1 //===-- X86TargetTransformInfo.cpp - X86 specific TTI pass ----------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 /// \file
10 /// This file implements a TargetTransformInfo analysis pass specific to the
11 /// X86 target machine. It uses the target's detailed information to provide
12 /// more precise answers to certain TTI queries, while letting the target
13 /// independent and default TTI implementations handle the rest.
14 ///
15 //===----------------------------------------------------------------------===//
16 
17 #include "X86TargetTransformInfo.h"
18 #include "llvm/Analysis/TargetTransformInfo.h"
19 #include "llvm/CodeGen/BasicTTIImpl.h"
20 #include "llvm/IR/IntrinsicInst.h"
21 #include "llvm/Support/Debug.h"
22 #include "llvm/Target/CostTable.h"
23 #include "llvm/Target/TargetLowering.h"
24 
25 using namespace llvm;
26 
27 #define DEBUG_TYPE "x86tti"
28 
29 //===----------------------------------------------------------------------===//
30 //
31 // X86 cost model.
32 //
33 //===----------------------------------------------------------------------===//
34 
35 TargetTransformInfo::PopcntSupportKind
36 X86TTIImpl::getPopcntSupport(unsigned TyWidth) {
37   assert(isPowerOf2_32(TyWidth) && "Ty width must be power of 2");
38   // TODO: Currently the __builtin_popcount() implementation using SSE3
39   //   instructions is inefficient. Once the problem is fixed, we should
40   //   call ST->hasSSE3() instead of ST->hasPOPCNT().
41   return ST->hasPOPCNT() ? TTI::PSK_FastHardware : TTI::PSK_Software;
42 }
43 
44 unsigned X86TTIImpl::getNumberOfRegisters(bool Vector) {
45   if (Vector && !ST->hasSSE1())
46     return 0;
47 
48   if (ST->is64Bit()) {
49     if (Vector && ST->hasAVX512())
50       return 32;
51     return 16;
52   }
53   return 8;
54 }
55 
56 unsigned X86TTIImpl::getRegisterBitWidth(bool Vector) {
57   if (Vector) {
58     if (ST->hasAVX512()) return 512;
59     if (ST->hasAVX()) return 256;
60     if (ST->hasSSE1()) return 128;
61     return 0;
62   }
63 
64   if (ST->is64Bit())
65     return 64;
66 
67   return 32;
68 }
69 
70 unsigned X86TTIImpl::getMaxInterleaveFactor(unsigned VF) {
71   // If the loop will not be vectorized, don't interleave the loop.
72   // Let regular unroll to unroll the loop, which saves the overflow
73   // check and memory check cost.
74   if (VF == 1)
75     return 1;
76 
77   if (ST->isAtom())
78     return 1;
79 
80   // Sandybridge and Haswell have multiple execution ports and pipelined
81   // vector units.
82   if (ST->hasAVX())
83     return 4;
84 
85   return 2;
86 }
87 
88 int X86TTIImpl::getArithmeticInstrCost(
89     unsigned Opcode, Type *Ty, TTI::OperandValueKind Op1Info,
90     TTI::OperandValueKind Op2Info, TTI::OperandValueProperties Opd1PropInfo,
91     TTI::OperandValueProperties Opd2PropInfo) {
92   // Legalize the type.
93   std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Ty);
94 
95   int ISD = TLI->InstructionOpcodeToISD(Opcode);
96   assert(ISD && "Invalid opcode");
97 
98   if (ISD == ISD::SDIV &&
99       Op2Info == TargetTransformInfo::OK_UniformConstantValue &&
100       Opd2PropInfo == TargetTransformInfo::OP_PowerOf2) {
101     // On X86, vector signed division by constants power-of-two are
102     // normally expanded to the sequence SRA + SRL + ADD + SRA.
103     // The OperandValue properties many not be same as that of previous
104     // operation;conservatively assume OP_None.
105     int Cost = 2 * getArithmeticInstrCost(Instruction::AShr, Ty, Op1Info,
106                                           Op2Info, TargetTransformInfo::OP_None,
107                                           TargetTransformInfo::OP_None);
108     Cost += getArithmeticInstrCost(Instruction::LShr, Ty, Op1Info, Op2Info,
109                                    TargetTransformInfo::OP_None,
110                                    TargetTransformInfo::OP_None);
111     Cost += getArithmeticInstrCost(Instruction::Add, Ty, Op1Info, Op2Info,
112                                    TargetTransformInfo::OP_None,
113                                    TargetTransformInfo::OP_None);
114 
115     return Cost;
116   }
117 
118   static const CostTblEntry AVX2UniformConstCostTable[] = {
119     { ISD::SRA,  MVT::v4i64,   4 }, // 2 x psrad + shuffle.
120 
121     { ISD::SDIV, MVT::v16i16,  6 }, // vpmulhw sequence
122     { ISD::UDIV, MVT::v16i16,  6 }, // vpmulhuw sequence
123     { ISD::SDIV, MVT::v8i32,  15 }, // vpmuldq sequence
124     { ISD::UDIV, MVT::v8i32,  15 }, // vpmuludq sequence
125   };
126 
127   if (Op2Info == TargetTransformInfo::OK_UniformConstantValue &&
128       ST->hasAVX2()) {
129     if (const auto *Entry = CostTableLookup(AVX2UniformConstCostTable, ISD,
130                                             LT.second))
131       return LT.first * Entry->Cost;
132   }
133 
134   static const CostTblEntry AVX512CostTable[] = {
135     { ISD::SHL,     MVT::v16i32,    1 },
136     { ISD::SRL,     MVT::v16i32,    1 },
137     { ISD::SRA,     MVT::v16i32,    1 },
138     { ISD::SHL,     MVT::v8i64,    1 },
139     { ISD::SRL,     MVT::v8i64,    1 },
140     { ISD::SRA,     MVT::v8i64,    1 },
141   };
142 
143   if (ST->hasAVX512()) {
144     if (const auto *Entry = CostTableLookup(AVX512CostTable, ISD, LT.second))
145       return LT.first * Entry->Cost;
146   }
147 
148   static const CostTblEntry AVX2CostTable[] = {
149     // Shifts on v4i64/v8i32 on AVX2 is legal even though we declare to
150     // customize them to detect the cases where shift amount is a scalar one.
151     { ISD::SHL,     MVT::v4i32,    1 },
152     { ISD::SRL,     MVT::v4i32,    1 },
153     { ISD::SRA,     MVT::v4i32,    1 },
154     { ISD::SHL,     MVT::v8i32,    1 },
155     { ISD::SRL,     MVT::v8i32,    1 },
156     { ISD::SRA,     MVT::v8i32,    1 },
157     { ISD::SHL,     MVT::v2i64,    1 },
158     { ISD::SRL,     MVT::v2i64,    1 },
159     { ISD::SHL,     MVT::v4i64,    1 },
160     { ISD::SRL,     MVT::v4i64,    1 },
161   };
162 
163   // Look for AVX2 lowering tricks.
164   if (ST->hasAVX2()) {
165     if (ISD == ISD::SHL && LT.second == MVT::v16i16 &&
166         (Op2Info == TargetTransformInfo::OK_UniformConstantValue ||
167          Op2Info == TargetTransformInfo::OK_NonUniformConstantValue))
168       // On AVX2, a packed v16i16 shift left by a constant build_vector
169       // is lowered into a vector multiply (vpmullw).
170       return LT.first;
171 
172     if (const auto *Entry = CostTableLookup(AVX2CostTable, ISD, LT.second))
173       return LT.first * Entry->Cost;
174   }
175 
176   static const CostTblEntry XOPCostTable[] = {
177     // 128bit shifts take 1cy, but right shifts require negation beforehand.
178     { ISD::SHL,     MVT::v16i8,    1 },
179     { ISD::SRL,     MVT::v16i8,    2 },
180     { ISD::SRA,     MVT::v16i8,    2 },
181     { ISD::SHL,     MVT::v8i16,    1 },
182     { ISD::SRL,     MVT::v8i16,    2 },
183     { ISD::SRA,     MVT::v8i16,    2 },
184     { ISD::SHL,     MVT::v4i32,    1 },
185     { ISD::SRL,     MVT::v4i32,    2 },
186     { ISD::SRA,     MVT::v4i32,    2 },
187     { ISD::SHL,     MVT::v2i64,    1 },
188     { ISD::SRL,     MVT::v2i64,    2 },
189     { ISD::SRA,     MVT::v2i64,    2 },
190     // 256bit shifts require splitting if AVX2 didn't catch them above.
191     { ISD::SHL,     MVT::v32i8,    2 },
192     { ISD::SRL,     MVT::v32i8,    4 },
193     { ISD::SRA,     MVT::v32i8,    4 },
194     { ISD::SHL,     MVT::v16i16,   2 },
195     { ISD::SRL,     MVT::v16i16,   4 },
196     { ISD::SRA,     MVT::v16i16,   4 },
197     { ISD::SHL,     MVT::v8i32,    2 },
198     { ISD::SRL,     MVT::v8i32,    4 },
199     { ISD::SRA,     MVT::v8i32,    4 },
200     { ISD::SHL,     MVT::v4i64,    2 },
201     { ISD::SRL,     MVT::v4i64,    4 },
202     { ISD::SRA,     MVT::v4i64,    4 },
203   };
204 
205   // Look for XOP lowering tricks.
206   if (ST->hasXOP()) {
207     if (const auto *Entry = CostTableLookup(XOPCostTable, ISD, LT.second))
208       return LT.first * Entry->Cost;
209   }
210 
211   static const CostTblEntry AVX2CustomCostTable[] = {
212     { ISD::SHL,  MVT::v32i8,      11 }, // vpblendvb sequence.
213     { ISD::SHL,  MVT::v16i16,     10 }, // extend/vpsrlvd/pack sequence.
214 
215     { ISD::SRL,  MVT::v32i8,      11 }, // vpblendvb sequence.
216     { ISD::SRL,  MVT::v16i16,     10 }, // extend/vpsrlvd/pack sequence.
217 
218     { ISD::SRA,  MVT::v32i8,      24 }, // vpblendvb sequence.
219     { ISD::SRA,  MVT::v16i16,     10 }, // extend/vpsravd/pack sequence.
220     { ISD::SRA,  MVT::v2i64,       4 }, // srl/xor/sub sequence.
221     { ISD::SRA,  MVT::v4i64,       4 }, // srl/xor/sub sequence.
222 
223     // Vectorizing division is a bad idea. See the SSE2 table for more comments.
224     { ISD::SDIV,  MVT::v32i8,  32*20 },
225     { ISD::SDIV,  MVT::v16i16, 16*20 },
226     { ISD::SDIV,  MVT::v8i32,  8*20 },
227     { ISD::SDIV,  MVT::v4i64,  4*20 },
228     { ISD::UDIV,  MVT::v32i8,  32*20 },
229     { ISD::UDIV,  MVT::v16i16, 16*20 },
230     { ISD::UDIV,  MVT::v8i32,  8*20 },
231     { ISD::UDIV,  MVT::v4i64,  4*20 },
232   };
233 
234   // Look for AVX2 lowering tricks for custom cases.
235   if (ST->hasAVX2()) {
236     if (const auto *Entry = CostTableLookup(AVX2CustomCostTable, ISD,
237                                             LT.second))
238       return LT.first * Entry->Cost;
239   }
240 
241   static const CostTblEntry
242   SSE2UniformConstCostTable[] = {
243     // We don't correctly identify costs of casts because they are marked as
244     // custom.
245     // Constant splats are cheaper for the following instructions.
246     { ISD::SHL,  MVT::v16i8,  1 }, // psllw.
247     { ISD::SHL,  MVT::v32i8,  2 }, // psllw.
248     { ISD::SHL,  MVT::v8i16,  1 }, // psllw.
249     { ISD::SHL,  MVT::v16i16, 2 }, // psllw.
250     { ISD::SHL,  MVT::v4i32,  1 }, // pslld
251     { ISD::SHL,  MVT::v8i32,  2 }, // pslld
252     { ISD::SHL,  MVT::v2i64,  1 }, // psllq.
253     { ISD::SHL,  MVT::v4i64,  2 }, // psllq.
254 
255     { ISD::SRL,  MVT::v16i8,  1 }, // psrlw.
256     { ISD::SRL,  MVT::v32i8,  2 }, // psrlw.
257     { ISD::SRL,  MVT::v8i16,  1 }, // psrlw.
258     { ISD::SRL,  MVT::v16i16, 2 }, // psrlw.
259     { ISD::SRL,  MVT::v4i32,  1 }, // psrld.
260     { ISD::SRL,  MVT::v8i32,  2 }, // psrld.
261     { ISD::SRL,  MVT::v2i64,  1 }, // psrlq.
262     { ISD::SRL,  MVT::v4i64,  2 }, // psrlq.
263 
264     { ISD::SRA,  MVT::v16i8,  4 }, // psrlw, pand, pxor, psubb.
265     { ISD::SRA,  MVT::v32i8,  8 }, // psrlw, pand, pxor, psubb.
266     { ISD::SRA,  MVT::v8i16,  1 }, // psraw.
267     { ISD::SRA,  MVT::v16i16, 2 }, // psraw.
268     { ISD::SRA,  MVT::v4i32,  1 }, // psrad.
269     { ISD::SRA,  MVT::v8i32,  2 }, // psrad.
270     { ISD::SRA,  MVT::v2i64,  4 }, // 2 x psrad + shuffle.
271     { ISD::SRA,  MVT::v4i64,  8 }, // 2 x psrad + shuffle.
272 
273     { ISD::SDIV, MVT::v8i16,  6 }, // pmulhw sequence
274     { ISD::UDIV, MVT::v8i16,  6 }, // pmulhuw sequence
275     { ISD::SDIV, MVT::v4i32, 19 }, // pmuludq sequence
276     { ISD::UDIV, MVT::v4i32, 15 }, // pmuludq sequence
277   };
278 
279   if (Op2Info == TargetTransformInfo::OK_UniformConstantValue &&
280       ST->hasSSE2()) {
281     // pmuldq sequence.
282     if (ISD == ISD::SDIV && LT.second == MVT::v4i32 && ST->hasSSE41())
283       return LT.first * 15;
284 
285     if (const auto *Entry = CostTableLookup(SSE2UniformConstCostTable, ISD,
286                                             LT.second))
287       return LT.first * Entry->Cost;
288   }
289 
290   if (ISD == ISD::SHL &&
291       Op2Info == TargetTransformInfo::OK_NonUniformConstantValue) {
292     MVT VT = LT.second;
293     // Vector shift left by non uniform constant can be lowered
294     // into vector multiply (pmullw/pmulld).
295     if ((VT == MVT::v8i16 && ST->hasSSE2()) ||
296         (VT == MVT::v4i32 && ST->hasSSE41()))
297       return LT.first;
298 
299     // v16i16 and v8i32 shifts by non-uniform constants are lowered into a
300     // sequence of extract + two vector multiply + insert.
301     if ((VT == MVT::v8i32 || VT == MVT::v16i16) &&
302        (ST->hasAVX() && !ST->hasAVX2()))
303       ISD = ISD::MUL;
304 
305     // A vector shift left by non uniform constant is converted
306     // into a vector multiply; the new multiply is eventually
307     // lowered into a sequence of shuffles and 2 x pmuludq.
308     if (VT == MVT::v4i32 && ST->hasSSE2())
309       ISD = ISD::MUL;
310   }
311 
312   static const CostTblEntry SSE2CostTable[] = {
313     // We don't correctly identify costs of casts because they are marked as
314     // custom.
315     // For some cases, where the shift amount is a scalar we would be able
316     // to generate better code. Unfortunately, when this is the case the value
317     // (the splat) will get hoisted out of the loop, thereby making it invisible
318     // to ISel. The cost model must return worst case assumptions because it is
319     // used for vectorization and we don't want to make vectorized code worse
320     // than scalar code.
321     { ISD::SHL,  MVT::v16i8,    26 }, // cmpgtb sequence.
322     { ISD::SHL,  MVT::v32i8,  2*26 }, // cmpgtb sequence.
323     { ISD::SHL,  MVT::v8i16,    32 }, // cmpgtb sequence.
324     { ISD::SHL,  MVT::v16i16, 2*32 }, // cmpgtb sequence.
325     { ISD::SHL,  MVT::v4i32,   2*5 }, // We optimized this using mul.
326     { ISD::SHL,  MVT::v8i32, 2*2*5 }, // We optimized this using mul.
327     { ISD::SHL,  MVT::v2i64,     4 }, // splat+shuffle sequence.
328     { ISD::SHL,  MVT::v4i64,   2*4 }, // splat+shuffle sequence.
329 
330     { ISD::SRL,  MVT::v16i8,    26 }, // cmpgtb sequence.
331     { ISD::SRL,  MVT::v32i8,  2*26 }, // cmpgtb sequence.
332     { ISD::SRL,  MVT::v8i16,    32 }, // cmpgtb sequence.
333     { ISD::SRL,  MVT::v16i16, 2*32 }, // cmpgtb sequence.
334     { ISD::SRL,  MVT::v4i32,    16 }, // Shift each lane + blend.
335     { ISD::SRL,  MVT::v8i32,  2*16 }, // Shift each lane + blend.
336     { ISD::SRL,  MVT::v2i64,     4 }, // splat+shuffle sequence.
337     { ISD::SRL,  MVT::v4i64,   2*4 }, // splat+shuffle sequence.
338 
339     { ISD::SRA,  MVT::v16i8,    54 }, // unpacked cmpgtb sequence.
340     { ISD::SRA,  MVT::v32i8,  2*54 }, // unpacked cmpgtb sequence.
341     { ISD::SRA,  MVT::v8i16,    32 }, // cmpgtb sequence.
342     { ISD::SRA,  MVT::v16i16, 2*32 }, // cmpgtb sequence.
343     { ISD::SRA,  MVT::v4i32,    16 }, // Shift each lane + blend.
344     { ISD::SRA,  MVT::v8i32,  2*16 }, // Shift each lane + blend.
345     { ISD::SRA,  MVT::v2i64,    12 }, // srl/xor/sub sequence.
346     { ISD::SRA,  MVT::v4i64,  2*12 }, // srl/xor/sub sequence.
347 
348     // It is not a good idea to vectorize division. We have to scalarize it and
349     // in the process we will often end up having to spilling regular
350     // registers. The overhead of division is going to dominate most kernels
351     // anyways so try hard to prevent vectorization of division - it is
352     // generally a bad idea. Assume somewhat arbitrarily that we have to be able
353     // to hide "20 cycles" for each lane.
354     { ISD::SDIV,  MVT::v16i8,  16*20 },
355     { ISD::SDIV,  MVT::v8i16,  8*20 },
356     { ISD::SDIV,  MVT::v4i32,  4*20 },
357     { ISD::SDIV,  MVT::v2i64,  2*20 },
358     { ISD::UDIV,  MVT::v16i8,  16*20 },
359     { ISD::UDIV,  MVT::v8i16,  8*20 },
360     { ISD::UDIV,  MVT::v4i32,  4*20 },
361     { ISD::UDIV,  MVT::v2i64,  2*20 },
362   };
363 
364   if (ST->hasSSE2()) {
365     if (const auto *Entry = CostTableLookup(SSE2CostTable, ISD, LT.second))
366       return LT.first * Entry->Cost;
367   }
368 
369   static const CostTblEntry AVX1CostTable[] = {
370     // We don't have to scalarize unsupported ops. We can issue two half-sized
371     // operations and we only need to extract the upper YMM half.
372     // Two ops + 1 extract + 1 insert = 4.
373     { ISD::MUL,     MVT::v16i16,   4 },
374     { ISD::MUL,     MVT::v8i32,    4 },
375     { ISD::SUB,     MVT::v8i32,    4 },
376     { ISD::ADD,     MVT::v8i32,    4 },
377     { ISD::SUB,     MVT::v4i64,    4 },
378     { ISD::ADD,     MVT::v4i64,    4 },
379     // A v4i64 multiply is custom lowered as two split v2i64 vectors that then
380     // are lowered as a series of long multiplies(3), shifts(4) and adds(2)
381     // Because we believe v4i64 to be a legal type, we must also include the
382     // split factor of two in the cost table. Therefore, the cost here is 18
383     // instead of 9.
384     { ISD::MUL,     MVT::v4i64,    18 },
385   };
386 
387   // Look for AVX1 lowering tricks.
388   if (ST->hasAVX() && !ST->hasAVX2()) {
389     MVT VT = LT.second;
390 
391     if (const auto *Entry = CostTableLookup(AVX1CostTable, ISD, VT))
392       return LT.first * Entry->Cost;
393   }
394 
395   // Custom lowering of vectors.
396   static const CostTblEntry CustomLowered[] = {
397     // A v2i64/v4i64 and multiply is custom lowered as a series of long
398     // multiplies(3), shifts(4) and adds(2).
399     { ISD::MUL,     MVT::v2i64,    9 },
400     { ISD::MUL,     MVT::v4i64,    9 },
401   };
402   if (const auto *Entry = CostTableLookup(CustomLowered, ISD, LT.second))
403     return LT.first * Entry->Cost;
404 
405   // Special lowering of v4i32 mul on sse2, sse3: Lower v4i32 mul as 2x shuffle,
406   // 2x pmuludq, 2x shuffle.
407   if (ISD == ISD::MUL && LT.second == MVT::v4i32 && ST->hasSSE2() &&
408       !ST->hasSSE41())
409     return LT.first * 6;
410 
411   // Fallback to the default implementation.
412   return BaseT::getArithmeticInstrCost(Opcode, Ty, Op1Info, Op2Info);
413 }
414 
415 int X86TTIImpl::getShuffleCost(TTI::ShuffleKind Kind, Type *Tp, int Index,
416                                Type *SubTp) {
417   // We only estimate the cost of reverse and alternate shuffles.
418   if (Kind != TTI::SK_Reverse && Kind != TTI::SK_Alternate)
419     return BaseT::getShuffleCost(Kind, Tp, Index, SubTp);
420 
421   if (Kind == TTI::SK_Reverse) {
422     std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Tp);
423     int Cost = 1;
424     if (LT.second.getSizeInBits() > 128)
425       Cost = 3; // Extract + insert + copy.
426 
427     // Multiple by the number of parts.
428     return Cost * LT.first;
429   }
430 
431   if (Kind == TTI::SK_Alternate) {
432     // 64-bit packed float vectors (v2f32) are widened to type v4f32.
433     // 64-bit packed integer vectors (v2i32) are promoted to type v2i64.
434     std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Tp);
435 
436     // The backend knows how to generate a single VEX.256 version of
437     // instruction VPBLENDW if the target supports AVX2.
438     if (ST->hasAVX2() && LT.second == MVT::v16i16)
439       return LT.first;
440 
441     static const CostTblEntry AVXAltShuffleTbl[] = {
442       {ISD::VECTOR_SHUFFLE, MVT::v4i64, 1},  // vblendpd
443       {ISD::VECTOR_SHUFFLE, MVT::v4f64, 1},  // vblendpd
444 
445       {ISD::VECTOR_SHUFFLE, MVT::v8i32, 1},  // vblendps
446       {ISD::VECTOR_SHUFFLE, MVT::v8f32, 1},  // vblendps
447 
448       // This shuffle is custom lowered into a sequence of:
449       //  2x  vextractf128 , 2x vpblendw , 1x vinsertf128
450       {ISD::VECTOR_SHUFFLE, MVT::v16i16, 5},
451 
452       // This shuffle is custom lowered into a long sequence of:
453       //  2x vextractf128 , 4x vpshufb , 2x vpor ,  1x vinsertf128
454       {ISD::VECTOR_SHUFFLE, MVT::v32i8, 9}
455     };
456 
457     if (ST->hasAVX())
458       if (const auto *Entry = CostTableLookup(AVXAltShuffleTbl,
459                                               ISD::VECTOR_SHUFFLE, LT.second))
460         return LT.first * Entry->Cost;
461 
462     static const CostTblEntry SSE41AltShuffleTbl[] = {
463       // These are lowered into movsd.
464       {ISD::VECTOR_SHUFFLE, MVT::v2i64, 1},
465       {ISD::VECTOR_SHUFFLE, MVT::v2f64, 1},
466 
467       // packed float vectors with four elements are lowered into BLENDI dag
468       // nodes. A v4i32/v4f32 BLENDI generates a single 'blendps'/'blendpd'.
469       {ISD::VECTOR_SHUFFLE, MVT::v4i32, 1},
470       {ISD::VECTOR_SHUFFLE, MVT::v4f32, 1},
471 
472       // This shuffle generates a single pshufw.
473       {ISD::VECTOR_SHUFFLE, MVT::v8i16, 1},
474 
475       // There is no instruction that matches a v16i8 alternate shuffle.
476       // The backend will expand it into the sequence 'pshufb + pshufb + or'.
477       {ISD::VECTOR_SHUFFLE, MVT::v16i8, 3}
478     };
479 
480     if (ST->hasSSE41())
481       if (const auto *Entry = CostTableLookup(SSE41AltShuffleTbl, ISD::VECTOR_SHUFFLE,
482                                               LT.second))
483         return LT.first * Entry->Cost;
484 
485     static const CostTblEntry SSSE3AltShuffleTbl[] = {
486       {ISD::VECTOR_SHUFFLE, MVT::v2i64, 1},  // movsd
487       {ISD::VECTOR_SHUFFLE, MVT::v2f64, 1},  // movsd
488 
489       // SSE3 doesn't have 'blendps'. The following shuffles are expanded into
490       // the sequence 'shufps + pshufd'
491       {ISD::VECTOR_SHUFFLE, MVT::v4i32, 2},
492       {ISD::VECTOR_SHUFFLE, MVT::v4f32, 2},
493 
494       {ISD::VECTOR_SHUFFLE, MVT::v8i16, 3}, // pshufb + pshufb + or
495       {ISD::VECTOR_SHUFFLE, MVT::v16i8, 3}  // pshufb + pshufb + or
496     };
497 
498     if (ST->hasSSSE3())
499       if (const auto *Entry = CostTableLookup(SSSE3AltShuffleTbl,
500                                               ISD::VECTOR_SHUFFLE, LT.second))
501         return LT.first * Entry->Cost;
502 
503     static const CostTblEntry SSEAltShuffleTbl[] = {
504       {ISD::VECTOR_SHUFFLE, MVT::v2i64, 1},  // movsd
505       {ISD::VECTOR_SHUFFLE, MVT::v2f64, 1},  // movsd
506 
507       {ISD::VECTOR_SHUFFLE, MVT::v4i32, 2}, // shufps + pshufd
508       {ISD::VECTOR_SHUFFLE, MVT::v4f32, 2}, // shufps + pshufd
509 
510       // This is expanded into a long sequence of four extract + four insert.
511       {ISD::VECTOR_SHUFFLE, MVT::v8i16, 8}, // 4 x pextrw + 4 pinsrw.
512 
513       // 8 x (pinsrw + pextrw + and + movb + movzb + or)
514       {ISD::VECTOR_SHUFFLE, MVT::v16i8, 48}
515     };
516 
517     // Fall-back (SSE3 and SSE2).
518     if (const auto *Entry = CostTableLookup(SSEAltShuffleTbl,
519                                             ISD::VECTOR_SHUFFLE, LT.second))
520       return LT.first * Entry->Cost;
521     return BaseT::getShuffleCost(Kind, Tp, Index, SubTp);
522   }
523 
524   return BaseT::getShuffleCost(Kind, Tp, Index, SubTp);
525 }
526 
527 int X86TTIImpl::getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src) {
528   int ISD = TLI->InstructionOpcodeToISD(Opcode);
529   assert(ISD && "Invalid opcode");
530 
531   // FIXME: Need a better design of the cost table to handle non-simple types of
532   // potential massive combinations (elem_num x src_type x dst_type).
533 
534   static const TypeConversionCostTblEntry AVX512DQConversionTbl[] = {
535     { ISD::UINT_TO_FP,  MVT::v2f64,  MVT::v2i64,  1 },
536     { ISD::UINT_TO_FP,  MVT::v4f64,  MVT::v4i64,  1 },
537     { ISD::UINT_TO_FP,  MVT::v8f64,  MVT::v8i64,  1 },
538     { ISD::UINT_TO_FP,  MVT::v2f32,  MVT::v2i64,  1 },
539     { ISD::UINT_TO_FP,  MVT::v4f32,  MVT::v4i64,  1 },
540     { ISD::UINT_TO_FP,  MVT::v8f32,  MVT::v8i64,  1 },
541 
542     { ISD::FP_TO_UINT,  MVT::v2i64, MVT::v2f64, 1 },
543     { ISD::FP_TO_UINT,  MVT::v4i64, MVT::v4f64, 1 },
544     { ISD::FP_TO_UINT,  MVT::v8i64, MVT::v8f64, 1 },
545     { ISD::FP_TO_UINT,  MVT::v2i64, MVT::v2f32, 1 },
546     { ISD::FP_TO_UINT,  MVT::v4i64, MVT::v4f32, 1 },
547     { ISD::FP_TO_UINT,  MVT::v8i64, MVT::v8f32, 1 },
548   };
549 
550   static const TypeConversionCostTblEntry AVX512FConversionTbl[] = {
551     { ISD::FP_EXTEND, MVT::v8f64,   MVT::v8f32,  1 },
552     { ISD::FP_EXTEND, MVT::v8f64,   MVT::v16f32, 3 },
553     { ISD::FP_ROUND,  MVT::v8f32,   MVT::v8f64,  1 },
554 
555     { ISD::TRUNCATE,  MVT::v16i8,   MVT::v16i32, 1 },
556     { ISD::TRUNCATE,  MVT::v16i16,  MVT::v16i32, 1 },
557     { ISD::TRUNCATE,  MVT::v8i16,   MVT::v8i64,  1 },
558     { ISD::TRUNCATE,  MVT::v8i32,   MVT::v8i64,  1 },
559 
560     // v16i1 -> v16i32 - load + broadcast
561     { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i1,  2 },
562     { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i1,  2 },
563 
564     { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i8,  1 },
565     { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i8,  1 },
566     { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i16, 1 },
567     { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i16, 1 },
568     { ISD::SIGN_EXTEND, MVT::v8i64,  MVT::v8i32,  1 },
569     { ISD::ZERO_EXTEND, MVT::v8i64,  MVT::v8i32,  1 },
570     { ISD::ZERO_EXTEND, MVT::v8i64,  MVT::v8i16,  1 },
571     { ISD::SIGN_EXTEND, MVT::v8i64,  MVT::v8i16,  1 },
572 
573     { ISD::SINT_TO_FP,  MVT::v16f32, MVT::v16i1,  3 },
574     { ISD::SINT_TO_FP,  MVT::v16f32, MVT::v16i8,  2 },
575     { ISD::SINT_TO_FP,  MVT::v16f32, MVT::v16i16, 2 },
576     { ISD::SINT_TO_FP,  MVT::v16f32, MVT::v16i32, 1 },
577     { ISD::SINT_TO_FP,  MVT::v8f64,  MVT::v8i1,   4 },
578     { ISD::SINT_TO_FP,  MVT::v8f64,  MVT::v8i8,   2 },
579     { ISD::SINT_TO_FP,  MVT::v8f64,  MVT::v8i16,  2 },
580     { ISD::SINT_TO_FP,  MVT::v8f64,  MVT::v8i32,  1 },
581 
582     { ISD::UINT_TO_FP,  MVT::v16f32, MVT::v16i1,  3 },
583     { ISD::UINT_TO_FP,  MVT::v16f32, MVT::v16i8,  2 },
584     { ISD::UINT_TO_FP,  MVT::v16f32, MVT::v16i16, 2 },
585     { ISD::UINT_TO_FP,  MVT::v16f32, MVT::v16i32, 1 },
586     { ISD::UINT_TO_FP,  MVT::v8f32,  MVT::v8i32,  1 },
587     { ISD::UINT_TO_FP,  MVT::v4f32,  MVT::v4i32,  1 },
588     { ISD::UINT_TO_FP,  MVT::v8f64,  MVT::v8i1,   4 },
589     { ISD::UINT_TO_FP,  MVT::v8f64,  MVT::v8i16,  2 },
590     { ISD::UINT_TO_FP,  MVT::v8f64,  MVT::v8i32,  1 },
591     { ISD::UINT_TO_FP,  MVT::v8f64,  MVT::v8i8,   2 },
592     { ISD::UINT_TO_FP,  MVT::v8f32,  MVT::v8i8,   2 },
593     { ISD::UINT_TO_FP,  MVT::v8f32,  MVT::v8i16,  2 },
594     { ISD::UINT_TO_FP,  MVT::v4f64,  MVT::v4i8,   2 },
595     { ISD::UINT_TO_FP,  MVT::v4f64,  MVT::v4i16,  2 },
596     { ISD::UINT_TO_FP,  MVT::v4f64,  MVT::v4i32,  1 },
597     { ISD::UINT_TO_FP,  MVT::v2f64,  MVT::v2i8,   2 },
598     { ISD::UINT_TO_FP,  MVT::v2f64,  MVT::v2i16,  5 },
599     { ISD::UINT_TO_FP,  MVT::v2f32,  MVT::v2i32,  2 },
600     { ISD::UINT_TO_FP,  MVT::v2f64,  MVT::v2i64,  5 },
601     { ISD::UINT_TO_FP,  MVT::v4f64,  MVT::v4i64, 12 },
602     { ISD::UINT_TO_FP,  MVT::v8f64,  MVT::v8i64, 26 },
603 
604     { ISD::FP_TO_UINT,  MVT::v2i32,  MVT::v2f32,  1 },
605     { ISD::FP_TO_UINT,  MVT::v4i32,  MVT::v4f32,  1 },
606     { ISD::FP_TO_UINT,  MVT::v8i32,  MVT::v8f32,  1 },
607     { ISD::FP_TO_UINT,  MVT::v16i32, MVT::v16f32, 1 },
608   };
609 
610   static const TypeConversionCostTblEntry AVX2ConversionTbl[] = {
611     { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i8,  1 },
612     { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i8,  1 },
613     { ISD::SIGN_EXTEND, MVT::v8i32,  MVT::v8i1,   3 },
614     { ISD::ZERO_EXTEND, MVT::v8i32,  MVT::v8i1,   3 },
615     { ISD::SIGN_EXTEND, MVT::v8i32,  MVT::v8i8,   3 },
616     { ISD::ZERO_EXTEND, MVT::v8i32,  MVT::v8i8,   3 },
617     { ISD::SIGN_EXTEND, MVT::v8i32,  MVT::v8i16,  1 },
618     { ISD::ZERO_EXTEND, MVT::v8i32,  MVT::v8i16,  1 },
619     { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v4i1,   3 },
620     { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v4i1,   3 },
621     { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v4i8,   3 },
622     { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v4i8,   3 },
623     { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v4i16,  3 },
624     { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v4i16,  3 },
625     { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v4i32,  1 },
626     { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v4i32,  1 },
627 
628     { ISD::TRUNCATE,    MVT::v4i8,   MVT::v4i64,  2 },
629     { ISD::TRUNCATE,    MVT::v4i16,  MVT::v4i64,  2 },
630     { ISD::TRUNCATE,    MVT::v4i32,  MVT::v4i64,  2 },
631     { ISD::TRUNCATE,    MVT::v8i8,   MVT::v8i32,  2 },
632     { ISD::TRUNCATE,    MVT::v8i16,  MVT::v8i32,  2 },
633     { ISD::TRUNCATE,    MVT::v8i32,  MVT::v8i64,  4 },
634 
635     { ISD::FP_EXTEND,   MVT::v8f64,  MVT::v8f32,  3 },
636     { ISD::FP_ROUND,    MVT::v8f32,  MVT::v8f64,  3 },
637 
638     { ISD::UINT_TO_FP,  MVT::v8f32,  MVT::v8i32,  8 },
639   };
640 
641   static const TypeConversionCostTblEntry AVXConversionTbl[] = {
642     { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i8, 4 },
643     { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i8, 4 },
644     { ISD::SIGN_EXTEND, MVT::v8i32,  MVT::v8i1,  7 },
645     { ISD::ZERO_EXTEND, MVT::v8i32,  MVT::v8i1,  4 },
646     { ISD::SIGN_EXTEND, MVT::v8i32,  MVT::v8i8,  7 },
647     { ISD::ZERO_EXTEND, MVT::v8i32,  MVT::v8i8,  4 },
648     { ISD::SIGN_EXTEND, MVT::v8i32,  MVT::v8i16, 4 },
649     { ISD::ZERO_EXTEND, MVT::v8i32,  MVT::v8i16, 4 },
650     { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v4i1,  6 },
651     { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v4i1,  4 },
652     { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v4i8,  6 },
653     { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v4i8,  4 },
654     { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v4i16, 6 },
655     { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v4i16, 3 },
656     { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v4i32, 4 },
657     { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v4i32, 4 },
658 
659     { ISD::TRUNCATE,    MVT::v4i8,  MVT::v4i64,  4 },
660     { ISD::TRUNCATE,    MVT::v4i16, MVT::v4i64,  4 },
661     { ISD::TRUNCATE,    MVT::v4i32, MVT::v4i64,  4 },
662     { ISD::TRUNCATE,    MVT::v8i8,  MVT::v8i32,  4 },
663     { ISD::TRUNCATE,    MVT::v8i16, MVT::v8i32,  5 },
664     { ISD::TRUNCATE,    MVT::v16i8, MVT::v16i16, 4 },
665     { ISD::TRUNCATE,    MVT::v8i32, MVT::v8i64,  9 },
666 
667     { ISD::SINT_TO_FP,  MVT::v8f32, MVT::v8i1,  8 },
668     { ISD::SINT_TO_FP,  MVT::v8f32, MVT::v8i8,  8 },
669     { ISD::SINT_TO_FP,  MVT::v8f32, MVT::v8i16, 5 },
670     { ISD::SINT_TO_FP,  MVT::v8f32, MVT::v8i32, 1 },
671     { ISD::SINT_TO_FP,  MVT::v4f32, MVT::v4i1,  3 },
672     { ISD::SINT_TO_FP,  MVT::v4f32, MVT::v4i8,  3 },
673     { ISD::SINT_TO_FP,  MVT::v4f32, MVT::v4i16, 3 },
674     { ISD::SINT_TO_FP,  MVT::v4f32, MVT::v4i32, 1 },
675     { ISD::SINT_TO_FP,  MVT::v4f64, MVT::v4i1,  3 },
676     { ISD::SINT_TO_FP,  MVT::v4f64, MVT::v4i8,  3 },
677     { ISD::SINT_TO_FP,  MVT::v4f64, MVT::v4i16, 3 },
678     { ISD::SINT_TO_FP,  MVT::v4f64, MVT::v4i32, 1 },
679 
680     { ISD::UINT_TO_FP,  MVT::v8f32, MVT::v8i1,  6 },
681     { ISD::UINT_TO_FP,  MVT::v8f32, MVT::v8i8,  5 },
682     { ISD::UINT_TO_FP,  MVT::v8f32, MVT::v8i16, 5 },
683     { ISD::UINT_TO_FP,  MVT::v8f32, MVT::v8i32, 9 },
684     { ISD::UINT_TO_FP,  MVT::v4f32, MVT::v4i1,  7 },
685     { ISD::UINT_TO_FP,  MVT::v4f32, MVT::v4i8,  2 },
686     { ISD::UINT_TO_FP,  MVT::v4f32, MVT::v4i16, 2 },
687     { ISD::UINT_TO_FP,  MVT::v4f32, MVT::v4i32, 6 },
688     { ISD::UINT_TO_FP,  MVT::v4f64, MVT::v4i1,  7 },
689     { ISD::UINT_TO_FP,  MVT::v4f64, MVT::v4i8,  2 },
690     { ISD::UINT_TO_FP,  MVT::v4f64, MVT::v4i16, 2 },
691     { ISD::UINT_TO_FP,  MVT::v4f64, MVT::v4i32, 6 },
692     // The generic code to compute the scalar overhead is currently broken.
693     // Workaround this limitation by estimating the scalarization overhead
694     // here. We have roughly 10 instructions per scalar element.
695     // Multiply that by the vector width.
696     // FIXME: remove that when PR19268 is fixed.
697     { ISD::UINT_TO_FP,  MVT::v2f64, MVT::v2i64, 2*10 },
698     { ISD::UINT_TO_FP,  MVT::v4f64, MVT::v4i64, 4*10 },
699 
700     { ISD::FP_TO_SINT,  MVT::v8i8,  MVT::v8f32, 7 },
701     { ISD::FP_TO_SINT,  MVT::v4i8,  MVT::v4f32, 1 },
702     // This node is expanded into scalarized operations but BasicTTI is overly
703     // optimistic estimating its cost.  It computes 3 per element (one
704     // vector-extract, one scalar conversion and one vector-insert).  The
705     // problem is that the inserts form a read-modify-write chain so latency
706     // should be factored in too.  Inflating the cost per element by 1.
707     { ISD::FP_TO_UINT,  MVT::v8i32, MVT::v8f32, 8*4 },
708     { ISD::FP_TO_UINT,  MVT::v4i32, MVT::v4f64, 4*4 },
709   };
710 
711   static const TypeConversionCostTblEntry SSE41ConversionTbl[] = {
712     { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i16, 4 },
713     { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i16, 4 },
714     { ISD::ZERO_EXTEND, MVT::v8i32,  MVT::v8i16,  2 },
715     { ISD::SIGN_EXTEND, MVT::v8i32,  MVT::v8i16,  2 },
716     { ISD::ZERO_EXTEND, MVT::v4i32,  MVT::v4i16,  1 },
717     { ISD::SIGN_EXTEND, MVT::v4i32,  MVT::v4i16,  1 },
718     { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i8,  4 },
719     { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i8,  4 },
720     { ISD::ZERO_EXTEND, MVT::v8i32,  MVT::v8i8,   2 },
721     { ISD::SIGN_EXTEND, MVT::v8i32,  MVT::v8i8,   2 },
722     { ISD::ZERO_EXTEND, MVT::v4i32,  MVT::v4i8,   1 },
723     { ISD::SIGN_EXTEND, MVT::v4i32,  MVT::v4i8,   1 },
724     { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i8,  2 },
725     { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i8,  2 },
726     { ISD::ZERO_EXTEND, MVT::v8i16,  MVT::v8i8,   1 },
727     { ISD::SIGN_EXTEND, MVT::v8i16,  MVT::v8i8,   1 },
728     { ISD::ZERO_EXTEND, MVT::v4i16,  MVT::v4i8,   1 },
729     { ISD::SIGN_EXTEND, MVT::v4i16,  MVT::v4i8,   2 },
730 
731     { ISD::TRUNCATE,    MVT::v16i16, MVT::v16i32, 6 },
732     { ISD::TRUNCATE,    MVT::v8i16,  MVT::v8i32,  3 },
733     { ISD::TRUNCATE,    MVT::v4i16,  MVT::v4i32,  1 },
734     { ISD::TRUNCATE,    MVT::v8i8,   MVT::v8i32,  3 },
735     { ISD::TRUNCATE,    MVT::v4i8,   MVT::v4i32,  1 },
736     { ISD::TRUNCATE,    MVT::v8i8,   MVT::v8i16,  1 },
737     { ISD::TRUNCATE,    MVT::v4i8,   MVT::v4i16,  2 },
738   };
739 
740   static const TypeConversionCostTblEntry SSE2ConversionTbl[] = {
741     // These are somewhat magic numbers justified by looking at the output of
742     // Intel's IACA, running some kernels and making sure when we take
743     // legalization into account the throughput will be overestimated.
744     { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i64, 2*10 },
745     { ISD::UINT_TO_FP, MVT::v2f64, MVT::v4i32, 4*10 },
746     { ISD::UINT_TO_FP, MVT::v2f64, MVT::v8i16, 8*10 },
747     { ISD::UINT_TO_FP, MVT::v2f64, MVT::v16i8, 16*10 },
748     { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i64, 2*10 },
749     { ISD::SINT_TO_FP, MVT::v2f64, MVT::v4i32, 4*10 },
750     { ISD::SINT_TO_FP, MVT::v2f64, MVT::v8i16, 8*10 },
751     { ISD::SINT_TO_FP, MVT::v2f64, MVT::v16i8, 16*10 },
752     // There are faster sequences for float conversions.
753     { ISD::UINT_TO_FP, MVT::v4f32, MVT::v2i64, 15 },
754     { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i32, 8 },
755     { ISD::UINT_TO_FP, MVT::v4f32, MVT::v8i16, 15 },
756     { ISD::UINT_TO_FP, MVT::v4f32, MVT::v16i8, 8 },
757     { ISD::SINT_TO_FP, MVT::v4f32, MVT::v2i64, 15 },
758     { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i32, 15 },
759     { ISD::SINT_TO_FP, MVT::v4f32, MVT::v8i16, 15 },
760     { ISD::SINT_TO_FP, MVT::v4f32, MVT::v16i8, 8 },
761 
762     { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i16, 6 },
763     { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i16, 8 },
764     { ISD::ZERO_EXTEND, MVT::v8i32,  MVT::v8i16,  3 },
765     { ISD::SIGN_EXTEND, MVT::v8i32,  MVT::v8i16,  4 },
766     { ISD::ZERO_EXTEND, MVT::v4i32,  MVT::v4i16,  1 },
767     { ISD::SIGN_EXTEND, MVT::v4i32,  MVT::v4i16,  2 },
768     { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i8,  9 },
769     { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i8,  12 },
770     { ISD::ZERO_EXTEND, MVT::v8i32,  MVT::v8i8,   6 },
771     { ISD::SIGN_EXTEND, MVT::v8i32,  MVT::v8i8,   6 },
772     { ISD::ZERO_EXTEND, MVT::v4i32,  MVT::v4i8,   2 },
773     { ISD::SIGN_EXTEND, MVT::v4i32,  MVT::v4i8,   3 },
774     { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i8,  3 },
775     { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i8,  4 },
776     { ISD::ZERO_EXTEND, MVT::v8i16,  MVT::v8i8,   1 },
777     { ISD::SIGN_EXTEND, MVT::v8i16,  MVT::v8i8,   2 },
778     { ISD::ZERO_EXTEND, MVT::v4i16,  MVT::v4i8,   1 },
779     { ISD::SIGN_EXTEND, MVT::v4i16,  MVT::v4i8,   6 },
780 
781     { ISD::TRUNCATE,    MVT::v16i16, MVT::v16i32, 10 },
782     { ISD::TRUNCATE,    MVT::v8i16,  MVT::v8i32,  5 },
783     { ISD::TRUNCATE,    MVT::v4i16,  MVT::v4i32,  3 },
784     { ISD::TRUNCATE,    MVT::v16i8,  MVT::v16i32, 7 },
785     { ISD::TRUNCATE,    MVT::v8i8,   MVT::v8i32,  4 },
786     { ISD::TRUNCATE,    MVT::v4i8,   MVT::v4i32,  3 },
787     { ISD::TRUNCATE,    MVT::v16i8,  MVT::v16i16, 3 },
788     { ISD::TRUNCATE,    MVT::v8i8,   MVT::v8i16,  2 },
789     { ISD::TRUNCATE,    MVT::v4i8,   MVT::v4i16,  4 },
790   };
791 
792   std::pair<int, MVT> LTSrc = TLI->getTypeLegalizationCost(DL, Src);
793   std::pair<int, MVT> LTDest = TLI->getTypeLegalizationCost(DL, Dst);
794 
795   if (ST->hasSSE2() && !ST->hasAVX()) {
796     if (const auto *Entry = ConvertCostTableLookup(SSE2ConversionTbl, ISD,
797                                                    LTDest.second, LTSrc.second))
798       return LTSrc.first * Entry->Cost;
799   }
800 
801   EVT SrcTy = TLI->getValueType(DL, Src);
802   EVT DstTy = TLI->getValueType(DL, Dst);
803 
804   // The function getSimpleVT only handles simple value types.
805   if (!SrcTy.isSimple() || !DstTy.isSimple())
806     return BaseT::getCastInstrCost(Opcode, Dst, Src);
807 
808   if (ST->hasDQI())
809     if (const auto *Entry = ConvertCostTableLookup(AVX512DQConversionTbl, ISD,
810                                                    DstTy.getSimpleVT(),
811                                                    SrcTy.getSimpleVT()))
812       return Entry->Cost;
813 
814   if (ST->hasAVX512())
815     if (const auto *Entry = ConvertCostTableLookup(AVX512FConversionTbl, ISD,
816                                                    DstTy.getSimpleVT(),
817                                                    SrcTy.getSimpleVT()))
818       return Entry->Cost;
819 
820   if (ST->hasAVX2()) {
821     if (const auto *Entry = ConvertCostTableLookup(AVX2ConversionTbl, ISD,
822                                                    DstTy.getSimpleVT(),
823                                                    SrcTy.getSimpleVT()))
824       return Entry->Cost;
825   }
826 
827   if (ST->hasAVX()) {
828     if (const auto *Entry = ConvertCostTableLookup(AVXConversionTbl, ISD,
829                                                    DstTy.getSimpleVT(),
830                                                    SrcTy.getSimpleVT()))
831       return Entry->Cost;
832   }
833 
834   if (ST->hasSSE41()) {
835     if (const auto *Entry = ConvertCostTableLookup(SSE41ConversionTbl, ISD,
836                                                    DstTy.getSimpleVT(),
837                                                    SrcTy.getSimpleVT()))
838       return Entry->Cost;
839   }
840 
841   if (ST->hasSSE2()) {
842     if (const auto *Entry = ConvertCostTableLookup(SSE2ConversionTbl, ISD,
843                                                    DstTy.getSimpleVT(),
844                                                    SrcTy.getSimpleVT()))
845       return Entry->Cost;
846   }
847 
848   return BaseT::getCastInstrCost(Opcode, Dst, Src);
849 }
850 
851 int X86TTIImpl::getCmpSelInstrCost(unsigned Opcode, Type *ValTy, Type *CondTy) {
852   // Legalize the type.
853   std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, ValTy);
854 
855   MVT MTy = LT.second;
856 
857   int ISD = TLI->InstructionOpcodeToISD(Opcode);
858   assert(ISD && "Invalid opcode");
859 
860   static const CostTblEntry SSE2CostTbl[] = {
861     { ISD::SETCC,   MVT::v2i64,   8 },
862     { ISD::SETCC,   MVT::v4i32,   1 },
863     { ISD::SETCC,   MVT::v8i16,   1 },
864     { ISD::SETCC,   MVT::v16i8,   1 },
865   };
866 
867   static const CostTblEntry SSE42CostTbl[] = {
868     { ISD::SETCC,   MVT::v2f64,   1 },
869     { ISD::SETCC,   MVT::v4f32,   1 },
870     { ISD::SETCC,   MVT::v2i64,   1 },
871   };
872 
873   static const CostTblEntry AVX1CostTbl[] = {
874     { ISD::SETCC,   MVT::v4f64,   1 },
875     { ISD::SETCC,   MVT::v8f32,   1 },
876     // AVX1 does not support 8-wide integer compare.
877     { ISD::SETCC,   MVT::v4i64,   4 },
878     { ISD::SETCC,   MVT::v8i32,   4 },
879     { ISD::SETCC,   MVT::v16i16,  4 },
880     { ISD::SETCC,   MVT::v32i8,   4 },
881   };
882 
883   static const CostTblEntry AVX2CostTbl[] = {
884     { ISD::SETCC,   MVT::v4i64,   1 },
885     { ISD::SETCC,   MVT::v8i32,   1 },
886     { ISD::SETCC,   MVT::v16i16,  1 },
887     { ISD::SETCC,   MVT::v32i8,   1 },
888   };
889 
890   static const CostTblEntry AVX512CostTbl[] = {
891     { ISD::SETCC,   MVT::v8i64,   1 },
892     { ISD::SETCC,   MVT::v16i32,  1 },
893     { ISD::SETCC,   MVT::v8f64,   1 },
894     { ISD::SETCC,   MVT::v16f32,  1 },
895   };
896 
897   if (ST->hasAVX512())
898     if (const auto *Entry = CostTableLookup(AVX512CostTbl, ISD, MTy))
899       return LT.first * Entry->Cost;
900 
901   if (ST->hasAVX2())
902     if (const auto *Entry = CostTableLookup(AVX2CostTbl, ISD, MTy))
903       return LT.first * Entry->Cost;
904 
905   if (ST->hasAVX())
906     if (const auto *Entry = CostTableLookup(AVX1CostTbl, ISD, MTy))
907       return LT.first * Entry->Cost;
908 
909   if (ST->hasSSE42())
910     if (const auto *Entry = CostTableLookup(SSE42CostTbl, ISD, MTy))
911       return LT.first * Entry->Cost;
912 
913   if (ST->hasSSE2())
914     if (const auto *Entry = CostTableLookup(SSE2CostTbl, ISD, MTy))
915       return LT.first * Entry->Cost;
916 
917   return BaseT::getCmpSelInstrCost(Opcode, ValTy, CondTy);
918 }
919 
920 int X86TTIImpl::getIntrinsicInstrCost(Intrinsic::ID IID, Type *RetTy,
921                                       ArrayRef<Type *> Tys, FastMathFlags FMF) {
922   static const CostTblEntry XOPCostTbl[] = {
923     { ISD::BITREVERSE, MVT::v4i64,   4 },
924     { ISD::BITREVERSE, MVT::v8i32,   4 },
925     { ISD::BITREVERSE, MVT::v16i16,  4 },
926     { ISD::BITREVERSE, MVT::v32i8,   4 },
927     { ISD::BITREVERSE, MVT::v2i64,   1 },
928     { ISD::BITREVERSE, MVT::v4i32,   1 },
929     { ISD::BITREVERSE, MVT::v8i16,   1 },
930     { ISD::BITREVERSE, MVT::v16i8,   1 },
931     { ISD::BITREVERSE, MVT::i64,     3 },
932     { ISD::BITREVERSE, MVT::i32,     3 },
933     { ISD::BITREVERSE, MVT::i16,     3 },
934     { ISD::BITREVERSE, MVT::i8,      3 }
935   };
936 
937   unsigned ISD = ISD::DELETED_NODE;
938   switch (IID) {
939   default:
940     break;
941   case Intrinsic::bitreverse:
942     ISD = ISD::BITREVERSE;
943     break;
944   }
945 
946   // Legalize the type.
947   std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, RetTy);
948   MVT MTy = LT.second;
949 
950   // Attempt to lookup cost.
951   if (ST->hasXOP())
952     if (const auto *Entry = CostTableLookup(XOPCostTbl, ISD, MTy))
953       return LT.first * Entry->Cost;
954 
955   return BaseT::getIntrinsicInstrCost(IID, RetTy, Tys, FMF);
956 }
957 
958 int X86TTIImpl::getIntrinsicInstrCost(Intrinsic::ID IID, Type *RetTy,
959                                       ArrayRef<Value *> Args, FastMathFlags FMF) {
960   return BaseT::getIntrinsicInstrCost(IID, RetTy, Args, FMF);
961 }
962 
963 int X86TTIImpl::getVectorInstrCost(unsigned Opcode, Type *Val, unsigned Index) {
964   assert(Val->isVectorTy() && "This must be a vector type");
965 
966   Type *ScalarType = Val->getScalarType();
967 
968   if (Index != -1U) {
969     // Legalize the type.
970     std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Val);
971 
972     // This type is legalized to a scalar type.
973     if (!LT.second.isVector())
974       return 0;
975 
976     // The type may be split. Normalize the index to the new type.
977     unsigned Width = LT.second.getVectorNumElements();
978     Index = Index % Width;
979 
980     // Floating point scalars are already located in index #0.
981     if (ScalarType->isFloatingPointTy() && Index == 0)
982       return 0;
983   }
984 
985   // Add to the base cost if we know that the extracted element of a vector is
986   // destined to be moved to and used in the integer register file.
987   int RegisterFileMoveCost = 0;
988   if (Opcode == Instruction::ExtractElement && ScalarType->isPointerTy())
989     RegisterFileMoveCost = 1;
990 
991   return BaseT::getVectorInstrCost(Opcode, Val, Index) + RegisterFileMoveCost;
992 }
993 
994 int X86TTIImpl::getScalarizationOverhead(Type *Ty, bool Insert, bool Extract) {
995   assert (Ty->isVectorTy() && "Can only scalarize vectors");
996   int Cost = 0;
997 
998   for (int i = 0, e = Ty->getVectorNumElements(); i < e; ++i) {
999     if (Insert)
1000       Cost += getVectorInstrCost(Instruction::InsertElement, Ty, i);
1001     if (Extract)
1002       Cost += getVectorInstrCost(Instruction::ExtractElement, Ty, i);
1003   }
1004 
1005   return Cost;
1006 }
1007 
1008 int X86TTIImpl::getMemoryOpCost(unsigned Opcode, Type *Src, unsigned Alignment,
1009                                 unsigned AddressSpace) {
1010   // Handle non-power-of-two vectors such as <3 x float>
1011   if (VectorType *VTy = dyn_cast<VectorType>(Src)) {
1012     unsigned NumElem = VTy->getVectorNumElements();
1013 
1014     // Handle a few common cases:
1015     // <3 x float>
1016     if (NumElem == 3 && VTy->getScalarSizeInBits() == 32)
1017       // Cost = 64 bit store + extract + 32 bit store.
1018       return 3;
1019 
1020     // <3 x double>
1021     if (NumElem == 3 && VTy->getScalarSizeInBits() == 64)
1022       // Cost = 128 bit store + unpack + 64 bit store.
1023       return 3;
1024 
1025     // Assume that all other non-power-of-two numbers are scalarized.
1026     if (!isPowerOf2_32(NumElem)) {
1027       int Cost = BaseT::getMemoryOpCost(Opcode, VTy->getScalarType(), Alignment,
1028                                         AddressSpace);
1029       int SplitCost = getScalarizationOverhead(Src, Opcode == Instruction::Load,
1030                                                Opcode == Instruction::Store);
1031       return NumElem * Cost + SplitCost;
1032     }
1033   }
1034 
1035   // Legalize the type.
1036   std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Src);
1037   assert((Opcode == Instruction::Load || Opcode == Instruction::Store) &&
1038          "Invalid Opcode");
1039 
1040   // Each load/store unit costs 1.
1041   int Cost = LT.first * 1;
1042 
1043   // This isn't exactly right. We're using slow unaligned 32-byte accesses as a
1044   // proxy for a double-pumped AVX memory interface such as on Sandybridge.
1045   if (LT.second.getStoreSize() == 32 && ST->isUnalignedMem32Slow())
1046     Cost *= 2;
1047 
1048   return Cost;
1049 }
1050 
1051 int X86TTIImpl::getMaskedMemoryOpCost(unsigned Opcode, Type *SrcTy,
1052                                       unsigned Alignment,
1053                                       unsigned AddressSpace) {
1054   VectorType *SrcVTy = dyn_cast<VectorType>(SrcTy);
1055   if (!SrcVTy)
1056     // To calculate scalar take the regular cost, without mask
1057     return getMemoryOpCost(Opcode, SrcTy, Alignment, AddressSpace);
1058 
1059   unsigned NumElem = SrcVTy->getVectorNumElements();
1060   VectorType *MaskTy =
1061     VectorType::get(Type::getInt8Ty(SrcVTy->getContext()), NumElem);
1062   if ((Opcode == Instruction::Load && !isLegalMaskedLoad(SrcVTy)) ||
1063       (Opcode == Instruction::Store && !isLegalMaskedStore(SrcVTy)) ||
1064       !isPowerOf2_32(NumElem)) {
1065     // Scalarization
1066     int MaskSplitCost = getScalarizationOverhead(MaskTy, false, true);
1067     int ScalarCompareCost = getCmpSelInstrCost(
1068         Instruction::ICmp, Type::getInt8Ty(SrcVTy->getContext()), nullptr);
1069     int BranchCost = getCFInstrCost(Instruction::Br);
1070     int MaskCmpCost = NumElem * (BranchCost + ScalarCompareCost);
1071 
1072     int ValueSplitCost = getScalarizationOverhead(
1073         SrcVTy, Opcode == Instruction::Load, Opcode == Instruction::Store);
1074     int MemopCost =
1075         NumElem * BaseT::getMemoryOpCost(Opcode, SrcVTy->getScalarType(),
1076                                          Alignment, AddressSpace);
1077     return MemopCost + ValueSplitCost + MaskSplitCost + MaskCmpCost;
1078   }
1079 
1080   // Legalize the type.
1081   std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, SrcVTy);
1082   auto VT = TLI->getValueType(DL, SrcVTy);
1083   int Cost = 0;
1084   if (VT.isSimple() && LT.second != VT.getSimpleVT() &&
1085       LT.second.getVectorNumElements() == NumElem)
1086     // Promotion requires expand/truncate for data and a shuffle for mask.
1087     Cost += getShuffleCost(TTI::SK_Alternate, SrcVTy, 0, nullptr) +
1088             getShuffleCost(TTI::SK_Alternate, MaskTy, 0, nullptr);
1089 
1090   else if (LT.second.getVectorNumElements() > NumElem) {
1091     VectorType *NewMaskTy = VectorType::get(MaskTy->getVectorElementType(),
1092                                             LT.second.getVectorNumElements());
1093     // Expanding requires fill mask with zeroes
1094     Cost += getShuffleCost(TTI::SK_InsertSubvector, NewMaskTy, 0, MaskTy);
1095   }
1096   if (!ST->hasAVX512())
1097     return Cost + LT.first*4; // Each maskmov costs 4
1098 
1099   // AVX-512 masked load/store is cheapper
1100   return Cost+LT.first;
1101 }
1102 
1103 int X86TTIImpl::getAddressComputationCost(Type *Ty, bool IsComplex) {
1104   // Address computations in vectorized code with non-consecutive addresses will
1105   // likely result in more instructions compared to scalar code where the
1106   // computation can more often be merged into the index mode. The resulting
1107   // extra micro-ops can significantly decrease throughput.
1108   unsigned NumVectorInstToHideOverhead = 10;
1109 
1110   if (Ty->isVectorTy() && IsComplex)
1111     return NumVectorInstToHideOverhead;
1112 
1113   return BaseT::getAddressComputationCost(Ty, IsComplex);
1114 }
1115 
1116 int X86TTIImpl::getReductionCost(unsigned Opcode, Type *ValTy,
1117                                  bool IsPairwise) {
1118 
1119   std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, ValTy);
1120 
1121   MVT MTy = LT.second;
1122 
1123   int ISD = TLI->InstructionOpcodeToISD(Opcode);
1124   assert(ISD && "Invalid opcode");
1125 
1126   // We use the Intel Architecture Code Analyzer(IACA) to measure the throughput
1127   // and make it as the cost.
1128 
1129   static const CostTblEntry SSE42CostTblPairWise[] = {
1130     { ISD::FADD,  MVT::v2f64,   2 },
1131     { ISD::FADD,  MVT::v4f32,   4 },
1132     { ISD::ADD,   MVT::v2i64,   2 },      // The data reported by the IACA tool is "1.6".
1133     { ISD::ADD,   MVT::v4i32,   3 },      // The data reported by the IACA tool is "3.5".
1134     { ISD::ADD,   MVT::v8i16,   5 },
1135   };
1136 
1137   static const CostTblEntry AVX1CostTblPairWise[] = {
1138     { ISD::FADD,  MVT::v4f32,   4 },
1139     { ISD::FADD,  MVT::v4f64,   5 },
1140     { ISD::FADD,  MVT::v8f32,   7 },
1141     { ISD::ADD,   MVT::v2i64,   1 },      // The data reported by the IACA tool is "1.5".
1142     { ISD::ADD,   MVT::v4i32,   3 },      // The data reported by the IACA tool is "3.5".
1143     { ISD::ADD,   MVT::v4i64,   5 },      // The data reported by the IACA tool is "4.8".
1144     { ISD::ADD,   MVT::v8i16,   5 },
1145     { ISD::ADD,   MVT::v8i32,   5 },
1146   };
1147 
1148   static const CostTblEntry SSE42CostTblNoPairWise[] = {
1149     { ISD::FADD,  MVT::v2f64,   2 },
1150     { ISD::FADD,  MVT::v4f32,   4 },
1151     { ISD::ADD,   MVT::v2i64,   2 },      // The data reported by the IACA tool is "1.6".
1152     { ISD::ADD,   MVT::v4i32,   3 },      // The data reported by the IACA tool is "3.3".
1153     { ISD::ADD,   MVT::v8i16,   4 },      // The data reported by the IACA tool is "4.3".
1154   };
1155 
1156   static const CostTblEntry AVX1CostTblNoPairWise[] = {
1157     { ISD::FADD,  MVT::v4f32,   3 },
1158     { ISD::FADD,  MVT::v4f64,   3 },
1159     { ISD::FADD,  MVT::v8f32,   4 },
1160     { ISD::ADD,   MVT::v2i64,   1 },      // The data reported by the IACA tool is "1.5".
1161     { ISD::ADD,   MVT::v4i32,   3 },      // The data reported by the IACA tool is "2.8".
1162     { ISD::ADD,   MVT::v4i64,   3 },
1163     { ISD::ADD,   MVT::v8i16,   4 },
1164     { ISD::ADD,   MVT::v8i32,   5 },
1165   };
1166 
1167   if (IsPairwise) {
1168     if (ST->hasAVX())
1169       if (const auto *Entry = CostTableLookup(AVX1CostTblPairWise, ISD, MTy))
1170         return LT.first * Entry->Cost;
1171 
1172     if (ST->hasSSE42())
1173       if (const auto *Entry = CostTableLookup(SSE42CostTblPairWise, ISD, MTy))
1174         return LT.first * Entry->Cost;
1175   } else {
1176     if (ST->hasAVX())
1177       if (const auto *Entry = CostTableLookup(AVX1CostTblNoPairWise, ISD, MTy))
1178         return LT.first * Entry->Cost;
1179 
1180     if (ST->hasSSE42())
1181       if (const auto *Entry = CostTableLookup(SSE42CostTblNoPairWise, ISD, MTy))
1182         return LT.first * Entry->Cost;
1183   }
1184 
1185   return BaseT::getReductionCost(Opcode, ValTy, IsPairwise);
1186 }
1187 
1188 /// \brief Calculate the cost of materializing a 64-bit value. This helper
1189 /// method might only calculate a fraction of a larger immediate. Therefore it
1190 /// is valid to return a cost of ZERO.
1191 int X86TTIImpl::getIntImmCost(int64_t Val) {
1192   if (Val == 0)
1193     return TTI::TCC_Free;
1194 
1195   if (isInt<32>(Val))
1196     return TTI::TCC_Basic;
1197 
1198   return 2 * TTI::TCC_Basic;
1199 }
1200 
1201 int X86TTIImpl::getIntImmCost(const APInt &Imm, Type *Ty) {
1202   assert(Ty->isIntegerTy());
1203 
1204   unsigned BitSize = Ty->getPrimitiveSizeInBits();
1205   if (BitSize == 0)
1206     return ~0U;
1207 
1208   // Never hoist constants larger than 128bit, because this might lead to
1209   // incorrect code generation or assertions in codegen.
1210   // Fixme: Create a cost model for types larger than i128 once the codegen
1211   // issues have been fixed.
1212   if (BitSize > 128)
1213     return TTI::TCC_Free;
1214 
1215   if (Imm == 0)
1216     return TTI::TCC_Free;
1217 
1218   // Sign-extend all constants to a multiple of 64-bit.
1219   APInt ImmVal = Imm;
1220   if (BitSize & 0x3f)
1221     ImmVal = Imm.sext((BitSize + 63) & ~0x3fU);
1222 
1223   // Split the constant into 64-bit chunks and calculate the cost for each
1224   // chunk.
1225   int Cost = 0;
1226   for (unsigned ShiftVal = 0; ShiftVal < BitSize; ShiftVal += 64) {
1227     APInt Tmp = ImmVal.ashr(ShiftVal).sextOrTrunc(64);
1228     int64_t Val = Tmp.getSExtValue();
1229     Cost += getIntImmCost(Val);
1230   }
1231   // We need at least one instruction to materialize the constant.
1232   return std::max(1, Cost);
1233 }
1234 
1235 int X86TTIImpl::getIntImmCost(unsigned Opcode, unsigned Idx, const APInt &Imm,
1236                               Type *Ty) {
1237   assert(Ty->isIntegerTy());
1238 
1239   unsigned BitSize = Ty->getPrimitiveSizeInBits();
1240   // There is no cost model for constants with a bit size of 0. Return TCC_Free
1241   // here, so that constant hoisting will ignore this constant.
1242   if (BitSize == 0)
1243     return TTI::TCC_Free;
1244 
1245   unsigned ImmIdx = ~0U;
1246   switch (Opcode) {
1247   default:
1248     return TTI::TCC_Free;
1249   case Instruction::GetElementPtr:
1250     // Always hoist the base address of a GetElementPtr. This prevents the
1251     // creation of new constants for every base constant that gets constant
1252     // folded with the offset.
1253     if (Idx == 0)
1254       return 2 * TTI::TCC_Basic;
1255     return TTI::TCC_Free;
1256   case Instruction::Store:
1257     ImmIdx = 0;
1258     break;
1259   case Instruction::ICmp:
1260     // This is an imperfect hack to prevent constant hoisting of
1261     // compares that might be trying to check if a 64-bit value fits in
1262     // 32-bits. The backend can optimize these cases using a right shift by 32.
1263     // Ideally we would check the compare predicate here. There also other
1264     // similar immediates the backend can use shifts for.
1265     if (Idx == 1 && Imm.getBitWidth() == 64) {
1266       uint64_t ImmVal = Imm.getZExtValue();
1267       if (ImmVal == 0x100000000ULL || ImmVal == 0xffffffff)
1268         return TTI::TCC_Free;
1269     }
1270     ImmIdx = 1;
1271     break;
1272   case Instruction::And:
1273     // We support 64-bit ANDs with immediates with 32-bits of leading zeroes
1274     // by using a 32-bit operation with implicit zero extension. Detect such
1275     // immediates here as the normal path expects bit 31 to be sign extended.
1276     if (Idx == 1 && Imm.getBitWidth() == 64 && isUInt<32>(Imm.getZExtValue()))
1277       return TTI::TCC_Free;
1278     // Fallthrough
1279   case Instruction::Add:
1280   case Instruction::Sub:
1281   case Instruction::Mul:
1282   case Instruction::UDiv:
1283   case Instruction::SDiv:
1284   case Instruction::URem:
1285   case Instruction::SRem:
1286   case Instruction::Or:
1287   case Instruction::Xor:
1288     ImmIdx = 1;
1289     break;
1290   // Always return TCC_Free for the shift value of a shift instruction.
1291   case Instruction::Shl:
1292   case Instruction::LShr:
1293   case Instruction::AShr:
1294     if (Idx == 1)
1295       return TTI::TCC_Free;
1296     break;
1297   case Instruction::Trunc:
1298   case Instruction::ZExt:
1299   case Instruction::SExt:
1300   case Instruction::IntToPtr:
1301   case Instruction::PtrToInt:
1302   case Instruction::BitCast:
1303   case Instruction::PHI:
1304   case Instruction::Call:
1305   case Instruction::Select:
1306   case Instruction::Ret:
1307   case Instruction::Load:
1308     break;
1309   }
1310 
1311   if (Idx == ImmIdx) {
1312     int NumConstants = (BitSize + 63) / 64;
1313     int Cost = X86TTIImpl::getIntImmCost(Imm, Ty);
1314     return (Cost <= NumConstants * TTI::TCC_Basic)
1315                ? static_cast<int>(TTI::TCC_Free)
1316                : Cost;
1317   }
1318 
1319   return X86TTIImpl::getIntImmCost(Imm, Ty);
1320 }
1321 
1322 int X86TTIImpl::getIntImmCost(Intrinsic::ID IID, unsigned Idx, const APInt &Imm,
1323                               Type *Ty) {
1324   assert(Ty->isIntegerTy());
1325 
1326   unsigned BitSize = Ty->getPrimitiveSizeInBits();
1327   // There is no cost model for constants with a bit size of 0. Return TCC_Free
1328   // here, so that constant hoisting will ignore this constant.
1329   if (BitSize == 0)
1330     return TTI::TCC_Free;
1331 
1332   switch (IID) {
1333   default:
1334     return TTI::TCC_Free;
1335   case Intrinsic::sadd_with_overflow:
1336   case Intrinsic::uadd_with_overflow:
1337   case Intrinsic::ssub_with_overflow:
1338   case Intrinsic::usub_with_overflow:
1339   case Intrinsic::smul_with_overflow:
1340   case Intrinsic::umul_with_overflow:
1341     if ((Idx == 1) && Imm.getBitWidth() <= 64 && isInt<32>(Imm.getSExtValue()))
1342       return TTI::TCC_Free;
1343     break;
1344   case Intrinsic::experimental_stackmap:
1345     if ((Idx < 2) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue())))
1346       return TTI::TCC_Free;
1347     break;
1348   case Intrinsic::experimental_patchpoint_void:
1349   case Intrinsic::experimental_patchpoint_i64:
1350     if ((Idx < 4) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue())))
1351       return TTI::TCC_Free;
1352     break;
1353   }
1354   return X86TTIImpl::getIntImmCost(Imm, Ty);
1355 }
1356 
1357 // Return an average cost of Gather / Scatter instruction, maybe improved later
1358 int X86TTIImpl::getGSVectorCost(unsigned Opcode, Type *SrcVTy, Value *Ptr,
1359                                 unsigned Alignment, unsigned AddressSpace) {
1360 
1361   assert(isa<VectorType>(SrcVTy) && "Unexpected type in getGSVectorCost");
1362   unsigned VF = SrcVTy->getVectorNumElements();
1363 
1364   // Try to reduce index size from 64 bit (default for GEP)
1365   // to 32. It is essential for VF 16. If the index can't be reduced to 32, the
1366   // operation will use 16 x 64 indices which do not fit in a zmm and needs
1367   // to split. Also check that the base pointer is the same for all lanes,
1368   // and that there's at most one variable index.
1369   auto getIndexSizeInBits = [](Value *Ptr, const DataLayout& DL) {
1370     unsigned IndexSize = DL.getPointerSizeInBits();
1371     GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr);
1372     if (IndexSize < 64 || !GEP)
1373       return IndexSize;
1374 
1375     unsigned NumOfVarIndices = 0;
1376     Value *Ptrs = GEP->getPointerOperand();
1377     if (Ptrs->getType()->isVectorTy() && !getSplatValue(Ptrs))
1378       return IndexSize;
1379     for (unsigned i = 1; i < GEP->getNumOperands(); ++i) {
1380       if (isa<Constant>(GEP->getOperand(i)))
1381         continue;
1382       Type *IndxTy = GEP->getOperand(i)->getType();
1383       if (IndxTy->isVectorTy())
1384         IndxTy = IndxTy->getVectorElementType();
1385       if ((IndxTy->getPrimitiveSizeInBits() == 64 &&
1386           !isa<SExtInst>(GEP->getOperand(i))) ||
1387          ++NumOfVarIndices > 1)
1388         return IndexSize; // 64
1389     }
1390     return (unsigned)32;
1391   };
1392 
1393 
1394   // Trying to reduce IndexSize to 32 bits for vector 16.
1395   // By default the IndexSize is equal to pointer size.
1396   unsigned IndexSize = (VF >= 16) ? getIndexSizeInBits(Ptr, DL) :
1397     DL.getPointerSizeInBits();
1398 
1399   Type *IndexVTy = VectorType::get(IntegerType::get(SrcVTy->getContext(),
1400                                                     IndexSize), VF);
1401   std::pair<int, MVT> IdxsLT = TLI->getTypeLegalizationCost(DL, IndexVTy);
1402   std::pair<int, MVT> SrcLT = TLI->getTypeLegalizationCost(DL, SrcVTy);
1403   int SplitFactor = std::max(IdxsLT.first, SrcLT.first);
1404   if (SplitFactor > 1) {
1405     // Handle splitting of vector of pointers
1406     Type *SplitSrcTy = VectorType::get(SrcVTy->getScalarType(), VF / SplitFactor);
1407     return SplitFactor * getGSVectorCost(Opcode, SplitSrcTy, Ptr, Alignment,
1408                                          AddressSpace);
1409   }
1410 
1411   // The gather / scatter cost is given by Intel architects. It is a rough
1412   // number since we are looking at one instruction in a time.
1413   const int GSOverhead = 2;
1414   return GSOverhead + VF * getMemoryOpCost(Opcode, SrcVTy->getScalarType(),
1415                                            Alignment, AddressSpace);
1416 }
1417 
1418 /// Return the cost of full scalarization of gather / scatter operation.
1419 ///
1420 /// Opcode - Load or Store instruction.
1421 /// SrcVTy - The type of the data vector that should be gathered or scattered.
1422 /// VariableMask - The mask is non-constant at compile time.
1423 /// Alignment - Alignment for one element.
1424 /// AddressSpace - pointer[s] address space.
1425 ///
1426 int X86TTIImpl::getGSScalarCost(unsigned Opcode, Type *SrcVTy,
1427                                 bool VariableMask, unsigned Alignment,
1428                                 unsigned AddressSpace) {
1429   unsigned VF = SrcVTy->getVectorNumElements();
1430 
1431   int MaskUnpackCost = 0;
1432   if (VariableMask) {
1433     VectorType *MaskTy =
1434       VectorType::get(Type::getInt1Ty(SrcVTy->getContext()), VF);
1435     MaskUnpackCost = getScalarizationOverhead(MaskTy, false, true);
1436     int ScalarCompareCost =
1437       getCmpSelInstrCost(Instruction::ICmp, Type::getInt1Ty(SrcVTy->getContext()),
1438                          nullptr);
1439     int BranchCost = getCFInstrCost(Instruction::Br);
1440     MaskUnpackCost += VF * (BranchCost + ScalarCompareCost);
1441   }
1442 
1443   // The cost of the scalar loads/stores.
1444   int MemoryOpCost = VF * getMemoryOpCost(Opcode, SrcVTy->getScalarType(),
1445                                           Alignment, AddressSpace);
1446 
1447   int InsertExtractCost = 0;
1448   if (Opcode == Instruction::Load)
1449     for (unsigned i = 0; i < VF; ++i)
1450       // Add the cost of inserting each scalar load into the vector
1451       InsertExtractCost +=
1452         getVectorInstrCost(Instruction::InsertElement, SrcVTy, i);
1453   else
1454     for (unsigned i = 0; i < VF; ++i)
1455       // Add the cost of extracting each element out of the data vector
1456       InsertExtractCost +=
1457         getVectorInstrCost(Instruction::ExtractElement, SrcVTy, i);
1458 
1459   return MemoryOpCost + MaskUnpackCost + InsertExtractCost;
1460 }
1461 
1462 /// Calculate the cost of Gather / Scatter operation
1463 int X86TTIImpl::getGatherScatterOpCost(unsigned Opcode, Type *SrcVTy,
1464                                        Value *Ptr, bool VariableMask,
1465                                        unsigned Alignment) {
1466   assert(SrcVTy->isVectorTy() && "Unexpected data type for Gather/Scatter");
1467   unsigned VF = SrcVTy->getVectorNumElements();
1468   PointerType *PtrTy = dyn_cast<PointerType>(Ptr->getType());
1469   if (!PtrTy && Ptr->getType()->isVectorTy())
1470     PtrTy = dyn_cast<PointerType>(Ptr->getType()->getVectorElementType());
1471   assert(PtrTy && "Unexpected type for Ptr argument");
1472   unsigned AddressSpace = PtrTy->getAddressSpace();
1473 
1474   bool Scalarize = false;
1475   if ((Opcode == Instruction::Load && !isLegalMaskedGather(SrcVTy)) ||
1476       (Opcode == Instruction::Store && !isLegalMaskedScatter(SrcVTy)))
1477     Scalarize = true;
1478   // Gather / Scatter for vector 2 is not profitable on KNL / SKX
1479   // Vector-4 of gather/scatter instruction does not exist on KNL.
1480   // We can extend it to 8 elements, but zeroing upper bits of
1481   // the mask vector will add more instructions. Right now we give the scalar
1482   // cost of vector-4 for KNL. TODO: Check, maybe the gather/scatter instruction is
1483   // better in the VariableMask case.
1484   if (VF == 2 || (VF == 4 && !ST->hasVLX()))
1485     Scalarize = true;
1486 
1487   if (Scalarize)
1488     return getGSScalarCost(Opcode, SrcVTy, VariableMask, Alignment, AddressSpace);
1489 
1490   return getGSVectorCost(Opcode, SrcVTy, Ptr, Alignment, AddressSpace);
1491 }
1492 
1493 bool X86TTIImpl::isLegalMaskedLoad(Type *DataTy) {
1494   Type *ScalarTy = DataTy->getScalarType();
1495   int DataWidth = isa<PointerType>(ScalarTy) ?
1496     DL.getPointerSizeInBits() : ScalarTy->getPrimitiveSizeInBits();
1497 
1498   return (DataWidth >= 32 && ST->hasAVX()) ||
1499          (DataWidth >= 8 && ST->hasBWI());
1500 }
1501 
1502 bool X86TTIImpl::isLegalMaskedStore(Type *DataType) {
1503   return isLegalMaskedLoad(DataType);
1504 }
1505 
1506 bool X86TTIImpl::isLegalMaskedGather(Type *DataTy) {
1507   // This function is called now in two cases: from the Loop Vectorizer
1508   // and from the Scalarizer.
1509   // When the Loop Vectorizer asks about legality of the feature,
1510   // the vectorization factor is not calculated yet. The Loop Vectorizer
1511   // sends a scalar type and the decision is based on the width of the
1512   // scalar element.
1513   // Later on, the cost model will estimate usage this intrinsic based on
1514   // the vector type.
1515   // The Scalarizer asks again about legality. It sends a vector type.
1516   // In this case we can reject non-power-of-2 vectors.
1517   if (isa<VectorType>(DataTy) && !isPowerOf2_32(DataTy->getVectorNumElements()))
1518     return false;
1519   Type *ScalarTy = DataTy->getScalarType();
1520   int DataWidth = isa<PointerType>(ScalarTy) ?
1521     DL.getPointerSizeInBits() : ScalarTy->getPrimitiveSizeInBits();
1522 
1523   // AVX-512 allows gather and scatter
1524   return DataWidth >= 32 && ST->hasAVX512();
1525 }
1526 
1527 bool X86TTIImpl::isLegalMaskedScatter(Type *DataType) {
1528   return isLegalMaskedGather(DataType);
1529 }
1530 
1531 bool X86TTIImpl::areInlineCompatible(const Function *Caller,
1532                                      const Function *Callee) const {
1533   const TargetMachine &TM = getTLI()->getTargetMachine();
1534 
1535   // Work this as a subsetting of subtarget features.
1536   const FeatureBitset &CallerBits =
1537       TM.getSubtargetImpl(*Caller)->getFeatureBits();
1538   const FeatureBitset &CalleeBits =
1539       TM.getSubtargetImpl(*Callee)->getFeatureBits();
1540 
1541   // FIXME: This is likely too limiting as it will include subtarget features
1542   // that we might not care about for inlining, but it is conservatively
1543   // correct.
1544   return (CallerBits & CalleeBits) == CalleeBits;
1545 }
1546