1 //===-- X86TargetTransformInfo.cpp - X86 specific TTI pass ----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 /// \file
9 /// This file implements a TargetTransformInfo analysis pass specific to the
10 /// X86 target machine. It uses the target's detailed information to provide
11 /// more precise answers to certain TTI queries, while letting the target
12 /// independent and default TTI implementations handle the rest.
13 ///
14 //===----------------------------------------------------------------------===//
15 /// About Cost Model numbers used below it's necessary to say the following:
16 /// the numbers correspond to some "generic" X86 CPU instead of usage of
17 /// concrete CPU model. Usually the numbers correspond to CPU where the feature
18 /// apeared at the first time. For example, if we do Subtarget.hasSSE42() in
19 /// the lookups below the cost is based on Nehalem as that was the first CPU
20 /// to support that feature level and thus has most likely the worst case cost.
21 /// Some examples of other technologies/CPUs:
22 ///   SSE 3   - Pentium4 / Athlon64
23 ///   SSE 4.1 - Penryn
24 ///   SSE 4.2 - Nehalem
25 ///   AVX     - Sandy Bridge
26 ///   AVX2    - Haswell
27 ///   AVX-512 - Xeon Phi / Skylake
28 /// And some examples of instruction target dependent costs (latency)
29 ///                   divss     sqrtss          rsqrtss
30 ///   AMD K7            11-16     19              3
31 ///   Piledriver        9-24      13-15           5
32 ///   Jaguar            14        16              2
33 ///   Pentium II,III    18        30              2
34 ///   Nehalem           7-14      7-18            3
35 ///   Haswell           10-13     11              5
36 /// TODO: Develop and implement  the target dependent cost model and
37 /// specialize cost numbers for different Cost Model Targets such as throughput,
38 /// code size, latency and uop count.
39 //===----------------------------------------------------------------------===//
40 
41 #include "X86TargetTransformInfo.h"
42 #include "llvm/Analysis/TargetTransformInfo.h"
43 #include "llvm/CodeGen/BasicTTIImpl.h"
44 #include "llvm/CodeGen/CostTable.h"
45 #include "llvm/CodeGen/TargetLowering.h"
46 #include "llvm/IR/IntrinsicInst.h"
47 #include "llvm/Support/Debug.h"
48 
49 using namespace llvm;
50 
51 #define DEBUG_TYPE "x86tti"
52 
53 //===----------------------------------------------------------------------===//
54 //
55 // X86 cost model.
56 //
57 //===----------------------------------------------------------------------===//
58 
59 TargetTransformInfo::PopcntSupportKind
60 X86TTIImpl::getPopcntSupport(unsigned TyWidth) {
61   assert(isPowerOf2_32(TyWidth) && "Ty width must be power of 2");
62   // TODO: Currently the __builtin_popcount() implementation using SSE3
63   //   instructions is inefficient. Once the problem is fixed, we should
64   //   call ST->hasSSE3() instead of ST->hasPOPCNT().
65   return ST->hasPOPCNT() ? TTI::PSK_FastHardware : TTI::PSK_Software;
66 }
67 
68 llvm::Optional<unsigned> X86TTIImpl::getCacheSize(
69   TargetTransformInfo::CacheLevel Level) const {
70   switch (Level) {
71   case TargetTransformInfo::CacheLevel::L1D:
72     //   - Penryn
73     //   - Nehalem
74     //   - Westmere
75     //   - Sandy Bridge
76     //   - Ivy Bridge
77     //   - Haswell
78     //   - Broadwell
79     //   - Skylake
80     //   - Kabylake
81     return 32 * 1024;  //  32 KByte
82   case TargetTransformInfo::CacheLevel::L2D:
83     //   - Penryn
84     //   - Nehalem
85     //   - Westmere
86     //   - Sandy Bridge
87     //   - Ivy Bridge
88     //   - Haswell
89     //   - Broadwell
90     //   - Skylake
91     //   - Kabylake
92     return 256 * 1024; // 256 KByte
93   }
94 
95   llvm_unreachable("Unknown TargetTransformInfo::CacheLevel");
96 }
97 
98 llvm::Optional<unsigned> X86TTIImpl::getCacheAssociativity(
99   TargetTransformInfo::CacheLevel Level) const {
100   //   - Penryn
101   //   - Nehalem
102   //   - Westmere
103   //   - Sandy Bridge
104   //   - Ivy Bridge
105   //   - Haswell
106   //   - Broadwell
107   //   - Skylake
108   //   - Kabylake
109   switch (Level) {
110   case TargetTransformInfo::CacheLevel::L1D:
111     LLVM_FALLTHROUGH;
112   case TargetTransformInfo::CacheLevel::L2D:
113     return 8;
114   }
115 
116   llvm_unreachable("Unknown TargetTransformInfo::CacheLevel");
117 }
118 
119 unsigned X86TTIImpl::getNumberOfRegisters(unsigned ClassID) const {
120   bool Vector = (ClassID == 1);
121   if (Vector && !ST->hasSSE1())
122     return 0;
123 
124   if (ST->is64Bit()) {
125     if (Vector && ST->hasAVX512())
126       return 32;
127     return 16;
128   }
129   return 8;
130 }
131 
132 TypeSize
133 X86TTIImpl::getRegisterBitWidth(TargetTransformInfo::RegisterKind K) const {
134   unsigned PreferVectorWidth = ST->getPreferVectorWidth();
135   switch (K) {
136   case TargetTransformInfo::RGK_Scalar:
137     return TypeSize::getFixed(ST->is64Bit() ? 64 : 32);
138   case TargetTransformInfo::RGK_FixedWidthVector:
139     if (ST->hasAVX512() && PreferVectorWidth >= 512)
140       return TypeSize::getFixed(512);
141     if (ST->hasAVX() && PreferVectorWidth >= 256)
142       return TypeSize::getFixed(256);
143     if (ST->hasSSE1() && PreferVectorWidth >= 128)
144       return TypeSize::getFixed(128);
145     return TypeSize::getFixed(0);
146   case TargetTransformInfo::RGK_ScalableVector:
147     return TypeSize::getScalable(0);
148   }
149 
150   llvm_unreachable("Unsupported register kind");
151 }
152 
153 unsigned X86TTIImpl::getLoadStoreVecRegBitWidth(unsigned) const {
154   return getRegisterBitWidth(TargetTransformInfo::RGK_FixedWidthVector)
155       .getFixedSize();
156 }
157 
158 unsigned X86TTIImpl::getMaxInterleaveFactor(unsigned VF) {
159   // If the loop will not be vectorized, don't interleave the loop.
160   // Let regular unroll to unroll the loop, which saves the overflow
161   // check and memory check cost.
162   if (VF == 1)
163     return 1;
164 
165   if (ST->isAtom())
166     return 1;
167 
168   // Sandybridge and Haswell have multiple execution ports and pipelined
169   // vector units.
170   if (ST->hasAVX())
171     return 4;
172 
173   return 2;
174 }
175 
176 InstructionCost X86TTIImpl::getArithmeticInstrCost(
177     unsigned Opcode, Type *Ty, TTI::TargetCostKind CostKind,
178     TTI::OperandValueKind Op1Info, TTI::OperandValueKind Op2Info,
179     TTI::OperandValueProperties Opd1PropInfo,
180     TTI::OperandValueProperties Opd2PropInfo, ArrayRef<const Value *> Args,
181     const Instruction *CxtI) {
182   // TODO: Handle more cost kinds.
183   if (CostKind != TTI::TCK_RecipThroughput)
184     return BaseT::getArithmeticInstrCost(Opcode, Ty, CostKind, Op1Info,
185                                          Op2Info, Opd1PropInfo,
186                                          Opd2PropInfo, Args, CxtI);
187 
188   // vXi8 multiplications are always promoted to vXi16.
189   if (Opcode == Instruction::Mul && Ty->isVectorTy() &&
190       Ty->getScalarSizeInBits() == 8) {
191     Type *WideVecTy =
192         VectorType::getExtendedElementVectorType(cast<VectorType>(Ty));
193     return getCastInstrCost(Instruction::ZExt, WideVecTy, Ty,
194                             TargetTransformInfo::CastContextHint::None,
195                             CostKind) +
196            getCastInstrCost(Instruction::Trunc, Ty, WideVecTy,
197                             TargetTransformInfo::CastContextHint::None,
198                             CostKind) +
199            getArithmeticInstrCost(Opcode, WideVecTy, CostKind, Op1Info, Op2Info,
200                                   Opd1PropInfo, Opd2PropInfo);
201   }
202 
203   // Legalize the type.
204   std::pair<InstructionCost, MVT> LT = TLI->getTypeLegalizationCost(DL, Ty);
205 
206   int ISD = TLI->InstructionOpcodeToISD(Opcode);
207   assert(ISD && "Invalid opcode");
208 
209   if (ISD == ISD::MUL && Args.size() == 2 && LT.second.isVector() &&
210       LT.second.getScalarType() == MVT::i32) {
211     // Check if the operands can be represented as a smaller datatype.
212     bool Op1Signed = false, Op2Signed = false;
213     unsigned Op1MinSize = BaseT::minRequiredElementSize(Args[0], Op1Signed);
214     unsigned Op2MinSize = BaseT::minRequiredElementSize(Args[1], Op2Signed);
215     unsigned OpMinSize = std::max(Op1MinSize, Op2MinSize);
216 
217     // If both are representable as i15 and at least one is constant,
218     // zero-extended, or sign-extended from vXi16 (or less pre-SSE41) then we
219     // can treat this as PMADDWD which has the same costs as a vXi16 multiply.
220     if (OpMinSize <= 15 && !ST->isPMADDWDSlow()) {
221       bool Op1Constant =
222           isa<ConstantDataVector>(Args[0]) || isa<ConstantVector>(Args[0]);
223       bool Op2Constant =
224           isa<ConstantDataVector>(Args[1]) || isa<ConstantVector>(Args[1]);
225       bool Op1Sext = isa<SExtInst>(Args[0]) &&
226                      (Op1MinSize == 15 || (Op1MinSize < 15 && !ST->hasSSE41()));
227       bool Op2Sext = isa<SExtInst>(Args[1]) &&
228                      (Op2MinSize == 15 || (Op2MinSize < 15 && !ST->hasSSE41()));
229 
230       bool IsZeroExtended = !Op1Signed || !Op2Signed;
231       bool IsConstant = Op1Constant || Op2Constant;
232       bool IsSext = Op1Sext || Op2Sext;
233       if (IsConstant || IsZeroExtended || IsSext)
234         LT.second =
235             MVT::getVectorVT(MVT::i16, 2 * LT.second.getVectorNumElements());
236     }
237   }
238 
239   if ((ISD == ISD::MUL || ISD == ISD::SDIV || ISD == ISD::SREM ||
240        ISD == ISD::UDIV || ISD == ISD::UREM) &&
241       (Op2Info == TargetTransformInfo::OK_UniformConstantValue ||
242        Op2Info == TargetTransformInfo::OK_NonUniformConstantValue) &&
243       Opd2PropInfo == TargetTransformInfo::OP_PowerOf2) {
244     // Vector multiply by pow2 will be simplified to shifts.
245     if (ISD == ISD::MUL) {
246       InstructionCost Cost = getArithmeticInstrCost(
247           Instruction::Shl, Ty, CostKind, Op1Info, Op2Info,
248           TargetTransformInfo::OP_None, TargetTransformInfo::OP_None);
249       return Cost;
250     }
251 
252     if (ISD == ISD::SDIV || ISD == ISD::SREM) {
253       // On X86, vector signed division by constants power-of-two are
254       // normally expanded to the sequence SRA + SRL + ADD + SRA.
255       // The OperandValue properties may not be the same as that of the previous
256       // operation; conservatively assume OP_None.
257       InstructionCost Cost =
258           2 * getArithmeticInstrCost(Instruction::AShr, Ty, CostKind, Op1Info,
259                                      Op2Info, TargetTransformInfo::OP_None,
260                                      TargetTransformInfo::OP_None);
261       Cost += getArithmeticInstrCost(Instruction::LShr, Ty, CostKind, Op1Info,
262                                      Op2Info, TargetTransformInfo::OP_None,
263                                      TargetTransformInfo::OP_None);
264       Cost += getArithmeticInstrCost(Instruction::Add, Ty, CostKind, Op1Info,
265                                      Op2Info, TargetTransformInfo::OP_None,
266                                      TargetTransformInfo::OP_None);
267 
268       if (ISD == ISD::SREM) {
269         // For SREM: (X % C) is the equivalent of (X - (X/C)*C)
270         Cost += getArithmeticInstrCost(Instruction::Mul, Ty, CostKind, Op1Info,
271                                        Op2Info);
272         Cost += getArithmeticInstrCost(Instruction::Sub, Ty, CostKind, Op1Info,
273                                        Op2Info);
274       }
275 
276       return Cost;
277     }
278 
279     // Vector unsigned division/remainder will be simplified to shifts/masks.
280     if (ISD == ISD::UDIV)
281       return getArithmeticInstrCost(Instruction::LShr, Ty, CostKind, Op1Info,
282                                     Op2Info, TargetTransformInfo::OP_None,
283                                     TargetTransformInfo::OP_None);
284     // UREM
285     return getArithmeticInstrCost(Instruction::And, Ty, CostKind, Op1Info,
286                                   Op2Info, TargetTransformInfo::OP_None,
287                                   TargetTransformInfo::OP_None);
288   }
289 
290   static const CostTblEntry GLMCostTable[] = {
291     { ISD::FDIV,  MVT::f32,   18 }, // divss
292     { ISD::FDIV,  MVT::v4f32, 35 }, // divps
293     { ISD::FDIV,  MVT::f64,   33 }, // divsd
294     { ISD::FDIV,  MVT::v2f64, 65 }, // divpd
295   };
296 
297   if (ST->useGLMDivSqrtCosts())
298     if (const auto *Entry = CostTableLookup(GLMCostTable, ISD,
299                                             LT.second))
300       return LT.first * Entry->Cost;
301 
302   static const CostTblEntry SLMCostTable[] = {
303     { ISD::MUL,   MVT::v4i32, 11 }, // pmulld
304     { ISD::MUL,   MVT::v8i16, 2  }, // pmullw
305     { ISD::FMUL,  MVT::f64,   2  }, // mulsd
306     { ISD::FMUL,  MVT::v2f64, 4  }, // mulpd
307     { ISD::FMUL,  MVT::v4f32, 2  }, // mulps
308     { ISD::FDIV,  MVT::f32,   17 }, // divss
309     { ISD::FDIV,  MVT::v4f32, 39 }, // divps
310     { ISD::FDIV,  MVT::f64,   32 }, // divsd
311     { ISD::FDIV,  MVT::v2f64, 69 }, // divpd
312     { ISD::FADD,  MVT::v2f64, 2  }, // addpd
313     { ISD::FSUB,  MVT::v2f64, 2  }, // subpd
314     // v2i64/v4i64 mul is custom lowered as a series of long:
315     // multiplies(3), shifts(3) and adds(2)
316     // slm muldq version throughput is 2 and addq throughput 4
317     // thus: 3X2 (muldq throughput) + 3X1 (shift throughput) +
318     //       3X4 (addq throughput) = 17
319     { ISD::MUL,   MVT::v2i64, 17 },
320     // slm addq\subq throughput is 4
321     { ISD::ADD,   MVT::v2i64, 4  },
322     { ISD::SUB,   MVT::v2i64, 4  },
323   };
324 
325   if (ST->useSLMArithCosts()) {
326     if (Args.size() == 2 && ISD == ISD::MUL && LT.second == MVT::v4i32) {
327       // Check if the operands can be shrinked into a smaller datatype.
328       // TODO: Merge this into generiic vXi32 MUL patterns above.
329       bool Op1Signed = false;
330       unsigned Op1MinSize = BaseT::minRequiredElementSize(Args[0], Op1Signed);
331       bool Op2Signed = false;
332       unsigned Op2MinSize = BaseT::minRequiredElementSize(Args[1], Op2Signed);
333 
334       bool SignedMode = Op1Signed || Op2Signed;
335       unsigned OpMinSize = std::max(Op1MinSize, Op2MinSize);
336 
337       if (OpMinSize <= 7)
338         return LT.first * 3; // pmullw/sext
339       if (!SignedMode && OpMinSize <= 8)
340         return LT.first * 3; // pmullw/zext
341       if (OpMinSize <= 15)
342         return LT.first * 5; // pmullw/pmulhw/pshuf
343       if (!SignedMode && OpMinSize <= 16)
344         return LT.first * 5; // pmullw/pmulhw/pshuf
345     }
346 
347     if (const auto *Entry = CostTableLookup(SLMCostTable, ISD,
348                                             LT.second)) {
349       return LT.first * Entry->Cost;
350     }
351   }
352 
353   static const CostTblEntry AVX512BWUniformConstCostTable[] = {
354     { ISD::SHL,  MVT::v64i8,   2 }, // psllw + pand.
355     { ISD::SRL,  MVT::v64i8,   2 }, // psrlw + pand.
356     { ISD::SRA,  MVT::v64i8,   4 }, // psrlw, pand, pxor, psubb.
357   };
358 
359   if (Op2Info == TargetTransformInfo::OK_UniformConstantValue &&
360       ST->hasBWI()) {
361     if (const auto *Entry = CostTableLookup(AVX512BWUniformConstCostTable, ISD,
362                                             LT.second))
363       return LT.first * Entry->Cost;
364   }
365 
366   static const CostTblEntry AVX512UniformConstCostTable[] = {
367     { ISD::SRA,  MVT::v2i64,   1 },
368     { ISD::SRA,  MVT::v4i64,   1 },
369     { ISD::SRA,  MVT::v8i64,   1 },
370 
371     { ISD::SHL,  MVT::v64i8,   4 }, // psllw + pand.
372     { ISD::SRL,  MVT::v64i8,   4 }, // psrlw + pand.
373     { ISD::SRA,  MVT::v64i8,   8 }, // psrlw, pand, pxor, psubb.
374 
375     { ISD::SDIV, MVT::v16i32,  6 }, // pmuludq sequence
376     { ISD::SREM, MVT::v16i32,  8 }, // pmuludq+mul+sub sequence
377     { ISD::UDIV, MVT::v16i32,  5 }, // pmuludq sequence
378     { ISD::UREM, MVT::v16i32,  7 }, // pmuludq+mul+sub sequence
379   };
380 
381   if (Op2Info == TargetTransformInfo::OK_UniformConstantValue &&
382       ST->hasAVX512()) {
383     if (const auto *Entry = CostTableLookup(AVX512UniformConstCostTable, ISD,
384                                             LT.second))
385       return LT.first * Entry->Cost;
386   }
387 
388   static const CostTblEntry AVX2UniformConstCostTable[] = {
389     { ISD::SHL,  MVT::v32i8,   2 }, // psllw + pand.
390     { ISD::SRL,  MVT::v32i8,   2 }, // psrlw + pand.
391     { ISD::SRA,  MVT::v32i8,   4 }, // psrlw, pand, pxor, psubb.
392 
393     { ISD::SRA,  MVT::v4i64,   4 }, // 2 x psrad + shuffle.
394 
395     { ISD::SDIV, MVT::v8i32,   6 }, // pmuludq sequence
396     { ISD::SREM, MVT::v8i32,   8 }, // pmuludq+mul+sub sequence
397     { ISD::UDIV, MVT::v8i32,   5 }, // pmuludq sequence
398     { ISD::UREM, MVT::v8i32,   7 }, // pmuludq+mul+sub sequence
399   };
400 
401   if (Op2Info == TargetTransformInfo::OK_UniformConstantValue &&
402       ST->hasAVX2()) {
403     if (const auto *Entry = CostTableLookup(AVX2UniformConstCostTable, ISD,
404                                             LT.second))
405       return LT.first * Entry->Cost;
406   }
407 
408   static const CostTblEntry SSE2UniformConstCostTable[] = {
409     { ISD::SHL,  MVT::v16i8,     2 }, // psllw + pand.
410     { ISD::SRL,  MVT::v16i8,     2 }, // psrlw + pand.
411     { ISD::SRA,  MVT::v16i8,     4 }, // psrlw, pand, pxor, psubb.
412 
413     { ISD::SHL,  MVT::v32i8,   4+2 }, // 2*(psllw + pand) + split.
414     { ISD::SRL,  MVT::v32i8,   4+2 }, // 2*(psrlw + pand) + split.
415     { ISD::SRA,  MVT::v32i8,   8+2 }, // 2*(psrlw, pand, pxor, psubb) + split.
416 
417     { ISD::SDIV, MVT::v8i32,  12+2 }, // 2*pmuludq sequence + split.
418     { ISD::SREM, MVT::v8i32,  16+2 }, // 2*pmuludq+mul+sub sequence + split.
419     { ISD::SDIV, MVT::v4i32,     6 }, // pmuludq sequence
420     { ISD::SREM, MVT::v4i32,     8 }, // pmuludq+mul+sub sequence
421     { ISD::UDIV, MVT::v8i32,  10+2 }, // 2*pmuludq sequence + split.
422     { ISD::UREM, MVT::v8i32,  14+2 }, // 2*pmuludq+mul+sub sequence + split.
423     { ISD::UDIV, MVT::v4i32,     5 }, // pmuludq sequence
424     { ISD::UREM, MVT::v4i32,     7 }, // pmuludq+mul+sub sequence
425   };
426 
427   // XOP has faster vXi8 shifts.
428   if (Op2Info == TargetTransformInfo::OK_UniformConstantValue &&
429       ST->hasSSE2() && !ST->hasXOP()) {
430     if (const auto *Entry =
431             CostTableLookup(SSE2UniformConstCostTable, ISD, LT.second))
432       return LT.first * Entry->Cost;
433   }
434 
435   static const CostTblEntry AVX512BWConstCostTable[] = {
436     { ISD::SDIV, MVT::v64i8,  14 }, // 2*ext+2*pmulhw sequence
437     { ISD::SREM, MVT::v64i8,  16 }, // 2*ext+2*pmulhw+mul+sub sequence
438     { ISD::UDIV, MVT::v64i8,  14 }, // 2*ext+2*pmulhw sequence
439     { ISD::UREM, MVT::v64i8,  16 }, // 2*ext+2*pmulhw+mul+sub sequence
440     { ISD::SDIV, MVT::v32i16,  6 }, // vpmulhw sequence
441     { ISD::SREM, MVT::v32i16,  8 }, // vpmulhw+mul+sub sequence
442     { ISD::UDIV, MVT::v32i16,  6 }, // vpmulhuw sequence
443     { ISD::UREM, MVT::v32i16,  8 }, // vpmulhuw+mul+sub sequence
444   };
445 
446   if ((Op2Info == TargetTransformInfo::OK_UniformConstantValue ||
447        Op2Info == TargetTransformInfo::OK_NonUniformConstantValue) &&
448       ST->hasBWI()) {
449     if (const auto *Entry =
450             CostTableLookup(AVX512BWConstCostTable, ISD, LT.second))
451       return LT.first * Entry->Cost;
452   }
453 
454   static const CostTblEntry AVX512ConstCostTable[] = {
455     { ISD::SDIV, MVT::v16i32, 15 }, // vpmuldq sequence
456     { ISD::SREM, MVT::v16i32, 17 }, // vpmuldq+mul+sub sequence
457     { ISD::UDIV, MVT::v16i32, 15 }, // vpmuludq sequence
458     { ISD::UREM, MVT::v16i32, 17 }, // vpmuludq+mul+sub sequence
459     { ISD::SDIV, MVT::v64i8,  28 }, // 4*ext+4*pmulhw sequence
460     { ISD::SREM, MVT::v64i8,  32 }, // 4*ext+4*pmulhw+mul+sub sequence
461     { ISD::UDIV, MVT::v64i8,  28 }, // 4*ext+4*pmulhw sequence
462     { ISD::UREM, MVT::v64i8,  32 }, // 4*ext+4*pmulhw+mul+sub sequence
463     { ISD::SDIV, MVT::v32i16, 12 }, // 2*vpmulhw sequence
464     { ISD::SREM, MVT::v32i16, 16 }, // 2*vpmulhw+mul+sub sequence
465     { ISD::UDIV, MVT::v32i16, 12 }, // 2*vpmulhuw sequence
466     { ISD::UREM, MVT::v32i16, 16 }, // 2*vpmulhuw+mul+sub sequence
467   };
468 
469   if ((Op2Info == TargetTransformInfo::OK_UniformConstantValue ||
470        Op2Info == TargetTransformInfo::OK_NonUniformConstantValue) &&
471       ST->hasAVX512()) {
472     if (const auto *Entry =
473             CostTableLookup(AVX512ConstCostTable, ISD, LT.second))
474       return LT.first * Entry->Cost;
475   }
476 
477   static const CostTblEntry AVX2ConstCostTable[] = {
478     { ISD::SDIV, MVT::v32i8,  14 }, // 2*ext+2*pmulhw sequence
479     { ISD::SREM, MVT::v32i8,  16 }, // 2*ext+2*pmulhw+mul+sub sequence
480     { ISD::UDIV, MVT::v32i8,  14 }, // 2*ext+2*pmulhw sequence
481     { ISD::UREM, MVT::v32i8,  16 }, // 2*ext+2*pmulhw+mul+sub sequence
482     { ISD::SDIV, MVT::v16i16,  6 }, // vpmulhw sequence
483     { ISD::SREM, MVT::v16i16,  8 }, // vpmulhw+mul+sub sequence
484     { ISD::UDIV, MVT::v16i16,  6 }, // vpmulhuw sequence
485     { ISD::UREM, MVT::v16i16,  8 }, // vpmulhuw+mul+sub sequence
486     { ISD::SDIV, MVT::v8i32,  15 }, // vpmuldq sequence
487     { ISD::SREM, MVT::v8i32,  19 }, // vpmuldq+mul+sub sequence
488     { ISD::UDIV, MVT::v8i32,  15 }, // vpmuludq sequence
489     { ISD::UREM, MVT::v8i32,  19 }, // vpmuludq+mul+sub sequence
490   };
491 
492   if ((Op2Info == TargetTransformInfo::OK_UniformConstantValue ||
493        Op2Info == TargetTransformInfo::OK_NonUniformConstantValue) &&
494       ST->hasAVX2()) {
495     if (const auto *Entry = CostTableLookup(AVX2ConstCostTable, ISD, LT.second))
496       return LT.first * Entry->Cost;
497   }
498 
499   static const CostTblEntry SSE2ConstCostTable[] = {
500     { ISD::SDIV, MVT::v32i8,  28+2 }, // 4*ext+4*pmulhw sequence + split.
501     { ISD::SREM, MVT::v32i8,  32+2 }, // 4*ext+4*pmulhw+mul+sub sequence + split.
502     { ISD::SDIV, MVT::v16i8,    14 }, // 2*ext+2*pmulhw sequence
503     { ISD::SREM, MVT::v16i8,    16 }, // 2*ext+2*pmulhw+mul+sub sequence
504     { ISD::UDIV, MVT::v32i8,  28+2 }, // 4*ext+4*pmulhw sequence + split.
505     { ISD::UREM, MVT::v32i8,  32+2 }, // 4*ext+4*pmulhw+mul+sub sequence + split.
506     { ISD::UDIV, MVT::v16i8,    14 }, // 2*ext+2*pmulhw sequence
507     { ISD::UREM, MVT::v16i8,    16 }, // 2*ext+2*pmulhw+mul+sub sequence
508     { ISD::SDIV, MVT::v16i16, 12+2 }, // 2*pmulhw sequence + split.
509     { ISD::SREM, MVT::v16i16, 16+2 }, // 2*pmulhw+mul+sub sequence + split.
510     { ISD::SDIV, MVT::v8i16,     6 }, // pmulhw sequence
511     { ISD::SREM, MVT::v8i16,     8 }, // pmulhw+mul+sub sequence
512     { ISD::UDIV, MVT::v16i16, 12+2 }, // 2*pmulhuw sequence + split.
513     { ISD::UREM, MVT::v16i16, 16+2 }, // 2*pmulhuw+mul+sub sequence + split.
514     { ISD::UDIV, MVT::v8i16,     6 }, // pmulhuw sequence
515     { ISD::UREM, MVT::v8i16,     8 }, // pmulhuw+mul+sub sequence
516     { ISD::SDIV, MVT::v8i32,  38+2 }, // 2*pmuludq sequence + split.
517     { ISD::SREM, MVT::v8i32,  48+2 }, // 2*pmuludq+mul+sub sequence + split.
518     { ISD::SDIV, MVT::v4i32,    19 }, // pmuludq sequence
519     { ISD::SREM, MVT::v4i32,    24 }, // pmuludq+mul+sub sequence
520     { ISD::UDIV, MVT::v8i32,  30+2 }, // 2*pmuludq sequence + split.
521     { ISD::UREM, MVT::v8i32,  40+2 }, // 2*pmuludq+mul+sub sequence + split.
522     { ISD::UDIV, MVT::v4i32,    15 }, // pmuludq sequence
523     { ISD::UREM, MVT::v4i32,    20 }, // pmuludq+mul+sub sequence
524   };
525 
526   if ((Op2Info == TargetTransformInfo::OK_UniformConstantValue ||
527        Op2Info == TargetTransformInfo::OK_NonUniformConstantValue) &&
528       ST->hasSSE2()) {
529     // pmuldq sequence.
530     if (ISD == ISD::SDIV && LT.second == MVT::v8i32 && ST->hasAVX())
531       return LT.first * 32;
532     if (ISD == ISD::SREM && LT.second == MVT::v8i32 && ST->hasAVX())
533       return LT.first * 38;
534     if (ISD == ISD::SDIV && LT.second == MVT::v4i32 && ST->hasSSE41())
535       return LT.first * 15;
536     if (ISD == ISD::SREM && LT.second == MVT::v4i32 && ST->hasSSE41())
537       return LT.first * 20;
538 
539     if (const auto *Entry = CostTableLookup(SSE2ConstCostTable, ISD, LT.second))
540       return LT.first * Entry->Cost;
541   }
542 
543   static const CostTblEntry AVX512BWShiftCostTable[] = {
544     { ISD::SHL,   MVT::v16i8,      4 }, // extend/vpsllvw/pack sequence.
545     { ISD::SRL,   MVT::v16i8,      4 }, // extend/vpsrlvw/pack sequence.
546     { ISD::SRA,   MVT::v16i8,      4 }, // extend/vpsravw/pack sequence.
547     { ISD::SHL,   MVT::v32i8,      4 }, // extend/vpsllvw/pack sequence.
548     { ISD::SRL,   MVT::v32i8,      4 }, // extend/vpsrlvw/pack sequence.
549     { ISD::SRA,   MVT::v32i8,      6 }, // extend/vpsravw/pack sequence.
550     { ISD::SHL,   MVT::v64i8,      6 }, // extend/vpsllvw/pack sequence.
551     { ISD::SRL,   MVT::v64i8,      7 }, // extend/vpsrlvw/pack sequence.
552     { ISD::SRA,   MVT::v64i8,     15 }, // extend/vpsravw/pack sequence.
553 
554     { ISD::SHL,   MVT::v8i16,      1 }, // vpsllvw
555     { ISD::SRL,   MVT::v8i16,      1 }, // vpsrlvw
556     { ISD::SRA,   MVT::v8i16,      1 }, // vpsravw
557     { ISD::SHL,   MVT::v16i16,     1 }, // vpsllvw
558     { ISD::SRL,   MVT::v16i16,     1 }, // vpsrlvw
559     { ISD::SRA,   MVT::v16i16,     1 }, // vpsravw
560     { ISD::SHL,   MVT::v32i16,     1 }, // vpsllvw
561     { ISD::SRL,   MVT::v32i16,     1 }, // vpsrlvw
562     { ISD::SRA,   MVT::v32i16,     1 }, // vpsravw
563   };
564 
565   if (ST->hasBWI())
566     if (const auto *Entry = CostTableLookup(AVX512BWShiftCostTable, ISD, LT.second))
567       return LT.first * Entry->Cost;
568 
569   static const CostTblEntry AVX2UniformCostTable[] = {
570     // Uniform splats are cheaper for the following instructions.
571     { ISD::SHL,  MVT::v16i16, 1 }, // psllw.
572     { ISD::SRL,  MVT::v16i16, 1 }, // psrlw.
573     { ISD::SRA,  MVT::v16i16, 1 }, // psraw.
574     { ISD::SHL,  MVT::v32i16, 2 }, // 2*psllw.
575     { ISD::SRL,  MVT::v32i16, 2 }, // 2*psrlw.
576     { ISD::SRA,  MVT::v32i16, 2 }, // 2*psraw.
577 
578     { ISD::SHL,  MVT::v8i32,  1 }, // pslld
579     { ISD::SRL,  MVT::v8i32,  1 }, // psrld
580     { ISD::SRA,  MVT::v8i32,  1 }, // psrad
581     { ISD::SHL,  MVT::v4i64,  1 }, // psllq
582     { ISD::SRL,  MVT::v4i64,  1 }, // psrlq
583   };
584 
585   if (ST->hasAVX2() &&
586       ((Op2Info == TargetTransformInfo::OK_UniformConstantValue) ||
587        (Op2Info == TargetTransformInfo::OK_UniformValue))) {
588     if (const auto *Entry =
589             CostTableLookup(AVX2UniformCostTable, ISD, LT.second))
590       return LT.first * Entry->Cost;
591   }
592 
593   static const CostTblEntry SSE2UniformCostTable[] = {
594     // Uniform splats are cheaper for the following instructions.
595     { ISD::SHL,  MVT::v8i16,  1 }, // psllw.
596     { ISD::SHL,  MVT::v4i32,  1 }, // pslld
597     { ISD::SHL,  MVT::v2i64,  1 }, // psllq.
598 
599     { ISD::SRL,  MVT::v8i16,  1 }, // psrlw.
600     { ISD::SRL,  MVT::v4i32,  1 }, // psrld.
601     { ISD::SRL,  MVT::v2i64,  1 }, // psrlq.
602 
603     { ISD::SRA,  MVT::v8i16,  1 }, // psraw.
604     { ISD::SRA,  MVT::v4i32,  1 }, // psrad.
605   };
606 
607   if (ST->hasSSE2() &&
608       ((Op2Info == TargetTransformInfo::OK_UniformConstantValue) ||
609        (Op2Info == TargetTransformInfo::OK_UniformValue))) {
610     if (const auto *Entry =
611             CostTableLookup(SSE2UniformCostTable, ISD, LT.second))
612       return LT.first * Entry->Cost;
613   }
614 
615   static const CostTblEntry AVX512DQCostTable[] = {
616     { ISD::MUL,  MVT::v2i64, 2 }, // pmullq
617     { ISD::MUL,  MVT::v4i64, 2 }, // pmullq
618     { ISD::MUL,  MVT::v8i64, 2 }  // pmullq
619   };
620 
621   // Look for AVX512DQ lowering tricks for custom cases.
622   if (ST->hasDQI())
623     if (const auto *Entry = CostTableLookup(AVX512DQCostTable, ISD, LT.second))
624       return LT.first * Entry->Cost;
625 
626   static const CostTblEntry AVX512BWCostTable[] = {
627     { ISD::SHL,   MVT::v64i8,     11 }, // vpblendvb sequence.
628     { ISD::SRL,   MVT::v64i8,     11 }, // vpblendvb sequence.
629     { ISD::SRA,   MVT::v64i8,     24 }, // vpblendvb sequence.
630   };
631 
632   // Look for AVX512BW lowering tricks for custom cases.
633   if (ST->hasBWI())
634     if (const auto *Entry = CostTableLookup(AVX512BWCostTable, ISD, LT.second))
635       return LT.first * Entry->Cost;
636 
637   static const CostTblEntry AVX512CostTable[] = {
638     { ISD::SHL,     MVT::v4i32,      1 },
639     { ISD::SRL,     MVT::v4i32,      1 },
640     { ISD::SRA,     MVT::v4i32,      1 },
641     { ISD::SHL,     MVT::v8i32,      1 },
642     { ISD::SRL,     MVT::v8i32,      1 },
643     { ISD::SRA,     MVT::v8i32,      1 },
644     { ISD::SHL,     MVT::v16i32,     1 },
645     { ISD::SRL,     MVT::v16i32,     1 },
646     { ISD::SRA,     MVT::v16i32,     1 },
647 
648     { ISD::SHL,     MVT::v2i64,      1 },
649     { ISD::SRL,     MVT::v2i64,      1 },
650     { ISD::SHL,     MVT::v4i64,      1 },
651     { ISD::SRL,     MVT::v4i64,      1 },
652     { ISD::SHL,     MVT::v8i64,      1 },
653     { ISD::SRL,     MVT::v8i64,      1 },
654 
655     { ISD::SRA,     MVT::v2i64,      1 },
656     { ISD::SRA,     MVT::v4i64,      1 },
657     { ISD::SRA,     MVT::v8i64,      1 },
658 
659     { ISD::MUL,     MVT::v16i32,     1 }, // pmulld (Skylake from agner.org)
660     { ISD::MUL,     MVT::v8i32,      1 }, // pmulld (Skylake from agner.org)
661     { ISD::MUL,     MVT::v4i32,      1 }, // pmulld (Skylake from agner.org)
662     { ISD::MUL,     MVT::v8i64,      6 }, // 3*pmuludq/3*shift/2*add
663 
664     { ISD::FNEG,    MVT::v8f64,      1 }, // Skylake from http://www.agner.org/
665     { ISD::FADD,    MVT::v8f64,      1 }, // Skylake from http://www.agner.org/
666     { ISD::FSUB,    MVT::v8f64,      1 }, // Skylake from http://www.agner.org/
667     { ISD::FMUL,    MVT::v8f64,      1 }, // Skylake from http://www.agner.org/
668     { ISD::FDIV,    MVT::f64,        4 }, // Skylake from http://www.agner.org/
669     { ISD::FDIV,    MVT::v2f64,      4 }, // Skylake from http://www.agner.org/
670     { ISD::FDIV,    MVT::v4f64,      8 }, // Skylake from http://www.agner.org/
671     { ISD::FDIV,    MVT::v8f64,     16 }, // Skylake from http://www.agner.org/
672 
673     { ISD::FNEG,    MVT::v16f32,     1 }, // Skylake from http://www.agner.org/
674     { ISD::FADD,    MVT::v16f32,     1 }, // Skylake from http://www.agner.org/
675     { ISD::FSUB,    MVT::v16f32,     1 }, // Skylake from http://www.agner.org/
676     { ISD::FMUL,    MVT::v16f32,     1 }, // Skylake from http://www.agner.org/
677     { ISD::FDIV,    MVT::f32,        3 }, // Skylake from http://www.agner.org/
678     { ISD::FDIV,    MVT::v4f32,      3 }, // Skylake from http://www.agner.org/
679     { ISD::FDIV,    MVT::v8f32,      5 }, // Skylake from http://www.agner.org/
680     { ISD::FDIV,    MVT::v16f32,    10 }, // Skylake from http://www.agner.org/
681   };
682 
683   if (ST->hasAVX512())
684     if (const auto *Entry = CostTableLookup(AVX512CostTable, ISD, LT.second))
685       return LT.first * Entry->Cost;
686 
687   static const CostTblEntry AVX2ShiftCostTable[] = {
688     // Shifts on vXi64/vXi32 on AVX2 is legal even though we declare to
689     // customize them to detect the cases where shift amount is a scalar one.
690     { ISD::SHL,     MVT::v4i32,    2 }, // vpsllvd (Haswell from agner.org)
691     { ISD::SRL,     MVT::v4i32,    2 }, // vpsrlvd (Haswell from agner.org)
692     { ISD::SRA,     MVT::v4i32,    2 }, // vpsravd (Haswell from agner.org)
693     { ISD::SHL,     MVT::v8i32,    2 }, // vpsllvd (Haswell from agner.org)
694     { ISD::SRL,     MVT::v8i32,    2 }, // vpsrlvd (Haswell from agner.org)
695     { ISD::SRA,     MVT::v8i32,    2 }, // vpsravd (Haswell from agner.org)
696     { ISD::SHL,     MVT::v2i64,    1 }, // vpsllvq (Haswell from agner.org)
697     { ISD::SRL,     MVT::v2i64,    1 }, // vpsrlvq (Haswell from agner.org)
698     { ISD::SHL,     MVT::v4i64,    1 }, // vpsllvq (Haswell from agner.org)
699     { ISD::SRL,     MVT::v4i64,    1 }, // vpsrlvq (Haswell from agner.org)
700   };
701 
702   if (ST->hasAVX512()) {
703     if (ISD == ISD::SHL && LT.second == MVT::v32i16 &&
704         (Op2Info == TargetTransformInfo::OK_UniformConstantValue ||
705          Op2Info == TargetTransformInfo::OK_NonUniformConstantValue))
706       // On AVX512, a packed v32i16 shift left by a constant build_vector
707       // is lowered into a vector multiply (vpmullw).
708       return getArithmeticInstrCost(Instruction::Mul, Ty, CostKind,
709                                     Op1Info, Op2Info,
710                                     TargetTransformInfo::OP_None,
711                                     TargetTransformInfo::OP_None);
712   }
713 
714   // Look for AVX2 lowering tricks (XOP is always better at v4i32 shifts).
715   if (ST->hasAVX2() && !(ST->hasXOP() && LT.second == MVT::v4i32)) {
716     if (ISD == ISD::SHL && LT.second == MVT::v16i16 &&
717         (Op2Info == TargetTransformInfo::OK_UniformConstantValue ||
718          Op2Info == TargetTransformInfo::OK_NonUniformConstantValue))
719       // On AVX2, a packed v16i16 shift left by a constant build_vector
720       // is lowered into a vector multiply (vpmullw).
721       return getArithmeticInstrCost(Instruction::Mul, Ty, CostKind,
722                                     Op1Info, Op2Info,
723                                     TargetTransformInfo::OP_None,
724                                     TargetTransformInfo::OP_None);
725 
726     if (const auto *Entry = CostTableLookup(AVX2ShiftCostTable, ISD, LT.second))
727       return LT.first * Entry->Cost;
728   }
729 
730   static const CostTblEntry XOPShiftCostTable[] = {
731     // 128bit shifts take 1cy, but right shifts require negation beforehand.
732     { ISD::SHL,     MVT::v16i8,    1 },
733     { ISD::SRL,     MVT::v16i8,    2 },
734     { ISD::SRA,     MVT::v16i8,    2 },
735     { ISD::SHL,     MVT::v8i16,    1 },
736     { ISD::SRL,     MVT::v8i16,    2 },
737     { ISD::SRA,     MVT::v8i16,    2 },
738     { ISD::SHL,     MVT::v4i32,    1 },
739     { ISD::SRL,     MVT::v4i32,    2 },
740     { ISD::SRA,     MVT::v4i32,    2 },
741     { ISD::SHL,     MVT::v2i64,    1 },
742     { ISD::SRL,     MVT::v2i64,    2 },
743     { ISD::SRA,     MVT::v2i64,    2 },
744     // 256bit shifts require splitting if AVX2 didn't catch them above.
745     { ISD::SHL,     MVT::v32i8,  2+2 },
746     { ISD::SRL,     MVT::v32i8,  4+2 },
747     { ISD::SRA,     MVT::v32i8,  4+2 },
748     { ISD::SHL,     MVT::v16i16, 2+2 },
749     { ISD::SRL,     MVT::v16i16, 4+2 },
750     { ISD::SRA,     MVT::v16i16, 4+2 },
751     { ISD::SHL,     MVT::v8i32,  2+2 },
752     { ISD::SRL,     MVT::v8i32,  4+2 },
753     { ISD::SRA,     MVT::v8i32,  4+2 },
754     { ISD::SHL,     MVT::v4i64,  2+2 },
755     { ISD::SRL,     MVT::v4i64,  4+2 },
756     { ISD::SRA,     MVT::v4i64,  4+2 },
757   };
758 
759   // Look for XOP lowering tricks.
760   if (ST->hasXOP()) {
761     // If the right shift is constant then we'll fold the negation so
762     // it's as cheap as a left shift.
763     int ShiftISD = ISD;
764     if ((ShiftISD == ISD::SRL || ShiftISD == ISD::SRA) &&
765         (Op2Info == TargetTransformInfo::OK_UniformConstantValue ||
766          Op2Info == TargetTransformInfo::OK_NonUniformConstantValue))
767       ShiftISD = ISD::SHL;
768     if (const auto *Entry =
769             CostTableLookup(XOPShiftCostTable, ShiftISD, LT.second))
770       return LT.first * Entry->Cost;
771   }
772 
773   static const CostTblEntry SSE2UniformShiftCostTable[] = {
774     // Uniform splats are cheaper for the following instructions.
775     { ISD::SHL,  MVT::v16i16, 2+2 }, // 2*psllw + split.
776     { ISD::SHL,  MVT::v8i32,  2+2 }, // 2*pslld + split.
777     { ISD::SHL,  MVT::v4i64,  2+2 }, // 2*psllq + split.
778 
779     { ISD::SRL,  MVT::v16i16, 2+2 }, // 2*psrlw + split.
780     { ISD::SRL,  MVT::v8i32,  2+2 }, // 2*psrld + split.
781     { ISD::SRL,  MVT::v4i64,  2+2 }, // 2*psrlq + split.
782 
783     { ISD::SRA,  MVT::v16i16, 2+2 }, // 2*psraw + split.
784     { ISD::SRA,  MVT::v8i32,  2+2 }, // 2*psrad + split.
785     { ISD::SRA,  MVT::v2i64,    4 }, // 2*psrad + shuffle.
786     { ISD::SRA,  MVT::v4i64,  8+2 }, // 2*(2*psrad + shuffle) + split.
787   };
788 
789   if (ST->hasSSE2() &&
790       ((Op2Info == TargetTransformInfo::OK_UniformConstantValue) ||
791        (Op2Info == TargetTransformInfo::OK_UniformValue))) {
792 
793     // Handle AVX2 uniform v4i64 ISD::SRA, it's not worth a table.
794     if (ISD == ISD::SRA && LT.second == MVT::v4i64 && ST->hasAVX2())
795       return LT.first * 4; // 2*psrad + shuffle.
796 
797     if (const auto *Entry =
798             CostTableLookup(SSE2UniformShiftCostTable, ISD, LT.second))
799       return LT.first * Entry->Cost;
800   }
801 
802   if (ISD == ISD::SHL &&
803       Op2Info == TargetTransformInfo::OK_NonUniformConstantValue) {
804     MVT VT = LT.second;
805     // Vector shift left by non uniform constant can be lowered
806     // into vector multiply.
807     if (((VT == MVT::v8i16 || VT == MVT::v4i32) && ST->hasSSE2()) ||
808         ((VT == MVT::v16i16 || VT == MVT::v8i32) && ST->hasAVX()))
809       ISD = ISD::MUL;
810   }
811 
812   static const CostTblEntry AVX2CostTable[] = {
813     { ISD::SHL,  MVT::v16i8,      6 }, // vpblendvb sequence.
814     { ISD::SHL,  MVT::v32i8,      6 }, // vpblendvb sequence.
815     { ISD::SHL,  MVT::v64i8,     12 }, // 2*vpblendvb sequence.
816     { ISD::SHL,  MVT::v8i16,      5 }, // extend/vpsrlvd/pack sequence.
817     { ISD::SHL,  MVT::v16i16,     7 }, // extend/vpsrlvd/pack sequence.
818     { ISD::SHL,  MVT::v32i16,    14 }, // 2*extend/vpsrlvd/pack sequence.
819 
820     { ISD::SRL,  MVT::v16i8,      6 }, // vpblendvb sequence.
821     { ISD::SRL,  MVT::v32i8,      6 }, // vpblendvb sequence.
822     { ISD::SRL,  MVT::v64i8,     12 }, // 2*vpblendvb sequence.
823     { ISD::SRL,  MVT::v8i16,      5 }, // extend/vpsrlvd/pack sequence.
824     { ISD::SRL,  MVT::v16i16,     7 }, // extend/vpsrlvd/pack sequence.
825     { ISD::SRL,  MVT::v32i16,    14 }, // 2*extend/vpsrlvd/pack sequence.
826 
827     { ISD::SRA,  MVT::v16i8,     17 }, // vpblendvb sequence.
828     { ISD::SRA,  MVT::v32i8,     17 }, // vpblendvb sequence.
829     { ISD::SRA,  MVT::v64i8,     34 }, // 2*vpblendvb sequence.
830     { ISD::SRA,  MVT::v8i16,      5 }, // extend/vpsravd/pack sequence.
831     { ISD::SRA,  MVT::v16i16,     7 }, // extend/vpsravd/pack sequence.
832     { ISD::SRA,  MVT::v32i16,    14 }, // 2*extend/vpsravd/pack sequence.
833     { ISD::SRA,  MVT::v2i64,      2 }, // srl/xor/sub sequence.
834     { ISD::SRA,  MVT::v4i64,      2 }, // srl/xor/sub sequence.
835 
836     { ISD::SUB,  MVT::v32i8,      1 }, // psubb
837     { ISD::ADD,  MVT::v32i8,      1 }, // paddb
838     { ISD::SUB,  MVT::v16i16,     1 }, // psubw
839     { ISD::ADD,  MVT::v16i16,     1 }, // paddw
840     { ISD::SUB,  MVT::v8i32,      1 }, // psubd
841     { ISD::ADD,  MVT::v8i32,      1 }, // paddd
842     { ISD::SUB,  MVT::v4i64,      1 }, // psubq
843     { ISD::ADD,  MVT::v4i64,      1 }, // paddq
844 
845     { ISD::MUL,  MVT::v16i16,     1 }, // pmullw
846     { ISD::MUL,  MVT::v8i32,      2 }, // pmulld (Haswell from agner.org)
847     { ISD::MUL,  MVT::v4i64,      6 }, // 3*pmuludq/3*shift/2*add
848 
849     { ISD::FNEG, MVT::v4f64,      1 }, // Haswell from http://www.agner.org/
850     { ISD::FNEG, MVT::v8f32,      1 }, // Haswell from http://www.agner.org/
851     { ISD::FADD, MVT::v4f64,      1 }, // Haswell from http://www.agner.org/
852     { ISD::FADD, MVT::v8f32,      1 }, // Haswell from http://www.agner.org/
853     { ISD::FSUB, MVT::v4f64,      1 }, // Haswell from http://www.agner.org/
854     { ISD::FSUB, MVT::v8f32,      1 }, // Haswell from http://www.agner.org/
855     { ISD::FMUL, MVT::f64,        1 }, // Haswell from http://www.agner.org/
856     { ISD::FMUL, MVT::v2f64,      1 }, // Haswell from http://www.agner.org/
857     { ISD::FMUL, MVT::v4f64,      1 }, // Haswell from http://www.agner.org/
858     { ISD::FMUL, MVT::v8f32,      1 }, // Haswell from http://www.agner.org/
859 
860     { ISD::FDIV, MVT::f32,        7 }, // Haswell from http://www.agner.org/
861     { ISD::FDIV, MVT::v4f32,      7 }, // Haswell from http://www.agner.org/
862     { ISD::FDIV, MVT::v8f32,     14 }, // Haswell from http://www.agner.org/
863     { ISD::FDIV, MVT::f64,       14 }, // Haswell from http://www.agner.org/
864     { ISD::FDIV, MVT::v2f64,     14 }, // Haswell from http://www.agner.org/
865     { ISD::FDIV, MVT::v4f64,     28 }, // Haswell from http://www.agner.org/
866   };
867 
868   // Look for AVX2 lowering tricks for custom cases.
869   if (ST->hasAVX2())
870     if (const auto *Entry = CostTableLookup(AVX2CostTable, ISD, LT.second))
871       return LT.first * Entry->Cost;
872 
873   static const CostTblEntry AVX1CostTable[] = {
874     // We don't have to scalarize unsupported ops. We can issue two half-sized
875     // operations and we only need to extract the upper YMM half.
876     // Two ops + 1 extract + 1 insert = 4.
877     { ISD::MUL,     MVT::v16i16,     4 },
878     { ISD::MUL,     MVT::v8i32,      5 }, // BTVER2 from http://www.agner.org/
879     { ISD::MUL,     MVT::v4i64,     12 },
880 
881     { ISD::SUB,     MVT::v32i8,      4 },
882     { ISD::ADD,     MVT::v32i8,      4 },
883     { ISD::SUB,     MVT::v16i16,     4 },
884     { ISD::ADD,     MVT::v16i16,     4 },
885     { ISD::SUB,     MVT::v8i32,      4 },
886     { ISD::ADD,     MVT::v8i32,      4 },
887     { ISD::SUB,     MVT::v4i64,      4 },
888     { ISD::ADD,     MVT::v4i64,      4 },
889 
890     { ISD::SHL,     MVT::v32i8,     22 }, // pblendvb sequence + split.
891     { ISD::SHL,     MVT::v8i16,      6 }, // pblendvb sequence.
892     { ISD::SHL,     MVT::v16i16,    13 }, // pblendvb sequence + split.
893     { ISD::SHL,     MVT::v4i32,      3 }, // pslld/paddd/cvttps2dq/pmulld
894     { ISD::SHL,     MVT::v8i32,      9 }, // pslld/paddd/cvttps2dq/pmulld + split
895     { ISD::SHL,     MVT::v2i64,      2 }, // Shift each lane + blend.
896     { ISD::SHL,     MVT::v4i64,      6 }, // Shift each lane + blend + split.
897 
898     { ISD::SRL,     MVT::v32i8,     23 }, // pblendvb sequence + split.
899     { ISD::SRL,     MVT::v16i16,    28 }, // pblendvb sequence + split.
900     { ISD::SRL,     MVT::v4i32,      6 }, // Shift each lane + blend.
901     { ISD::SRL,     MVT::v8i32,     14 }, // Shift each lane + blend + split.
902     { ISD::SRL,     MVT::v2i64,      2 }, // Shift each lane + blend.
903     { ISD::SRL,     MVT::v4i64,      6 }, // Shift each lane + blend + split.
904 
905     { ISD::SRA,     MVT::v32i8,     44 }, // pblendvb sequence + split.
906     { ISD::SRA,     MVT::v16i16,    28 }, // pblendvb sequence + split.
907     { ISD::SRA,     MVT::v4i32,      6 }, // Shift each lane + blend.
908     { ISD::SRA,     MVT::v8i32,     14 }, // Shift each lane + blend + split.
909     { ISD::SRA,     MVT::v2i64,      5 }, // Shift each lane + blend.
910     { ISD::SRA,     MVT::v4i64,     12 }, // Shift each lane + blend + split.
911 
912     { ISD::FNEG,    MVT::v4f64,      2 }, // BTVER2 from http://www.agner.org/
913     { ISD::FNEG,    MVT::v8f32,      2 }, // BTVER2 from http://www.agner.org/
914 
915     { ISD::FMUL,    MVT::f64,        2 }, // BTVER2 from http://www.agner.org/
916     { ISD::FMUL,    MVT::v2f64,      2 }, // BTVER2 from http://www.agner.org/
917     { ISD::FMUL,    MVT::v4f64,      4 }, // BTVER2 from http://www.agner.org/
918 
919     { ISD::FDIV,    MVT::f32,       14 }, // SNB from http://www.agner.org/
920     { ISD::FDIV,    MVT::v4f32,     14 }, // SNB from http://www.agner.org/
921     { ISD::FDIV,    MVT::v8f32,     28 }, // SNB from http://www.agner.org/
922     { ISD::FDIV,    MVT::f64,       22 }, // SNB from http://www.agner.org/
923     { ISD::FDIV,    MVT::v2f64,     22 }, // SNB from http://www.agner.org/
924     { ISD::FDIV,    MVT::v4f64,     44 }, // SNB from http://www.agner.org/
925   };
926 
927   if (ST->hasAVX())
928     if (const auto *Entry = CostTableLookup(AVX1CostTable, ISD, LT.second))
929       return LT.first * Entry->Cost;
930 
931   static const CostTblEntry SSE42CostTable[] = {
932     { ISD::FADD, MVT::f64,     1 }, // Nehalem from http://www.agner.org/
933     { ISD::FADD, MVT::f32,     1 }, // Nehalem from http://www.agner.org/
934     { ISD::FADD, MVT::v2f64,   1 }, // Nehalem from http://www.agner.org/
935     { ISD::FADD, MVT::v4f32,   1 }, // Nehalem from http://www.agner.org/
936 
937     { ISD::FSUB, MVT::f64,     1 }, // Nehalem from http://www.agner.org/
938     { ISD::FSUB, MVT::f32 ,    1 }, // Nehalem from http://www.agner.org/
939     { ISD::FSUB, MVT::v2f64,   1 }, // Nehalem from http://www.agner.org/
940     { ISD::FSUB, MVT::v4f32,   1 }, // Nehalem from http://www.agner.org/
941 
942     { ISD::FMUL, MVT::f64,     1 }, // Nehalem from http://www.agner.org/
943     { ISD::FMUL, MVT::f32,     1 }, // Nehalem from http://www.agner.org/
944     { ISD::FMUL, MVT::v2f64,   1 }, // Nehalem from http://www.agner.org/
945     { ISD::FMUL, MVT::v4f32,   1 }, // Nehalem from http://www.agner.org/
946 
947     { ISD::FDIV,  MVT::f32,   14 }, // Nehalem from http://www.agner.org/
948     { ISD::FDIV,  MVT::v4f32, 14 }, // Nehalem from http://www.agner.org/
949     { ISD::FDIV,  MVT::f64,   22 }, // Nehalem from http://www.agner.org/
950     { ISD::FDIV,  MVT::v2f64, 22 }, // Nehalem from http://www.agner.org/
951 
952     { ISD::MUL,   MVT::v2i64,  6 }  // 3*pmuludq/3*shift/2*add
953   };
954 
955   if (ST->hasSSE42())
956     if (const auto *Entry = CostTableLookup(SSE42CostTable, ISD, LT.second))
957       return LT.first * Entry->Cost;
958 
959   static const CostTblEntry SSE41CostTable[] = {
960     { ISD::SHL,  MVT::v16i8,      10 }, // pblendvb sequence.
961     { ISD::SHL,  MVT::v8i16,      11 }, // pblendvb sequence.
962     { ISD::SHL,  MVT::v4i32,       4 }, // pslld/paddd/cvttps2dq/pmulld
963 
964     { ISD::SRL,  MVT::v16i8,      11 }, // pblendvb sequence.
965     { ISD::SRL,  MVT::v8i16,      13 }, // pblendvb sequence.
966     { ISD::SRL,  MVT::v4i32,      16 }, // Shift each lane + blend.
967 
968     { ISD::SRA,  MVT::v16i8,      21 }, // pblendvb sequence.
969     { ISD::SRA,  MVT::v8i16,      13 }, // pblendvb sequence.
970 
971     { ISD::MUL,  MVT::v4i32,       2 }  // pmulld (Nehalem from agner.org)
972   };
973 
974   if (ST->hasSSE41())
975     if (const auto *Entry = CostTableLookup(SSE41CostTable, ISD, LT.second))
976       return LT.first * Entry->Cost;
977 
978   static const CostTblEntry SSE2CostTable[] = {
979     // We don't correctly identify costs of casts because they are marked as
980     // custom.
981     { ISD::SHL,  MVT::v16i8,      13 }, // cmpgtb sequence.
982     { ISD::SHL,  MVT::v8i16,      25 }, // cmpgtw sequence.
983     { ISD::SHL,  MVT::v4i32,      16 }, // pslld/paddd/cvttps2dq/pmuludq.
984     { ISD::SHL,  MVT::v2i64,       4 }, // splat+shuffle sequence.
985 
986     { ISD::SRL,  MVT::v16i8,      14 }, // cmpgtb sequence.
987     { ISD::SRL,  MVT::v8i16,      16 }, // cmpgtw sequence.
988     { ISD::SRL,  MVT::v4i32,      12 }, // Shift each lane + blend.
989     { ISD::SRL,  MVT::v2i64,       4 }, // splat+shuffle sequence.
990 
991     { ISD::SRA,  MVT::v16i8,      27 }, // unpacked cmpgtb sequence.
992     { ISD::SRA,  MVT::v8i16,      16 }, // cmpgtw sequence.
993     { ISD::SRA,  MVT::v4i32,      12 }, // Shift each lane + blend.
994     { ISD::SRA,  MVT::v2i64,       8 }, // srl/xor/sub splat+shuffle sequence.
995 
996     { ISD::MUL,  MVT::v8i16,       1 }, // pmullw
997     { ISD::MUL,  MVT::v4i32,       6 }, // 3*pmuludq/4*shuffle
998     { ISD::MUL,  MVT::v2i64,       8 }, // 3*pmuludq/3*shift/2*add
999 
1000     { ISD::FDIV, MVT::f32,        23 }, // Pentium IV from http://www.agner.org/
1001     { ISD::FDIV, MVT::v4f32,      39 }, // Pentium IV from http://www.agner.org/
1002     { ISD::FDIV, MVT::f64,        38 }, // Pentium IV from http://www.agner.org/
1003     { ISD::FDIV, MVT::v2f64,      69 }, // Pentium IV from http://www.agner.org/
1004 
1005     { ISD::FNEG, MVT::f32,         1 }, // Pentium IV from http://www.agner.org/
1006     { ISD::FNEG, MVT::f64,         1 }, // Pentium IV from http://www.agner.org/
1007     { ISD::FNEG, MVT::v4f32,       1 }, // Pentium IV from http://www.agner.org/
1008     { ISD::FNEG, MVT::v2f64,       1 }, // Pentium IV from http://www.agner.org/
1009 
1010     { ISD::FADD, MVT::f32,         2 }, // Pentium IV from http://www.agner.org/
1011     { ISD::FADD, MVT::f64,         2 }, // Pentium IV from http://www.agner.org/
1012 
1013     { ISD::FSUB, MVT::f32,         2 }, // Pentium IV from http://www.agner.org/
1014     { ISD::FSUB, MVT::f64,         2 }, // Pentium IV from http://www.agner.org/
1015   };
1016 
1017   if (ST->hasSSE2())
1018     if (const auto *Entry = CostTableLookup(SSE2CostTable, ISD, LT.second))
1019       return LT.first * Entry->Cost;
1020 
1021   static const CostTblEntry SSE1CostTable[] = {
1022     { ISD::FDIV, MVT::f32,   17 }, // Pentium III from http://www.agner.org/
1023     { ISD::FDIV, MVT::v4f32, 34 }, // Pentium III from http://www.agner.org/
1024 
1025     { ISD::FNEG, MVT::f32,    2 }, // Pentium III from http://www.agner.org/
1026     { ISD::FNEG, MVT::v4f32,  2 }, // Pentium III from http://www.agner.org/
1027 
1028     { ISD::FADD, MVT::f32,    1 }, // Pentium III from http://www.agner.org/
1029     { ISD::FADD, MVT::v4f32,  2 }, // Pentium III from http://www.agner.org/
1030 
1031     { ISD::FSUB, MVT::f32,    1 }, // Pentium III from http://www.agner.org/
1032     { ISD::FSUB, MVT::v4f32,  2 }, // Pentium III from http://www.agner.org/
1033   };
1034 
1035   if (ST->hasSSE1())
1036     if (const auto *Entry = CostTableLookup(SSE1CostTable, ISD, LT.second))
1037       return LT.first * Entry->Cost;
1038 
1039   static const CostTblEntry X64CostTbl[] = { // 64-bit targets
1040     { ISD::ADD,  MVT::i64,    1 }, // Core (Merom) from http://www.agner.org/
1041     { ISD::SUB,  MVT::i64,    1 }, // Core (Merom) from http://www.agner.org/
1042     { ISD::MUL,  MVT::i64,    2 }, // Nehalem from http://www.agner.org/
1043   };
1044 
1045   if (ST->is64Bit())
1046     if (const auto *Entry = CostTableLookup(X64CostTbl, ISD, LT.second))
1047       return LT.first * Entry->Cost;
1048 
1049   static const CostTblEntry X86CostTbl[] = { // 32 or 64-bit targets
1050     { ISD::ADD,  MVT::i8,    1 }, // Pentium III from http://www.agner.org/
1051     { ISD::ADD,  MVT::i16,   1 }, // Pentium III from http://www.agner.org/
1052     { ISD::ADD,  MVT::i32,   1 }, // Pentium III from http://www.agner.org/
1053 
1054     { ISD::SUB,  MVT::i8,    1 }, // Pentium III from http://www.agner.org/
1055     { ISD::SUB,  MVT::i16,   1 }, // Pentium III from http://www.agner.org/
1056     { ISD::SUB,  MVT::i32,   1 }, // Pentium III from http://www.agner.org/
1057   };
1058 
1059   if (const auto *Entry = CostTableLookup(X86CostTbl, ISD, LT.second))
1060     return LT.first * Entry->Cost;
1061 
1062   // It is not a good idea to vectorize division. We have to scalarize it and
1063   // in the process we will often end up having to spilling regular
1064   // registers. The overhead of division is going to dominate most kernels
1065   // anyways so try hard to prevent vectorization of division - it is
1066   // generally a bad idea. Assume somewhat arbitrarily that we have to be able
1067   // to hide "20 cycles" for each lane.
1068   if (LT.second.isVector() && (ISD == ISD::SDIV || ISD == ISD::SREM ||
1069                                ISD == ISD::UDIV || ISD == ISD::UREM)) {
1070     InstructionCost ScalarCost = getArithmeticInstrCost(
1071         Opcode, Ty->getScalarType(), CostKind, Op1Info, Op2Info,
1072         TargetTransformInfo::OP_None, TargetTransformInfo::OP_None);
1073     return 20 * LT.first * LT.second.getVectorNumElements() * ScalarCost;
1074   }
1075 
1076   // Fallback to the default implementation.
1077   return BaseT::getArithmeticInstrCost(Opcode, Ty, CostKind, Op1Info, Op2Info);
1078 }
1079 
1080 InstructionCost X86TTIImpl::getShuffleCost(TTI::ShuffleKind Kind,
1081                                            VectorType *BaseTp,
1082                                            ArrayRef<int> Mask, int Index,
1083                                            VectorType *SubTp) {
1084   // 64-bit packed float vectors (v2f32) are widened to type v4f32.
1085   // 64-bit packed integer vectors (v2i32) are widened to type v4i32.
1086   std::pair<InstructionCost, MVT> LT = TLI->getTypeLegalizationCost(DL, BaseTp);
1087 
1088   Kind = improveShuffleKindFromMask(Kind, Mask);
1089   // Treat Transpose as 2-op shuffles - there's no difference in lowering.
1090   if (Kind == TTI::SK_Transpose)
1091     Kind = TTI::SK_PermuteTwoSrc;
1092 
1093   // For Broadcasts we are splatting the first element from the first input
1094   // register, so only need to reference that input and all the output
1095   // registers are the same.
1096   if (Kind == TTI::SK_Broadcast)
1097     LT.first = 1;
1098 
1099   // Subvector extractions are free if they start at the beginning of a
1100   // vector and cheap if the subvectors are aligned.
1101   if (Kind == TTI::SK_ExtractSubvector && LT.second.isVector()) {
1102     int NumElts = LT.second.getVectorNumElements();
1103     if ((Index % NumElts) == 0)
1104       return 0;
1105     std::pair<InstructionCost, MVT> SubLT =
1106         TLI->getTypeLegalizationCost(DL, SubTp);
1107     if (SubLT.second.isVector()) {
1108       int NumSubElts = SubLT.second.getVectorNumElements();
1109       if ((Index % NumSubElts) == 0 && (NumElts % NumSubElts) == 0)
1110         return SubLT.first;
1111       // Handle some cases for widening legalization. For now we only handle
1112       // cases where the original subvector was naturally aligned and evenly
1113       // fit in its legalized subvector type.
1114       // FIXME: Remove some of the alignment restrictions.
1115       // FIXME: We can use permq for 64-bit or larger extracts from 256-bit
1116       // vectors.
1117       int OrigSubElts = cast<FixedVectorType>(SubTp)->getNumElements();
1118       if (NumSubElts > OrigSubElts && (Index % OrigSubElts) == 0 &&
1119           (NumSubElts % OrigSubElts) == 0 &&
1120           LT.second.getVectorElementType() ==
1121               SubLT.second.getVectorElementType() &&
1122           LT.second.getVectorElementType().getSizeInBits() ==
1123               BaseTp->getElementType()->getPrimitiveSizeInBits()) {
1124         assert(NumElts >= NumSubElts && NumElts > OrigSubElts &&
1125                "Unexpected number of elements!");
1126         auto *VecTy = FixedVectorType::get(BaseTp->getElementType(),
1127                                            LT.second.getVectorNumElements());
1128         auto *SubTy = FixedVectorType::get(BaseTp->getElementType(),
1129                                            SubLT.second.getVectorNumElements());
1130         int ExtractIndex = alignDown((Index % NumElts), NumSubElts);
1131         InstructionCost ExtractCost = getShuffleCost(
1132             TTI::SK_ExtractSubvector, VecTy, None, ExtractIndex, SubTy);
1133 
1134         // If the original size is 32-bits or more, we can use pshufd. Otherwise
1135         // if we have SSSE3 we can use pshufb.
1136         if (SubTp->getPrimitiveSizeInBits() >= 32 || ST->hasSSSE3())
1137           return ExtractCost + 1; // pshufd or pshufb
1138 
1139         assert(SubTp->getPrimitiveSizeInBits() == 16 &&
1140                "Unexpected vector size");
1141 
1142         return ExtractCost + 2; // worst case pshufhw + pshufd
1143       }
1144     }
1145   }
1146 
1147   // Subvector insertions are cheap if the subvectors are aligned.
1148   // Note that in general, the insertion starting at the beginning of a vector
1149   // isn't free, because we need to preserve the rest of the wide vector.
1150   if (Kind == TTI::SK_InsertSubvector && LT.second.isVector()) {
1151     int NumElts = LT.second.getVectorNumElements();
1152     std::pair<InstructionCost, MVT> SubLT =
1153         TLI->getTypeLegalizationCost(DL, SubTp);
1154     if (SubLT.second.isVector()) {
1155       int NumSubElts = SubLT.second.getVectorNumElements();
1156       if ((Index % NumSubElts) == 0 && (NumElts % NumSubElts) == 0)
1157         return SubLT.first;
1158     }
1159 
1160     // If the insertion isn't aligned, treat it like a 2-op shuffle.
1161     Kind = TTI::SK_PermuteTwoSrc;
1162   }
1163 
1164   // Handle some common (illegal) sub-vector types as they are often very cheap
1165   // to shuffle even on targets without PSHUFB.
1166   EVT VT = TLI->getValueType(DL, BaseTp);
1167   if (VT.isSimple() && VT.isVector() && VT.getSizeInBits() < 128 &&
1168       !ST->hasSSSE3()) {
1169      static const CostTblEntry SSE2SubVectorShuffleTbl[] = {
1170       {TTI::SK_Broadcast,        MVT::v4i16, 1}, // pshuflw
1171       {TTI::SK_Broadcast,        MVT::v2i16, 1}, // pshuflw
1172       {TTI::SK_Broadcast,        MVT::v8i8,  2}, // punpck/pshuflw
1173       {TTI::SK_Broadcast,        MVT::v4i8,  2}, // punpck/pshuflw
1174       {TTI::SK_Broadcast,        MVT::v2i8,  1}, // punpck
1175 
1176       {TTI::SK_Reverse,          MVT::v4i16, 1}, // pshuflw
1177       {TTI::SK_Reverse,          MVT::v2i16, 1}, // pshuflw
1178       {TTI::SK_Reverse,          MVT::v4i8,  3}, // punpck/pshuflw/packus
1179       {TTI::SK_Reverse,          MVT::v2i8,  1}, // punpck
1180 
1181       {TTI::SK_PermuteTwoSrc,    MVT::v4i16, 2}, // punpck/pshuflw
1182       {TTI::SK_PermuteTwoSrc,    MVT::v2i16, 2}, // punpck/pshuflw
1183       {TTI::SK_PermuteTwoSrc,    MVT::v8i8,  7}, // punpck/pshuflw
1184       {TTI::SK_PermuteTwoSrc,    MVT::v4i8,  4}, // punpck/pshuflw
1185       {TTI::SK_PermuteTwoSrc,    MVT::v2i8,  2}, // punpck
1186 
1187       {TTI::SK_PermuteSingleSrc, MVT::v4i16, 1}, // pshuflw
1188       {TTI::SK_PermuteSingleSrc, MVT::v2i16, 1}, // pshuflw
1189       {TTI::SK_PermuteSingleSrc, MVT::v8i8,  5}, // punpck/pshuflw
1190       {TTI::SK_PermuteSingleSrc, MVT::v4i8,  3}, // punpck/pshuflw
1191       {TTI::SK_PermuteSingleSrc, MVT::v2i8,  1}, // punpck
1192     };
1193 
1194     if (ST->hasSSE2())
1195       if (const auto *Entry =
1196               CostTableLookup(SSE2SubVectorShuffleTbl, Kind, VT.getSimpleVT()))
1197         return Entry->Cost;
1198   }
1199 
1200   // We are going to permute multiple sources and the result will be in multiple
1201   // destinations. Providing an accurate cost only for splits where the element
1202   // type remains the same.
1203   if (Kind == TTI::SK_PermuteSingleSrc && LT.first != 1) {
1204     MVT LegalVT = LT.second;
1205     if (LegalVT.isVector() &&
1206         LegalVT.getVectorElementType().getSizeInBits() ==
1207             BaseTp->getElementType()->getPrimitiveSizeInBits() &&
1208         LegalVT.getVectorNumElements() <
1209             cast<FixedVectorType>(BaseTp)->getNumElements()) {
1210 
1211       unsigned VecTySize = DL.getTypeStoreSize(BaseTp);
1212       unsigned LegalVTSize = LegalVT.getStoreSize();
1213       // Number of source vectors after legalization:
1214       unsigned NumOfSrcs = (VecTySize + LegalVTSize - 1) / LegalVTSize;
1215       // Number of destination vectors after legalization:
1216       InstructionCost NumOfDests = LT.first;
1217 
1218       auto *SingleOpTy = FixedVectorType::get(BaseTp->getElementType(),
1219                                               LegalVT.getVectorNumElements());
1220 
1221       InstructionCost NumOfShuffles = (NumOfSrcs - 1) * NumOfDests;
1222       return NumOfShuffles * getShuffleCost(TTI::SK_PermuteTwoSrc, SingleOpTy,
1223                                             None, 0, nullptr);
1224     }
1225 
1226     return BaseT::getShuffleCost(Kind, BaseTp, Mask, Index, SubTp);
1227   }
1228 
1229   // For 2-input shuffles, we must account for splitting the 2 inputs into many.
1230   if (Kind == TTI::SK_PermuteTwoSrc && LT.first != 1) {
1231     // We assume that source and destination have the same vector type.
1232     InstructionCost NumOfDests = LT.first;
1233     InstructionCost NumOfShufflesPerDest = LT.first * 2 - 1;
1234     LT.first = NumOfDests * NumOfShufflesPerDest;
1235   }
1236 
1237   static const CostTblEntry AVX512FP16ShuffleTbl[] = {
1238       {TTI::SK_Broadcast, MVT::v32f16, 1}, // vpbroadcastw
1239       {TTI::SK_Broadcast, MVT::v16f16, 1}, // vpbroadcastw
1240       {TTI::SK_Broadcast, MVT::v8f16, 1},  // vpbroadcastw
1241 
1242       {TTI::SK_Reverse, MVT::v32f16, 2}, // vpermw
1243       {TTI::SK_Reverse, MVT::v16f16, 2}, // vpermw
1244       {TTI::SK_Reverse, MVT::v8f16, 1},  // vpshufb
1245 
1246       {TTI::SK_PermuteSingleSrc, MVT::v32f16, 2}, // vpermw
1247       {TTI::SK_PermuteSingleSrc, MVT::v16f16, 2}, // vpermw
1248       {TTI::SK_PermuteSingleSrc, MVT::v8f16, 1},  // vpshufb
1249 
1250       {TTI::SK_PermuteTwoSrc, MVT::v32f16, 2}, // vpermt2w
1251       {TTI::SK_PermuteTwoSrc, MVT::v16f16, 2}, // vpermt2w
1252       {TTI::SK_PermuteTwoSrc, MVT::v8f16, 2}   // vpermt2w
1253   };
1254 
1255   if (!ST->useSoftFloat() && ST->hasFP16())
1256     if (const auto *Entry =
1257             CostTableLookup(AVX512FP16ShuffleTbl, Kind, LT.second))
1258       return LT.first * Entry->Cost;
1259 
1260   static const CostTblEntry AVX512VBMIShuffleTbl[] = {
1261       {TTI::SK_Reverse, MVT::v64i8, 1}, // vpermb
1262       {TTI::SK_Reverse, MVT::v32i8, 1}, // vpermb
1263 
1264       {TTI::SK_PermuteSingleSrc, MVT::v64i8, 1}, // vpermb
1265       {TTI::SK_PermuteSingleSrc, MVT::v32i8, 1}, // vpermb
1266 
1267       {TTI::SK_PermuteTwoSrc, MVT::v64i8, 2}, // vpermt2b
1268       {TTI::SK_PermuteTwoSrc, MVT::v32i8, 2}, // vpermt2b
1269       {TTI::SK_PermuteTwoSrc, MVT::v16i8, 2}  // vpermt2b
1270   };
1271 
1272   if (ST->hasVBMI())
1273     if (const auto *Entry =
1274             CostTableLookup(AVX512VBMIShuffleTbl, Kind, LT.second))
1275       return LT.first * Entry->Cost;
1276 
1277   static const CostTblEntry AVX512BWShuffleTbl[] = {
1278       {TTI::SK_Broadcast, MVT::v32i16, 1}, // vpbroadcastw
1279       {TTI::SK_Broadcast, MVT::v64i8, 1},  // vpbroadcastb
1280 
1281       {TTI::SK_Reverse, MVT::v32i16, 2}, // vpermw
1282       {TTI::SK_Reverse, MVT::v16i16, 2}, // vpermw
1283       {TTI::SK_Reverse, MVT::v64i8, 2},  // pshufb + vshufi64x2
1284 
1285       {TTI::SK_PermuteSingleSrc, MVT::v32i16, 2}, // vpermw
1286       {TTI::SK_PermuteSingleSrc, MVT::v16i16, 2}, // vpermw
1287       {TTI::SK_PermuteSingleSrc, MVT::v64i8, 8},  // extend to v32i16
1288 
1289       {TTI::SK_PermuteTwoSrc, MVT::v32i16, 2}, // vpermt2w
1290       {TTI::SK_PermuteTwoSrc, MVT::v16i16, 2}, // vpermt2w
1291       {TTI::SK_PermuteTwoSrc, MVT::v8i16, 2},  // vpermt2w
1292       {TTI::SK_PermuteTwoSrc, MVT::v64i8, 19}, // 6 * v32i8 + 1
1293 
1294       {TTI::SK_Select, MVT::v32i16, 1}, // vblendmw
1295       {TTI::SK_Select, MVT::v64i8,  1}, // vblendmb
1296   };
1297 
1298   if (ST->hasBWI())
1299     if (const auto *Entry =
1300             CostTableLookup(AVX512BWShuffleTbl, Kind, LT.second))
1301       return LT.first * Entry->Cost;
1302 
1303   static const CostTblEntry AVX512ShuffleTbl[] = {
1304       {TTI::SK_Broadcast, MVT::v8f64, 1},  // vbroadcastpd
1305       {TTI::SK_Broadcast, MVT::v16f32, 1}, // vbroadcastps
1306       {TTI::SK_Broadcast, MVT::v8i64, 1},  // vpbroadcastq
1307       {TTI::SK_Broadcast, MVT::v16i32, 1}, // vpbroadcastd
1308       {TTI::SK_Broadcast, MVT::v32i16, 1}, // vpbroadcastw
1309       {TTI::SK_Broadcast, MVT::v64i8, 1},  // vpbroadcastb
1310 
1311       {TTI::SK_Reverse, MVT::v8f64, 1},  // vpermpd
1312       {TTI::SK_Reverse, MVT::v16f32, 1}, // vpermps
1313       {TTI::SK_Reverse, MVT::v8i64, 1},  // vpermq
1314       {TTI::SK_Reverse, MVT::v16i32, 1}, // vpermd
1315       {TTI::SK_Reverse, MVT::v32i16, 7}, // per mca
1316       {TTI::SK_Reverse, MVT::v64i8,  7}, // per mca
1317 
1318       {TTI::SK_PermuteSingleSrc, MVT::v8f64, 1},  // vpermpd
1319       {TTI::SK_PermuteSingleSrc, MVT::v4f64, 1},  // vpermpd
1320       {TTI::SK_PermuteSingleSrc, MVT::v2f64, 1},  // vpermpd
1321       {TTI::SK_PermuteSingleSrc, MVT::v16f32, 1}, // vpermps
1322       {TTI::SK_PermuteSingleSrc, MVT::v8f32, 1},  // vpermps
1323       {TTI::SK_PermuteSingleSrc, MVT::v4f32, 1},  // vpermps
1324       {TTI::SK_PermuteSingleSrc, MVT::v8i64, 1},  // vpermq
1325       {TTI::SK_PermuteSingleSrc, MVT::v4i64, 1},  // vpermq
1326       {TTI::SK_PermuteSingleSrc, MVT::v2i64, 1},  // vpermq
1327       {TTI::SK_PermuteSingleSrc, MVT::v16i32, 1}, // vpermd
1328       {TTI::SK_PermuteSingleSrc, MVT::v8i32, 1},  // vpermd
1329       {TTI::SK_PermuteSingleSrc, MVT::v4i32, 1},  // vpermd
1330       {TTI::SK_PermuteSingleSrc, MVT::v16i8, 1},  // pshufb
1331 
1332       {TTI::SK_PermuteTwoSrc, MVT::v8f64, 1},  // vpermt2pd
1333       {TTI::SK_PermuteTwoSrc, MVT::v16f32, 1}, // vpermt2ps
1334       {TTI::SK_PermuteTwoSrc, MVT::v8i64, 1},  // vpermt2q
1335       {TTI::SK_PermuteTwoSrc, MVT::v16i32, 1}, // vpermt2d
1336       {TTI::SK_PermuteTwoSrc, MVT::v4f64, 1},  // vpermt2pd
1337       {TTI::SK_PermuteTwoSrc, MVT::v8f32, 1},  // vpermt2ps
1338       {TTI::SK_PermuteTwoSrc, MVT::v4i64, 1},  // vpermt2q
1339       {TTI::SK_PermuteTwoSrc, MVT::v8i32, 1},  // vpermt2d
1340       {TTI::SK_PermuteTwoSrc, MVT::v2f64, 1},  // vpermt2pd
1341       {TTI::SK_PermuteTwoSrc, MVT::v4f32, 1},  // vpermt2ps
1342       {TTI::SK_PermuteTwoSrc, MVT::v2i64, 1},  // vpermt2q
1343       {TTI::SK_PermuteTwoSrc, MVT::v4i32, 1},  // vpermt2d
1344 
1345       // FIXME: This just applies the type legalization cost rules above
1346       // assuming these completely split.
1347       {TTI::SK_PermuteSingleSrc, MVT::v32i16, 14},
1348       {TTI::SK_PermuteSingleSrc, MVT::v64i8,  14},
1349       {TTI::SK_PermuteTwoSrc,    MVT::v32i16, 42},
1350       {TTI::SK_PermuteTwoSrc,    MVT::v64i8,  42},
1351 
1352       {TTI::SK_Select, MVT::v32i16, 1}, // vpternlogq
1353       {TTI::SK_Select, MVT::v64i8,  1}, // vpternlogq
1354       {TTI::SK_Select, MVT::v8f64,  1}, // vblendmpd
1355       {TTI::SK_Select, MVT::v16f32, 1}, // vblendmps
1356       {TTI::SK_Select, MVT::v8i64,  1}, // vblendmq
1357       {TTI::SK_Select, MVT::v16i32, 1}, // vblendmd
1358   };
1359 
1360   if (ST->hasAVX512())
1361     if (const auto *Entry = CostTableLookup(AVX512ShuffleTbl, Kind, LT.second))
1362       return LT.first * Entry->Cost;
1363 
1364   static const CostTblEntry AVX2ShuffleTbl[] = {
1365       {TTI::SK_Broadcast, MVT::v4f64, 1},  // vbroadcastpd
1366       {TTI::SK_Broadcast, MVT::v8f32, 1},  // vbroadcastps
1367       {TTI::SK_Broadcast, MVT::v4i64, 1},  // vpbroadcastq
1368       {TTI::SK_Broadcast, MVT::v8i32, 1},  // vpbroadcastd
1369       {TTI::SK_Broadcast, MVT::v16i16, 1}, // vpbroadcastw
1370       {TTI::SK_Broadcast, MVT::v32i8, 1},  // vpbroadcastb
1371 
1372       {TTI::SK_Reverse, MVT::v4f64, 1},  // vpermpd
1373       {TTI::SK_Reverse, MVT::v8f32, 1},  // vpermps
1374       {TTI::SK_Reverse, MVT::v4i64, 1},  // vpermq
1375       {TTI::SK_Reverse, MVT::v8i32, 1},  // vpermd
1376       {TTI::SK_Reverse, MVT::v16i16, 2}, // vperm2i128 + pshufb
1377       {TTI::SK_Reverse, MVT::v32i8, 2},  // vperm2i128 + pshufb
1378 
1379       {TTI::SK_Select, MVT::v16i16, 1}, // vpblendvb
1380       {TTI::SK_Select, MVT::v32i8, 1},  // vpblendvb
1381 
1382       {TTI::SK_PermuteSingleSrc, MVT::v4f64, 1},  // vpermpd
1383       {TTI::SK_PermuteSingleSrc, MVT::v8f32, 1},  // vpermps
1384       {TTI::SK_PermuteSingleSrc, MVT::v4i64, 1},  // vpermq
1385       {TTI::SK_PermuteSingleSrc, MVT::v8i32, 1},  // vpermd
1386       {TTI::SK_PermuteSingleSrc, MVT::v16i16, 4}, // vperm2i128 + 2*vpshufb
1387                                                   // + vpblendvb
1388       {TTI::SK_PermuteSingleSrc, MVT::v32i8, 4},  // vperm2i128 + 2*vpshufb
1389                                                   // + vpblendvb
1390 
1391       {TTI::SK_PermuteTwoSrc, MVT::v4f64, 3},  // 2*vpermpd + vblendpd
1392       {TTI::SK_PermuteTwoSrc, MVT::v8f32, 3},  // 2*vpermps + vblendps
1393       {TTI::SK_PermuteTwoSrc, MVT::v4i64, 3},  // 2*vpermq + vpblendd
1394       {TTI::SK_PermuteTwoSrc, MVT::v8i32, 3},  // 2*vpermd + vpblendd
1395       {TTI::SK_PermuteTwoSrc, MVT::v16i16, 7}, // 2*vperm2i128 + 4*vpshufb
1396                                                // + vpblendvb
1397       {TTI::SK_PermuteTwoSrc, MVT::v32i8, 7},  // 2*vperm2i128 + 4*vpshufb
1398                                                // + vpblendvb
1399   };
1400 
1401   if (ST->hasAVX2())
1402     if (const auto *Entry = CostTableLookup(AVX2ShuffleTbl, Kind, LT.second))
1403       return LT.first * Entry->Cost;
1404 
1405   static const CostTblEntry XOPShuffleTbl[] = {
1406       {TTI::SK_PermuteSingleSrc, MVT::v4f64, 2},  // vperm2f128 + vpermil2pd
1407       {TTI::SK_PermuteSingleSrc, MVT::v8f32, 2},  // vperm2f128 + vpermil2ps
1408       {TTI::SK_PermuteSingleSrc, MVT::v4i64, 2},  // vperm2f128 + vpermil2pd
1409       {TTI::SK_PermuteSingleSrc, MVT::v8i32, 2},  // vperm2f128 + vpermil2ps
1410       {TTI::SK_PermuteSingleSrc, MVT::v16i16, 4}, // vextractf128 + 2*vpperm
1411                                                   // + vinsertf128
1412       {TTI::SK_PermuteSingleSrc, MVT::v32i8, 4},  // vextractf128 + 2*vpperm
1413                                                   // + vinsertf128
1414 
1415       {TTI::SK_PermuteTwoSrc, MVT::v16i16, 9}, // 2*vextractf128 + 6*vpperm
1416                                                // + vinsertf128
1417       {TTI::SK_PermuteTwoSrc, MVT::v8i16, 1},  // vpperm
1418       {TTI::SK_PermuteTwoSrc, MVT::v32i8, 9},  // 2*vextractf128 + 6*vpperm
1419                                                // + vinsertf128
1420       {TTI::SK_PermuteTwoSrc, MVT::v16i8, 1},  // vpperm
1421   };
1422 
1423   if (ST->hasXOP())
1424     if (const auto *Entry = CostTableLookup(XOPShuffleTbl, Kind, LT.second))
1425       return LT.first * Entry->Cost;
1426 
1427   static const CostTblEntry AVX1ShuffleTbl[] = {
1428       {TTI::SK_Broadcast, MVT::v4f64, 2},  // vperm2f128 + vpermilpd
1429       {TTI::SK_Broadcast, MVT::v8f32, 2},  // vperm2f128 + vpermilps
1430       {TTI::SK_Broadcast, MVT::v4i64, 2},  // vperm2f128 + vpermilpd
1431       {TTI::SK_Broadcast, MVT::v8i32, 2},  // vperm2f128 + vpermilps
1432       {TTI::SK_Broadcast, MVT::v16i16, 3}, // vpshuflw + vpshufd + vinsertf128
1433       {TTI::SK_Broadcast, MVT::v32i8, 2},  // vpshufb + vinsertf128
1434 
1435       {TTI::SK_Reverse, MVT::v4f64, 2},  // vperm2f128 + vpermilpd
1436       {TTI::SK_Reverse, MVT::v8f32, 2},  // vperm2f128 + vpermilps
1437       {TTI::SK_Reverse, MVT::v4i64, 2},  // vperm2f128 + vpermilpd
1438       {TTI::SK_Reverse, MVT::v8i32, 2},  // vperm2f128 + vpermilps
1439       {TTI::SK_Reverse, MVT::v16i16, 4}, // vextractf128 + 2*pshufb
1440                                          // + vinsertf128
1441       {TTI::SK_Reverse, MVT::v32i8, 4},  // vextractf128 + 2*pshufb
1442                                          // + vinsertf128
1443 
1444       {TTI::SK_Select, MVT::v4i64, 1},  // vblendpd
1445       {TTI::SK_Select, MVT::v4f64, 1},  // vblendpd
1446       {TTI::SK_Select, MVT::v8i32, 1},  // vblendps
1447       {TTI::SK_Select, MVT::v8f32, 1},  // vblendps
1448       {TTI::SK_Select, MVT::v16i16, 3}, // vpand + vpandn + vpor
1449       {TTI::SK_Select, MVT::v32i8, 3},  // vpand + vpandn + vpor
1450 
1451       {TTI::SK_PermuteSingleSrc, MVT::v4f64, 2},  // vperm2f128 + vshufpd
1452       {TTI::SK_PermuteSingleSrc, MVT::v4i64, 2},  // vperm2f128 + vshufpd
1453       {TTI::SK_PermuteSingleSrc, MVT::v8f32, 4},  // 2*vperm2f128 + 2*vshufps
1454       {TTI::SK_PermuteSingleSrc, MVT::v8i32, 4},  // 2*vperm2f128 + 2*vshufps
1455       {TTI::SK_PermuteSingleSrc, MVT::v16i16, 8}, // vextractf128 + 4*pshufb
1456                                                   // + 2*por + vinsertf128
1457       {TTI::SK_PermuteSingleSrc, MVT::v32i8, 8},  // vextractf128 + 4*pshufb
1458                                                   // + 2*por + vinsertf128
1459 
1460       {TTI::SK_PermuteTwoSrc, MVT::v4f64, 3},   // 2*vperm2f128 + vshufpd
1461       {TTI::SK_PermuteTwoSrc, MVT::v4i64, 3},   // 2*vperm2f128 + vshufpd
1462       {TTI::SK_PermuteTwoSrc, MVT::v8f32, 4},   // 2*vperm2f128 + 2*vshufps
1463       {TTI::SK_PermuteTwoSrc, MVT::v8i32, 4},   // 2*vperm2f128 + 2*vshufps
1464       {TTI::SK_PermuteTwoSrc, MVT::v16i16, 15}, // 2*vextractf128 + 8*pshufb
1465                                                 // + 4*por + vinsertf128
1466       {TTI::SK_PermuteTwoSrc, MVT::v32i8, 15},  // 2*vextractf128 + 8*pshufb
1467                                                 // + 4*por + vinsertf128
1468   };
1469 
1470   if (ST->hasAVX())
1471     if (const auto *Entry = CostTableLookup(AVX1ShuffleTbl, Kind, LT.second))
1472       return LT.first * Entry->Cost;
1473 
1474   static const CostTblEntry SSE41ShuffleTbl[] = {
1475       {TTI::SK_Select, MVT::v2i64, 1}, // pblendw
1476       {TTI::SK_Select, MVT::v2f64, 1}, // movsd
1477       {TTI::SK_Select, MVT::v4i32, 1}, // pblendw
1478       {TTI::SK_Select, MVT::v4f32, 1}, // blendps
1479       {TTI::SK_Select, MVT::v8i16, 1}, // pblendw
1480       {TTI::SK_Select, MVT::v16i8, 1}  // pblendvb
1481   };
1482 
1483   if (ST->hasSSE41())
1484     if (const auto *Entry = CostTableLookup(SSE41ShuffleTbl, Kind, LT.second))
1485       return LT.first * Entry->Cost;
1486 
1487   static const CostTblEntry SSSE3ShuffleTbl[] = {
1488       {TTI::SK_Broadcast, MVT::v8i16, 1}, // pshufb
1489       {TTI::SK_Broadcast, MVT::v16i8, 1}, // pshufb
1490 
1491       {TTI::SK_Reverse, MVT::v8i16, 1}, // pshufb
1492       {TTI::SK_Reverse, MVT::v16i8, 1}, // pshufb
1493 
1494       {TTI::SK_Select, MVT::v8i16, 3}, // 2*pshufb + por
1495       {TTI::SK_Select, MVT::v16i8, 3}, // 2*pshufb + por
1496 
1497       {TTI::SK_PermuteSingleSrc, MVT::v8i16, 1}, // pshufb
1498       {TTI::SK_PermuteSingleSrc, MVT::v16i8, 1}, // pshufb
1499 
1500       {TTI::SK_PermuteTwoSrc, MVT::v8i16, 3}, // 2*pshufb + por
1501       {TTI::SK_PermuteTwoSrc, MVT::v16i8, 3}, // 2*pshufb + por
1502   };
1503 
1504   if (ST->hasSSSE3())
1505     if (const auto *Entry = CostTableLookup(SSSE3ShuffleTbl, Kind, LT.second))
1506       return LT.first * Entry->Cost;
1507 
1508   static const CostTblEntry SSE2ShuffleTbl[] = {
1509       {TTI::SK_Broadcast, MVT::v2f64, 1}, // shufpd
1510       {TTI::SK_Broadcast, MVT::v2i64, 1}, // pshufd
1511       {TTI::SK_Broadcast, MVT::v4i32, 1}, // pshufd
1512       {TTI::SK_Broadcast, MVT::v8i16, 2}, // pshuflw + pshufd
1513       {TTI::SK_Broadcast, MVT::v16i8, 3}, // unpck + pshuflw + pshufd
1514 
1515       {TTI::SK_Reverse, MVT::v2f64, 1}, // shufpd
1516       {TTI::SK_Reverse, MVT::v2i64, 1}, // pshufd
1517       {TTI::SK_Reverse, MVT::v4i32, 1}, // pshufd
1518       {TTI::SK_Reverse, MVT::v8i16, 3}, // pshuflw + pshufhw + pshufd
1519       {TTI::SK_Reverse, MVT::v16i8, 9}, // 2*pshuflw + 2*pshufhw
1520                                         // + 2*pshufd + 2*unpck + packus
1521 
1522       {TTI::SK_Select, MVT::v2i64, 1}, // movsd
1523       {TTI::SK_Select, MVT::v2f64, 1}, // movsd
1524       {TTI::SK_Select, MVT::v4i32, 2}, // 2*shufps
1525       {TTI::SK_Select, MVT::v8i16, 3}, // pand + pandn + por
1526       {TTI::SK_Select, MVT::v16i8, 3}, // pand + pandn + por
1527 
1528       {TTI::SK_PermuteSingleSrc, MVT::v2f64, 1}, // shufpd
1529       {TTI::SK_PermuteSingleSrc, MVT::v2i64, 1}, // pshufd
1530       {TTI::SK_PermuteSingleSrc, MVT::v4i32, 1}, // pshufd
1531       {TTI::SK_PermuteSingleSrc, MVT::v8i16, 5}, // 2*pshuflw + 2*pshufhw
1532                                                   // + pshufd/unpck
1533     { TTI::SK_PermuteSingleSrc, MVT::v16i8, 10 }, // 2*pshuflw + 2*pshufhw
1534                                                   // + 2*pshufd + 2*unpck + 2*packus
1535 
1536     { TTI::SK_PermuteTwoSrc,    MVT::v2f64,  1 }, // shufpd
1537     { TTI::SK_PermuteTwoSrc,    MVT::v2i64,  1 }, // shufpd
1538     { TTI::SK_PermuteTwoSrc,    MVT::v4i32,  2 }, // 2*{unpck,movsd,pshufd}
1539     { TTI::SK_PermuteTwoSrc,    MVT::v8i16,  8 }, // blend+permute
1540     { TTI::SK_PermuteTwoSrc,    MVT::v16i8, 13 }, // blend+permute
1541   };
1542 
1543   if (ST->hasSSE2())
1544     if (const auto *Entry = CostTableLookup(SSE2ShuffleTbl, Kind, LT.second))
1545       return LT.first * Entry->Cost;
1546 
1547   static const CostTblEntry SSE1ShuffleTbl[] = {
1548     { TTI::SK_Broadcast,        MVT::v4f32, 1 }, // shufps
1549     { TTI::SK_Reverse,          MVT::v4f32, 1 }, // shufps
1550     { TTI::SK_Select,           MVT::v4f32, 2 }, // 2*shufps
1551     { TTI::SK_PermuteSingleSrc, MVT::v4f32, 1 }, // shufps
1552     { TTI::SK_PermuteTwoSrc,    MVT::v4f32, 2 }, // 2*shufps
1553   };
1554 
1555   if (ST->hasSSE1())
1556     if (const auto *Entry = CostTableLookup(SSE1ShuffleTbl, Kind, LT.second))
1557       return LT.first * Entry->Cost;
1558 
1559   return BaseT::getShuffleCost(Kind, BaseTp, Mask, Index, SubTp);
1560 }
1561 
1562 InstructionCost X86TTIImpl::getCastInstrCost(unsigned Opcode, Type *Dst,
1563                                              Type *Src,
1564                                              TTI::CastContextHint CCH,
1565                                              TTI::TargetCostKind CostKind,
1566                                              const Instruction *I) {
1567   int ISD = TLI->InstructionOpcodeToISD(Opcode);
1568   assert(ISD && "Invalid opcode");
1569 
1570   // TODO: Allow non-throughput costs that aren't binary.
1571   auto AdjustCost = [&CostKind](InstructionCost Cost) -> InstructionCost {
1572     if (CostKind != TTI::TCK_RecipThroughput)
1573       return Cost == 0 ? 0 : 1;
1574     return Cost;
1575   };
1576 
1577   // The cost tables include both specific, custom (non-legal) src/dst type
1578   // conversions and generic, legalized types. We test for customs first, before
1579   // falling back to legalization.
1580   // FIXME: Need a better design of the cost table to handle non-simple types of
1581   // potential massive combinations (elem_num x src_type x dst_type).
1582   static const TypeConversionCostTblEntry AVX512BWConversionTbl[] {
1583     { ISD::SIGN_EXTEND, MVT::v32i16, MVT::v32i8, 1 },
1584     { ISD::ZERO_EXTEND, MVT::v32i16, MVT::v32i8, 1 },
1585 
1586     // Mask sign extend has an instruction.
1587     { ISD::SIGN_EXTEND, MVT::v2i8,   MVT::v2i1,   1 },
1588     { ISD::SIGN_EXTEND, MVT::v16i8,  MVT::v2i1,   1 },
1589     { ISD::SIGN_EXTEND, MVT::v2i16,  MVT::v2i1,   1 },
1590     { ISD::SIGN_EXTEND, MVT::v8i16,  MVT::v2i1,   1 },
1591     { ISD::SIGN_EXTEND, MVT::v4i8,   MVT::v4i1,   1 },
1592     { ISD::SIGN_EXTEND, MVT::v16i8,  MVT::v4i1,   1 },
1593     { ISD::SIGN_EXTEND, MVT::v4i16,  MVT::v4i1,   1 },
1594     { ISD::SIGN_EXTEND, MVT::v8i16,  MVT::v4i1,   1 },
1595     { ISD::SIGN_EXTEND, MVT::v8i8,   MVT::v8i1,   1 },
1596     { ISD::SIGN_EXTEND, MVT::v16i8,  MVT::v8i1,   1 },
1597     { ISD::SIGN_EXTEND, MVT::v8i16,  MVT::v8i1,   1 },
1598     { ISD::SIGN_EXTEND, MVT::v16i8,  MVT::v16i1,  1 },
1599     { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i1,  1 },
1600     { ISD::SIGN_EXTEND, MVT::v32i8,  MVT::v32i1,  1 },
1601     { ISD::SIGN_EXTEND, MVT::v32i16, MVT::v32i1,  1 },
1602     { ISD::SIGN_EXTEND, MVT::v64i8,  MVT::v64i1,  1 },
1603     { ISD::SIGN_EXTEND, MVT::v32i16, MVT::v64i1,  1 },
1604 
1605     // Mask zero extend is a sext + shift.
1606     { ISD::ZERO_EXTEND, MVT::v2i8,   MVT::v2i1,   2 },
1607     { ISD::ZERO_EXTEND, MVT::v16i8,  MVT::v2i1,   2 },
1608     { ISD::ZERO_EXTEND, MVT::v2i16,  MVT::v2i1,   2 },
1609     { ISD::ZERO_EXTEND, MVT::v8i16,  MVT::v2i1,   2 },
1610     { ISD::ZERO_EXTEND, MVT::v4i8,   MVT::v4i1,   2 },
1611     { ISD::ZERO_EXTEND, MVT::v16i8,  MVT::v4i1,   2 },
1612     { ISD::ZERO_EXTEND, MVT::v4i16,  MVT::v4i1,   2 },
1613     { ISD::ZERO_EXTEND, MVT::v8i16,  MVT::v4i1,   2 },
1614     { ISD::ZERO_EXTEND, MVT::v8i8,   MVT::v8i1,   2 },
1615     { ISD::ZERO_EXTEND, MVT::v16i8,  MVT::v8i1,   2 },
1616     { ISD::ZERO_EXTEND, MVT::v8i16,  MVT::v8i1,   2 },
1617     { ISD::ZERO_EXTEND, MVT::v16i8,  MVT::v16i1,  2 },
1618     { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i1,  2 },
1619     { ISD::ZERO_EXTEND, MVT::v32i8,  MVT::v32i1,  2 },
1620     { ISD::ZERO_EXTEND, MVT::v32i16, MVT::v32i1,  2 },
1621     { ISD::ZERO_EXTEND, MVT::v64i8,  MVT::v64i1,  2 },
1622     { ISD::ZERO_EXTEND, MVT::v32i16, MVT::v64i1,  2 },
1623 
1624     { ISD::TRUNCATE,    MVT::v2i1,   MVT::v2i8,   2 },
1625     { ISD::TRUNCATE,    MVT::v2i1,   MVT::v16i8,  2 },
1626     { ISD::TRUNCATE,    MVT::v2i1,   MVT::v2i16,  2 },
1627     { ISD::TRUNCATE,    MVT::v2i1,   MVT::v8i16,  2 },
1628     { ISD::TRUNCATE,    MVT::v4i1,   MVT::v4i8,   2 },
1629     { ISD::TRUNCATE,    MVT::v4i1,   MVT::v16i8,  2 },
1630     { ISD::TRUNCATE,    MVT::v4i1,   MVT::v4i16,  2 },
1631     { ISD::TRUNCATE,    MVT::v4i1,   MVT::v8i16,  2 },
1632     { ISD::TRUNCATE,    MVT::v8i1,   MVT::v8i8,   2 },
1633     { ISD::TRUNCATE,    MVT::v8i1,   MVT::v16i8,  2 },
1634     { ISD::TRUNCATE,    MVT::v8i1,   MVT::v8i16,  2 },
1635     { ISD::TRUNCATE,    MVT::v16i1,  MVT::v16i8,  2 },
1636     { ISD::TRUNCATE,    MVT::v16i1,  MVT::v16i16, 2 },
1637     { ISD::TRUNCATE,    MVT::v32i1,  MVT::v32i8,  2 },
1638     { ISD::TRUNCATE,    MVT::v32i1,  MVT::v32i16, 2 },
1639     { ISD::TRUNCATE,    MVT::v64i1,  MVT::v64i8,  2 },
1640     { ISD::TRUNCATE,    MVT::v64i1,  MVT::v32i16, 2 },
1641 
1642     { ISD::TRUNCATE,    MVT::v32i8,  MVT::v32i16, 2 },
1643     { ISD::TRUNCATE,    MVT::v16i8,  MVT::v16i16, 2 }, // widen to zmm
1644     { ISD::TRUNCATE,    MVT::v2i8,   MVT::v2i16,  2 }, // vpmovwb
1645     { ISD::TRUNCATE,    MVT::v4i8,   MVT::v4i16,  2 }, // vpmovwb
1646     { ISD::TRUNCATE,    MVT::v8i8,   MVT::v8i16,  2 }, // vpmovwb
1647   };
1648 
1649   static const TypeConversionCostTblEntry AVX512DQConversionTbl[] = {
1650     // Mask sign extend has an instruction.
1651     { ISD::SIGN_EXTEND, MVT::v2i64,  MVT::v2i1,   1 },
1652     { ISD::SIGN_EXTEND, MVT::v4i32,  MVT::v2i1,   1 },
1653     { ISD::SIGN_EXTEND, MVT::v4i32,  MVT::v4i1,   1 },
1654     { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v4i1,   1 },
1655     { ISD::SIGN_EXTEND, MVT::v8i32,  MVT::v8i1,   1 },
1656     { ISD::SIGN_EXTEND, MVT::v8i64,  MVT::v16i1,  1 },
1657     { ISD::SIGN_EXTEND, MVT::v8i64,  MVT::v8i1,   1 },
1658     { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i1,  1 },
1659 
1660     // Mask zero extend is a sext + shift.
1661     { ISD::ZERO_EXTEND, MVT::v2i64,  MVT::v2i1,   2 },
1662     { ISD::ZERO_EXTEND, MVT::v4i32,  MVT::v2i1,   2 },
1663     { ISD::ZERO_EXTEND, MVT::v4i32,  MVT::v4i1,   2 },
1664     { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v4i1,   2 },
1665     { ISD::ZERO_EXTEND, MVT::v8i32,  MVT::v8i1,   2 },
1666     { ISD::ZERO_EXTEND, MVT::v8i64,  MVT::v16i1,  2 },
1667     { ISD::ZERO_EXTEND, MVT::v8i64,  MVT::v8i1,   2 },
1668     { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i1,  2 },
1669 
1670     { ISD::TRUNCATE,    MVT::v2i1,   MVT::v2i64,  2 },
1671     { ISD::TRUNCATE,    MVT::v2i1,   MVT::v4i32,  2 },
1672     { ISD::TRUNCATE,    MVT::v4i1,   MVT::v4i32,  2 },
1673     { ISD::TRUNCATE,    MVT::v4i1,   MVT::v4i64,  2 },
1674     { ISD::TRUNCATE,    MVT::v8i1,   MVT::v8i32,  2 },
1675     { ISD::TRUNCATE,    MVT::v8i1,   MVT::v8i64,  2 },
1676     { ISD::TRUNCATE,    MVT::v16i1,  MVT::v16i32, 2 },
1677     { ISD::TRUNCATE,    MVT::v16i1,  MVT::v8i64,  2 },
1678 
1679     { ISD::SINT_TO_FP,  MVT::v8f32,  MVT::v8i64,  1 },
1680     { ISD::SINT_TO_FP,  MVT::v8f64,  MVT::v8i64,  1 },
1681 
1682     { ISD::UINT_TO_FP,  MVT::v8f32,  MVT::v8i64,  1 },
1683     { ISD::UINT_TO_FP,  MVT::v8f64,  MVT::v8i64,  1 },
1684 
1685     { ISD::FP_TO_SINT,  MVT::v8i64,  MVT::v8f32,  1 },
1686     { ISD::FP_TO_SINT,  MVT::v8i64,  MVT::v8f64,  1 },
1687 
1688     { ISD::FP_TO_UINT,  MVT::v8i64,  MVT::v8f32,  1 },
1689     { ISD::FP_TO_UINT,  MVT::v8i64,  MVT::v8f64,  1 },
1690   };
1691 
1692   // TODO: For AVX512DQ + AVX512VL, we also have cheap casts for 128-bit and
1693   // 256-bit wide vectors.
1694 
1695   static const TypeConversionCostTblEntry AVX512FConversionTbl[] = {
1696     { ISD::FP_EXTEND, MVT::v8f64,   MVT::v8f32,  1 },
1697     { ISD::FP_EXTEND, MVT::v8f64,   MVT::v16f32, 3 },
1698     { ISD::FP_ROUND,  MVT::v8f32,   MVT::v8f64,  1 },
1699 
1700     { ISD::TRUNCATE,  MVT::v2i1,    MVT::v2i8,   3 }, // sext+vpslld+vptestmd
1701     { ISD::TRUNCATE,  MVT::v4i1,    MVT::v4i8,   3 }, // sext+vpslld+vptestmd
1702     { ISD::TRUNCATE,  MVT::v8i1,    MVT::v8i8,   3 }, // sext+vpslld+vptestmd
1703     { ISD::TRUNCATE,  MVT::v16i1,   MVT::v16i8,  3 }, // sext+vpslld+vptestmd
1704     { ISD::TRUNCATE,  MVT::v2i1,    MVT::v2i16,  3 }, // sext+vpsllq+vptestmq
1705     { ISD::TRUNCATE,  MVT::v4i1,    MVT::v4i16,  3 }, // sext+vpsllq+vptestmq
1706     { ISD::TRUNCATE,  MVT::v8i1,    MVT::v8i16,  3 }, // sext+vpsllq+vptestmq
1707     { ISD::TRUNCATE,  MVT::v16i1,   MVT::v16i16, 3 }, // sext+vpslld+vptestmd
1708     { ISD::TRUNCATE,  MVT::v2i1,    MVT::v2i32,  2 }, // zmm vpslld+vptestmd
1709     { ISD::TRUNCATE,  MVT::v4i1,    MVT::v4i32,  2 }, // zmm vpslld+vptestmd
1710     { ISD::TRUNCATE,  MVT::v8i1,    MVT::v8i32,  2 }, // zmm vpslld+vptestmd
1711     { ISD::TRUNCATE,  MVT::v16i1,   MVT::v16i32, 2 }, // vpslld+vptestmd
1712     { ISD::TRUNCATE,  MVT::v2i1,    MVT::v2i64,  2 }, // zmm vpsllq+vptestmq
1713     { ISD::TRUNCATE,  MVT::v4i1,    MVT::v4i64,  2 }, // zmm vpsllq+vptestmq
1714     { ISD::TRUNCATE,  MVT::v8i1,    MVT::v8i64,  2 }, // vpsllq+vptestmq
1715     { ISD::TRUNCATE,  MVT::v2i8,    MVT::v2i32,  2 }, // vpmovdb
1716     { ISD::TRUNCATE,  MVT::v4i8,    MVT::v4i32,  2 }, // vpmovdb
1717     { ISD::TRUNCATE,  MVT::v16i8,   MVT::v16i32, 2 }, // vpmovdb
1718     { ISD::TRUNCATE,  MVT::v32i8,   MVT::v16i32, 2 }, // vpmovdb
1719     { ISD::TRUNCATE,  MVT::v64i8,   MVT::v16i32, 2 }, // vpmovdb
1720     { ISD::TRUNCATE,  MVT::v16i16,  MVT::v16i32, 2 }, // vpmovdw
1721     { ISD::TRUNCATE,  MVT::v32i16,  MVT::v16i32, 2 }, // vpmovdw
1722     { ISD::TRUNCATE,  MVT::v2i8,    MVT::v2i64,  2 }, // vpmovqb
1723     { ISD::TRUNCATE,  MVT::v2i16,   MVT::v2i64,  1 }, // vpshufb
1724     { ISD::TRUNCATE,  MVT::v8i8,    MVT::v8i64,  2 }, // vpmovqb
1725     { ISD::TRUNCATE,  MVT::v16i8,   MVT::v8i64,  2 }, // vpmovqb
1726     { ISD::TRUNCATE,  MVT::v32i8,   MVT::v8i64,  2 }, // vpmovqb
1727     { ISD::TRUNCATE,  MVT::v64i8,   MVT::v8i64,  2 }, // vpmovqb
1728     { ISD::TRUNCATE,  MVT::v8i16,   MVT::v8i64,  2 }, // vpmovqw
1729     { ISD::TRUNCATE,  MVT::v16i16,  MVT::v8i64,  2 }, // vpmovqw
1730     { ISD::TRUNCATE,  MVT::v32i16,  MVT::v8i64,  2 }, // vpmovqw
1731     { ISD::TRUNCATE,  MVT::v8i32,   MVT::v8i64,  1 }, // vpmovqd
1732     { ISD::TRUNCATE,  MVT::v4i32,   MVT::v4i64,  1 }, // zmm vpmovqd
1733     { ISD::TRUNCATE,  MVT::v16i8,   MVT::v16i64, 5 },// 2*vpmovqd+concat+vpmovdb
1734 
1735     { ISD::TRUNCATE,  MVT::v16i8,  MVT::v16i16,  3 }, // extend to v16i32
1736     { ISD::TRUNCATE,  MVT::v32i8,  MVT::v32i16,  8 },
1737     { ISD::TRUNCATE,  MVT::v64i8,  MVT::v32i16,  8 },
1738 
1739     // Sign extend is zmm vpternlogd+vptruncdb.
1740     // Zero extend is zmm broadcast load+vptruncdw.
1741     { ISD::SIGN_EXTEND, MVT::v2i8,   MVT::v2i1,   3 },
1742     { ISD::ZERO_EXTEND, MVT::v2i8,   MVT::v2i1,   4 },
1743     { ISD::SIGN_EXTEND, MVT::v4i8,   MVT::v4i1,   3 },
1744     { ISD::ZERO_EXTEND, MVT::v4i8,   MVT::v4i1,   4 },
1745     { ISD::SIGN_EXTEND, MVT::v8i8,   MVT::v8i1,   3 },
1746     { ISD::ZERO_EXTEND, MVT::v8i8,   MVT::v8i1,   4 },
1747     { ISD::SIGN_EXTEND, MVT::v16i8,  MVT::v16i1,  3 },
1748     { ISD::ZERO_EXTEND, MVT::v16i8,  MVT::v16i1,  4 },
1749 
1750     // Sign extend is zmm vpternlogd+vptruncdw.
1751     // Zero extend is zmm vpternlogd+vptruncdw+vpsrlw.
1752     { ISD::SIGN_EXTEND, MVT::v2i16,  MVT::v2i1,   3 },
1753     { ISD::ZERO_EXTEND, MVT::v2i16,  MVT::v2i1,   4 },
1754     { ISD::SIGN_EXTEND, MVT::v4i16,  MVT::v4i1,   3 },
1755     { ISD::ZERO_EXTEND, MVT::v4i16,  MVT::v4i1,   4 },
1756     { ISD::SIGN_EXTEND, MVT::v8i16,  MVT::v8i1,   3 },
1757     { ISD::ZERO_EXTEND, MVT::v8i16,  MVT::v8i1,   4 },
1758     { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i1,  3 },
1759     { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i1,  4 },
1760 
1761     { ISD::SIGN_EXTEND, MVT::v2i32,  MVT::v2i1,   1 }, // zmm vpternlogd
1762     { ISD::ZERO_EXTEND, MVT::v2i32,  MVT::v2i1,   2 }, // zmm vpternlogd+psrld
1763     { ISD::SIGN_EXTEND, MVT::v4i32,  MVT::v4i1,   1 }, // zmm vpternlogd
1764     { ISD::ZERO_EXTEND, MVT::v4i32,  MVT::v4i1,   2 }, // zmm vpternlogd+psrld
1765     { ISD::SIGN_EXTEND, MVT::v8i32,  MVT::v8i1,   1 }, // zmm vpternlogd
1766     { ISD::ZERO_EXTEND, MVT::v8i32,  MVT::v8i1,   2 }, // zmm vpternlogd+psrld
1767     { ISD::SIGN_EXTEND, MVT::v2i64,  MVT::v2i1,   1 }, // zmm vpternlogq
1768     { ISD::ZERO_EXTEND, MVT::v2i64,  MVT::v2i1,   2 }, // zmm vpternlogq+psrlq
1769     { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v4i1,   1 }, // zmm vpternlogq
1770     { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v4i1,   2 }, // zmm vpternlogq+psrlq
1771 
1772     { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i1,  1 }, // vpternlogd
1773     { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i1,  2 }, // vpternlogd+psrld
1774     { ISD::SIGN_EXTEND, MVT::v8i64,  MVT::v8i1,   1 }, // vpternlogq
1775     { ISD::ZERO_EXTEND, MVT::v8i64,  MVT::v8i1,   2 }, // vpternlogq+psrlq
1776 
1777     { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i8,  1 },
1778     { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i8,  1 },
1779     { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i16, 1 },
1780     { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i16, 1 },
1781     { ISD::SIGN_EXTEND, MVT::v8i64,  MVT::v8i8,   1 },
1782     { ISD::ZERO_EXTEND, MVT::v8i64,  MVT::v8i8,   1 },
1783     { ISD::SIGN_EXTEND, MVT::v8i64,  MVT::v8i16,  1 },
1784     { ISD::ZERO_EXTEND, MVT::v8i64,  MVT::v8i16,  1 },
1785     { ISD::SIGN_EXTEND, MVT::v8i64,  MVT::v8i32,  1 },
1786     { ISD::ZERO_EXTEND, MVT::v8i64,  MVT::v8i32,  1 },
1787 
1788     { ISD::SIGN_EXTEND, MVT::v32i16, MVT::v32i8,  3 }, // FIXME: May not be right
1789     { ISD::ZERO_EXTEND, MVT::v32i16, MVT::v32i8,  3 }, // FIXME: May not be right
1790 
1791     { ISD::SINT_TO_FP,  MVT::v8f64,  MVT::v8i1,   4 },
1792     { ISD::SINT_TO_FP,  MVT::v16f32, MVT::v16i1,  3 },
1793     { ISD::SINT_TO_FP,  MVT::v8f64,  MVT::v16i8,  2 },
1794     { ISD::SINT_TO_FP,  MVT::v16f32, MVT::v16i8,  1 },
1795     { ISD::SINT_TO_FP,  MVT::v8f64,  MVT::v8i16,  2 },
1796     { ISD::SINT_TO_FP,  MVT::v16f32, MVT::v16i16, 1 },
1797     { ISD::SINT_TO_FP,  MVT::v8f64,  MVT::v8i32,  1 },
1798     { ISD::SINT_TO_FP,  MVT::v16f32, MVT::v16i32, 1 },
1799 
1800     { ISD::UINT_TO_FP,  MVT::v8f64,  MVT::v8i1,   4 },
1801     { ISD::UINT_TO_FP,  MVT::v16f32, MVT::v16i1,  3 },
1802     { ISD::UINT_TO_FP,  MVT::v8f64,  MVT::v16i8,  2 },
1803     { ISD::UINT_TO_FP,  MVT::v16f32, MVT::v16i8,  1 },
1804     { ISD::UINT_TO_FP,  MVT::v8f64,  MVT::v8i16,  2 },
1805     { ISD::UINT_TO_FP,  MVT::v16f32, MVT::v16i16, 1 },
1806     { ISD::UINT_TO_FP,  MVT::v8f64,  MVT::v8i32,  1 },
1807     { ISD::UINT_TO_FP,  MVT::v16f32, MVT::v16i32, 1 },
1808     { ISD::UINT_TO_FP,  MVT::v8f32,  MVT::v8i64, 26 },
1809     { ISD::UINT_TO_FP,  MVT::v8f64,  MVT::v8i64,  5 },
1810 
1811     { ISD::FP_TO_SINT,  MVT::v16i8,  MVT::v16f32, 2 },
1812     { ISD::FP_TO_SINT,  MVT::v16i8,  MVT::v16f64, 7 },
1813     { ISD::FP_TO_SINT,  MVT::v32i8,  MVT::v32f64,15 },
1814     { ISD::FP_TO_SINT,  MVT::v64i8,  MVT::v64f32,11 },
1815     { ISD::FP_TO_SINT,  MVT::v64i8,  MVT::v64f64,31 },
1816     { ISD::FP_TO_SINT,  MVT::v8i16,  MVT::v8f64,  3 },
1817     { ISD::FP_TO_SINT,  MVT::v16i16, MVT::v16f64, 7 },
1818     { ISD::FP_TO_SINT,  MVT::v32i16, MVT::v32f32, 5 },
1819     { ISD::FP_TO_SINT,  MVT::v32i16, MVT::v32f64,15 },
1820     { ISD::FP_TO_SINT,  MVT::v8i32,  MVT::v8f64,  1 },
1821     { ISD::FP_TO_SINT,  MVT::v16i32, MVT::v16f64, 3 },
1822 
1823     { ISD::FP_TO_UINT,  MVT::v8i32,  MVT::v8f64,  1 },
1824     { ISD::FP_TO_UINT,  MVT::v8i16,  MVT::v8f64,  3 },
1825     { ISD::FP_TO_UINT,  MVT::v8i8,   MVT::v8f64,  3 },
1826     { ISD::FP_TO_UINT,  MVT::v16i32, MVT::v16f32, 1 },
1827     { ISD::FP_TO_UINT,  MVT::v16i16, MVT::v16f32, 3 },
1828     { ISD::FP_TO_UINT,  MVT::v16i8,  MVT::v16f32, 3 },
1829   };
1830 
1831   static const TypeConversionCostTblEntry AVX512BWVLConversionTbl[] {
1832     // Mask sign extend has an instruction.
1833     { ISD::SIGN_EXTEND, MVT::v2i8,   MVT::v2i1,   1 },
1834     { ISD::SIGN_EXTEND, MVT::v16i8,  MVT::v2i1,   1 },
1835     { ISD::SIGN_EXTEND, MVT::v2i16,  MVT::v2i1,   1 },
1836     { ISD::SIGN_EXTEND, MVT::v8i16,  MVT::v2i1,   1 },
1837     { ISD::SIGN_EXTEND, MVT::v4i16,  MVT::v4i1,   1 },
1838     { ISD::SIGN_EXTEND, MVT::v16i8,  MVT::v4i1,   1 },
1839     { ISD::SIGN_EXTEND, MVT::v4i8,   MVT::v4i1,   1 },
1840     { ISD::SIGN_EXTEND, MVT::v8i16,  MVT::v4i1,   1 },
1841     { ISD::SIGN_EXTEND, MVT::v8i8,   MVT::v8i1,   1 },
1842     { ISD::SIGN_EXTEND, MVT::v16i8,  MVT::v8i1,   1 },
1843     { ISD::SIGN_EXTEND, MVT::v8i16,  MVT::v8i1,   1 },
1844     { ISD::SIGN_EXTEND, MVT::v16i8,  MVT::v16i1,  1 },
1845     { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i1,  1 },
1846     { ISD::SIGN_EXTEND, MVT::v32i8,  MVT::v32i1,  1 },
1847     { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v32i1,  1 },
1848     { ISD::SIGN_EXTEND, MVT::v32i8,  MVT::v64i1,  1 },
1849     { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v64i1,  1 },
1850 
1851     // Mask zero extend is a sext + shift.
1852     { ISD::ZERO_EXTEND, MVT::v2i8,   MVT::v2i1,   2 },
1853     { ISD::ZERO_EXTEND, MVT::v16i8,  MVT::v2i1,   2 },
1854     { ISD::ZERO_EXTEND, MVT::v2i16,  MVT::v2i1,   2 },
1855     { ISD::ZERO_EXTEND, MVT::v8i16,  MVT::v2i1,   2 },
1856     { ISD::ZERO_EXTEND, MVT::v4i8,   MVT::v4i1,   2 },
1857     { ISD::ZERO_EXTEND, MVT::v16i8,  MVT::v4i1,   2 },
1858     { ISD::ZERO_EXTEND, MVT::v4i16,  MVT::v4i1,   2 },
1859     { ISD::ZERO_EXTEND, MVT::v8i16,  MVT::v4i1,   2 },
1860     { ISD::ZERO_EXTEND, MVT::v8i8,   MVT::v8i1,   2 },
1861     { ISD::ZERO_EXTEND, MVT::v16i8,  MVT::v8i1,   2 },
1862     { ISD::ZERO_EXTEND, MVT::v8i16,  MVT::v8i1,   2 },
1863     { ISD::ZERO_EXTEND, MVT::v16i8,  MVT::v16i1,  2 },
1864     { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i1,  2 },
1865     { ISD::ZERO_EXTEND, MVT::v32i8,  MVT::v32i1,  2 },
1866     { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v32i1,  2 },
1867     { ISD::ZERO_EXTEND, MVT::v32i8,  MVT::v64i1,  2 },
1868     { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v64i1,  2 },
1869 
1870     { ISD::TRUNCATE,    MVT::v2i1,   MVT::v2i8,   2 },
1871     { ISD::TRUNCATE,    MVT::v2i1,   MVT::v16i8,  2 },
1872     { ISD::TRUNCATE,    MVT::v2i1,   MVT::v2i16,  2 },
1873     { ISD::TRUNCATE,    MVT::v2i1,   MVT::v8i16,  2 },
1874     { ISD::TRUNCATE,    MVT::v4i1,   MVT::v4i8,   2 },
1875     { ISD::TRUNCATE,    MVT::v4i1,   MVT::v16i8,  2 },
1876     { ISD::TRUNCATE,    MVT::v4i1,   MVT::v4i16,  2 },
1877     { ISD::TRUNCATE,    MVT::v4i1,   MVT::v8i16,  2 },
1878     { ISD::TRUNCATE,    MVT::v8i1,   MVT::v8i8,   2 },
1879     { ISD::TRUNCATE,    MVT::v8i1,   MVT::v16i8,  2 },
1880     { ISD::TRUNCATE,    MVT::v8i1,   MVT::v8i16,  2 },
1881     { ISD::TRUNCATE,    MVT::v16i1,  MVT::v16i8,  2 },
1882     { ISD::TRUNCATE,    MVT::v16i1,  MVT::v16i16, 2 },
1883     { ISD::TRUNCATE,    MVT::v32i1,  MVT::v32i8,  2 },
1884     { ISD::TRUNCATE,    MVT::v32i1,  MVT::v16i16, 2 },
1885     { ISD::TRUNCATE,    MVT::v64i1,  MVT::v32i8,  2 },
1886     { ISD::TRUNCATE,    MVT::v64i1,  MVT::v16i16, 2 },
1887 
1888     { ISD::TRUNCATE,    MVT::v16i8,  MVT::v16i16, 2 },
1889   };
1890 
1891   static const TypeConversionCostTblEntry AVX512DQVLConversionTbl[] = {
1892     // Mask sign extend has an instruction.
1893     { ISD::SIGN_EXTEND, MVT::v2i64,  MVT::v2i1,   1 },
1894     { ISD::SIGN_EXTEND, MVT::v4i32,  MVT::v2i1,   1 },
1895     { ISD::SIGN_EXTEND, MVT::v4i32,  MVT::v4i1,   1 },
1896     { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v16i1,  1 },
1897     { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v4i1,   1 },
1898     { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v8i1,   1 },
1899     { ISD::SIGN_EXTEND, MVT::v8i32,  MVT::v16i1,  1 },
1900     { ISD::SIGN_EXTEND, MVT::v8i32,  MVT::v8i1,   1 },
1901 
1902     // Mask zero extend is a sext + shift.
1903     { ISD::ZERO_EXTEND, MVT::v2i64,  MVT::v2i1,   2 },
1904     { ISD::ZERO_EXTEND, MVT::v4i32,  MVT::v2i1,   2 },
1905     { ISD::ZERO_EXTEND, MVT::v4i32,  MVT::v4i1,   2 },
1906     { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v16i1,  2 },
1907     { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v4i1,   2 },
1908     { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v8i1,   2 },
1909     { ISD::ZERO_EXTEND, MVT::v8i32,  MVT::v16i1,  2 },
1910     { ISD::ZERO_EXTEND, MVT::v8i32,  MVT::v8i1,   2 },
1911 
1912     { ISD::TRUNCATE,    MVT::v16i1,  MVT::v4i64,  2 },
1913     { ISD::TRUNCATE,    MVT::v16i1,  MVT::v8i32,  2 },
1914     { ISD::TRUNCATE,    MVT::v2i1,   MVT::v2i64,  2 },
1915     { ISD::TRUNCATE,    MVT::v2i1,   MVT::v4i32,  2 },
1916     { ISD::TRUNCATE,    MVT::v4i1,   MVT::v4i32,  2 },
1917     { ISD::TRUNCATE,    MVT::v4i1,   MVT::v4i64,  2 },
1918     { ISD::TRUNCATE,    MVT::v8i1,   MVT::v4i64,  2 },
1919     { ISD::TRUNCATE,    MVT::v8i1,   MVT::v8i32,  2 },
1920 
1921     { ISD::SINT_TO_FP,  MVT::v2f32,  MVT::v2i64,  1 },
1922     { ISD::SINT_TO_FP,  MVT::v2f64,  MVT::v2i64,  1 },
1923     { ISD::SINT_TO_FP,  MVT::v4f32,  MVT::v4i64,  1 },
1924     { ISD::SINT_TO_FP,  MVT::v4f64,  MVT::v4i64,  1 },
1925 
1926     { ISD::UINT_TO_FP,  MVT::v2f32,  MVT::v2i64,  1 },
1927     { ISD::UINT_TO_FP,  MVT::v2f64,  MVT::v2i64,  1 },
1928     { ISD::UINT_TO_FP,  MVT::v4f32,  MVT::v4i64,  1 },
1929     { ISD::UINT_TO_FP,  MVT::v4f64,  MVT::v4i64,  1 },
1930 
1931     { ISD::FP_TO_SINT,  MVT::v2i64,  MVT::v4f32,  1 },
1932     { ISD::FP_TO_SINT,  MVT::v4i64,  MVT::v4f32,  1 },
1933     { ISD::FP_TO_SINT,  MVT::v2i64,  MVT::v2f64,  1 },
1934     { ISD::FP_TO_SINT,  MVT::v4i64,  MVT::v4f64,  1 },
1935 
1936     { ISD::FP_TO_UINT,  MVT::v2i64,  MVT::v4f32,  1 },
1937     { ISD::FP_TO_UINT,  MVT::v4i64,  MVT::v4f32,  1 },
1938     { ISD::FP_TO_UINT,  MVT::v2i64,  MVT::v2f64,  1 },
1939     { ISD::FP_TO_UINT,  MVT::v4i64,  MVT::v4f64,  1 },
1940   };
1941 
1942   static const TypeConversionCostTblEntry AVX512VLConversionTbl[] = {
1943     { ISD::TRUNCATE,  MVT::v2i1,    MVT::v2i8,   3 }, // sext+vpslld+vptestmd
1944     { ISD::TRUNCATE,  MVT::v4i1,    MVT::v4i8,   3 }, // sext+vpslld+vptestmd
1945     { ISD::TRUNCATE,  MVT::v8i1,    MVT::v8i8,   3 }, // sext+vpslld+vptestmd
1946     { ISD::TRUNCATE,  MVT::v16i1,   MVT::v16i8,  8 }, // split+2*v8i8
1947     { ISD::TRUNCATE,  MVT::v2i1,    MVT::v2i16,  3 }, // sext+vpsllq+vptestmq
1948     { ISD::TRUNCATE,  MVT::v4i1,    MVT::v4i16,  3 }, // sext+vpsllq+vptestmq
1949     { ISD::TRUNCATE,  MVT::v8i1,    MVT::v8i16,  3 }, // sext+vpsllq+vptestmq
1950     { ISD::TRUNCATE,  MVT::v16i1,   MVT::v16i16, 8 }, // split+2*v8i16
1951     { ISD::TRUNCATE,  MVT::v2i1,    MVT::v2i32,  2 }, // vpslld+vptestmd
1952     { ISD::TRUNCATE,  MVT::v4i1,    MVT::v4i32,  2 }, // vpslld+vptestmd
1953     { ISD::TRUNCATE,  MVT::v8i1,    MVT::v8i32,  2 }, // vpslld+vptestmd
1954     { ISD::TRUNCATE,  MVT::v2i1,    MVT::v2i64,  2 }, // vpsllq+vptestmq
1955     { ISD::TRUNCATE,  MVT::v4i1,    MVT::v4i64,  2 }, // vpsllq+vptestmq
1956     { ISD::TRUNCATE,  MVT::v4i32,   MVT::v4i64,  1 }, // vpmovqd
1957     { ISD::TRUNCATE,  MVT::v4i8,    MVT::v4i64,  2 }, // vpmovqb
1958     { ISD::TRUNCATE,  MVT::v4i16,   MVT::v4i64,  2 }, // vpmovqw
1959     { ISD::TRUNCATE,  MVT::v8i8,    MVT::v8i32,  2 }, // vpmovwb
1960 
1961     // sign extend is vpcmpeq+maskedmove+vpmovdw+vpacksswb
1962     // zero extend is vpcmpeq+maskedmove+vpmovdw+vpsrlw+vpackuswb
1963     { ISD::SIGN_EXTEND, MVT::v2i8,   MVT::v2i1,   5 },
1964     { ISD::ZERO_EXTEND, MVT::v2i8,   MVT::v2i1,   6 },
1965     { ISD::SIGN_EXTEND, MVT::v4i8,   MVT::v4i1,   5 },
1966     { ISD::ZERO_EXTEND, MVT::v4i8,   MVT::v4i1,   6 },
1967     { ISD::SIGN_EXTEND, MVT::v8i8,   MVT::v8i1,   5 },
1968     { ISD::ZERO_EXTEND, MVT::v8i8,   MVT::v8i1,   6 },
1969     { ISD::SIGN_EXTEND, MVT::v16i8,  MVT::v16i1, 10 },
1970     { ISD::ZERO_EXTEND, MVT::v16i8,  MVT::v16i1, 12 },
1971 
1972     // sign extend is vpcmpeq+maskedmove+vpmovdw
1973     // zero extend is vpcmpeq+maskedmove+vpmovdw+vpsrlw
1974     { ISD::SIGN_EXTEND, MVT::v2i16,  MVT::v2i1,   4 },
1975     { ISD::ZERO_EXTEND, MVT::v2i16,  MVT::v2i1,   5 },
1976     { ISD::SIGN_EXTEND, MVT::v4i16,  MVT::v4i1,   4 },
1977     { ISD::ZERO_EXTEND, MVT::v4i16,  MVT::v4i1,   5 },
1978     { ISD::SIGN_EXTEND, MVT::v8i16,  MVT::v8i1,   4 },
1979     { ISD::ZERO_EXTEND, MVT::v8i16,  MVT::v8i1,   5 },
1980     { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i1, 10 },
1981     { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i1, 12 },
1982 
1983     { ISD::SIGN_EXTEND, MVT::v2i32,  MVT::v2i1,   1 }, // vpternlogd
1984     { ISD::ZERO_EXTEND, MVT::v2i32,  MVT::v2i1,   2 }, // vpternlogd+psrld
1985     { ISD::SIGN_EXTEND, MVT::v4i32,  MVT::v4i1,   1 }, // vpternlogd
1986     { ISD::ZERO_EXTEND, MVT::v4i32,  MVT::v4i1,   2 }, // vpternlogd+psrld
1987     { ISD::SIGN_EXTEND, MVT::v8i32,  MVT::v8i1,   1 }, // vpternlogd
1988     { ISD::ZERO_EXTEND, MVT::v8i32,  MVT::v8i1,   2 }, // vpternlogd+psrld
1989     { ISD::SIGN_EXTEND, MVT::v2i64,  MVT::v2i1,   1 }, // vpternlogq
1990     { ISD::ZERO_EXTEND, MVT::v2i64,  MVT::v2i1,   2 }, // vpternlogq+psrlq
1991     { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v4i1,   1 }, // vpternlogq
1992     { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v4i1,   2 }, // vpternlogq+psrlq
1993 
1994     { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v16i8,  1 },
1995     { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v16i8,  1 },
1996     { ISD::SIGN_EXTEND, MVT::v8i32,  MVT::v16i8,  1 },
1997     { ISD::ZERO_EXTEND, MVT::v8i32,  MVT::v16i8,  1 },
1998     { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i8,  1 },
1999     { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i8,  1 },
2000     { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v8i16,  1 },
2001     { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v8i16,  1 },
2002     { ISD::SIGN_EXTEND, MVT::v8i32,  MVT::v8i16,  1 },
2003     { ISD::ZERO_EXTEND, MVT::v8i32,  MVT::v8i16,  1 },
2004     { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v4i32,  1 },
2005     { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v4i32,  1 },
2006 
2007     { ISD::SINT_TO_FP,  MVT::v2f64,  MVT::v16i8,  1 },
2008     { ISD::SINT_TO_FP,  MVT::v8f32,  MVT::v16i8,  1 },
2009     { ISD::SINT_TO_FP,  MVT::v2f64,  MVT::v8i16,  1 },
2010     { ISD::SINT_TO_FP,  MVT::v8f32,  MVT::v8i16,  1 },
2011 
2012     { ISD::UINT_TO_FP,  MVT::f32,    MVT::i64,    1 },
2013     { ISD::UINT_TO_FP,  MVT::f64,    MVT::i64,    1 },
2014     { ISD::UINT_TO_FP,  MVT::v2f64,  MVT::v16i8,  1 },
2015     { ISD::UINT_TO_FP,  MVT::v8f32,  MVT::v16i8,  1 },
2016     { ISD::UINT_TO_FP,  MVT::v2f64,  MVT::v8i16,  1 },
2017     { ISD::UINT_TO_FP,  MVT::v8f32,  MVT::v8i16,  1 },
2018     { ISD::UINT_TO_FP,  MVT::v2f32,  MVT::v2i32,  1 },
2019     { ISD::UINT_TO_FP,  MVT::v4f32,  MVT::v4i32,  1 },
2020     { ISD::UINT_TO_FP,  MVT::v4f64,  MVT::v4i32,  1 },
2021     { ISD::UINT_TO_FP,  MVT::v8f32,  MVT::v8i32,  1 },
2022     { ISD::UINT_TO_FP,  MVT::v2f32,  MVT::v2i64,  5 },
2023     { ISD::UINT_TO_FP,  MVT::v2f64,  MVT::v2i64,  5 },
2024     { ISD::UINT_TO_FP,  MVT::v4f64,  MVT::v4i64,  5 },
2025 
2026     { ISD::FP_TO_SINT,  MVT::v16i8,  MVT::v8f32,  2 },
2027     { ISD::FP_TO_SINT,  MVT::v16i8,  MVT::v16f32, 2 },
2028     { ISD::FP_TO_SINT,  MVT::v32i8,  MVT::v32f32, 5 },
2029 
2030     { ISD::FP_TO_UINT,  MVT::i64,    MVT::f32,    1 },
2031     { ISD::FP_TO_UINT,  MVT::i64,    MVT::f64,    1 },
2032     { ISD::FP_TO_UINT,  MVT::v4i32,  MVT::v4f32,  1 },
2033     { ISD::FP_TO_UINT,  MVT::v4i32,  MVT::v2f64,  1 },
2034     { ISD::FP_TO_UINT,  MVT::v4i32,  MVT::v4f64,  1 },
2035     { ISD::FP_TO_UINT,  MVT::v8i32,  MVT::v8f32,  1 },
2036     { ISD::FP_TO_UINT,  MVT::v8i32,  MVT::v8f64,  1 },
2037   };
2038 
2039   static const TypeConversionCostTblEntry AVX2ConversionTbl[] = {
2040     { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v4i1,   3 },
2041     { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v4i1,   3 },
2042     { ISD::SIGN_EXTEND, MVT::v8i32,  MVT::v8i1,   3 },
2043     { ISD::ZERO_EXTEND, MVT::v8i32,  MVT::v8i1,   3 },
2044     { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i1,  1 },
2045     { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i1,  1 },
2046 
2047     { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v16i8,  2 },
2048     { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v16i8,  2 },
2049     { ISD::SIGN_EXTEND, MVT::v8i32,  MVT::v16i8,  2 },
2050     { ISD::ZERO_EXTEND, MVT::v8i32,  MVT::v16i8,  2 },
2051     { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i8,  2 },
2052     { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i8,  2 },
2053     { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v8i16,  2 },
2054     { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v8i16,  2 },
2055     { ISD::SIGN_EXTEND, MVT::v8i32,  MVT::v8i16,  2 },
2056     { ISD::ZERO_EXTEND, MVT::v8i32,  MVT::v8i16,  2 },
2057     { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i16, 3 },
2058     { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i16, 3 },
2059     { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v4i32,  2 },
2060     { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v4i32,  2 },
2061 
2062     { ISD::TRUNCATE,    MVT::v8i1,   MVT::v8i32,  2 },
2063 
2064     { ISD::TRUNCATE,    MVT::v16i16, MVT::v16i32, 4 },
2065     { ISD::TRUNCATE,    MVT::v16i8,  MVT::v16i32, 4 },
2066     { ISD::TRUNCATE,    MVT::v16i8,  MVT::v8i16,  1 },
2067     { ISD::TRUNCATE,    MVT::v16i8,  MVT::v4i32,  1 },
2068     { ISD::TRUNCATE,    MVT::v16i8,  MVT::v2i64,  1 },
2069     { ISD::TRUNCATE,    MVT::v16i8,  MVT::v8i32,  4 },
2070     { ISD::TRUNCATE,    MVT::v16i8,  MVT::v4i64,  4 },
2071     { ISD::TRUNCATE,    MVT::v8i16,  MVT::v4i32,  1 },
2072     { ISD::TRUNCATE,    MVT::v8i16,  MVT::v2i64,  1 },
2073     { ISD::TRUNCATE,    MVT::v8i16,  MVT::v4i64,  5 },
2074     { ISD::TRUNCATE,    MVT::v4i32,  MVT::v4i64,  1 },
2075     { ISD::TRUNCATE,    MVT::v8i16,  MVT::v8i32,  2 },
2076 
2077     { ISD::FP_EXTEND,   MVT::v8f64,  MVT::v8f32,  3 },
2078     { ISD::FP_ROUND,    MVT::v8f32,  MVT::v8f64,  3 },
2079 
2080     { ISD::FP_TO_SINT,  MVT::v16i16, MVT::v8f32,  1 },
2081     { ISD::FP_TO_SINT,  MVT::v4i32,  MVT::v4f64,  1 },
2082     { ISD::FP_TO_SINT,  MVT::v8i32,  MVT::v8f32,  1 },
2083     { ISD::FP_TO_SINT,  MVT::v8i32,  MVT::v8f64,  3 },
2084 
2085     { ISD::FP_TO_UINT,  MVT::i64,    MVT::f32,    3 },
2086     { ISD::FP_TO_UINT,  MVT::i64,    MVT::f64,    3 },
2087     { ISD::FP_TO_UINT,  MVT::v16i16, MVT::v8f32,  1 },
2088     { ISD::FP_TO_UINT,  MVT::v4i32,  MVT::v4f32,  3 },
2089     { ISD::FP_TO_UINT,  MVT::v4i32,  MVT::v2f64,  4 },
2090     { ISD::FP_TO_UINT,  MVT::v4i32,  MVT::v4f64,  4 },
2091     { ISD::FP_TO_UINT,  MVT::v8i32,  MVT::v8f32,  3 },
2092     { ISD::FP_TO_UINT,  MVT::v8i32,  MVT::v4f64,  4 },
2093 
2094     { ISD::SINT_TO_FP,  MVT::v2f64,  MVT::v16i8,  2 },
2095     { ISD::SINT_TO_FP,  MVT::v8f32,  MVT::v16i8,  2 },
2096     { ISD::SINT_TO_FP,  MVT::v2f64,  MVT::v8i16,  2 },
2097     { ISD::SINT_TO_FP,  MVT::v8f32,  MVT::v8i16,  2 },
2098     { ISD::SINT_TO_FP,  MVT::v4f64,  MVT::v4i32,  1 },
2099     { ISD::SINT_TO_FP,  MVT::v8f32,  MVT::v8i32,  1 },
2100     { ISD::SINT_TO_FP,  MVT::v8f64,  MVT::v8i32,  3 },
2101 
2102     { ISD::UINT_TO_FP,  MVT::v2f64,  MVT::v16i8,  2 },
2103     { ISD::UINT_TO_FP,  MVT::v8f32,  MVT::v16i8,  2 },
2104     { ISD::UINT_TO_FP,  MVT::v2f64,  MVT::v8i16,  2 },
2105     { ISD::UINT_TO_FP,  MVT::v8f32,  MVT::v8i16,  2 },
2106     { ISD::UINT_TO_FP,  MVT::v2f32,  MVT::v2i32,  2 },
2107     { ISD::UINT_TO_FP,  MVT::v2f64,  MVT::v2i32,  1 },
2108     { ISD::UINT_TO_FP,  MVT::v4f32,  MVT::v4i32,  2 },
2109     { ISD::UINT_TO_FP,  MVT::v4f64,  MVT::v4i32,  2 },
2110     { ISD::UINT_TO_FP,  MVT::v8f32,  MVT::v8i32,  2 },
2111     { ISD::UINT_TO_FP,  MVT::v8f64,  MVT::v8i32,  4 },
2112   };
2113 
2114   static const TypeConversionCostTblEntry AVXConversionTbl[] = {
2115     { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v4i1,   6 },
2116     { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v4i1,   4 },
2117     { ISD::SIGN_EXTEND, MVT::v8i32,  MVT::v8i1,   7 },
2118     { ISD::ZERO_EXTEND, MVT::v8i32,  MVT::v8i1,   4 },
2119     { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i1,  4 },
2120     { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i1,  4 },
2121 
2122     { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v16i8,  3 },
2123     { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v16i8,  3 },
2124     { ISD::SIGN_EXTEND, MVT::v8i32,  MVT::v16i8,  3 },
2125     { ISD::ZERO_EXTEND, MVT::v8i32,  MVT::v16i8,  3 },
2126     { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i8,  3 },
2127     { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i8,  3 },
2128     { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v8i16,  3 },
2129     { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v8i16,  3 },
2130     { ISD::SIGN_EXTEND, MVT::v8i32,  MVT::v8i16,  3 },
2131     { ISD::ZERO_EXTEND, MVT::v8i32,  MVT::v8i16,  3 },
2132     { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v4i32,  3 },
2133     { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v4i32,  3 },
2134 
2135     { ISD::TRUNCATE,    MVT::v4i1,   MVT::v4i64,  4 },
2136     { ISD::TRUNCATE,    MVT::v8i1,   MVT::v8i32,  5 },
2137     { ISD::TRUNCATE,    MVT::v16i1,  MVT::v16i16, 4 },
2138     { ISD::TRUNCATE,    MVT::v8i1,   MVT::v8i64,  9 },
2139     { ISD::TRUNCATE,    MVT::v16i1,  MVT::v16i64, 11 },
2140 
2141     { ISD::TRUNCATE,    MVT::v16i16, MVT::v16i32, 6 },
2142     { ISD::TRUNCATE,    MVT::v16i8,  MVT::v16i32, 6 },
2143     { ISD::TRUNCATE,    MVT::v16i8,  MVT::v16i16, 2 }, // and+extract+packuswb
2144     { ISD::TRUNCATE,    MVT::v16i8,  MVT::v8i32,  5 },
2145     { ISD::TRUNCATE,    MVT::v8i16,  MVT::v8i32,  5 },
2146     { ISD::TRUNCATE,    MVT::v16i8,  MVT::v4i64,  5 },
2147     { ISD::TRUNCATE,    MVT::v8i16,  MVT::v4i64,  3 }, // and+extract+2*packusdw
2148     { ISD::TRUNCATE,    MVT::v4i32,  MVT::v4i64,  2 },
2149 
2150     { ISD::SINT_TO_FP,  MVT::v4f32,  MVT::v4i1,   3 },
2151     { ISD::SINT_TO_FP,  MVT::v4f64,  MVT::v4i1,   3 },
2152     { ISD::SINT_TO_FP,  MVT::v8f32,  MVT::v8i1,   8 },
2153     { ISD::SINT_TO_FP,  MVT::v8f32,  MVT::v16i8,  4 },
2154     { ISD::SINT_TO_FP,  MVT::v4f64,  MVT::v16i8,  2 },
2155     { ISD::SINT_TO_FP,  MVT::v8f32,  MVT::v8i16,  4 },
2156     { ISD::SINT_TO_FP,  MVT::v4f64,  MVT::v8i16,  2 },
2157     { ISD::SINT_TO_FP,  MVT::v4f64,  MVT::v4i32,  2 },
2158     { ISD::SINT_TO_FP,  MVT::v8f32,  MVT::v8i32,  2 },
2159     { ISD::SINT_TO_FP,  MVT::v8f64,  MVT::v8i32,  4 },
2160     { ISD::SINT_TO_FP,  MVT::v4f32,  MVT::v2i64,  5 },
2161     { ISD::SINT_TO_FP,  MVT::v4f32,  MVT::v4i64,  8 },
2162 
2163     { ISD::UINT_TO_FP,  MVT::v4f32,  MVT::v4i1,   7 },
2164     { ISD::UINT_TO_FP,  MVT::v4f64,  MVT::v4i1,   7 },
2165     { ISD::UINT_TO_FP,  MVT::v8f32,  MVT::v8i1,   6 },
2166     { ISD::UINT_TO_FP,  MVT::v8f32,  MVT::v16i8,  4 },
2167     { ISD::UINT_TO_FP,  MVT::v4f64,  MVT::v16i8,  2 },
2168     { ISD::UINT_TO_FP,  MVT::v8f32,  MVT::v8i16,  4 },
2169     { ISD::UINT_TO_FP,  MVT::v4f64,  MVT::v8i16,  2 },
2170     { ISD::UINT_TO_FP,  MVT::v2f32,  MVT::v2i32,  4 },
2171     { ISD::UINT_TO_FP,  MVT::v2f64,  MVT::v2i32,  4 },
2172     { ISD::UINT_TO_FP,  MVT::v4f32,  MVT::v4i32,  5 },
2173     { ISD::UINT_TO_FP,  MVT::v4f64,  MVT::v4i32,  6 },
2174     { ISD::UINT_TO_FP,  MVT::v8f32,  MVT::v8i32,  8 },
2175     { ISD::UINT_TO_FP,  MVT::v8f64,  MVT::v8i32, 10 },
2176     { ISD::UINT_TO_FP,  MVT::v2f32,  MVT::v2i64, 10 },
2177     { ISD::UINT_TO_FP,  MVT::v4f32,  MVT::v4i64, 18 },
2178     { ISD::UINT_TO_FP,  MVT::v2f64,  MVT::v2i64,  5 },
2179     { ISD::UINT_TO_FP,  MVT::v4f64,  MVT::v4i64, 10 },
2180 
2181     { ISD::FP_TO_SINT,  MVT::v16i8,  MVT::v8f32,  2 },
2182     { ISD::FP_TO_SINT,  MVT::v16i8,  MVT::v4f64,  2 },
2183     { ISD::FP_TO_SINT,  MVT::v32i8,  MVT::v8f32,  2 },
2184     { ISD::FP_TO_SINT,  MVT::v32i8,  MVT::v4f64,  2 },
2185     { ISD::FP_TO_SINT,  MVT::v8i16,  MVT::v8f32,  2 },
2186     { ISD::FP_TO_SINT,  MVT::v8i16,  MVT::v4f64,  2 },
2187     { ISD::FP_TO_SINT,  MVT::v16i16, MVT::v8f32,  2 },
2188     { ISD::FP_TO_SINT,  MVT::v16i16, MVT::v4f64,  2 },
2189     { ISD::FP_TO_SINT,  MVT::v4i32,  MVT::v4f64,  2 },
2190     { ISD::FP_TO_SINT,  MVT::v8i32,  MVT::v8f32,  2 },
2191     { ISD::FP_TO_SINT,  MVT::v8i32,  MVT::v8f64,  5 },
2192 
2193     { ISD::FP_TO_UINT,  MVT::v16i8,  MVT::v8f32,  2 },
2194     { ISD::FP_TO_UINT,  MVT::v16i8,  MVT::v4f64,  2 },
2195     { ISD::FP_TO_UINT,  MVT::v32i8,  MVT::v8f32,  2 },
2196     { ISD::FP_TO_UINT,  MVT::v32i8,  MVT::v4f64,  2 },
2197     { ISD::FP_TO_UINT,  MVT::v8i16,  MVT::v8f32,  2 },
2198     { ISD::FP_TO_UINT,  MVT::v8i16,  MVT::v4f64,  2 },
2199     { ISD::FP_TO_UINT,  MVT::v16i16, MVT::v8f32,  2 },
2200     { ISD::FP_TO_UINT,  MVT::v16i16, MVT::v4f64,  2 },
2201     { ISD::FP_TO_UINT,  MVT::v4i32,  MVT::v4f32,  3 },
2202     { ISD::FP_TO_UINT,  MVT::v4i32,  MVT::v2f64,  4 },
2203     { ISD::FP_TO_UINT,  MVT::v4i32,  MVT::v4f64,  6 },
2204     { ISD::FP_TO_UINT,  MVT::v8i32,  MVT::v8f32,  7 },
2205     { ISD::FP_TO_UINT,  MVT::v8i32,  MVT::v4f64,  7 },
2206 
2207     { ISD::FP_EXTEND,   MVT::v4f64,  MVT::v4f32,  1 },
2208     { ISD::FP_ROUND,    MVT::v4f32,  MVT::v4f64,  1 },
2209   };
2210 
2211   static const TypeConversionCostTblEntry SSE41ConversionTbl[] = {
2212     { ISD::ZERO_EXTEND, MVT::v2i64, MVT::v16i8,   1 },
2213     { ISD::SIGN_EXTEND, MVT::v2i64, MVT::v16i8,   1 },
2214     { ISD::ZERO_EXTEND, MVT::v4i32, MVT::v16i8,   1 },
2215     { ISD::SIGN_EXTEND, MVT::v4i32, MVT::v16i8,   1 },
2216     { ISD::ZERO_EXTEND, MVT::v8i16, MVT::v16i8,   1 },
2217     { ISD::SIGN_EXTEND, MVT::v8i16, MVT::v16i8,   1 },
2218     { ISD::ZERO_EXTEND, MVT::v2i64, MVT::v8i16,   1 },
2219     { ISD::SIGN_EXTEND, MVT::v2i64, MVT::v8i16,   1 },
2220     { ISD::ZERO_EXTEND, MVT::v4i32, MVT::v8i16,   1 },
2221     { ISD::SIGN_EXTEND, MVT::v4i32, MVT::v8i16,   1 },
2222     { ISD::ZERO_EXTEND, MVT::v2i64, MVT::v4i32,   1 },
2223     { ISD::SIGN_EXTEND, MVT::v2i64, MVT::v4i32,   1 },
2224 
2225     // These truncates end up widening elements.
2226     { ISD::TRUNCATE,    MVT::v2i1,   MVT::v2i8,   1 }, // PMOVXZBQ
2227     { ISD::TRUNCATE,    MVT::v2i1,   MVT::v2i16,  1 }, // PMOVXZWQ
2228     { ISD::TRUNCATE,    MVT::v4i1,   MVT::v4i8,   1 }, // PMOVXZBD
2229 
2230     { ISD::TRUNCATE,    MVT::v16i8,  MVT::v4i32,  2 },
2231     { ISD::TRUNCATE,    MVT::v8i16,  MVT::v4i32,  2 },
2232     { ISD::TRUNCATE,    MVT::v16i8,  MVT::v2i64,  2 },
2233 
2234     { ISD::SINT_TO_FP,  MVT::f32,    MVT::i32,    1 },
2235     { ISD::SINT_TO_FP,  MVT::f64,    MVT::i32,    1 },
2236     { ISD::SINT_TO_FP,  MVT::f32,    MVT::i64,    1 },
2237     { ISD::SINT_TO_FP,  MVT::f64,    MVT::i64,    1 },
2238     { ISD::SINT_TO_FP,  MVT::v4f32,  MVT::v16i8,  1 },
2239     { ISD::SINT_TO_FP,  MVT::v2f64,  MVT::v16i8,  1 },
2240     { ISD::SINT_TO_FP,  MVT::v4f32,  MVT::v8i16,  1 },
2241     { ISD::SINT_TO_FP,  MVT::v2f64,  MVT::v8i16,  1 },
2242     { ISD::SINT_TO_FP,  MVT::v4f32,  MVT::v4i32,  1 },
2243     { ISD::SINT_TO_FP,  MVT::v2f64,  MVT::v4i32,  1 },
2244     { ISD::SINT_TO_FP,  MVT::v4f64,  MVT::v4i32,  2 },
2245 
2246     { ISD::UINT_TO_FP,  MVT::f32,    MVT::i32,    1 },
2247     { ISD::UINT_TO_FP,  MVT::f64,    MVT::i32,    1 },
2248     { ISD::UINT_TO_FP,  MVT::f32,    MVT::i64,    4 },
2249     { ISD::UINT_TO_FP,  MVT::f64,    MVT::i64,    4 },
2250     { ISD::UINT_TO_FP,  MVT::v4f32,  MVT::v16i8,  1 },
2251     { ISD::UINT_TO_FP,  MVT::v2f64,  MVT::v16i8,  1 },
2252     { ISD::UINT_TO_FP,  MVT::v4f32,  MVT::v8i16,  1 },
2253     { ISD::UINT_TO_FP,  MVT::v2f64,  MVT::v8i16,  1 },
2254     { ISD::UINT_TO_FP,  MVT::v2f32,  MVT::v2i32,  3 },
2255     { ISD::UINT_TO_FP,  MVT::v4f32,  MVT::v4i32,  3 },
2256     { ISD::UINT_TO_FP,  MVT::v2f64,  MVT::v4i32,  2 },
2257     { ISD::UINT_TO_FP,  MVT::v4f32,  MVT::v2i64, 12 },
2258     { ISD::UINT_TO_FP,  MVT::v4f32,  MVT::v4i64, 22 },
2259     { ISD::UINT_TO_FP,  MVT::v2f64,  MVT::v2i64,  4 },
2260 
2261     { ISD::FP_TO_SINT,  MVT::i32,    MVT::f32,    1 },
2262     { ISD::FP_TO_SINT,  MVT::i64,    MVT::f32,    1 },
2263     { ISD::FP_TO_SINT,  MVT::i32,    MVT::f64,    1 },
2264     { ISD::FP_TO_SINT,  MVT::i64,    MVT::f64,    1 },
2265     { ISD::FP_TO_SINT,  MVT::v16i8,  MVT::v4f32,  2 },
2266     { ISD::FP_TO_SINT,  MVT::v16i8,  MVT::v2f64,  2 },
2267     { ISD::FP_TO_SINT,  MVT::v8i16,  MVT::v4f32,  1 },
2268     { ISD::FP_TO_SINT,  MVT::v8i16,  MVT::v2f64,  1 },
2269     { ISD::FP_TO_SINT,  MVT::v4i32,  MVT::v4f32,  1 },
2270     { ISD::FP_TO_SINT,  MVT::v4i32,  MVT::v2f64,  1 },
2271 
2272     { ISD::FP_TO_UINT,  MVT::i32,    MVT::f32,    1 },
2273     { ISD::FP_TO_UINT,  MVT::i64,    MVT::f32,    4 },
2274     { ISD::FP_TO_UINT,  MVT::i32,    MVT::f64,    1 },
2275     { ISD::FP_TO_UINT,  MVT::i64,    MVT::f64,    4 },
2276     { ISD::FP_TO_UINT,  MVT::v16i8,  MVT::v4f32,  2 },
2277     { ISD::FP_TO_UINT,  MVT::v16i8,  MVT::v2f64,  2 },
2278     { ISD::FP_TO_UINT,  MVT::v8i16,  MVT::v4f32,  1 },
2279     { ISD::FP_TO_UINT,  MVT::v8i16,  MVT::v2f64,  1 },
2280     { ISD::FP_TO_UINT,  MVT::v4i32,  MVT::v4f32,  4 },
2281     { ISD::FP_TO_UINT,  MVT::v4i32,  MVT::v2f64,  4 },
2282   };
2283 
2284   static const TypeConversionCostTblEntry SSE2ConversionTbl[] = {
2285     // These are somewhat magic numbers justified by comparing the
2286     // output of llvm-mca for our various supported scheduler models
2287     // and basing it off the worst case scenario.
2288     { ISD::SINT_TO_FP,  MVT::f32,    MVT::i32,    3 },
2289     { ISD::SINT_TO_FP,  MVT::f64,    MVT::i32,    3 },
2290     { ISD::SINT_TO_FP,  MVT::f32,    MVT::i64,    3 },
2291     { ISD::SINT_TO_FP,  MVT::f64,    MVT::i64,    3 },
2292     { ISD::SINT_TO_FP,  MVT::v4f32,  MVT::v16i8,  3 },
2293     { ISD::SINT_TO_FP,  MVT::v2f64,  MVT::v16i8,  4 },
2294     { ISD::SINT_TO_FP,  MVT::v4f32,  MVT::v8i16,  3 },
2295     { ISD::SINT_TO_FP,  MVT::v2f64,  MVT::v8i16,  4 },
2296     { ISD::SINT_TO_FP,  MVT::v4f32,  MVT::v4i32,  3 },
2297     { ISD::SINT_TO_FP,  MVT::v2f64,  MVT::v4i32,  4 },
2298     { ISD::SINT_TO_FP,  MVT::v4f32,  MVT::v2i64,  8 },
2299     { ISD::SINT_TO_FP,  MVT::v2f64,  MVT::v2i64,  8 },
2300 
2301     { ISD::UINT_TO_FP,  MVT::f32,    MVT::i32,    3 },
2302     { ISD::UINT_TO_FP,  MVT::f64,    MVT::i32,    3 },
2303     { ISD::UINT_TO_FP,  MVT::f32,    MVT::i64,    8 },
2304     { ISD::UINT_TO_FP,  MVT::f64,    MVT::i64,    9 },
2305     { ISD::UINT_TO_FP,  MVT::v2f64,  MVT::v16i8,  4 },
2306     { ISD::UINT_TO_FP,  MVT::v4f32,  MVT::v16i8,  4 },
2307     { ISD::UINT_TO_FP,  MVT::v4f32,  MVT::v8i16,  4 },
2308     { ISD::UINT_TO_FP,  MVT::v2f64,  MVT::v8i16,  4 },
2309     { ISD::UINT_TO_FP,  MVT::v2f32,  MVT::v2i32,  7 },
2310     { ISD::UINT_TO_FP,  MVT::v2f64,  MVT::v4i32,  7 },
2311     { ISD::UINT_TO_FP,  MVT::v4f32,  MVT::v4i32,  5 },
2312     { ISD::UINT_TO_FP,  MVT::v2f64,  MVT::v2i64, 15 },
2313     { ISD::UINT_TO_FP,  MVT::v4f32,  MVT::v2i64, 18 },
2314 
2315     { ISD::FP_TO_SINT,  MVT::i32,    MVT::f32,    4 },
2316     { ISD::FP_TO_SINT,  MVT::i64,    MVT::f32,    4 },
2317     { ISD::FP_TO_SINT,  MVT::i32,    MVT::f64,    4 },
2318     { ISD::FP_TO_SINT,  MVT::i64,    MVT::f64,    4 },
2319     { ISD::FP_TO_SINT,  MVT::v16i8,  MVT::v4f32,  6 },
2320     { ISD::FP_TO_SINT,  MVT::v16i8,  MVT::v2f64,  6 },
2321     { ISD::FP_TO_SINT,  MVT::v8i16,  MVT::v4f32,  5 },
2322     { ISD::FP_TO_SINT,  MVT::v8i16,  MVT::v2f64,  5 },
2323     { ISD::FP_TO_SINT,  MVT::v4i32,  MVT::v4f32,  4 },
2324     { ISD::FP_TO_SINT,  MVT::v4i32,  MVT::v2f64,  4 },
2325 
2326     { ISD::FP_TO_UINT,  MVT::i32,    MVT::f32,    4 },
2327     { ISD::FP_TO_UINT,  MVT::i64,    MVT::f32,    4 },
2328     { ISD::FP_TO_UINT,  MVT::i32,    MVT::f64,    4 },
2329     { ISD::FP_TO_UINT,  MVT::i64,    MVT::f64,   15 },
2330     { ISD::FP_TO_UINT,  MVT::v16i8,  MVT::v4f32,  6 },
2331     { ISD::FP_TO_UINT,  MVT::v16i8,  MVT::v2f64,  6 },
2332     { ISD::FP_TO_UINT,  MVT::v8i16,  MVT::v4f32,  5 },
2333     { ISD::FP_TO_UINT,  MVT::v8i16,  MVT::v2f64,  5 },
2334     { ISD::FP_TO_UINT,  MVT::v4i32,  MVT::v4f32,  8 },
2335     { ISD::FP_TO_UINT,  MVT::v4i32,  MVT::v2f64,  8 },
2336 
2337     { ISD::ZERO_EXTEND, MVT::v2i64,  MVT::v16i8,  4 },
2338     { ISD::SIGN_EXTEND, MVT::v2i64,  MVT::v16i8,  4 },
2339     { ISD::ZERO_EXTEND, MVT::v4i32,  MVT::v16i8,  2 },
2340     { ISD::SIGN_EXTEND, MVT::v4i32,  MVT::v16i8,  3 },
2341     { ISD::ZERO_EXTEND, MVT::v8i16,  MVT::v16i8,  1 },
2342     { ISD::SIGN_EXTEND, MVT::v8i16,  MVT::v16i8,  2 },
2343     { ISD::ZERO_EXTEND, MVT::v2i64,  MVT::v8i16,  2 },
2344     { ISD::SIGN_EXTEND, MVT::v2i64,  MVT::v8i16,  3 },
2345     { ISD::ZERO_EXTEND, MVT::v4i32,  MVT::v8i16,  1 },
2346     { ISD::SIGN_EXTEND, MVT::v4i32,  MVT::v8i16,  2 },
2347     { ISD::ZERO_EXTEND, MVT::v2i64,  MVT::v4i32,  1 },
2348     { ISD::SIGN_EXTEND, MVT::v2i64,  MVT::v4i32,  2 },
2349 
2350     // These truncates are really widening elements.
2351     { ISD::TRUNCATE,    MVT::v2i1,   MVT::v2i32,  1 }, // PSHUFD
2352     { ISD::TRUNCATE,    MVT::v2i1,   MVT::v2i16,  2 }, // PUNPCKLWD+DQ
2353     { ISD::TRUNCATE,    MVT::v2i1,   MVT::v2i8,   3 }, // PUNPCKLBW+WD+PSHUFD
2354     { ISD::TRUNCATE,    MVT::v4i1,   MVT::v4i16,  1 }, // PUNPCKLWD
2355     { ISD::TRUNCATE,    MVT::v4i1,   MVT::v4i8,   2 }, // PUNPCKLBW+WD
2356     { ISD::TRUNCATE,    MVT::v8i1,   MVT::v8i8,   1 }, // PUNPCKLBW
2357 
2358     { ISD::TRUNCATE,    MVT::v16i8,  MVT::v8i16,  2 }, // PAND+PACKUSWB
2359     { ISD::TRUNCATE,    MVT::v16i8,  MVT::v16i16, 3 },
2360     { ISD::TRUNCATE,    MVT::v16i8,  MVT::v4i32,  3 }, // PAND+2*PACKUSWB
2361     { ISD::TRUNCATE,    MVT::v16i8,  MVT::v16i32, 7 },
2362     { ISD::TRUNCATE,    MVT::v2i16,  MVT::v2i32,  1 },
2363     { ISD::TRUNCATE,    MVT::v8i16,  MVT::v4i32,  3 },
2364     { ISD::TRUNCATE,    MVT::v8i16,  MVT::v8i32,  5 },
2365     { ISD::TRUNCATE,    MVT::v16i16, MVT::v16i32,10 },
2366     { ISD::TRUNCATE,    MVT::v16i8,  MVT::v2i64,  4 }, // PAND+3*PACKUSWB
2367     { ISD::TRUNCATE,    MVT::v8i16,  MVT::v2i64,  2 }, // PSHUFD+PSHUFLW
2368     { ISD::TRUNCATE,    MVT::v4i32,  MVT::v2i64,  1 }, // PSHUFD
2369   };
2370 
2371   // Attempt to map directly to (simple) MVT types to let us match custom entries.
2372   EVT SrcTy = TLI->getValueType(DL, Src);
2373   EVT DstTy = TLI->getValueType(DL, Dst);
2374 
2375   // The function getSimpleVT only handles simple value types.
2376   if (SrcTy.isSimple() && DstTy.isSimple()) {
2377     MVT SimpleSrcTy = SrcTy.getSimpleVT();
2378     MVT SimpleDstTy = DstTy.getSimpleVT();
2379 
2380     if (ST->useAVX512Regs()) {
2381       if (ST->hasBWI())
2382         if (const auto *Entry = ConvertCostTableLookup(
2383                 AVX512BWConversionTbl, ISD, SimpleDstTy, SimpleSrcTy))
2384           return AdjustCost(Entry->Cost);
2385 
2386       if (ST->hasDQI())
2387         if (const auto *Entry = ConvertCostTableLookup(
2388                 AVX512DQConversionTbl, ISD, SimpleDstTy, SimpleSrcTy))
2389           return AdjustCost(Entry->Cost);
2390 
2391       if (ST->hasAVX512())
2392         if (const auto *Entry = ConvertCostTableLookup(
2393                 AVX512FConversionTbl, ISD, SimpleDstTy, SimpleSrcTy))
2394           return AdjustCost(Entry->Cost);
2395     }
2396 
2397     if (ST->hasBWI())
2398       if (const auto *Entry = ConvertCostTableLookup(
2399               AVX512BWVLConversionTbl, ISD, SimpleDstTy, SimpleSrcTy))
2400         return AdjustCost(Entry->Cost);
2401 
2402     if (ST->hasDQI())
2403       if (const auto *Entry = ConvertCostTableLookup(
2404               AVX512DQVLConversionTbl, ISD, SimpleDstTy, SimpleSrcTy))
2405         return AdjustCost(Entry->Cost);
2406 
2407     if (ST->hasAVX512())
2408       if (const auto *Entry = ConvertCostTableLookup(AVX512VLConversionTbl, ISD,
2409                                                      SimpleDstTy, SimpleSrcTy))
2410         return AdjustCost(Entry->Cost);
2411 
2412     if (ST->hasAVX2()) {
2413       if (const auto *Entry = ConvertCostTableLookup(AVX2ConversionTbl, ISD,
2414                                                      SimpleDstTy, SimpleSrcTy))
2415         return AdjustCost(Entry->Cost);
2416     }
2417 
2418     if (ST->hasAVX()) {
2419       if (const auto *Entry = ConvertCostTableLookup(AVXConversionTbl, ISD,
2420                                                      SimpleDstTy, SimpleSrcTy))
2421         return AdjustCost(Entry->Cost);
2422     }
2423 
2424     if (ST->hasSSE41()) {
2425       if (const auto *Entry = ConvertCostTableLookup(SSE41ConversionTbl, ISD,
2426                                                      SimpleDstTy, SimpleSrcTy))
2427         return AdjustCost(Entry->Cost);
2428     }
2429 
2430     if (ST->hasSSE2()) {
2431       if (const auto *Entry = ConvertCostTableLookup(SSE2ConversionTbl, ISD,
2432                                                      SimpleDstTy, SimpleSrcTy))
2433         return AdjustCost(Entry->Cost);
2434     }
2435   }
2436 
2437   // Fall back to legalized types.
2438   std::pair<InstructionCost, MVT> LTSrc = TLI->getTypeLegalizationCost(DL, Src);
2439   std::pair<InstructionCost, MVT> LTDest =
2440       TLI->getTypeLegalizationCost(DL, Dst);
2441 
2442   if (ST->useAVX512Regs()) {
2443     if (ST->hasBWI())
2444       if (const auto *Entry = ConvertCostTableLookup(
2445               AVX512BWConversionTbl, ISD, LTDest.second, LTSrc.second))
2446         return AdjustCost(std::max(LTSrc.first, LTDest.first) * Entry->Cost);
2447 
2448     if (ST->hasDQI())
2449       if (const auto *Entry = ConvertCostTableLookup(
2450               AVX512DQConversionTbl, ISD, LTDest.second, LTSrc.second))
2451         return AdjustCost(std::max(LTSrc.first, LTDest.first) * Entry->Cost);
2452 
2453     if (ST->hasAVX512())
2454       if (const auto *Entry = ConvertCostTableLookup(
2455               AVX512FConversionTbl, ISD, LTDest.second, LTSrc.second))
2456         return AdjustCost(std::max(LTSrc.first, LTDest.first) * Entry->Cost);
2457   }
2458 
2459   if (ST->hasBWI())
2460     if (const auto *Entry = ConvertCostTableLookup(AVX512BWVLConversionTbl, ISD,
2461                                                    LTDest.second, LTSrc.second))
2462       return AdjustCost(std::max(LTSrc.first, LTDest.first) * Entry->Cost);
2463 
2464   if (ST->hasDQI())
2465     if (const auto *Entry = ConvertCostTableLookup(AVX512DQVLConversionTbl, ISD,
2466                                                    LTDest.second, LTSrc.second))
2467       return AdjustCost(std::max(LTSrc.first, LTDest.first) * Entry->Cost);
2468 
2469   if (ST->hasAVX512())
2470     if (const auto *Entry = ConvertCostTableLookup(AVX512VLConversionTbl, ISD,
2471                                                    LTDest.second, LTSrc.second))
2472       return AdjustCost(std::max(LTSrc.first, LTDest.first) * Entry->Cost);
2473 
2474   if (ST->hasAVX2())
2475     if (const auto *Entry = ConvertCostTableLookup(AVX2ConversionTbl, ISD,
2476                                                    LTDest.second, LTSrc.second))
2477       return AdjustCost(std::max(LTSrc.first, LTDest.first) * Entry->Cost);
2478 
2479   if (ST->hasAVX())
2480     if (const auto *Entry = ConvertCostTableLookup(AVXConversionTbl, ISD,
2481                                                    LTDest.second, LTSrc.second))
2482       return AdjustCost(std::max(LTSrc.first, LTDest.first) * Entry->Cost);
2483 
2484   if (ST->hasSSE41())
2485     if (const auto *Entry = ConvertCostTableLookup(SSE41ConversionTbl, ISD,
2486                                                    LTDest.second, LTSrc.second))
2487       return AdjustCost(std::max(LTSrc.first, LTDest.first) * Entry->Cost);
2488 
2489   if (ST->hasSSE2())
2490     if (const auto *Entry = ConvertCostTableLookup(SSE2ConversionTbl, ISD,
2491                                                    LTDest.second, LTSrc.second))
2492       return AdjustCost(std::max(LTSrc.first, LTDest.first) * Entry->Cost);
2493 
2494   // Fallback, for i8/i16 sitofp/uitofp cases we need to extend to i32 for
2495   // sitofp.
2496   if ((ISD == ISD::SINT_TO_FP || ISD == ISD::UINT_TO_FP) &&
2497       1 < Src->getScalarSizeInBits() && Src->getScalarSizeInBits() < 32) {
2498     Type *ExtSrc = Src->getWithNewBitWidth(32);
2499     unsigned ExtOpc =
2500         (ISD == ISD::SINT_TO_FP) ? Instruction::SExt : Instruction::ZExt;
2501 
2502     // For scalar loads the extend would be free.
2503     InstructionCost ExtCost = 0;
2504     if (!(Src->isIntegerTy() && I && isa<LoadInst>(I->getOperand(0))))
2505       ExtCost = getCastInstrCost(ExtOpc, ExtSrc, Src, CCH, CostKind);
2506 
2507     return ExtCost + getCastInstrCost(Instruction::SIToFP, Dst, ExtSrc,
2508                                       TTI::CastContextHint::None, CostKind);
2509   }
2510 
2511   // Fallback for fptosi/fptoui i8/i16 cases we need to truncate from fptosi
2512   // i32.
2513   if ((ISD == ISD::FP_TO_SINT || ISD == ISD::FP_TO_UINT) &&
2514       1 < Dst->getScalarSizeInBits() && Dst->getScalarSizeInBits() < 32) {
2515     Type *TruncDst = Dst->getWithNewBitWidth(32);
2516     return getCastInstrCost(Instruction::FPToSI, TruncDst, Src, CCH, CostKind) +
2517            getCastInstrCost(Instruction::Trunc, Dst, TruncDst,
2518                             TTI::CastContextHint::None, CostKind);
2519   }
2520 
2521   return AdjustCost(
2522       BaseT::getCastInstrCost(Opcode, Dst, Src, CCH, CostKind, I));
2523 }
2524 
2525 InstructionCost X86TTIImpl::getCmpSelInstrCost(unsigned Opcode, Type *ValTy,
2526                                                Type *CondTy,
2527                                                CmpInst::Predicate VecPred,
2528                                                TTI::TargetCostKind CostKind,
2529                                                const Instruction *I) {
2530   // TODO: Handle other cost kinds.
2531   if (CostKind != TTI::TCK_RecipThroughput)
2532     return BaseT::getCmpSelInstrCost(Opcode, ValTy, CondTy, VecPred, CostKind,
2533                                      I);
2534 
2535   // Legalize the type.
2536   std::pair<InstructionCost, MVT> LT = TLI->getTypeLegalizationCost(DL, ValTy);
2537 
2538   MVT MTy = LT.second;
2539 
2540   int ISD = TLI->InstructionOpcodeToISD(Opcode);
2541   assert(ISD && "Invalid opcode");
2542 
2543   unsigned ExtraCost = 0;
2544   if (Opcode == Instruction::ICmp || Opcode == Instruction::FCmp) {
2545     // Some vector comparison predicates cost extra instructions.
2546     // TODO: Should we invert this and assume worst case cmp costs
2547     // and reduce for particular predicates?
2548     if (MTy.isVector() &&
2549         !((ST->hasXOP() && (!ST->hasAVX2() || MTy.is128BitVector())) ||
2550           (ST->hasAVX512() && 32 <= MTy.getScalarSizeInBits()) ||
2551           ST->hasBWI())) {
2552       // Fallback to I if a specific predicate wasn't specified.
2553       CmpInst::Predicate Pred = VecPred;
2554       if (I && (Pred == CmpInst::BAD_ICMP_PREDICATE ||
2555                 Pred == CmpInst::BAD_FCMP_PREDICATE))
2556         Pred = cast<CmpInst>(I)->getPredicate();
2557 
2558       switch (Pred) {
2559       case CmpInst::Predicate::ICMP_NE:
2560         // xor(cmpeq(x,y),-1)
2561         ExtraCost = 1;
2562         break;
2563       case CmpInst::Predicate::ICMP_SGE:
2564       case CmpInst::Predicate::ICMP_SLE:
2565         // xor(cmpgt(x,y),-1)
2566         ExtraCost = 1;
2567         break;
2568       case CmpInst::Predicate::ICMP_ULT:
2569       case CmpInst::Predicate::ICMP_UGT:
2570         // cmpgt(xor(x,signbit),xor(y,signbit))
2571         // xor(cmpeq(pmaxu(x,y),x),-1)
2572         ExtraCost = 2;
2573         break;
2574       case CmpInst::Predicate::ICMP_ULE:
2575       case CmpInst::Predicate::ICMP_UGE:
2576         if ((ST->hasSSE41() && MTy.getScalarSizeInBits() == 32) ||
2577             (ST->hasSSE2() && MTy.getScalarSizeInBits() < 32)) {
2578           // cmpeq(psubus(x,y),0)
2579           // cmpeq(pminu(x,y),x)
2580           ExtraCost = 1;
2581         } else {
2582           // xor(cmpgt(xor(x,signbit),xor(y,signbit)),-1)
2583           ExtraCost = 3;
2584         }
2585         break;
2586       case CmpInst::Predicate::BAD_ICMP_PREDICATE:
2587       case CmpInst::Predicate::BAD_FCMP_PREDICATE:
2588         // Assume worst case scenario and add the maximum extra cost.
2589         ExtraCost = 3;
2590         break;
2591       default:
2592         break;
2593       }
2594     }
2595   }
2596 
2597   static const CostTblEntry SLMCostTbl[] = {
2598     // slm pcmpeq/pcmpgt throughput is 2
2599     { ISD::SETCC,   MVT::v2i64,   2 },
2600   };
2601 
2602   static const CostTblEntry AVX512BWCostTbl[] = {
2603     { ISD::SETCC,   MVT::v32i16,  1 },
2604     { ISD::SETCC,   MVT::v64i8,   1 },
2605 
2606     { ISD::SELECT,  MVT::v32i16,  1 },
2607     { ISD::SELECT,  MVT::v64i8,   1 },
2608   };
2609 
2610   static const CostTblEntry AVX512CostTbl[] = {
2611     { ISD::SETCC,   MVT::v8i64,   1 },
2612     { ISD::SETCC,   MVT::v16i32,  1 },
2613     { ISD::SETCC,   MVT::v8f64,   1 },
2614     { ISD::SETCC,   MVT::v16f32,  1 },
2615 
2616     { ISD::SELECT,  MVT::v8i64,   1 },
2617     { ISD::SELECT,  MVT::v16i32,  1 },
2618     { ISD::SELECT,  MVT::v8f64,   1 },
2619     { ISD::SELECT,  MVT::v16f32,  1 },
2620 
2621     { ISD::SETCC,   MVT::v32i16,  2 }, // FIXME: should probably be 4
2622     { ISD::SETCC,   MVT::v64i8,   2 }, // FIXME: should probably be 4
2623 
2624     { ISD::SELECT,  MVT::v32i16,  2 }, // FIXME: should be 3
2625     { ISD::SELECT,  MVT::v64i8,   2 }, // FIXME: should be 3
2626   };
2627 
2628   static const CostTblEntry AVX2CostTbl[] = {
2629     { ISD::SETCC,   MVT::v4i64,   1 },
2630     { ISD::SETCC,   MVT::v8i32,   1 },
2631     { ISD::SETCC,   MVT::v16i16,  1 },
2632     { ISD::SETCC,   MVT::v32i8,   1 },
2633 
2634     { ISD::SELECT,  MVT::v4i64,   1 }, // pblendvb
2635     { ISD::SELECT,  MVT::v8i32,   1 }, // pblendvb
2636     { ISD::SELECT,  MVT::v16i16,  1 }, // pblendvb
2637     { ISD::SELECT,  MVT::v32i8,   1 }, // pblendvb
2638   };
2639 
2640   static const CostTblEntry AVX1CostTbl[] = {
2641     { ISD::SETCC,   MVT::v4f64,   1 },
2642     { ISD::SETCC,   MVT::v8f32,   1 },
2643     // AVX1 does not support 8-wide integer compare.
2644     { ISD::SETCC,   MVT::v4i64,   4 },
2645     { ISD::SETCC,   MVT::v8i32,   4 },
2646     { ISD::SETCC,   MVT::v16i16,  4 },
2647     { ISD::SETCC,   MVT::v32i8,   4 },
2648 
2649     { ISD::SELECT,  MVT::v4f64,   1 }, // vblendvpd
2650     { ISD::SELECT,  MVT::v8f32,   1 }, // vblendvps
2651     { ISD::SELECT,  MVT::v4i64,   1 }, // vblendvpd
2652     { ISD::SELECT,  MVT::v8i32,   1 }, // vblendvps
2653     { ISD::SELECT,  MVT::v16i16,  3 }, // vandps + vandnps + vorps
2654     { ISD::SELECT,  MVT::v32i8,   3 }, // vandps + vandnps + vorps
2655   };
2656 
2657   static const CostTblEntry SSE42CostTbl[] = {
2658     { ISD::SETCC,   MVT::v2f64,   1 },
2659     { ISD::SETCC,   MVT::v4f32,   1 },
2660     { ISD::SETCC,   MVT::v2i64,   1 },
2661   };
2662 
2663   static const CostTblEntry SSE41CostTbl[] = {
2664     { ISD::SELECT,  MVT::v2f64,   1 }, // blendvpd
2665     { ISD::SELECT,  MVT::v4f32,   1 }, // blendvps
2666     { ISD::SELECT,  MVT::v2i64,   1 }, // pblendvb
2667     { ISD::SELECT,  MVT::v4i32,   1 }, // pblendvb
2668     { ISD::SELECT,  MVT::v8i16,   1 }, // pblendvb
2669     { ISD::SELECT,  MVT::v16i8,   1 }, // pblendvb
2670   };
2671 
2672   static const CostTblEntry SSE2CostTbl[] = {
2673     { ISD::SETCC,   MVT::v2f64,   2 },
2674     { ISD::SETCC,   MVT::f64,     1 },
2675     { ISD::SETCC,   MVT::v2i64,   8 },
2676     { ISD::SETCC,   MVT::v4i32,   1 },
2677     { ISD::SETCC,   MVT::v8i16,   1 },
2678     { ISD::SETCC,   MVT::v16i8,   1 },
2679 
2680     { ISD::SELECT,  MVT::v2f64,   3 }, // andpd + andnpd + orpd
2681     { ISD::SELECT,  MVT::v2i64,   3 }, // pand + pandn + por
2682     { ISD::SELECT,  MVT::v4i32,   3 }, // pand + pandn + por
2683     { ISD::SELECT,  MVT::v8i16,   3 }, // pand + pandn + por
2684     { ISD::SELECT,  MVT::v16i8,   3 }, // pand + pandn + por
2685   };
2686 
2687   static const CostTblEntry SSE1CostTbl[] = {
2688     { ISD::SETCC,   MVT::v4f32,   2 },
2689     { ISD::SETCC,   MVT::f32,     1 },
2690 
2691     { ISD::SELECT,  MVT::v4f32,   3 }, // andps + andnps + orps
2692   };
2693 
2694   if (ST->useSLMArithCosts())
2695     if (const auto *Entry = CostTableLookup(SLMCostTbl, ISD, MTy))
2696       return LT.first * (ExtraCost + Entry->Cost);
2697 
2698   if (ST->hasBWI())
2699     if (const auto *Entry = CostTableLookup(AVX512BWCostTbl, ISD, MTy))
2700       return LT.first * (ExtraCost + Entry->Cost);
2701 
2702   if (ST->hasAVX512())
2703     if (const auto *Entry = CostTableLookup(AVX512CostTbl, ISD, MTy))
2704       return LT.first * (ExtraCost + Entry->Cost);
2705 
2706   if (ST->hasAVX2())
2707     if (const auto *Entry = CostTableLookup(AVX2CostTbl, ISD, MTy))
2708       return LT.first * (ExtraCost + Entry->Cost);
2709 
2710   if (ST->hasAVX())
2711     if (const auto *Entry = CostTableLookup(AVX1CostTbl, ISD, MTy))
2712       return LT.first * (ExtraCost + Entry->Cost);
2713 
2714   if (ST->hasSSE42())
2715     if (const auto *Entry = CostTableLookup(SSE42CostTbl, ISD, MTy))
2716       return LT.first * (ExtraCost + Entry->Cost);
2717 
2718   if (ST->hasSSE41())
2719     if (const auto *Entry = CostTableLookup(SSE41CostTbl, ISD, MTy))
2720       return LT.first * (ExtraCost + Entry->Cost);
2721 
2722   if (ST->hasSSE2())
2723     if (const auto *Entry = CostTableLookup(SSE2CostTbl, ISD, MTy))
2724       return LT.first * (ExtraCost + Entry->Cost);
2725 
2726   if (ST->hasSSE1())
2727     if (const auto *Entry = CostTableLookup(SSE1CostTbl, ISD, MTy))
2728       return LT.first * (ExtraCost + Entry->Cost);
2729 
2730   return BaseT::getCmpSelInstrCost(Opcode, ValTy, CondTy, VecPred, CostKind, I);
2731 }
2732 
2733 unsigned X86TTIImpl::getAtomicMemIntrinsicMaxElementSize() const { return 16; }
2734 
2735 InstructionCost
2736 X86TTIImpl::getTypeBasedIntrinsicInstrCost(const IntrinsicCostAttributes &ICA,
2737                                            TTI::TargetCostKind CostKind) {
2738 
2739   // Costs should match the codegen from:
2740   // BITREVERSE: llvm\test\CodeGen\X86\vector-bitreverse.ll
2741   // BSWAP: llvm\test\CodeGen\X86\bswap-vector.ll
2742   // CTLZ: llvm\test\CodeGen\X86\vector-lzcnt-*.ll
2743   // CTPOP: llvm\test\CodeGen\X86\vector-popcnt-*.ll
2744   // CTTZ: llvm\test\CodeGen\X86\vector-tzcnt-*.ll
2745 
2746   // TODO: Overflow intrinsics (*ADDO, *SUBO, *MULO) with vector types are not
2747   //       specialized in these tables yet.
2748   static const CostTblEntry AVX512BITALGCostTbl[] = {
2749     { ISD::CTPOP,      MVT::v32i16,  1 },
2750     { ISD::CTPOP,      MVT::v64i8,   1 },
2751     { ISD::CTPOP,      MVT::v16i16,  1 },
2752     { ISD::CTPOP,      MVT::v32i8,   1 },
2753     { ISD::CTPOP,      MVT::v8i16,   1 },
2754     { ISD::CTPOP,      MVT::v16i8,   1 },
2755   };
2756   static const CostTblEntry AVX512VPOPCNTDQCostTbl[] = {
2757     { ISD::CTPOP,      MVT::v8i64,   1 },
2758     { ISD::CTPOP,      MVT::v16i32,  1 },
2759     { ISD::CTPOP,      MVT::v4i64,   1 },
2760     { ISD::CTPOP,      MVT::v8i32,   1 },
2761     { ISD::CTPOP,      MVT::v2i64,   1 },
2762     { ISD::CTPOP,      MVT::v4i32,   1 },
2763   };
2764   static const CostTblEntry AVX512CDCostTbl[] = {
2765     { ISD::CTLZ,       MVT::v8i64,   1 },
2766     { ISD::CTLZ,       MVT::v16i32,  1 },
2767     { ISD::CTLZ,       MVT::v32i16,  8 },
2768     { ISD::CTLZ,       MVT::v64i8,  20 },
2769     { ISD::CTLZ,       MVT::v4i64,   1 },
2770     { ISD::CTLZ,       MVT::v8i32,   1 },
2771     { ISD::CTLZ,       MVT::v16i16,  4 },
2772     { ISD::CTLZ,       MVT::v32i8,  10 },
2773     { ISD::CTLZ,       MVT::v2i64,   1 },
2774     { ISD::CTLZ,       MVT::v4i32,   1 },
2775     { ISD::CTLZ,       MVT::v8i16,   4 },
2776     { ISD::CTLZ,       MVT::v16i8,   4 },
2777   };
2778   static const CostTblEntry AVX512BWCostTbl[] = {
2779     { ISD::ABS,        MVT::v32i16,  1 },
2780     { ISD::ABS,        MVT::v64i8,   1 },
2781     { ISD::BITREVERSE, MVT::v8i64,   3 },
2782     { ISD::BITREVERSE, MVT::v16i32,  3 },
2783     { ISD::BITREVERSE, MVT::v32i16,  3 },
2784     { ISD::BITREVERSE, MVT::v64i8,   2 },
2785     { ISD::BSWAP,      MVT::v8i64,   1 },
2786     { ISD::BSWAP,      MVT::v16i32,  1 },
2787     { ISD::BSWAP,      MVT::v32i16,  1 },
2788     { ISD::CTLZ,       MVT::v8i64,  23 },
2789     { ISD::CTLZ,       MVT::v16i32, 22 },
2790     { ISD::CTLZ,       MVT::v32i16, 18 },
2791     { ISD::CTLZ,       MVT::v64i8,  17 },
2792     { ISD::CTPOP,      MVT::v8i64,   7 },
2793     { ISD::CTPOP,      MVT::v16i32, 11 },
2794     { ISD::CTPOP,      MVT::v32i16,  9 },
2795     { ISD::CTPOP,      MVT::v64i8,   6 },
2796     { ISD::CTTZ,       MVT::v8i64,  10 },
2797     { ISD::CTTZ,       MVT::v16i32, 14 },
2798     { ISD::CTTZ,       MVT::v32i16, 12 },
2799     { ISD::CTTZ,       MVT::v64i8,   9 },
2800     { ISD::SADDSAT,    MVT::v32i16,  1 },
2801     { ISD::SADDSAT,    MVT::v64i8,   1 },
2802     { ISD::SMAX,       MVT::v32i16,  1 },
2803     { ISD::SMAX,       MVT::v64i8,   1 },
2804     { ISD::SMIN,       MVT::v32i16,  1 },
2805     { ISD::SMIN,       MVT::v64i8,   1 },
2806     { ISD::SSUBSAT,    MVT::v32i16,  1 },
2807     { ISD::SSUBSAT,    MVT::v64i8,   1 },
2808     { ISD::UADDSAT,    MVT::v32i16,  1 },
2809     { ISD::UADDSAT,    MVT::v64i8,   1 },
2810     { ISD::UMAX,       MVT::v32i16,  1 },
2811     { ISD::UMAX,       MVT::v64i8,   1 },
2812     { ISD::UMIN,       MVT::v32i16,  1 },
2813     { ISD::UMIN,       MVT::v64i8,   1 },
2814     { ISD::USUBSAT,    MVT::v32i16,  1 },
2815     { ISD::USUBSAT,    MVT::v64i8,   1 },
2816   };
2817   static const CostTblEntry AVX512CostTbl[] = {
2818     { ISD::ABS,        MVT::v8i64,   1 },
2819     { ISD::ABS,        MVT::v16i32,  1 },
2820     { ISD::ABS,        MVT::v32i16,  2 },
2821     { ISD::ABS,        MVT::v64i8,   2 },
2822     { ISD::ABS,        MVT::v4i64,   1 },
2823     { ISD::ABS,        MVT::v2i64,   1 },
2824     { ISD::BITREVERSE, MVT::v8i64,  36 },
2825     { ISD::BITREVERSE, MVT::v16i32, 24 },
2826     { ISD::BITREVERSE, MVT::v32i16, 10 },
2827     { ISD::BITREVERSE, MVT::v64i8,  10 },
2828     { ISD::BSWAP,      MVT::v8i64,   4 },
2829     { ISD::BSWAP,      MVT::v16i32,  4 },
2830     { ISD::BSWAP,      MVT::v32i16,  4 },
2831     { ISD::CTLZ,       MVT::v8i64,  29 },
2832     { ISD::CTLZ,       MVT::v16i32, 35 },
2833     { ISD::CTLZ,       MVT::v32i16, 28 },
2834     { ISD::CTLZ,       MVT::v64i8,  18 },
2835     { ISD::CTPOP,      MVT::v8i64,  16 },
2836     { ISD::CTPOP,      MVT::v16i32, 24 },
2837     { ISD::CTPOP,      MVT::v32i16, 18 },
2838     { ISD::CTPOP,      MVT::v64i8,  12 },
2839     { ISD::CTTZ,       MVT::v8i64,  20 },
2840     { ISD::CTTZ,       MVT::v16i32, 28 },
2841     { ISD::CTTZ,       MVT::v32i16, 24 },
2842     { ISD::CTTZ,       MVT::v64i8,  18 },
2843     { ISD::SMAX,       MVT::v8i64,   1 },
2844     { ISD::SMAX,       MVT::v16i32,  1 },
2845     { ISD::SMAX,       MVT::v32i16,  2 },
2846     { ISD::SMAX,       MVT::v64i8,   2 },
2847     { ISD::SMAX,       MVT::v4i64,   1 },
2848     { ISD::SMAX,       MVT::v2i64,   1 },
2849     { ISD::SMIN,       MVT::v8i64,   1 },
2850     { ISD::SMIN,       MVT::v16i32,  1 },
2851     { ISD::SMIN,       MVT::v32i16,  2 },
2852     { ISD::SMIN,       MVT::v64i8,   2 },
2853     { ISD::SMIN,       MVT::v4i64,   1 },
2854     { ISD::SMIN,       MVT::v2i64,   1 },
2855     { ISD::UMAX,       MVT::v8i64,   1 },
2856     { ISD::UMAX,       MVT::v16i32,  1 },
2857     { ISD::UMAX,       MVT::v32i16,  2 },
2858     { ISD::UMAX,       MVT::v64i8,   2 },
2859     { ISD::UMAX,       MVT::v4i64,   1 },
2860     { ISD::UMAX,       MVT::v2i64,   1 },
2861     { ISD::UMIN,       MVT::v8i64,   1 },
2862     { ISD::UMIN,       MVT::v16i32,  1 },
2863     { ISD::UMIN,       MVT::v32i16,  2 },
2864     { ISD::UMIN,       MVT::v64i8,   2 },
2865     { ISD::UMIN,       MVT::v4i64,   1 },
2866     { ISD::UMIN,       MVT::v2i64,   1 },
2867     { ISD::USUBSAT,    MVT::v16i32,  2 }, // pmaxud + psubd
2868     { ISD::USUBSAT,    MVT::v2i64,   2 }, // pmaxuq + psubq
2869     { ISD::USUBSAT,    MVT::v4i64,   2 }, // pmaxuq + psubq
2870     { ISD::USUBSAT,    MVT::v8i64,   2 }, // pmaxuq + psubq
2871     { ISD::UADDSAT,    MVT::v16i32,  3 }, // not + pminud + paddd
2872     { ISD::UADDSAT,    MVT::v2i64,   3 }, // not + pminuq + paddq
2873     { ISD::UADDSAT,    MVT::v4i64,   3 }, // not + pminuq + paddq
2874     { ISD::UADDSAT,    MVT::v8i64,   3 }, // not + pminuq + paddq
2875     { ISD::SADDSAT,    MVT::v32i16,  2 },
2876     { ISD::SADDSAT,    MVT::v64i8,   2 },
2877     { ISD::SSUBSAT,    MVT::v32i16,  2 },
2878     { ISD::SSUBSAT,    MVT::v64i8,   2 },
2879     { ISD::UADDSAT,    MVT::v32i16,  2 },
2880     { ISD::UADDSAT,    MVT::v64i8,   2 },
2881     { ISD::USUBSAT,    MVT::v32i16,  2 },
2882     { ISD::USUBSAT,    MVT::v64i8,   2 },
2883     { ISD::FMAXNUM,    MVT::f32,     2 },
2884     { ISD::FMAXNUM,    MVT::v4f32,   2 },
2885     { ISD::FMAXNUM,    MVT::v8f32,   2 },
2886     { ISD::FMAXNUM,    MVT::v16f32,  2 },
2887     { ISD::FMAXNUM,    MVT::f64,     2 },
2888     { ISD::FMAXNUM,    MVT::v2f64,   2 },
2889     { ISD::FMAXNUM,    MVT::v4f64,   2 },
2890     { ISD::FMAXNUM,    MVT::v8f64,   2 },
2891   };
2892   static const CostTblEntry XOPCostTbl[] = {
2893     { ISD::BITREVERSE, MVT::v4i64,   4 },
2894     { ISD::BITREVERSE, MVT::v8i32,   4 },
2895     { ISD::BITREVERSE, MVT::v16i16,  4 },
2896     { ISD::BITREVERSE, MVT::v32i8,   4 },
2897     { ISD::BITREVERSE, MVT::v2i64,   1 },
2898     { ISD::BITREVERSE, MVT::v4i32,   1 },
2899     { ISD::BITREVERSE, MVT::v8i16,   1 },
2900     { ISD::BITREVERSE, MVT::v16i8,   1 },
2901     { ISD::BITREVERSE, MVT::i64,     3 },
2902     { ISD::BITREVERSE, MVT::i32,     3 },
2903     { ISD::BITREVERSE, MVT::i16,     3 },
2904     { ISD::BITREVERSE, MVT::i8,      3 }
2905   };
2906   static const CostTblEntry AVX2CostTbl[] = {
2907     { ISD::ABS,        MVT::v4i64,   2 }, // VBLENDVPD(X,VPSUBQ(0,X),X)
2908     { ISD::ABS,        MVT::v8i32,   1 },
2909     { ISD::ABS,        MVT::v16i16,  1 },
2910     { ISD::ABS,        MVT::v32i8,   1 },
2911     { ISD::BITREVERSE, MVT::v2i64,   3 },
2912     { ISD::BITREVERSE, MVT::v4i64,   3 },
2913     { ISD::BITREVERSE, MVT::v4i32,   3 },
2914     { ISD::BITREVERSE, MVT::v8i32,   3 },
2915     { ISD::BITREVERSE, MVT::v8i16,   3 },
2916     { ISD::BITREVERSE, MVT::v16i16,  3 },
2917     { ISD::BITREVERSE, MVT::v16i8,   3 },
2918     { ISD::BITREVERSE, MVT::v32i8,   3 },
2919     { ISD::BSWAP,      MVT::v4i64,   1 },
2920     { ISD::BSWAP,      MVT::v8i32,   1 },
2921     { ISD::BSWAP,      MVT::v16i16,  1 },
2922     { ISD::CTLZ,       MVT::v2i64,   7 },
2923     { ISD::CTLZ,       MVT::v4i64,   7 },
2924     { ISD::CTLZ,       MVT::v4i32,   5 },
2925     { ISD::CTLZ,       MVT::v8i32,   5 },
2926     { ISD::CTLZ,       MVT::v8i16,   4 },
2927     { ISD::CTLZ,       MVT::v16i16,  4 },
2928     { ISD::CTLZ,       MVT::v16i8,   3 },
2929     { ISD::CTLZ,       MVT::v32i8,   3 },
2930     { ISD::CTPOP,      MVT::v2i64,   3 },
2931     { ISD::CTPOP,      MVT::v4i64,   3 },
2932     { ISD::CTPOP,      MVT::v4i32,   7 },
2933     { ISD::CTPOP,      MVT::v8i32,   7 },
2934     { ISD::CTPOP,      MVT::v8i16,   3 },
2935     { ISD::CTPOP,      MVT::v16i16,  3 },
2936     { ISD::CTPOP,      MVT::v16i8,   2 },
2937     { ISD::CTPOP,      MVT::v32i8,   2 },
2938     { ISD::CTTZ,       MVT::v2i64,   4 },
2939     { ISD::CTTZ,       MVT::v4i64,   4 },
2940     { ISD::CTTZ,       MVT::v4i32,   7 },
2941     { ISD::CTTZ,       MVT::v8i32,   7 },
2942     { ISD::CTTZ,       MVT::v8i16,   4 },
2943     { ISD::CTTZ,       MVT::v16i16,  4 },
2944     { ISD::CTTZ,       MVT::v16i8,   3 },
2945     { ISD::CTTZ,       MVT::v32i8,   3 },
2946     { ISD::SADDSAT,    MVT::v16i16,  1 },
2947     { ISD::SADDSAT,    MVT::v32i8,   1 },
2948     { ISD::SMAX,       MVT::v8i32,   1 },
2949     { ISD::SMAX,       MVT::v16i16,  1 },
2950     { ISD::SMAX,       MVT::v32i8,   1 },
2951     { ISD::SMIN,       MVT::v8i32,   1 },
2952     { ISD::SMIN,       MVT::v16i16,  1 },
2953     { ISD::SMIN,       MVT::v32i8,   1 },
2954     { ISD::SSUBSAT,    MVT::v16i16,  1 },
2955     { ISD::SSUBSAT,    MVT::v32i8,   1 },
2956     { ISD::UADDSAT,    MVT::v16i16,  1 },
2957     { ISD::UADDSAT,    MVT::v32i8,   1 },
2958     { ISD::UADDSAT,    MVT::v8i32,   3 }, // not + pminud + paddd
2959     { ISD::UMAX,       MVT::v8i32,   1 },
2960     { ISD::UMAX,       MVT::v16i16,  1 },
2961     { ISD::UMAX,       MVT::v32i8,   1 },
2962     { ISD::UMIN,       MVT::v8i32,   1 },
2963     { ISD::UMIN,       MVT::v16i16,  1 },
2964     { ISD::UMIN,       MVT::v32i8,   1 },
2965     { ISD::USUBSAT,    MVT::v16i16,  1 },
2966     { ISD::USUBSAT,    MVT::v32i8,   1 },
2967     { ISD::USUBSAT,    MVT::v8i32,   2 }, // pmaxud + psubd
2968     { ISD::FMAXNUM,    MVT::v8f32,   3 }, // MAXPS + CMPUNORDPS + BLENDVPS
2969     { ISD::FMAXNUM,    MVT::v4f64,   3 }, // MAXPD + CMPUNORDPD + BLENDVPD
2970     { ISD::FSQRT,      MVT::f32,     7 }, // Haswell from http://www.agner.org/
2971     { ISD::FSQRT,      MVT::v4f32,   7 }, // Haswell from http://www.agner.org/
2972     { ISD::FSQRT,      MVT::v8f32,  14 }, // Haswell from http://www.agner.org/
2973     { ISD::FSQRT,      MVT::f64,    14 }, // Haswell from http://www.agner.org/
2974     { ISD::FSQRT,      MVT::v2f64,  14 }, // Haswell from http://www.agner.org/
2975     { ISD::FSQRT,      MVT::v4f64,  28 }, // Haswell from http://www.agner.org/
2976   };
2977   static const CostTblEntry AVX1CostTbl[] = {
2978     { ISD::ABS,        MVT::v4i64,   5 }, // VBLENDVPD(X,VPSUBQ(0,X),X)
2979     { ISD::ABS,        MVT::v8i32,   3 },
2980     { ISD::ABS,        MVT::v16i16,  3 },
2981     { ISD::ABS,        MVT::v32i8,   3 },
2982     { ISD::BITREVERSE, MVT::v4i64,  12 }, // 2 x 128-bit Op + extract/insert
2983     { ISD::BITREVERSE, MVT::v8i32,  12 }, // 2 x 128-bit Op + extract/insert
2984     { ISD::BITREVERSE, MVT::v16i16, 12 }, // 2 x 128-bit Op + extract/insert
2985     { ISD::BITREVERSE, MVT::v32i8,  12 }, // 2 x 128-bit Op + extract/insert
2986     { ISD::BSWAP,      MVT::v4i64,   4 },
2987     { ISD::BSWAP,      MVT::v8i32,   4 },
2988     { ISD::BSWAP,      MVT::v16i16,  4 },
2989     { ISD::CTLZ,       MVT::v4i64,  48 }, // 2 x 128-bit Op + extract/insert
2990     { ISD::CTLZ,       MVT::v8i32,  38 }, // 2 x 128-bit Op + extract/insert
2991     { ISD::CTLZ,       MVT::v16i16, 30 }, // 2 x 128-bit Op + extract/insert
2992     { ISD::CTLZ,       MVT::v32i8,  20 }, // 2 x 128-bit Op + extract/insert
2993     { ISD::CTPOP,      MVT::v4i64,  16 }, // 2 x 128-bit Op + extract/insert
2994     { ISD::CTPOP,      MVT::v8i32,  24 }, // 2 x 128-bit Op + extract/insert
2995     { ISD::CTPOP,      MVT::v16i16, 20 }, // 2 x 128-bit Op + extract/insert
2996     { ISD::CTPOP,      MVT::v32i8,  14 }, // 2 x 128-bit Op + extract/insert
2997     { ISD::CTTZ,       MVT::v4i64,  22 }, // 2 x 128-bit Op + extract/insert
2998     { ISD::CTTZ,       MVT::v8i32,  30 }, // 2 x 128-bit Op + extract/insert
2999     { ISD::CTTZ,       MVT::v16i16, 26 }, // 2 x 128-bit Op + extract/insert
3000     { ISD::CTTZ,       MVT::v32i8,  20 }, // 2 x 128-bit Op + extract/insert
3001     { ISD::SADDSAT,    MVT::v16i16,  4 }, // 2 x 128-bit Op + extract/insert
3002     { ISD::SADDSAT,    MVT::v32i8,   4 }, // 2 x 128-bit Op + extract/insert
3003     { ISD::SMAX,       MVT::v8i32,   4 }, // 2 x 128-bit Op + extract/insert
3004     { ISD::SMAX,       MVT::v16i16,  4 }, // 2 x 128-bit Op + extract/insert
3005     { ISD::SMAX,       MVT::v32i8,   4 }, // 2 x 128-bit Op + extract/insert
3006     { ISD::SMIN,       MVT::v8i32,   4 }, // 2 x 128-bit Op + extract/insert
3007     { ISD::SMIN,       MVT::v16i16,  4 }, // 2 x 128-bit Op + extract/insert
3008     { ISD::SMIN,       MVT::v32i8,   4 }, // 2 x 128-bit Op + extract/insert
3009     { ISD::SSUBSAT,    MVT::v16i16,  4 }, // 2 x 128-bit Op + extract/insert
3010     { ISD::SSUBSAT,    MVT::v32i8,   4 }, // 2 x 128-bit Op + extract/insert
3011     { ISD::UADDSAT,    MVT::v16i16,  4 }, // 2 x 128-bit Op + extract/insert
3012     { ISD::UADDSAT,    MVT::v32i8,   4 }, // 2 x 128-bit Op + extract/insert
3013     { ISD::UADDSAT,    MVT::v8i32,   8 }, // 2 x 128-bit Op + extract/insert
3014     { ISD::UMAX,       MVT::v8i32,   4 }, // 2 x 128-bit Op + extract/insert
3015     { ISD::UMAX,       MVT::v16i16,  4 }, // 2 x 128-bit Op + extract/insert
3016     { ISD::UMAX,       MVT::v32i8,   4 }, // 2 x 128-bit Op + extract/insert
3017     { ISD::UMIN,       MVT::v8i32,   4 }, // 2 x 128-bit Op + extract/insert
3018     { ISD::UMIN,       MVT::v16i16,  4 }, // 2 x 128-bit Op + extract/insert
3019     { ISD::UMIN,       MVT::v32i8,   4 }, // 2 x 128-bit Op + extract/insert
3020     { ISD::USUBSAT,    MVT::v16i16,  4 }, // 2 x 128-bit Op + extract/insert
3021     { ISD::USUBSAT,    MVT::v32i8,   4 }, // 2 x 128-bit Op + extract/insert
3022     { ISD::USUBSAT,    MVT::v8i32,   6 }, // 2 x 128-bit Op + extract/insert
3023     { ISD::FMAXNUM,    MVT::f32,     3 }, // MAXSS + CMPUNORDSS + BLENDVPS
3024     { ISD::FMAXNUM,    MVT::v4f32,   3 }, // MAXPS + CMPUNORDPS + BLENDVPS
3025     { ISD::FMAXNUM,    MVT::v8f32,   5 }, // MAXPS + CMPUNORDPS + BLENDVPS + ?
3026     { ISD::FMAXNUM,    MVT::f64,     3 }, // MAXSD + CMPUNORDSD + BLENDVPD
3027     { ISD::FMAXNUM,    MVT::v2f64,   3 }, // MAXPD + CMPUNORDPD + BLENDVPD
3028     { ISD::FMAXNUM,    MVT::v4f64,   5 }, // MAXPD + CMPUNORDPD + BLENDVPD + ?
3029     { ISD::FSQRT,      MVT::f32,    14 }, // SNB from http://www.agner.org/
3030     { ISD::FSQRT,      MVT::v4f32,  14 }, // SNB from http://www.agner.org/
3031     { ISD::FSQRT,      MVT::v8f32,  28 }, // SNB from http://www.agner.org/
3032     { ISD::FSQRT,      MVT::f64,    21 }, // SNB from http://www.agner.org/
3033     { ISD::FSQRT,      MVT::v2f64,  21 }, // SNB from http://www.agner.org/
3034     { ISD::FSQRT,      MVT::v4f64,  43 }, // SNB from http://www.agner.org/
3035   };
3036   static const CostTblEntry GLMCostTbl[] = {
3037     { ISD::FSQRT, MVT::f32,   19 }, // sqrtss
3038     { ISD::FSQRT, MVT::v4f32, 37 }, // sqrtps
3039     { ISD::FSQRT, MVT::f64,   34 }, // sqrtsd
3040     { ISD::FSQRT, MVT::v2f64, 67 }, // sqrtpd
3041   };
3042   static const CostTblEntry SLMCostTbl[] = {
3043     { ISD::FSQRT, MVT::f32,   20 }, // sqrtss
3044     { ISD::FSQRT, MVT::v4f32, 40 }, // sqrtps
3045     { ISD::FSQRT, MVT::f64,   35 }, // sqrtsd
3046     { ISD::FSQRT, MVT::v2f64, 70 }, // sqrtpd
3047   };
3048   static const CostTblEntry SSE42CostTbl[] = {
3049     { ISD::USUBSAT,    MVT::v4i32,   2 }, // pmaxud + psubd
3050     { ISD::UADDSAT,    MVT::v4i32,   3 }, // not + pminud + paddd
3051     { ISD::FSQRT,      MVT::f32,    18 }, // Nehalem from http://www.agner.org/
3052     { ISD::FSQRT,      MVT::v4f32,  18 }, // Nehalem from http://www.agner.org/
3053   };
3054   static const CostTblEntry SSE41CostTbl[] = {
3055     { ISD::ABS,        MVT::v2i64,   2 }, // BLENDVPD(X,PSUBQ(0,X),X)
3056     { ISD::SMAX,       MVT::v4i32,   1 },
3057     { ISD::SMAX,       MVT::v16i8,   1 },
3058     { ISD::SMIN,       MVT::v4i32,   1 },
3059     { ISD::SMIN,       MVT::v16i8,   1 },
3060     { ISD::UMAX,       MVT::v4i32,   1 },
3061     { ISD::UMAX,       MVT::v8i16,   1 },
3062     { ISD::UMIN,       MVT::v4i32,   1 },
3063     { ISD::UMIN,       MVT::v8i16,   1 },
3064   };
3065   static const CostTblEntry SSSE3CostTbl[] = {
3066     { ISD::ABS,        MVT::v4i32,   1 },
3067     { ISD::ABS,        MVT::v8i16,   1 },
3068     { ISD::ABS,        MVT::v16i8,   1 },
3069     { ISD::BITREVERSE, MVT::v2i64,   5 },
3070     { ISD::BITREVERSE, MVT::v4i32,   5 },
3071     { ISD::BITREVERSE, MVT::v8i16,   5 },
3072     { ISD::BITREVERSE, MVT::v16i8,   5 },
3073     { ISD::BSWAP,      MVT::v2i64,   1 },
3074     { ISD::BSWAP,      MVT::v4i32,   1 },
3075     { ISD::BSWAP,      MVT::v8i16,   1 },
3076     { ISD::CTLZ,       MVT::v2i64,  23 },
3077     { ISD::CTLZ,       MVT::v4i32,  18 },
3078     { ISD::CTLZ,       MVT::v8i16,  14 },
3079     { ISD::CTLZ,       MVT::v16i8,   9 },
3080     { ISD::CTPOP,      MVT::v2i64,   7 },
3081     { ISD::CTPOP,      MVT::v4i32,  11 },
3082     { ISD::CTPOP,      MVT::v8i16,   9 },
3083     { ISD::CTPOP,      MVT::v16i8,   6 },
3084     { ISD::CTTZ,       MVT::v2i64,  10 },
3085     { ISD::CTTZ,       MVT::v4i32,  14 },
3086     { ISD::CTTZ,       MVT::v8i16,  12 },
3087     { ISD::CTTZ,       MVT::v16i8,   9 }
3088   };
3089   static const CostTblEntry SSE2CostTbl[] = {
3090     { ISD::ABS,        MVT::v2i64,   4 },
3091     { ISD::ABS,        MVT::v4i32,   3 },
3092     { ISD::ABS,        MVT::v8i16,   2 },
3093     { ISD::ABS,        MVT::v16i8,   2 },
3094     { ISD::BITREVERSE, MVT::v2i64,  29 },
3095     { ISD::BITREVERSE, MVT::v4i32,  27 },
3096     { ISD::BITREVERSE, MVT::v8i16,  27 },
3097     { ISD::BITREVERSE, MVT::v16i8,  20 },
3098     { ISD::BSWAP,      MVT::v2i64,   7 },
3099     { ISD::BSWAP,      MVT::v4i32,   7 },
3100     { ISD::BSWAP,      MVT::v8i16,   7 },
3101     { ISD::CTLZ,       MVT::v2i64,  25 },
3102     { ISD::CTLZ,       MVT::v4i32,  26 },
3103     { ISD::CTLZ,       MVT::v8i16,  20 },
3104     { ISD::CTLZ,       MVT::v16i8,  17 },
3105     { ISD::CTPOP,      MVT::v2i64,  12 },
3106     { ISD::CTPOP,      MVT::v4i32,  15 },
3107     { ISD::CTPOP,      MVT::v8i16,  13 },
3108     { ISD::CTPOP,      MVT::v16i8,  10 },
3109     { ISD::CTTZ,       MVT::v2i64,  14 },
3110     { ISD::CTTZ,       MVT::v4i32,  18 },
3111     { ISD::CTTZ,       MVT::v8i16,  16 },
3112     { ISD::CTTZ,       MVT::v16i8,  13 },
3113     { ISD::SADDSAT,    MVT::v8i16,   1 },
3114     { ISD::SADDSAT,    MVT::v16i8,   1 },
3115     { ISD::SMAX,       MVT::v8i16,   1 },
3116     { ISD::SMIN,       MVT::v8i16,   1 },
3117     { ISD::SSUBSAT,    MVT::v8i16,   1 },
3118     { ISD::SSUBSAT,    MVT::v16i8,   1 },
3119     { ISD::UADDSAT,    MVT::v8i16,   1 },
3120     { ISD::UADDSAT,    MVT::v16i8,   1 },
3121     { ISD::UMAX,       MVT::v8i16,   2 },
3122     { ISD::UMAX,       MVT::v16i8,   1 },
3123     { ISD::UMIN,       MVT::v8i16,   2 },
3124     { ISD::UMIN,       MVT::v16i8,   1 },
3125     { ISD::USUBSAT,    MVT::v8i16,   1 },
3126     { ISD::USUBSAT,    MVT::v16i8,   1 },
3127     { ISD::FMAXNUM,    MVT::f64,     4 },
3128     { ISD::FMAXNUM,    MVT::v2f64,   4 },
3129     { ISD::FSQRT,      MVT::f64,    32 }, // Nehalem from http://www.agner.org/
3130     { ISD::FSQRT,      MVT::v2f64,  32 }, // Nehalem from http://www.agner.org/
3131   };
3132   static const CostTblEntry SSE1CostTbl[] = {
3133     { ISD::FMAXNUM,    MVT::f32,     4 },
3134     { ISD::FMAXNUM,    MVT::v4f32,   4 },
3135     { ISD::FSQRT,      MVT::f32,    28 }, // Pentium III from http://www.agner.org/
3136     { ISD::FSQRT,      MVT::v4f32,  56 }, // Pentium III from http://www.agner.org/
3137   };
3138   static const CostTblEntry BMI64CostTbl[] = { // 64-bit targets
3139     { ISD::CTTZ,       MVT::i64,     1 },
3140   };
3141   static const CostTblEntry BMI32CostTbl[] = { // 32 or 64-bit targets
3142     { ISD::CTTZ,       MVT::i32,     1 },
3143     { ISD::CTTZ,       MVT::i16,     1 },
3144     { ISD::CTTZ,       MVT::i8,      1 },
3145   };
3146   static const CostTblEntry LZCNT64CostTbl[] = { // 64-bit targets
3147     { ISD::CTLZ,       MVT::i64,     1 },
3148   };
3149   static const CostTblEntry LZCNT32CostTbl[] = { // 32 or 64-bit targets
3150     { ISD::CTLZ,       MVT::i32,     1 },
3151     { ISD::CTLZ,       MVT::i16,     1 },
3152     { ISD::CTLZ,       MVT::i8,      1 },
3153   };
3154   static const CostTblEntry POPCNT64CostTbl[] = { // 64-bit targets
3155     { ISD::CTPOP,      MVT::i64,     1 },
3156   };
3157   static const CostTblEntry POPCNT32CostTbl[] = { // 32 or 64-bit targets
3158     { ISD::CTPOP,      MVT::i32,     1 },
3159     { ISD::CTPOP,      MVT::i16,     1 },
3160     { ISD::CTPOP,      MVT::i8,      1 },
3161   };
3162   static const CostTblEntry X64CostTbl[] = { // 64-bit targets
3163     { ISD::ABS,        MVT::i64,     2 }, // SUB+CMOV
3164     { ISD::BITREVERSE, MVT::i64,    14 },
3165     { ISD::BSWAP,      MVT::i64,     1 },
3166     { ISD::CTLZ,       MVT::i64,     4 }, // BSR+XOR or BSR+XOR+CMOV
3167     { ISD::CTTZ,       MVT::i64,     3 }, // TEST+BSF+CMOV/BRANCH
3168     { ISD::CTPOP,      MVT::i64,    10 },
3169     { ISD::SADDO,      MVT::i64,     1 },
3170     { ISD::UADDO,      MVT::i64,     1 },
3171     { ISD::UMULO,      MVT::i64,     2 }, // mulq + seto
3172   };
3173   static const CostTblEntry X86CostTbl[] = { // 32 or 64-bit targets
3174     { ISD::ABS,        MVT::i32,     2 }, // SUB+CMOV
3175     { ISD::ABS,        MVT::i16,     2 }, // SUB+CMOV
3176     { ISD::BITREVERSE, MVT::i32,    14 },
3177     { ISD::BITREVERSE, MVT::i16,    14 },
3178     { ISD::BITREVERSE, MVT::i8,     11 },
3179     { ISD::BSWAP,      MVT::i32,     1 },
3180     { ISD::BSWAP,      MVT::i16,     1 }, // ROL
3181     { ISD::CTLZ,       MVT::i32,     4 }, // BSR+XOR or BSR+XOR+CMOV
3182     { ISD::CTLZ,       MVT::i16,     4 }, // BSR+XOR or BSR+XOR+CMOV
3183     { ISD::CTLZ,       MVT::i8,      4 }, // BSR+XOR or BSR+XOR+CMOV
3184     { ISD::CTTZ,       MVT::i32,     3 }, // TEST+BSF+CMOV/BRANCH
3185     { ISD::CTTZ,       MVT::i16,     3 }, // TEST+BSF+CMOV/BRANCH
3186     { ISD::CTTZ,       MVT::i8,      3 }, // TEST+BSF+CMOV/BRANCH
3187     { ISD::CTPOP,      MVT::i32,     8 },
3188     { ISD::CTPOP,      MVT::i16,     9 },
3189     { ISD::CTPOP,      MVT::i8,      7 },
3190     { ISD::SADDO,      MVT::i32,     1 },
3191     { ISD::SADDO,      MVT::i16,     1 },
3192     { ISD::SADDO,      MVT::i8,      1 },
3193     { ISD::UADDO,      MVT::i32,     1 },
3194     { ISD::UADDO,      MVT::i16,     1 },
3195     { ISD::UADDO,      MVT::i8,      1 },
3196     { ISD::UMULO,      MVT::i32,     2 }, // mul + seto
3197     { ISD::UMULO,      MVT::i16,     2 },
3198     { ISD::UMULO,      MVT::i8,      2 },
3199   };
3200 
3201   Type *RetTy = ICA.getReturnType();
3202   Type *OpTy = RetTy;
3203   Intrinsic::ID IID = ICA.getID();
3204   unsigned ISD = ISD::DELETED_NODE;
3205   switch (IID) {
3206   default:
3207     break;
3208   case Intrinsic::abs:
3209     ISD = ISD::ABS;
3210     break;
3211   case Intrinsic::bitreverse:
3212     ISD = ISD::BITREVERSE;
3213     break;
3214   case Intrinsic::bswap:
3215     ISD = ISD::BSWAP;
3216     break;
3217   case Intrinsic::ctlz:
3218     ISD = ISD::CTLZ;
3219     break;
3220   case Intrinsic::ctpop:
3221     ISD = ISD::CTPOP;
3222     break;
3223   case Intrinsic::cttz:
3224     ISD = ISD::CTTZ;
3225     break;
3226   case Intrinsic::maxnum:
3227   case Intrinsic::minnum:
3228     // FMINNUM has same costs so don't duplicate.
3229     ISD = ISD::FMAXNUM;
3230     break;
3231   case Intrinsic::sadd_sat:
3232     ISD = ISD::SADDSAT;
3233     break;
3234   case Intrinsic::smax:
3235     ISD = ISD::SMAX;
3236     break;
3237   case Intrinsic::smin:
3238     ISD = ISD::SMIN;
3239     break;
3240   case Intrinsic::ssub_sat:
3241     ISD = ISD::SSUBSAT;
3242     break;
3243   case Intrinsic::uadd_sat:
3244     ISD = ISD::UADDSAT;
3245     break;
3246   case Intrinsic::umax:
3247     ISD = ISD::UMAX;
3248     break;
3249   case Intrinsic::umin:
3250     ISD = ISD::UMIN;
3251     break;
3252   case Intrinsic::usub_sat:
3253     ISD = ISD::USUBSAT;
3254     break;
3255   case Intrinsic::sqrt:
3256     ISD = ISD::FSQRT;
3257     break;
3258   case Intrinsic::sadd_with_overflow:
3259   case Intrinsic::ssub_with_overflow:
3260     // SSUBO has same costs so don't duplicate.
3261     ISD = ISD::SADDO;
3262     OpTy = RetTy->getContainedType(0);
3263     break;
3264   case Intrinsic::uadd_with_overflow:
3265   case Intrinsic::usub_with_overflow:
3266     // USUBO has same costs so don't duplicate.
3267     ISD = ISD::UADDO;
3268     OpTy = RetTy->getContainedType(0);
3269     break;
3270   case Intrinsic::umul_with_overflow:
3271   case Intrinsic::smul_with_overflow:
3272     // SMULO has same costs so don't duplicate.
3273     ISD = ISD::UMULO;
3274     OpTy = RetTy->getContainedType(0);
3275     break;
3276   }
3277 
3278   if (ISD != ISD::DELETED_NODE) {
3279     // Legalize the type.
3280     std::pair<InstructionCost, MVT> LT = TLI->getTypeLegalizationCost(DL, OpTy);
3281     MVT MTy = LT.second;
3282 
3283     // Attempt to lookup cost.
3284     if (ISD == ISD::BITREVERSE && ST->hasGFNI() && ST->hasSSSE3() &&
3285         MTy.isVector()) {
3286       // With PSHUFB the code is very similar for all types. If we have integer
3287       // byte operations, we just need a GF2P8AFFINEQB for vXi8. For other types
3288       // we also need a PSHUFB.
3289       unsigned Cost = MTy.getVectorElementType() == MVT::i8 ? 1 : 2;
3290 
3291       // Without byte operations, we need twice as many GF2P8AFFINEQB and PSHUFB
3292       // instructions. We also need an extract and an insert.
3293       if (!(MTy.is128BitVector() || (ST->hasAVX2() && MTy.is256BitVector()) ||
3294             (ST->hasBWI() && MTy.is512BitVector())))
3295         Cost = Cost * 2 + 2;
3296 
3297       return LT.first * Cost;
3298     }
3299 
3300     auto adjustTableCost = [](const CostTblEntry &Entry,
3301                               InstructionCost LegalizationCost,
3302                               FastMathFlags FMF) {
3303       // If there are no NANs to deal with, then these are reduced to a
3304       // single MIN** or MAX** instruction instead of the MIN/CMP/SELECT that we
3305       // assume is used in the non-fast case.
3306       if (Entry.ISD == ISD::FMAXNUM || Entry.ISD == ISD::FMINNUM) {
3307         if (FMF.noNaNs())
3308           return LegalizationCost * 1;
3309       }
3310       return LegalizationCost * (int)Entry.Cost;
3311     };
3312 
3313     if (ST->useGLMDivSqrtCosts())
3314       if (const auto *Entry = CostTableLookup(GLMCostTbl, ISD, MTy))
3315         return adjustTableCost(*Entry, LT.first, ICA.getFlags());
3316 
3317     if (ST->useSLMArithCosts())
3318       if (const auto *Entry = CostTableLookup(SLMCostTbl, ISD, MTy))
3319         return adjustTableCost(*Entry, LT.first, ICA.getFlags());
3320 
3321     if (ST->hasBITALG())
3322       if (const auto *Entry = CostTableLookup(AVX512BITALGCostTbl, ISD, MTy))
3323         return adjustTableCost(*Entry, LT.first, ICA.getFlags());
3324 
3325     if (ST->hasVPOPCNTDQ())
3326       if (const auto *Entry = CostTableLookup(AVX512VPOPCNTDQCostTbl, ISD, MTy))
3327         return adjustTableCost(*Entry, LT.first, ICA.getFlags());
3328 
3329     if (ST->hasCDI())
3330       if (const auto *Entry = CostTableLookup(AVX512CDCostTbl, ISD, MTy))
3331         return adjustTableCost(*Entry, LT.first, ICA.getFlags());
3332 
3333     if (ST->hasBWI())
3334       if (const auto *Entry = CostTableLookup(AVX512BWCostTbl, ISD, MTy))
3335         return adjustTableCost(*Entry, LT.first, ICA.getFlags());
3336 
3337     if (ST->hasAVX512())
3338       if (const auto *Entry = CostTableLookup(AVX512CostTbl, ISD, MTy))
3339         return adjustTableCost(*Entry, LT.first, ICA.getFlags());
3340 
3341     if (ST->hasXOP())
3342       if (const auto *Entry = CostTableLookup(XOPCostTbl, ISD, MTy))
3343         return adjustTableCost(*Entry, LT.first, ICA.getFlags());
3344 
3345     if (ST->hasAVX2())
3346       if (const auto *Entry = CostTableLookup(AVX2CostTbl, ISD, MTy))
3347         return adjustTableCost(*Entry, LT.first, ICA.getFlags());
3348 
3349     if (ST->hasAVX())
3350       if (const auto *Entry = CostTableLookup(AVX1CostTbl, ISD, MTy))
3351         return adjustTableCost(*Entry, LT.first, ICA.getFlags());
3352 
3353     if (ST->hasSSE42())
3354       if (const auto *Entry = CostTableLookup(SSE42CostTbl, ISD, MTy))
3355         return adjustTableCost(*Entry, LT.first, ICA.getFlags());
3356 
3357     if (ST->hasSSE41())
3358       if (const auto *Entry = CostTableLookup(SSE41CostTbl, ISD, MTy))
3359         return adjustTableCost(*Entry, LT.first, ICA.getFlags());
3360 
3361     if (ST->hasSSSE3())
3362       if (const auto *Entry = CostTableLookup(SSSE3CostTbl, ISD, MTy))
3363         return adjustTableCost(*Entry, LT.first, ICA.getFlags());
3364 
3365     if (ST->hasSSE2())
3366       if (const auto *Entry = CostTableLookup(SSE2CostTbl, ISD, MTy))
3367         return adjustTableCost(*Entry, LT.first, ICA.getFlags());
3368 
3369     if (ST->hasSSE1())
3370       if (const auto *Entry = CostTableLookup(SSE1CostTbl, ISD, MTy))
3371         return adjustTableCost(*Entry, LT.first, ICA.getFlags());
3372 
3373     if (ST->hasBMI()) {
3374       if (ST->is64Bit())
3375         if (const auto *Entry = CostTableLookup(BMI64CostTbl, ISD, MTy))
3376           return adjustTableCost(*Entry, LT.first, ICA.getFlags());
3377 
3378       if (const auto *Entry = CostTableLookup(BMI32CostTbl, ISD, MTy))
3379         return adjustTableCost(*Entry, LT.first, ICA.getFlags());
3380     }
3381 
3382     if (ST->hasLZCNT()) {
3383       if (ST->is64Bit())
3384         if (const auto *Entry = CostTableLookup(LZCNT64CostTbl, ISD, MTy))
3385           return adjustTableCost(*Entry, LT.first, ICA.getFlags());
3386 
3387       if (const auto *Entry = CostTableLookup(LZCNT32CostTbl, ISD, MTy))
3388         return adjustTableCost(*Entry, LT.first, ICA.getFlags());
3389     }
3390 
3391     if (ST->hasPOPCNT()) {
3392       if (ST->is64Bit())
3393         if (const auto *Entry = CostTableLookup(POPCNT64CostTbl, ISD, MTy))
3394           return adjustTableCost(*Entry, LT.first, ICA.getFlags());
3395 
3396       if (const auto *Entry = CostTableLookup(POPCNT32CostTbl, ISD, MTy))
3397         return adjustTableCost(*Entry, LT.first, ICA.getFlags());
3398     }
3399 
3400     if (ISD == ISD::BSWAP && ST->hasMOVBE() && ST->hasFastMOVBE()) {
3401       if (const Instruction *II = ICA.getInst()) {
3402         if (II->hasOneUse() && isa<StoreInst>(II->user_back()))
3403           return TTI::TCC_Free;
3404         if (auto *LI = dyn_cast<LoadInst>(II->getOperand(0))) {
3405           if (LI->hasOneUse())
3406             return TTI::TCC_Free;
3407         }
3408       }
3409     }
3410 
3411     if (ST->is64Bit())
3412       if (const auto *Entry = CostTableLookup(X64CostTbl, ISD, MTy))
3413         return adjustTableCost(*Entry, LT.first, ICA.getFlags());
3414 
3415     if (const auto *Entry = CostTableLookup(X86CostTbl, ISD, MTy))
3416       return adjustTableCost(*Entry, LT.first, ICA.getFlags());
3417   }
3418 
3419   return BaseT::getIntrinsicInstrCost(ICA, CostKind);
3420 }
3421 
3422 InstructionCost
3423 X86TTIImpl::getIntrinsicInstrCost(const IntrinsicCostAttributes &ICA,
3424                                   TTI::TargetCostKind CostKind) {
3425   if (ICA.isTypeBasedOnly())
3426     return getTypeBasedIntrinsicInstrCost(ICA, CostKind);
3427 
3428   static const CostTblEntry AVX512CostTbl[] = {
3429     { ISD::ROTL,       MVT::v8i64,   1 },
3430     { ISD::ROTL,       MVT::v4i64,   1 },
3431     { ISD::ROTL,       MVT::v2i64,   1 },
3432     { ISD::ROTL,       MVT::v16i32,  1 },
3433     { ISD::ROTL,       MVT::v8i32,   1 },
3434     { ISD::ROTL,       MVT::v4i32,   1 },
3435     { ISD::ROTR,       MVT::v8i64,   1 },
3436     { ISD::ROTR,       MVT::v4i64,   1 },
3437     { ISD::ROTR,       MVT::v2i64,   1 },
3438     { ISD::ROTR,       MVT::v16i32,  1 },
3439     { ISD::ROTR,       MVT::v8i32,   1 },
3440     { ISD::ROTR,       MVT::v4i32,   1 }
3441   };
3442   // XOP: ROTL = VPROT(X,Y), ROTR = VPROT(X,SUB(0,Y))
3443   static const CostTblEntry XOPCostTbl[] = {
3444     { ISD::ROTL,       MVT::v4i64,   4 },
3445     { ISD::ROTL,       MVT::v8i32,   4 },
3446     { ISD::ROTL,       MVT::v16i16,  4 },
3447     { ISD::ROTL,       MVT::v32i8,   4 },
3448     { ISD::ROTL,       MVT::v2i64,   1 },
3449     { ISD::ROTL,       MVT::v4i32,   1 },
3450     { ISD::ROTL,       MVT::v8i16,   1 },
3451     { ISD::ROTL,       MVT::v16i8,   1 },
3452     { ISD::ROTR,       MVT::v4i64,   6 },
3453     { ISD::ROTR,       MVT::v8i32,   6 },
3454     { ISD::ROTR,       MVT::v16i16,  6 },
3455     { ISD::ROTR,       MVT::v32i8,   6 },
3456     { ISD::ROTR,       MVT::v2i64,   2 },
3457     { ISD::ROTR,       MVT::v4i32,   2 },
3458     { ISD::ROTR,       MVT::v8i16,   2 },
3459     { ISD::ROTR,       MVT::v16i8,   2 }
3460   };
3461   static const CostTblEntry X64CostTbl[] = { // 64-bit targets
3462     { ISD::ROTL,       MVT::i64,     1 },
3463     { ISD::ROTR,       MVT::i64,     1 },
3464     { ISD::FSHL,       MVT::i64,     4 }
3465   };
3466   static const CostTblEntry X86CostTbl[] = { // 32 or 64-bit targets
3467     { ISD::ROTL,       MVT::i32,     1 },
3468     { ISD::ROTL,       MVT::i16,     1 },
3469     { ISD::ROTL,       MVT::i8,      1 },
3470     { ISD::ROTR,       MVT::i32,     1 },
3471     { ISD::ROTR,       MVT::i16,     1 },
3472     { ISD::ROTR,       MVT::i8,      1 },
3473     { ISD::FSHL,       MVT::i32,     4 },
3474     { ISD::FSHL,       MVT::i16,     4 },
3475     { ISD::FSHL,       MVT::i8,      4 }
3476   };
3477 
3478   Intrinsic::ID IID = ICA.getID();
3479   Type *RetTy = ICA.getReturnType();
3480   const SmallVectorImpl<const Value *> &Args = ICA.getArgs();
3481   unsigned ISD = ISD::DELETED_NODE;
3482   switch (IID) {
3483   default:
3484     break;
3485   case Intrinsic::fshl:
3486     ISD = ISD::FSHL;
3487     if (Args[0] == Args[1])
3488       ISD = ISD::ROTL;
3489     break;
3490   case Intrinsic::fshr:
3491     // FSHR has same costs so don't duplicate.
3492     ISD = ISD::FSHL;
3493     if (Args[0] == Args[1])
3494       ISD = ISD::ROTR;
3495     break;
3496   }
3497 
3498   if (ISD != ISD::DELETED_NODE) {
3499     // Legalize the type.
3500     std::pair<InstructionCost, MVT> LT =
3501         TLI->getTypeLegalizationCost(DL, RetTy);
3502     MVT MTy = LT.second;
3503 
3504     // Attempt to lookup cost.
3505     if (ST->hasAVX512())
3506       if (const auto *Entry = CostTableLookup(AVX512CostTbl, ISD, MTy))
3507         return LT.first * Entry->Cost;
3508 
3509     if (ST->hasXOP())
3510       if (const auto *Entry = CostTableLookup(XOPCostTbl, ISD, MTy))
3511         return LT.first * Entry->Cost;
3512 
3513     if (ST->is64Bit())
3514       if (const auto *Entry = CostTableLookup(X64CostTbl, ISD, MTy))
3515         return LT.first * Entry->Cost;
3516 
3517     if (const auto *Entry = CostTableLookup(X86CostTbl, ISD, MTy))
3518       return LT.first * Entry->Cost;
3519   }
3520 
3521   return BaseT::getIntrinsicInstrCost(ICA, CostKind);
3522 }
3523 
3524 InstructionCost X86TTIImpl::getVectorInstrCost(unsigned Opcode, Type *Val,
3525                                                unsigned Index) {
3526   static const CostTblEntry SLMCostTbl[] = {
3527      { ISD::EXTRACT_VECTOR_ELT,       MVT::i8,      4 },
3528      { ISD::EXTRACT_VECTOR_ELT,       MVT::i16,     4 },
3529      { ISD::EXTRACT_VECTOR_ELT,       MVT::i32,     4 },
3530      { ISD::EXTRACT_VECTOR_ELT,       MVT::i64,     7 }
3531    };
3532 
3533   assert(Val->isVectorTy() && "This must be a vector type");
3534   Type *ScalarType = Val->getScalarType();
3535   int RegisterFileMoveCost = 0;
3536 
3537   // Non-immediate extraction/insertion can be handled as a sequence of
3538   // aliased loads+stores via the stack.
3539   if (Index == -1U && (Opcode == Instruction::ExtractElement ||
3540                        Opcode == Instruction::InsertElement)) {
3541     // TODO: On some SSE41+ targets, we expand to cmp+splat+select patterns:
3542     // inselt N0, N1, N2 --> select (SplatN2 == {0,1,2...}) ? SplatN1 : N0.
3543 
3544     // TODO: Move this to BasicTTIImpl.h? We'd need better gep + index handling.
3545     assert(isa<FixedVectorType>(Val) && "Fixed vector type expected");
3546     Align VecAlign = DL.getPrefTypeAlign(Val);
3547     Align SclAlign = DL.getPrefTypeAlign(ScalarType);
3548 
3549     // Extract - store vector to stack, load scalar.
3550     if (Opcode == Instruction::ExtractElement) {
3551       return getMemoryOpCost(Instruction::Store, Val, VecAlign, 0,
3552                              TTI::TargetCostKind::TCK_RecipThroughput) +
3553              getMemoryOpCost(Instruction::Load, ScalarType, SclAlign, 0,
3554                              TTI::TargetCostKind::TCK_RecipThroughput);
3555     }
3556     // Insert - store vector to stack, store scalar, load vector.
3557     if (Opcode == Instruction::InsertElement) {
3558       return getMemoryOpCost(Instruction::Store, Val, VecAlign, 0,
3559                              TTI::TargetCostKind::TCK_RecipThroughput) +
3560              getMemoryOpCost(Instruction::Store, ScalarType, SclAlign, 0,
3561                              TTI::TargetCostKind::TCK_RecipThroughput) +
3562              getMemoryOpCost(Instruction::Load, Val, VecAlign, 0,
3563                              TTI::TargetCostKind::TCK_RecipThroughput);
3564     }
3565   }
3566 
3567   if (Index != -1U && (Opcode == Instruction::ExtractElement ||
3568                        Opcode == Instruction::InsertElement)) {
3569     // Legalize the type.
3570     std::pair<InstructionCost, MVT> LT = TLI->getTypeLegalizationCost(DL, Val);
3571 
3572     // This type is legalized to a scalar type.
3573     if (!LT.second.isVector())
3574       return 0;
3575 
3576     // The type may be split. Normalize the index to the new type.
3577     unsigned NumElts = LT.second.getVectorNumElements();
3578     unsigned SubNumElts = NumElts;
3579     Index = Index % NumElts;
3580 
3581     // For >128-bit vectors, we need to extract higher 128-bit subvectors.
3582     // For inserts, we also need to insert the subvector back.
3583     if (LT.second.getSizeInBits() > 128) {
3584       assert((LT.second.getSizeInBits() % 128) == 0 && "Illegal vector");
3585       unsigned NumSubVecs = LT.second.getSizeInBits() / 128;
3586       SubNumElts = NumElts / NumSubVecs;
3587       if (SubNumElts <= Index) {
3588         RegisterFileMoveCost += (Opcode == Instruction::InsertElement ? 2 : 1);
3589         Index %= SubNumElts;
3590       }
3591     }
3592 
3593     if (Index == 0) {
3594       // Floating point scalars are already located in index #0.
3595       // Many insertions to #0 can fold away for scalar fp-ops, so let's assume
3596       // true for all.
3597       if (ScalarType->isFloatingPointTy())
3598         return RegisterFileMoveCost;
3599 
3600       // Assume movd/movq XMM -> GPR is relatively cheap on all targets.
3601       if (ScalarType->isIntegerTy() && Opcode == Instruction::ExtractElement)
3602         return 1 + RegisterFileMoveCost;
3603     }
3604 
3605     int ISD = TLI->InstructionOpcodeToISD(Opcode);
3606     assert(ISD && "Unexpected vector opcode");
3607     MVT MScalarTy = LT.second.getScalarType();
3608     if (ST->useSLMArithCosts())
3609       if (auto *Entry = CostTableLookup(SLMCostTbl, ISD, MScalarTy))
3610         return Entry->Cost + RegisterFileMoveCost;
3611 
3612     // Assume pinsr/pextr XMM <-> GPR is relatively cheap on all targets.
3613     if ((MScalarTy == MVT::i16 && ST->hasSSE2()) ||
3614         (MScalarTy.isInteger() && ST->hasSSE41()))
3615       return 1 + RegisterFileMoveCost;
3616 
3617     // Assume insertps is relatively cheap on all targets.
3618     if (MScalarTy == MVT::f32 && ST->hasSSE41() &&
3619         Opcode == Instruction::InsertElement)
3620       return 1 + RegisterFileMoveCost;
3621 
3622     // For extractions we just need to shuffle the element to index 0, which
3623     // should be very cheap (assume cost = 1). For insertions we need to shuffle
3624     // the elements to its destination. In both cases we must handle the
3625     // subvector move(s).
3626     // If the vector type is already less than 128-bits then don't reduce it.
3627     // TODO: Under what circumstances should we shuffle using the full width?
3628     InstructionCost ShuffleCost = 1;
3629     if (Opcode == Instruction::InsertElement) {
3630       auto *SubTy = cast<VectorType>(Val);
3631       EVT VT = TLI->getValueType(DL, Val);
3632       if (VT.getScalarType() != MScalarTy || VT.getSizeInBits() >= 128)
3633         SubTy = FixedVectorType::get(ScalarType, SubNumElts);
3634       ShuffleCost =
3635           getShuffleCost(TTI::SK_PermuteTwoSrc, SubTy, None, 0, SubTy);
3636     }
3637     int IntOrFpCost = ScalarType->isFloatingPointTy() ? 0 : 1;
3638     return ShuffleCost + IntOrFpCost + RegisterFileMoveCost;
3639   }
3640 
3641   // Add to the base cost if we know that the extracted element of a vector is
3642   // destined to be moved to and used in the integer register file.
3643   if (Opcode == Instruction::ExtractElement && ScalarType->isPointerTy())
3644     RegisterFileMoveCost += 1;
3645 
3646   return BaseT::getVectorInstrCost(Opcode, Val, Index) + RegisterFileMoveCost;
3647 }
3648 
3649 InstructionCost X86TTIImpl::getScalarizationOverhead(VectorType *Ty,
3650                                                      const APInt &DemandedElts,
3651                                                      bool Insert,
3652                                                      bool Extract) {
3653   InstructionCost Cost = 0;
3654 
3655   // For insertions, a ISD::BUILD_VECTOR style vector initialization can be much
3656   // cheaper than an accumulation of ISD::INSERT_VECTOR_ELT.
3657   if (Insert) {
3658     std::pair<InstructionCost, MVT> LT = TLI->getTypeLegalizationCost(DL, Ty);
3659     MVT MScalarTy = LT.second.getScalarType();
3660 
3661     if ((MScalarTy == MVT::i16 && ST->hasSSE2()) ||
3662         (MScalarTy.isInteger() && ST->hasSSE41()) ||
3663         (MScalarTy == MVT::f32 && ST->hasSSE41())) {
3664       // For types we can insert directly, insertion into 128-bit sub vectors is
3665       // cheap, followed by a cheap chain of concatenations.
3666       if (LT.second.getSizeInBits() <= 128) {
3667         Cost +=
3668             BaseT::getScalarizationOverhead(Ty, DemandedElts, Insert, false);
3669       } else {
3670         // In each 128-lane, if at least one index is demanded but not all
3671         // indices are demanded and this 128-lane is not the first 128-lane of
3672         // the legalized-vector, then this 128-lane needs a extracti128; If in
3673         // each 128-lane, there is at least one demanded index, this 128-lane
3674         // needs a inserti128.
3675 
3676         // The following cases will help you build a better understanding:
3677         // Assume we insert several elements into a v8i32 vector in avx2,
3678         // Case#1: inserting into 1th index needs vpinsrd + inserti128.
3679         // Case#2: inserting into 5th index needs extracti128 + vpinsrd +
3680         // inserti128.
3681         // Case#3: inserting into 4,5,6,7 index needs 4*vpinsrd + inserti128.
3682         const int CostValue = *LT.first.getValue();
3683         assert(CostValue >= 0 && "Negative cost!");
3684         unsigned Num128Lanes = LT.second.getSizeInBits() / 128 * CostValue;
3685         unsigned NumElts = LT.second.getVectorNumElements() * CostValue;
3686         APInt WidenedDemandedElts = DemandedElts.zextOrSelf(NumElts);
3687         unsigned Scale = NumElts / Num128Lanes;
3688         // We iterate each 128-lane, and check if we need a
3689         // extracti128/inserti128 for this 128-lane.
3690         for (unsigned I = 0; I < NumElts; I += Scale) {
3691           APInt Mask = WidenedDemandedElts.getBitsSet(NumElts, I, I + Scale);
3692           APInt MaskedDE = Mask & WidenedDemandedElts;
3693           unsigned Population = MaskedDE.countPopulation();
3694           Cost += (Population > 0 && Population != Scale &&
3695                    I % LT.second.getVectorNumElements() != 0);
3696           Cost += Population > 0;
3697         }
3698         Cost += DemandedElts.countPopulation();
3699 
3700         // For vXf32 cases, insertion into the 0'th index in each v4f32
3701         // 128-bit vector is free.
3702         // NOTE: This assumes legalization widens vXf32 vectors.
3703         if (MScalarTy == MVT::f32)
3704           for (unsigned i = 0, e = cast<FixedVectorType>(Ty)->getNumElements();
3705                i < e; i += 4)
3706             if (DemandedElts[i])
3707               Cost--;
3708       }
3709     } else if (LT.second.isVector()) {
3710       // Without fast insertion, we need to use MOVD/MOVQ to pass each demanded
3711       // integer element as a SCALAR_TO_VECTOR, then we build the vector as a
3712       // series of UNPCK followed by CONCAT_VECTORS - all of these can be
3713       // considered cheap.
3714       if (Ty->isIntOrIntVectorTy())
3715         Cost += DemandedElts.countPopulation();
3716 
3717       // Get the smaller of the legalized or original pow2-extended number of
3718       // vector elements, which represents the number of unpacks we'll end up
3719       // performing.
3720       unsigned NumElts = LT.second.getVectorNumElements();
3721       unsigned Pow2Elts =
3722           PowerOf2Ceil(cast<FixedVectorType>(Ty)->getNumElements());
3723       Cost += (std::min<unsigned>(NumElts, Pow2Elts) - 1) * LT.first;
3724     }
3725   }
3726 
3727   // TODO: Use default extraction for now, but we should investigate extending this
3728   // to handle repeated subvector extraction.
3729   if (Extract)
3730     Cost += BaseT::getScalarizationOverhead(Ty, DemandedElts, false, Extract);
3731 
3732   return Cost;
3733 }
3734 
3735 InstructionCost
3736 X86TTIImpl::getReplicationShuffleCost(Type *EltTy, int ReplicationFactor,
3737                                       int VF, const APInt &DemandedDstElts,
3738                                       TTI::TargetCostKind CostKind) {
3739   const unsigned EltTyBits = DL.getTypeSizeInBits(EltTy);
3740   // We don't differentiate element types here, only element bit width.
3741   EltTy = IntegerType::getIntNTy(EltTy->getContext(), EltTyBits);
3742 
3743   auto bailout = [&]() {
3744     return BaseT::getReplicationShuffleCost(EltTy, ReplicationFactor, VF,
3745                                             DemandedDstElts, CostKind);
3746   };
3747 
3748   // For now, only deal with AVX512 cases.
3749   if (!ST->hasAVX512())
3750     return bailout();
3751 
3752   // Do we have a native shuffle for this element type, or should we promote?
3753   unsigned PromEltTyBits = EltTyBits;
3754   switch (EltTyBits) {
3755   case 32:
3756   case 64:
3757     break; // AVX512F.
3758   case 16:
3759     if (!ST->hasBWI())
3760       PromEltTyBits = 32; // promote to i32, AVX512F.
3761     break;                // AVX512BW
3762   case 8:
3763     if (!ST->hasVBMI())
3764       PromEltTyBits = 32; // promote to i32, AVX512F.
3765     break;                // AVX512VBMI
3766   case 1:
3767     // There is no support for shuffling i1 elements. We *must* promote.
3768     if (ST->hasBWI()) {
3769       if (ST->hasVBMI())
3770         PromEltTyBits = 8; // promote to i8, AVX512VBMI.
3771       else
3772         PromEltTyBits = 16; // promote to i16, AVX512BW.
3773       break;
3774     }
3775     if (ST->hasDQI()) {
3776       PromEltTyBits = 32; // promote to i32, AVX512F.
3777       break;
3778     }
3779     return bailout();
3780   default:
3781     return bailout();
3782   }
3783   auto *PromEltTy = IntegerType::getIntNTy(EltTy->getContext(), PromEltTyBits);
3784 
3785   auto *SrcVecTy = FixedVectorType::get(EltTy, VF);
3786   auto *PromSrcVecTy = FixedVectorType::get(PromEltTy, VF);
3787 
3788   int NumDstElements = VF * ReplicationFactor;
3789   auto *PromDstVecTy = FixedVectorType::get(PromEltTy, NumDstElements);
3790   auto *DstVecTy = FixedVectorType::get(EltTy, NumDstElements);
3791 
3792   // Legalize the types.
3793   MVT LegalSrcVecTy = TLI->getTypeLegalizationCost(DL, SrcVecTy).second;
3794   MVT LegalPromSrcVecTy = TLI->getTypeLegalizationCost(DL, PromSrcVecTy).second;
3795   MVT LegalPromDstVecTy = TLI->getTypeLegalizationCost(DL, PromDstVecTy).second;
3796   MVT LegalDstVecTy = TLI->getTypeLegalizationCost(DL, DstVecTy).second;
3797   // They should have legalized into vector types.
3798   if (!LegalSrcVecTy.isVector() || !LegalPromSrcVecTy.isVector() ||
3799       !LegalPromDstVecTy.isVector() || !LegalDstVecTy.isVector())
3800     return bailout();
3801 
3802   if (PromEltTyBits != EltTyBits) {
3803     // If we have to perform the shuffle with wider elt type than our data type,
3804     // then we will first need to anyext (we don't care about the new bits)
3805     // the source elements, and then truncate Dst elements.
3806     InstructionCost PromotionCost;
3807     PromotionCost += getCastInstrCost(
3808         Instruction::SExt, /*Dst=*/PromSrcVecTy, /*Src=*/SrcVecTy,
3809         TargetTransformInfo::CastContextHint::None, CostKind);
3810     PromotionCost +=
3811         getCastInstrCost(Instruction::Trunc, /*Dst=*/DstVecTy,
3812                          /*Src=*/PromDstVecTy,
3813                          TargetTransformInfo::CastContextHint::None, CostKind);
3814     return PromotionCost + getReplicationShuffleCost(PromEltTy,
3815                                                      ReplicationFactor, VF,
3816                                                      DemandedDstElts, CostKind);
3817   }
3818 
3819   assert(LegalSrcVecTy.getScalarSizeInBits() == EltTyBits &&
3820          LegalSrcVecTy.getScalarType() == LegalDstVecTy.getScalarType() &&
3821          "We expect that the legalization doesn't affect the element width, "
3822          "doesn't coalesce/split elements.");
3823 
3824   unsigned NumEltsPerDstVec = LegalDstVecTy.getVectorNumElements();
3825   unsigned NumDstVectors =
3826       divideCeil(DstVecTy->getNumElements(), NumEltsPerDstVec);
3827 
3828   auto *SingleDstVecTy = FixedVectorType::get(EltTy, NumEltsPerDstVec);
3829 
3830   // Not all the produced Dst elements may be demanded. In our case,
3831   // given that a single Dst vector is formed by a single shuffle,
3832   // if all elements that will form a single Dst vector aren't demanded,
3833   // then we won't need to do that shuffle, so adjust the cost accordingly.
3834   APInt DemandedDstVectors = APIntOps::ScaleBitMask(
3835       DemandedDstElts.zextOrSelf(NumDstVectors * NumEltsPerDstVec),
3836       NumDstVectors);
3837   unsigned NumDstVectorsDemanded = DemandedDstVectors.countPopulation();
3838 
3839   InstructionCost SingleShuffleCost =
3840       getShuffleCost(TTI::SK_PermuteSingleSrc, SingleDstVecTy,
3841                      /*Mask=*/None, /*Index=*/0, /*SubTp=*/nullptr);
3842   return NumDstVectorsDemanded * SingleShuffleCost;
3843 }
3844 
3845 InstructionCost X86TTIImpl::getMemoryOpCost(unsigned Opcode, Type *Src,
3846                                             MaybeAlign Alignment,
3847                                             unsigned AddressSpace,
3848                                             TTI::TargetCostKind CostKind,
3849                                             const Instruction *I) {
3850   // TODO: Handle other cost kinds.
3851   if (CostKind != TTI::TCK_RecipThroughput) {
3852     if (auto *SI = dyn_cast_or_null<StoreInst>(I)) {
3853       // Store instruction with index and scale costs 2 Uops.
3854       // Check the preceding GEP to identify non-const indices.
3855       if (auto *GEP = dyn_cast<GetElementPtrInst>(SI->getPointerOperand())) {
3856         if (!all_of(GEP->indices(), [](Value *V) { return isa<Constant>(V); }))
3857           return TTI::TCC_Basic * 2;
3858       }
3859     }
3860     return TTI::TCC_Basic;
3861   }
3862 
3863   assert((Opcode == Instruction::Load || Opcode == Instruction::Store) &&
3864          "Invalid Opcode");
3865   // Type legalization can't handle structs
3866   if (TLI->getValueType(DL, Src, true) == MVT::Other)
3867     return BaseT::getMemoryOpCost(Opcode, Src, Alignment, AddressSpace,
3868                                   CostKind);
3869 
3870   // Legalize the type.
3871   std::pair<InstructionCost, MVT> LT = TLI->getTypeLegalizationCost(DL, Src);
3872 
3873   auto *VTy = dyn_cast<FixedVectorType>(Src);
3874 
3875   // Handle the simple case of non-vectors.
3876   // NOTE: this assumes that legalization never creates vector from scalars!
3877   if (!VTy || !LT.second.isVector())
3878     // Each load/store unit costs 1.
3879     return LT.first * 1;
3880 
3881   bool IsLoad = Opcode == Instruction::Load;
3882 
3883   Type *EltTy = VTy->getElementType();
3884 
3885   const int EltTyBits = DL.getTypeSizeInBits(EltTy);
3886 
3887   InstructionCost Cost = 0;
3888 
3889   // Source of truth: how many elements were there in the original IR vector?
3890   const unsigned SrcNumElt = VTy->getNumElements();
3891 
3892   // How far have we gotten?
3893   int NumEltRemaining = SrcNumElt;
3894   // Note that we intentionally capture by-reference, NumEltRemaining changes.
3895   auto NumEltDone = [&]() { return SrcNumElt - NumEltRemaining; };
3896 
3897   const int MaxLegalOpSizeBytes = divideCeil(LT.second.getSizeInBits(), 8);
3898 
3899   // Note that even if we can store 64 bits of an XMM, we still operate on XMM.
3900   const unsigned XMMBits = 128;
3901   if (XMMBits % EltTyBits != 0)
3902     // Vector size must be a multiple of the element size. I.e. no padding.
3903     return BaseT::getMemoryOpCost(Opcode, Src, Alignment, AddressSpace,
3904                                   CostKind);
3905   const int NumEltPerXMM = XMMBits / EltTyBits;
3906 
3907   auto *XMMVecTy = FixedVectorType::get(EltTy, NumEltPerXMM);
3908 
3909   for (int CurrOpSizeBytes = MaxLegalOpSizeBytes, SubVecEltsLeft = 0;
3910        NumEltRemaining > 0; CurrOpSizeBytes /= 2) {
3911     // How many elements would a single op deal with at once?
3912     if ((8 * CurrOpSizeBytes) % EltTyBits != 0)
3913       // Vector size must be a multiple of the element size. I.e. no padding.
3914       return BaseT::getMemoryOpCost(Opcode, Src, Alignment, AddressSpace,
3915                                     CostKind);
3916     int CurrNumEltPerOp = (8 * CurrOpSizeBytes) / EltTyBits;
3917 
3918     assert(CurrOpSizeBytes > 0 && CurrNumEltPerOp > 0 && "How'd we get here?");
3919     assert((((NumEltRemaining * EltTyBits) < (2 * 8 * CurrOpSizeBytes)) ||
3920             (CurrOpSizeBytes == MaxLegalOpSizeBytes)) &&
3921            "Unless we haven't halved the op size yet, "
3922            "we have less than two op's sized units of work left.");
3923 
3924     auto *CurrVecTy = CurrNumEltPerOp > NumEltPerXMM
3925                           ? FixedVectorType::get(EltTy, CurrNumEltPerOp)
3926                           : XMMVecTy;
3927 
3928     assert(CurrVecTy->getNumElements() % CurrNumEltPerOp == 0 &&
3929            "After halving sizes, the vector elt count is no longer a multiple "
3930            "of number of elements per operation?");
3931     auto *CoalescedVecTy =
3932         CurrNumEltPerOp == 1
3933             ? CurrVecTy
3934             : FixedVectorType::get(
3935                   IntegerType::get(Src->getContext(),
3936                                    EltTyBits * CurrNumEltPerOp),
3937                   CurrVecTy->getNumElements() / CurrNumEltPerOp);
3938     assert(DL.getTypeSizeInBits(CoalescedVecTy) ==
3939                DL.getTypeSizeInBits(CurrVecTy) &&
3940            "coalesciing elements doesn't change vector width.");
3941 
3942     while (NumEltRemaining > 0) {
3943       assert(SubVecEltsLeft >= 0 && "Subreg element count overconsumtion?");
3944 
3945       // Can we use this vector size, as per the remaining element count?
3946       // Iff the vector is naturally aligned, we can do a wide load regardless.
3947       if (NumEltRemaining < CurrNumEltPerOp &&
3948           (!IsLoad || Alignment.valueOrOne() < CurrOpSizeBytes) &&
3949           CurrOpSizeBytes != 1)
3950         break; // Try smalled vector size.
3951 
3952       bool Is0thSubVec = (NumEltDone() % LT.second.getVectorNumElements()) == 0;
3953 
3954       // If we have fully processed the previous reg, we need to replenish it.
3955       if (SubVecEltsLeft == 0) {
3956         SubVecEltsLeft += CurrVecTy->getNumElements();
3957         // And that's free only for the 0'th subvector of a legalized vector.
3958         if (!Is0thSubVec)
3959           Cost += getShuffleCost(IsLoad ? TTI::ShuffleKind::SK_InsertSubvector
3960                                         : TTI::ShuffleKind::SK_ExtractSubvector,
3961                                  VTy, None, NumEltDone(), CurrVecTy);
3962       }
3963 
3964       // While we can directly load/store ZMM, YMM, and 64-bit halves of XMM,
3965       // for smaller widths (32/16/8) we have to insert/extract them separately.
3966       // Again, it's free for the 0'th subreg (if op is 32/64 bit wide,
3967       // but let's pretend that it is also true for 16/8 bit wide ops...)
3968       if (CurrOpSizeBytes <= 32 / 8 && !Is0thSubVec) {
3969         int NumEltDoneInCurrXMM = NumEltDone() % NumEltPerXMM;
3970         assert(NumEltDoneInCurrXMM % CurrNumEltPerOp == 0 && "");
3971         int CoalescedVecEltIdx = NumEltDoneInCurrXMM / CurrNumEltPerOp;
3972         APInt DemandedElts =
3973             APInt::getBitsSet(CoalescedVecTy->getNumElements(),
3974                               CoalescedVecEltIdx, CoalescedVecEltIdx + 1);
3975         assert(DemandedElts.countPopulation() == 1 && "Inserting single value");
3976         Cost += getScalarizationOverhead(CoalescedVecTy, DemandedElts, IsLoad,
3977                                          !IsLoad);
3978       }
3979 
3980       // This isn't exactly right. We're using slow unaligned 32-byte accesses
3981       // as a proxy for a double-pumped AVX memory interface such as on
3982       // Sandybridge.
3983       if (CurrOpSizeBytes == 32 && ST->isUnalignedMem32Slow())
3984         Cost += 2;
3985       else
3986         Cost += 1;
3987 
3988       SubVecEltsLeft -= CurrNumEltPerOp;
3989       NumEltRemaining -= CurrNumEltPerOp;
3990       Alignment = commonAlignment(Alignment.valueOrOne(), CurrOpSizeBytes);
3991     }
3992   }
3993 
3994   assert(NumEltRemaining <= 0 && "Should have processed all the elements.");
3995 
3996   return Cost;
3997 }
3998 
3999 InstructionCost
4000 X86TTIImpl::getMaskedMemoryOpCost(unsigned Opcode, Type *SrcTy, Align Alignment,
4001                                   unsigned AddressSpace,
4002                                   TTI::TargetCostKind CostKind) {
4003   bool IsLoad = (Instruction::Load == Opcode);
4004   bool IsStore = (Instruction::Store == Opcode);
4005 
4006   auto *SrcVTy = dyn_cast<FixedVectorType>(SrcTy);
4007   if (!SrcVTy)
4008     // To calculate scalar take the regular cost, without mask
4009     return getMemoryOpCost(Opcode, SrcTy, Alignment, AddressSpace, CostKind);
4010 
4011   unsigned NumElem = SrcVTy->getNumElements();
4012   auto *MaskTy =
4013       FixedVectorType::get(Type::getInt8Ty(SrcVTy->getContext()), NumElem);
4014   if ((IsLoad && !isLegalMaskedLoad(SrcVTy, Alignment)) ||
4015       (IsStore && !isLegalMaskedStore(SrcVTy, Alignment))) {
4016     // Scalarization
4017     APInt DemandedElts = APInt::getAllOnes(NumElem);
4018     InstructionCost MaskSplitCost =
4019         getScalarizationOverhead(MaskTy, DemandedElts, false, true);
4020     InstructionCost ScalarCompareCost = getCmpSelInstrCost(
4021         Instruction::ICmp, Type::getInt8Ty(SrcVTy->getContext()), nullptr,
4022         CmpInst::BAD_ICMP_PREDICATE, CostKind);
4023     InstructionCost BranchCost = getCFInstrCost(Instruction::Br, CostKind);
4024     InstructionCost MaskCmpCost = NumElem * (BranchCost + ScalarCompareCost);
4025     InstructionCost ValueSplitCost =
4026         getScalarizationOverhead(SrcVTy, DemandedElts, IsLoad, IsStore);
4027     InstructionCost MemopCost =
4028         NumElem * BaseT::getMemoryOpCost(Opcode, SrcVTy->getScalarType(),
4029                                          Alignment, AddressSpace, CostKind);
4030     return MemopCost + ValueSplitCost + MaskSplitCost + MaskCmpCost;
4031   }
4032 
4033   // Legalize the type.
4034   std::pair<InstructionCost, MVT> LT = TLI->getTypeLegalizationCost(DL, SrcVTy);
4035   auto VT = TLI->getValueType(DL, SrcVTy);
4036   InstructionCost Cost = 0;
4037   if (VT.isSimple() && LT.second != VT.getSimpleVT() &&
4038       LT.second.getVectorNumElements() == NumElem)
4039     // Promotion requires extend/truncate for data and a shuffle for mask.
4040     Cost += getShuffleCost(TTI::SK_PermuteTwoSrc, SrcVTy, None, 0, nullptr) +
4041             getShuffleCost(TTI::SK_PermuteTwoSrc, MaskTy, None, 0, nullptr);
4042 
4043   else if (LT.first * LT.second.getVectorNumElements() > NumElem) {
4044     auto *NewMaskTy = FixedVectorType::get(MaskTy->getElementType(),
4045                                            LT.second.getVectorNumElements());
4046     // Expanding requires fill mask with zeroes
4047     Cost += getShuffleCost(TTI::SK_InsertSubvector, NewMaskTy, None, 0, MaskTy);
4048   }
4049 
4050   // Pre-AVX512 - each maskmov load costs 2 + store costs ~8.
4051   if (!ST->hasAVX512())
4052     return Cost + LT.first * (IsLoad ? 2 : 8);
4053 
4054   // AVX-512 masked load/store is cheapper
4055   return Cost + LT.first;
4056 }
4057 
4058 InstructionCost X86TTIImpl::getAddressComputationCost(Type *Ty,
4059                                                       ScalarEvolution *SE,
4060                                                       const SCEV *Ptr) {
4061   // Address computations in vectorized code with non-consecutive addresses will
4062   // likely result in more instructions compared to scalar code where the
4063   // computation can more often be merged into the index mode. The resulting
4064   // extra micro-ops can significantly decrease throughput.
4065   const unsigned NumVectorInstToHideOverhead = 10;
4066 
4067   // Cost modeling of Strided Access Computation is hidden by the indexing
4068   // modes of X86 regardless of the stride value. We dont believe that there
4069   // is a difference between constant strided access in gerenal and constant
4070   // strided value which is less than or equal to 64.
4071   // Even in the case of (loop invariant) stride whose value is not known at
4072   // compile time, the address computation will not incur more than one extra
4073   // ADD instruction.
4074   if (Ty->isVectorTy() && SE && !ST->hasAVX2()) {
4075     // TODO: AVX2 is the current cut-off because we don't have correct
4076     //       interleaving costs for prior ISA's.
4077     if (!BaseT::isStridedAccess(Ptr))
4078       return NumVectorInstToHideOverhead;
4079     if (!BaseT::getConstantStrideStep(SE, Ptr))
4080       return 1;
4081   }
4082 
4083   return BaseT::getAddressComputationCost(Ty, SE, Ptr);
4084 }
4085 
4086 InstructionCost
4087 X86TTIImpl::getArithmeticReductionCost(unsigned Opcode, VectorType *ValTy,
4088                                        Optional<FastMathFlags> FMF,
4089                                        TTI::TargetCostKind CostKind) {
4090   if (TTI::requiresOrderedReduction(FMF))
4091     return BaseT::getArithmeticReductionCost(Opcode, ValTy, FMF, CostKind);
4092 
4093   // We use the Intel Architecture Code Analyzer(IACA) to measure the throughput
4094   // and make it as the cost.
4095 
4096   static const CostTblEntry SLMCostTblNoPairWise[] = {
4097     { ISD::FADD,  MVT::v2f64,   3 },
4098     { ISD::ADD,   MVT::v2i64,   5 },
4099   };
4100 
4101   static const CostTblEntry SSE2CostTblNoPairWise[] = {
4102     { ISD::FADD,  MVT::v2f64,   2 },
4103     { ISD::FADD,  MVT::v2f32,   2 },
4104     { ISD::FADD,  MVT::v4f32,   4 },
4105     { ISD::ADD,   MVT::v2i64,   2 },      // The data reported by the IACA tool is "1.6".
4106     { ISD::ADD,   MVT::v2i32,   2 }, // FIXME: chosen to be less than v4i32
4107     { ISD::ADD,   MVT::v4i32,   3 },      // The data reported by the IACA tool is "3.3".
4108     { ISD::ADD,   MVT::v2i16,   2 },      // The data reported by the IACA tool is "4.3".
4109     { ISD::ADD,   MVT::v4i16,   3 },      // The data reported by the IACA tool is "4.3".
4110     { ISD::ADD,   MVT::v8i16,   4 },      // The data reported by the IACA tool is "4.3".
4111     { ISD::ADD,   MVT::v2i8,    2 },
4112     { ISD::ADD,   MVT::v4i8,    2 },
4113     { ISD::ADD,   MVT::v8i8,    2 },
4114     { ISD::ADD,   MVT::v16i8,   3 },
4115   };
4116 
4117   static const CostTblEntry AVX1CostTblNoPairWise[] = {
4118     { ISD::FADD,  MVT::v4f64,   3 },
4119     { ISD::FADD,  MVT::v4f32,   3 },
4120     { ISD::FADD,  MVT::v8f32,   4 },
4121     { ISD::ADD,   MVT::v2i64,   1 },      // The data reported by the IACA tool is "1.5".
4122     { ISD::ADD,   MVT::v4i64,   3 },
4123     { ISD::ADD,   MVT::v8i32,   5 },
4124     { ISD::ADD,   MVT::v16i16,  5 },
4125     { ISD::ADD,   MVT::v32i8,   4 },
4126   };
4127 
4128   int ISD = TLI->InstructionOpcodeToISD(Opcode);
4129   assert(ISD && "Invalid opcode");
4130 
4131   // Before legalizing the type, give a chance to look up illegal narrow types
4132   // in the table.
4133   // FIXME: Is there a better way to do this?
4134   EVT VT = TLI->getValueType(DL, ValTy);
4135   if (VT.isSimple()) {
4136     MVT MTy = VT.getSimpleVT();
4137     if (ST->useSLMArithCosts())
4138       if (const auto *Entry = CostTableLookup(SLMCostTblNoPairWise, ISD, MTy))
4139         return Entry->Cost;
4140 
4141     if (ST->hasAVX())
4142       if (const auto *Entry = CostTableLookup(AVX1CostTblNoPairWise, ISD, MTy))
4143         return Entry->Cost;
4144 
4145     if (ST->hasSSE2())
4146       if (const auto *Entry = CostTableLookup(SSE2CostTblNoPairWise, ISD, MTy))
4147         return Entry->Cost;
4148   }
4149 
4150   std::pair<InstructionCost, MVT> LT = TLI->getTypeLegalizationCost(DL, ValTy);
4151 
4152   MVT MTy = LT.second;
4153 
4154   auto *ValVTy = cast<FixedVectorType>(ValTy);
4155 
4156   // Special case: vXi8 mul reductions are performed as vXi16.
4157   if (ISD == ISD::MUL && MTy.getScalarType() == MVT::i8) {
4158     auto *WideSclTy = IntegerType::get(ValVTy->getContext(), 16);
4159     auto *WideVecTy = FixedVectorType::get(WideSclTy, ValVTy->getNumElements());
4160     return getCastInstrCost(Instruction::ZExt, WideVecTy, ValTy,
4161                             TargetTransformInfo::CastContextHint::None,
4162                             CostKind) +
4163            getArithmeticReductionCost(Opcode, WideVecTy, FMF, CostKind);
4164   }
4165 
4166   InstructionCost ArithmeticCost = 0;
4167   if (LT.first != 1 && MTy.isVector() &&
4168       MTy.getVectorNumElements() < ValVTy->getNumElements()) {
4169     // Type needs to be split. We need LT.first - 1 arithmetic ops.
4170     auto *SingleOpTy = FixedVectorType::get(ValVTy->getElementType(),
4171                                             MTy.getVectorNumElements());
4172     ArithmeticCost = getArithmeticInstrCost(Opcode, SingleOpTy, CostKind);
4173     ArithmeticCost *= LT.first - 1;
4174   }
4175 
4176   if (ST->useSLMArithCosts())
4177     if (const auto *Entry = CostTableLookup(SLMCostTblNoPairWise, ISD, MTy))
4178       return ArithmeticCost + Entry->Cost;
4179 
4180   if (ST->hasAVX())
4181     if (const auto *Entry = CostTableLookup(AVX1CostTblNoPairWise, ISD, MTy))
4182       return ArithmeticCost + Entry->Cost;
4183 
4184   if (ST->hasSSE2())
4185     if (const auto *Entry = CostTableLookup(SSE2CostTblNoPairWise, ISD, MTy))
4186       return ArithmeticCost + Entry->Cost;
4187 
4188   // FIXME: These assume a naive kshift+binop lowering, which is probably
4189   // conservative in most cases.
4190   static const CostTblEntry AVX512BoolReduction[] = {
4191     { ISD::AND,  MVT::v2i1,   3 },
4192     { ISD::AND,  MVT::v4i1,   5 },
4193     { ISD::AND,  MVT::v8i1,   7 },
4194     { ISD::AND,  MVT::v16i1,  9 },
4195     { ISD::AND,  MVT::v32i1, 11 },
4196     { ISD::AND,  MVT::v64i1, 13 },
4197     { ISD::OR,   MVT::v2i1,   3 },
4198     { ISD::OR,   MVT::v4i1,   5 },
4199     { ISD::OR,   MVT::v8i1,   7 },
4200     { ISD::OR,   MVT::v16i1,  9 },
4201     { ISD::OR,   MVT::v32i1, 11 },
4202     { ISD::OR,   MVT::v64i1, 13 },
4203   };
4204 
4205   static const CostTblEntry AVX2BoolReduction[] = {
4206     { ISD::AND,  MVT::v16i16,  2 }, // vpmovmskb + cmp
4207     { ISD::AND,  MVT::v32i8,   2 }, // vpmovmskb + cmp
4208     { ISD::OR,   MVT::v16i16,  2 }, // vpmovmskb + cmp
4209     { ISD::OR,   MVT::v32i8,   2 }, // vpmovmskb + cmp
4210   };
4211 
4212   static const CostTblEntry AVX1BoolReduction[] = {
4213     { ISD::AND,  MVT::v4i64,   2 }, // vmovmskpd + cmp
4214     { ISD::AND,  MVT::v8i32,   2 }, // vmovmskps + cmp
4215     { ISD::AND,  MVT::v16i16,  4 }, // vextractf128 + vpand + vpmovmskb + cmp
4216     { ISD::AND,  MVT::v32i8,   4 }, // vextractf128 + vpand + vpmovmskb + cmp
4217     { ISD::OR,   MVT::v4i64,   2 }, // vmovmskpd + cmp
4218     { ISD::OR,   MVT::v8i32,   2 }, // vmovmskps + cmp
4219     { ISD::OR,   MVT::v16i16,  4 }, // vextractf128 + vpor + vpmovmskb + cmp
4220     { ISD::OR,   MVT::v32i8,   4 }, // vextractf128 + vpor + vpmovmskb + cmp
4221   };
4222 
4223   static const CostTblEntry SSE2BoolReduction[] = {
4224     { ISD::AND,  MVT::v2i64,   2 }, // movmskpd + cmp
4225     { ISD::AND,  MVT::v4i32,   2 }, // movmskps + cmp
4226     { ISD::AND,  MVT::v8i16,   2 }, // pmovmskb + cmp
4227     { ISD::AND,  MVT::v16i8,   2 }, // pmovmskb + cmp
4228     { ISD::OR,   MVT::v2i64,   2 }, // movmskpd + cmp
4229     { ISD::OR,   MVT::v4i32,   2 }, // movmskps + cmp
4230     { ISD::OR,   MVT::v8i16,   2 }, // pmovmskb + cmp
4231     { ISD::OR,   MVT::v16i8,   2 }, // pmovmskb + cmp
4232   };
4233 
4234   // Handle bool allof/anyof patterns.
4235   if (ValVTy->getElementType()->isIntegerTy(1)) {
4236     InstructionCost ArithmeticCost = 0;
4237     if (LT.first != 1 && MTy.isVector() &&
4238         MTy.getVectorNumElements() < ValVTy->getNumElements()) {
4239       // Type needs to be split. We need LT.first - 1 arithmetic ops.
4240       auto *SingleOpTy = FixedVectorType::get(ValVTy->getElementType(),
4241                                               MTy.getVectorNumElements());
4242       ArithmeticCost = getArithmeticInstrCost(Opcode, SingleOpTy, CostKind);
4243       ArithmeticCost *= LT.first - 1;
4244     }
4245 
4246     if (ST->hasAVX512())
4247       if (const auto *Entry = CostTableLookup(AVX512BoolReduction, ISD, MTy))
4248         return ArithmeticCost + Entry->Cost;
4249     if (ST->hasAVX2())
4250       if (const auto *Entry = CostTableLookup(AVX2BoolReduction, ISD, MTy))
4251         return ArithmeticCost + Entry->Cost;
4252     if (ST->hasAVX())
4253       if (const auto *Entry = CostTableLookup(AVX1BoolReduction, ISD, MTy))
4254         return ArithmeticCost + Entry->Cost;
4255     if (ST->hasSSE2())
4256       if (const auto *Entry = CostTableLookup(SSE2BoolReduction, ISD, MTy))
4257         return ArithmeticCost + Entry->Cost;
4258 
4259     return BaseT::getArithmeticReductionCost(Opcode, ValVTy, FMF, CostKind);
4260   }
4261 
4262   unsigned NumVecElts = ValVTy->getNumElements();
4263   unsigned ScalarSize = ValVTy->getScalarSizeInBits();
4264 
4265   // Special case power of 2 reductions where the scalar type isn't changed
4266   // by type legalization.
4267   if (!isPowerOf2_32(NumVecElts) || ScalarSize != MTy.getScalarSizeInBits())
4268     return BaseT::getArithmeticReductionCost(Opcode, ValVTy, FMF, CostKind);
4269 
4270   InstructionCost ReductionCost = 0;
4271 
4272   auto *Ty = ValVTy;
4273   if (LT.first != 1 && MTy.isVector() &&
4274       MTy.getVectorNumElements() < ValVTy->getNumElements()) {
4275     // Type needs to be split. We need LT.first - 1 arithmetic ops.
4276     Ty = FixedVectorType::get(ValVTy->getElementType(),
4277                               MTy.getVectorNumElements());
4278     ReductionCost = getArithmeticInstrCost(Opcode, Ty, CostKind);
4279     ReductionCost *= LT.first - 1;
4280     NumVecElts = MTy.getVectorNumElements();
4281   }
4282 
4283   // Now handle reduction with the legal type, taking into account size changes
4284   // at each level.
4285   while (NumVecElts > 1) {
4286     // Determine the size of the remaining vector we need to reduce.
4287     unsigned Size = NumVecElts * ScalarSize;
4288     NumVecElts /= 2;
4289     // If we're reducing from 256/512 bits, use an extract_subvector.
4290     if (Size > 128) {
4291       auto *SubTy = FixedVectorType::get(ValVTy->getElementType(), NumVecElts);
4292       ReductionCost +=
4293           getShuffleCost(TTI::SK_ExtractSubvector, Ty, None, NumVecElts, SubTy);
4294       Ty = SubTy;
4295     } else if (Size == 128) {
4296       // Reducing from 128 bits is a permute of v2f64/v2i64.
4297       FixedVectorType *ShufTy;
4298       if (ValVTy->isFloatingPointTy())
4299         ShufTy =
4300             FixedVectorType::get(Type::getDoubleTy(ValVTy->getContext()), 2);
4301       else
4302         ShufTy =
4303             FixedVectorType::get(Type::getInt64Ty(ValVTy->getContext()), 2);
4304       ReductionCost +=
4305           getShuffleCost(TTI::SK_PermuteSingleSrc, ShufTy, None, 0, nullptr);
4306     } else if (Size == 64) {
4307       // Reducing from 64 bits is a shuffle of v4f32/v4i32.
4308       FixedVectorType *ShufTy;
4309       if (ValVTy->isFloatingPointTy())
4310         ShufTy =
4311             FixedVectorType::get(Type::getFloatTy(ValVTy->getContext()), 4);
4312       else
4313         ShufTy =
4314             FixedVectorType::get(Type::getInt32Ty(ValVTy->getContext()), 4);
4315       ReductionCost +=
4316           getShuffleCost(TTI::SK_PermuteSingleSrc, ShufTy, None, 0, nullptr);
4317     } else {
4318       // Reducing from smaller size is a shift by immediate.
4319       auto *ShiftTy = FixedVectorType::get(
4320           Type::getIntNTy(ValVTy->getContext(), Size), 128 / Size);
4321       ReductionCost += getArithmeticInstrCost(
4322           Instruction::LShr, ShiftTy, CostKind,
4323           TargetTransformInfo::OK_AnyValue,
4324           TargetTransformInfo::OK_UniformConstantValue,
4325           TargetTransformInfo::OP_None, TargetTransformInfo::OP_None);
4326     }
4327 
4328     // Add the arithmetic op for this level.
4329     ReductionCost += getArithmeticInstrCost(Opcode, Ty, CostKind);
4330   }
4331 
4332   // Add the final extract element to the cost.
4333   return ReductionCost + getVectorInstrCost(Instruction::ExtractElement, Ty, 0);
4334 }
4335 
4336 InstructionCost X86TTIImpl::getMinMaxCost(Type *Ty, Type *CondTy,
4337                                           bool IsUnsigned) {
4338   std::pair<InstructionCost, MVT> LT = TLI->getTypeLegalizationCost(DL, Ty);
4339 
4340   MVT MTy = LT.second;
4341 
4342   int ISD;
4343   if (Ty->isIntOrIntVectorTy()) {
4344     ISD = IsUnsigned ? ISD::UMIN : ISD::SMIN;
4345   } else {
4346     assert(Ty->isFPOrFPVectorTy() &&
4347            "Expected float point or integer vector type.");
4348     ISD = ISD::FMINNUM;
4349   }
4350 
4351   static const CostTblEntry SSE1CostTbl[] = {
4352     {ISD::FMINNUM, MVT::v4f32, 1},
4353   };
4354 
4355   static const CostTblEntry SSE2CostTbl[] = {
4356     {ISD::FMINNUM, MVT::v2f64, 1},
4357     {ISD::SMIN,    MVT::v8i16, 1},
4358     {ISD::UMIN,    MVT::v16i8, 1},
4359   };
4360 
4361   static const CostTblEntry SSE41CostTbl[] = {
4362     {ISD::SMIN,    MVT::v4i32, 1},
4363     {ISD::UMIN,    MVT::v4i32, 1},
4364     {ISD::UMIN,    MVT::v8i16, 1},
4365     {ISD::SMIN,    MVT::v16i8, 1},
4366   };
4367 
4368   static const CostTblEntry SSE42CostTbl[] = {
4369     {ISD::UMIN,    MVT::v2i64, 3}, // xor+pcmpgtq+blendvpd
4370   };
4371 
4372   static const CostTblEntry AVX1CostTbl[] = {
4373     {ISD::FMINNUM, MVT::v8f32,  1},
4374     {ISD::FMINNUM, MVT::v4f64,  1},
4375     {ISD::SMIN,    MVT::v8i32,  3},
4376     {ISD::UMIN,    MVT::v8i32,  3},
4377     {ISD::SMIN,    MVT::v16i16, 3},
4378     {ISD::UMIN,    MVT::v16i16, 3},
4379     {ISD::SMIN,    MVT::v32i8,  3},
4380     {ISD::UMIN,    MVT::v32i8,  3},
4381   };
4382 
4383   static const CostTblEntry AVX2CostTbl[] = {
4384     {ISD::SMIN,    MVT::v8i32,  1},
4385     {ISD::UMIN,    MVT::v8i32,  1},
4386     {ISD::SMIN,    MVT::v16i16, 1},
4387     {ISD::UMIN,    MVT::v16i16, 1},
4388     {ISD::SMIN,    MVT::v32i8,  1},
4389     {ISD::UMIN,    MVT::v32i8,  1},
4390   };
4391 
4392   static const CostTblEntry AVX512CostTbl[] = {
4393     {ISD::FMINNUM, MVT::v16f32, 1},
4394     {ISD::FMINNUM, MVT::v8f64,  1},
4395     {ISD::SMIN,    MVT::v2i64,  1},
4396     {ISD::UMIN,    MVT::v2i64,  1},
4397     {ISD::SMIN,    MVT::v4i64,  1},
4398     {ISD::UMIN,    MVT::v4i64,  1},
4399     {ISD::SMIN,    MVT::v8i64,  1},
4400     {ISD::UMIN,    MVT::v8i64,  1},
4401     {ISD::SMIN,    MVT::v16i32, 1},
4402     {ISD::UMIN,    MVT::v16i32, 1},
4403   };
4404 
4405   static const CostTblEntry AVX512BWCostTbl[] = {
4406     {ISD::SMIN,    MVT::v32i16, 1},
4407     {ISD::UMIN,    MVT::v32i16, 1},
4408     {ISD::SMIN,    MVT::v64i8,  1},
4409     {ISD::UMIN,    MVT::v64i8,  1},
4410   };
4411 
4412   // If we have a native MIN/MAX instruction for this type, use it.
4413   if (ST->hasBWI())
4414     if (const auto *Entry = CostTableLookup(AVX512BWCostTbl, ISD, MTy))
4415       return LT.first * Entry->Cost;
4416 
4417   if (ST->hasAVX512())
4418     if (const auto *Entry = CostTableLookup(AVX512CostTbl, ISD, MTy))
4419       return LT.first * Entry->Cost;
4420 
4421   if (ST->hasAVX2())
4422     if (const auto *Entry = CostTableLookup(AVX2CostTbl, ISD, MTy))
4423       return LT.first * Entry->Cost;
4424 
4425   if (ST->hasAVX())
4426     if (const auto *Entry = CostTableLookup(AVX1CostTbl, ISD, MTy))
4427       return LT.first * Entry->Cost;
4428 
4429   if (ST->hasSSE42())
4430     if (const auto *Entry = CostTableLookup(SSE42CostTbl, ISD, MTy))
4431       return LT.first * Entry->Cost;
4432 
4433   if (ST->hasSSE41())
4434     if (const auto *Entry = CostTableLookup(SSE41CostTbl, ISD, MTy))
4435       return LT.first * Entry->Cost;
4436 
4437   if (ST->hasSSE2())
4438     if (const auto *Entry = CostTableLookup(SSE2CostTbl, ISD, MTy))
4439       return LT.first * Entry->Cost;
4440 
4441   if (ST->hasSSE1())
4442     if (const auto *Entry = CostTableLookup(SSE1CostTbl, ISD, MTy))
4443       return LT.first * Entry->Cost;
4444 
4445   unsigned CmpOpcode;
4446   if (Ty->isFPOrFPVectorTy()) {
4447     CmpOpcode = Instruction::FCmp;
4448   } else {
4449     assert(Ty->isIntOrIntVectorTy() &&
4450            "expecting floating point or integer type for min/max reduction");
4451     CmpOpcode = Instruction::ICmp;
4452   }
4453 
4454   TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
4455   // Otherwise fall back to cmp+select.
4456   InstructionCost Result =
4457       getCmpSelInstrCost(CmpOpcode, Ty, CondTy, CmpInst::BAD_ICMP_PREDICATE,
4458                          CostKind) +
4459       getCmpSelInstrCost(Instruction::Select, Ty, CondTy,
4460                          CmpInst::BAD_ICMP_PREDICATE, CostKind);
4461   return Result;
4462 }
4463 
4464 InstructionCost
4465 X86TTIImpl::getMinMaxReductionCost(VectorType *ValTy, VectorType *CondTy,
4466                                    bool IsUnsigned,
4467                                    TTI::TargetCostKind CostKind) {
4468   std::pair<InstructionCost, MVT> LT = TLI->getTypeLegalizationCost(DL, ValTy);
4469 
4470   MVT MTy = LT.second;
4471 
4472   int ISD;
4473   if (ValTy->isIntOrIntVectorTy()) {
4474     ISD = IsUnsigned ? ISD::UMIN : ISD::SMIN;
4475   } else {
4476     assert(ValTy->isFPOrFPVectorTy() &&
4477            "Expected float point or integer vector type.");
4478     ISD = ISD::FMINNUM;
4479   }
4480 
4481   // We use the Intel Architecture Code Analyzer(IACA) to measure the throughput
4482   // and make it as the cost.
4483 
4484   static const CostTblEntry SSE2CostTblNoPairWise[] = {
4485       {ISD::UMIN, MVT::v2i16, 5}, // need pxors to use pminsw/pmaxsw
4486       {ISD::UMIN, MVT::v4i16, 7}, // need pxors to use pminsw/pmaxsw
4487       {ISD::UMIN, MVT::v8i16, 9}, // need pxors to use pminsw/pmaxsw
4488   };
4489 
4490   static const CostTblEntry SSE41CostTblNoPairWise[] = {
4491       {ISD::SMIN, MVT::v2i16, 3}, // same as sse2
4492       {ISD::SMIN, MVT::v4i16, 5}, // same as sse2
4493       {ISD::UMIN, MVT::v2i16, 5}, // same as sse2
4494       {ISD::UMIN, MVT::v4i16, 7}, // same as sse2
4495       {ISD::SMIN, MVT::v8i16, 4}, // phminposuw+xor
4496       {ISD::UMIN, MVT::v8i16, 4}, // FIXME: umin is cheaper than umax
4497       {ISD::SMIN, MVT::v2i8,  3}, // pminsb
4498       {ISD::SMIN, MVT::v4i8,  5}, // pminsb
4499       {ISD::SMIN, MVT::v8i8,  7}, // pminsb
4500       {ISD::SMIN, MVT::v16i8, 6},
4501       {ISD::UMIN, MVT::v2i8,  3}, // same as sse2
4502       {ISD::UMIN, MVT::v4i8,  5}, // same as sse2
4503       {ISD::UMIN, MVT::v8i8,  7}, // same as sse2
4504       {ISD::UMIN, MVT::v16i8, 6}, // FIXME: umin is cheaper than umax
4505   };
4506 
4507   static const CostTblEntry AVX1CostTblNoPairWise[] = {
4508       {ISD::SMIN, MVT::v16i16, 6},
4509       {ISD::UMIN, MVT::v16i16, 6}, // FIXME: umin is cheaper than umax
4510       {ISD::SMIN, MVT::v32i8, 8},
4511       {ISD::UMIN, MVT::v32i8, 8},
4512   };
4513 
4514   static const CostTblEntry AVX512BWCostTblNoPairWise[] = {
4515       {ISD::SMIN, MVT::v32i16, 8},
4516       {ISD::UMIN, MVT::v32i16, 8}, // FIXME: umin is cheaper than umax
4517       {ISD::SMIN, MVT::v64i8, 10},
4518       {ISD::UMIN, MVT::v64i8, 10},
4519   };
4520 
4521   // Before legalizing the type, give a chance to look up illegal narrow types
4522   // in the table.
4523   // FIXME: Is there a better way to do this?
4524   EVT VT = TLI->getValueType(DL, ValTy);
4525   if (VT.isSimple()) {
4526     MVT MTy = VT.getSimpleVT();
4527     if (ST->hasBWI())
4528       if (const auto *Entry = CostTableLookup(AVX512BWCostTblNoPairWise, ISD, MTy))
4529         return Entry->Cost;
4530 
4531     if (ST->hasAVX())
4532       if (const auto *Entry = CostTableLookup(AVX1CostTblNoPairWise, ISD, MTy))
4533         return Entry->Cost;
4534 
4535     if (ST->hasSSE41())
4536       if (const auto *Entry = CostTableLookup(SSE41CostTblNoPairWise, ISD, MTy))
4537         return Entry->Cost;
4538 
4539     if (ST->hasSSE2())
4540       if (const auto *Entry = CostTableLookup(SSE2CostTblNoPairWise, ISD, MTy))
4541         return Entry->Cost;
4542   }
4543 
4544   auto *ValVTy = cast<FixedVectorType>(ValTy);
4545   unsigned NumVecElts = ValVTy->getNumElements();
4546 
4547   auto *Ty = ValVTy;
4548   InstructionCost MinMaxCost = 0;
4549   if (LT.first != 1 && MTy.isVector() &&
4550       MTy.getVectorNumElements() < ValVTy->getNumElements()) {
4551     // Type needs to be split. We need LT.first - 1 operations ops.
4552     Ty = FixedVectorType::get(ValVTy->getElementType(),
4553                               MTy.getVectorNumElements());
4554     auto *SubCondTy = FixedVectorType::get(CondTy->getElementType(),
4555                                            MTy.getVectorNumElements());
4556     MinMaxCost = getMinMaxCost(Ty, SubCondTy, IsUnsigned);
4557     MinMaxCost *= LT.first - 1;
4558     NumVecElts = MTy.getVectorNumElements();
4559   }
4560 
4561   if (ST->hasBWI())
4562     if (const auto *Entry = CostTableLookup(AVX512BWCostTblNoPairWise, ISD, MTy))
4563       return MinMaxCost + Entry->Cost;
4564 
4565   if (ST->hasAVX())
4566     if (const auto *Entry = CostTableLookup(AVX1CostTblNoPairWise, ISD, MTy))
4567       return MinMaxCost + Entry->Cost;
4568 
4569   if (ST->hasSSE41())
4570     if (const auto *Entry = CostTableLookup(SSE41CostTblNoPairWise, ISD, MTy))
4571       return MinMaxCost + Entry->Cost;
4572 
4573   if (ST->hasSSE2())
4574     if (const auto *Entry = CostTableLookup(SSE2CostTblNoPairWise, ISD, MTy))
4575       return MinMaxCost + Entry->Cost;
4576 
4577   unsigned ScalarSize = ValTy->getScalarSizeInBits();
4578 
4579   // Special case power of 2 reductions where the scalar type isn't changed
4580   // by type legalization.
4581   if (!isPowerOf2_32(ValVTy->getNumElements()) ||
4582       ScalarSize != MTy.getScalarSizeInBits())
4583     return BaseT::getMinMaxReductionCost(ValTy, CondTy, IsUnsigned, CostKind);
4584 
4585   // Now handle reduction with the legal type, taking into account size changes
4586   // at each level.
4587   while (NumVecElts > 1) {
4588     // Determine the size of the remaining vector we need to reduce.
4589     unsigned Size = NumVecElts * ScalarSize;
4590     NumVecElts /= 2;
4591     // If we're reducing from 256/512 bits, use an extract_subvector.
4592     if (Size > 128) {
4593       auto *SubTy = FixedVectorType::get(ValVTy->getElementType(), NumVecElts);
4594       MinMaxCost +=
4595           getShuffleCost(TTI::SK_ExtractSubvector, Ty, None, NumVecElts, SubTy);
4596       Ty = SubTy;
4597     } else if (Size == 128) {
4598       // Reducing from 128 bits is a permute of v2f64/v2i64.
4599       VectorType *ShufTy;
4600       if (ValTy->isFloatingPointTy())
4601         ShufTy =
4602             FixedVectorType::get(Type::getDoubleTy(ValTy->getContext()), 2);
4603       else
4604         ShufTy = FixedVectorType::get(Type::getInt64Ty(ValTy->getContext()), 2);
4605       MinMaxCost +=
4606           getShuffleCost(TTI::SK_PermuteSingleSrc, ShufTy, None, 0, nullptr);
4607     } else if (Size == 64) {
4608       // Reducing from 64 bits is a shuffle of v4f32/v4i32.
4609       FixedVectorType *ShufTy;
4610       if (ValTy->isFloatingPointTy())
4611         ShufTy = FixedVectorType::get(Type::getFloatTy(ValTy->getContext()), 4);
4612       else
4613         ShufTy = FixedVectorType::get(Type::getInt32Ty(ValTy->getContext()), 4);
4614       MinMaxCost +=
4615           getShuffleCost(TTI::SK_PermuteSingleSrc, ShufTy, None, 0, nullptr);
4616     } else {
4617       // Reducing from smaller size is a shift by immediate.
4618       auto *ShiftTy = FixedVectorType::get(
4619           Type::getIntNTy(ValTy->getContext(), Size), 128 / Size);
4620       MinMaxCost += getArithmeticInstrCost(
4621           Instruction::LShr, ShiftTy, TTI::TCK_RecipThroughput,
4622           TargetTransformInfo::OK_AnyValue,
4623           TargetTransformInfo::OK_UniformConstantValue,
4624           TargetTransformInfo::OP_None, TargetTransformInfo::OP_None);
4625     }
4626 
4627     // Add the arithmetic op for this level.
4628     auto *SubCondTy =
4629         FixedVectorType::get(CondTy->getElementType(), Ty->getNumElements());
4630     MinMaxCost += getMinMaxCost(Ty, SubCondTy, IsUnsigned);
4631   }
4632 
4633   // Add the final extract element to the cost.
4634   return MinMaxCost + getVectorInstrCost(Instruction::ExtractElement, Ty, 0);
4635 }
4636 
4637 /// Calculate the cost of materializing a 64-bit value. This helper
4638 /// method might only calculate a fraction of a larger immediate. Therefore it
4639 /// is valid to return a cost of ZERO.
4640 InstructionCost X86TTIImpl::getIntImmCost(int64_t Val) {
4641   if (Val == 0)
4642     return TTI::TCC_Free;
4643 
4644   if (isInt<32>(Val))
4645     return TTI::TCC_Basic;
4646 
4647   return 2 * TTI::TCC_Basic;
4648 }
4649 
4650 InstructionCost X86TTIImpl::getIntImmCost(const APInt &Imm, Type *Ty,
4651                                           TTI::TargetCostKind CostKind) {
4652   assert(Ty->isIntegerTy());
4653 
4654   unsigned BitSize = Ty->getPrimitiveSizeInBits();
4655   if (BitSize == 0)
4656     return ~0U;
4657 
4658   // Never hoist constants larger than 128bit, because this might lead to
4659   // incorrect code generation or assertions in codegen.
4660   // Fixme: Create a cost model for types larger than i128 once the codegen
4661   // issues have been fixed.
4662   if (BitSize > 128)
4663     return TTI::TCC_Free;
4664 
4665   if (Imm == 0)
4666     return TTI::TCC_Free;
4667 
4668   // Sign-extend all constants to a multiple of 64-bit.
4669   APInt ImmVal = Imm;
4670   if (BitSize % 64 != 0)
4671     ImmVal = Imm.sext(alignTo(BitSize, 64));
4672 
4673   // Split the constant into 64-bit chunks and calculate the cost for each
4674   // chunk.
4675   InstructionCost Cost = 0;
4676   for (unsigned ShiftVal = 0; ShiftVal < BitSize; ShiftVal += 64) {
4677     APInt Tmp = ImmVal.ashr(ShiftVal).sextOrTrunc(64);
4678     int64_t Val = Tmp.getSExtValue();
4679     Cost += getIntImmCost(Val);
4680   }
4681   // We need at least one instruction to materialize the constant.
4682   return std::max<InstructionCost>(1, Cost);
4683 }
4684 
4685 InstructionCost X86TTIImpl::getIntImmCostInst(unsigned Opcode, unsigned Idx,
4686                                               const APInt &Imm, Type *Ty,
4687                                               TTI::TargetCostKind CostKind,
4688                                               Instruction *Inst) {
4689   assert(Ty->isIntegerTy());
4690 
4691   unsigned BitSize = Ty->getPrimitiveSizeInBits();
4692   // There is no cost model for constants with a bit size of 0. Return TCC_Free
4693   // here, so that constant hoisting will ignore this constant.
4694   if (BitSize == 0)
4695     return TTI::TCC_Free;
4696 
4697   unsigned ImmIdx = ~0U;
4698   switch (Opcode) {
4699   default:
4700     return TTI::TCC_Free;
4701   case Instruction::GetElementPtr:
4702     // Always hoist the base address of a GetElementPtr. This prevents the
4703     // creation of new constants for every base constant that gets constant
4704     // folded with the offset.
4705     if (Idx == 0)
4706       return 2 * TTI::TCC_Basic;
4707     return TTI::TCC_Free;
4708   case Instruction::Store:
4709     ImmIdx = 0;
4710     break;
4711   case Instruction::ICmp:
4712     // This is an imperfect hack to prevent constant hoisting of
4713     // compares that might be trying to check if a 64-bit value fits in
4714     // 32-bits. The backend can optimize these cases using a right shift by 32.
4715     // Ideally we would check the compare predicate here. There also other
4716     // similar immediates the backend can use shifts for.
4717     if (Idx == 1 && Imm.getBitWidth() == 64) {
4718       uint64_t ImmVal = Imm.getZExtValue();
4719       if (ImmVal == 0x100000000ULL || ImmVal == 0xffffffff)
4720         return TTI::TCC_Free;
4721     }
4722     ImmIdx = 1;
4723     break;
4724   case Instruction::And:
4725     // We support 64-bit ANDs with immediates with 32-bits of leading zeroes
4726     // by using a 32-bit operation with implicit zero extension. Detect such
4727     // immediates here as the normal path expects bit 31 to be sign extended.
4728     if (Idx == 1 && Imm.getBitWidth() == 64 && isUInt<32>(Imm.getZExtValue()))
4729       return TTI::TCC_Free;
4730     ImmIdx = 1;
4731     break;
4732   case Instruction::Add:
4733   case Instruction::Sub:
4734     // For add/sub, we can use the opposite instruction for INT32_MIN.
4735     if (Idx == 1 && Imm.getBitWidth() == 64 && Imm.getZExtValue() == 0x80000000)
4736       return TTI::TCC_Free;
4737     ImmIdx = 1;
4738     break;
4739   case Instruction::UDiv:
4740   case Instruction::SDiv:
4741   case Instruction::URem:
4742   case Instruction::SRem:
4743     // Division by constant is typically expanded later into a different
4744     // instruction sequence. This completely changes the constants.
4745     // Report them as "free" to stop ConstantHoist from marking them as opaque.
4746     return TTI::TCC_Free;
4747   case Instruction::Mul:
4748   case Instruction::Or:
4749   case Instruction::Xor:
4750     ImmIdx = 1;
4751     break;
4752   // Always return TCC_Free for the shift value of a shift instruction.
4753   case Instruction::Shl:
4754   case Instruction::LShr:
4755   case Instruction::AShr:
4756     if (Idx == 1)
4757       return TTI::TCC_Free;
4758     break;
4759   case Instruction::Trunc:
4760   case Instruction::ZExt:
4761   case Instruction::SExt:
4762   case Instruction::IntToPtr:
4763   case Instruction::PtrToInt:
4764   case Instruction::BitCast:
4765   case Instruction::PHI:
4766   case Instruction::Call:
4767   case Instruction::Select:
4768   case Instruction::Ret:
4769   case Instruction::Load:
4770     break;
4771   }
4772 
4773   if (Idx == ImmIdx) {
4774     int NumConstants = divideCeil(BitSize, 64);
4775     InstructionCost Cost = X86TTIImpl::getIntImmCost(Imm, Ty, CostKind);
4776     return (Cost <= NumConstants * TTI::TCC_Basic)
4777                ? static_cast<int>(TTI::TCC_Free)
4778                : Cost;
4779   }
4780 
4781   return X86TTIImpl::getIntImmCost(Imm, Ty, CostKind);
4782 }
4783 
4784 InstructionCost X86TTIImpl::getIntImmCostIntrin(Intrinsic::ID IID, unsigned Idx,
4785                                                 const APInt &Imm, Type *Ty,
4786                                                 TTI::TargetCostKind CostKind) {
4787   assert(Ty->isIntegerTy());
4788 
4789   unsigned BitSize = Ty->getPrimitiveSizeInBits();
4790   // There is no cost model for constants with a bit size of 0. Return TCC_Free
4791   // here, so that constant hoisting will ignore this constant.
4792   if (BitSize == 0)
4793     return TTI::TCC_Free;
4794 
4795   switch (IID) {
4796   default:
4797     return TTI::TCC_Free;
4798   case Intrinsic::sadd_with_overflow:
4799   case Intrinsic::uadd_with_overflow:
4800   case Intrinsic::ssub_with_overflow:
4801   case Intrinsic::usub_with_overflow:
4802   case Intrinsic::smul_with_overflow:
4803   case Intrinsic::umul_with_overflow:
4804     if ((Idx == 1) && Imm.getBitWidth() <= 64 && isInt<32>(Imm.getSExtValue()))
4805       return TTI::TCC_Free;
4806     break;
4807   case Intrinsic::experimental_stackmap:
4808     if ((Idx < 2) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue())))
4809       return TTI::TCC_Free;
4810     break;
4811   case Intrinsic::experimental_patchpoint_void:
4812   case Intrinsic::experimental_patchpoint_i64:
4813     if ((Idx < 4) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue())))
4814       return TTI::TCC_Free;
4815     break;
4816   }
4817   return X86TTIImpl::getIntImmCost(Imm, Ty, CostKind);
4818 }
4819 
4820 InstructionCost X86TTIImpl::getCFInstrCost(unsigned Opcode,
4821                                            TTI::TargetCostKind CostKind,
4822                                            const Instruction *I) {
4823   if (CostKind != TTI::TCK_RecipThroughput)
4824     return Opcode == Instruction::PHI ? 0 : 1;
4825   // Branches are assumed to be predicted.
4826   return 0;
4827 }
4828 
4829 int X86TTIImpl::getGatherOverhead() const {
4830   // Some CPUs have more overhead for gather. The specified overhead is relative
4831   // to the Load operation. "2" is the number provided by Intel architects. This
4832   // parameter is used for cost estimation of Gather Op and comparison with
4833   // other alternatives.
4834   // TODO: Remove the explicit hasAVX512()?, That would mean we would only
4835   // enable gather with a -march.
4836   if (ST->hasAVX512() || (ST->hasAVX2() && ST->hasFastGather()))
4837     return 2;
4838 
4839   return 1024;
4840 }
4841 
4842 int X86TTIImpl::getScatterOverhead() const {
4843   if (ST->hasAVX512())
4844     return 2;
4845 
4846   return 1024;
4847 }
4848 
4849 // Return an average cost of Gather / Scatter instruction, maybe improved later.
4850 // FIXME: Add TargetCostKind support.
4851 InstructionCost X86TTIImpl::getGSVectorCost(unsigned Opcode, Type *SrcVTy,
4852                                             const Value *Ptr, Align Alignment,
4853                                             unsigned AddressSpace) {
4854 
4855   assert(isa<VectorType>(SrcVTy) && "Unexpected type in getGSVectorCost");
4856   unsigned VF = cast<FixedVectorType>(SrcVTy)->getNumElements();
4857 
4858   // Try to reduce index size from 64 bit (default for GEP)
4859   // to 32. It is essential for VF 16. If the index can't be reduced to 32, the
4860   // operation will use 16 x 64 indices which do not fit in a zmm and needs
4861   // to split. Also check that the base pointer is the same for all lanes,
4862   // and that there's at most one variable index.
4863   auto getIndexSizeInBits = [](const Value *Ptr, const DataLayout &DL) {
4864     unsigned IndexSize = DL.getPointerSizeInBits();
4865     const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr);
4866     if (IndexSize < 64 || !GEP)
4867       return IndexSize;
4868 
4869     unsigned NumOfVarIndices = 0;
4870     const Value *Ptrs = GEP->getPointerOperand();
4871     if (Ptrs->getType()->isVectorTy() && !getSplatValue(Ptrs))
4872       return IndexSize;
4873     for (unsigned i = 1; i < GEP->getNumOperands(); ++i) {
4874       if (isa<Constant>(GEP->getOperand(i)))
4875         continue;
4876       Type *IndxTy = GEP->getOperand(i)->getType();
4877       if (auto *IndexVTy = dyn_cast<VectorType>(IndxTy))
4878         IndxTy = IndexVTy->getElementType();
4879       if ((IndxTy->getPrimitiveSizeInBits() == 64 &&
4880           !isa<SExtInst>(GEP->getOperand(i))) ||
4881          ++NumOfVarIndices > 1)
4882         return IndexSize; // 64
4883     }
4884     return (unsigned)32;
4885   };
4886 
4887   // Trying to reduce IndexSize to 32 bits for vector 16.
4888   // By default the IndexSize is equal to pointer size.
4889   unsigned IndexSize = (ST->hasAVX512() && VF >= 16)
4890                            ? getIndexSizeInBits(Ptr, DL)
4891                            : DL.getPointerSizeInBits();
4892 
4893   auto *IndexVTy = FixedVectorType::get(
4894       IntegerType::get(SrcVTy->getContext(), IndexSize), VF);
4895   std::pair<InstructionCost, MVT> IdxsLT =
4896       TLI->getTypeLegalizationCost(DL, IndexVTy);
4897   std::pair<InstructionCost, MVT> SrcLT =
4898       TLI->getTypeLegalizationCost(DL, SrcVTy);
4899   InstructionCost::CostType SplitFactor =
4900       *std::max(IdxsLT.first, SrcLT.first).getValue();
4901   if (SplitFactor > 1) {
4902     // Handle splitting of vector of pointers
4903     auto *SplitSrcTy =
4904         FixedVectorType::get(SrcVTy->getScalarType(), VF / SplitFactor);
4905     return SplitFactor * getGSVectorCost(Opcode, SplitSrcTy, Ptr, Alignment,
4906                                          AddressSpace);
4907   }
4908 
4909   // The gather / scatter cost is given by Intel architects. It is a rough
4910   // number since we are looking at one instruction in a time.
4911   const int GSOverhead = (Opcode == Instruction::Load)
4912                              ? getGatherOverhead()
4913                              : getScatterOverhead();
4914   return GSOverhead + VF * getMemoryOpCost(Opcode, SrcVTy->getScalarType(),
4915                                            MaybeAlign(Alignment), AddressSpace,
4916                                            TTI::TCK_RecipThroughput);
4917 }
4918 
4919 /// Return the cost of full scalarization of gather / scatter operation.
4920 ///
4921 /// Opcode - Load or Store instruction.
4922 /// SrcVTy - The type of the data vector that should be gathered or scattered.
4923 /// VariableMask - The mask is non-constant at compile time.
4924 /// Alignment - Alignment for one element.
4925 /// AddressSpace - pointer[s] address space.
4926 ///
4927 /// FIXME: Add TargetCostKind support.
4928 InstructionCost X86TTIImpl::getGSScalarCost(unsigned Opcode, Type *SrcVTy,
4929                                             bool VariableMask, Align Alignment,
4930                                             unsigned AddressSpace) {
4931   Type *ScalarTy = SrcVTy->getScalarType();
4932   unsigned VF = cast<FixedVectorType>(SrcVTy)->getNumElements();
4933   APInt DemandedElts = APInt::getAllOnes(VF);
4934   TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
4935 
4936   InstructionCost MaskUnpackCost = 0;
4937   if (VariableMask) {
4938     auto *MaskTy =
4939         FixedVectorType::get(Type::getInt1Ty(SrcVTy->getContext()), VF);
4940     MaskUnpackCost = getScalarizationOverhead(
4941         MaskTy, DemandedElts, /*Insert=*/false, /*Extract=*/true);
4942     InstructionCost ScalarCompareCost = getCmpSelInstrCost(
4943         Instruction::ICmp, Type::getInt1Ty(SrcVTy->getContext()), nullptr,
4944         CmpInst::BAD_ICMP_PREDICATE, CostKind);
4945     InstructionCost BranchCost = getCFInstrCost(Instruction::Br, CostKind);
4946     MaskUnpackCost += VF * (BranchCost + ScalarCompareCost);
4947   }
4948 
4949   InstructionCost AddressUnpackCost = getScalarizationOverhead(
4950       FixedVectorType::get(ScalarTy->getPointerTo(), VF), DemandedElts,
4951       /*Insert=*/false, /*Extract=*/true);
4952 
4953   // The cost of the scalar loads/stores.
4954   InstructionCost MemoryOpCost =
4955       VF * getMemoryOpCost(Opcode, ScalarTy, MaybeAlign(Alignment),
4956                            AddressSpace, CostKind);
4957 
4958   // The cost of forming the vector from loaded scalars/
4959   // scalarizing the vector to perform scalar stores.
4960   InstructionCost InsertExtractCost =
4961       getScalarizationOverhead(cast<FixedVectorType>(SrcVTy), DemandedElts,
4962                                /*Insert=*/Opcode == Instruction::Load,
4963                                /*Extract=*/Opcode == Instruction::Store);
4964 
4965   return AddressUnpackCost + MemoryOpCost + MaskUnpackCost + InsertExtractCost;
4966 }
4967 
4968 /// Calculate the cost of Gather / Scatter operation
4969 InstructionCost X86TTIImpl::getGatherScatterOpCost(
4970     unsigned Opcode, Type *SrcVTy, const Value *Ptr, bool VariableMask,
4971     Align Alignment, TTI::TargetCostKind CostKind,
4972     const Instruction *I = nullptr) {
4973   if (CostKind != TTI::TCK_RecipThroughput) {
4974     if ((Opcode == Instruction::Load &&
4975          isLegalMaskedGather(SrcVTy, Align(Alignment))) ||
4976         (Opcode == Instruction::Store &&
4977          isLegalMaskedScatter(SrcVTy, Align(Alignment))))
4978       return 1;
4979     return BaseT::getGatherScatterOpCost(Opcode, SrcVTy, Ptr, VariableMask,
4980                                          Alignment, CostKind, I);
4981   }
4982 
4983   assert(SrcVTy->isVectorTy() && "Unexpected data type for Gather/Scatter");
4984   PointerType *PtrTy = dyn_cast<PointerType>(Ptr->getType());
4985   if (!PtrTy && Ptr->getType()->isVectorTy())
4986     PtrTy = dyn_cast<PointerType>(
4987         cast<VectorType>(Ptr->getType())->getElementType());
4988   assert(PtrTy && "Unexpected type for Ptr argument");
4989   unsigned AddressSpace = PtrTy->getAddressSpace();
4990 
4991   if ((Opcode == Instruction::Load &&
4992        !isLegalMaskedGather(SrcVTy, Align(Alignment))) ||
4993       (Opcode == Instruction::Store &&
4994        !isLegalMaskedScatter(SrcVTy, Align(Alignment))))
4995     return getGSScalarCost(Opcode, SrcVTy, VariableMask, Alignment,
4996                            AddressSpace);
4997 
4998   return getGSVectorCost(Opcode, SrcVTy, Ptr, Alignment, AddressSpace);
4999 }
5000 
5001 bool X86TTIImpl::isLSRCostLess(TargetTransformInfo::LSRCost &C1,
5002                                TargetTransformInfo::LSRCost &C2) {
5003     // X86 specific here are "instruction number 1st priority".
5004     return std::tie(C1.Insns, C1.NumRegs, C1.AddRecCost,
5005                     C1.NumIVMuls, C1.NumBaseAdds,
5006                     C1.ScaleCost, C1.ImmCost, C1.SetupCost) <
5007            std::tie(C2.Insns, C2.NumRegs, C2.AddRecCost,
5008                     C2.NumIVMuls, C2.NumBaseAdds,
5009                     C2.ScaleCost, C2.ImmCost, C2.SetupCost);
5010 }
5011 
5012 bool X86TTIImpl::canMacroFuseCmp() {
5013   return ST->hasMacroFusion() || ST->hasBranchFusion();
5014 }
5015 
5016 bool X86TTIImpl::isLegalMaskedLoad(Type *DataTy, Align Alignment) {
5017   if (!ST->hasAVX())
5018     return false;
5019 
5020   // The backend can't handle a single element vector.
5021   if (isa<VectorType>(DataTy) &&
5022       cast<FixedVectorType>(DataTy)->getNumElements() == 1)
5023     return false;
5024   Type *ScalarTy = DataTy->getScalarType();
5025 
5026   if (ScalarTy->isPointerTy())
5027     return true;
5028 
5029   if (ScalarTy->isFloatTy() || ScalarTy->isDoubleTy())
5030     return true;
5031 
5032   if (ScalarTy->isHalfTy() && ST->hasBWI() && ST->hasFP16())
5033     return true;
5034 
5035   if (!ScalarTy->isIntegerTy())
5036     return false;
5037 
5038   unsigned IntWidth = ScalarTy->getIntegerBitWidth();
5039   return IntWidth == 32 || IntWidth == 64 ||
5040          ((IntWidth == 8 || IntWidth == 16) && ST->hasBWI());
5041 }
5042 
5043 bool X86TTIImpl::isLegalMaskedStore(Type *DataType, Align Alignment) {
5044   return isLegalMaskedLoad(DataType, Alignment);
5045 }
5046 
5047 bool X86TTIImpl::isLegalNTLoad(Type *DataType, Align Alignment) {
5048   unsigned DataSize = DL.getTypeStoreSize(DataType);
5049   // The only supported nontemporal loads are for aligned vectors of 16 or 32
5050   // bytes.  Note that 32-byte nontemporal vector loads are supported by AVX2
5051   // (the equivalent stores only require AVX).
5052   if (Alignment >= DataSize && (DataSize == 16 || DataSize == 32))
5053     return DataSize == 16 ?  ST->hasSSE1() : ST->hasAVX2();
5054 
5055   return false;
5056 }
5057 
5058 bool X86TTIImpl::isLegalNTStore(Type *DataType, Align Alignment) {
5059   unsigned DataSize = DL.getTypeStoreSize(DataType);
5060 
5061   // SSE4A supports nontemporal stores of float and double at arbitrary
5062   // alignment.
5063   if (ST->hasSSE4A() && (DataType->isFloatTy() || DataType->isDoubleTy()))
5064     return true;
5065 
5066   // Besides the SSE4A subtarget exception above, only aligned stores are
5067   // available nontemporaly on any other subtarget.  And only stores with a size
5068   // of 4..32 bytes (powers of 2, only) are permitted.
5069   if (Alignment < DataSize || DataSize < 4 || DataSize > 32 ||
5070       !isPowerOf2_32(DataSize))
5071     return false;
5072 
5073   // 32-byte vector nontemporal stores are supported by AVX (the equivalent
5074   // loads require AVX2).
5075   if (DataSize == 32)
5076     return ST->hasAVX();
5077   if (DataSize == 16)
5078     return ST->hasSSE1();
5079   return true;
5080 }
5081 
5082 bool X86TTIImpl::isLegalMaskedExpandLoad(Type *DataTy) {
5083   if (!isa<VectorType>(DataTy))
5084     return false;
5085 
5086   if (!ST->hasAVX512())
5087     return false;
5088 
5089   // The backend can't handle a single element vector.
5090   if (cast<FixedVectorType>(DataTy)->getNumElements() == 1)
5091     return false;
5092 
5093   Type *ScalarTy = cast<VectorType>(DataTy)->getElementType();
5094 
5095   if (ScalarTy->isFloatTy() || ScalarTy->isDoubleTy())
5096     return true;
5097 
5098   if (!ScalarTy->isIntegerTy())
5099     return false;
5100 
5101   unsigned IntWidth = ScalarTy->getIntegerBitWidth();
5102   return IntWidth == 32 || IntWidth == 64 ||
5103          ((IntWidth == 8 || IntWidth == 16) && ST->hasVBMI2());
5104 }
5105 
5106 bool X86TTIImpl::isLegalMaskedCompressStore(Type *DataTy) {
5107   return isLegalMaskedExpandLoad(DataTy);
5108 }
5109 
5110 bool X86TTIImpl::supportsGather() const {
5111   // Some CPUs have better gather performance than others.
5112   // TODO: Remove the explicit ST->hasAVX512()?, That would mean we would only
5113   // enable gather with a -march.
5114   return ST->hasAVX512() || (ST->hasFastGather() && ST->hasAVX2());
5115 }
5116 
5117 bool X86TTIImpl::isLegalMaskedGather(Type *DataTy, Align Alignment) {
5118   if (!supportsGather())
5119     return false;
5120 
5121   // This function is called now in two cases: from the Loop Vectorizer
5122   // and from the Scalarizer.
5123   // When the Loop Vectorizer asks about legality of the feature,
5124   // the vectorization factor is not calculated yet. The Loop Vectorizer
5125   // sends a scalar type and the decision is based on the width of the
5126   // scalar element.
5127   // Later on, the cost model will estimate usage this intrinsic based on
5128   // the vector type.
5129   // The Scalarizer asks again about legality. It sends a vector type.
5130   // In this case we can reject non-power-of-2 vectors.
5131   // We also reject single element vectors as the type legalizer can't
5132   // scalarize it.
5133   if (auto *DataVTy = dyn_cast<FixedVectorType>(DataTy)) {
5134     unsigned NumElts = DataVTy->getNumElements();
5135     if (NumElts == 1)
5136       return false;
5137     // Gather / Scatter for vector 2 is not profitable on KNL / SKX
5138     // Vector-4 of gather/scatter instruction does not exist on KNL.
5139     // We can extend it to 8 elements, but zeroing upper bits of
5140     // the mask vector will add more instructions. Right now we give the scalar
5141     // cost of vector-4 for KNL. TODO: Check, maybe the gather/scatter
5142     // instruction is better in the VariableMask case.
5143     if (ST->hasAVX512() && (NumElts == 2 || (NumElts == 4 && !ST->hasVLX())))
5144       return false;
5145   }
5146   Type *ScalarTy = DataTy->getScalarType();
5147   if (ScalarTy->isPointerTy())
5148     return true;
5149 
5150   if (ScalarTy->isFloatTy() || ScalarTy->isDoubleTy())
5151     return true;
5152 
5153   if (!ScalarTy->isIntegerTy())
5154     return false;
5155 
5156   unsigned IntWidth = ScalarTy->getIntegerBitWidth();
5157   return IntWidth == 32 || IntWidth == 64;
5158 }
5159 
5160 bool X86TTIImpl::isLegalMaskedScatter(Type *DataType, Align Alignment) {
5161   // AVX2 doesn't support scatter
5162   if (!ST->hasAVX512())
5163     return false;
5164   return isLegalMaskedGather(DataType, Alignment);
5165 }
5166 
5167 bool X86TTIImpl::hasDivRemOp(Type *DataType, bool IsSigned) {
5168   EVT VT = TLI->getValueType(DL, DataType);
5169   return TLI->isOperationLegal(IsSigned ? ISD::SDIVREM : ISD::UDIVREM, VT);
5170 }
5171 
5172 bool X86TTIImpl::isFCmpOrdCheaperThanFCmpZero(Type *Ty) {
5173   return false;
5174 }
5175 
5176 bool X86TTIImpl::areInlineCompatible(const Function *Caller,
5177                                      const Function *Callee) const {
5178   const TargetMachine &TM = getTLI()->getTargetMachine();
5179 
5180   // Work this as a subsetting of subtarget features.
5181   const FeatureBitset &CallerBits =
5182       TM.getSubtargetImpl(*Caller)->getFeatureBits();
5183   const FeatureBitset &CalleeBits =
5184       TM.getSubtargetImpl(*Callee)->getFeatureBits();
5185 
5186   FeatureBitset RealCallerBits = CallerBits & ~InlineFeatureIgnoreList;
5187   FeatureBitset RealCalleeBits = CalleeBits & ~InlineFeatureIgnoreList;
5188   return (RealCallerBits & RealCalleeBits) == RealCalleeBits;
5189 }
5190 
5191 bool X86TTIImpl::areFunctionArgsABICompatible(
5192     const Function *Caller, const Function *Callee,
5193     SmallPtrSetImpl<Argument *> &Args) const {
5194   if (!BaseT::areFunctionArgsABICompatible(Caller, Callee, Args))
5195     return false;
5196 
5197   // If we get here, we know the target features match. If one function
5198   // considers 512-bit vectors legal and the other does not, consider them
5199   // incompatible.
5200   const TargetMachine &TM = getTLI()->getTargetMachine();
5201 
5202   if (TM.getSubtarget<X86Subtarget>(*Caller).useAVX512Regs() ==
5203       TM.getSubtarget<X86Subtarget>(*Callee).useAVX512Regs())
5204     return true;
5205 
5206   // Consider the arguments compatible if they aren't vectors or aggregates.
5207   // FIXME: Look at the size of vectors.
5208   // FIXME: Look at the element types of aggregates to see if there are vectors.
5209   // FIXME: The API of this function seems intended to allow arguments
5210   // to be removed from the set, but the caller doesn't check if the set
5211   // becomes empty so that may not work in practice.
5212   return llvm::none_of(Args, [](Argument *A) {
5213     auto *EltTy = cast<PointerType>(A->getType())->getElementType();
5214     return EltTy->isVectorTy() || EltTy->isAggregateType();
5215   });
5216 }
5217 
5218 X86TTIImpl::TTI::MemCmpExpansionOptions
5219 X86TTIImpl::enableMemCmpExpansion(bool OptSize, bool IsZeroCmp) const {
5220   TTI::MemCmpExpansionOptions Options;
5221   Options.MaxNumLoads = TLI->getMaxExpandSizeMemcmp(OptSize);
5222   Options.NumLoadsPerBlock = 2;
5223   // All GPR and vector loads can be unaligned.
5224   Options.AllowOverlappingLoads = true;
5225   if (IsZeroCmp) {
5226     // Only enable vector loads for equality comparison. Right now the vector
5227     // version is not as fast for three way compare (see #33329).
5228     const unsigned PreferredWidth = ST->getPreferVectorWidth();
5229     if (PreferredWidth >= 512 && ST->hasAVX512()) Options.LoadSizes.push_back(64);
5230     if (PreferredWidth >= 256 && ST->hasAVX()) Options.LoadSizes.push_back(32);
5231     if (PreferredWidth >= 128 && ST->hasSSE2()) Options.LoadSizes.push_back(16);
5232   }
5233   if (ST->is64Bit()) {
5234     Options.LoadSizes.push_back(8);
5235   }
5236   Options.LoadSizes.push_back(4);
5237   Options.LoadSizes.push_back(2);
5238   Options.LoadSizes.push_back(1);
5239   return Options;
5240 }
5241 
5242 bool X86TTIImpl::prefersVectorizedAddressing() const {
5243   return supportsGather();
5244 }
5245 
5246 bool X86TTIImpl::supportsEfficientVectorElementLoadStore() const {
5247   return false;
5248 }
5249 
5250 bool X86TTIImpl::enableInterleavedAccessVectorization() {
5251   // TODO: We expect this to be beneficial regardless of arch,
5252   // but there are currently some unexplained performance artifacts on Atom.
5253   // As a temporary solution, disable on Atom.
5254   return !(ST->isAtom());
5255 }
5256 
5257 // Get estimation for interleaved load/store operations and strided load.
5258 // \p Indices contains indices for strided load.
5259 // \p Factor - the factor of interleaving.
5260 // AVX-512 provides 3-src shuffles that significantly reduces the cost.
5261 InstructionCost X86TTIImpl::getInterleavedMemoryOpCostAVX512(
5262     unsigned Opcode, FixedVectorType *VecTy, unsigned Factor,
5263     ArrayRef<unsigned> Indices, Align Alignment, unsigned AddressSpace,
5264     TTI::TargetCostKind CostKind, bool UseMaskForCond, bool UseMaskForGaps) {
5265   // VecTy for interleave memop is <VF*Factor x Elt>.
5266   // So, for VF=4, Interleave Factor = 3, Element type = i32 we have
5267   // VecTy = <12 x i32>.
5268 
5269   // Calculate the number of memory operations (NumOfMemOps), required
5270   // for load/store the VecTy.
5271   MVT LegalVT = getTLI()->getTypeLegalizationCost(DL, VecTy).second;
5272   unsigned VecTySize = DL.getTypeStoreSize(VecTy);
5273   unsigned LegalVTSize = LegalVT.getStoreSize();
5274   unsigned NumOfMemOps = (VecTySize + LegalVTSize - 1) / LegalVTSize;
5275 
5276   // Get the cost of one memory operation.
5277   auto *SingleMemOpTy = FixedVectorType::get(VecTy->getElementType(),
5278                                              LegalVT.getVectorNumElements());
5279   InstructionCost MemOpCost;
5280   bool UseMaskedMemOp = UseMaskForCond || UseMaskForGaps;
5281   if (UseMaskedMemOp)
5282     MemOpCost = getMaskedMemoryOpCost(Opcode, SingleMemOpTy, Alignment,
5283                                       AddressSpace, CostKind);
5284   else
5285     MemOpCost = getMemoryOpCost(Opcode, SingleMemOpTy, MaybeAlign(Alignment),
5286                                 AddressSpace, CostKind);
5287 
5288   unsigned VF = VecTy->getNumElements() / Factor;
5289   MVT VT = MVT::getVectorVT(MVT::getVT(VecTy->getScalarType()), VF);
5290 
5291   InstructionCost MaskCost;
5292   if (UseMaskedMemOp) {
5293     APInt DemandedLoadStoreElts = APInt::getZero(VecTy->getNumElements());
5294     for (unsigned Index : Indices) {
5295       assert(Index < Factor && "Invalid index for interleaved memory op");
5296       for (unsigned Elm = 0; Elm < VF; Elm++)
5297         DemandedLoadStoreElts.setBit(Index + Elm * Factor);
5298     }
5299 
5300     Type *I1Type = Type::getInt1Ty(VecTy->getContext());
5301 
5302     MaskCost = getReplicationShuffleCost(
5303         I1Type, Factor, VF,
5304         UseMaskForGaps ? DemandedLoadStoreElts
5305                        : APInt::getAllOnes(VecTy->getNumElements()),
5306         CostKind);
5307 
5308     // The Gaps mask is invariant and created outside the loop, therefore the
5309     // cost of creating it is not accounted for here. However if we have both
5310     // a MaskForGaps and some other mask that guards the execution of the
5311     // memory access, we need to account for the cost of And-ing the two masks
5312     // inside the loop.
5313     if (UseMaskForGaps) {
5314       auto *MaskVT = FixedVectorType::get(I1Type, VecTy->getNumElements());
5315       MaskCost += getArithmeticInstrCost(BinaryOperator::And, MaskVT, CostKind);
5316     }
5317   }
5318 
5319   if (Opcode == Instruction::Load) {
5320     // The tables (AVX512InterleavedLoadTbl and AVX512InterleavedStoreTbl)
5321     // contain the cost of the optimized shuffle sequence that the
5322     // X86InterleavedAccess pass will generate.
5323     // The cost of loads and stores are computed separately from the table.
5324 
5325     // X86InterleavedAccess support only the following interleaved-access group.
5326     static const CostTblEntry AVX512InterleavedLoadTbl[] = {
5327         {3, MVT::v16i8, 12}, //(load 48i8 and) deinterleave into 3 x 16i8
5328         {3, MVT::v32i8, 14}, //(load 96i8 and) deinterleave into 3 x 32i8
5329         {3, MVT::v64i8, 22}, //(load 96i8 and) deinterleave into 3 x 32i8
5330     };
5331 
5332     if (const auto *Entry =
5333             CostTableLookup(AVX512InterleavedLoadTbl, Factor, VT))
5334       return MaskCost + NumOfMemOps * MemOpCost + Entry->Cost;
5335     //If an entry does not exist, fallback to the default implementation.
5336 
5337     // Kind of shuffle depends on number of loaded values.
5338     // If we load the entire data in one register, we can use a 1-src shuffle.
5339     // Otherwise, we'll merge 2 sources in each operation.
5340     TTI::ShuffleKind ShuffleKind =
5341         (NumOfMemOps > 1) ? TTI::SK_PermuteTwoSrc : TTI::SK_PermuteSingleSrc;
5342 
5343     InstructionCost ShuffleCost =
5344         getShuffleCost(ShuffleKind, SingleMemOpTy, None, 0, nullptr);
5345 
5346     unsigned NumOfLoadsInInterleaveGrp =
5347         Indices.size() ? Indices.size() : Factor;
5348     auto *ResultTy = FixedVectorType::get(VecTy->getElementType(),
5349                                           VecTy->getNumElements() / Factor);
5350     InstructionCost NumOfResults =
5351         getTLI()->getTypeLegalizationCost(DL, ResultTy).first *
5352         NumOfLoadsInInterleaveGrp;
5353 
5354     // About a half of the loads may be folded in shuffles when we have only
5355     // one result. If we have more than one result, or the loads are masked,
5356     // we do not fold loads at all.
5357     unsigned NumOfUnfoldedLoads =
5358         UseMaskedMemOp || NumOfResults > 1 ? NumOfMemOps : NumOfMemOps / 2;
5359 
5360     // Get a number of shuffle operations per result.
5361     unsigned NumOfShufflesPerResult =
5362         std::max((unsigned)1, (unsigned)(NumOfMemOps - 1));
5363 
5364     // The SK_MergeTwoSrc shuffle clobbers one of src operands.
5365     // When we have more than one destination, we need additional instructions
5366     // to keep sources.
5367     InstructionCost NumOfMoves = 0;
5368     if (NumOfResults > 1 && ShuffleKind == TTI::SK_PermuteTwoSrc)
5369       NumOfMoves = NumOfResults * NumOfShufflesPerResult / 2;
5370 
5371     InstructionCost Cost = NumOfResults * NumOfShufflesPerResult * ShuffleCost +
5372                            MaskCost + NumOfUnfoldedLoads * MemOpCost +
5373                            NumOfMoves;
5374 
5375     return Cost;
5376   }
5377 
5378   // Store.
5379   assert(Opcode == Instruction::Store &&
5380          "Expected Store Instruction at this  point");
5381   // X86InterleavedAccess support only the following interleaved-access group.
5382   static const CostTblEntry AVX512InterleavedStoreTbl[] = {
5383       {3, MVT::v16i8, 12}, // interleave 3 x 16i8 into 48i8 (and store)
5384       {3, MVT::v32i8, 14}, // interleave 3 x 32i8 into 96i8 (and store)
5385       {3, MVT::v64i8, 26}, // interleave 3 x 64i8 into 96i8 (and store)
5386 
5387       {4, MVT::v8i8, 10},  // interleave 4 x 8i8  into 32i8  (and store)
5388       {4, MVT::v16i8, 11}, // interleave 4 x 16i8 into 64i8  (and store)
5389       {4, MVT::v32i8, 14}, // interleave 4 x 32i8 into 128i8 (and store)
5390       {4, MVT::v64i8, 24}  // interleave 4 x 32i8 into 256i8 (and store)
5391   };
5392 
5393   if (const auto *Entry =
5394           CostTableLookup(AVX512InterleavedStoreTbl, Factor, VT))
5395     return MaskCost + NumOfMemOps * MemOpCost + Entry->Cost;
5396   //If an entry does not exist, fallback to the default implementation.
5397 
5398   // There is no strided stores meanwhile. And store can't be folded in
5399   // shuffle.
5400   unsigned NumOfSources = Factor; // The number of values to be merged.
5401   InstructionCost ShuffleCost =
5402       getShuffleCost(TTI::SK_PermuteTwoSrc, SingleMemOpTy, None, 0, nullptr);
5403   unsigned NumOfShufflesPerStore = NumOfSources - 1;
5404 
5405   // The SK_MergeTwoSrc shuffle clobbers one of src operands.
5406   // We need additional instructions to keep sources.
5407   unsigned NumOfMoves = NumOfMemOps * NumOfShufflesPerStore / 2;
5408   InstructionCost Cost =
5409       MaskCost +
5410       NumOfMemOps * (MemOpCost + NumOfShufflesPerStore * ShuffleCost) +
5411       NumOfMoves;
5412   return Cost;
5413 }
5414 
5415 InstructionCost X86TTIImpl::getInterleavedMemoryOpCost(
5416     unsigned Opcode, Type *BaseTy, unsigned Factor, ArrayRef<unsigned> Indices,
5417     Align Alignment, unsigned AddressSpace, TTI::TargetCostKind CostKind,
5418     bool UseMaskForCond, bool UseMaskForGaps) {
5419   auto *VecTy = cast<FixedVectorType>(BaseTy);
5420 
5421   auto isSupportedOnAVX512 = [&](Type *VecTy, bool HasBW) {
5422     Type *EltTy = cast<VectorType>(VecTy)->getElementType();
5423     if (EltTy->isFloatTy() || EltTy->isDoubleTy() || EltTy->isIntegerTy(64) ||
5424         EltTy->isIntegerTy(32) || EltTy->isPointerTy())
5425       return true;
5426     if (EltTy->isIntegerTy(16) || EltTy->isIntegerTy(8) ||
5427         (!ST->useSoftFloat() && ST->hasFP16() && EltTy->isHalfTy()))
5428       return HasBW;
5429     return false;
5430   };
5431   if (ST->hasAVX512() && isSupportedOnAVX512(VecTy, ST->hasBWI()))
5432     return getInterleavedMemoryOpCostAVX512(
5433         Opcode, VecTy, Factor, Indices, Alignment,
5434         AddressSpace, CostKind, UseMaskForCond, UseMaskForGaps);
5435 
5436   if (UseMaskForCond || UseMaskForGaps)
5437     return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices,
5438                                              Alignment, AddressSpace, CostKind,
5439                                              UseMaskForCond, UseMaskForGaps);
5440 
5441   // Get estimation for interleaved load/store operations for SSE-AVX2.
5442   // As opposed to AVX-512, SSE-AVX2 do not have generic shuffles that allow
5443   // computing the cost using a generic formula as a function of generic
5444   // shuffles. We therefore use a lookup table instead, filled according to
5445   // the instruction sequences that codegen currently generates.
5446 
5447   // VecTy for interleave memop is <VF*Factor x Elt>.
5448   // So, for VF=4, Interleave Factor = 3, Element type = i32 we have
5449   // VecTy = <12 x i32>.
5450   MVT LegalVT = getTLI()->getTypeLegalizationCost(DL, VecTy).second;
5451 
5452   // This function can be called with VecTy=<6xi128>, Factor=3, in which case
5453   // the VF=2, while v2i128 is an unsupported MVT vector type
5454   // (see MachineValueType.h::getVectorVT()).
5455   if (!LegalVT.isVector())
5456     return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices,
5457                                              Alignment, AddressSpace, CostKind);
5458 
5459   unsigned VF = VecTy->getNumElements() / Factor;
5460   Type *ScalarTy = VecTy->getElementType();
5461   // Deduplicate entries, model floats/pointers as appropriately-sized integers.
5462   if (!ScalarTy->isIntegerTy())
5463     ScalarTy =
5464         Type::getIntNTy(ScalarTy->getContext(), DL.getTypeSizeInBits(ScalarTy));
5465 
5466   // Get the cost of all the memory operations.
5467   // FIXME: discount dead loads.
5468   InstructionCost MemOpCosts = getMemoryOpCost(
5469       Opcode, VecTy, MaybeAlign(Alignment), AddressSpace, CostKind);
5470 
5471   auto *VT = FixedVectorType::get(ScalarTy, VF);
5472   EVT ETy = TLI->getValueType(DL, VT);
5473   if (!ETy.isSimple())
5474     return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices,
5475                                              Alignment, AddressSpace, CostKind);
5476 
5477   // TODO: Complete for other data-types and strides.
5478   // Each combination of Stride, element bit width and VF results in a different
5479   // sequence; The cost tables are therefore accessed with:
5480   // Factor (stride) and VectorType=VFxiN.
5481   // The Cost accounts only for the shuffle sequence;
5482   // The cost of the loads/stores is accounted for separately.
5483   //
5484   static const CostTblEntry AVX2InterleavedLoadTbl[] = {
5485       {2, MVT::v2i8, 2},  // (load 4i8 and) deinterleave into 2 x 2i8
5486       {2, MVT::v4i8, 2},  // (load 8i8 and) deinterleave into 2 x 4i8
5487       {2, MVT::v8i8, 2},  // (load 16i8 and) deinterleave into 2 x 8i8
5488       {2, MVT::v16i8, 4}, // (load 32i8 and) deinterleave into 2 x 16i8
5489       {2, MVT::v32i8, 6}, // (load 64i8 and) deinterleave into 2 x 32i8
5490 
5491       {2, MVT::v8i16, 6},   // (load 16i16 and) deinterleave into 2 x 8i16
5492       {2, MVT::v16i16, 9},  // (load 32i16 and) deinterleave into 2 x 16i16
5493       {2, MVT::v32i16, 18}, // (load 64i16 and) deinterleave into 2 x 32i16
5494 
5495       {2, MVT::v8i32, 4},   // (load 16i32 and) deinterleave into 2 x 8i32
5496       {2, MVT::v16i32, 8},  // (load 32i32 and) deinterleave into 2 x 16i32
5497       {2, MVT::v32i32, 16}, // (load 64i32 and) deinterleave into 2 x 32i32
5498 
5499       {2, MVT::v4i64, 4},   // (load 8i64 and) deinterleave into 2 x 4i64
5500       {2, MVT::v8i64, 8},   // (load 16i64 and) deinterleave into 2 x 8i64
5501       {2, MVT::v16i64, 16}, // (load 32i64 and) deinterleave into 2 x 16i64
5502       {2, MVT::v32i64, 32}, // (load 64i64 and) deinterleave into 2 x 32i64
5503 
5504       {3, MVT::v2i8, 3},   // (load 6i8 and) deinterleave into 3 x 2i8
5505       {3, MVT::v4i8, 3},   // (load 12i8 and) deinterleave into 3 x 4i8
5506       {3, MVT::v8i8, 6},   // (load 24i8 and) deinterleave into 3 x 8i8
5507       {3, MVT::v16i8, 11}, // (load 48i8 and) deinterleave into 3 x 16i8
5508       {3, MVT::v32i8, 14}, // (load 96i8 and) deinterleave into 3 x 32i8
5509 
5510       {3, MVT::v2i16, 5},   // (load 6i16 and) deinterleave into 3 x 2i16
5511       {3, MVT::v4i16, 7},   // (load 12i16 and) deinterleave into 3 x 4i16
5512       {3, MVT::v8i16, 9},   // (load 24i16 and) deinterleave into 3 x 8i16
5513       {3, MVT::v16i16, 28}, // (load 48i16 and) deinterleave into 3 x 16i16
5514       {3, MVT::v32i16, 56}, // (load 96i16 and) deinterleave into 3 x 32i16
5515 
5516       {3, MVT::v2i32, 3},   // (load 6i32 and) deinterleave into 3 x 2i32
5517       {3, MVT::v4i32, 3},   // (load 12i32 and) deinterleave into 3 x 4i32
5518       {3, MVT::v8i32, 7},   // (load 24i32 and) deinterleave into 3 x 8i32
5519       {3, MVT::v16i32, 14}, // (load 48i32 and) deinterleave into 3 x 16i32
5520       {3, MVT::v32i32, 32}, // (load 96i32 and) deinterleave into 3 x 32i32
5521 
5522       {3, MVT::v2i64, 1},   // (load 6i64 and) deinterleave into 3 x 2i64
5523       {3, MVT::v4i64, 5},   // (load 12i64 and) deinterleave into 3 x 4i64
5524       {3, MVT::v8i64, 10},  // (load 24i64 and) deinterleave into 3 x 8i64
5525       {3, MVT::v16i64, 20}, // (load 48i64 and) deinterleave into 3 x 16i64
5526 
5527       {4, MVT::v2i8, 4},   // (load 8i8 and) deinterleave into 4 x 2i8
5528       {4, MVT::v4i8, 4},   // (load 16i8 and) deinterleave into 4 x 4i8
5529       {4, MVT::v8i8, 12},  // (load 32i8 and) deinterleave into 4 x 8i8
5530       {4, MVT::v16i8, 24}, // (load 64i8 and) deinterleave into 4 x 16i8
5531       {4, MVT::v32i8, 56}, // (load 128i8 and) deinterleave into 4 x 32i8
5532 
5533       {4, MVT::v2i16, 6},    // (load 8i16 and) deinterleave into 4 x 2i16
5534       {4, MVT::v4i16, 17},   // (load 16i16 and) deinterleave into 4 x 4i16
5535       {4, MVT::v8i16, 33},   // (load 32i16 and) deinterleave into 4 x 8i16
5536       {4, MVT::v16i16, 75},  // (load 64i16 and) deinterleave into 4 x 16i16
5537       {4, MVT::v32i16, 150}, // (load 128i16 and) deinterleave into 4 x 32i16
5538 
5539       {4, MVT::v2i32, 4},   // (load 8i32 and) deinterleave into 4 x 2i32
5540       {4, MVT::v4i32, 8},   // (load 16i32 and) deinterleave into 4 x 4i32
5541       {4, MVT::v8i32, 16},  // (load 32i32 and) deinterleave into 4 x 8i32
5542       {4, MVT::v16i32, 32}, // (load 64i32 and) deinterleave into 4 x 16i32
5543       {4, MVT::v32i32, 68}, // (load 128i32 and) deinterleave into 4 x 32i32
5544 
5545       {4, MVT::v2i64, 6},  // (load 8i64 and) deinterleave into 4 x 2i64
5546       {4, MVT::v4i64, 8},  // (load 16i64 and) deinterleave into 4 x 4i64
5547       {4, MVT::v8i64, 20}, // (load 32i64 and) deinterleave into 4 x 8i64
5548       {4, MVT::v16i64, 40}, // (load 64i64 and) deinterleave into 4 x 16i64
5549 
5550       {6, MVT::v2i8, 6},   // (load 12i8 and) deinterleave into 6 x 2i8
5551       {6, MVT::v4i8, 14},  // (load 24i8 and) deinterleave into 6 x 4i8
5552       {6, MVT::v8i8, 18},  // (load 48i8 and) deinterleave into 6 x 8i8
5553       {6, MVT::v16i8, 43}, // (load 96i8 and) deinterleave into 6 x 16i8
5554       {6, MVT::v32i8, 82}, // (load 192i8 and) deinterleave into 6 x 32i8
5555 
5556       {6, MVT::v2i16, 13},   // (load 12i16 and) deinterleave into 6 x 2i16
5557       {6, MVT::v4i16, 9},    // (load 24i16 and) deinterleave into 6 x 4i16
5558       {6, MVT::v8i16, 39},   // (load 48i16 and) deinterleave into 6 x 8i16
5559       {6, MVT::v16i16, 106}, // (load 96i16 and) deinterleave into 6 x 16i16
5560       {6, MVT::v32i16, 212}, // (load 192i16 and) deinterleave into 6 x 32i16
5561 
5562       {6, MVT::v2i32, 6},   // (load 12i32 and) deinterleave into 6 x 2i32
5563       {6, MVT::v4i32, 15},  // (load 24i32 and) deinterleave into 6 x 4i32
5564       {6, MVT::v8i32, 31},  // (load 48i32 and) deinterleave into 6 x 8i32
5565       {6, MVT::v16i32, 64}, // (load 96i32 and) deinterleave into 6 x 16i32
5566 
5567       {6, MVT::v2i64, 6},  // (load 12i64 and) deinterleave into 6 x 2i64
5568       {6, MVT::v4i64, 18}, // (load 24i64 and) deinterleave into 6 x 4i64
5569       {6, MVT::v8i64, 36}, // (load 48i64 and) deinterleave into 6 x 8i64
5570 
5571       {8, MVT::v8i32, 40} // (load 64i32 and) deinterleave into 8 x 8i32
5572   };
5573 
5574   static const CostTblEntry SSSE3InterleavedLoadTbl[] = {
5575       {2, MVT::v4i16, 2},   // (load 8i16 and) deinterleave into 2 x 4i16
5576   };
5577 
5578   static const CostTblEntry SSE2InterleavedLoadTbl[] = {
5579       {2, MVT::v2i16, 2},   // (load 4i16 and) deinterleave into 2 x 2i16
5580       {2, MVT::v4i16, 7},   // (load 8i16 and) deinterleave into 2 x 4i16
5581 
5582       {2, MVT::v2i32, 2},   // (load 4i32 and) deinterleave into 2 x 2i32
5583       {2, MVT::v4i32, 2},   // (load 8i32 and) deinterleave into 2 x 4i32
5584 
5585       {2, MVT::v2i64, 2},   // (load 4i64 and) deinterleave into 2 x 2i64
5586   };
5587 
5588   static const CostTblEntry AVX2InterleavedStoreTbl[] = {
5589       {2, MVT::v16i8, 3}, // interleave 2 x 16i8 into 32i8 (and store)
5590       {2, MVT::v32i8, 4}, // interleave 2 x 32i8 into 64i8 (and store)
5591 
5592       {2, MVT::v8i16, 3},  // interleave 2 x 8i16 into 16i16 (and store)
5593       {2, MVT::v16i16, 4}, // interleave 2 x 16i16 into 32i16 (and store)
5594       {2, MVT::v32i16, 8}, // interleave 2 x 32i16 into 64i16 (and store)
5595 
5596       {2, MVT::v4i32, 2},   // interleave 2 x 4i32 into 8i32 (and store)
5597       {2, MVT::v8i32, 4},   // interleave 2 x 8i32 into 16i32 (and store)
5598       {2, MVT::v16i32, 8},  // interleave 2 x 16i32 into 32i32 (and store)
5599       {2, MVT::v32i32, 16}, // interleave 2 x 32i32 into 64i32 (and store)
5600 
5601       {2, MVT::v2i64, 2},   // interleave 2 x 2i64 into 4i64 (and store)
5602       {2, MVT::v4i64, 4},   // interleave 2 x 4i64 into 8i64 (and store)
5603       {2, MVT::v8i64, 8},   // interleave 2 x 8i64 into 16i64 (and store)
5604       {2, MVT::v16i64, 16}, // interleave 2 x 16i64 into 32i64 (and store)
5605       {2, MVT::v32i64, 32}, // interleave 2 x 32i64 into 64i64 (and store)
5606 
5607       {3, MVT::v2i8, 4},   // interleave 3 x 2i8 into 6i8 (and store)
5608       {3, MVT::v4i8, 4},   // interleave 3 x 4i8 into 12i8 (and store)
5609       {3, MVT::v8i8, 6},   // interleave 3 x 8i8 into 24i8 (and store)
5610       {3, MVT::v16i8, 11}, // interleave 3 x 16i8 into 48i8 (and store)
5611       {3, MVT::v32i8, 13}, // interleave 3 x 32i8 into 96i8 (and store)
5612 
5613       {3, MVT::v2i16, 4},   // interleave 3 x 2i16 into 6i16 (and store)
5614       {3, MVT::v4i16, 6},   // interleave 3 x 4i16 into 12i16 (and store)
5615       {3, MVT::v8i16, 12},  // interleave 3 x 8i16 into 24i16 (and store)
5616       {3, MVT::v16i16, 27}, // interleave 3 x 16i16 into 48i16 (and store)
5617       {3, MVT::v32i16, 54}, // interleave 3 x 32i16 into 96i16 (and store)
5618 
5619       {3, MVT::v2i32, 4},   // interleave 3 x 2i32 into 6i32 (and store)
5620       {3, MVT::v4i32, 5},   // interleave 3 x 4i32 into 12i32 (and store)
5621       {3, MVT::v8i32, 11},  // interleave 3 x 8i32 into 24i32 (and store)
5622       {3, MVT::v16i32, 22}, // interleave 3 x 16i32 into 48i32 (and store)
5623       {3, MVT::v32i32, 48}, // interleave 3 x 32i32 into 96i32 (and store)
5624 
5625       {3, MVT::v2i64, 4},   // interleave 3 x 2i64 into 6i64 (and store)
5626       {3, MVT::v4i64, 6},   // interleave 3 x 4i64 into 12i64 (and store)
5627       {3, MVT::v8i64, 12},  // interleave 3 x 8i64 into 24i64 (and store)
5628       {3, MVT::v16i64, 24}, // interleave 3 x 16i64 into 48i64 (and store)
5629 
5630       {4, MVT::v2i8, 4},   // interleave 4 x 2i8 into 8i8 (and store)
5631       {4, MVT::v4i8, 4},   // interleave 4 x 4i8 into 16i8 (and store)
5632       {4, MVT::v8i8, 4},   // interleave 4 x 8i8 into 32i8 (and store)
5633       {4, MVT::v16i8, 8},  // interleave 4 x 16i8 into 64i8 (and store)
5634       {4, MVT::v32i8, 12}, // interleave 4 x 32i8 into 128i8 (and store)
5635 
5636       {4, MVT::v2i16, 2},   // interleave 4 x 2i16 into 8i16 (and store)
5637       {4, MVT::v4i16, 6},   // interleave 4 x 4i16 into 16i16 (and store)
5638       {4, MVT::v8i16, 10},  // interleave 4 x 8i16 into 32i16 (and store)
5639       {4, MVT::v16i16, 32}, // interleave 4 x 16i16 into 64i16 (and store)
5640       {4, MVT::v32i16, 64}, // interleave 4 x 32i16 into 128i16 (and store)
5641 
5642       {4, MVT::v2i32, 5},   // interleave 4 x 2i32 into 8i32 (and store)
5643       {4, MVT::v4i32, 6},   // interleave 4 x 4i32 into 16i32 (and store)
5644       {4, MVT::v8i32, 16},  // interleave 4 x 8i32 into 32i32 (and store)
5645       {4, MVT::v16i32, 32}, // interleave 4 x 16i32 into 64i32 (and store)
5646       {4, MVT::v32i32, 64}, // interleave 4 x 32i32 into 128i32 (and store)
5647 
5648       {4, MVT::v2i64, 6},  // interleave 4 x 2i64 into 8i64 (and store)
5649       {4, MVT::v4i64, 8},  // interleave 4 x 4i64 into 16i64 (and store)
5650       {4, MVT::v8i64, 20}, // interleave 4 x 8i64 into 32i64 (and store)
5651       {4, MVT::v16i64, 40}, // interleave 4 x 16i64 into 64i64 (and store)
5652 
5653       {6, MVT::v2i8, 7},   // interleave 6 x 2i8 into 12i8 (and store)
5654       {6, MVT::v4i8, 9},   // interleave 6 x 4i8 into 24i8 (and store)
5655       {6, MVT::v8i8, 16},  // interleave 6 x 8i8 into 48i8 (and store)
5656       {6, MVT::v16i8, 27}, // interleave 6 x 16i8 into 96i8 (and store)
5657       {6, MVT::v32i8, 90}, // interleave 6 x 32i8 into 192i8 (and store)
5658 
5659       {6, MVT::v2i16, 10},  // interleave 6 x 2i16 into 12i16 (and store)
5660       {6, MVT::v4i16, 15},  // interleave 6 x 4i16 into 24i16 (and store)
5661       {6, MVT::v8i16, 21},  // interleave 6 x 8i16 into 48i16 (and store)
5662       {6, MVT::v16i16, 58}, // interleave 6 x 16i16 into 96i16 (and store)
5663       {6, MVT::v32i16, 90}, // interleave 6 x 32i16 into 192i16 (and store)
5664 
5665       {6, MVT::v2i32, 9},   // interleave 6 x 2i32 into 12i32 (and store)
5666       {6, MVT::v4i32, 12},  // interleave 6 x 4i32 into 24i32 (and store)
5667       {6, MVT::v8i32, 33},  // interleave 6 x 8i32 into 48i32 (and store)
5668       {6, MVT::v16i32, 66}, // interleave 6 x 16i32 into 96i32 (and store)
5669 
5670       {6, MVT::v2i64, 8},  // interleave 6 x 2i64 into 12i64 (and store)
5671       {6, MVT::v4i64, 15}, // interleave 6 x 4i64 into 24i64 (and store)
5672       {6, MVT::v8i64, 30}, // interleave 6 x 8i64 into 48i64 (and store)
5673   };
5674 
5675   static const CostTblEntry SSE2InterleavedStoreTbl[] = {
5676       {2, MVT::v2i8, 1},   // interleave 2 x 2i8 into 4i8 (and store)
5677       {2, MVT::v4i8, 1},   // interleave 2 x 4i8 into 8i8 (and store)
5678       {2, MVT::v8i8, 1},   // interleave 2 x 8i8 into 16i8 (and store)
5679 
5680       {2, MVT::v2i16, 1},  // interleave 2 x 2i16 into 4i16 (and store)
5681       {2, MVT::v4i16, 1},  // interleave 2 x 4i16 into 8i16 (and store)
5682 
5683       {2, MVT::v2i32, 1},  // interleave 2 x 2i32 into 4i32 (and store)
5684   };
5685 
5686   if (Opcode == Instruction::Load) {
5687     auto GetDiscountedCost = [Factor, NumMembers = Indices.size(),
5688                               MemOpCosts](const CostTblEntry *Entry) {
5689       // NOTE: this is just an approximation!
5690       //       It can over/under -estimate the cost!
5691       return MemOpCosts + divideCeil(NumMembers * Entry->Cost, Factor);
5692     };
5693 
5694     if (ST->hasAVX2())
5695       if (const auto *Entry = CostTableLookup(AVX2InterleavedLoadTbl, Factor,
5696                                               ETy.getSimpleVT()))
5697         return GetDiscountedCost(Entry);
5698 
5699     if (ST->hasSSSE3())
5700       if (const auto *Entry = CostTableLookup(SSSE3InterleavedLoadTbl, Factor,
5701                                               ETy.getSimpleVT()))
5702         return GetDiscountedCost(Entry);
5703 
5704     if (ST->hasSSE2())
5705       if (const auto *Entry = CostTableLookup(SSE2InterleavedLoadTbl, Factor,
5706                                               ETy.getSimpleVT()))
5707         return GetDiscountedCost(Entry);
5708   } else {
5709     assert(Opcode == Instruction::Store &&
5710            "Expected Store Instruction at this point");
5711     assert((!Indices.size() || Indices.size() == Factor) &&
5712            "Interleaved store only supports fully-interleaved groups.");
5713     if (ST->hasAVX2())
5714       if (const auto *Entry = CostTableLookup(AVX2InterleavedStoreTbl, Factor,
5715                                               ETy.getSimpleVT()))
5716         return MemOpCosts + Entry->Cost;
5717 
5718     if (ST->hasSSE2())
5719       if (const auto *Entry = CostTableLookup(SSE2InterleavedStoreTbl, Factor,
5720                                               ETy.getSimpleVT()))
5721         return MemOpCosts + Entry->Cost;
5722   }
5723 
5724   return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices,
5725                                            Alignment, AddressSpace, CostKind,
5726                                            UseMaskForCond, UseMaskForGaps);
5727 }
5728