NonUniformConstantValue))
633       // On AVX512, a packed v32i16 shift left by a constant build_vector
634       // is lowered into a vector multiply (vpmullw).
635       return getArithmeticInstrCost(Instruction::Mul, Ty, CostKind,
636                                     Op1Info, Op2Info,
637                                     TargetTransformInfo::OP_None,
638                                     TargetTransformInfo::OP_None);
639   }
640 
641   // Look for AVX2 lowering tricks.
642   if (ST->hasAVX2()) {
643     if (ISD == ISD::SHL && LT.second == MVT::v16i16 &&
644         (Op2Info == TargetTransformInfo::OK_UniformConstantValue ||
645          Op2Info == TargetTransformInfo::OK_NonUniformConstantValue))
646       // On AVX2, a packed v16i16 shift left by a constant build_vector
647       // is lowered into a vector multiply (vpmullw).
648       return getArithmeticInstrCost(Instruction::Mul, Ty, CostKind,
649                                     Op1Info, Op2Info,
650                                     TargetTransformInfo::OP_None,
651                                     TargetTransformInfo::OP_None);
652 
653     if (const auto *Entry = CostTableLookup(AVX2ShiftCostTable, ISD, LT.second))
654       return LT.first * Entry->Cost;
655   }
656 
657   static const CostTblEntry XOPShiftCostTable[] = {
658     // 128bit shifts take 1cy, but right shifts require negation beforehand.
659     { ISD::SHL,     MVT::v16i8,    1 },
660     { ISD::SRL,     MVT::v16i8,    2 },
661     { ISD::SRA,     MVT::v16i8,    2 },
662     { ISD::SHL,     MVT::v8i16,    1 },
663     { ISD::SRL,     MVT::v8i16,    2 },
664     { ISD::SRA,     MVT::v8i16,    2 },
665     { ISD::SHL,     MVT::v4i32,    1 },
666     { ISD::SRL,     MVT::v4i32,    2 },
667     { ISD::SRA,     MVT::v4i32,    2 },
668     { ISD::SHL,     MVT::v2i64,    1 },
669     { ISD::SRL,     MVT::v2i64,    2 },
670     { ISD::SRA,     MVT::v2i64,    2 },
671     // 256bit shifts require splitting if AVX2 didn't catch them above.
672     { ISD::SHL,     MVT::v32i8,  2+2 },
673     { ISD::SRL,     MVT::v32i8,  4+2 },
674     { ISD::SRA,     MVT::v32i8,  4+2 },
675     { ISD::SHL,     MVT::v16i16, 2+2 },
676     { ISD::SRL,     MVT::v16i16, 4+2 },
677     { ISD::SRA,     MVT::v16i16, 4+2 },
678     { ISD::SHL,     MVT::v8i32,  2+2 },
679     { ISD::SRL,     MVT::v8i32,  4+2 },
680     { ISD::SRA,     MVT::v8i32,  4+2 },
681     { ISD::SHL,     MVT::v4i64,  2+2 },
682     { ISD::SRL,     MVT::v4i64,  4+2 },
683     { ISD::SRA,     MVT::v4i64,  4+2 },
684   };
685 
686   // Look for XOP lowering tricks.
687   if (ST->hasXOP()) {
688     // If the right shift is constant then we'll fold the negation so
689     // it's as cheap as a left shift.
690     int ShiftISD = ISD;
691     if ((ShiftISD == ISD::SRL || ShiftISD == ISD::SRA) &&
692         (Op2Info == TargetTransformInfo::OK_UniformConstantValue ||
693          Op2Info == TargetTransformInfo::OK_NonUniformConstantValue))
694       ShiftISD = ISD::SHL;
695     if (const auto *Entry =
696             CostTableLookup(XOPShiftCostTable, ShiftISD, LT.second))
697       return LT.first * Entry->Cost;
698   }
699 
700   static const CostTblEntry SSE2UniformShiftCostTable[] = {
701     // Uniform splats are cheaper for the following instructions.
702     { ISD::SHL,  MVT::v16i16, 2+2 }, // 2*psllw + split.
703     { ISD::SHL,  MVT::v8i32,  2+2 }, // 2*pslld + split.
704     { ISD::SHL,  MVT::v4i64,  2+2 }, // 2*psllq + split.
705 
706     { ISD::SRL,  MVT::v16i16, 2+2 }, // 2*psrlw + split.
707     { ISD::SRL,  MVT::v8i32,  2+2 }, // 2*psrld + split.
708     { ISD::SRL,  MVT::v4i64,  2+2 }, // 2*psrlq + split.
709 
710     { ISD::SRA,  MVT::v16i16, 2+2 }, // 2*psraw + split.
711     { ISD::SRA,  MVT::v8i32,  2+2 }, // 2*psrad + split.
712     { ISD::SRA,  MVT::v2i64,    4 }, // 2*psrad + shuffle.
713     { ISD::SRA,  MVT::v4i64,  8+2 }, // 2*(2*psrad + shuffle) + split.
714   };
715 
716   if (ST->hasSSE2() &&
717       ((Op2Info == TargetTransformInfo::OK_UniformConstantValue) ||
718        (Op2Info == TargetTransformInfo::OK_UniformValue))) {
719 
720     // Handle AVX2 uniform v4i64 ISD::SRA, it's not worth a table.
721     if (ISD == ISD::SRA && LT.second == MVT::v4i64 && ST->hasAVX2())
722       return LT.first * 4; // 2*psrad + shuffle.
723 
724     if (const auto *Entry =
725             CostTableLookup(SSE2UniformShiftCostTable, ISD, LT.second))
726       return LT.first * Entry->Cost;
727   }
728 
729   if (ISD == ISD::SHL &&
730       Op2Info == TargetTransformInfo::OK_NonUniformConstantValue) {
731     MVT VT = LT.second;
732     // Vector shift left by non uniform constant can be lowered
733     // into vector multiply.
734     if (((VT == MVT::v8i16 || VT == MVT::v4i32) && ST->hasSSE2()) ||
735         ((VT == MVT::v16i16 || VT == MVT::v8i32) && ST->hasAVX()))
736       ISD = ISD::MUL;
737   }
738 
739   static const CostTblEntry AVX2CostTable[] = {
740     { ISD::SHL,  MVT::v32i8,     11 }, // vpblendvb sequence.
741     { ISD::SHL,  MVT::v64i8,     22 }, // 2*vpblendvb sequence.
742     { ISD::SHL,  MVT::v16i16,    10 }, // extend/vpsrlvd/pack sequence.
743     { ISD::SHL,  MVT::v32i16,    20 }, // 2*extend/vpsrlvd/pack sequence.
744 
745     { ISD::SRL,  MVT::v32i8,     11 }, // vpblendvb sequence.
746     { ISD::SRL,  MVT::v64i8,     22 }, // 2*vpblendvb sequence.
747     { ISD::SRL,  MVT::v16i16,    10 }, // extend/vpsrlvd/pack sequence.
748     { ISD::SRL,  MVT::v32i16,    20 }, // 2*extend/vpsrlvd/pack sequence.
749 
750     { ISD::SRA,  MVT::v32i8,     24 }, // vpblendvb sequence.
751     { ISD::SRA,  MVT::v64i8,     48 }, // 2*vpblendvb sequence.
752     { ISD::SRA,  MVT::v16i16,    10 }, // extend/vpsravd/pack sequence.
753     { ISD::SRA,  MVT::v32i16,    20 }, // 2*extend/vpsravd/pack sequence.
754     { ISD::SRA,  MVT::v2i64,      4 }, // srl/xor/sub sequence.
755     { ISD::SRA,  MVT::v4i64,      4 }, // srl/xor/sub sequence.
756 
757     { ISD::SUB,  MVT::v32i8,      1 }, // psubb
758     { ISD::ADD,  MVT::v32i8,      1 }, // paddb
759     { ISD::SUB,  MVT::v16i16,     1 }, // psubw
760     { ISD::ADD,  MVT::v16i16,     1 }, // paddw
761     { ISD::SUB,  MVT::v8i32,      1 }, // psubd
762     { ISD::ADD,  MVT::v8i32,      1 }, // paddd
763     { ISD::SUB,  MVT::v4i64,      1 }, // psubq
764     { ISD::ADD,  MVT::v4i64,      1 }, // paddq
765 
766     { ISD::MUL,  MVT::v32i8,     17 }, // extend/pmullw/trunc sequence.
767     { ISD::MUL,  MVT::v16i8,      7 }, // extend/pmullw/trunc sequence.
768     { ISD::MUL,  MVT::v16i16,     1 }, // pmullw
769     { ISD::MUL,  MVT::v8i32,      2 }, // pmulld (Haswell from agner.org)
770     { ISD::MUL,  MVT::v4i64,      8 }, // 3*pmuludq/3*shift/2*add
771 
772     { ISD::FADD, MVT::v4f64,      1 }, // Haswell from http://www.agner.org/
773     { ISD::FADD, MVT::v8f32,      1 }, // Haswell from http://www.agner.org/
774     { ISD::FSUB, MVT::v4f64,      1 }, // Haswell from http://www.agner.org/
775     { ISD::FSUB, MVT::v8f32,      1 }, // Haswell from http://www.agner.org/
776     { ISD::FMUL, MVT::v4f64,      1 }, // Haswell from http://www.agner.org/
777     { ISD::FMUL, MVT::v8f32,      1 }, // Haswell from http://www.agner.org/
778 
779     { ISD::FDIV, MVT::f32,        7 }, // Haswell from http://www.agner.org/
780     { ISD::FDIV, MVT::v4f32,      7 }, // Haswell from http://www.agner.org/
781     { ISD::FDIV, MVT::v8f32,     14 }, // Haswell from http://www.agner.org/
782     { ISD::FDIV, MVT::f64,       14 }, // Haswell from http://www.agner.org/
783     { ISD::FDIV, MVT::v2f64,     14 }, // Haswell from http://www.agner.org/
784     { ISD::FDIV, MVT::v4f64,     28 }, // Haswell from http://www.agner.org/
785   };
786 
787   // Look for AVX2 lowering tricks for custom cases.
788   if (ST->hasAVX2())
789     if (const auto *Entry = CostTableLookup(AVX2CostTable, ISD, LT.second))
790       return LT.first * Entry->Cost;
791 
792   static const CostTblEntry AVX1CostTable[] = {
793     // We don't have to scalarize unsupported ops. We can issue two half-sized
794     // operations and we only need to extract the upper YMM half.
795     // Two ops + 1 extract + 1 insert = 4.
796     { ISD::MUL,     MVT::v16i16,     4 },
797     { ISD::MUL,     MVT::v8i32,      4 },
798     { ISD::SUB,     MVT::v32i8,      4 },
799     { ISD::ADD,     MVT::v32i8,      4 },
800     { ISD::SUB,     MVT::v16i16,     4 },
801     { ISD::ADD,     MVT::v16i16,     4 },
802     { ISD::SUB,     MVT::v8i32,      4 },
803     { ISD::ADD,     MVT::v8i32,      4 },
804     { ISD::SUB,     MVT::v4i64,      4 },
805     { ISD::ADD,     MVT::v4i64,      4 },
806 
807     // A v4i64 multiply is custom lowered as two split v2i64 vectors that then
808     // are lowered as a series of long multiplies(3), shifts(3) and adds(2)
809     // Because we believe v4i64 to be a legal type, we must also include the
810     // extract+insert in the cost table. Therefore, the cost here is 18
811     // instead of 8.
812     { ISD::MUL,     MVT::v4i64,     18 },
813 
814     { ISD::MUL,     MVT::v32i8,     26 }, // extend/pmullw/trunc sequence.
815 
816     { ISD::FDIV,    MVT::f32,       14 }, // SNB from http://www.agner.org/
817     { ISD::FDIV,    MVT::v4f32,     14 }, // SNB from http://www.agner.org/
818     { ISD::FDIV,    MVT::v8f32,     28 }, // SNB from http://www.agner.org/
819     { ISD::FDIV,    MVT::f64,       22 }, // SNB from http://www.agner.org/
820     { ISD::FDIV,    MVT::v2f64,     22 }, // SNB from http://www.agner.org/
821     { ISD::FDIV,    MVT::v4f64,     44 }, // SNB from http://www.agner.org/
822   };
823 
824   if (ST->hasAVX())
825     if (const auto *Entry = CostTableLookup(AVX1CostTable, ISD, LT.second))
826       return LT.first * Entry->Cost;
827 
828   static const CostTblEntry SSE42CostTable[] = {
829     { ISD::FADD, MVT::f64,     1 }, // Nehalem from http://www.agner.org/
830     { ISD::FADD, MVT::f32,     1 }, // Nehalem from http://www.agner.org/
831     { ISD::FADD, MVT::v2f64,   1 }, // Nehalem from http://www.agner.org/
832     { ISD::FADD, MVT::v4f32,   1 }, // Nehalem from http://www.agner.org/
833 
834     { ISD::FSUB, MVT::f64,     1 }, // Nehalem from http://www.agner.org/
835     { ISD::FSUB, MVT::f32 ,    1 }, // Nehalem from http://www.agner.org/
836     { ISD::FSUB, MVT::v2f64,   1 }, // Nehalem from http://www.agner.org/
837     { ISD::FSUB, MVT::v4f32,   1 }, // Nehalem from http://www.agner.org/
838 
839     { ISD::FMUL, MVT::f64,     1 }, // Nehalem from http://www.agner.org/
840     { ISD::FMUL, MVT::f32,     1 }, // Nehalem from http://www.agner.org/
841     { ISD::FMUL, MVT::v2f64,   1 }, // Nehalem from http://www.agner.org/
842     { ISD::FMUL, MVT::v4f32,   1 }, // Nehalem from http://www.agner.org/
843 
844     { ISD::FDIV,  MVT::f32,   14 }, // Nehalem from http://www.agner.org/
845     { ISD::FDIV,  MVT::v4f32, 14 }, // Nehalem from http://www.agner.org/
846     { ISD::FDIV,  MVT::f64,   22 }, // Nehalem from http://www.agner.org/
847     { ISD::FDIV,  MVT::v2f64, 22 }, // Nehalem from http://www.agner.org/
848   };
849 
850   if (ST->hasSSE42())
851     if (const auto *Entry = CostTableLookup(SSE42CostTable, ISD, LT.second))
852       return LT.first * Entry->Cost;
853 
854   static const CostTblEntry SSE41CostTable[] = {
855     { ISD::SHL,  MVT::v16i8,      11 }, // pblendvb sequence.
856     { ISD::SHL,  MVT::v32i8,  2*11+2 }, // pblendvb sequence + split.
857     { ISD::SHL,  MVT::v8i16,      14 }, // pblendvb sequence.
858     { ISD::SHL,  MVT::v16i16, 2*14+2 }, // pblendvb sequence + split.
859     { ISD::SHL,  MVT::v4i32,       4 }, // pslld/paddd/cvttps2dq/pmulld
860     { ISD::SHL,  MVT::v8i32,   2*4+2 }, // pslld/paddd/cvttps2dq/pmulld + split
861 
862     { ISD::SRL,  MVT::v16i8,      12 }, // pblendvb sequence.
863     { ISD::SRL,  MVT::v32i8,  2*12+2 }, // pblendvb sequence + split.
864     { ISD::SRL,  MVT::v8i16,      14 }, // pblendvb sequence.
865     { ISD::SRL,  MVT::v16i16, 2*14+2 }, // pblendvb sequence + split.
866     { ISD::SRL,  MVT::v4i32,      11 }, // Shift each lane + blend.
867     { ISD::SRL,  MVT::v8i32,  2*11+2 }, // Shift each lane + blend + split.
868 
869     { ISD::SRA,  MVT::v16i8,      24 }, // pblendvb sequence.
870     { ISD::SRA,  MVT::v32i8,  2*24+2 }, // pblendvb sequence + split.
871     { ISD::SRA,  MVT::v8i16,      14 }, // pblendvb sequence.
872     { ISD::SRA,  MVT::v16i16, 2*14+2 }, // pblendvb sequence + split.
873     { ISD::SRA,  MVT::v4i32,      12 }, // Shift each lane + blend.
874     { ISD::SRA,  MVT::v8i32,  2*12+2 }, // Shift each lane + blend + split.
875 
876     { ISD::MUL,  MVT::v4i32,       2 }  // pmulld (Nehalem from agner.org)
877   };
878 
879   if (ST->hasSSE41())
880     if (const auto *Entry = CostTableLookup(SSE41CostTable, ISD, LT.second))
881       return LT.first * Entry->Cost;
882 
883   static const CostTblEntry SSE2CostTable[] = {
884     // We don't correctly identify costs of casts because they are marked as
885     // custom.
886     { ISD::SHL,  MVT::v16i8,      26 }, // cmpgtb sequence.
887     { ISD::SHL,  MVT::v8i16,      32 }, // cmpgtb sequence.
888     { ISD::SHL,  MVT::v4i32,     2*5 }, // We optimized this using mul.
889     { ISD::SHL,  MVT::v2i64,       4 }, // splat+shuffle sequence.
890     { ISD::SHL,  MVT::v4i64,   2*4+2 }, // splat+shuffle sequence + split.
891 
892     { ISD::SRL,  MVT::v16i8,      26 }, // cmpgtb sequence.
893     { ISD::SRL,  MVT::v8i16,      32 }, // cmpgtb sequence.
894     { ISD::SRL,  MVT::v4i32,      16 }, // Shift each lane + blend.
895     { ISD::SRL,  MVT::v2i64,       4 }, // splat+shuffle sequence.
896     { ISD::SRL,  MVT::v4i64,   2*4+2 }, // splat+shuffle sequence + split.
897 
898     { ISD::SRA,  MVT::v16i8,      54 }, // unpacked cmpgtb sequence.
899     { ISD::SRA,  MVT::v8i16,      32 }, // cmpgtb sequence.
900     { ISD::SRA,  MVT::v4i32,      16 }, // Shift each lane + blend.
901     { ISD::SRA,  MVT::v2i64,      12 }, // srl/xor/sub sequence.
902     { ISD::SRA,  MVT::v4i64,  2*12+2 }, // srl/xor/sub sequence+split.
903 
904     { ISD::MUL,  MVT::v16i8,      12 }, // extend/pmullw/trunc sequence.
905     { ISD::MUL,  MVT::v8i16,       1 }, // pmullw
906     { ISD::MUL,  MVT::v4i32,       6 }, // 3*pmuludq/4*shuffle
907     { ISD::MUL,  MVT::v2i64,       8 }, // 3*pmuludq/3*shift/2*add
908 
909     { ISD::FDIV, MVT::f32,        23 }, // Pentium IV from http://www.agner.org/
910     { ISD::FDIV, MVT::v4f32,      39 }, // Pentium IV from http://www.agner.org/
911     { ISD::FDIV, MVT::f64,        38 }, // Pentium IV from http://www.agner.org/
912     { ISD::FDIV, MVT::v2f64,      69 }, // Pentium IV from http://www.agner.org/
913 
914     { ISD::FADD, MVT::f32,         2 }, // Pentium IV from http://www.agner.org/
915     { ISD::FADD, MVT::f64,         2 }, // Pentium IV from http://www.agner.org/
916 
917     { ISD::FSUB, MVT::f32,         2 }, // Pentium IV from http://www.agner.org/
918     { ISD::FSUB, MVT::f64,         2 }, // Pentium IV from http://www.agner.org/
919   };
920 
921   if (ST->hasSSE2())
922     if (const auto *Entry = CostTableLookup(SSE2CostTable, ISD, LT.second))
923       return LT.first * Entry->Cost;
924 
925   static const CostTblEntry SSE1CostTable[] = {
926     { ISD::FDIV, MVT::f32,   17 }, // Pentium III from http://www.agner.org/
927     { ISD::FDIV, MVT::v4f32, 34 }, // Pentium III from http://www.agner.org/
928 
929     { ISD::FADD, MVT::f32,    1 }, // Pentium III from http://www.agner.org/
930     { ISD::FADD, MVT::v4f32,  2 }, // Pentium III from http://www.agner.org/
931 
932     { ISD::FSUB, MVT::f32,    1 }, // Pentium III from http://www.agner.org/
933     { ISD::FSUB, MVT::v4f32,  2 }, // Pentium III from http://www.agner.org/
934 
935     { ISD::ADD, MVT::i8,      1 }, // Pentium III from http://www.agner.org/
936     { ISD::ADD, MVT::i16,     1 }, // Pentium III from http://www.agner.org/
937     { ISD::ADD, MVT::i32,     1 }, // Pentium III from http://www.agner.org/
938 
939     { ISD::SUB, MVT::i8,      1 }, // Pentium III from http://www.agner.org/
940     { ISD::SUB, MVT::i16,     1 }, // Pentium III from http://www.agner.org/
941     { ISD::SUB, MVT::i32,     1 }, // Pentium III from http://www.agner.org/
942   };
943 
944   if (ST->hasSSE1())
945     if (const auto *Entry = CostTableLookup(SSE1CostTable, ISD, LT.second))
946       return LT.first * Entry->Cost;
947 
948   // It is not a good idea to vectorize division. We have to scalarize it and
949   // in the process we will often end up having to spilling regular
950   // registers. The overhead of division is going to dominate most kernels
951   // anyways so try hard to prevent vectorization of division - it is
952   // generally a bad idea. Assume somewhat arbitrarily that we have to be able
953   // to hide "20 cycles" for each lane.
954   if (LT.second.isVector() && (ISD == ISD::SDIV || ISD == ISD::SREM ||
955                                ISD == ISD::UDIV || ISD == ISD::UREM)) {
956     int ScalarCost = getArithmeticInstrCost(
957         Opcode, Ty->getScalarType(), CostKind, Op1Info, Op2Info,
958         TargetTransformInfo::OP_None, TargetTransformInfo::OP_None);
959     return 20 * LT.first * LT.second.getVectorNumElements() * ScalarCost;
960   }
961 
962   // Fallback to the default implementation.
963   return BaseT::getArithmeticInstrCost(Opcode, Ty, CostKind, Op1Info, Op2Info);
964 }
965 
966 int X86TTIImpl::getShuffleCost(TTI::ShuffleKind Kind, VectorType *BaseTp,
967                                ArrayRef<int> Mask, int Index,
968                                VectorType *SubTp) {
969   // 64-bit packed float vectors (v2f32) are widened to type v4f32.
970   // 64-bit packed integer vectors (v2i32) are widened to type v4i32.
971   std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, BaseTp);
972 
973   // Treat Transpose as 2-op shuffles - there's no difference in lowering.
974   if (Kind == TTI::SK_Transpose)
975     Kind = TTI::SK_PermuteTwoSrc;
976 
977   // For Broadcasts we are splatting the first element from the first input
978   // register, so only need to reference that input and all the output
979   // registers are the same.
980   if (Kind == TTI::SK_Broadcast)
981     LT.first = 1;
982 
983   // Subvector extractions are free if they start at the beginning of a
984   // vector and cheap if the subvectors are aligned.
985   if (Kind == TTI::SK_ExtractSubvector && LT.second.isVector()) {
986     int NumElts = LT.second.getVectorNumElements();
987     if ((Index % NumElts) == 0)
988       return 0;
989     std::pair<int, MVT> SubLT = TLI->getTypeLegalizationCost(DL, SubTp);
990     if (SubLT.second.isVector()) {
991       int NumSubElts = SubLT.second.getVectorNumElements();
992       if ((Index % NumSubElts) == 0 && (NumElts % NumSubElts) == 0)
993         return SubLT.first;
994       // Handle some cases for widening legalization. For now we only handle
995       // cases where the original subvector was naturally aligned and evenly
996       // fit in its legalized subvector type.
997       // FIXME: Remove some of the alignment restrictions.
998       // FIXME: We can use permq for 64-bit or larger extracts from 256-bit
999       // vectors.
1000       int OrigSubElts = cast<FixedVectorType>(SubTp)->getNumElements();
1001       if (NumSubElts > OrigSubElts && (Index % OrigSubElts) == 0 &&
1002           (NumSubElts % OrigSubElts) == 0 &&
1003           LT.second.getVectorElementType() ==
1004               SubLT.second.getVectorElementType() &&
1005           LT.second.getVectorElementType().getSizeInBits() ==
1006               BaseTp->getElementType()->getPrimitiveSizeInBits()) {
1007         assert(NumElts >= NumSubElts && NumElts > OrigSubElts &&
1008                "Unexpected number of elements!");
1009         auto *VecTy = FixedVectorType::get(BaseTp->getElementType(),
1010                                            LT.second.getVectorNumElements());
1011         auto *SubTy = FixedVectorType::get(BaseTp->getElementType(),
1012                                            SubLT.second.getVectorNumElements());
1013         int ExtractIndex = alignDown((Index % NumElts), NumSubElts);
1014         int ExtractCost = getShuffleCost(TTI::SK_ExtractSubvector, VecTy, None,
1015                                          ExtractIndex, SubTy);
1016 
1017         // If the original size is 32-bits or more, we can use pshufd. Otherwise
1018         // if we have SSSE3 we can use pshufb.
1019         if (SubTp->getPrimitiveSizeInBits() >= 32 || ST->hasSSSE3())
1020           return ExtractCost + 1; // pshufd or pshufb
1021 
1022         assert(SubTp->getPrimitiveSizeInBits() == 16 &&
1023                "Unexpected vector size");
1024 
1025         return ExtractCost + 2; // worst case pshufhw + pshufd
1026       }
1027     }
1028   }
1029 
1030   // Handle some common (illegal) sub-vector types as they are often very cheap
1031   // to shuffle even on targets without PSHUFB.
1032   EVT VT = TLI->getValueType(DL, BaseTp);
1033   if (VT.isSimple() && VT.isVector() && VT.getSizeInBits() < 128 &&
1034       !ST->hasSSSE3()) {
1035      static const CostTblEntry SSE2SubVectorShuffleTbl[] = {
1036       {TTI::SK_Broadcast,        MVT::v4i16, 1}, // pshuflw
1037       {TTI::SK_Broadcast,        MVT::v2i16, 1}, // pshuflw
1038       {TTI::SK_Broadcast,        MVT::v8i8,  2}, // punpck/pshuflw
1039       {TTI::SK_Broadcast,        MVT::v4i8,  2}, // punpck/pshuflw
1040       {TTI::SK_Broadcast,        MVT::v2i8,  1}, // punpck
1041 
1042       {TTI::SK_Reverse,          MVT::v4i16, 1}, // pshuflw
1043       {TTI::SK_Reverse,          MVT::v2i16, 1}, // pshuflw
1044       {TTI::SK_Reverse,          MVT::v4i8,  3}, // punpck/pshuflw/packus
1045       {TTI::SK_Reverse,          MVT::v2i8,  1}, // punpck
1046 
1047       {TTI::SK_PermuteTwoSrc,    MVT::v4i16, 2}, // punpck/pshuflw
1048       {TTI::SK_PermuteTwoSrc,    MVT::v2i16, 2}, // punpck/pshuflw
1049       {TTI::SK_PermuteTwoSrc,    MVT::v8i8,  7}, // punpck/pshuflw
1050       {TTI::SK_PermuteTwoSrc,    MVT::v4i8,  4}, // punpck/pshuflw
1051       {TTI::SK_PermuteTwoSrc,    MVT::v2i8,  2}, // punpck
1052 
1053       {TTI::SK_PermuteSingleSrc, MVT::v4i16, 1}, // pshuflw
1054       {TTI::SK_PermuteSingleSrc, MVT::v2i16, 1}, // pshuflw
1055       {TTI::SK_PermuteSingleSrc, MVT::v8i8,  5}, // punpck/pshuflw
1056       {TTI::SK_PermuteSingleSrc, MVT::v4i8,  3}, // punpck/pshuflw
1057       {TTI::SK_PermuteSingleSrc, MVT::v2i8,  1}, // punpck
1058     };
1059 
1060     if (ST->hasSSE2())
1061       if (const auto *Entry =
1062               CostTableLookup(SSE2SubVectorShuffleTbl, Kind, VT.getSimpleVT()))
1063         return Entry->Cost;
1064   }
1065 
1066   // We are going to permute multiple sources and the result will be in multiple
1067   // destinations. Providing an accurate cost only for splits where the element
1068   // type remains the same.
1069   if (Kind == TTI::SK_PermuteSingleSrc && LT.first != 1) {
1070     MVT LegalVT = LT.second;
1071     if (LegalVT.isVector() &&
1072         LegalVT.getVectorElementType().getSizeInBits() ==
1073             BaseTp->getElementType()->getPrimitiveSizeInBits() &&
1074         LegalVT.getVectorNumElements() <
1075             cast<FixedVectorType>(BaseTp)->getNumElements()) {
1076 
1077       unsigned VecTySize = DL.getTypeStoreSize(BaseTp);
1078       unsigned LegalVTSize = LegalVT.getStoreSize();
1079       // Number of source vectors after legalization:
1080       unsigned NumOfSrcs = (VecTySize + LegalVTSize - 1) / LegalVTSize;
1081       // Number of destination vectors after legalization:
1082       unsigned NumOfDests = LT.first;
1083 
1084       auto *SingleOpTy = FixedVectorType::get(BaseTp->getElementType(),
1085                                               LegalVT.getVectorNumElements());
1086 
1087       unsigned NumOfShuffles = (NumOfSrcs - 1) * NumOfDests;
1088       return NumOfShuffles * getShuffleCost(TTI::SK_PermuteTwoSrc, SingleOpTy,
1089                                             None, 0, nullptr);
1090     }
1091 
1092     return BaseT::getShuffleCost(Kind, BaseTp, Mask, Index, SubTp);
1093   }
1094 
1095   // For 2-input shuffles, we must account for splitting the 2 inputs into many.
1096   if (Kind == TTI::SK_PermuteTwoSrc && LT.first != 1) {
1097     // We assume that source and destination have the same vector type.
1098     int NumOfDests = LT.first;
1099     int NumOfShufflesPerDest = LT.first * 2 - 1;
1100     LT.first = NumOfDests * NumOfShufflesPerDest;
1101   }
1102 
1103   static const CostTblEntry AVX512VBMIShuffleTbl[] = {
1104       {TTI::SK_Reverse, MVT::v64i8, 1}, // vpermb
1105       {TTI::SK_Reverse, MVT::v32i8, 1}, // vpermb
1106 
1107       {TTI::SK_PermuteSingleSrc, MVT::v64i8, 1}, // vpermb
1108       {TTI::SK_PermuteSingleSrc, MVT::v32i8, 1}, // vpermb
1109 
1110       {TTI::SK_PermuteTwoSrc, MVT::v64i8, 2}, // vpermt2b
1111       {TTI::SK_PermuteTwoSrc, MVT::v32i8, 2}, // vpermt2b
1112       {TTI::SK_PermuteTwoSrc, MVT::v16i8, 2}  // vpermt2b
1113   };
1114 
1115   if (ST->hasVBMI())
1116     if (const auto *Entry =
1117             CostTableLookup(AVX512VBMIShuffleTbl, Kind, LT.second))
1118       return LT.first * Entry->Cost;
1119 
1120   static const CostTblEntry AVX512BWShuffleTbl[] = {
1121       {TTI::SK_Broadcast, MVT::v32i16, 1}, // vpbroadcastw
1122       {TTI::SK_Broadcast, MVT::v64i8, 1},  // vpbroadcastb
1123 
1124       {TTI::SK_Reverse, MVT::v32i16, 2}, // vpermw
1125       {TTI::SK_Reverse, MVT::v16i16, 2}, // vpermw
1126       {TTI::SK_Reverse, MVT::v64i8, 2},  // pshufb + vshufi64x2
1127 
1128       {TTI::SK_PermuteSingleSrc, MVT::v32i16, 2}, // vpermw
1129       {TTI::SK_PermuteSingleSrc, MVT::v16i16, 2}, // vpermw
1130       {TTI::SK_PermuteSingleSrc, MVT::v64i8, 8},  // extend to v32i16
1131 
1132       {TTI::SK_PermuteTwoSrc, MVT::v32i16, 2}, // vpermt2w
1133       {TTI::SK_PermuteTwoSrc, MVT::v16i16, 2}, // vpermt2w
1134       {TTI::SK_PermuteTwoSrc, MVT::v8i16, 2},  // vpermt2w
1135       {TTI::SK_PermuteTwoSrc, MVT::v64i8, 19}, // 6 * v32i8 + 1
1136 
1137       {TTI::SK_Select, MVT::v32i16, 1}, // vblendmw
1138       {TTI::SK_Select, MVT::v64i8,  1}, // vblendmb
1139   };
1140 
1141   if (ST->hasBWI())
1142     if (const auto *Entry =
1143             CostTableLookup(AVX512BWShuffleTbl, Kind, LT.second))
1144       return LT.first * Entry->Cost;
1145 
1146   static const CostTblEntry AVX512ShuffleTbl[] = {
1147       {TTI::SK_Broadcast, MVT::v8f64, 1},  // vbroadcastpd
1148       {TTI::SK_Broadcast, MVT::v16f32, 1}, // vbroadcastps
1149       {TTI::SK_Broadcast, MVT::v8i64, 1},  // vpbroadcastq
1150       {TTI::SK_Broadcast, MVT::v16i32, 1}, // vpbroadcastd
1151       {TTI::SK_Broadcast, MVT::v32i16, 1}, // vpbroadcastw
1152       {TTI::SK_Broadcast, MVT::v64i8, 1},  // vpbroadcastb
1153 
1154       {TTI::SK_Reverse, MVT::v8f64, 1},  // vpermpd
1155       {TTI::SK_Reverse, MVT::v16f32, 1}, // vpermps
1156       {TTI::SK_Reverse, MVT::v8i64, 1},  // vpermq
1157       {TTI::SK_Reverse, MVT::v16i32, 1}, // vpermd
1158 
1159       {TTI::SK_PermuteSingleSrc, MVT::v8f64, 1},  // vpermpd
1160       {TTI::SK_PermuteSingleSrc, MVT::v4f64, 1},  // vpermpd
1161       {TTI::SK_PermuteSingleSrc, MVT::v2f64, 1},  // vpermpd
1162       {TTI::SK_PermuteSingleSrc, MVT::v16f32, 1}, // vpermps
1163       {TTI::SK_PermuteSingleSrc, MVT::v8f32, 1},  // vpermps
1164       {TTI::SK_PermuteSingleSrc, MVT::v4f32, 1},  // vpermps
1165       {TTI::SK_PermuteSingleSrc, MVT::v8i64, 1},  // vpermq
1166       {TTI::SK_PermuteSingleSrc, MVT::v4i64, 1},  // vpermq
1167       {TTI::SK_PermuteSingleSrc, MVT::v2i64, 1},  // vpermq
1168       {TTI::SK_PermuteSingleSrc, MVT::v16i32, 1}, // vpermd
1169       {TTI::SK_PermuteSingleSrc, MVT::v8i32, 1},  // vpermd
1170       {TTI::SK_PermuteSingleSrc, MVT::v4i32, 1},  // vpermd
1171       {TTI::SK_PermuteSingleSrc, MVT::v16i8, 1},  // pshufb
1172 
1173       {TTI::SK_PermuteTwoSrc, MVT::v8f64, 1},  // vpermt2pd
1174       {TTI::SK_PermuteTwoSrc, MVT::v16f32, 1}, // vpermt2ps
1175       {TTI::SK_PermuteTwoSrc, MVT::v8i64, 1},  // vpermt2q
1176       {TTI::SK_PermuteTwoSrc, MVT::v16i32, 1}, // vpermt2d
1177       {TTI::SK_PermuteTwoSrc, MVT::v4f64, 1},  // vpermt2pd
1178       {TTI::SK_PermuteTwoSrc, MVT::v8f32, 1},  // vpermt2ps
1179       {TTI::SK_PermuteTwoSrc, MVT::v4i64, 1},  // vpermt2q
1180       {TTI::SK_PermuteTwoSrc, MVT::v8i32, 1},  // vpermt2d
1181       {TTI::SK_PermuteTwoSrc, MVT::v2f64, 1},  // vpermt2pd
1182       {TTI::SK_PermuteTwoSrc, MVT::v4f32, 1},  // vpermt2ps
1183       {TTI::SK_PermuteTwoSrc, MVT::v2i64, 1},  // vpermt2q
1184       {TTI::SK_PermuteTwoSrc, MVT::v4i32, 1},  // vpermt2d
1185 
1186       // FIXME: This just applies the type legalization cost rules above
1187       // assuming these completely split.
1188       {TTI::SK_PermuteSingleSrc, MVT::v32i16, 14},
1189       {TTI::SK_PermuteSingleSrc, MVT::v64i8,  14},
1190       {TTI::SK_PermuteTwoSrc,    MVT::v32i16, 42},
1191       {TTI::SK_PermuteTwoSrc,    MVT::v64i8,  42},
1192 
1193       {TTI::SK_Select, MVT::v32i16, 1}, // vpternlogq
1194       {TTI::SK_Select, MVT::v64i8,  1}, // vpternlogq
1195       {TTI::SK_Select, MVT::v8f64,  1}, // vblendmpd
1196       {TTI::SK_Select, MVT::v16f32, 1}, // vblendmps
1197       {TTI::SK_Select, MVT::v8i64,  1}, // vblendmq
1198       {TTI::SK_Select, MVT::v16i32, 1}, // vblendmd
1199   };
1200 
1201   if (ST->hasAVX512())
1202     if (const auto *Entry = CostTableLookup(AVX512ShuffleTbl, Kind, LT.second))
1203       return LT.first * Entry->Cost;
1204 
1205   static const CostTblEntry AVX2ShuffleTbl[] = {
1206       {TTI::SK_Broadcast, MVT::v4f64, 1},  // vbroadcastpd
1207       {TTI::SK_Broadcast, MVT::v8f32, 1},  // vbroadcastps
1208       {TTI::SK_Broadcast, MVT::v4i64, 1},  // vpbroadcastq
1209       {TTI::SK_Broadcast, MVT::v8i32, 1},  // vpbroadcastd
1210       {TTI::SK_Broadcast, MVT::v16i16, 1}, // vpbroadcastw
1211       {TTI::SK_Broadcast, MVT::v32i8, 1},  // vpbroadcastb
1212 
1213       {TTI::SK_Reverse, MVT::v4f64, 1},  // vpermpd
1214       {TTI::SK_Reverse, MVT::v8f32, 1},  // vpermps
1215       {TTI::SK_Reverse, MVT::v4i64, 1},  // vpermq
1216       {TTI::SK_Reverse, MVT::v8i32, 1},  // vpermd
1217       {TTI::SK_Reverse, MVT::v16i16, 2}, // vperm2i128 + pshufb
1218       {TTI::SK_Reverse, MVT::v32i8, 2},  // vperm2i128 + pshufb
1219 
1220       {TTI::SK_Select, MVT::v16i16, 1}, // vpblendvb
1221       {TTI::SK_Select, MVT::v32i8, 1},  // vpblendvb
1222 
1223       {TTI::SK_PermuteSingleSrc, MVT::v4f64, 1},  // vpermpd
1224       {TTI::SK_PermuteSingleSrc, MVT::v8f32, 1},  // vpermps
1225       {TTI::SK_PermuteSingleSrc, MVT::v4i64, 1},  // vpermq
1226       {TTI::SK_PermuteSingleSrc, MVT::v8i32, 1},  // vpermd
1227       {TTI::SK_PermuteSingleSrc, MVT::v16i16, 4}, // vperm2i128 + 2*vpshufb
1228                                                   // + vpblendvb
1229       {TTI::SK_PermuteSingleSrc, MVT::v32i8, 4},  // vperm2i128 + 2*vpshufb
1230                                                   // + vpblendvb
1231 
1232       {TTI::SK_PermuteTwoSrc, MVT::v4f64, 3},  // 2*vpermpd + vblendpd
1233       {TTI::SK_PermuteTwoSrc, MVT::v8f32, 3},  // 2*vpermps + vblendps
1234       {TTI::SK_PermuteTwoSrc, MVT::v4i64, 3},  // 2*vpermq + vpblendd
1235       {TTI::SK_PermuteTwoSrc, MVT::v8i32, 3},  // 2*vpermd + vpblendd
1236       {TTI::SK_PermuteTwoSrc, MVT::v16i16, 7}, // 2*vperm2i128 + 4*vpshufb
1237                                                // + vpblendvb
1238       {TTI::SK_PermuteTwoSrc, MVT::v32i8, 7},  // 2*vperm2i128 + 4*vpshufb
1239                                                // + vpblendvb
1240   };
1241 
1242   if (ST->hasAVX2())
1243     if (const auto *Entry = CostTableLookup(AVX2ShuffleTbl, Kind, LT.second))
1244       return LT.first * Entry->Cost;
1245 
1246   static const CostTblEntry XOPShuffleTbl[] = {
1247       {TTI::SK_PermuteSingleSrc, MVT::v4f64, 2},  // vperm2f128 + vpermil2pd
1248       {TTI::SK_PermuteSingleSrc, MVT::v8f32, 2},  // vperm2f128 + vpermil2ps
1249       {TTI::SK_PermuteSingleSrc, MVT::v4i64, 2},  // vperm2f128 + vpermil2pd
1250       {TTI::SK_PermuteSingleSrc, MVT::v8i32, 2},  // vperm2f128 + vpermil2ps
1251       {TTI::SK_PermuteSingleSrc, MVT::v16i16, 4}, // vextractf128 + 2*vpperm
1252                                                   // + vinsertf128
1253       {TTI::SK_PermuteSingleSrc, MVT::v32i8, 4},  // vextractf128 + 2*vpperm
1254                                                   // + vinsertf128
1255 
1256       {TTI::SK_PermuteTwoSrc, MVT::v16i16, 9}, // 2*vextractf128 + 6*vpperm
1257                                                // + vinsertf128
1258       {TTI::SK_PermuteTwoSrc, MVT::v8i16, 1},  // vpperm
1259       {TTI::SK_PermuteTwoSrc, MVT::v32i8, 9},  // 2*vextractf128 + 6*vpperm
1260                                                // + vinsertf128
1261       {TTI::SK_PermuteTwoSrc, MVT::v16i8, 1},  // vpperm
1262   };
1263 
1264   if (ST->hasXOP())
1265     if (const auto *Entry = CostTableLookup(XOPShuffleTbl, Kind, LT.second))
1266       return LT.first * Entry->Cost;
1267 
1268   static const CostTblEntry AVX1ShuffleTbl[] = {
1269       {TTI::SK_Broadcast, MVT::v4f64, 2},  // vperm2f128 + vpermilpd
1270       {TTI::SK_Broadcast, MVT::v8f32, 2},  // vperm2f128 + vpermilps
1271       {TTI::SK_Broadcast, MVT::v4i64, 2},  // vperm2f128 + vpermilpd
1272       {TTI::SK_Broadcast, MVT::v8i32, 2},  // vperm2f128 + vpermilps
1273       {TTI::SK_Broadcast, MVT::v16i16, 3}, // vpshuflw + vpshufd + vinsertf128
1274       {TTI::SK_Broadcast, MVT::v32i8, 2},  // vpshufb + vinsertf128
1275 
1276       {TTI::SK_Reverse, MVT::v4f64, 2},  // vperm2f128 + vpermilpd
1277       {TTI::SK_Reverse, MVT::v8f32, 2},  // vperm2f128 + vpermilps
1278       {TTI::SK_Reverse, MVT::v4i64, 2},  // vperm2f128 + vpermilpd
1279       {TTI::SK_Reverse, MVT::v8i32, 2},  // vperm2f128 + vpermilps
1280       {TTI::SK_Reverse, MVT::v16i16, 4}, // vextractf128 + 2*pshufb
1281                                          // + vinsertf128
1282       {TTI::SK_Reverse, MVT::v32i8, 4},  // vextractf128 + 2*pshufb
1283                                          // + vinsertf128
1284 
1285       {TTI::SK_Select, MVT::v4i64, 1},  // vblendpd
1286       {TTI::SK_Select, MVT::v4f64, 1},  // vblendpd
1287       {TTI::SK_Select, MVT::v8i32, 1},  // vblendps
1288       {TTI::SK_Select, MVT::v8f32, 1},  // vblendps
1289       {TTI::SK_Select, MVT::v16i16, 3}, // vpand + vpandn + vpor
1290       {TTI::SK_Select, MVT::v32i8, 3},  // vpand + vpandn + vpor
1291 
1292       {TTI::SK_PermuteSingleSrc, MVT::v4f64, 2},  // vperm2f128 + vshufpd
1293       {TTI::SK_PermuteSingleSrc, MVT::v4i64, 2},  // vperm2f128 + vshufpd
1294       {TTI::SK_PermuteSingleSrc, MVT::v8f32, 4},  // 2*vperm2f128 + 2*vshufps
1295       {TTI::SK_PermuteSingleSrc, MVT::v8i32, 4},  // 2*vperm2f128 + 2*vshufps
1296       {TTI::SK_PermuteSingleSrc, MVT::v16i16, 8}, // vextractf128 + 4*pshufb
1297                                                   // + 2*por + vinsertf128
1298       {TTI::SK_PermuteSingleSrc, MVT::v32i8, 8},  // vextractf128 + 4*pshufb
1299                                                   // + 2*por + vinsertf128
1300 
1301       {TTI::SK_PermuteTwoSrc, MVT::v4f64, 3},   // 2*vperm2f128 + vshufpd
1302       {TTI::SK_PermuteTwoSrc, MVT::v4i64, 3},   // 2*vperm2f128 + vshufpd
1303       {TTI::SK_PermuteTwoSrc, MVT::v8f32, 4},   // 2*vperm2f128 + 2*vshufps
1304       {TTI::SK_PermuteTwoSrc, MVT::v8i32, 4},   // 2*vperm2f128 + 2*vshufps
1305       {TTI::SK_PermuteTwoSrc, MVT::v16i16, 15}, // 2*vextractf128 + 8*pshufb
1306                                                 // + 4*por + vinsertf128
1307       {TTI::SK_PermuteTwoSrc, MVT::v32i8, 15},  // 2*vextractf128 + 8*pshufb
1308                                                 // + 4*por + vinsertf128
1309   };
1310 
1311   if (ST->hasAVX())
1312     if (const auto *Entry = CostTableLookup(AVX1ShuffleTbl, Kind, LT.second))
1313       return LT.first * Entry->Cost;
1314 
1315   static const CostTblEntry SSE41ShuffleTbl[] = {
1316       {TTI::SK_Select, MVT::v2i64, 1}, // pblendw
1317       {TTI::SK_Select, MVT::v2f64, 1}, // movsd
1318       {TTI::SK_Select, MVT::v4i32, 1}, // pblendw
1319       {TTI::SK_Select, MVT::v4f32, 1}, // blendps
1320       {TTI::SK_Select, MVT::v8i16, 1}, // pblendw
1321       {TTI::SK_Select, MVT::v16i8, 1}  // pblendvb
1322   };
1323 
1324   if (ST->hasSSE41())
1325     if (const auto *Entry = CostTableLookup(SSE41ShuffleTbl, Kind, LT.second))
1326       return LT.first * Entry->Cost;
1327 
1328   static const CostTblEntry SSSE3ShuffleTbl[] = {
1329       {TTI::SK_Broadcast, MVT::v8i16, 1}, // pshufb
1330       {TTI::SK_Broadcast, MVT::v16i8, 1}, // pshufb
1331 
1332       {TTI::SK_Reverse, MVT::v8i16, 1}, // pshufb
1333       {TTI::SK_Reverse, MVT::v16i8, 1}, // pshufb
1334 
1335       {TTI::SK_Select, MVT::v8i16, 3}, // 2*pshufb + por
1336       {TTI::SK_Select, MVT::v16i8, 3}, // 2*pshufb + por
1337 
1338       {TTI::SK_PermuteSingleSrc, MVT::v8i16, 1}, // pshufb
1339       {TTI::SK_PermuteSingleSrc, MVT::v16i8, 1}, // pshufb
1340 
1341       {TTI::SK_PermuteTwoSrc, MVT::v8i16, 3}, // 2*pshufb + por
1342       {TTI::SK_PermuteTwoSrc, MVT::v16i8, 3}, // 2*pshufb + por
1343   };
1344 
1345   if (ST->hasSSSE3())
1346     if (const auto *Entry = CostTableLookup(SSSE3ShuffleTbl, Kind, LT.second))
1347       return LT.first * Entry->Cost;
1348 
1349   static const CostTblEntry SSE2ShuffleTbl[] = {
1350       {TTI::SK_Broadcast, MVT::v2f64, 1}, // shufpd
1351       {TTI::SK_Broadcast, MVT::v2i64, 1}, // pshufd
1352       {TTI::SK_Broadcast, MVT::v4i32, 1}, // pshufd
1353       {TTI::SK_Broadcast, MVT::v8i16, 2}, // pshuflw + pshufd
1354       {TTI::SK_Broadcast, MVT::v16i8, 3}, // unpck + pshuflw + pshufd
1355 
1356       {TTI::SK_Reverse, MVT::v2f64, 1}, // shufpd
1357       {TTI::SK_Reverse, MVT::v2i64, 1}, // pshufd
1358       {TTI::SK_Reverse, MVT::v4i32, 1}, // pshufd
1359       {TTI::SK_Reverse, MVT::v8i16, 3}, // pshuflw + pshufhw + pshufd
1360       {TTI::SK_Reverse, MVT::v16i8, 9}, // 2*pshuflw + 2*pshufhw
1361                                         // + 2*pshufd + 2*unpck + packus
1362 
1363       {TTI::SK_Select, MVT::v2i64, 1}, // movsd
1364       {TTI::SK_Select, MVT::v2f64, 1}, // movsd
1365       {TTI::SK_Select, MVT::v4i32, 2}, // 2*shufps
1366       {TTI::SK_Select, MVT::v8i16, 3}, // pand + pandn + por
1367       {TTI::SK_Select, MVT::v16i8, 3}, // pand + pandn + por
1368 
1369       {TTI::SK_PermuteSingleSrc, MVT::v2f64, 1}, // shufpd
1370       {TTI::SK_PermuteSingleSrc, MVT::v2i64, 1}, // pshufd
1371       {TTI::SK_PermuteSingleSrc, MVT::v4i32, 1}, // pshufd
1372       {TTI::SK_PermuteSingleSrc, MVT::v8i16, 5}, // 2*pshuflw + 2*pshufhw
1373                                                   // + pshufd/unpck
1374     { TTI::SK_PermuteSingleSrc, MVT::v16i8, 10 }, // 2*pshuflw + 2*pshufhw
1375                                                   // + 2*pshufd + 2*unpck + 2*packus
1376 
1377     { TTI::SK_PermuteTwoSrc,    MVT::v2f64,  1 }, // shufpd
1378     { TTI::SK_PermuteTwoSrc,    MVT::v2i64,  1 }, // shufpd
1379     { TTI::SK_PermuteTwoSrc,    MVT::v4i32,  2 }, // 2*{unpck,movsd,pshufd}
1380     { TTI::SK_PermuteTwoSrc,    MVT::v8i16,  8 }, // blend+permute
1381     { TTI::SK_PermuteTwoSrc,    MVT::v16i8, 13 }, // blend+permute
1382   };
1383 
1384   if (ST->hasSSE2())
1385     if (const auto *Entry = CostTableLookup(SSE2ShuffleTbl, Kind, LT.second))
1386       return LT.first * Entry->Cost;
1387 
1388   static const CostTblEntry SSE1ShuffleTbl[] = {
1389     { TTI::SK_Broadcast,        MVT::v4f32, 1 }, // shufps
1390     { TTI::SK_Reverse,          MVT::v4f32, 1 }, // shufps
1391     { TTI::SK_Select,           MVT::v4f32, 2 }, // 2*shufps
1392     { TTI::SK_PermuteSingleSrc, MVT::v4f32, 1 }, // shufps
1393     { TTI::SK_PermuteTwoSrc,    MVT::v4f32, 2 }, // 2*shufps
1394   };
1395 
1396   if (ST->hasSSE1())
1397     if (const auto *Entry = CostTableLookup(SSE1ShuffleTbl, Kind, LT.second))
1398       return LT.first * Entry->Cost;
1399 
1400   return BaseT::getShuffleCost(Kind, BaseTp, Mask, Index, SubTp);
1401 }
1402 
1403 int X86TTIImpl::getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src,
1404                                  TTI::CastContextHint CCH,
1405                                  TTI::TargetCostKind CostKind,
1406                                  const Instruction *I) {
1407   int ISD = TLI->InstructionOpcodeToISD(Opcode);
1408   assert(ISD && "Invalid opcode");
1409 
1410   // TODO: Allow non-throughput costs that aren't binary.
1411   auto AdjustCost = [&CostKind](int Cost) {
1412     if (CostKind != TTI::TCK_RecipThroughput)
1413       return Cost == 0 ? 0 : 1;
1414     return Cost;
1415   };
1416 
1417   // FIXME: Need a better design of the cost table to handle non-simple types of
1418   // potential massive combinations (elem_num x src_type x dst_type).
1419 
1420   static const TypeConversionCostTblEntry AVX512BWConversionTbl[] {
1421     { ISD::SIGN_EXTEND, MVT::v32i16, MVT::v32i8, 1 },
1422     { ISD::ZERO_EXTEND, MVT::v32i16, MVT::v32i8, 1 },
1423 
1424     // Mask sign extend has an instruction.
1425     { ISD::SIGN_EXTEND, MVT::v2i8,   MVT::v2i1,  1 },
1426     { ISD::SIGN_EXTEND, MVT::v2i16,  MVT::v2i1,  1 },
1427     { ISD::SIGN_EXTEND, MVT::v4i8,   MVT::v4i1,  1 },
1428     { ISD::SIGN_EXTEND, MVT::v4i16,  MVT::v4i1,  1 },
1429     { ISD::SIGN_EXTEND, MVT::v8i8,   MVT::v8i1,  1 },
1430     { ISD::SIGN_EXTEND, MVT::v8i16,  MVT::v8i1,  1 },
1431     { ISD::SIGN_EXTEND, MVT::v16i8,  MVT::v16i1, 1 },
1432     { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i1, 1 },
1433     { ISD::SIGN_EXTEND, MVT::v32i8,  MVT::v32i1, 1 },
1434     { ISD::SIGN_EXTEND, MVT::v32i16, MVT::v32i1, 1 },
1435     { ISD::SIGN_EXTEND, MVT::v64i8,  MVT::v64i1, 1 },
1436 
1437     // Mask zero extend is a sext + shift.
1438     { ISD::ZERO_EXTEND, MVT::v2i8,   MVT::v2i1,  2 },
1439     { ISD::ZERO_EXTEND, MVT::v2i16,  MVT::v2i1,  2 },
1440     { ISD::ZERO_EXTEND, MVT::v4i8,   MVT::v4i1,  2 },
1441     { ISD::ZERO_EXTEND, MVT::v4i16,  MVT::v4i1,  2 },
1442     { ISD::ZERO_EXTEND, MVT::v8i8,   MVT::v8i1,  2 },
1443     { ISD::ZERO_EXTEND, MVT::v8i16,  MVT::v8i1,  2 },
1444     { ISD::ZERO_EXTEND, MVT::v16i8,  MVT::v16i1, 2 },
1445     { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i1, 2 },
1446     { ISD::ZERO_EXTEND, MVT::v32i8,  MVT::v32i1, 2 },
1447     { ISD::ZERO_EXTEND, MVT::v32i16, MVT::v32i1, 2 },
1448     { ISD::ZERO_EXTEND, MVT::v64i8,  MVT::v64i1, 2 },
1449 
1450     { ISD::TRUNCATE,    MVT::v32i8,  MVT::v32i16, 2 },
1451     { ISD::TRUNCATE,    MVT::v16i8,  MVT::v16i16, 2 }, // widen to zmm
1452     { ISD::TRUNCATE,    MVT::v2i1,   MVT::v2i8,   2 }, // widen to zmm
1453     { ISD::TRUNCATE,    MVT::v2i1,   MVT::v2i16,  2 }, // widen to zmm
1454     { ISD::TRUNCATE,    MVT::v4i1,   MVT::v4i8,   2 }, // widen to zmm
1455     { ISD::TRUNCATE,    MVT::v4i1,   MVT::v4i16,  2 }, // widen to zmm
1456     { ISD::TRUNCATE,    MVT::v8i1,   MVT::v8i8,   2 }, // widen to zmm
1457     { ISD::TRUNCATE,    MVT::v8i1,   MVT::v8i16,  2 }, // widen to zmm
1458     { ISD::TRUNCATE,    MVT::v16i1,  MVT::v16i8,  2 }, // widen to zmm
1459     { ISD::TRUNCATE,    MVT::v16i1,  MVT::v16i16, 2 }, // widen to zmm
1460     { ISD::TRUNCATE,    MVT::v32i1,  MVT::v32i8,  2 }, // widen to zmm
1461     { ISD::TRUNCATE,    MVT::v32i1,  MVT::v32i16, 2 },
1462     { ISD::TRUNCATE,    MVT::v64i1,  MVT::v64i8,  2 },
1463   };
1464 
1465   static const TypeConversionCostTblEntry AVX512DQConversionTbl[] = {
1466     { ISD::SINT_TO_FP,  MVT::v8f32,  MVT::v8i64,  1 },
1467     { ISD::SINT_TO_FP,  MVT::v8f64,  MVT::v8i64,  1 },
1468 
1469     { ISD::UINT_TO_FP,  MVT::v8f32,  MVT::v8i64,  1 },
1470     { ISD::UINT_TO_FP,  MVT::v8f64,  MVT::v8i64,  1 },
1471 
1472     { ISD::FP_TO_SINT,  MVT::v8i64,  MVT::v8f32,  1 },
1473     { ISD::FP_TO_SINT,  MVT::v8i64,  MVT::v8f64,  1 },
1474 
1475     { ISD::FP_TO_UINT,  MVT::v8i64,  MVT::v8f32,  1 },
1476     { ISD::FP_TO_UINT,  MVT::v8i64,  MVT::v8f64,  1 },
1477   };
1478 
1479   // TODO: For AVX512DQ + AVX512VL, we also have cheap casts for 128-bit and
1480   // 256-bit wide vectors.
1481 
1482   static const TypeConversionCostTblEntry AVX512FConversionTbl[] = {
1483     { ISD::FP_EXTEND, MVT::v8f64,   MVT::v8f32,  1 },
1484     { ISD::FP_EXTEND, MVT::v8f64,   MVT::v16f32, 3 },
1485     { ISD::FP_ROUND,  MVT::v8f32,   MVT::v8f64,  1 },
1486 
1487     { ISD::TRUNCATE,  MVT::v2i1,    MVT::v2i8,   3 }, // sext+vpslld+vptestmd
1488     { ISD::TRUNCATE,  MVT::v4i1,    MVT::v4i8,   3 }, // sext+vpslld+vptestmd
1489     { ISD::TRUNCATE,  MVT::v8i1,    MVT::v8i8,   3 }, // sext+vpslld+vptestmd
1490     { ISD::TRUNCATE,  MVT::v16i1,   MVT::v16i8,  3 }, // sext+vpslld+vptestmd
1491     { ISD::TRUNCATE,  MVT::v2i1,    MVT::v2i16,  3 }, // sext+vpsllq+vptestmq
1492     { ISD::TRUNCATE,  MVT::v4i1,    MVT::v4i16,  3 }, // sext+vpsllq+vptestmq
1493     { ISD::TRUNCATE,  MVT::v8i1,    MVT::v8i16,  3 }, // sext+vpsllq+vptestmq
1494     { ISD::TRUNCATE,  MVT::v16i1,   MVT::v16i16, 3 }, // sext+vpslld+vptestmd
1495     { ISD::TRUNCATE,  MVT::v2i1,    MVT::v2i32,  2 }, // zmm vpslld+vptestmd
1496     { ISD::TRUNCATE,  MVT::v4i1,    MVT::v4i32,  2 }, // zmm vpslld+vptestmd
1497     { ISD::TRUNCATE,  MVT::v8i1,    MVT::v8i32,  2 }, // zmm vpslld+vptestmd
1498     { ISD::TRUNCATE,  MVT::v16i1,   MVT::v16i32, 2 }, // vpslld+vptestmd
1499     { ISD::TRUNCATE,  MVT::v2i1,    MVT::v2i64,  2 }, // zmm vpsllq+vptestmq
1500     { ISD::TRUNCATE,  MVT::v4i1,    MVT::v4i64,  2 }, // zmm vpsllq+vptestmq
1501     { ISD::TRUNCATE,  MVT::v8i1,    MVT::v8i64,  2 }, // vpsllq+vptestmq
1502     { ISD::TRUNCATE,  MVT::v16i8,   MVT::v16i32, 2 },
1503     { ISD::TRUNCATE,  MVT::v16i16,  MVT::v16i32, 2 },
1504     { ISD::TRUNCATE,  MVT::v8i8,    MVT::v8i64,  2 },
1505     { ISD::TRUNCATE,  MVT::v8i16,   MVT::v8i64,  2 },
1506     { ISD::TRUNCATE,  MVT::v8i32,   MVT::v8i64,  1 },
1507     { ISD::TRUNCATE,  MVT::v4i32,   MVT::v4i64,  1 }, // zmm vpmovqd
1508     { ISD::TRUNCATE,  MVT::v16i8,   MVT::v16i64, 5 },// 2*vpmovqd+concat+vpmovdb
1509 
1510     { ISD::TRUNCATE,  MVT::v16i8,  MVT::v16i16,  3 }, // extend to v16i32
1511     { ISD::TRUNCATE,  MVT::v32i8,  MVT::v32i16,  8 },
1512 
1513     // Sign extend is zmm vpternlogd+vptruncdb.
1514     // Zero extend is zmm broadcast load+vptruncdw.
1515     { ISD::SIGN_EXTEND, MVT::v2i8,   MVT::v2i1,   3 },
1516     { ISD::ZERO_EXTEND, MVT::v2i8,   MVT::v2i1,   4 },
1517     { ISD::SIGN_EXTEND, MVT::v4i8,   MVT::v4i1,   3 },
1518     { ISD::ZERO_EXTEND, MVT::v4i8,   MVT::v4i1,   4 },
1519     { ISD::SIGN_EXTEND, MVT::v8i8,   MVT::v8i1,   3 },
1520     { ISD::ZERO_EXTEND, MVT::v8i8,   MVT::v8i1,   4 },
1521     { ISD::SIGN_EXTEND, MVT::v16i8,  MVT::v16i1,  3 },
1522     { ISD::ZERO_EXTEND, MVT::v16i8,  MVT::v16i1,  4 },
1523 
1524     // Sign extend is zmm vpternlogd+vptruncdw.
1525     // Zero extend is zmm vpternlogd+vptruncdw+vpsrlw.
1526     { ISD::SIGN_EXTEND, MVT::v2i16,  MVT::v2i1,   3 },
1527     { ISD::ZERO_EXTEND, MVT::v2i16,  MVT::v2i1,   4 },
1528     { ISD::SIGN_EXTEND, MVT::v4i16,  MVT::v4i1,   3 },
1529     { ISD::ZERO_EXTEND, MVT::v4i16,  MVT::v4i1,   4 },
1530     { ISD::SIGN_EXTEND, MVT::v8i16,  MVT::v8i1,   3 },
1531     { ISD::ZERO_EXTEND, MVT::v8i16,  MVT::v8i1,   4 },
1532     { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i1,  3 },
1533     { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i1,  4 },
1534 
1535     { ISD::SIGN_EXTEND, MVT::v2i32,  MVT::v2i1,   1 }, // zmm vpternlogd
1536     { ISD::ZERO_EXTEND, MVT::v2i32,  MVT::v2i1,   2 }, // zmm vpternlogd+psrld
1537     { ISD::SIGN_EXTEND, MVT::v4i32,  MVT::v4i1,   1 }, // zmm vpternlogd
1538     { ISD::ZERO_EXTEND, MVT::v4i32,  MVT::v4i1,   2 }, // zmm vpternlogd+psrld
1539     { ISD::SIGN_EXTEND, MVT::v8i32,  MVT::v8i1,   1 }, // zmm vpternlogd
1540     { ISD::ZERO_EXTEND, MVT::v8i32,  MVT::v8i1,   2 }, // zmm vpternlogd+psrld
1541     { ISD::SIGN_EXTEND, MVT::v2i64,  MVT::v2i1,   1 }, // zmm vpternlogq
1542     { ISD::ZERO_EXTEND, MVT::v2i64,  MVT::v2i1,   2 }, // zmm vpternlogq+psrlq
1543     { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v4i1,   1 }, // zmm vpternlogq
1544     { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v4i1,   2 }, // zmm vpternlogq+psrlq
1545 
1546     { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i1,  1 }, // vpternlogd
1547     { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i1,  2 }, // vpternlogd+psrld
1548     { ISD::SIGN_EXTEND, MVT::v8i64,  MVT::v8i1,   1 }, // vpternlogq
1549     { ISD::ZERO_EXTEND, MVT::v8i64,  MVT::v8i1,   2 }, // vpternlogq+psrlq
1550 
1551     { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i8,  1 },
1552     { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i8,  1 },
1553     { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i16, 1 },
1554     { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i16, 1 },
1555     { ISD::SIGN_EXTEND, MVT::v8i64,  MVT::v8i8,   1 },
1556     { ISD::ZERO_EXTEND, MVT::v8i64,  MVT::v8i8,   1 },
1557     { ISD::SIGN_EXTEND, MVT::v8i64,  MVT::v8i16,  1 },
1558     { ISD::ZERO_EXTEND, MVT::v8i64,  MVT::v8i16,  1 },
1559     { ISD::SIGN_EXTEND, MVT::v8i64,  MVT::v8i32,  1 },
1560     { ISD::ZERO_EXTEND, MVT::v8i64,  MVT::v8i32,  1 },
1561 
1562     { ISD::SIGN_EXTEND, MVT::v32i16, MVT::v32i8, 3 }, // FIXME: May not be right
1563     { ISD::ZERO_EXTEND, MVT::v32i16, MVT::v32i8, 3 }, // FIXME: May not be right
1564 
1565     { ISD::SINT_TO_FP,  MVT::v8f64,  MVT::v8i1,   4 },
1566     { ISD::SINT_TO_FP,  MVT::v16f32, MVT::v16i1,  3 },
1567     { ISD::SINT_TO_FP,  MVT::v8f64,  MVT::v8i8,   2 },
1568     { ISD::SINT_TO_FP,  MVT::v16f32, MVT::v16i8,  2 },
1569     { ISD::SINT_TO_FP,  MVT::v8f64,  MVT::v8i16,  2 },
1570     { ISD::SINT_TO_FP,  MVT::v16f32, MVT::v16i16, 2 },
1571     { ISD::SINT_TO_FP,  MVT::v16f32, MVT::v16i32, 1 },
1572     { ISD::SINT_TO_FP,  MVT::v8f64,  MVT::v8i32,  1 },
1573 
1574     { ISD::UINT_TO_FP,  MVT::v8f64,  MVT::v8i1,   4 },
1575     { ISD::UINT_TO_FP,  MVT::v16f32, MVT::v16i1,  3 },
1576     { ISD::UINT_TO_FP,  MVT::v8f64,  MVT::v8i8,   2 },
1577     { ISD::UINT_TO_FP,  MVT::v16f32, MVT::v16i8,  2 },
1578     { ISD::UINT_TO_FP,  MVT::v8f64,  MVT::v8i16,  2 },
1579     { ISD::UINT_TO_FP,  MVT::v16f32, MVT::v16i16, 2 },
1580     { ISD::UINT_TO_FP,  MVT::v8f64,  MVT::v8i32,  1 },
1581     { ISD::UINT_TO_FP,  MVT::v16f32, MVT::v16i32, 1 },
1582     { ISD::UINT_TO_FP,  MVT::v8f32,  MVT::v8i64, 26 },
1583     { ISD::UINT_TO_FP,  MVT::v8f64,  MVT::v8i64,  5 },
1584 
1585     { ISD::FP_TO_SINT,  MVT::v8i8,   MVT::v8f64,  3 },
1586     { ISD::FP_TO_SINT,  MVT::v8i16,  MVT::v8f64,  3 },
1587     { ISD::FP_TO_SINT,  MVT::v16i8,  MVT::v16f32, 3 },
1588     { ISD::FP_TO_SINT,  MVT::v16i16, MVT::v16f32, 3 },
1589 
1590     { ISD::FP_TO_UINT,  MVT::v8i32,  MVT::v8f64,  1 },
1591     { ISD::FP_TO_UINT,  MVT::v8i16,  MVT::v8f64,  3 },
1592     { ISD::FP_TO_UINT,  MVT::v8i8,   MVT::v8f64,  3 },
1593     { ISD::FP_TO_UINT,  MVT::v16i32, MVT::v16f32, 1 },
1594     { ISD::FP_TO_UINT,  MVT::v16i16, MVT::v16f32, 3 },
1595     { ISD::FP_TO_UINT,  MVT::v16i8,  MVT::v16f32, 3 },
1596   };
1597 
1598   static const TypeConversionCostTblEntry AVX512BWVLConversionTbl[] {
1599     // Mask sign extend has an instruction.
1600     { ISD::SIGN_EXTEND, MVT::v2i8,   MVT::v2i1,  1 },
1601     { ISD::SIGN_EXTEND, MVT::v2i16,  MVT::v2i1,  1 },
1602     { ISD::SIGN_EXTEND, MVT::v4i8,   MVT::v4i1,  1 },
1603     { ISD::SIGN_EXTEND, MVT::v4i16,  MVT::v4i1,  1 },
1604     { ISD::SIGN_EXTEND, MVT::v8i8,   MVT::v8i1,  1 },
1605     { ISD::SIGN_EXTEND, MVT::v8i16,  MVT::v8i1,  1 },
1606     { ISD::SIGN_EXTEND, MVT::v16i8,  MVT::v16i1, 1 },
1607     { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i1, 1 },
1608     { ISD::SIGN_EXTEND, MVT::v32i8,  MVT::v32i1, 1 },
1609 
1610     // Mask zero extend is a sext + shift.
1611     { ISD::ZERO_EXTEND, MVT::v2i8,   MVT::v2i1,  2 },
1612     { ISD::ZERO_EXTEND, MVT::v2i16,  MVT::v2i1,  2 },
1613     { ISD::ZERO_EXTEND, MVT::v4i8,   MVT::v4i1,  2 },
1614     { ISD::ZERO_EXTEND, MVT::v4i16,  MVT::v4i1,  2 },
1615     { ISD::ZERO_EXTEND, MVT::v8i8,   MVT::v8i1,  2 },
1616     { ISD::ZERO_EXTEND, MVT::v8i16,  MVT::v8i1,  2 },
1617     { ISD::ZERO_EXTEND, MVT::v16i8,  MVT::v16i1, 2 },
1618     { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i1, 2 },
1619     { ISD::ZERO_EXTEND, MVT::v32i8,  MVT::v32i1, 2 },
1620 
1621     { ISD::TRUNCATE,    MVT::v16i8,  MVT::v16i16, 2 },
1622     { ISD::TRUNCATE,    MVT::v2i1,   MVT::v2i8,   2 }, // vpsllw+vptestmb
1623     { ISD::TRUNCATE,    MVT::v2i1,   MVT::v2i16,  2 }, // vpsllw+vptestmw
1624     { ISD::TRUNCATE,    MVT::v4i1,   MVT::v4i8,   2 }, // vpsllw+vptestmb
1625     { ISD::TRUNCATE,    MVT::v4i1,   MVT::v4i16,  2 }, // vpsllw+vptestmw
1626     { ISD::TRUNCATE,    MVT::v8i1,   MVT::v8i8,   2 }, // vpsllw+vptestmb
1627     { ISD::TRUNCATE,    MVT::v8i1,   MVT::v8i16,  2 }, // vpsllw+vptestmw
1628     { ISD::TRUNCATE,    MVT::v16i1,  MVT::v16i8,  2 }, // vpsllw+vptestmb
1629     { ISD::TRUNCATE,    MVT::v16i1,  MVT::v16i16, 2 }, // vpsllw+vptestmw
1630     { ISD::TRUNCATE,    MVT::v32i1,  MVT::v32i8,  2 }, // vpsllw+vptestmb
1631   };
1632 
1633   static const TypeConversionCostTblEntry AVX512DQVLConversionTbl[] = {
1634     { ISD::SINT_TO_FP,  MVT::v2f32,  MVT::v2i64,  1 },
1635     { ISD::SINT_TO_FP,  MVT::v2f64,  MVT::v2i64,  1 },
1636     { ISD::SINT_TO_FP,  MVT::v4f32,  MVT::v4i64,  1 },
1637     { ISD::SINT_TO_FP,  MVT::v4f64,  MVT::v4i64,  1 },
1638 
1639     { ISD::UINT_TO_FP,  MVT::v2f32,  MVT::v2i64,  1 },
1640     { ISD::UINT_TO_FP,  MVT::v2f64,  MVT::v2i64,  1 },
1641     { ISD::UINT_TO_FP,  MVT::v4f32,  MVT::v4i64,  1 },
1642     { ISD::UINT_TO_FP,  MVT::v4f64,  MVT::v4i64,  1 },
1643 
1644     { ISD::FP_TO_SINT,  MVT::v2i64,  MVT::v2f32,  1 },
1645     { ISD::FP_TO_SINT,  MVT::v4i64,  MVT::v4f32,  1 },
1646     { ISD::FP_TO_SINT,  MVT::v2i64,  MVT::v2f64,  1 },
1647     { ISD::FP_TO_SINT,  MVT::v4i64,  MVT::v4f64,  1 },
1648 
1649     { ISD::FP_TO_UINT,  MVT::v2i64,  MVT::v2f32,  1 },
1650     { ISD::FP_TO_UINT,  MVT::v4i64,  MVT::v4f32,  1 },
1651     { ISD::FP_TO_UINT,  MVT::v2i64,  MVT::v2f64,  1 },
1652     { ISD::FP_TO_UINT,  MVT::v4i64,  MVT::v4f64,  1 },
1653   };
1654 
1655   static const TypeConversionCostTblEntry AVX512VLConversionTbl[] = {
1656     { ISD::TRUNCATE,  MVT::v2i1,    MVT::v2i8,   3 }, // sext+vpslld+vptestmd
1657     { ISD::TRUNCATE,  MVT::v4i1,    MVT::v4i8,   3 }, // sext+vpslld+vptestmd
1658     { ISD::TRUNCATE,  MVT::v8i1,    MVT::v8i8,   3 }, // sext+vpslld+vptestmd
1659     { ISD::TRUNCATE,  MVT::v16i1,   MVT::v16i8,  8 }, // split+2*v8i8
1660     { ISD::TRUNCATE,  MVT::v2i1,    MVT::v2i16,  3 }, // sext+vpsllq+vptestmq
1661     { ISD::TRUNCATE,  MVT::v4i1,    MVT::v4i16,  3 }, // sext+vpsllq+vptestmq
1662     { ISD::TRUNCATE,  MVT::v8i1,    MVT::v8i16,  3 }, // sext+vpsllq+vptestmq
1663     { ISD::TRUNCATE,  MVT::v16i1,   MVT::v16i16, 8 }, // split+2*v8i16
1664     { ISD::TRUNCATE,  MVT::v2i1,    MVT::v2i32,  2 }, // vpslld+vptestmd
1665     { ISD::TRUNCATE,  MVT::v4i1,    MVT::v4i32,  2 }, // vpslld+vptestmd
1666     { ISD::TRUNCATE,  MVT::v8i1,    MVT::v8i32,  2 }, // vpslld+vptestmd
1667     { ISD::TRUNCATE,  MVT::v2i1,    MVT::v2i64,  2 }, // vpsllq+vptestmq
1668     { ISD::TRUNCATE,  MVT::v4i1,    MVT::v4i64,  2 }, // vpsllq+vptestmq
1669     { ISD::TRUNCATE,  MVT::v4i32,   MVT::v4i64,  1 }, // vpmovqd
1670 
1671     // sign extend is vpcmpeq+maskedmove+vpmovdw+vpacksswb
1672     // zero extend is vpcmpeq+maskedmove+vpmovdw+vpsrlw+vpackuswb
1673     { ISD::SIGN_EXTEND, MVT::v2i8,   MVT::v2i1,   5 },
1674     { ISD::ZERO_EXTEND, MVT::v2i8,   MVT::v2i1,   6 },
1675     { ISD::SIGN_EXTEND, MVT::v4i8,   MVT::v4i1,   5 },
1676     { ISD::ZERO_EXTEND, MVT::v4i8,   MVT::v4i1,   6 },
1677     { ISD::SIGN_EXTEND, MVT::v8i8,   MVT::v8i1,   5 },
1678     { ISD::ZERO_EXTEND, MVT::v8i8,   MVT::v8i1,   6 },
1679     { ISD::SIGN_EXTEND, MVT::v16i8,  MVT::v16i1, 10 },
1680     { ISD::ZERO_EXTEND, MVT::v16i8,  MVT::v16i1, 12 },
1681 
1682     // sign extend is vpcmpeq+maskedmove+vpmovdw
1683     // zero extend is vpcmpeq+maskedmove+vpmovdw+vpsrlw
1684     { ISD::SIGN_EXTEND, MVT::v2i16,  MVT::v2i1,   4 },
1685     { ISD::ZERO_EXTEND, MVT::v2i16,  MVT::v2i1,   5 },
1686     { ISD::SIGN_EXTEND, MVT::v4i16,  MVT::v4i1,   4 },
1687     { ISD::ZERO_EXTEND, MVT::v4i16,  MVT::v4i1,   5 },
1688     { ISD::SIGN_EXTEND, MVT::v8i16,  MVT::v8i1,   4 },
1689     { ISD::ZERO_EXTEND, MVT::v8i16,  MVT::v8i1,   5 },
1690     { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i1, 10 },
1691     { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i1, 12 },
1692 
1693     { ISD::SIGN_EXTEND, MVT::v2i32,  MVT::v2i1,   1 }, // vpternlogd
1694     { ISD::ZERO_EXTEND, MVT::v2i32,  MVT::v2i1,   2 }, // vpternlogd+psrld
1695     { ISD::SIGN_EXTEND, MVT::v4i32,  MVT::v4i1,   1 }, // vpternlogd
1696     { ISD::ZERO_EXTEND, MVT::v4i32,  MVT::v4i1,   2 }, // vpternlogd+psrld
1697     { ISD::SIGN_EXTEND, MVT::v8i32,  MVT::v8i1,   1 }, // vpternlogd
1698     { ISD::ZERO_EXTEND, MVT::v8i32,  MVT::v8i1,   2 }, // vpternlogd+psrld
1699     { ISD::SIGN_EXTEND, MVT::v2i64,  MVT::v2i1,   1 }, // vpternlogq
1700     { ISD::ZERO_EXTEND, MVT::v2i64,  MVT::v2i1,   2 }, // vpternlogq+psrlq
1701     { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v4i1,   1 }, // vpternlogq
1702     { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v4i1,   2 }, // vpternlogq+psrlq
1703 
1704     { ISD::UINT_TO_FP,  MVT::v2f64,  MVT::v2i8,   2 },
1705     { ISD::UINT_TO_FP,  MVT::v4f64,  MVT::v4i8,   2 },
1706     { ISD::UINT_TO_FP,  MVT::v8f32,  MVT::v8i8,   2 },
1707     { ISD::UINT_TO_FP,  MVT::v2f64,  MVT::v2i16,  5 },
1708     { ISD::UINT_TO_FP,  MVT::v4f64,  MVT::v4i16,  2 },
1709     { ISD::UINT_TO_FP,  MVT::v8f32,  MVT::v8i16,  2 },
1710     { ISD::UINT_TO_FP,  MVT::v2f32,  MVT::v2i32,  2 },
1711     { ISD::UINT_TO_FP,  MVT::v2f64,  MVT::v2i32,  1 },
1712     { ISD::UINT_TO_FP,  MVT::v4f32,  MVT::v4i32,  1 },
1713     { ISD::UINT_TO_FP,  MVT::v4f64,  MVT::v4i32,  1 },
1714     { ISD::UINT_TO_FP,  MVT::v8f32,  MVT::v8i32,  1 },
1715     { ISD::UINT_TO_FP,  MVT::v2f32,  MVT::v2i64,  5 },
1716     { ISD::UINT_TO_FP,  MVT::v2f64,  MVT::v2i64,  5 },
1717     { ISD::UINT_TO_FP,  MVT::v4f64,  MVT::v4i64,  5 },
1718 
1719     { ISD::UINT_TO_FP,  MVT::f32,    MVT::i64,    1 },
1720     { ISD::UINT_TO_FP,  MVT::f64,    MVT::i64,    1 },
1721 
1722     { ISD::FP_TO_SINT,  MVT::v8i8,   MVT::v8f32,  3 },
1723     { ISD::FP_TO_UINT,  MVT::v8i8,   MVT::v8f32,  3 },
1724 
1725     { ISD::FP_TO_UINT,  MVT::i64,    MVT::f32,    1 },
1726     { ISD::FP_TO_UINT,  MVT::i64,    MVT::f64,    1 },
1727 
1728     { ISD::FP_TO_UINT,  MVT::v2i32,  MVT::v2f32,  1 },
1729     { ISD::FP_TO_UINT,  MVT::v4i32,  MVT::v4f32,  1 },
1730     { ISD::FP_TO_UINT,  MVT::v2i32,  MVT::v2f64,  1 },
1731     { ISD::FP_TO_UINT,  MVT::v4i32,  MVT::v4f64,  1 },
1732     { ISD::FP_TO_UINT,  MVT::v8i32,  MVT::v8f32,  1 },
1733   };
1734 
1735   static const TypeConversionCostTblEntry AVX2ConversionTbl[] = {
1736     { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v4i1,   3 },
1737     { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v4i1,   3 },
1738     { ISD::SIGN_EXTEND, MVT::v8i32,  MVT::v8i1,   3 },
1739     { ISD::ZERO_EXTEND, MVT::v8i32,  MVT::v8i1,   3 },
1740     { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v4i8,   1 },
1741     { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v4i8,   1 },
1742     { ISD::SIGN_EXTEND, MVT::v8i32,  MVT::v8i8,   1 },
1743     { ISD::ZERO_EXTEND, MVT::v8i32,  MVT::v8i8,   1 },
1744     { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i1,  1 },
1745     { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i1,  1 },
1746     { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i8,  1 },
1747     { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i8,  1 },
1748     { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v4i16,  1 },
1749     { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v4i16,  1 },
1750     { ISD::SIGN_EXTEND, MVT::v8i32,  MVT::v8i16,  1 },
1751     { ISD::ZERO_EXTEND, MVT::v8i32,  MVT::v8i16,  1 },
1752     { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v4i32,  1 },
1753     { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v4i32,  1 },
1754     { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i16, 3 },
1755     { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i16, 3 },
1756 
1757     { ISD::TRUNCATE,    MVT::v4i32,  MVT::v4i64,  2 },
1758     { ISD::TRUNCATE,    MVT::v8i1,   MVT::v8i32,  2 },
1759 
1760     { ISD::TRUNCATE,    MVT::v4i8,   MVT::v4i64,  2 },
1761     { ISD::TRUNCATE,    MVT::v4i16,  MVT::v4i64,  2 },
1762     { ISD::TRUNCATE,    MVT::v8i8,   MVT::v8i32,  2 },
1763     { ISD::TRUNCATE,    MVT::v8i16,  MVT::v8i32,  2 },
1764 
1765     { ISD::FP_EXTEND,   MVT::v8f64,  MVT::v8f32,  3 },
1766     { ISD::FP_ROUND,    MVT::v8f32,  MVT::v8f64,  3 },
1767 
1768     { ISD::UINT_TO_FP,  MVT::v8f32,  MVT::v8i32,  8 },
1769   };
1770 
1771   static const TypeConversionCostTblEntry AVXConversionTbl[] = {
1772     { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v4i1,  6 },
1773     { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v4i1,  4 },
1774     { ISD::SIGN_EXTEND, MVT::v8i32,  MVT::v8i1,  7 },
1775     { ISD::ZERO_EXTEND, MVT::v8i32,  MVT::v8i1,  4 },
1776     { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v4i8,  4 },
1777     { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v4i8,  4 },
1778     { ISD::SIGN_EXTEND, MVT::v8i32,  MVT::v8i8,  4 },
1779     { ISD::ZERO_EXTEND, MVT::v8i32,  MVT::v8i8,  4 },
1780     { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i1, 4 },
1781     { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i1, 4 },
1782     { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i8, 4 },
1783     { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i8, 4 },
1784     { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v4i16, 4 },
1785     { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v4i16, 3 },
1786     { ISD::SIGN_EXTEND, MVT::v8i32,  MVT::v8i16, 4 },
1787     { ISD::ZERO_EXTEND, MVT::v8i32,  MVT::v8i16, 4 },
1788     { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v4i32, 4 },
1789     { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v4i32, 4 },
1790 
1791     { ISD::TRUNCATE,    MVT::v4i1,  MVT::v4i64,  4 },
1792     { ISD::TRUNCATE,    MVT::v8i1,  MVT::v8i32,  5 },
1793     { ISD::TRUNCATE,    MVT::v16i1, MVT::v16i16, 4 },
1794     { ISD::TRUNCATE,    MVT::v8i1,  MVT::v8i64,  9 },
1795     { ISD::TRUNCATE,    MVT::v16i1, MVT::v16i64, 11 },
1796 
1797     { ISD::TRUNCATE,    MVT::v16i8, MVT::v16i16, 4 },
1798     { ISD::TRUNCATE,    MVT::v8i8,  MVT::v8i32,  4 },
1799     { ISD::TRUNCATE,    MVT::v8i16, MVT::v8i32,  5 },
1800     { ISD::TRUNCATE,    MVT::v4i8,  MVT::v4i64,  4 },
1801     { ISD::TRUNCATE,    MVT::v4i16, MVT::v4i64,  4 },
1802     { ISD::TRUNCATE,    MVT::v4i32, MVT::v4i64,  2 },
1803     { ISD::TRUNCATE,    MVT::v8i8,  MVT::v8i64, 11 },
1804     { ISD::TRUNCATE,    MVT::v8i16, MVT::v8i64,  9 },
1805     { ISD::TRUNCATE,    MVT::v8i32, MVT::v8i64,  3 },
1806     { ISD::TRUNCATE,    MVT::v16i8, MVT::v16i64, 11 },
1807 
1808     { ISD::SINT_TO_FP,  MVT::v4f32, MVT::v4i1,  3 },
1809     { ISD::SINT_TO_FP,  MVT::v4f64, MVT::v4i1,  3 },
1810     { ISD::SINT_TO_FP,  MVT::v8f32, MVT::v8i1,  8 },
1811     { ISD::SINT_TO_FP,  MVT::v4f32, MVT::v4i8,  3 },
1812     { ISD::SINT_TO_FP,  MVT::v4f64, MVT::v4i8,  3 },
1813     { ISD::SINT_TO_FP,  MVT::v8f32, MVT::v8i8,  8 },
1814     { ISD::SINT_TO_FP,  MVT::v4f32, MVT::v4i16, 3 },
1815     { ISD::SINT_TO_FP,  MVT::v4f64, MVT::v4i16, 3 },
1816     { ISD::SINT_TO_FP,  MVT::v8f32, MVT::v8i16, 5 },
1817     { ISD::SINT_TO_FP,  MVT::v4f32, MVT::v4i32, 1 },
1818     { ISD::SINT_TO_FP,  MVT::v4f64, MVT::v4i32, 1 },
1819     { ISD::SINT_TO_FP,  MVT::v8f32, MVT::v8i32, 1 },
1820 
1821     { ISD::UINT_TO_FP,  MVT::v4f32, MVT::v4i1,  7 },
1822     { ISD::UINT_TO_FP,  MVT::v4f64, MVT::v4i1,  7 },
1823     { ISD::UINT_TO_FP,  MVT::v8f32, MVT::v8i1,  6 },
1824     { ISD::UINT_TO_FP,  MVT::v4f32, MVT::v4i8,  2 },
1825     { ISD::UINT_TO_FP,  MVT::v4f64, MVT::v4i8,  2 },
1826     { ISD::UINT_TO_FP,  MVT::v8f32, MVT::v8i8,  5 },
1827     { ISD::UINT_TO_FP,  MVT::v4f32, MVT::v4i16, 2 },
1828     { ISD::UINT_TO_FP,  MVT::v4f64, MVT::v4i16, 2 },
1829     { ISD::UINT_TO_FP,  MVT::v8f32, MVT::v8i16, 5 },
1830     { ISD::UINT_TO_FP,  MVT::v2f64, MVT::v2i32, 6 },
1831     { ISD::UINT_TO_FP,  MVT::v4f32, MVT::v4i32, 6 },
1832     { ISD::UINT_TO_FP,  MVT::v4f64, MVT::v4i32, 6 },
1833     { ISD::UINT_TO_FP,  MVT::v8f32, MVT::v8i32, 9 },
1834     { ISD::UINT_TO_FP,  MVT::v2f64, MVT::v2i64, 5 },
1835     { ISD::UINT_TO_FP,  MVT::v4f64, MVT::v4i64, 6 },
1836     // The generic code to compute the scalar overhead is currently broken.
1837     // Workaround this limitation by estimating the scalarization overhead
1838     // here. We have roughly 10 instructions per scalar element.
1839     // Multiply that by the vector width.
1840     // FIXME: remove that when PR19268 is fixed.
1841     { ISD::SINT_TO_FP,  MVT::v4f64, MVT::v4i64, 13 },
1842     { ISD::SINT_TO_FP,  MVT::v4f64, MVT::v4i64, 13 },
1843 
1844     { ISD::FP_TO_SINT,  MVT::v8i8,  MVT::v8f32, 4 },
1845     { ISD::FP_TO_SINT,  MVT::v4i8,  MVT::v4f64, 3 },
1846     { ISD::FP_TO_SINT,  MVT::v4i16, MVT::v4f64, 2 },
1847     { ISD::FP_TO_SINT,  MVT::v8i16, MVT::v8f32, 3 },
1848 
1849     { ISD::FP_TO_UINT,  MVT::v4i8,  MVT::v4f64, 3 },
1850     { ISD::FP_TO_UINT,  MVT::v4i16, MVT::v4f64, 2 },
1851     { ISD::FP_TO_UINT,  MVT::v8i8,  MVT::v8f32, 4 },
1852     { ISD::FP_TO_UINT,  MVT::v8i16, MVT::v8f32, 3 },
1853     // This node is expanded into scalarized operations but BasicTTI is overly
1854     // optimistic estimating its cost.  It computes 3 per element (one
1855     // vector-extract, one scalar conversion and one vector-insert).  The
1856     // problem is that the inserts form a read-modify-write chain so latency
1857     // should be factored in too.  Inflating the cost per element by 1.
1858     { ISD::FP_TO_UINT,  MVT::v8i32, MVT::v8f32, 8*4 },
1859     { ISD::FP_TO_UINT,  MVT::v4i32, MVT::v4f64, 4*4 },
1860 
1861     { ISD::FP_EXTEND,   MVT::v4f64,  MVT::v4f32,  1 },
1862     { ISD::FP_ROUND,    MVT::v4f32,  MVT::v4f64,  1 },
1863   };
1864 
1865   static const TypeConversionCostTblEntry SSE41ConversionTbl[] = {
1866     { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i8,    2 },
1867     { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i8,    2 },
1868     { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i16,   2 },
1869     { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i16,   2 },
1870     { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i32,   2 },
1871     { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i32,   2 },
1872 
1873     { ISD::ZERO_EXTEND, MVT::v4i16,  MVT::v4i8,   1 },
1874     { ISD::SIGN_EXTEND, MVT::v4i16,  MVT::v4i8,   2 },
1875     { ISD::ZERO_EXTEND, MVT::v4i32,  MVT::v4i8,   1 },
1876     { ISD::SIGN_EXTEND, MVT::v4i32,  MVT::v4i8,   1 },
1877     { ISD::ZERO_EXTEND, MVT::v8i16,  MVT::v8i8,   1 },
1878     { ISD::SIGN_EXTEND, MVT::v8i16,  MVT::v8i8,   1 },
1879     { ISD::ZERO_EXTEND, MVT::v8i32,  MVT::v8i8,   2 },
1880     { ISD::SIGN_EXTEND, MVT::v8i32,  MVT::v8i8,   2 },
1881     { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i8,  2 },
1882     { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i8,  2 },
1883     { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i8,  4 },
1884     { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i8,  4 },
1885     { ISD::ZERO_EXTEND, MVT::v4i32,  MVT::v4i16,  1 },
1886     { ISD::SIGN_EXTEND, MVT::v4i32,  MVT::v4i16,  1 },
1887     { ISD::ZERO_EXTEND, MVT::v8i32,  MVT::v8i16,  2 },
1888     { ISD::SIGN_EXTEND, MVT::v8i32,  MVT::v8i16,  2 },
1889     { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i16, 4 },
1890     { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i16, 4 },
1891 
1892     // These truncates end up widening elements.
1893     { ISD::TRUNCATE,    MVT::v2i1,   MVT::v2i8,   1 }, // PMOVXZBQ
1894     { ISD::TRUNCATE,    MVT::v2i1,   MVT::v2i16,  1 }, // PMOVXZWQ
1895     { ISD::TRUNCATE,    MVT::v4i1,   MVT::v4i8,   1 }, // PMOVXZBD
1896 
1897     { ISD::TRUNCATE,    MVT::v2i8,   MVT::v2i16,  1 },
1898     { ISD::TRUNCATE,    MVT::v4i8,   MVT::v4i16,  1 },
1899     { ISD::TRUNCATE,    MVT::v8i8,   MVT::v8i16,  1 },
1900     { ISD::TRUNCATE,    MVT::v4i8,   MVT::v4i32,  1 },
1901     { ISD::TRUNCATE,    MVT::v4i16,  MVT::v4i32,  1 },
1902     { ISD::TRUNCATE,    MVT::v8i8,   MVT::v8i32,  3 },
1903     { ISD::TRUNCATE,    MVT::v8i16,  MVT::v8i32,  3 },
1904     { ISD::TRUNCATE,    MVT::v16i16, MVT::v16i32, 6 },
1905     { ISD::TRUNCATE,    MVT::v2i8,   MVT::v2i64,  1 }, // PSHUFB
1906 
1907     { ISD::UINT_TO_FP,  MVT::f32,    MVT::i64,    4 },
1908     { ISD::UINT_TO_FP,  MVT::f64,    MVT::i64,    4 },
1909 
1910     { ISD::FP_TO_SINT,  MVT::v2i8,   MVT::v2f32,  3 },
1911     { ISD::FP_TO_SINT,  MVT::v2i8,   MVT::v2f64,  3 },
1912 
1913     { ISD::FP_TO_UINT,  MVT::v2i8,   MVT::v2f32,  3 },
1914     { ISD::FP_TO_UINT,  MVT::v2i8,   MVT::v2f64,  3 },
1915     { ISD::FP_TO_UINT,  MVT::v4i16,  MVT::v4f32,  2 },
1916   };
1917 
1918   static const TypeConversionCostTblEntry SSE2ConversionTbl[] = {
1919     // These are somewhat magic numbers justified by looking at the output of
1920     // Intel's IACA, running some kernels and making sure when we take
1921     // legalization into account the throughput will be overestimated.
1922     { ISD::SINT_TO_FP, MVT::v4f32, MVT::v16i8, 8 },
1923     { ISD::SINT_TO_FP, MVT::v2f64, MVT::v16i8, 16*10 },
1924     { ISD::SINT_TO_FP, MVT::v4f32, MVT::v8i16, 15 },
1925     { ISD::SINT_TO_FP, MVT::v2f64, MVT::v8i16, 8*10 },
1926     { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i32, 5 },
1927     { ISD::SINT_TO_FP, MVT::v2f64, MVT::v4i32, 2*10 },
1928     { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i32, 2*10 },
1929     { ISD::SINT_TO_FP, MVT::v4f32, MVT::v2i64, 15 },
1930     { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i64, 2*10 },
1931 
1932     { ISD::UINT_TO_FP, MVT::v2f64, MVT::v16i8, 16*10 },
1933     { ISD::UINT_TO_FP, MVT::v4f32, MVT::v16i8, 8 },
1934     { ISD::UINT_TO_FP, MVT::v4f32, MVT::v8i16, 15 },
1935     { ISD::UINT_TO_FP, MVT::v2f64, MVT::v8i16, 8*10 },
1936     { ISD::UINT_TO_FP, MVT::v2f64, MVT::v4i32, 4*10 },
1937     { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i32, 8 },
1938     { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i64, 6 },
1939     { ISD::UINT_TO_FP, MVT::v4f32, MVT::v2i64, 15 },
1940 
1941     { ISD::FP_TO_SINT,  MVT::v2i8,   MVT::v2f32,  4 },
1942     { ISD::FP_TO_SINT,  MVT::v2i16,  MVT::v2f32,  2 },
1943     { ISD::FP_TO_SINT,  MVT::v4i8,   MVT::v4f32,  3 },
1944     { ISD::FP_TO_SINT,  MVT::v4i16,  MVT::v4f32,  2 },
1945     { ISD::FP_TO_SINT,  MVT::v2i16,  MVT::v2f64,  2 },
1946     { ISD::FP_TO_SINT,  MVT::v2i8,   MVT::v2f64,  4 },
1947 
1948     { ISD::FP_TO_SINT,  MVT::v2i32,  MVT::v2f64,  1 },
1949 
1950     { ISD::UINT_TO_FP,  MVT::f32,    MVT::i64,    6 },
1951     { ISD::UINT_TO_FP,  MVT::f64,    MVT::i64,    6 },
1952 
1953     { ISD::FP_TO_UINT,  MVT::i64,    MVT::f32,    4 },
1954     { ISD::FP_TO_UINT,  MVT::i64,    MVT::f64,    4 },
1955     { ISD::FP_TO_UINT,  MVT::v2i8,   MVT::v2f32,  4 },
1956     { ISD::FP_TO_UINT,  MVT::v2i8,   MVT::v2f64,  4 },
1957     { ISD::FP_TO_UINT,  MVT::v4i8,   MVT::v4f32,  3 },
1958     { ISD::FP_TO_UINT,  MVT::v2i16,  MVT::v2f32,  2 },
1959     { ISD::FP_TO_UINT,  MVT::v2i16,  MVT::v2f64,  2 },
1960     { ISD::FP_TO_UINT,  MVT::v4i16,  MVT::v4f32,  4 },
1961 
1962     { ISD::ZERO_EXTEND, MVT::v4i16,  MVT::v4i8,   1 },
1963     { ISD::SIGN_EXTEND, MVT::v4i16,  MVT::v4i8,   6 },
1964     { ISD::ZERO_EXTEND, MVT::v4i32,  MVT::v4i8,   2 },
1965     { ISD::SIGN_EXTEND, MVT::v4i32,  MVT::v4i8,   3 },
1966     { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v4i8,   4 },
1967     { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v4i8,   8 },
1968     { ISD::ZERO_EXTEND, MVT::v8i16,  MVT::v8i8,   1 },
1969     { ISD::SIGN_EXTEND, MVT::v8i16,  MVT::v8i8,   2 },
1970     { ISD::ZERO_EXTEND, MVT::v8i32,  MVT::v8i8,   6 },
1971     { ISD::SIGN_EXTEND, MVT::v8i32,  MVT::v8i8,   6 },
1972     { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i8,  3 },
1973     { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i8,  4 },
1974     { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i8,  9 },
1975     { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i8,  12 },
1976     { ISD::ZERO_EXTEND, MVT::v4i32,  MVT::v4i16,  1 },
1977     { ISD::SIGN_EXTEND, MVT::v4i32,  MVT::v4i16,  2 },
1978     { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v4i16,  3 },
1979     { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v4i16,  10 },
1980     { ISD::ZERO_EXTEND, MVT::v8i32,  MVT::v8i16,  3 },
1981     { ISD::SIGN_EXTEND, MVT::v8i32,  MVT::v8i16,  4 },
1982     { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i16, 6 },
1983     { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i16, 8 },
1984     { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v4i32,  3 },
1985     { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v4i32,  5 },
1986 
1987     // These truncates are really widening elements.
1988     { ISD::TRUNCATE,    MVT::v2i1,   MVT::v2i32,  1 }, // PSHUFD
1989     { ISD::TRUNCATE,    MVT::v2i1,   MVT::v2i16,  2 }, // PUNPCKLWD+DQ
1990     { ISD::TRUNCATE,    MVT::v2i1,   MVT::v2i8,   3 }, // PUNPCKLBW+WD+PSHUFD
1991     { ISD::TRUNCATE,    MVT::v4i1,   MVT::v4i16,  1 }, // PUNPCKLWD
1992     { ISD::TRUNCATE,    MVT::v4i1,   MVT::v4i8,   2 }, // PUNPCKLBW+WD
1993     { ISD::TRUNCATE,    MVT::v8i1,   MVT::v8i8,   1 }, // PUNPCKLBW
1994 
1995     { ISD::TRUNCATE,    MVT::v2i8,   MVT::v2i16,  2 }, // PAND+PACKUSWB
1996     { ISD::TRUNCATE,    MVT::v4i8,   MVT::v4i16,  2 }, // PAND+PACKUSWB
1997     { ISD::TRUNCATE,    MVT::v8i8,   MVT::v8i16,  2 }, // PAND+PACKUSWB
1998     { ISD::TRUNCATE,    MVT::v16i8,  MVT::v16i16, 3 },
1999     { ISD::TRUNCATE,    MVT::v2i8,   MVT::v2i32,  3 }, // PAND+2*PACKUSWB
2000     { ISD::TRUNCATE,    MVT::v2i16,  MVT::v2i32,  1 },
2001     { ISD::TRUNCATE,    MVT::v4i8,   MVT::v4i32,  3 },
2002     { ISD::TRUNCATE,    MVT::v4i16,  MVT::v4i32,  3 },
2003     { ISD::TRUNCATE,    MVT::v8i8,   MVT::v8i32,  4 },
2004     { ISD::TRUNCATE,    MVT::v16i8,  MVT::v16i32, 7 },
2005     { ISD::TRUNCATE,    MVT::v8i16,  MVT::v8i32,  5 },
2006     { ISD::TRUNCATE,    MVT::v16i16, MVT::v16i32, 10 },
2007     { ISD::TRUNCATE,    MVT::v2i8,   MVT::v2i64,  4 }, // PAND+3*PACKUSWB
2008     { ISD::TRUNCATE,    MVT::v2i16,  MVT::v2i64,  2 }, // PSHUFD+PSHUFLW
2009     { ISD::TRUNCATE,    MVT::v2i32,  MVT::v2i64,  1 }, // PSHUFD
2010   };
2011 
2012   std::pair<int, MVT> LTSrc = TLI->getTypeLegalizationCost(DL, Src);
2013   std::pair<int, MVT> LTDest = TLI->getTypeLegalizationCost(DL, Dst);
2014 
2015   if (ST->hasSSE2() && !ST->hasAVX()) {
2016     if (const auto *Entry = ConvertCostTableLookup(SSE2ConversionTbl, ISD,
2017                                                    LTDest.second, LTSrc.second))
2018       return AdjustCost(LTSrc.first * Entry->Cost);
2019   }
2020 
2021   EVT SrcTy = TLI->getValueType(DL, Src);
2022   EVT DstTy = TLI->getValueType(DL, Dst);
2023 
2024   // The function getSimpleVT only handles simple value types.
2025   if (!SrcTy.isSimple() || !DstTy.isSimple())
2026     return AdjustCost(BaseT::getCastInstrCost(Opcode, Dst, Src, CCH, CostKind));
2027 
2028   MVT SimpleSrcTy = SrcTy.getSimpleVT();
2029   MVT SimpleDstTy = DstTy.getSimpleVT();
2030 
2031   if (ST->useAVX512Regs()) {
2032     if (ST->hasBWI())
2033       if (const auto *Entry = ConvertCostTableLookup(AVX512BWConversionTbl, ISD,
2034                                                      SimpleDstTy, SimpleSrcTy))
2035         return AdjustCost(Entry->Cost);
2036 
2037     if (ST->hasDQI())
2038       if (const auto *Entry = ConvertCostTableLookup(AVX512DQConversionTbl, ISD,
2039                                                      SimpleDstTy, SimpleSrcTy))
2040         return AdjustCost(Entry->Cost);
2041 
2042     if (ST->hasAVX512())
2043       if (const auto *Entry = ConvertCostTableLookup(AVX512FConversionTbl, ISD,
2044                                                      SimpleDstTy, SimpleSrcTy))
2045         return AdjustCost(Entry->Cost);
2046   }
2047 
2048   if (ST->hasBWI())
2049     if (const auto *Entry = ConvertCostTableLookup(AVX512BWVLConversionTbl, ISD,
2050                                                    SimpleDstTy, SimpleSrcTy))
2051       return AdjustCost(Entry->Cost);
2052 
2053   if (ST->hasDQI())
2054     if (const auto *Entry = ConvertCostTableLookup(AVX512DQVLConversionTbl, ISD,
2055                                                    SimpleDstTy, SimpleSrcTy))
2056       return AdjustCost(Entry->Cost);
2057 
2058   if (ST->hasAVX512())
2059     if (const auto *Entry = ConvertCostTableLookup(AVX512VLConversionTbl, ISD,
2060                                                    SimpleDstTy, SimpleSrcTy))
2061       return AdjustCost(Entry->Cost);
2062 
2063   if (ST->hasAVX2()) {
2064     if (const auto *Entry = ConvertCostTableLookup(AVX2ConversionTbl, ISD,
2065                                                    SimpleDstTy, SimpleSrcTy))
2066       return AdjustCost(Entry->Cost);
2067   }
2068 
2069   if (ST->hasAVX()) {
2070     if (const auto *Entry = ConvertCostTableLookup(AVXConversionTbl, ISD,
2071                                                    SimpleDstTy, SimpleSrcTy))
2072       return AdjustCost(Entry->Cost);
2073   }
2074 
2075   if (ST->hasSSE41()) {
2076     if (const auto *Entry = ConvertCostTableLookup(SSE41ConversionTbl, ISD,
2077                                                    SimpleDstTy, SimpleSrcTy))
2078       return AdjustCost(Entry->Cost);
2079   }
2080 
2081   if (ST->hasSSE2()) {
2082     if (const auto *Entry = ConvertCostTableLookup(SSE2ConversionTbl, ISD,
2083                                                    SimpleDstTy, SimpleSrcTy))
2084       return AdjustCost(Entry->Cost);
2085   }
2086 
2087   return AdjustCost(
2088       BaseT::getCastInstrCost(Opcode, Dst, Src, CCH, CostKind, I));
2089 }
2090 
2091 int X86TTIImpl::getCmpSelInstrCost(unsigned Opcode, Type *ValTy, Type *CondTy,
2092                                    CmpInst::Predicate VecPred,
2093                                    TTI::TargetCostKind CostKind,
2094                                    const Instruction *I) {
2095   // TODO: Handle other cost kinds.
2096   if (CostKind != TTI::TCK_RecipThroughput)
2097     return BaseT::getCmpSelInstrCost(Opcode, ValTy, CondTy, VecPred, CostKind,
2098                                      I);
2099 
2100   // Legalize the type.
2101   std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, ValTy);
2102 
2103   MVT MTy = LT.second;
2104 
2105   int ISD = TLI->InstructionOpcodeToISD(Opcode);
2106   assert(ISD && "Invalid opcode");
2107 
2108   unsigned ExtraCost = 0;
2109   if (I && (Opcode == Instruction::ICmp || Opcode == Instruction::FCmp)) {
2110     // Some vector comparison predicates cost extra instructions.
2111     if (MTy.isVector() &&
2112         !((ST->hasXOP() && (!ST->hasAVX2() || MTy.is128BitVector())) ||
2113           (ST->hasAVX512() && 32 <= MTy.getScalarSizeInBits()) ||
2114           ST->hasBWI())) {
2115       switch (cast<CmpInst>(I)->getPredicate()) {
2116       case CmpInst::Predicate::ICMP_NE:
2117         // xor(cmpeq(x,y),-1)
2118         ExtraCost = 1;
2119         break;
2120       case CmpInst::Predicate::ICMP_SGE:
2121       case CmpInst::Predicate::ICMP_SLE:
2122         // xor(cmpgt(x,y),-1)
2123         ExtraCost = 1;
2124         break;
2125       case CmpInst::Predicate::ICMP_ULT:
2126       case CmpInst::Predicate::ICMP_UGT:
2127         // cmpgt(xor(x,signbit),xor(y,signbit))
2128         // xor(cmpeq(pmaxu(x,y),x),-1)
2129         ExtraCost = 2;
2130         break;
2131       case CmpInst::Predicate::ICMP_ULE:
2132       case CmpInst::Predicate::ICMP_UGE:
2133         if ((ST->hasSSE41() && MTy.getScalarSizeInBits() == 32) ||
2134             (ST->hasSSE2() && MTy.getScalarSizeInBits() < 32)) {
2135           // cmpeq(psubus(x,y),0)
2136           // cmpeq(pminu(x,y),x)
2137           ExtraCost = 1;
2138         } else {
2139           // xor(cmpgt(xor(x,signbit),xor(y,signbit)),-1)
2140           ExtraCost = 3;
2141         }
2142         break;
2143       default:
2144         break;
2145       }
2146     }
2147   }
2148 
2149   static const CostTblEntry SLMCostTbl[] = {
2150     // slm pcmpeq/pcmpgt throughput is 2
2151     { ISD::SETCC,   MVT::v2i64,   2 },
2152   };
2153 
2154   static const CostTblEntry AVX512BWCostTbl[] = {
2155     { ISD::SETCC,   MVT::v32i16,  1 },
2156     { ISD::SETCC,   MVT::v64i8,   1 },
2157 
2158     { ISD::SELECT,  MVT::v32i16,  1 },
2159     { ISD::SELECT,  MVT::v64i8,   1 },
2160   };
2161 
2162   static const CostTblEntry AVX512CostTbl[] = {
2163     { ISD::SETCC,   MVT::v8i64,   1 },
2164     { ISD::SETCC,   MVT::v16i32,  1 },
2165     { ISD::SETCC,   MVT::v8f64,   1 },
2166     { ISD::SETCC,   MVT::v16f32,  1 },
2167 
2168     { ISD::SELECT,  MVT::v8i64,   1 },
2169     { ISD::SELECT,  MVT::v16i32,  1 },
2170     { ISD::SELECT,  MVT::v8f64,   1 },
2171     { ISD::SELECT,  MVT::v16f32,  1 },
2172 
2173     { ISD::SETCC,   MVT::v32i16,  2 }, // FIXME: should probably be 4
2174     { ISD::SETCC,   MVT::v64i8,   2 }, // FIXME: should probably be 4
2175 
2176     { ISD::SELECT,  MVT::v32i16,  2 }, // FIXME: should be 3
2177     { ISD::SELECT,  MVT::v64i8,   2 }, // FIXME: should be 3
2178   };
2179 
2180   static const CostTblEntry AVX2CostTbl[] = {
2181     { ISD::SETCC,   MVT::v4i64,   1 },
2182     { ISD::SETCC,   MVT::v8i32,   1 },
2183     { ISD::SETCC,   MVT::v16i16,  1 },
2184     { ISD::SETCC,   MVT::v32i8,   1 },
2185 
2186     { ISD::SELECT,  MVT::v4i64,   1 }, // pblendvb
2187     { ISD::SELECT,  MVT::v8i32,   1 }, // pblendvb
2188     { ISD::SELECT,  MVT::v16i16,  1 }, // pblendvb
2189     { ISD::SELECT,  MVT::v32i8,   1 }, // pblendvb
2190   };
2191 
2192   static const CostTblEntry AVX1CostTbl[] = {
2193     { ISD::SETCC,   MVT::v4f64,   1 },
2194     { ISD::SETCC,   MVT::v8f32,   1 },
2195     // AVX1 does not support 8-wide integer compare.
2196     { ISD::SETCC,   MVT::v4i64,   4 },
2197     { ISD::SETCC,   MVT::v8i32,   4 },
2198     { ISD::SETCC,   MVT::v16i16,  4 },
2199     { ISD::SETCC,   MVT::v32i8,   4 },
2200 
2201     { ISD::SELECT,  MVT::v4f64,   1 }, // vblendvpd
2202     { ISD::SELECT,  MVT::v8f32,   1 }, // vblendvps
2203     { ISD::SELECT,  MVT::v4i64,   1 }, // vblendvpd
2204     { ISD::SELECT,  MVT::v8i32,   1 }, // vblendvps
2205     { ISD::SELECT,  MVT::v16i16,  3 }, // vandps + vandnps + vorps
2206     { ISD::SELECT,  MVT::v32i8,   3 }, // vandps + vandnps + vorps
2207   };
2208 
2209   static const CostTblEntry SSE42CostTbl[] = {
2210     { ISD::SETCC,   MVT::v2f64,   1 },
2211     { ISD::SETCC,   MVT::v4f32,   1 },
2212     { ISD::SETCC,   MVT::v2i64,   1 },
2213   };
2214 
2215   static const CostTblEntry SSE41CostTbl[] = {
2216     { ISD::SELECT,  MVT::v2f64,   1 }, // blendvpd
2217     { ISD::SELECT,  MVT::v4f32,   1 }, // blendvps
2218     { ISD::SELECT,  MVT::v2i64,   1 }, // pblendvb
2219     { ISD::SELECT,  MVT::v4i32,   1 }, // pblendvb
2220     { ISD::SELECT,  MVT::v8i16,   1 }, // pblendvb
2221     { ISD::SELECT,  MVT::v16i8,   1 }, // pblendvb
2222   };
2223 
2224   static const CostTblEntry SSE2CostTbl[] = {
2225     { ISD::SETCC,   MVT::v2f64,   2 },
2226     { ISD::SETCC,   MVT::f64,     1 },
2227     { ISD::SETCC,   MVT::v2i64,   8 },
2228     { ISD::SETCC,   MVT::v4i32,   1 },
2229     { ISD::SETCC,   MVT::v8i16,   1 },
2230     { ISD::SETCC,   MVT::v16i8,   1 },
2231 
2232     { ISD::SELECT,  MVT::v2f64,   3 }, // andpd + andnpd + orpd
2233     { ISD::SELECT,  MVT::v2i64,   3 }, // pand + pandn + por
2234     { ISD::SELECT,  MVT::v4i32,   3 }, // pand + pandn + por
2235     { ISD::SELECT,  MVT::v8i16,   3 }, // pand + pandn + por
2236     { ISD::SELECT,  MVT::v16i8,   3 }, // pand + pandn + por
2237   };
2238 
2239   static const CostTblEntry SSE1CostTbl[] = {
2240     { ISD::SETCC,   MVT::v4f32,   2 },
2241     { ISD::SETCC,   MVT::f32,     1 },
2242 
2243     { ISD::SELECT,  MVT::v4f32,   3 }, // andps + andnps + orps
2244   };
2245 
2246   if (ST->isSLM())
2247     if (const auto *Entry = CostTableLookup(SLMCostTbl, ISD, MTy))
2248       return LT.first * (ExtraCost + Entry->Cost);
2249 
2250   if (ST->hasBWI())
2251     if (const auto *Entry = CostTableLookup(AVX512BWCostTbl, ISD, MTy))
2252       return LT.first * (ExtraCost + Entry->Cost);
2253 
2254   if (ST->hasAVX512())
2255     if (const auto *Entry = CostTableLookup(AVX512CostTbl, ISD, MTy))
2256       return LT.first * (ExtraCost + Entry->Cost);
2257 
2258   if (ST->hasAVX2())
2259     if (const auto *Entry = CostTableLookup(AVX2CostTbl, ISD, MTy))
2260       return LT.first * (ExtraCost + Entry->Cost);
2261 
2262   if (ST->hasAVX())
2263     if (const auto *Entry = CostTableLookup(AVX1CostTbl, ISD, MTy))
2264       return LT.first * (ExtraCost + Entry->Cost);
2265 
2266   if (ST->hasSSE42())
2267     if (const auto *Entry = CostTableLookup(SSE42CostTbl, ISD, MTy))
2268       return LT.first * (ExtraCost + Entry->Cost);
2269 
2270   if (ST->hasSSE41())
2271     if (const auto *Entry = CostTableLookup(SSE41CostTbl, ISD, MTy))
2272       return LT.first * (ExtraCost + Entry->Cost);
2273 
2274   if (ST->hasSSE2())
2275     if (const auto *Entry = CostTableLookup(SSE2CostTbl, ISD, MTy))
2276       return LT.first * (ExtraCost + Entry->Cost);
2277 
2278   if (ST->hasSSE1())
2279     if (const auto *Entry = CostTableLookup(SSE1CostTbl, ISD, MTy))
2280       return LT.first * (ExtraCost + Entry->Cost);
2281 
2282   return BaseT::getCmpSelInstrCost(Opcode, ValTy, CondTy, VecPred, CostKind, I);
2283 }
2284 
2285 unsigned X86TTIImpl::getAtomicMemIntrinsicMaxElementSize() const { return 16; }
2286 
2287 InstructionCost
2288 X86TTIImpl::getTypeBasedIntrinsicInstrCost(const IntrinsicCostAttributes &ICA,
2289                                            TTI::TargetCostKind CostKind) {
2290 
2291   // Costs should match the codegen from:
2292   // BITREVERSE: llvm\test\CodeGen\X86\vector-bitreverse.ll
2293   // BSWAP: llvm\test\CodeGen\X86\bswap-vector.ll
2294   // CTLZ: llvm\test\CodeGen\X86\vector-lzcnt-*.ll
2295   // CTPOP: llvm\test\CodeGen\X86\vector-popcnt-*.ll
2296   // CTTZ: llvm\test\CodeGen\X86\vector-tzcnt-*.ll
2297 
2298   // TODO: Overflow intrinsics (*ADDO, *SUBO, *MULO) with vector types are not
2299   //       specialized in these tables yet.
2300   static const CostTblEntry AVX512CDCostTbl[] = {
2301     { ISD::CTLZ,       MVT::v8i64,   1 },
2302     { ISD::CTLZ,       MVT::v16i32,  1 },
2303     { ISD::CTLZ,       MVT::v32i16,  8 },
2304     { ISD::CTLZ,       MVT::v64i8,  20 },
2305     { ISD::CTLZ,       MVT::v4i64,   1 },
2306     { ISD::CTLZ,       MVT::v8i32,   1 },
2307     { ISD::CTLZ,       MVT::v16i16,  4 },
2308     { ISD::CTLZ,       MVT::v32i8,  10 },
2309     { ISD::CTLZ,       MVT::v2i64,   1 },
2310     { ISD::CTLZ,       MVT::v4i32,   1 },
2311     { ISD::CTLZ,       MVT::v8i16,   4 },
2312     { ISD::CTLZ,       MVT::v16i8,   4 },
2313   };
2314   static const CostTblEntry AVX512BWCostTbl[] = {
2315     { ISD::ABS,        MVT::v32i16,  1 },
2316     { ISD::ABS,        MVT::v64i8,   1 },
2317     { ISD::BITREVERSE, MVT::v8i64,   5 },
2318     { ISD::BITREVERSE, MVT::v16i32,  5 },
2319     { ISD::BITREVERSE, MVT::v32i16,  5 },
2320     { ISD::BITREVERSE, MVT::v64i8,   5 },
2321     { ISD::CTLZ,       MVT::v8i64,  23 },
2322     { ISD::CTLZ,       MVT::v16i32, 22 },
2323     { ISD::CTLZ,       MVT::v32i16, 18 },
2324     { ISD::CTLZ,       MVT::v64i8,  17 },
2325     { ISD::CTPOP,      MVT::v8i64,   7 },
2326     { ISD::CTPOP,      MVT::v16i32, 11 },
2327     { ISD::CTPOP,      MVT::v32i16,  9 },
2328     { ISD::CTPOP,      MVT::v64i8,   6 },
2329     { ISD::CTTZ,       MVT::v8i64,  10 },
2330     { ISD::CTTZ,       MVT::v16i32, 14 },
2331     { ISD::CTTZ,       MVT::v32i16, 12 },
2332     { ISD::CTTZ,       MVT::v64i8,   9 },
2333     { ISD::SADDSAT,    MVT::v32i16,  1 },
2334     { ISD::SADDSAT,    MVT::v64i8,   1 },
2335     { ISD::SMAX,       MVT::v32i16,  1 },
2336     { ISD::SMAX,       MVT::v64i8,   1 },
2337     { ISD::SMIN,       MVT::v32i16,  1 },
2338     { ISD::SMIN,       MVT::v64i8,   1 },
2339     { ISD::SSUBSAT,    MVT::v32i16,  1 },
2340     { ISD::SSUBSAT,    MVT::v64i8,   1 },
2341     { ISD::UADDSAT,    MVT::v32i16,  1 },
2342     { ISD::UADDSAT,    MVT::v64i8,   1 },
2343     { ISD::UMAX,       MVT::v32i16,  1 },
2344     { ISD::UMAX,       MVT::v64i8,   1 },
2345     { ISD::UMIN,       MVT::v32i16,  1 },
2346     { ISD::UMIN,       MVT::v64i8,   1 },
2347     { ISD::USUBSAT,    MVT::v32i16,  1 },
2348     { ISD::USUBSAT,    MVT::v64i8,   1 },
2349   };
2350   static const CostTblEntry AVX512CostTbl[] = {
2351     { ISD::ABS,        MVT::v8i64,   1 },
2352     { ISD::ABS,        MVT::v16i32,  1 },
2353     { ISD::ABS,        MVT::v32i16,  2 }, // FIXME: include split
2354     { ISD::ABS,        MVT::v64i8,   2 }, // FIXME: include split
2355     { ISD::ABS,        MVT::v4i64,   1 },
2356     { ISD::ABS,        MVT::v2i64,   1 },
2357     { ISD::BITREVERSE, MVT::v8i64,  36 },
2358     { ISD::BITREVERSE, MVT::v16i32, 24 },
2359     { ISD::BITREVERSE, MVT::v32i16, 10 },
2360     { ISD::BITREVERSE, MVT::v64i8,  10 },
2361     { ISD::CTLZ,       MVT::v8i64,  29 },
2362     { ISD::CTLZ,       MVT::v16i32, 35 },
2363     { ISD::CTLZ,       MVT::v32i16, 28 },
2364     { ISD::CTLZ,       MVT::v64i8,  18 },
2365     { ISD::CTPOP,      MVT::v8i64,  16 },
2366     { ISD::CTPOP,      MVT::v16i32, 24 },
2367     { ISD::CTPOP,      MVT::v32i16, 18 },
2368     { ISD::CTPOP,      MVT::v64i8,  12 },
2369     { ISD::CTTZ,       MVT::v8i64,  20 },
2370     { ISD::CTTZ,       MVT::v16i32, 28 },
2371     { ISD::CTTZ,       MVT::v32i16, 24 },
2372     { ISD::CTTZ,       MVT::v64i8,  18 },
2373     { ISD::SMAX,       MVT::v8i64,   1 },
2374     { ISD::SMAX,       MVT::v16i32,  1 },
2375     { ISD::SMAX,       MVT::v32i16,  2 }, // FIXME: include split
2376     { ISD::SMAX,       MVT::v64i8,   2 }, // FIXME: include split
2377     { ISD::SMAX,       MVT::v4i64,   1 },
2378     { ISD::SMAX,       MVT::v2i64,   1 },
2379     { ISD::SMIN,       MVT::v8i64,   1 },
2380     { ISD::SMIN,       MVT::v16i32,  1 },
2381     { ISD::SMIN,       MVT::v32i16,  2 }, // FIXME: include split
2382     { ISD::SMIN,       MVT::v64i8,   2 }, // FIXME: include split
2383     { ISD::SMIN,       MVT::v4i64,   1 },
2384     { ISD::SMIN,       MVT::v2i64,   1 },
2385     { ISD::UMAX,       MVT::v8i64,   1 },
2386     { ISD::UMAX,       MVT::v16i32,  1 },
2387     { ISD::UMAX,       MVT::v32i16,  2 }, // FIXME: include split
2388     { ISD::UMAX,       MVT::v64i8,   2 }, // FIXME: include split
2389     { ISD::UMAX,       MVT::v4i64,   1 },
2390     { ISD::UMAX,       MVT::v2i64,   1 },
2391     { ISD::UMIN,       MVT::v8i64,   1 },
2392     { ISD::UMIN,       MVT::v16i32,  1 },
2393     { ISD::UMIN,       MVT::v32i16,  2 }, // FIXME: include split
2394     { ISD::UMIN,       MVT::v64i8,   2 }, // FIXME: include split
2395     { ISD::UMIN,       MVT::v4i64,   1 },
2396     { ISD::UMIN,       MVT::v2i64,   1 },
2397     { ISD::USUBSAT,    MVT::v16i32,  2 }, // pmaxud + psubd
2398     { ISD::USUBSAT,    MVT::v2i64,   2 }, // pmaxuq + psubq
2399     { ISD::USUBSAT,    MVT::v4i64,   2 }, // pmaxuq + psubq
2400     { ISD::USUBSAT,    MVT::v8i64,   2 }, // pmaxuq + psubq
2401     { ISD::UADDSAT,    MVT::v16i32,  3 }, // not + pminud + paddd
2402     { ISD::UADDSAT,    MVT::v2i64,   3 }, // not + pminuq + paddq
2403     { ISD::UADDSAT,    MVT::v4i64,   3 }, // not + pminuq + paddq
2404     { ISD::UADDSAT,    MVT::v8i64,   3 }, // not + pminuq + paddq
2405     { ISD::SADDSAT,    MVT::v32i16,  2 }, // FIXME: include split
2406     { ISD::SADDSAT,    MVT::v64i8,   2 }, // FIXME: include split
2407     { ISD::SSUBSAT,    MVT::v32i16,  2 }, // FIXME: include split
2408     { ISD::SSUBSAT,    MVT::v64i8,   2 }, // FIXME: include split
2409     { ISD::UADDSAT,    MVT::v32i16,  2 }, // FIXME: include split
2410     { ISD::UADDSAT,    MVT::v64i8,   2 }, // FIXME: include split
2411     { ISD::USUBSAT,    MVT::v32i16,  2 }, // FIXME: include split
2412     { ISD::USUBSAT,    MVT::v64i8,   2 }, // FIXME: include split
2413     { ISD::FMAXNUM,    MVT::f32,     2 },
2414     { ISD::FMAXNUM,    MVT::v4f32,   2 },
2415     { ISD::FMAXNUM,    MVT::v8f32,   2 },
2416     { ISD::FMAXNUM,    MVT::v16f32,  2 },
2417     { ISD::FMAXNUM,    MVT::f64,     2 },
2418     { ISD::FMAXNUM,    MVT::v2f64,   2 },
2419     { ISD::FMAXNUM,    MVT::v4f64,   2 },
2420     { ISD::FMAXNUM,    MVT::v8f64,   2 },
2421   };
2422   static const CostTblEntry XOPCostTbl[] = {
2423     { ISD::BITREVERSE, MVT::v4i64,   4 },
2424     { ISD::BITREVERSE, MVT::v8i32,   4 },
2425     { ISD::BITREVERSE, MVT::v16i16,  4 },
2426     { ISD::BITREVERSE, MVT::v32i8,   4 },
2427     { ISD::BITREVERSE, MVT::v2i64,   1 },
2428     { ISD::BITREVERSE, MVT::v4i32,   1 },
2429     { ISD::BITREVERSE, MVT::v8i16,   1 },
2430     { ISD::BITREVERSE, MVT::v16i8,   1 },
2431     { ISD::BITREVERSE, MVT::i64,     3 },
2432     { ISD::BITREVERSE, MVT::i32,     3 },
2433     { ISD::BITREVERSE, MVT::i16,     3 },
2434     { ISD::BITREVERSE, MVT::i8,      3 }
2435   };
2436   static const CostTblEntry AVX2CostTbl[] = {
2437     { ISD::ABS,        MVT::v4i64,   2 }, // VBLENDVPD(X,VPSUBQ(0,X),X)
2438     { ISD::ABS,        MVT::v8i32,   1 },
2439     { ISD::ABS,        MVT::v16i16,  1 },
2440     { ISD::ABS,        MVT::v32i8,   1 },
2441     { ISD::BITREVERSE, MVT::v4i64,   5 },
2442     { ISD::BITREVERSE, MVT::v8i32,   5 },
2443     { ISD::BITREVERSE, MVT::v16i16,  5 },
2444     { ISD::BITREVERSE, MVT::v32i8,   5 },
2445     { ISD::BSWAP,      MVT::v4i64,   1 },
2446     { ISD::BSWAP,      MVT::v8i32,   1 },
2447     { ISD::BSWAP,      MVT::v16i16,  1 },
2448     { ISD::CTLZ,       MVT::v4i64,  23 },
2449     { ISD::CTLZ,       MVT::v8i32,  18 },
2450     { ISD::CTLZ,       MVT::v16i16, 14 },
2451     { ISD::CTLZ,       MVT::v32i8,   9 },
2452     { ISD::CTPOP,      MVT::v4i64,   7 },
2453     { ISD::CTPOP,      MVT::v8i32,  11 },
2454     { ISD::CTPOP,      MVT::v16i16,  9 },
2455     { ISD::CTPOP,      MVT::v32i8,   6 },
2456     { ISD::CTTZ,       MVT::v4i64,  10 },
2457     { ISD::CTTZ,       MVT::v8i32,  14 },
2458     { ISD::CTTZ,       MVT::v16i16, 12 },
2459     { ISD::CTTZ,       MVT::v32i8,   9 },
2460     { ISD::SADDSAT,    MVT::v16i16,  1 },
2461     { ISD::SADDSAT,    MVT::v32i8,   1 },
2462     { ISD::SMAX,       MVT::v8i32,   1 },
2463     { ISD::SMAX,       MVT::v16i16,  1 },
2464     { ISD::SMAX,       MVT::v32i8,   1 },
2465     { ISD::SMIN,       MVT::v8i32,   1 },
2466     { ISD::SMIN,       MVT::v16i16,  1 },
2467     { ISD::SMIN,       MVT::v32i8,   1 },
2468     { ISD::SSUBSAT,    MVT::v16i16,  1 },
2469     { ISD::SSUBSAT,    MVT::v32i8,   1 },
2470     { ISD::UADDSAT,    MVT::v16i16,  1 },
2471     { ISD::UADDSAT,    MVT::v32i8,   1 },
2472     { ISD::UADDSAT,    MVT::v8i32,   3 }, // not + pminud + paddd
2473     { ISD::UMAX,       MVT::v8i32,   1 },
2474     { ISD::UMAX,       MVT::v16i16,  1 },
2475     { ISD::UMAX,       MVT::v32i8,   1 },
2476     { ISD::UMIN,       MVT::v8i32,   1 },
2477     { ISD::UMIN,       MVT::v16i16,  1 },
2478     { ISD::UMIN,       MVT::v32i8,   1 },
2479     { ISD::USUBSAT,    MVT::v16i16,  1 },
2480     { ISD::USUBSAT,    MVT::v32i8,   1 },
2481     { ISD::USUBSAT,    MVT::v8i32,   2 }, // pmaxud + psubd
2482     { ISD::FMAXNUM,    MVT::v8f32,   3 }, // MAXPS + CMPUNORDPS + BLENDVPS
2483     { ISD::FMAXNUM,    MVT::v4f64,   3 }, // MAXPD + CMPUNORDPD + BLENDVPD
2484     { ISD::FSQRT,      MVT::f32,     7 }, // Haswell from http://www.agner.org/
2485     { ISD::FSQRT,      MVT::v4f32,   7 }, // Haswell from http://www.agner.org/
2486     { ISD::FSQRT,      MVT::v8f32,  14 }, // Haswell from http://www.agner.org/
2487     { ISD::FSQRT,      MVT::f64,    14 }, // Haswell from http://www.agner.org/
2488     { ISD::FSQRT,      MVT::v2f64,  14 }, // Haswell from http://www.agner.org/
2489     { ISD::FSQRT,      MVT::v4f64,  28 }, // Haswell from http://www.agner.org/
2490   };
2491   static const CostTblEntry AVX1CostTbl[] = {
2492     { ISD::ABS,        MVT::v4i64,   5 }, // VBLENDVPD(X,VPSUBQ(0,X),X)
2493     { ISD::ABS,        MVT::v8i32,   3 },
2494     { ISD::ABS,        MVT::v16i16,  3 },
2495     { ISD::ABS,        MVT::v32i8,   3 },
2496     { ISD::BITREVERSE, MVT::v4i64,  12 }, // 2 x 128-bit Op + extract/insert
2497     { ISD::BITREVERSE, MVT::v8i32,  12 }, // 2 x 128-bit Op + extract/insert
2498     { ISD::BITREVERSE, MVT::v16i16, 12 }, // 2 x 128-bit Op + extract/insert
2499     { ISD::BITREVERSE, MVT::v32i8,  12 }, // 2 x 128-bit Op + extract/insert
2500     { ISD::BSWAP,      MVT::v4i64,   4 },
2501     { ISD::BSWAP,      MVT::v8i32,   4 },
2502     { ISD::BSWAP,      MVT::v16i16,  4 },
2503     { ISD::CTLZ,       MVT::v4i64,  48 }, // 2 x 128-bit Op + extract/insert
2504     { ISD::CTLZ,       MVT::v8i32,  38 }, // 2 x 128-bit Op + extract/insert
2505     { ISD::CTLZ,       MVT::v16i16, 30 }, // 2 x 128-bit Op + extract/insert
2506     { ISD::CTLZ,       MVT::v32i8,  20 }, // 2 x 128-bit Op + extract/insert
2507     { ISD::CTPOP,      MVT::v4i64,  16 }, // 2 x 128-bit Op + extract/insert
2508     { ISD::CTPOP,      MVT::v8i32,  24 }, // 2 x 128-bit Op + extract/insert
2509     { ISD::CTPOP,      MVT::v16i16, 20 }, // 2 x 128-bit Op + extract/insert
2510     { ISD::CTPOP,      MVT::v32i8,  14 }, // 2 x 128-bit Op + extract/insert
2511     { ISD::CTTZ,       MVT::v4i64,  22 }, // 2 x 128-bit Op + extract/insert
2512     { ISD::CTTZ,       MVT::v8i32,  30 }, // 2 x 128-bit Op + extract/insert
2513     { ISD::CTTZ,       MVT::v16i16, 26 }, // 2 x 128-bit Op + extract/insert
2514     { ISD::CTTZ,       MVT::v32i8,  20 }, // 2 x 128-bit Op + extract/insert
2515     { ISD::SADDSAT,    MVT::v16i16,  4 }, // 2 x 128-bit Op + extract/insert
2516     { ISD::SADDSAT,    MVT::v32i8,   4 }, // 2 x 128-bit Op + extract/insert
2517     { ISD::SMAX,       MVT::v8i32,   4 }, // 2 x 128-bit Op + extract/insert
2518     { ISD::SMAX,       MVT::v16i16,  4 }, // 2 x 128-bit Op + extract/insert
2519     { ISD::SMAX,       MVT::v32i8,   4 }, // 2 x 128-bit Op + extract/insert
2520     { ISD::SMIN,       MVT::v8i32,   4 }, // 2 x 128-bit Op + extract/insert
2521     { ISD::SMIN,       MVT::v16i16,  4 }, // 2 x 128-bit Op + extract/insert
2522     { ISD::SMIN,       MVT::v32i8,   4 }, // 2 x 128-bit Op + extract/insert
2523     { ISD::SSUBSAT,    MVT::v16i16,  4 }, // 2 x 128-bit Op + extract/insert
2524     { ISD::SSUBSAT,    MVT::v32i8,   4 }, // 2 x 128-bit Op + extract/insert
2525     { ISD::UADDSAT,    MVT::v16i16,  4 }, // 2 x 128-bit Op + extract/insert
2526     { ISD::UADDSAT,    MVT::v32i8,   4 }, // 2 x 128-bit Op + extract/insert
2527     { ISD::UADDSAT,    MVT::v8i32,   8 }, // 2 x 128-bit Op + extract/insert
2528     { ISD::UMAX,       MVT::v8i32,   4 }, // 2 x 128-bit Op + extract/insert
2529     { ISD::UMAX,       MVT::v16i16,  4 }, // 2 x 128-bit Op + extract/insert
2530     { ISD::UMAX,       MVT::v32i8,   4 }, // 2 x 128-bit Op + extract/insert
2531     { ISD::UMIN,       MVT::v8i32,   4 }, // 2 x 128-bit Op + extract/insert
2532     { ISD::UMIN,       MVT::v16i16,  4 }, // 2 x 128-bit Op + extract/insert
2533     { ISD::UMIN,       MVT::v32i8,   4 }, // 2 x 128-bit Op + extract/insert
2534     { ISD::USUBSAT,    MVT::v16i16,  4 }, // 2 x 128-bit Op + extract/insert
2535     { ISD::USUBSAT,    MVT::v32i8,   4 }, // 2 x 128-bit Op + extract/insert
2536     { ISD::USUBSAT,    MVT::v8i32,   6 }, // 2 x 128-bit Op + extract/insert
2537     { ISD::FMAXNUM,    MVT::f32,     3 }, // MAXSS + CMPUNORDSS + BLENDVPS
2538     { ISD::FMAXNUM,    MVT::v4f32,   3 }, // MAXPS + CMPUNORDPS + BLENDVPS
2539     { ISD::FMAXNUM,    MVT::v8f32,   5 }, // MAXPS + CMPUNORDPS + BLENDVPS + ?
2540     { ISD::FMAXNUM,    MVT::f64,     3 }, // MAXSD + CMPUNORDSD + BLENDVPD
2541     { ISD::FMAXNUM,    MVT::v2f64,   3 }, // MAXPD + CMPUNORDPD + BLENDVPD
2542     { ISD::FMAXNUM,    MVT::v4f64,   5 }, // MAXPD + CMPUNORDPD + BLENDVPD + ?
2543     { ISD::FSQRT,      MVT::f32,    14 }, // SNB from http://www.agner.org/
2544     { ISD::FSQRT,      MVT::v4f32,  14 }, // SNB from http://www.agner.org/
2545     { ISD::FSQRT,      MVT::v8f32,  28 }, // SNB from http://www.agner.org/
2546     { ISD::FSQRT,      MVT::f64,    21 }, // SNB from http://www.agner.org/
2547     { ISD::FSQRT,      MVT::v2f64,  21 }, // SNB from http://www.agner.org/
2548     { ISD::FSQRT,      MVT::v4f64,  43 }, // SNB from http://www.agner.org/
2549   };
2550   static const CostTblEntry GLMCostTbl[] = {
2551     { ISD::FSQRT, MVT::f32,   19 }, // sqrtss
2552     { ISD::FSQRT, MVT::v4f32, 37 }, // sqrtps
2553     { ISD::FSQRT, MVT::f64,   34 }, // sqrtsd
2554     { ISD::FSQRT, MVT::v2f64, 67 }, // sqrtpd
2555   };
2556   static const CostTblEntry SLMCostTbl[] = {
2557     { ISD::FSQRT, MVT::f32,   20 }, // sqrtss
2558     { ISD::FSQRT, MVT::v4f32, 40 }, // sqrtps
2559     { ISD::FSQRT, MVT::f64,   35 }, // sqrtsd
2560     { ISD::FSQRT, MVT::v2f64, 70 }, // sqrtpd
2561   };
2562   static const CostTblEntry SSE42CostTbl[] = {
2563     { ISD::USUBSAT,    MVT::v4i32,   2 }, // pmaxud + psubd
2564     { ISD::UADDSAT,    MVT::v4i32,   3 }, // not + pminud + paddd
2565     { ISD::FSQRT,      MVT::f32,    18 }, // Nehalem from http://www.agner.org/
2566     { ISD::FSQRT,      MVT::v4f32,  18 }, // Nehalem from http://www.agner.org/
2567   };
2568   static const CostTblEntry SSE41CostTbl[] = {
2569     { ISD::ABS,        MVT::v2i64,   2 }, // BLENDVPD(X,PSUBQ(0,X),X)
2570     { ISD::SMAX,       MVT::v4i32,   1 },
2571     { ISD::SMAX,       MVT::v16i8,   1 },
2572     { ISD::SMIN,       MVT::v4i32,   1 },
2573     { ISD::SMIN,       MVT::v16i8,   1 },
2574     { ISD::UMAX,       MVT::v4i32,   1 },
2575     { ISD::UMAX,       MVT::v8i16,   1 },
2576     { ISD::UMIN,       MVT::v4i32,   1 },
2577     { ISD::UMIN,       MVT::v8i16,   1 },
2578   };
2579   static const CostTblEntry SSSE3CostTbl[] = {
2580     { ISD::ABS,        MVT::v4i32,   1 },
2581     { ISD::ABS,        MVT::v8i16,   1 },
2582     { ISD::ABS,        MVT::v16i8,   1 },
2583     { ISD::BITREVERSE, MVT::v2i64,   5 },
2584     { ISD::BITREVERSE, MVT::v4i32,   5 },
2585     { ISD::BITREVERSE, MVT::v8i16,   5 },
2586     { ISD::BITREVERSE, MVT::v16i8,   5 },
2587     { ISD::BSWAP,      MVT::v2i64,   1 },
2588     { ISD::BSWAP,      MVT::v4i32,   1 },
2589     { ISD::BSWAP,      MVT::v8i16,   1 },
2590     { ISD::CTLZ,       MVT::v2i64,  23 },
2591     { ISD::CTLZ,       MVT::v4i32,  18 },
2592     { ISD::CTLZ,       MVT::v8i16,  14 },
2593     { ISD::CTLZ,       MVT::v16i8,   9 },
2594     { ISD::CTPOP,      MVT::v2i64,   7 },
2595     { ISD::CTPOP,      MVT::v4i32,  11 },
2596     { ISD::CTPOP,      MVT::v8i16,   9 },
2597     { ISD::CTPOP,      MVT::v16i8,   6 },
2598     { ISD::CTTZ,       MVT::v2i64,  10 },
2599     { ISD::CTTZ,       MVT::v4i32,  14 },
2600     { ISD::CTTZ,       MVT::v8i16,  12 },
2601     { ISD::CTTZ,       MVT::v16i8,   9 }
2602   };
2603   static const CostTblEntry SSE2CostTbl[] = {
2604     { ISD::ABS,        MVT::v2i64,   4 },
2605     { ISD::ABS,        MVT::v4i32,   3 },
2606     { ISD::ABS,        MVT::v8i16,   2 },
2607     { ISD::ABS,        MVT::v16i8,   2 },
2608     { ISD::BITREVERSE, MVT::v2i64,  29 },
2609     { ISD::BITREVERSE, MVT::v4i32,  27 },
2610     { ISD::BITREVERSE, MVT::v8i16,  27 },
2611     { ISD::BITREVERSE, MVT::v16i8,  20 },
2612     { ISD::BSWAP,      MVT::v2i64,   7 },
2613     { ISD::BSWAP,      MVT::v4i32,   7 },
2614     { ISD::BSWAP,      MVT::v8i16,   7 },
2615     { ISD::CTLZ,       MVT::v2i64,  25 },
2616     { ISD::CTLZ,       MVT::v4i32,  26 },
2617     { ISD::CTLZ,       MVT::v8i16,  20 },
2618     { ISD::CTLZ,       MVT::v16i8,  17 },
2619     { ISD::CTPOP,      MVT::v2i64,  12 },
2620     { ISD::CTPOP,      MVT::v4i32,  15 },
2621     { ISD::CTPOP,      MVT::v8i16,  13 },
2622     { ISD::CTPOP,      MVT::v16i8,  10 },
2623     { ISD::CTTZ,       MVT::v2i64,  14 },
2624     { ISD::CTTZ,       MVT::v4i32,  18 },
2625     { ISD::CTTZ,       MVT::v8i16,  16 },
2626     { ISD::CTTZ,       MVT::v16i8,  13 },
2627     { ISD::SADDSAT,    MVT::v8i16,   1 },
2628     { ISD::SADDSAT,    MVT::v16i8,   1 },
2629     { ISD::SMAX,       MVT::v8i16,   1 },
2630     { ISD::SMIN,       MVT::v8i16,   1 },
2631     { ISD::SSUBSAT,    MVT::v8i16,   1 },
2632     { ISD::SSUBSAT,    MVT::v16i8,   1 },
2633     { ISD::UADDSAT,    MVT::v8i16,   1 },
2634     { ISD::UADDSAT,    MVT::v16i8,   1 },
2635     { ISD::UMAX,       MVT::v8i16,   2 },
2636     { ISD::UMAX,       MVT::v16i8,   1 },
2637     { ISD::UMIN,       MVT::v8i16,   2 },
2638     { ISD::UMIN,       MVT::v16i8,   1 },
2639     { ISD::USUBSAT,    MVT::v8i16,   1 },
2640     { ISD::USUBSAT,    MVT::v16i8,   1 },
2641     { ISD::FMAXNUM,    MVT::f64,     4 },
2642     { ISD::FMAXNUM,    MVT::v2f64,   4 },
2643     { ISD::FSQRT,      MVT::f64,    32 }, // Nehalem from http://www.agner.org/
2644     { ISD::FSQRT,      MVT::v2f64,  32 }, // Nehalem from http://www.agner.org/
2645   };
2646   static const CostTblEntry SSE1CostTbl[] = {
2647     { ISD::FMAXNUM,    MVT::f32,     4 },
2648     { ISD::FMAXNUM,    MVT::v4f32,   4 },
2649     { ISD::FSQRT,      MVT::f32,    28 }, // Pentium III from http://www.agner.org/
2650     { ISD::FSQRT,      MVT::v4f32,  56 }, // Pentium III from http://www.agner.org/
2651   };
2652   static const CostTblEntry BMI64CostTbl[] = { // 64-bit targets
2653     { ISD::CTTZ,       MVT::i64,     1 },
2654   };
2655   static const CostTblEntry BMI32CostTbl[] = { // 32 or 64-bit targets
2656     { ISD::CTTZ,       MVT::i32,     1 },
2657     { ISD::CTTZ,       MVT::i16,     1 },
2658     { ISD::CTTZ,       MVT::i8,      1 },
2659   };
2660   static const CostTblEntry LZCNT64CostTbl[] = { // 64-bit targets
2661     { ISD::CTLZ,       MVT::i64,     1 },
2662   };
2663   static const CostTblEntry LZCNT32CostTbl[] = { // 32 or 64-bit targets
2664     { ISD::CTLZ,       MVT::i32,     1 },
2665     { ISD::CTLZ,       MVT::i16,     1 },
2666     { ISD::CTLZ,       MVT::i8,      1 },
2667   };
2668   static const CostTblEntry POPCNT64CostTbl[] = { // 64-bit targets
2669     { ISD::CTPOP,      MVT::i64,     1 },
2670   };
2671   static const CostTblEntry POPCNT32CostTbl[] = { // 32 or 64-bit targets
2672     { ISD::CTPOP,      MVT::i32,     1 },
2673     { ISD::CTPOP,      MVT::i16,     1 },
2674     { ISD::CTPOP,      MVT::i8,      1 },
2675   };
2676   static const CostTblEntry X64CostTbl[] = { // 64-bit targets
2677     { ISD::ABS,        MVT::i64,     2 }, // SUB+CMOV
2678     { ISD::BITREVERSE, MVT::i64,    14 },
2679     { ISD::CTLZ,       MVT::i64,     4 }, // BSR+XOR or BSR+XOR+CMOV
2680     { ISD::CTTZ,       MVT::i64,     3 }, // TEST+BSF+CMOV/BRANCH
2681     { ISD::CTPOP,      MVT::i64,    10 },
2682     { ISD::SADDO,      MVT::i64,     1 },
2683     { ISD::UADDO,      MVT::i64,     1 },
2684     { ISD::UMULO,      MVT::i64,     2 }, // mulq + seto
2685   };
2686   static const CostTblEntry X86CostTbl[] = { // 32 or 64-bit targets
2687     { ISD::ABS,        MVT::i32,     2 }, // SUB+CMOV
2688     { ISD::ABS,        MVT::i16,     2 }, // SUB+CMOV
2689     { ISD::BITREVERSE, MVT::i32,    14 },
2690     { ISD::BITREVERSE, MVT::i16,    14 },
2691     { ISD::BITREVERSE, MVT::i8,     11 },
2692     { ISD::CTLZ,       MVT::i32,     4 }, // BSR+XOR or BSR+XOR+CMOV
2693     { ISD::CTLZ,       MVT::i16,     4 }, // BSR+XOR or BSR+XOR+CMOV
2694     { ISD::CTLZ,       MVT::i8,      4 }, // BSR+XOR or BSR+XOR+CMOV
2695     { ISD::CTTZ,       MVT::i32,     3 }, // TEST+BSF+CMOV/BRANCH
2696     { ISD::CTTZ,       MVT::i16,     3 }, // TEST+BSF+CMOV/BRANCH
2697     { ISD::CTTZ,       MVT::i8,      3 }, // TEST+BSF+CMOV/BRANCH
2698     { ISD::CTPOP,      MVT::i32,     8 },
2699     { ISD::CTPOP,      MVT::i16,     9 },
2700     { ISD::CTPOP,      MVT::i8,      7 },
2701     { ISD::SADDO,      MVT::i32,     1 },
2702     { ISD::SADDO,      MVT::i16,     1 },
2703     { ISD::SADDO,      MVT::i8,      1 },
2704     { ISD::UADDO,      MVT::i32,     1 },
2705     { ISD::UADDO,      MVT::i16,     1 },
2706     { ISD::UADDO,      MVT::i8,      1 },
2707     { ISD::UMULO,      MVT::i32,     2 }, // mul + seto
2708     { ISD::UMULO,      MVT::i16,     2 },
2709     { ISD::UMULO,      MVT::i8,      2 },
2710   };
2711 
2712   Type *RetTy = ICA.getReturnType();
2713   Type *OpTy = RetTy;
2714   Intrinsic::ID IID = ICA.getID();
2715   unsigned ISD = ISD::DELETED_NODE;
2716   switch (IID) {
2717   default:
2718     break;
2719   case Intrinsic::abs:
2720     ISD = ISD::ABS;
2721     break;
2722   case Intrinsic::bitreverse:
2723     ISD = ISD::BITREVERSE;
2724     break;
2725   case Intrinsic::bswap:
2726     ISD = ISD::BSWAP;
2727     break;
2728   case Intrinsic::ctlz:
2729     ISD = ISD::CTLZ;
2730     break;
2731   case Intrinsic::ctpop:
2732     ISD = ISD::CTPOP;
2733     break;
2734   case Intrinsic::cttz:
2735     ISD = ISD::CTTZ;
2736     break;
2737   case Intrinsic::maxnum:
2738   case Intrinsic::minnum:
2739     // FMINNUM has same costs so don't duplicate.
2740     ISD = ISD::FMAXNUM;
2741     break;
2742   case Intrinsic::sadd_sat:
2743     ISD = ISD::SADDSAT;
2744     break;
2745   case Intrinsic::smax:
2746     ISD = ISD::SMAX;
2747     break;
2748   case Intrinsic::smin:
2749     ISD = ISD::SMIN;
2750     break;
2751   case Intrinsic::ssub_sat:
2752     ISD = ISD::SSUBSAT;
2753     break;
2754   case Intrinsic::uadd_sat:
2755     ISD = ISD::UADDSAT;
2756     break;
2757   case Intrinsic::umax:
2758     ISD = ISD::UMAX;
2759     break;
2760   case Intrinsic::umin:
2761     ISD = ISD::UMIN;
2762     break;
2763   case Intrinsic::usub_sat:
2764     ISD = ISD::USUBSAT;
2765     break;
2766   case Intrinsic::sqrt:
2767     ISD = ISD::FSQRT;
2768     break;
2769   case Intrinsic::sadd_with_overflow:
2770   case Intrinsic::ssub_with_overflow:
2771     // SSUBO has same costs so don't duplicate.
2772     ISD = ISD::SADDO;
2773     OpTy = RetTy->getContainedType(0);
2774     break;
2775   case Intrinsic::uadd_with_overflow:
2776   case Intrinsic::usub_with_overflow:
2777     // USUBO has same costs so don't duplicate.
2778     ISD = ISD::UADDO;
2779     OpTy = RetTy->getContainedType(0);
2780     break;
2781   case Intrinsic::umul_with_overflow:
2782   case Intrinsic::smul_with_overflow:
2783     // SMULO has same costs so don't duplicate.
2784     ISD = ISD::UMULO;
2785     OpTy = RetTy->getContainedType(0);
2786     break;
2787   }
2788 
2789   if (ISD != ISD::DELETED_NODE) {
2790     // Legalize the type.
2791     std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, OpTy);
2792     MVT MTy = LT.second;
2793 
2794     // Attempt to lookup cost.
2795     if (ISD == ISD::BITREVERSE && ST->hasGFNI() && ST->hasSSSE3() &&
2796         MTy.isVector()) {
2797       // With PSHUFB the code is very similar for all types. If we have integer
2798       // byte operations, we just need a GF2P8AFFINEQB for vXi8. For other types
2799       // we also need a PSHUFB.
2800       unsigned Cost = MTy.getVectorElementType() == MVT::i8 ? 1 : 2;
2801 
2802       // Without byte operations, we need twice as many GF2P8AFFINEQB and PSHUFB
2803       // instructions. We also need an extract and an insert.
2804       if (!(MTy.is128BitVector() || (ST->hasAVX2() && MTy.is256BitVector()) ||
2805             (ST->hasBWI() && MTy.is512BitVector())))
2806         Cost = Cost * 2 + 2;
2807 
2808       return LT.first * Cost;
2809     }
2810 
2811     auto adjustTableCost = [](const CostTblEntry &Entry, int LegalizationCost,
2812                               FastMathFlags FMF) {
2813       // If there are no NANs to deal with, then these are reduced to a
2814       // single MIN** or MAX** instruction instead of the MIN/CMP/SELECT that we
2815       // assume is used in the non-fast case.
2816       if (Entry.ISD == ISD::FMAXNUM || Entry.ISD == ISD::FMINNUM) {
2817         if (FMF.noNaNs())
2818           return LegalizationCost * 1;
2819       }
2820       return LegalizationCost * (int)Entry.Cost;
2821     };
2822 
2823     if (ST->useGLMDivSqrtCosts())
2824       if (const auto *Entry = CostTableLookup(GLMCostTbl, ISD, MTy))
2825         return adjustTableCost(*Entry, LT.first, ICA.getFlags());
2826 
2827     if (ST->isSLM())
2828       if (const auto *Entry = CostTableLookup(SLMCostTbl, ISD, MTy))
2829         return adjustTableCost(*Entry, LT.first, ICA.getFlags());
2830 
2831     if (ST->hasCDI())
2832       if (const auto *Entry = CostTableLookup(AVX512CDCostTbl, ISD, MTy))
2833         return adjustTableCost(*Entry, LT.first, ICA.getFlags());
2834 
2835     if (ST->hasBWI())
2836       if (const auto *Entry = CostTableLookup(AVX512BWCostTbl, ISD, MTy))
2837         return adjustTableCost(*Entry, LT.first, ICA.getFlags());
2838 
2839     if (ST->hasAVX512())
2840       if (const auto *Entry = CostTableLookup(AVX512CostTbl, ISD, MTy))
2841         return adjustTableCost(*Entry, LT.first, ICA.getFlags());
2842 
2843     if (ST->hasXOP())
2844       if (const auto *Entry = CostTableLookup(XOPCostTbl, ISD, MTy))
2845         return adjustTableCost(*Entry, LT.first, ICA.getFlags());
2846 
2847     if (ST->hasAVX2())
2848       if (const auto *Entry = CostTableLookup(AVX2CostTbl, ISD, MTy))
2849         return adjustTableCost(*Entry, LT.first, ICA.getFlags());
2850 
2851     if (ST->hasAVX())
2852       if (const auto *Entry = CostTableLookup(AVX1CostTbl, ISD, MTy))
2853         return adjustTableCost(*Entry, LT.first, ICA.getFlags());
2854 
2855     if (ST->hasSSE42())
2856       if (const auto *Entry = CostTableLookup(SSE42CostTbl, ISD, MTy))
2857         return adjustTableCost(*Entry, LT.first, ICA.getFlags());
2858 
2859     if (ST->hasSSE41())
2860       if (const auto *Entry = CostTableLookup(SSE41CostTbl, ISD, MTy))
2861         return adjustTableCost(*Entry, LT.first, ICA.getFlags());
2862 
2863     if (ST->hasSSSE3())
2864       if (const auto *Entry = CostTableLookup(SSSE3CostTbl, ISD, MTy))
2865         return adjustTableCost(*Entry, LT.first, ICA.getFlags());
2866 
2867     if (ST->hasSSE2())
2868       if (const auto *Entry = CostTableLookup(SSE2CostTbl, ISD, MTy))
2869         return adjustTableCost(*Entry, LT.first, ICA.getFlags());
2870 
2871     if (ST->hasSSE1())
2872       if (const auto *Entry = CostTableLookup(SSE1CostTbl, ISD, MTy))
2873         return adjustTableCost(*Entry, LT.first, ICA.getFlags());
2874 
2875     if (ST->hasBMI()) {
2876       if (ST->is64Bit())
2877         if (const auto *Entry = CostTableLookup(BMI64CostTbl, ISD, MTy))
2878           return adjustTableCost(*Entry, LT.first, ICA.getFlags());
2879 
2880       if (const auto *Entry = CostTableLookup(BMI32CostTbl, ISD, MTy))
2881         return adjustTableCost(*Entry, LT.first, ICA.getFlags());
2882     }
2883 
2884     if (ST->hasLZCNT()) {
2885       if (ST->is64Bit())
2886         if (const auto *Entry = CostTableLookup(LZCNT64CostTbl, ISD, MTy))
2887           return adjustTableCost(*Entry, LT.first, ICA.getFlags());
2888 
2889       if (const auto *Entry = CostTableLookup(LZCNT32CostTbl, ISD, MTy))
2890         return adjustTableCost(*Entry, LT.first, ICA.getFlags());
2891     }
2892 
2893     if (ST->hasPOPCNT()) {
2894       if (ST->is64Bit())
2895         if (const auto *Entry = CostTableLookup(POPCNT64CostTbl, ISD, MTy))
2896           return adjustTableCost(*Entry, LT.first, ICA.getFlags());
2897 
2898       if (const auto *Entry = CostTableLookup(POPCNT32CostTbl, ISD, MTy))
2899         return adjustTableCost(*Entry, LT.first, ICA.getFlags());
2900     }
2901 
2902     // TODO - add BMI (TZCNT) scalar handling
2903 
2904     if (ST->is64Bit())
2905       if (const auto *Entry = CostTableLookup(X64CostTbl, ISD, MTy))
2906         return adjustTableCost(*Entry, LT.first, ICA.getFlags());
2907 
2908     if (const auto *Entry = CostTableLookup(X86CostTbl, ISD, MTy))
2909       return adjustTableCost(*Entry, LT.first, ICA.getFlags());
2910   }
2911 
2912   return BaseT::getIntrinsicInstrCost(ICA, CostKind);
2913 }
2914 
2915 InstructionCost
2916 X86TTIImpl::getIntrinsicInstrCost(const IntrinsicCostAttributes &ICA,
2917                                   TTI::TargetCostKind CostKind) {
2918   if (ICA.isTypeBasedOnly())
2919     return getTypeBasedIntrinsicInstrCost(ICA, CostKind);
2920 
2921   static const CostTblEntry AVX512CostTbl[] = {
2922     { ISD::ROTL,       MVT::v8i64,   1 },
2923     { ISD::ROTL,       MVT::v4i64,   1 },
2924     { ISD::ROTL,       MVT::v2i64,   1 },
2925     { ISD::ROTL,       MVT::v16i32,  1 },
2926     { ISD::ROTL,       MVT::v8i32,   1 },
2927     { ISD::ROTL,       MVT::v4i32,   1 },
2928     { ISD::ROTR,       MVT::v8i64,   1 },
2929     { ISD::ROTR,       MVT::v4i64,   1 },
2930     { ISD::ROTR,       MVT::v2i64,   1 },
2931     { ISD::ROTR,       MVT::v16i32,  1 },
2932     { ISD::ROTR,       MVT::v8i32,   1 },
2933     { ISD::ROTR,       MVT::v4i32,   1 }
2934   };
2935   // XOP: ROTL = VPROT(X,Y), ROTR = VPROT(X,SUB(0,Y))
2936   static const CostTblEntry XOPCostTbl[] = {
2937     { ISD::ROTL,       MVT::v4i64,   4 },
2938     { ISD::ROTL,       MVT::v8i32,   4 },
2939     { ISD::ROTL,       MVT::v16i16,  4 },
2940     { ISD::ROTL,       MVT::v32i8,   4 },
2941     { ISD::ROTL,       MVT::v2i64,   1 },
2942     { ISD::ROTL,       MVT::v4i32,   1 },
2943     { ISD::ROTL,       MVT::v8i16,   1 },
2944     { ISD::ROTL,       MVT::v16i8,   1 },
2945     { ISD::ROTR,       MVT::v4i64,   6 },
2946     { ISD::ROTR,       MVT::v8i32,   6 },
2947     { ISD::ROTR,       MVT::v16i16,  6 },
2948     { ISD::ROTR,       MVT::v32i8,   6 },
2949     { ISD::ROTR,       MVT::v2i64,   2 },
2950     { ISD::ROTR,       MVT::v4i32,   2 },
2951     { ISD::ROTR,       MVT::v8i16,   2 },
2952     { ISD::ROTR,       MVT::v16i8,   2 }
2953   };
2954   static const CostTblEntry X64CostTbl[] = { // 64-bit targets
2955     { ISD::ROTL,       MVT::i64,     1 },
2956     { ISD::ROTR,       MVT::i64,     1 },
2957     { ISD::FSHL,       MVT::i64,     4 }
2958   };
2959   static const CostTblEntry X86CostTbl[] = { // 32 or 64-bit targets
2960     { ISD::ROTL,       MVT::i32,     1 },
2961     { ISD::ROTL,       MVT::i16,     1 },
2962     { ISD::ROTL,       MVT::i8,      1 },
2963     { ISD::ROTR,       MVT::i32,     1 },
2964     { ISD::ROTR,       MVT::i16,     1 },
2965     { ISD::ROTR,       MVT::i8,      1 },
2966     { ISD::FSHL,       MVT::i32,     4 },
2967     { ISD::FSHL,       MVT::i16,     4 },
2968     { ISD::FSHL,       MVT::i8,      4 }
2969   };
2970 
2971   Intrinsic::ID IID = ICA.getID();
2972   Type *RetTy = ICA.getReturnType();
2973   const SmallVectorImpl<const Value *> &Args = ICA.getArgs();
2974   unsigned ISD = ISD::DELETED_NODE;
2975   switch (IID) {
2976   default:
2977     break;
2978   case Intrinsic::fshl:
2979     ISD = ISD::FSHL;
2980     if (Args[0] == Args[1])
2981       ISD = ISD::ROTL;
2982     break;
2983   case Intrinsic::fshr:
2984     // FSHR has same costs so don't duplicate.
2985     ISD = ISD::FSHL;
2986     if (Args[0] == Args[1])
2987       ISD = ISD::ROTR;
2988     break;
2989   }
2990 
2991   if (ISD != ISD::DELETED_NODE) {
2992     // Legalize the type.
2993     std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, RetTy);
2994     MVT MTy = LT.second;
2995 
2996     // Attempt to lookup cost.
2997     if (ST->hasAVX512())
2998       if (const auto *Entry = CostTableLookup(AVX512CostTbl, ISD, MTy))
2999         return LT.first * Entry->Cost;
3000 
3001     if (ST->hasXOP())
3002       if (const auto *Entry = CostTableLookup(XOPCostTbl, ISD, MTy))
3003         return LT.first * Entry->Cost;
3004 
3005     if (ST->is64Bit())
3006       if (const auto *Entry = CostTableLookup(X64CostTbl, ISD, MTy))
3007         return LT.first * Entry->Cost;
3008 
3009     if (const auto *Entry = CostTableLookup(X86CostTbl, ISD, MTy))
3010       return LT.first * Entry->Cost;
3011   }
3012 
3013   return BaseT::getIntrinsicInstrCost(ICA, CostKind);
3014 }
3015 
3016 int X86TTIImpl::getVectorInstrCost(unsigned Opcode, Type *Val, unsigned Index) {
3017   static const CostTblEntry SLMCostTbl[] = {
3018      { ISD::EXTRACT_VECTOR_ELT,       MVT::i8,      4 },
3019      { ISD::EXTRACT_VECTOR_ELT,       MVT::i16,     4 },
3020      { ISD::EXTRACT_VECTOR_ELT,       MVT::i32,     4 },
3021      { ISD::EXTRACT_VECTOR_ELT,       MVT::i64,     7 }
3022    };
3023 
3024   assert(Val->isVectorTy() && "This must be a vector type");
3025   Type *ScalarType = Val->getScalarType();
3026   int RegisterFileMoveCost = 0;
3027 
3028   if (Index != -1U && (Opcode == Instruction::ExtractElement ||
3029                        Opcode == Instruction::InsertElement)) {
3030     // Legalize the type.
3031     std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Val);
3032 
3033     // This type is legalized to a scalar type.
3034     if (!LT.second.isVector())
3035       return 0;
3036 
3037     // The type may be split. Normalize the index to the new type.
3038     unsigned NumElts = LT.second.getVectorNumElements();
3039     unsigned SubNumElts = NumElts;
3040     Index = Index % NumElts;
3041 
3042     // For >128-bit vectors, we need to extract higher 128-bit subvectors.
3043     // For inserts, we also need to insert the subvector back.
3044     if (LT.second.getSizeInBits() > 128) {
3045       assert((LT.second.getSizeInBits() % 128) == 0 && "Illegal vector");
3046       unsigned NumSubVecs = LT.second.getSizeInBits() / 128;
3047       SubNumElts = NumElts / NumSubVecs;
3048       if (SubNumElts <= Index) {
3049         RegisterFileMoveCost += (Opcode == Instruction::InsertElement ? 2 : 1);
3050         Index %= SubNumElts;
3051       }
3052     }
3053 
3054     if (Index == 0) {
3055       // Floating point scalars are already located in index #0.
3056       // Many insertions to #0 can fold away for scalar fp-ops, so let's assume
3057       // true for all.
3058       if (ScalarType->isFloatingPointTy())
3059         return RegisterFileMoveCost;
3060 
3061       // Assume movd/movq XMM -> GPR is relatively cheap on all targets.
3062       if (ScalarType->isIntegerTy() && Opcode == Instruction::ExtractElement)
3063         return 1 + RegisterFileMoveCost;
3064     }
3065 
3066     int ISD = TLI->InstructionOpcodeToISD(Opcode);
3067     assert(ISD && "Unexpected vector opcode");
3068     MVT MScalarTy = LT.second.getScalarType();
3069     if (ST->isSLM())
3070       if (auto *Entry = CostTableLookup(SLMCostTbl, ISD, MScalarTy))
3071         return Entry->Cost + RegisterFileMoveCost;
3072 
3073     // Assume pinsr/pextr XMM <-> GPR is relatively cheap on all targets.
3074     if ((MScalarTy == MVT::i16 && ST->hasSSE2()) ||
3075         (MScalarTy.isInteger() && ST->hasSSE41()))
3076       return 1 + RegisterFileMoveCost;
3077 
3078     // Assume insertps is relatively cheap on all targets.
3079     if (MScalarTy == MVT::f32 && ST->hasSSE41() &&
3080         Opcode == Instruction::InsertElement)
3081       return 1 + RegisterFileMoveCost;
3082 
3083     // For extractions we just need to shuffle the element to index 0, which
3084     // should be very cheap (assume cost = 1). For insertions we need to shuffle
3085     // the elements to its destination. In both cases we must handle the
3086     // subvector move(s).
3087     // If the vector type is already less than 128-bits then don't reduce it.
3088     // TODO: Under what circumstances should we shuffle using the full width?
3089     int ShuffleCost = 1;
3090     if (Opcode == Instruction::InsertElement) {
3091       auto *SubTy = cast<VectorType>(Val);
3092       EVT VT = TLI->getValueType(DL, Val);
3093       if (VT.getScalarType() != MScalarTy || VT.getSizeInBits() >= 128)
3094         SubTy = FixedVectorType::get(ScalarType, SubNumElts);
3095       ShuffleCost =
3096           getShuffleCost(TTI::SK_PermuteTwoSrc, SubTy, None, 0, SubTy);
3097     }
3098     int IntOrFpCost = ScalarType->isFloatingPointTy() ? 0 : 1;
3099     return ShuffleCost + IntOrFpCost + RegisterFileMoveCost;
3100   }
3101 
3102   // Add to the base cost if we know that the extracted element of a vector is
3103   // destined to be moved to and used in the integer register file.
3104   if (Opcode == Instruction::ExtractElement && ScalarType->isPointerTy())
3105     RegisterFileMoveCost += 1;
3106 
3107   return BaseT::getVectorInstrCost(Opcode, Val, Index) + RegisterFileMoveCost;
3108 }
3109 
3110 unsigned X86TTIImpl::getScalarizationOverhead(VectorType *Ty,
3111                                               const APInt &DemandedElts,
3112                                               bool Insert, bool Extract) {
3113   unsigned Cost = 0;
3114 
3115   // For insertions, a ISD::BUILD_VECTOR style vector initialization can be much
3116   // cheaper than an accumulation of ISD::INSERT_VECTOR_ELT.
3117   if (Insert) {
3118     std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Ty);
3119     MVT MScalarTy = LT.second.getScalarType();
3120 
3121     if ((MScalarTy == MVT::i16 && ST->hasSSE2()) ||
3122         (MScalarTy.isInteger() && ST->hasSSE41()) ||
3123         (MScalarTy == MVT::f32 && ST->hasSSE41())) {
3124       // For types we can insert directly, insertion into 128-bit sub vectors is
3125       // cheap, followed by a cheap chain of concatenations.
3126       if (LT.second.getSizeInBits() <= 128) {
3127         Cost +=
3128             BaseT::getScalarizationOverhead(Ty, DemandedElts, Insert, false);
3129       } else {
3130         // In each 128-lane, if at least one index is demanded but not all
3131         // indices are demanded and this 128-lane is not the first 128-lane of
3132         // the legalized-vector, then this 128-lane needs a extracti128; If in
3133         // each 128-lane, there is at least one demanded index, this 128-lane
3134         // needs a inserti128.
3135 
3136         // The following cases will help you build a better understanding:
3137         // Assume we insert several elements into a v8i32 vector in avx2,
3138         // Case#1: inserting into 1th index needs vpinsrd + inserti128.
3139         // Case#2: inserting into 5th index needs extracti128 + vpinsrd +
3140         // inserti128.
3141         // Case#3: inserting into 4,5,6,7 index needs 4*vpinsrd + inserti128.
3142         unsigned Num128Lanes = LT.second.getSizeInBits() / 128 * LT.first;
3143         unsigned NumElts = LT.second.getVectorNumElements() * LT.first;
3144         APInt WidenedDemandedElts = DemandedElts.zextOrSelf(NumElts);
3145         unsigned Scale = NumElts / Num128Lanes;
3146         // We iterate each 128-lane, and check if we need a
3147         // extracti128/inserti128 for this 128-lane.
3148         for (unsigned I = 0; I < NumElts; I += Scale) {
3149           APInt Mask = WidenedDemandedElts.getBitsSet(NumElts, I, I + Scale);
3150           APInt MaskedDE = Mask & WidenedDemandedElts;
3151           unsigned Population = MaskedDE.countPopulation();
3152           Cost += (Population > 0 && Population != Scale &&
3153                    I % LT.second.getVectorNumElements() != 0);
3154           Cost += Population > 0;
3155         }
3156         Cost += DemandedElts.countPopulation();
3157 
3158         // For vXf32 cases, insertion into the 0'th index in each v4f32
3159         // 128-bit vector is free.
3160         // NOTE: This assumes legalization widens vXf32 vectors.
3161         if (MScalarTy == MVT::f32)
3162           for (unsigned i = 0, e = cast<FixedVectorType>(Ty)->getNumElements();
3163                i < e; i += 4)
3164             if (DemandedElts[i])
3165               Cost--;
3166       }
3167     } else if (LT.second.isVector()) {
3168       // Without fast insertion, we need to use MOVD/MOVQ to pass each demanded
3169       // integer element as a SCALAR_TO_VECTOR, then we build the vector as a
3170       // series of UNPCK followed by CONCAT_VECTORS - all of these can be
3171       // considered cheap.
3172       if (Ty->isIntOrIntVectorTy())
3173         Cost += DemandedElts.countPopulation();
3174 
3175       // Get the smaller of the legalized or original pow2-extended number of
3176       // vector elements, which represents the number of unpacks we'll end up
3177       // performing.
3178       unsigned NumElts = LT.second.getVectorNumElements();
3179       unsigned Pow2Elts =
3180           PowerOf2Ceil(cast<FixedVectorType>(Ty)->getNumElements());
3181       Cost += (std::min<unsigned>(NumElts, Pow2Elts) - 1) * LT.first;
3182     }
3183   }
3184 
3185   // TODO: Use default extraction for now, but we should investigate extending this
3186   // to handle repeated subvector extraction.
3187   if (Extract)
3188     Cost += BaseT::getScalarizationOverhead(Ty, DemandedElts, false, Extract);
3189 
3190   return Cost;
3191 }
3192 
3193 int X86TTIImpl::getMemoryOpCost(unsigned Opcode, Type *Src,
3194                                 MaybeAlign Alignment, unsigned AddressSpace,
3195                                 TTI::TargetCostKind CostKind,
3196                                 const Instruction *I) {
3197   // TODO: Handle other cost kinds.
3198   if (CostKind != TTI::TCK_RecipThroughput) {
3199     if (auto *SI = dyn_cast_or_null<StoreInst>(I)) {
3200       // Store instruction with index and scale costs 2 Uops.
3201       // Check the preceding GEP to identify non-const indices.
3202       if (auto *GEP = dyn_cast<GetElementPtrInst>(SI->getPointerOperand())) {
3203         if (!all_of(GEP->indices(), [](Value *V) { return isa<Constant>(V); }))
3204           return TTI::TCC_Basic * 2;
3205       }
3206     }
3207     return TTI::TCC_Basic;
3208   }
3209 
3210   // Handle non-power-of-two vectors such as <3 x float>
3211   if (auto *VTy = dyn_cast<FixedVectorType>(Src)) {
3212     unsigned NumElem = VTy->getNumElements();
3213 
3214     // Handle a few common cases:
3215     // <3 x float>
3216     if (NumElem == 3 && VTy->getScalarSizeInBits() == 32)
3217       // Cost = 64 bit store + extract + 32 bit store.
3218       return 3;
3219 
3220     // <3 x double>
3221     if (NumElem == 3 && VTy->getScalarSizeInBits() == 64)
3222       // Cost = 128 bit store + unpack + 64 bit store.
3223       return 3;
3224 
3225     // Assume that all other non-power-of-two numbers are scalarized.
3226     if (!isPowerOf2_32(NumElem)) {
3227       APInt DemandedElts = APInt::getAllOnesValue(NumElem);
3228       int Cost = BaseT::getMemoryOpCost(Opcode, VTy->getScalarType(), Alignment,
3229                                         AddressSpace, CostKind);
3230       int SplitCost = getScalarizationOverhead(VTy, DemandedElts,
3231                                                Opcode == Instruction::Load,
3232                                                Opcode == Instruction::Store);
3233       return NumElem * Cost + SplitCost;
3234     }
3235   }
3236 
3237   // Type legalization can't handle structs
3238   if (TLI->getValueType(DL, Src,  true) == MVT::Other)
3239     return BaseT::getMemoryOpCost(Opcode, Src, Alignment, AddressSpace,
3240                                   CostKind);
3241 
3242   // Legalize the type.
3243   std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Src);
3244   assert((Opcode == Instruction::Load || Opcode == Instruction::Store) &&
3245          "Invalid Opcode");
3246 
3247   // Each load/store unit costs 1.
3248   int Cost = LT.first * 1;
3249 
3250   // This isn't exactly right. We're using slow unaligned 32-byte accesses as a
3251   // proxy for a double-pumped AVX memory interface such as on Sandybridge.
3252   if (LT.second.getStoreSize() == 32 && ST->isUnalignedMem32Slow())
3253     Cost *= 2;
3254 
3255   return Cost;
3256 }
3257 
3258 int X86TTIImpl::getMaskedMemoryOpCost(unsigned Opcode, Type *SrcTy,
3259                                       Align Alignment, unsigned AddressSpace,
3260                                       TTI::TargetCostKind CostKind) {
3261   bool IsLoad = (Instruction::Load == Opcode);
3262   bool IsStore = (Instruction::Store == Opcode);
3263 
3264   auto *SrcVTy = dyn_cast<FixedVectorType>(SrcTy);
3265   if (!SrcVTy)
3266     // To calculate scalar take the regular cost, without mask
3267     return getMemoryOpCost(Opcode, SrcTy, Alignment, AddressSpace, CostKind);
3268 
3269   unsigned NumElem = SrcVTy->getNumElements();
3270   auto *MaskTy =
3271       FixedVectorType::get(Type::getInt8Ty(SrcVTy->getContext()), NumElem);
3272   if ((IsLoad && !isLegalMaskedLoad(SrcVTy, Alignment)) ||
3273       (IsStore && !isLegalMaskedStore(SrcVTy, Alignment)) ||
3274       !isPowerOf2_32(NumElem)) {
3275     // Scalarization
3276     APInt DemandedElts = APInt::getAllOnesValue(NumElem);
3277     int MaskSplitCost =
3278         getScalarizationOverhead(MaskTy, DemandedElts, false, true);
3279     int ScalarCompareCost = getCmpSelInstrCost(
3280         Instruction::ICmp, Type::getInt8Ty(SrcVTy->getContext()), nullptr,
3281         CmpInst::BAD_ICMP_PREDICATE, CostKind);
3282     int BranchCost = getCFInstrCost(Instruction::Br, CostKind);
3283     int MaskCmpCost = NumElem * (BranchCost + ScalarCompareCost);
3284     int ValueSplitCost =
3285         getScalarizationOverhead(SrcVTy, DemandedElts, IsLoad, IsStore);
3286     int MemopCost =
3287         NumElem * BaseT::getMemoryOpCost(Opcode, SrcVTy->getScalarType(),
3288                                          Alignment, AddressSpace, CostKind);
3289     return MemopCost + ValueSplitCost + MaskSplitCost + MaskCmpCost;
3290   }
3291 
3292   // Legalize the type.
3293   std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, SrcVTy);
3294   auto VT = TLI->getValueType(DL, SrcVTy);
3295   int Cost = 0;
3296   if (VT.isSimple() && LT.second != VT.getSimpleVT() &&
3297       LT.second.getVectorNumElements() == NumElem)
3298     // Promotion requires expand/truncate for data and a shuffle for mask.
3299     Cost += getShuffleCost(TTI::SK_PermuteTwoSrc, SrcVTy, None, 0, nullptr) +
3300             getShuffleCost(TTI::SK_PermuteTwoSrc, MaskTy, None, 0, nullptr);
3301 
3302   else if (LT.second.getVectorNumElements() > NumElem) {
3303     auto *NewMaskTy = FixedVectorType::get(MaskTy->getElementType(),
3304                                            LT.second.getVectorNumElements());
3305     // Expanding requires fill mask with zeroes
3306     Cost += getShuffleCost(TTI::SK_InsertSubvector, NewMaskTy, None, 0, MaskTy);
3307   }
3308 
3309   // Pre-AVX512 - each maskmov load costs 2 + store costs ~8.
3310   if (!ST->hasAVX512())
3311     return Cost + LT.first * (IsLoad ? 2 : 8);
3312 
3313   // AVX-512 masked load/store is cheapper
3314   return Cost + LT.first;
3315 }
3316 
3317 int X86TTIImpl::getAddressComputationCost(Type *Ty, ScalarEvolution *SE,
3318                                           const SCEV *Ptr) {
3319   // Address computations in vectorized code with non-consecutive addresses will
3320   // likely result in more instructions compared to scalar code where the
3321   // computation can more often be merged into the index mode. The resulting
3322   // extra micro-ops can significantly decrease throughput.
3323   const unsigned NumVectorInstToHideOverhead = 10;
3324 
3325   // Cost modeling of Strided Access Computation is hidden by the indexing
3326   // modes of X86 regardless of the stride value. We dont believe that there
3327   // is a difference between constant strided access in gerenal and constant
3328   // strided value which is less than or equal to 64.
3329   // Even in the case of (loop invariant) stride whose value is not known at
3330   // compile time, the address computation will not incur more than one extra
3331   // ADD instruction.
3332   if (Ty->isVectorTy() && SE) {
3333     if (!BaseT::isStridedAccess(Ptr))
3334       return NumVectorInstToHideOverhead;
3335     if (!BaseT::getConstantStrideStep(SE, Ptr))
3336       return 1;
3337   }
3338 
3339   return BaseT::getAddressComputationCost(Ty, SE, Ptr);
3340 }
3341 
3342 int X86TTIImpl::getArithmeticReductionCost(unsigned Opcode, VectorType *ValTy,
3343                                            bool IsPairwise,
3344                                            TTI::TargetCostKind CostKind) {
3345   // Just use the default implementation for pair reductions.
3346   if (IsPairwise)
3347     return BaseT::getArithmeticReductionCost(Opcode, ValTy, IsPairwise, CostKind);
3348 
3349   // We use the Intel Architecture Code Analyzer(IACA) to measure the throughput
3350   // and make it as the cost.
3351 
3352   static const CostTblEntry SLMCostTblNoPairWise[] = {
3353     { ISD::FADD,  MVT::v2f64,   3 },
3354     { ISD::ADD,   MVT::v2i64,   5 },
3355   };
3356 
3357   static const CostTblEntry SSE2CostTblNoPairWise[] = {
3358     { ISD::FADD,  MVT::v2f64,   2 },
3359     { ISD::FADD,  MVT::v4f32,   4 },
3360     { ISD::ADD,   MVT::v2i64,   2 },      // The data reported by the IACA tool is "1.6".
3361     { ISD::ADD,   MVT::v2i32,   2 }, // FIXME: chosen to be less than v4i32
3362     { ISD::ADD,   MVT::v4i32,   3 },      // The data reported by the IACA tool is "3.3".
3363     { ISD::ADD,   MVT::v2i16,   2 },      // The data reported by the IACA tool is "4.3".
3364     { ISD::ADD,   MVT::v4i16,   3 },      // The data reported by the IACA tool is "4.3".
3365     { ISD::ADD,   MVT::v8i16,   4 },      // The data reported by the IACA tool is "4.3".
3366     { ISD::ADD,   MVT::v2i8,    2 },
3367     { ISD::ADD,   MVT::v4i8,    2 },
3368     { ISD::ADD,   MVT::v8i8,    2 },
3369     { ISD::ADD,   MVT::v16i8,   3 },
3370   };
3371 
3372   static const CostTblEntry AVX1CostTblNoPairWise[] = {
3373     { ISD::FADD,  MVT::v4f64,   3 },
3374     { ISD::FADD,  MVT::v4f32,   3 },
3375     { ISD::FADD,  MVT::v8f32,   4 },
3376     { ISD::ADD,   MVT::v2i64,   1 },      // The data reported by the IACA tool is "1.5".
3377     { ISD::ADD,   MVT::v4i64,   3 },
3378     { ISD::ADD,   MVT::v8i32,   5 },
3379     { ISD::ADD,   MVT::v16i16,  5 },
3380     { ISD::ADD,   MVT::v32i8,   4 },
3381   };
3382 
3383   int ISD = TLI->InstructionOpcodeToISD(Opcode);
3384   assert(ISD && "Invalid opcode");
3385 
3386   // Before legalizing the type, give a chance to look up illegal narrow types
3387   // in the table.
3388   // FIXME: Is there a better way to do this?
3389   EVT VT = TLI->getValueType(DL, ValTy);
3390   if (VT.isSimple()) {
3391     MVT MTy = VT.getSimpleVT();
3392     if (ST->isSLM())
3393       if (const auto *Entry = CostTableLookup(SLMCostTblNoPairWise, ISD, MTy))
3394         return Entry->Cost;
3395 
3396     if (ST->hasAVX())
3397       if (const auto *Entry = CostTableLookup(AVX1CostTblNoPairWise, ISD, MTy))
3398         return Entry->Cost;
3399 
3400     if (ST->hasSSE2())
3401       if (const auto *Entry = CostTableLookup(SSE2CostTblNoPairWise, ISD, MTy))
3402         return Entry->Cost;
3403   }
3404 
3405   std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, ValTy);
3406 
3407   MVT MTy = LT.second;
3408 
3409   auto *ValVTy = cast<FixedVectorType>(ValTy);
3410 
3411   // Special case: vXi8 mul reductions are performed as vXi16.
3412   if (ISD == ISD::MUL && MTy.getScalarType() == MVT::i8) {
3413     auto *WideSclTy = IntegerType::get(ValVTy->getContext(), 16);
3414     auto *WideVecTy = FixedVectorType::get(WideSclTy, ValVTy->getNumElements());
3415     return getCastInstrCost(Instruction::ZExt, WideVecTy, ValTy,
3416                             TargetTransformInfo::CastContextHint::None,
3417                             CostKind) +
3418            getArithmeticReductionCost(Opcode, WideVecTy, IsPairwise, CostKind);
3419   }
3420 
3421   unsigned ArithmeticCost = 0;
3422   if (LT.first != 1 && MTy.isVector() &&
3423       MTy.getVectorNumElements() < ValVTy->getNumElements()) {
3424     // Type needs to be split. We need LT.first - 1 arithmetic ops.
3425     auto *SingleOpTy = FixedVectorType::get(ValVTy->getElementType(),
3426                                             MTy.getVectorNumElements());
3427     ArithmeticCost = getArithmeticInstrCost(Opcode, SingleOpTy, CostKind);
3428     ArithmeticCost *= LT.first - 1;
3429   }
3430 
3431   if (ST->isSLM())
3432     if (const auto *Entry = CostTableLookup(SLMCostTblNoPairWise, ISD, MTy))
3433       return ArithmeticCost + Entry->Cost;
3434 
3435   if (ST->hasAVX())
3436     if (const auto *Entry = CostTableLookup(AVX1CostTblNoPairWise, ISD, MTy))
3437       return ArithmeticCost + Entry->Cost;
3438 
3439   if (ST->hasSSE2())
3440     if (const auto *Entry = CostTableLookup(SSE2CostTblNoPairWise, ISD, MTy))
3441       return ArithmeticCost + Entry->Cost;
3442 
3443   // FIXME: These assume a naive kshift+binop lowering, which is probably
3444   // conservative in most cases.
3445   static const CostTblEntry AVX512BoolReduction[] = {
3446     { ISD::AND,  MVT::v2i1,   3 },
3447     { ISD::AND,  MVT::v4i1,   5 },
3448     { ISD::AND,  MVT::v8i1,   7 },
3449     { ISD::AND,  MVT::v16i1,  9 },
3450     { ISD::AND,  MVT::v32i1, 11 },
3451     { ISD::AND,  MVT::v64i1, 13 },
3452     { ISD::OR,   MVT::v2i1,   3 },
3453     { ISD::OR,   MVT::v4i1,   5 },
3454     { ISD::OR,   MVT::v8i1,   7 },
3455     { ISD::OR,   MVT::v16i1,  9 },
3456     { ISD::OR,   MVT::v32i1, 11 },
3457     { ISD::OR,   MVT::v64i1, 13 },
3458   };
3459 
3460   static const CostTblEntry AVX2BoolReduction[] = {
3461     { ISD::AND,  MVT::v16i16,  2 }, // vpmovmskb + cmp
3462     { ISD::AND,  MVT::v32i8,   2 }, // vpmovmskb + cmp
3463     { ISD::OR,   MVT::v16i16,  2 }, // vpmovmskb + cmp
3464     { ISD::OR,   MVT::v32i8,   2 }, // vpmovmskb + cmp
3465   };
3466 
3467   static const CostTblEntry AVX1BoolReduction[] = {
3468     { ISD::AND,  MVT::v4i64,   2 }, // vmovmskpd + cmp
3469     { ISD::AND,  MVT::v8i32,   2 }, // vmovmskps + cmp
3470     { ISD::AND,  MVT::v16i16,  4 }, // vextractf128 + vpand + vpmovmskb + cmp
3471     { ISD::AND,  MVT::v32i8,   4 }, // vextractf128 + vpand + vpmovmskb + cmp
3472     { ISD::OR,   MVT::v4i64,   2 }, // vmovmskpd + cmp
3473     { ISD::OR,   MVT::v8i32,   2 }, // vmovmskps + cmp
3474     { ISD::OR,   MVT::v16i16,  4 }, // vextractf128 + vpor + vpmovmskb + cmp
3475     { ISD::OR,   MVT::v32i8,   4 }, // vextractf128 + vpor + vpmovmskb + cmp
3476   };
3477 
3478   static const CostTblEntry SSE2BoolReduction[] = {
3479     { ISD::AND,  MVT::v2i64,   2 }, // movmskpd + cmp
3480     { ISD::AND,  MVT::v4i32,   2 }, // movmskps + cmp
3481     { ISD::AND,  MVT::v8i16,   2 }, // pmovmskb + cmp
3482     { ISD::AND,  MVT::v16i8,   2 }, // pmovmskb + cmp
3483     { ISD::OR,   MVT::v2i64,   2 }, // movmskpd + cmp
3484     { ISD::OR,   MVT::v4i32,   2 }, // movmskps + cmp
3485     { ISD::OR,   MVT::v8i16,   2 }, // pmovmskb + cmp
3486     { ISD::OR,   MVT::v16i8,   2 }, // pmovmskb + cmp
3487   };
3488 
3489   // Handle bool allof/anyof patterns.
3490   if (ValVTy->getElementType()->isIntegerTy(1)) {
3491     unsigned ArithmeticCost = 0;
3492     if (LT.first != 1 && MTy.isVector() &&
3493         MTy.getVectorNumElements() < ValVTy->getNumElements()) {
3494       // Type needs to be split. We need LT.first - 1 arithmetic ops.
3495       auto *SingleOpTy = FixedVectorType::get(ValVTy->getElementType(),
3496                                               MTy.getVectorNumElements());
3497       ArithmeticCost = getArithmeticInstrCost(Opcode, SingleOpTy, CostKind);
3498       ArithmeticCost *= LT.first - 1;
3499     }
3500 
3501     if (ST->hasAVX512())
3502       if (const auto *Entry = CostTableLookup(AVX512BoolReduction, ISD, MTy))
3503         return ArithmeticCost + Entry->Cost;
3504     if (ST->hasAVX2())
3505       if (const auto *Entry = CostTableLookup(AVX2BoolReduction, ISD, MTy))
3506         return ArithmeticCost + Entry->Cost;
3507     if (ST->hasAVX())
3508       if (const auto *Entry = CostTableLookup(AVX1BoolReduction, ISD, MTy))
3509         return ArithmeticCost + Entry->Cost;
3510     if (ST->hasSSE2())
3511       if (const auto *Entry = CostTableLookup(SSE2BoolReduction, ISD, MTy))
3512         return ArithmeticCost + Entry->Cost;
3513 
3514     return BaseT::getArithmeticReductionCost(Opcode, ValVTy, IsPairwise,
3515                                              CostKind);
3516   }
3517 
3518   unsigned NumVecElts = ValVTy->getNumElements();
3519   unsigned ScalarSize = ValVTy->getScalarSizeInBits();
3520 
3521   // Special case power of 2 reductions where the scalar type isn't changed
3522   // by type legalization.
3523   if (!isPowerOf2_32(NumVecElts) || ScalarSize != MTy.getScalarSizeInBits())
3524     return BaseT::getArithmeticReductionCost(Opcode, ValVTy, IsPairwise,
3525                                              CostKind);
3526 
3527   unsigned ReductionCost = 0;
3528 
3529   auto *Ty = ValVTy;
3530   if (LT.first != 1 && MTy.isVector() &&
3531       MTy.getVectorNumElements() < ValVTy->getNumElements()) {
3532     // Type needs to be split. We need LT.first - 1 arithmetic ops.
3533     Ty = FixedVectorType::get(ValVTy->getElementType(),
3534                               MTy.getVectorNumElements());
3535     ReductionCost = getArithmeticInstrCost(Opcode, Ty, CostKind);
3536     ReductionCost *= LT.first - 1;
3537     NumVecElts = MTy.getVectorNumElements();
3538   }
3539 
3540   // Now handle reduction with the legal type, taking into account size changes
3541   // at each level.
3542   while (NumVecElts > 1) {
3543     // Determine the size of the remaining vector we need to reduce.
3544     unsigned Size = NumVecElts * ScalarSize;
3545     NumVecElts /= 2;
3546     // If we're reducing from 256/512 bits, use an extract_subvector.
3547     if (Size > 128) {
3548       auto *SubTy = FixedVectorType::get(ValVTy->getElementType(), NumVecElts);
3549       ReductionCost +=
3550           getShuffleCost(TTI::SK_ExtractSubvector, Ty, None, NumVecElts, SubTy);
3551       Ty = SubTy;
3552     } else if (Size == 128) {
3553       // Reducing from 128 bits is a permute of v2f64/v2i64.
3554       FixedVectorType *ShufTy;
3555       if (ValVTy->isFloatingPointTy())
3556         ShufTy =
3557             FixedVectorType::get(Type::getDoubleTy(ValVTy->getContext()), 2);
3558       else
3559         ShufTy =
3560             FixedVectorType::get(Type::getInt64Ty(ValVTy->getContext()), 2);
3561       ReductionCost +=
3562           getShuffleCost(TTI::SK_PermuteSingleSrc, ShufTy, None, 0, nullptr);
3563     } else if (Size == 64) {
3564       // Reducing from 64 bits is a shuffle of v4f32/v4i32.
3565       FixedVectorType *ShufTy;
3566       if (ValVTy->isFloatingPointTy())
3567         ShufTy =
3568             FixedVectorType::get(Type::getFloatTy(ValVTy->getContext()), 4);
3569       else
3570         ShufTy =
3571             FixedVectorType::get(Type::getInt32Ty(ValVTy->getContext()), 4);
3572       ReductionCost +=
3573           getShuffleCost(TTI::SK_PermuteSingleSrc, ShufTy, None, 0, nullptr);
3574     } else {
3575       // Reducing from smaller size is a shift by immediate.
3576       auto *ShiftTy = FixedVectorType::get(
3577           Type::getIntNTy(ValVTy->getContext(), Size), 128 / Size);
3578       ReductionCost += getArithmeticInstrCost(
3579           Instruction::LShr, ShiftTy, CostKind,
3580           TargetTransformInfo::OK_AnyValue,
3581           TargetTransformInfo::OK_UniformConstantValue,
3582           TargetTransformInfo::OP_None, TargetTransformInfo::OP_None);
3583     }
3584 
3585     // Add the arithmetic op for this level.
3586     ReductionCost += getArithmeticInstrCost(Opcode, Ty, CostKind);
3587   }
3588 
3589   // Add the final extract element to the cost.
3590   return ReductionCost + getVectorInstrCost(Instruction::ExtractElement, Ty, 0);
3591 }
3592 
3593 int X86TTIImpl::getMinMaxCost(Type *Ty, Type *CondTy, bool IsUnsigned) {
3594   std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Ty);
3595 
3596   MVT MTy = LT.second;
3597 
3598   int ISD;
3599   if (Ty->isIntOrIntVectorTy()) {
3600     ISD = IsUnsigned ? ISD::UMIN : ISD::SMIN;
3601   } else {
3602     assert(Ty->isFPOrFPVectorTy() &&
3603            "Expected float point or integer vector type.");
3604     ISD = ISD::FMINNUM;
3605   }
3606 
3607   static const CostTblEntry SSE1CostTbl[] = {
3608     {ISD::FMINNUM, MVT::v4f32, 1},
3609   };
3610 
3611   static const CostTblEntry SSE2CostTbl[] = {
3612     {ISD::FMINNUM, MVT::v2f64, 1},
3613     {ISD::SMIN,    MVT::v8i16, 1},
3614     {ISD::UMIN,    MVT::v16i8, 1},
3615   };
3616 
3617   static const CostTblEntry SSE41CostTbl[] = {
3618     {ISD::SMIN,    MVT::v4i32, 1},
3619     {ISD::UMIN,    MVT::v4i32, 1},
3620     {ISD::UMIN,    MVT::v8i16, 1},
3621     {ISD::SMIN,    MVT::v16i8, 1},
3622   };
3623 
3624   static const CostTblEntry SSE42CostTbl[] = {
3625     {ISD::UMIN,    MVT::v2i64, 3}, // xor+pcmpgtq+blendvpd
3626   };
3627 
3628   static const CostTblEntry AVX1CostTbl[] = {
3629     {ISD::FMINNUM, MVT::v8f32,  1},
3630     {ISD::FMINNUM, MVT::v4f64,  1},
3631     {ISD::SMIN,    MVT::v8i32,  3},
3632     {ISD::UMIN,    MVT::v8i32,  3},
3633     {ISD::SMIN,    MVT::v16i16, 3},
3634     {ISD::UMIN,    MVT::v16i16, 3},
3635     {ISD::SMIN,    MVT::v32i8,  3},
3636     {ISD::UMIN,    MVT::v32i8,  3},
3637   };
3638 
3639   static const CostTblEntry AVX2CostTbl[] = {
3640     {ISD::SMIN,    MVT::v8i32,  1},
3641     {ISD::UMIN,    MVT::v8i32,  1},
3642     {ISD::SMIN,    MVT::v16i16, 1},
3643     {ISD::UMIN,    MVT::v16i16, 1},
3644     {ISD::SMIN,    MVT::v32i8,  1},
3645     {ISD::UMIN,    MVT::v32i8,  1},
3646   };
3647 
3648   static const CostTblEntry AVX512CostTbl[] = {
3649     {ISD::FMINNUM, MVT::v16f32, 1},
3650     {ISD::FMINNUM, MVT::v8f64,  1},
3651     {ISD::SMIN,    MVT::v2i64,  1},
3652     {ISD::UMIN,    MVT::v2i64,  1},
3653     {ISD::SMIN,    MVT::v4i64,  1},
3654     {ISD::UMIN,    MVT::v4i64,  1},
3655     {ISD::SMIN,    MVT::v8i64,  1},
3656     {ISD::UMIN,    MVT::v8i64,  1},
3657     {ISD::SMIN,    MVT::v16i32, 1},
3658     {ISD::UMIN,    MVT::v16i32, 1},
3659   };
3660 
3661   static const CostTblEntry AVX512BWCostTbl[] = {
3662     {ISD::SMIN,    MVT::v32i16, 1},
3663     {ISD::UMIN,    MVT::v32i16, 1},
3664     {ISD::SMIN,    MVT::v64i8,  1},
3665     {ISD::UMIN,    MVT::v64i8,  1},
3666   };
3667 
3668   // If we have a native MIN/MAX instruction for this type, use it.
3669   if (ST->hasBWI())
3670     if (const auto *Entry = CostTableLookup(AVX512BWCostTbl, ISD, MTy))
3671       return LT.first * Entry->Cost;
3672 
3673   if (ST->hasAVX512())
3674     if (const auto *Entry = CostTableLookup(AVX512CostTbl, ISD, MTy))
3675       return LT.first * Entry->Cost;
3676 
3677   if (ST->hasAVX2())
3678     if (const auto *Entry = CostTableLookup(AVX2CostTbl, ISD, MTy))
3679       return LT.first * Entry->Cost;
3680 
3681   if (ST->hasAVX())
3682     if (const auto *Entry = CostTableLookup(AVX1CostTbl, ISD, MTy))
3683       return LT.first * Entry->Cost;
3684 
3685   if (ST->hasSSE42())
3686     if (const auto *Entry = CostTableLookup(SSE42CostTbl, ISD, MTy))
3687       return LT.first * Entry->Cost;
3688 
3689   if (ST->hasSSE41())
3690     if (const auto *Entry = CostTableLookup(SSE41CostTbl, ISD, MTy))
3691       return LT.first * Entry->Cost;
3692 
3693   if (ST->hasSSE2())
3694     if (const auto *Entry = CostTableLookup(SSE2CostTbl, ISD, MTy))
3695       return LT.first * Entry->Cost;
3696 
3697   if (ST->hasSSE1())
3698     if (const auto *Entry = CostTableLookup(SSE1CostTbl, ISD, MTy))
3699       return LT.first * Entry->Cost;
3700 
3701   unsigned CmpOpcode;
3702   if (Ty->isFPOrFPVectorTy()) {
3703     CmpOpcode = Instruction::FCmp;
3704   } else {
3705     assert(Ty->isIntOrIntVectorTy() &&
3706            "expecting floating point or integer type for min/max reduction");
3707     CmpOpcode = Instruction::ICmp;
3708   }
3709 
3710   TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
3711   // Otherwise fall back to cmp+select.
3712   return getCmpSelInstrCost(CmpOpcode, Ty, CondTy, CmpInst::BAD_ICMP_PREDICATE,
3713                             CostKind) +
3714          getCmpSelInstrCost(Instruction::Select, Ty, CondTy,
3715                             CmpInst::BAD_ICMP_PREDICATE, CostKind);
3716 }
3717 
3718 int X86TTIImpl::getMinMaxReductionCost(VectorType *ValTy, VectorType *CondTy,
3719                                        bool IsPairwise, bool IsUnsigned,
3720                                        TTI::TargetCostKind CostKind) {
3721   // Just use the default implementation for pair reductions.
3722   if (IsPairwise)
3723     return BaseT::getMinMaxReductionCost(ValTy, CondTy, IsPairwise, IsUnsigned,
3724                                          CostKind);
3725 
3726   std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, ValTy);
3727 
3728   MVT MTy = LT.second;
3729 
3730   int ISD;
3731   if (ValTy->isIntOrIntVectorTy()) {
3732     ISD = IsUnsigned ? ISD::UMIN : ISD::SMIN;
3733   } else {
3734     assert(ValTy->isFPOrFPVectorTy() &&
3735            "Expected float point or integer vector type.");
3736     ISD = ISD::FMINNUM;
3737   }
3738 
3739   // We use the Intel Architecture Code Analyzer(IACA) to measure the throughput
3740   // and make it as the cost.
3741 
3742   static const CostTblEntry SSE2CostTblNoPairWise[] = {
3743       {ISD::UMIN, MVT::v2i16, 5}, // need pxors to use pminsw/pmaxsw
3744       {ISD::UMIN, MVT::v4i16, 7}, // need pxors to use pminsw/pmaxsw
3745       {ISD::UMIN, MVT::v8i16, 9}, // need pxors to use pminsw/pmaxsw
3746   };
3747 
3748   static const CostTblEntry SSE41CostTblNoPairWise[] = {
3749       {ISD::SMIN, MVT::v2i16, 3}, // same as sse2
3750       {ISD::SMIN, MVT::v4i16, 5}, // same as sse2
3751       {ISD::UMIN, MVT::v2i16, 5}, // same as sse2
3752       {ISD::UMIN, MVT::v4i16, 7}, // same as sse2
3753       {ISD::SMIN, MVT::v8i16, 4}, // phminposuw+xor
3754       {ISD::UMIN, MVT::v8i16, 4}, // FIXME: umin is cheaper than umax
3755       {ISD::SMIN, MVT::v2i8,  3}, // pminsb
3756       {ISD::SMIN, MVT::v4i8,  5}, // pminsb
3757       {ISD::SMIN, MVT::v8i8,  7}, // pminsb
3758       {ISD::SMIN, MVT::v16i8, 6},
3759       {ISD::UMIN, MVT::v2i8,  3}, // same as sse2
3760       {ISD::UMIN, MVT::v4i8,  5}, // same as sse2
3761       {ISD::UMIN, MVT::v8i8,  7}, // same as sse2
3762       {ISD::UMIN, MVT::v16i8, 6}, // FIXME: umin is cheaper than umax
3763   };
3764 
3765   static const CostTblEntry AVX1CostTblNoPairWise[] = {
3766       {ISD::SMIN, MVT::v16i16, 6},
3767       {ISD::UMIN, MVT::v16i16, 6}, // FIXME: umin is cheaper than umax
3768       {ISD::SMIN, MVT::v32i8, 8},
3769       {ISD::UMIN, MVT::v32i8, 8},
3770   };
3771 
3772   static const CostTblEntry AVX512BWCostTblNoPairWise[] = {
3773       {ISD::SMIN, MVT::v32i16, 8},
3774       {ISD::UMIN, MVT::v32i16, 8}, // FIXME: umin is cheaper than umax
3775       {ISD::SMIN, MVT::v64i8, 10},
3776       {ISD::UMIN, MVT::v64i8, 10},
3777   };
3778 
3779   // Before legalizing the type, give a chance to look up illegal narrow types
3780   // in the table.
3781   // FIXME: Is there a better way to do this?
3782   EVT VT = TLI->getValueType(DL, ValTy);
3783   if (VT.isSimple()) {
3784     MVT MTy = VT.getSimpleVT();
3785     if (ST->hasBWI())
3786       if (const auto *Entry = CostTableLookup(AVX512BWCostTblNoPairWise, ISD, MTy))
3787         return Entry->Cost;
3788 
3789     if (ST->hasAVX())
3790       if (const auto *Entry = CostTableLookup(AVX1CostTblNoPairWise, ISD, MTy))
3791         return Entry->Cost;
3792 
3793     if (ST->hasSSE41())
3794       if (const auto *Entry = CostTableLookup(SSE41CostTblNoPairWise, ISD, MTy))
3795         return Entry->Cost;
3796 
3797     if (ST->hasSSE2())
3798       if (const auto *Entry = CostTableLookup(SSE2CostTblNoPairWise, ISD, MTy))
3799         return Entry->Cost;
3800   }
3801 
3802   auto *ValVTy = cast<FixedVectorType>(ValTy);
3803   unsigned NumVecElts = ValVTy->getNumElements();
3804 
3805   auto *Ty = ValVTy;
3806   unsigned MinMaxCost = 0;
3807   if (LT.first != 1 && MTy.isVector() &&
3808       MTy.getVectorNumElements() < ValVTy->getNumElements()) {
3809     // Type needs to be split. We need LT.first - 1 operations ops.
3810     Ty = FixedVectorType::get(ValVTy->getElementType(),
3811                               MTy.getVectorNumElements());
3812     auto *SubCondTy = FixedVectorType::get(CondTy->getElementType(),
3813                                            MTy.getVectorNumElements());
3814     MinMaxCost = getMinMaxCost(Ty, SubCondTy, IsUnsigned);
3815     MinMaxCost *= LT.first - 1;
3816     NumVecElts = MTy.getVectorNumElements();
3817   }
3818 
3819   if (ST->hasBWI())
3820     if (const auto *Entry = CostTableLookup(AVX512BWCostTblNoPairWise, ISD, MTy))
3821       return MinMaxCost + Entry->Cost;
3822 
3823   if (ST->hasAVX())
3824     if (const auto *Entry = CostTableLookup(AVX1CostTblNoPairWise, ISD, MTy))
3825       return MinMaxCost + Entry->Cost;
3826 
3827   if (ST->hasSSE41())
3828     if (const auto *Entry = CostTableLookup(SSE41CostTblNoPairWise, ISD, MTy))
3829       return MinMaxCost + Entry->Cost;
3830 
3831   if (ST->hasSSE2())
3832     if (const auto *Entry = CostTableLookup(SSE2CostTblNoPairWise, ISD, MTy))
3833       return MinMaxCost + Entry->Cost;
3834 
3835   unsigned ScalarSize = ValTy->getScalarSizeInBits();
3836 
3837   // Special case power of 2 reductions where the scalar type isn't changed
3838   // by type legalization.
3839   if (!isPowerOf2_32(ValVTy->getNumElements()) ||
3840       ScalarSize != MTy.getScalarSizeInBits())
3841     return BaseT::getMinMaxReductionCost(ValTy, CondTy, IsPairwise, IsUnsigned,
3842                                          CostKind);
3843 
3844   // Now handle reduction with the legal type, taking into account size changes
3845   // at each level.
3846   while (NumVecElts > 1) {
3847     // Determine the size of the remaining vector we need to reduce.
3848     unsigned Size = NumVecElts * ScalarSize;
3849     NumVecElts /= 2;
3850     // If we're reducing from 256/512 bits, use an extract_subvector.
3851     if (Size > 128) {
3852       auto *SubTy = FixedVectorType::get(ValVTy->getElementType(), NumVecElts);
3853       MinMaxCost +=
3854           getShuffleCost(TTI::SK_ExtractSubvector, Ty, None, NumVecElts, SubTy);
3855       Ty = SubTy;
3856     } else if (Size == 128) {
3857       // Reducing from 128 bits is a permute of v2f64/v2i64.
3858       VectorType *ShufTy;
3859       if (ValTy->isFloatingPointTy())
3860         ShufTy =
3861             FixedVectorType::get(Type::getDoubleTy(ValTy->getContext()), 2);
3862       else
3863         ShufTy = FixedVectorType::get(Type::getInt64Ty(ValTy->getContext()), 2);
3864       MinMaxCost +=
3865           getShuffleCost(TTI::SK_PermuteSingleSrc, ShufTy, None, 0, nullptr);
3866     } else if (Size == 64) {
3867       // Reducing from 64 bits is a shuffle of v4f32/v4i32.
3868       FixedVectorType *ShufTy;
3869       if (ValTy->isFloatingPointTy())
3870         ShufTy = FixedVectorType::get(Type::getFloatTy(ValTy->getContext()), 4);
3871       else
3872         ShufTy = FixedVectorType::get(Type::getInt32Ty(ValTy->getContext()), 4);
3873       MinMaxCost +=
3874           getShuffleCost(TTI::SK_PermuteSingleSrc, ShufTy, None, 0, nullptr);
3875     } else {
3876       // Reducing from smaller size is a shift by immediate.
3877       auto *ShiftTy = FixedVectorType::get(
3878           Type::getIntNTy(ValTy->getContext(), Size), 128 / Size);
3879       MinMaxCost += getArithmeticInstrCost(
3880           Instruction::LShr, ShiftTy, TTI::TCK_RecipThroughput,
3881           TargetTransformInfo::OK_AnyValue,
3882           TargetTransformInfo::OK_UniformConstantValue,
3883           TargetTransformInfo::OP_None, TargetTransformInfo::OP_None);
3884     }
3885 
3886     // Add the arithmetic op for this level.
3887     auto *SubCondTy =
3888         FixedVectorType::get(CondTy->getElementType(), Ty->getNumElements());
3889     MinMaxCost += getMinMaxCost(Ty, SubCondTy, IsUnsigned);
3890   }
3891 
3892   // Add the final extract element to the cost.
3893   return MinMaxCost + getVectorInstrCost(Instruction::ExtractElement, Ty, 0);
3894 }
3895 
3896 /// Calculate the cost of materializing a 64-bit value. This helper
3897 /// method might only calculate a fraction of a larger immediate. Therefore it
3898 /// is valid to return a cost of ZERO.
3899 int X86TTIImpl::getIntImmCost(int64_t Val) {
3900   if (Val == 0)
3901     return TTI::TCC_Free;
3902 
3903   if (isInt<32>(Val))
3904     return TTI::TCC_Basic;
3905 
3906   return 2 * TTI::TCC_Basic;
3907 }
3908 
3909 int X86TTIImpl::getIntImmCost(const APInt &Imm, Type *Ty,
3910                               TTI::TargetCostKind CostKind) {
3911   assert(Ty->isIntegerTy());
3912 
3913   unsigned BitSize = Ty->getPrimitiveSizeInBits();
3914   if (BitSize == 0)
3915     return ~0U;
3916 
3917   // Never hoist constants larger than 128bit, because this might lead to
3918   // incorrect code generation or assertions in codegen.
3919   // Fixme: Create a cost model for types larger than i128 once the codegen
3920   // issues have been fixed.
3921   if (BitSize > 128)
3922     return TTI::TCC_Free;
3923 
3924   if (Imm == 0)
3925     return TTI::TCC_Free;
3926 
3927   // Sign-extend all constants to a multiple of 64-bit.
3928   APInt ImmVal = Imm;
3929   if (BitSize % 64 != 0)
3930     ImmVal = Imm.sext(alignTo(BitSize, 64));
3931 
3932   // Split the constant into 64-bit chunks and calculate the cost for each
3933   // chunk.
3934   int Cost = 0;
3935   for (unsigned ShiftVal = 0; ShiftVal < BitSize; ShiftVal += 64) {
3936     APInt Tmp = ImmVal.ashr(ShiftVal).sextOrTrunc(64);
3937     int64_t Val = Tmp.getSExtValue();
3938     Cost += getIntImmCost(Val);
3939   }
3940   // We need at least one instruction to materialize the constant.
3941   return std::max(1, Cost);
3942 }
3943 
3944 int X86TTIImpl::getIntImmCostInst(unsigned Opcode, unsigned Idx,
3945                                   const APInt &Imm, Type *Ty,
3946                                   TTI::TargetCostKind CostKind,
3947                                   Instruction *Inst) {
3948   assert(Ty->isIntegerTy());
3949 
3950   unsigned BitSize = Ty->getPrimitiveSizeInBits();
3951   // There is no cost model for constants with a bit size of 0. Return TCC_Free
3952   // here, so that constant hoisting will ignore this constant.
3953   if (BitSize == 0)
3954     return TTI::TCC_Free;
3955 
3956   unsigned ImmIdx = ~0U;
3957   switch (Opcode) {
3958   default:
3959     return TTI::TCC_Free;
3960   case Instruction::GetElementPtr:
3961     // Always hoist the base address of a GetElementPtr. This prevents the
3962     // creation of new constants for every base constant that gets constant
3963     // folded with the offset.
3964     if (Idx == 0)
3965       return 2 * TTI::TCC_Basic;
3966     return TTI::TCC_Free;
3967   case Instruction::Store:
3968     ImmIdx = 0;
3969     break;
3970   case Instruction::ICmp:
3971     // This is an imperfect hack to prevent constant hoisting of
3972     // compares that might be trying to check if a 64-bit value fits in
3973     // 32-bits. The backend can optimize these cases using a right shift by 32.
3974     // Ideally we would check the compare predicate here. There also other
3975     // similar immediates the backend can use shifts for.
3976     if (Idx == 1 && Imm.getBitWidth() == 64) {
3977       uint64_t ImmVal = Imm.getZExtValue();
3978       if (ImmVal == 0x100000000ULL || ImmVal == 0xffffffff)
3979         return TTI::TCC_Free;
3980     }
3981     ImmIdx = 1;
3982     break;
3983   case Instruction::And:
3984     // We support 64-bit ANDs with immediates with 32-bits of leading zeroes
3985     // by using a 32-bit operation with implicit zero extension. Detect such
3986     // immediates here as the normal path expects bit 31 to be sign extended.
3987     if (Idx == 1 && Imm.getBitWidth() == 64 && isUInt<32>(Imm.getZExtValue()))
3988       return TTI::TCC_Free;
3989     ImmIdx = 1;
3990     break;
3991   case Instruction::Add:
3992   case Instruction::Sub:
3993     // For add/sub, we can use the opposite instruction for INT32_MIN.
3994     if (Idx == 1 && Imm.getBitWidth() == 64 && Imm.getZExtValue() == 0x80000000)
3995       return TTI::TCC_Free;
3996     ImmIdx = 1;
3997     break;
3998   case Instruction::UDiv:
3999   case Instruction::SDiv:
4000   case Instruction::URem:
4001   case Instruction::SRem:
4002     // Division by constant is typically expanded later into a different
4003     // instruction sequence. This completely changes the constants.
4004     // Report them as "free" to stop ConstantHoist from marking them as opaque.
4005     return TTI::TCC_Free;
4006   case Instruction::Mul:
4007   case Instruction::Or:
4008   case Instruction::Xor:
4009     ImmIdx = 1;
4010     break;
4011   // Always return TCC_Free for the shift value of a shift instruction.
4012   case Instruction::Shl:
4013   case Instruction::LShr:
4014   case Instruction::AShr:
4015     if (Idx == 1)
4016       return TTI::TCC_Free;
4017     break;
4018   case Instruction::Trunc:
4019   case Instruction::ZExt:
4020   case Instruction::SExt:
4021   case Instruction::IntToPtr:
4022   case Instruction::PtrToInt:
4023   case Instruction::BitCast:
4024   case Instruction::PHI:
4025   case Instruction::Call:
4026   case Instruction::Select:
4027   case Instruction::Ret:
4028   case Instruction::Load:
4029     break;
4030   }
4031 
4032   if (Idx == ImmIdx) {
4033     int NumConstants = divideCeil(BitSize, 64);
4034     int Cost = X86TTIImpl::getIntImmCost(Imm, Ty, CostKind);
4035     return (Cost <= NumConstants * TTI::TCC_Basic)
4036                ? static_cast<int>(TTI::TCC_Free)
4037                : Cost;
4038   }
4039 
4040   return X86TTIImpl::getIntImmCost(Imm, Ty, CostKind);
4041 }
4042 
4043 int X86TTIImpl::getIntImmCostIntrin(Intrinsic::ID IID, unsigned Idx,
4044                                     const APInt &Imm, Type *Ty,
4045                                     TTI::TargetCostKind CostKind) {
4046   assert(Ty->isIntegerTy());
4047 
4048   unsigned BitSize = Ty->getPrimitiveSizeInBits();
4049   // There is no cost model for constants with a bit size of 0. Return TCC_Free
4050   // here, so that constant hoisting will ignore this constant.
4051   if (BitSize == 0)
4052     return TTI::TCC_Free;
4053 
4054   switch (IID) {
4055   default:
4056     return TTI::TCC_Free;
4057   case Intrinsic::sadd_with_overflow:
4058   case Intrinsic::uadd_with_overflow:
4059   case Intrinsic::ssub_with_overflow:
4060   case Intrinsic::usub_with_overflow:
4061   case Intrinsic::smul_with_overflow:
4062   case Intrinsic::umul_with_overflow:
4063     if ((Idx == 1) && Imm.getBitWidth() <= 64 && isInt<32>(Imm.getSExtValue()))
4064       return TTI::TCC_Free;
4065     break;
4066   case Intrinsic::experimental_stackmap:
4067     if ((Idx < 2) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue())))
4068       return TTI::TCC_Free;
4069     break;
4070   case Intrinsic::experimental_patchpoint_void:
4071   case Intrinsic::experimental_patchpoint_i64:
4072     if ((Idx < 4) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue())))
4073       return TTI::TCC_Free;
4074     break;
4075   }
4076   return X86TTIImpl::getIntImmCost(Imm, Ty, CostKind);
4077 }
4078 
4079 unsigned X86TTIImpl::getCFInstrCost(unsigned Opcode,
4080                                     TTI::TargetCostKind CostKind,
4081                                     const Instruction *I) {
4082   if (CostKind != TTI::TCK_RecipThroughput)
4083     return Opcode == Instruction::PHI ? 0 : 1;
4084   // Branches are assumed to be predicted.
4085   return 0;
4086 }
4087 
4088 int X86TTIImpl::getGatherOverhead() const {
4089   // Some CPUs have more overhead for gather. The specified overhead is relative
4090   // to the Load operation. "2" is the number provided by Intel architects. This
4091   // parameter is used for cost estimation of Gather Op and comparison with
4092   // other alternatives.
4093   // TODO: Remove the explicit hasAVX512()?, That would mean we would only
4094   // enable gather with a -march.
4095   if (ST->hasAVX512() || (ST->hasAVX2() && ST->hasFastGather()))
4096     return 2;
4097 
4098   return 1024;
4099 }
4100 
4101 int X86TTIImpl::getScatterOverhead() const {
4102   if (ST->hasAVX512())
4103     return 2;
4104 
4105   return 1024;
4106 }
4107 
4108 // Return an average cost of Gather / Scatter instruction, maybe improved later.
4109 // FIXME: Add TargetCostKind support.
4110 int X86TTIImpl::getGSVectorCost(unsigned Opcode, Type *SrcVTy, const Value *Ptr,
4111                                 Align Alignment, unsigned AddressSpace) {
4112 
4113   assert(isa<VectorType>(SrcVTy) && "Unexpected type in getGSVectorCost");
4114   unsigned VF = cast<FixedVectorType>(SrcVTy)->getNumElements();
4115 
4116   // Try to reduce index size from 64 bit (default for GEP)
4117   // to 32. It is essential for VF 16. If the index can't be reduced to 32, the
4118   // operation will use 16 x 64 indices which do not fit in a zmm and needs
4119   // to split. Also check that the base pointer is the same for all lanes,
4120   // and that there's at most one variable index.
4121   auto getIndexSizeInBits = [](const Value *Ptr, const DataLayout &DL) {
4122     unsigned IndexSize = DL.getPointerSizeInBits();
4123     const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr);
4124     if (IndexSize < 64 || !GEP)
4125       return IndexSize;
4126 
4127     unsigned NumOfVarIndices = 0;
4128     const Value *Ptrs = GEP->getPointerOperand();
4129     if (Ptrs->getType()->isVectorTy() && !getSplatValue(Ptrs))
4130       return IndexSize;
4131     for (unsigned i = 1; i < GEP->getNumOperands(); ++i) {
4132       if (isa<Constant>(GEP->getOperand(i)))
4133         continue;
4134       Type *IndxTy = GEP->getOperand(i)->getType();
4135       if (auto *IndexVTy = dyn_cast<VectorType>(IndxTy))
4136         IndxTy = IndexVTy->getElementType();
4137       if ((IndxTy->getPrimitiveSizeInBits() == 64 &&
4138           !isa<SExtInst>(GEP->getOperand(i))) ||
4139          ++NumOfVarIndices > 1)
4140         return IndexSize; // 64
4141     }
4142     return (unsigned)32;
4143   };
4144 
4145   // Trying to reduce IndexSize to 32 bits for vector 16.
4146   // By default the IndexSize is equal to pointer size.
4147   unsigned IndexSize = (ST->hasAVX512() && VF >= 16)
4148                            ? getIndexSizeInBits(Ptr, DL)
4149                            : DL.getPointerSizeInBits();
4150 
4151   auto *IndexVTy = FixedVectorType::get(
4152       IntegerType::get(SrcVTy->getContext(), IndexSize), VF);
4153   std::pair<int, MVT> IdxsLT = TLI->getTypeLegalizationCost(DL, IndexVTy);
4154   std::pair<int, MVT> SrcLT = TLI->getTypeLegalizationCost(DL, SrcVTy);
4155   int SplitFactor = std::max(IdxsLT.first, SrcLT.first);
4156   if (SplitFactor > 1) {
4157     // Handle splitting of vector of pointers
4158     auto *SplitSrcTy =
4159         FixedVectorType::get(SrcVTy->getScalarType(), VF / SplitFactor);
4160     return SplitFactor * getGSVectorCost(Opcode, SplitSrcTy, Ptr, Alignment,
4161                                          AddressSpace);
4162   }
4163 
4164   // The gather / scatter cost is given by Intel architects. It is a rough
4165   // number since we are looking at one instruction in a time.
4166   const int GSOverhead = (Opcode == Instruction::Load)
4167                              ? getGatherOverhead()
4168                              : getScatterOverhead();
4169   return GSOverhead + VF * getMemoryOpCost(Opcode, SrcVTy->getScalarType(),
4170                                            MaybeAlign(Alignment), AddressSpace,
4171                                            TTI::TCK_RecipThroughput);
4172 }
4173 
4174 /// Return the cost of full scalarization of gather / scatter operation.
4175 ///
4176 /// Opcode - Load or Store instruction.
4177 /// SrcVTy - The type of the data vector that should be gathered or scattered.
4178 /// VariableMask - The mask is non-constant at compile time.
4179 /// Alignment - Alignment for one element.
4180 /// AddressSpace - pointer[s] address space.
4181 ///
4182 /// FIXME: Add TargetCostKind support.
4183 int X86TTIImpl::getGSScalarCost(unsigned Opcode, Type *SrcVTy,
4184                                 bool VariableMask, Align Alignment,
4185                                 unsigned AddressSpace) {
4186   unsigned VF = cast<FixedVectorType>(SrcVTy)->getNumElements();
4187   APInt DemandedElts = APInt::getAllOnesValue(VF);
4188   TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
4189 
4190   int MaskUnpackCost = 0;
4191   if (VariableMask) {
4192     auto *MaskTy =
4193         FixedVectorType::get(Type::getInt1Ty(SrcVTy->getContext()), VF);
4194     MaskUnpackCost =
4195         getScalarizationOverhead(MaskTy, DemandedElts, false, true);
4196     int ScalarCompareCost = getCmpSelInstrCost(
4197         Instruction::ICmp, Type::getInt1Ty(SrcVTy->getContext()), nullptr,
4198         CmpInst::BAD_ICMP_PREDICATE, CostKind);
4199     int BranchCost = getCFInstrCost(Instruction::Br, CostKind);
4200     MaskUnpackCost += VF * (BranchCost + ScalarCompareCost);
4201   }
4202 
4203   // The cost of the scalar loads/stores.
4204   int MemoryOpCost = VF * getMemoryOpCost(Opcode, SrcVTy->getScalarType(),
4205                                           MaybeAlign(Alignment), AddressSpace,
4206                                           CostKind);
4207 
4208   int InsertExtractCost = 0;
4209   if (Opcode == Instruction::Load)
4210     for (unsigned i = 0; i < VF; ++i)
4211       // Add the cost of inserting each scalar load into the vector
4212       InsertExtractCost +=
4213         getVectorInstrCost(Instruction::InsertElement, SrcVTy, i);
4214   else
4215     for (unsigned i = 0; i < VF; ++i)
4216       // Add the cost of extracting each element out of the data vector
4217       InsertExtractCost +=
4218         getVectorInstrCost(Instruction::ExtractElement, SrcVTy, i);
4219 
4220   return MemoryOpCost + MaskUnpackCost + InsertExtractCost;
4221 }
4222 
4223 /// Calculate the cost of Gather / Scatter operation
4224 int X86TTIImpl::getGatherScatterOpCost(unsigned Opcode, Type *SrcVTy,
4225                                        const Value *Ptr, bool VariableMask,
4226                                        Align Alignment,
4227                                        TTI::TargetCostKind CostKind,
4228                                        const Instruction *I = nullptr) {
4229   if (CostKind != TTI::TCK_RecipThroughput) {
4230     if ((Opcode == Instruction::Load &&
4231          isLegalMaskedGather(SrcVTy, Align(Alignment))) ||
4232         (Opcode == Instruction::Store &&
4233          isLegalMaskedScatter(SrcVTy, Align(Alignment))))
4234       return 1;
4235     return BaseT::getGatherScatterOpCost(Opcode, SrcVTy, Ptr, VariableMask,
4236                                          Alignment, CostKind, I);
4237   }
4238 
4239   assert(SrcVTy->isVectorTy() && "Unexpected data type for Gather/Scatter");
4240   unsigned VF = cast<FixedVectorType>(SrcVTy)->getNumElements();
4241   PointerType *PtrTy = dyn_cast<PointerType>(Ptr->getType());
4242   if (!PtrTy && Ptr->getType()->isVectorTy())
4243     PtrTy = dyn_cast<PointerType>(
4244         cast<VectorType>(Ptr->getType())->getElementType());
4245   assert(PtrTy && "Unexpected type for Ptr argument");
4246   unsigned AddressSpace = PtrTy->getAddressSpace();
4247 
4248   bool Scalarize = false;
4249   if ((Opcode == Instruction::Load &&
4250        !isLegalMaskedGather(SrcVTy, Align(Alignment))) ||
4251       (Opcode == Instruction::Store &&
4252        !isLegalMaskedScatter(SrcVTy, Align(Alignment))))
4253     Scalarize = true;
4254   // Gather / Scatter for vector 2 is not profitable on KNL / SKX
4255   // Vector-4 of gather/scatter instruction does not exist on KNL.
4256   // We can extend it to 8 elements, but zeroing upper bits of
4257   // the mask vector will add more instructions. Right now we give the scalar
4258   // cost of vector-4 for KNL. TODO: Check, maybe the gather/scatter instruction
4259   // is better in the VariableMask case.
4260   if (ST->hasAVX512() && (VF == 2 || (VF == 4 && !ST->hasVLX())))
4261     Scalarize = true;
4262 
4263   if (Scalarize)
4264     return getGSScalarCost(Opcode, SrcVTy, VariableMask, Alignment,
4265                            AddressSpace);
4266 
4267   return getGSVectorCost(Opcode, SrcVTy, Ptr, Alignment, AddressSpace);
4268 }
4269 
4270 bool X86TTIImpl::isLSRCostLess(TargetTransformInfo::LSRCost &C1,
4271                                TargetTransformInfo::LSRCost &C2) {
4272     // X86 specific here are "instruction number 1st priority".
4273     return std::tie(C1.Insns, C1.NumRegs, C1.AddRecCost,
4274                     C1.NumIVMuls, C1.NumBaseAdds,
4275                     C1.ScaleCost, C1.ImmCost, C1.SetupCost) <
4276            std::tie(C2.Insns, C2.NumRegs, C2.AddRecCost,
4277                     C2.NumIVMuls, C2.NumBaseAdds,
4278                     C2.ScaleCost, C2.ImmCost, C2.SetupCost);
4279 }
4280 
4281 bool X86TTIImpl::canMacroFuseCmp() {
4282   return ST->hasMacroFusion() || ST->hasBranchFusion();
4283 }
4284 
4285 bool X86TTIImpl::isLegalMaskedLoad(Type *DataTy, Align Alignment) {
4286   if (!ST->hasAVX())
4287     return false;
4288 
4289   // The backend can't handle a single element vector.
4290   if (isa<VectorType>(DataTy) &&
4291       cast<FixedVectorType>(DataTy)->getNumElements() == 1)
4292     return false;
4293   Type *ScalarTy = DataTy->getScalarType();
4294 
4295   if (ScalarTy->isPointerTy())
4296     return true;
4297 
4298   if (ScalarTy->isFloatTy() || ScalarTy->isDoubleTy())
4299     return true;
4300 
4301   if (!ScalarTy->isIntegerTy())
4302     return false;
4303 
4304   unsigned IntWidth = ScalarTy->getIntegerBitWidth();
4305   return IntWidth == 32 || IntWidth == 64 ||
4306          ((IntWidth == 8 || IntWidth == 16) && ST->hasBWI());
4307 }
4308 
4309 bool X86TTIImpl::isLegalMaskedStore(Type *DataType, Align Alignment) {
4310   return isLegalMaskedLoad(DataType, Alignment);
4311 }
4312 
4313 bool X86TTIImpl::isLegalNTLoad(Type *DataType, Align Alignment) {
4314   unsigned DataSize = DL.getTypeStoreSize(DataType);
4315   // The only supported nontemporal loads are for aligned vectors of 16 or 32
4316   // bytes.  Note that 32-byte nontemporal vector loads are supported by AVX2
4317   // (the equivalent stores only require AVX).
4318   if (Alignment >= DataSize && (DataSize == 16 || DataSize == 32))
4319     return DataSize == 16 ?  ST->hasSSE1() : ST->hasAVX2();
4320 
4321   return false;
4322 }
4323 
4324 bool X86TTIImpl::isLegalNTStore(Type *DataType, Align Alignment) {
4325   unsigned DataSize = DL.getTypeStoreSize(DataType);
4326 
4327   // SSE4A supports nontemporal stores of float and double at arbitrary
4328   // alignment.
4329   if (ST->hasSSE4A() && (DataType->isFloatTy() || DataType->isDoubleTy()))
4330     return true;
4331 
4332   // Besides the SSE4A subtarget exception above, only aligned stores are
4333   // available nontemporaly on any other subtarget.  And only stores with a size
4334   // of 4..32 bytes (powers of 2, only) are permitted.
4335   if (Alignment < DataSize || DataSize < 4 || DataSize > 32 ||
4336       !isPowerOf2_32(DataSize))
4337     return false;
4338 
4339   // 32-byte vector nontemporal stores are supported by AVX (the equivalent
4340   // loads require AVX2).
4341   if (DataSize == 32)
4342     return ST->hasAVX();
4343   else if (DataSize == 16)
4344     return ST->hasSSE1();
4345   return true;
4346 }
4347 
4348 bool X86TTIImpl::isLegalMaskedExpandLoad(Type *DataTy) {
4349   if (!isa<VectorType>(DataTy))
4350     return false;
4351 
4352   if (!ST->hasAVX512())
4353     return false;
4354 
4355   // The backend can't handle a single element vector.
4356   if (cast<FixedVectorType>(DataTy)->getNumElements() == 1)
4357     return false;
4358 
4359   Type *ScalarTy = cast<VectorType>(DataTy)->getElementType();
4360 
4361   if (ScalarTy->isFloatTy() || ScalarTy->isDoubleTy())
4362     return true;
4363 
4364   if (!ScalarTy->isIntegerTy())
4365     return false;
4366 
4367   unsigned IntWidth = ScalarTy->getIntegerBitWidth();
4368   return IntWidth == 32 || IntWidth == 64 ||
4369          ((IntWidth == 8 || IntWidth == 16) && ST->hasVBMI2());
4370 }
4371 
4372 bool X86TTIImpl::isLegalMaskedCompressStore(Type *DataTy) {
4373   return isLegalMaskedExpandLoad(DataTy);
4374 }
4375 
4376 bool X86TTIImpl::isLegalMaskedGather(Type *DataTy, Align Alignment) {
4377   // Some CPUs have better gather performance than others.
4378   // TODO: Remove the explicit ST->hasAVX512()?, That would mean we would only
4379   // enable gather with a -march.
4380   if (!(ST->hasAVX512() || (ST->hasFastGather() && ST->hasAVX2())))
4381     return false;
4382 
4383   // This function is called now in two cases: from the Loop Vectorizer
4384   // and from the Scalarizer.
4385   // When the Loop Vectorizer asks about legality of the feature,
4386   // the vectorization factor is not calculated yet. The Loop Vectorizer
4387   // sends a scalar type and the decision is based on the width of the
4388   // scalar element.
4389   // Later on, the cost model will estimate usage this intrinsic based on
4390   // the vector type.
4391   // The Scalarizer asks again about legality. It sends a vector type.
4392   // In this case we can reject non-power-of-2 vectors.
4393   // We also reject single element vectors as the type legalizer can't
4394   // scalarize it.
4395   if (auto *DataVTy = dyn_cast<FixedVectorType>(DataTy)) {
4396     unsigned NumElts = DataVTy->getNumElements();
4397     if (NumElts == 1)
4398       return false;
4399   }
4400   Type *ScalarTy = DataTy->getScalarType();
4401   if (ScalarTy->isPointerTy())
4402     return true;
4403 
4404   if (ScalarTy->isFloatTy() || ScalarTy->isDoubleTy())
4405     return true;
4406 
4407   if (!ScalarTy->isIntegerTy())
4408     return false;
4409 
4410   unsigned IntWidth = ScalarTy->getIntegerBitWidth();
4411   return IntWidth == 32 || IntWidth == 64;
4412 }
4413 
4414 bool X86TTIImpl::isLegalMaskedScatter(Type *DataType, Align Alignment) {
4415   // AVX2 doesn't support scatter
4416   if (!ST->hasAVX512())
4417     return false;
4418   return isLegalMaskedGather(DataType, Alignment);
4419 }
4420 
4421 bool X86TTIImpl::hasDivRemOp(Type *DataType, bool IsSigned) {
4422   EVT VT = TLI->getValueType(DL, DataType);
4423   return TLI->isOperationLegal(IsSigned ? ISD::SDIVREM : ISD::UDIVREM, VT);
4424 }
4425 
4426 bool X86TTIImpl::isFCmpOrdCheaperThanFCmpZero(Type *Ty) {
4427   return false;
4428 }
4429 
4430 bool X86TTIImpl::areInlineCompatible(const Function *Caller,
4431                                      const Function *Callee) const {
4432   const TargetMachine &TM = getTLI()->getTargetMachine();
4433 
4434   // Work this as a subsetting of subtarget features.
4435   const FeatureBitset &CallerBits =
4436       TM.getSubtargetImpl(*Caller)->getFeatureBits();
4437   const FeatureBitset &CalleeBits =
4438       TM.getSubtargetImpl(*Callee)->getFeatureBits();
4439 
4440   FeatureBitset RealCallerBits = CallerBits & ~InlineFeatureIgnoreList;
4441   FeatureBitset RealCalleeBits = CalleeBits & ~InlineFeatureIgnoreList;
4442   return (RealCallerBits & RealCalleeBits) == RealCalleeBits;
4443 }
4444 
4445 bool X86TTIImpl::areFunctionArgsABICompatible(
4446     const Function *Caller, const Function *Callee,
4447     SmallPtrSetImpl<Argument *> &Args) const {
4448   if (!BaseT::areFunctionArgsABICompatible(Caller, Callee, Args))
4449     return false;
4450 
4451   // If we get here, we know the target features match. If one function
4452   // considers 512-bit vectors legal and the other does not, consider them
4453   // incompatible.
4454   const TargetMachine &TM = getTLI()->getTargetMachine();
4455 
4456   if (TM.getSubtarget<X86Subtarget>(*Caller).useAVX512Regs() ==
4457       TM.getSubtarget<X86Subtarget>(*Callee).useAVX512Regs())
4458     return true;
4459 
4460   // Consider the arguments compatible if they aren't vectors or aggregates.
4461   // FIXME: Look at the size of vectors.
4462   // FIXME: Look at the element types of aggregates to see if there are vectors.
4463   // FIXME: The API of this function seems intended to allow arguments
4464   // to be removed from the set, but the caller doesn't check if the set
4465   // becomes empty so that may not work in practice.
4466   return llvm::none_of(Args, [](Argument *A) {
4467     auto *EltTy = cast<PointerType>(A->getType())->getElementType();
4468     return EltTy->isVectorTy() || EltTy->isAggregateType();
4469   });
4470 }
4471 
4472 X86TTIImpl::TTI::MemCmpExpansionOptions
4473 X86TTIImpl::enableMemCmpExpansion(bool OptSize, bool IsZeroCmp) const {
4474   TTI::MemCmpExpansionOptions Options;
4475   Options.MaxNumLoads = TLI->getMaxExpandSizeMemcmp(OptSize);
4476   Options.NumLoadsPerBlock = 2;
4477   // All GPR and vector loads can be unaligned.
4478   Options.AllowOverlappingLoads = true;
4479   if (IsZeroCmp) {
4480     // Only enable vector loads for equality comparison. Right now the vector
4481     // version is not as fast for three way compare (see #33329).
4482     const unsigned PreferredWidth = ST->getPreferVectorWidth();
4483     if (PreferredWidth >= 512 && ST->hasAVX512()) Options.LoadSizes.push_back(64);
4484     if (PreferredWidth >= 256 && ST->hasAVX()) Options.LoadSizes.push_back(32);
4485     if (PreferredWidth >= 128 && ST->hasSSE2()) Options.LoadSizes.push_back(16);
4486   }
4487   if (ST->is64Bit()) {
4488     Options.LoadSizes.push_back(8);
4489   }
4490   Options.LoadSizes.push_back(4);
4491   Options.LoadSizes.push_back(2);
4492   Options.LoadSizes.push_back(1);
4493   return Options;
4494 }
4495 
4496 bool X86TTIImpl::enableInterleavedAccessVectorization() {
4497   // TODO: We expect this to be beneficial regardless of arch,
4498   // but there are currently some unexplained performance artifacts on Atom.
4499   // As a temporary solution, disable on Atom.
4500   return !(ST->isAtom());
4501 }
4502 
4503 // Get estimation for interleaved load/store operations for AVX2.
4504 // \p Factor is the interleaved-access factor (stride) - number of
4505 // (interleaved) elements in the group.
4506 // \p Indices contains the indices for a strided load: when the
4507 // interleaved load has gaps they indicate which elements are used.
4508 // If Indices is empty (or if the number of indices is equal to the size
4509 // of the interleaved-access as given in \p Factor) the access has no gaps.
4510 //
4511 // As opposed to AVX-512, AVX2 does not have generic shuffles that allow
4512 // computing the cost using a generic formula as a function of generic
4513 // shuffles. We therefore use a lookup table instead, filled according to
4514 // the instruction sequences that codegen currently generates.
4515 int X86TTIImpl::getInterleavedMemoryOpCostAVX2(
4516     unsigned Opcode, FixedVectorType *VecTy, unsigned Factor,
4517     ArrayRef<unsigned> Indices, Align Alignment, unsigned AddressSpace,
4518     TTI::TargetCostKind CostKind, bool UseMaskForCond, bool UseMaskForGaps) {
4519 
4520   if (UseMaskForCond || UseMaskForGaps)
4521     return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices,
4522                                              Alignment, AddressSpace, CostKind,
4523                                              UseMaskForCond, UseMaskForGaps);
4524 
4525   // We currently Support only fully-interleaved groups, with no gaps.
4526   // TODO: Support also strided loads (interleaved-groups with gaps).
4527   if (Indices.size() && Indices.size() != Factor)
4528     return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices,
4529                                              Alignment, AddressSpace,
4530                                              CostKind);
4531 
4532   // VecTy for interleave memop is <VF*Factor x Elt>.
4533   // So, for VF=4, Interleave Factor = 3, Element type = i32 we have
4534   // VecTy = <12 x i32>.
4535   MVT LegalVT = getTLI()->getTypeLegalizationCost(DL, VecTy).second;
4536 
4537   // This function can be called with VecTy=<6xi128>, Factor=3, in which case
4538   // the VF=2, while v2i128 is an unsupported MVT vector type
4539   // (see MachineValueType.h::getVectorVT()).
4540   if (!LegalVT.isVector())
4541     return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices,
4542                                              Alignment, AddressSpace,
4543                                              CostKind);
4544 
4545   unsigned VF = VecTy->getNumElements() / Factor;
4546   Type *ScalarTy = VecTy->getElementType();
4547 
4548   // Calculate the number of memory operations (NumOfMemOps), required
4549   // for load/store the VecTy.
4550   unsigned VecTySize = DL.getTypeStoreSize(VecTy);
4551   unsigned LegalVTSize = LegalVT.getStoreSize();
4552   unsigned NumOfMemOps = (VecTySize + LegalVTSize - 1) / LegalVTSize;
4553 
4554   // Get the cost of one memory operation.
4555   auto *SingleMemOpTy = FixedVectorType::get(VecTy->getElementType(),
4556                                              LegalVT.getVectorNumElements());
4557   unsigned MemOpCost = getMemoryOpCost(Opcode, SingleMemOpTy,
4558                                        MaybeAlign(Alignment), AddressSpace,
4559                                        CostKind);
4560 
4561   auto *VT = FixedVectorType::get(ScalarTy, VF);
4562   EVT ETy = TLI->getValueType(DL, VT);
4563   if (!ETy.isSimple())
4564     return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices,
4565                                              Alignment, AddressSpace,
4566                                              CostKind);
4567 
4568   // TODO: Complete for other data-types and strides.
4569   // Each combination of Stride, ElementTy and VF results in a different
4570   // sequence; The cost tables are therefore accessed with:
4571   // Factor (stride) and VectorType=VFxElemType.
4572   // The Cost accounts only for the shuffle sequence;
4573   // The cost of the loads/stores is accounted for separately.
4574   //
4575   static const CostTblEntry AVX2InterleavedLoadTbl[] = {
4576     { 2, MVT::v4i64, 6 }, //(load 8i64 and) deinterleave into 2 x 4i64
4577     { 2, MVT::v4f64, 6 }, //(load 8f64 and) deinterleave into 2 x 4f64
4578 
4579     { 3, MVT::v2i8,  10 }, //(load 6i8 and)  deinterleave into 3 x 2i8
4580     { 3, MVT::v4i8,  4 },  //(load 12i8 and) deinterleave into 3 x 4i8
4581     { 3, MVT::v8i8,  9 },  //(load 24i8 and) deinterleave into 3 x 8i8
4582     { 3, MVT::v16i8, 11},  //(load 48i8 and) deinterleave into 3 x 16i8
4583     { 3, MVT::v32i8, 13},  //(load 96i8 and) deinterleave into 3 x 32i8
4584     { 3, MVT::v8f32, 17 }, //(load 24f32 and)deinterleave into 3 x 8f32
4585 
4586     { 4, MVT::v2i8,  12 }, //(load 8i8 and)   deinterleave into 4 x 2i8
4587     { 4, MVT::v4i8,  4 },  //(load 16i8 and)  deinterleave into 4 x 4i8
4588     { 4, MVT::v8i8,  20 }, //(load 32i8 and)  deinterleave into 4 x 8i8
4589     { 4, MVT::v16i8, 39 }, //(load 64i8 and)  deinterleave into 4 x 16i8
4590     { 4, MVT::v32i8, 80 }, //(load 128i8 and) deinterleave into 4 x 32i8
4591 
4592     { 8, MVT::v8f32, 40 }  //(load 64f32 and)deinterleave into 8 x 8f32
4593   };
4594 
4595   static const CostTblEntry AVX2InterleavedStoreTbl[] = {
4596     { 2, MVT::v4i64, 6 }, //interleave into 2 x 4i64 into 8i64 (and store)
4597     { 2, MVT::v4f64, 6 }, //interleave into 2 x 4f64 into 8f64 (and store)
4598 
4599     { 3, MVT::v2i8,  7 },  //interleave 3 x 2i8  into 6i8 (and store)
4600     { 3, MVT::v4i8,  8 },  //interleave 3 x 4i8  into 12i8 (and store)
4601     { 3, MVT::v8i8,  11 }, //interleave 3 x 8i8  into 24i8 (and store)
4602     { 3, MVT::v16i8, 11 }, //interleave 3 x 16i8 into 48i8 (and store)
4603     { 3, MVT::v32i8, 13 }, //interleave 3 x 32i8 into 96i8 (and store)
4604 
4605     { 4, MVT::v2i8,  12 }, //interleave 4 x 2i8  into 8i8 (and store)
4606     { 4, MVT::v4i8,  9 },  //interleave 4 x 4i8  into 16i8 (and store)
4607     { 4, MVT::v8i8,  10 }, //interleave 4 x 8i8  into 32i8 (and store)
4608     { 4, MVT::v16i8, 10 }, //interleave 4 x 16i8 into 64i8 (and store)
4609     { 4, MVT::v32i8, 12 }  //interleave 4 x 32i8 into 128i8 (and store)
4610   };
4611 
4612   if (Opcode == Instruction::Load) {
4613     if (const auto *Entry =
4614             CostTableLookup(AVX2InterleavedLoadTbl, Factor, ETy.getSimpleVT()))
4615       return NumOfMemOps * MemOpCost + Entry->Cost;
4616   } else {
4617     assert(Opcode == Instruction::Store &&
4618            "Expected Store Instruction at this  point");
4619     if (const auto *Entry =
4620             CostTableLookup(AVX2InterleavedStoreTbl, Factor, ETy.getSimpleVT()))
4621       return NumOfMemOps * MemOpCost + Entry->Cost;
4622   }
4623 
4624   return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices,
4625                                            Alignment, AddressSpace, CostKind);
4626 }
4627 
4628 // Get estimation for interleaved load/store operations and strided load.
4629 // \p Indices contains indices for strided load.
4630 // \p Factor - the factor of interleaving.
4631 // AVX-512 provides 3-src shuffles that significantly reduces the cost.
4632 int X86TTIImpl::getInterleavedMemoryOpCostAVX512(
4633     unsigned Opcode, FixedVectorType *VecTy, unsigned Factor,
4634     ArrayRef<unsigned> Indices, Align Alignment, unsigned AddressSpace,
4635     TTI::TargetCostKind CostKind, bool UseMaskForCond, bool UseMaskForGaps) {
4636 
4637   if (UseMaskForCond || UseMaskForGaps)
4638     return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices,
4639                                              Alignment, AddressSpace, CostKind,
4640                                              UseMaskForCond, UseMaskForGaps);
4641 
4642   // VecTy for interleave memop is <VF*Factor x Elt>.
4643   // So, for VF=4, Interleave Factor = 3, Element type = i32 we have
4644   // VecTy = <12 x i32>.
4645 
4646   // Calculate the number of memory operations (NumOfMemOps), required
4647   // for load/store the VecTy.
4648   MVT LegalVT = getTLI()->getTypeLegalizationCost(DL, VecTy).second;
4649   unsigned VecTySize = DL.getTypeStoreSize(VecTy);
4650   unsigned LegalVTSize = LegalVT.getStoreSize();
4651   unsigned NumOfMemOps = (VecTySize + LegalVTSize - 1) / LegalVTSize;
4652 
4653   // Get the cost of one memory operation.
4654   auto *SingleMemOpTy = FixedVectorType::get(VecTy->getElementType(),
4655                                              LegalVT.getVectorNumElements());
4656   unsigned MemOpCost = getMemoryOpCost(Opcode, SingleMemOpTy,
4657                                        MaybeAlign(Alignment), AddressSpace,
4658                                        CostKind);
4659 
4660   unsigned VF = VecTy->getNumElements() / Factor;
4661   MVT VT = MVT::getVectorVT(MVT::getVT(VecTy->getScalarType()), VF);
4662 
4663   if (Opcode == Instruction::Load) {
4664     // The tables (AVX512InterleavedLoadTbl and AVX512InterleavedStoreTbl)
4665     // contain the cost of the optimized shuffle sequence that the
4666     // X86InterleavedAccess pass will generate.
4667     // The cost of loads and stores are computed separately from the table.
4668 
4669     // X86InterleavedAccess support only the following interleaved-access group.
4670     static const CostTblEntry AVX512InterleavedLoadTbl[] = {
4671         {3, MVT::v16i8, 12}, //(load 48i8 and) deinterleave into 3 x 16i8
4672         {3, MVT::v32i8, 14}, //(load 96i8 and) deinterleave into 3 x 32i8
4673         {3, MVT::v64i8, 22}, //(load 96i8 and) deinterleave into 3 x 32i8
4674     };
4675 
4676     if (const auto *Entry =
4677             CostTableLookup(AVX512InterleavedLoadTbl, Factor, VT))
4678       return NumOfMemOps * MemOpCost + Entry->Cost;
4679     //If an entry does not exist, fallback to the default implementation.
4680 
4681     // Kind of shuffle depends on number of loaded values.
4682     // If we load the entire data in one register, we can use a 1-src shuffle.
4683     // Otherwise, we'll merge 2 sources in each operation.
4684     TTI::ShuffleKind ShuffleKind =
4685         (NumOfMemOps > 1) ? TTI::SK_PermuteTwoSrc : TTI::SK_PermuteSingleSrc;
4686 
4687     unsigned ShuffleCost =
4688         getShuffleCost(ShuffleKind, SingleMemOpTy, None, 0, nullptr);
4689 
4690     unsigned NumOfLoadsInInterleaveGrp =
4691         Indices.size() ? Indices.size() : Factor;
4692     auto *ResultTy = FixedVectorType::get(VecTy->getElementType(),
4693                                           VecTy->getNumElements() / Factor);
4694     unsigned NumOfResults =
4695         getTLI()->getTypeLegalizationCost(DL, ResultTy).first *
4696         NumOfLoadsInInterleaveGrp;
4697 
4698     // About a half of the loads may be folded in shuffles when we have only
4699     // one result. If we have more than one result, we do not fold loads at all.
4700     unsigned NumOfUnfoldedLoads =
4701         NumOfResults > 1 ? NumOfMemOps : NumOfMemOps / 2;
4702 
4703     // Get a number of shuffle operations per result.
4704     unsigned NumOfShufflesPerResult =
4705         std::max((unsigned)1, (unsigned)(NumOfMemOps - 1));
4706 
4707     // The SK_MergeTwoSrc shuffle clobbers one of src operands.
4708     // When we have more than one destination, we need additional instructions
4709     // to keep sources.
4710     unsigned NumOfMoves = 0;
4711     if (NumOfResults > 1 && ShuffleKind == TTI::SK_PermuteTwoSrc)
4712       NumOfMoves = NumOfResults * NumOfShufflesPerResult / 2;
4713 
4714     int Cost = NumOfResults * NumOfShufflesPerResult * ShuffleCost +
4715                NumOfUnfoldedLoads * MemOpCost + NumOfMoves;
4716 
4717     return Cost;
4718   }
4719 
4720   // Store.
4721   assert(Opcode == Instruction::Store &&
4722          "Expected Store Instruction at this  point");
4723   // X86InterleavedAccess support only the following interleaved-access group.
4724   static const CostTblEntry AVX512InterleavedStoreTbl[] = {
4725       {3, MVT::v16i8, 12}, // interleave 3 x 16i8 into 48i8 (and store)
4726       {3, MVT::v32i8, 14}, // interleave 3 x 32i8 into 96i8 (and store)
4727       {3, MVT::v64i8, 26}, // interleave 3 x 64i8 into 96i8 (and store)
4728 
4729       {4, MVT::v8i8, 10},  // interleave 4 x 8i8  into 32i8  (and store)
4730       {4, MVT::v16i8, 11}, // interleave 4 x 16i8 into 64i8  (and store)
4731       {4, MVT::v32i8, 14}, // interleave 4 x 32i8 into 128i8 (and store)
4732       {4, MVT::v64i8, 24}  // interleave 4 x 32i8 into 256i8 (and store)
4733   };
4734 
4735   if (const auto *Entry =
4736           CostTableLookup(AVX512InterleavedStoreTbl, Factor, VT))
4737     return NumOfMemOps * MemOpCost + Entry->Cost;
4738   //If an entry does not exist, fallback to the default implementation.
4739 
4740   // There is no strided stores meanwhile. And store can't be folded in
4741   // shuffle.
4742   unsigned NumOfSources = Factor; // The number of values to be merged.
4743   unsigned ShuffleCost =
4744       getShuffleCost(TTI::SK_PermuteTwoSrc, SingleMemOpTy, None, 0, nullptr);
4745   unsigned NumOfShufflesPerStore = NumOfSources - 1;
4746 
4747   // The SK_MergeTwoSrc shuffle clobbers one of src operands.
4748   // We need additional instructions to keep sources.
4749   unsigned NumOfMoves = NumOfMemOps * NumOfShufflesPerStore / 2;
4750   int Cost = NumOfMemOps * (MemOpCost + NumOfShufflesPerStore * ShuffleCost) +
4751              NumOfMoves;
4752   return Cost;
4753 }
4754 
4755 int X86TTIImpl::getInterleavedMemoryOpCost(
4756     unsigned Opcode, Type *VecTy, unsigned Factor, ArrayRef<unsigned> Indices,
4757     Align Alignment, unsigned AddressSpace, TTI::TargetCostKind CostKind,
4758     bool UseMaskForCond, bool UseMaskForGaps) {
4759   auto isSupportedOnAVX512 = [](Type *VecTy, bool HasBW) {
4760     Type *EltTy = cast<VectorType>(VecTy)->getElementType();
4761     if (EltTy->isFloatTy() || EltTy->isDoubleTy() || EltTy->isIntegerTy(64) ||
4762         EltTy->isIntegerTy(32) || EltTy->isPointerTy())
4763       return true;
4764     if (EltTy->isIntegerTy(16) || EltTy->isIntegerTy(8))
4765       return HasBW;
4766     return false;
4767   };
4768   if (ST->hasAVX512() && isSupportedOnAVX512(VecTy, ST->hasBWI()))
4769     return getInterleavedMemoryOpCostAVX512(
4770         Opcode, cast<FixedVectorType>(VecTy), Factor, Indices, Alignment,
4771         AddressSpace, CostKind, UseMaskForCond, UseMaskForGaps);
4772   if (ST->hasAVX2())
4773     return getInterleavedMemoryOpCostAVX2(
4774         Opcode, cast<FixedVectorType>(VecTy), Factor, Indices, Alignment,
4775         AddressSpace, CostKind, UseMaskForCond, UseMaskForGaps);
4776 
4777   return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices,
4778                                            Alignment, AddressSpace, CostKind,
4779                                            UseMaskForCond, UseMaskForGaps);
4780 }
4781