1 //===-- X86TargetTransformInfo.cpp - X86 specific TTI pass ----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 /// \file
9 /// This file implements a TargetTransformInfo analysis pass specific to the
10 /// X86 target machine. It uses the target's detailed information to provide
11 /// more precise answers to certain TTI queries, while letting the target
12 /// independent and default TTI implementations handle the rest.
13 ///
14 //===----------------------------------------------------------------------===//
15 /// About Cost Model numbers used below it's necessary to say the following:
16 /// the numbers correspond to some "generic" X86 CPU instead of usage of
17 /// concrete CPU model. Usually the numbers correspond to CPU where the feature
18 /// apeared at the first time. For example, if we do Subtarget.hasSSE42() in
19 /// the lookups below the cost is based on Nehalem as that was the first CPU
20 /// to support that feature level and thus has most likely the worst case cost.
21 /// Some examples of other technologies/CPUs:
22 ///   SSE 3   - Pentium4 / Athlon64
23 ///   SSE 4.1 - Penryn
24 ///   SSE 4.2 - Nehalem
25 ///   AVX     - Sandy Bridge
26 ///   AVX2    - Haswell
27 ///   AVX-512 - Xeon Phi / Skylake
28 /// And some examples of instruction target dependent costs (latency)
29 ///                   divss     sqrtss          rsqrtss
30 ///   AMD K7            11-16     19              3
31 ///   Piledriver        9-24      13-15           5
32 ///   Jaguar            14        16              2
33 ///   Pentium II,III    18        30              2
34 ///   Nehalem           7-14      7-18            3
35 ///   Haswell           10-13     11              5
36 /// TODO: Develop and implement  the target dependent cost model and
37 /// specialize cost numbers for different Cost Model Targets such as throughput,
38 /// code size, latency and uop count.
39 //===----------------------------------------------------------------------===//
40 
41 #include "X86TargetTransformInfo.h"
42 #include "llvm/Analysis/TargetTransformInfo.h"
43 #include "llvm/CodeGen/BasicTTIImpl.h"
44 #include "llvm/CodeGen/CostTable.h"
45 #include "llvm/CodeGen/TargetLowering.h"
46 #include "llvm/IR/IntrinsicInst.h"
47 #include "llvm/Support/Debug.h"
48 
49 using namespace llvm;
50 
51 #define DEBUG_TYPE "x86tti"
52 
53 //===----------------------------------------------------------------------===//
54 //
55 // X86 cost model.
56 //
57 //===----------------------------------------------------------------------===//
58 
59 TargetTransformInfo::PopcntSupportKind
60 X86TTIImpl::getPopcntSupport(unsigned TyWidth) {
61   assert(isPowerOf2_32(TyWidth) && "Ty width must be power of 2");
62   // TODO: Currently the __builtin_popcount() implementation using SSE3
63   //   instructions is inefficient. Once the problem is fixed, we should
64   //   call ST->hasSSE3() instead of ST->hasPOPCNT().
65   return ST->hasPOPCNT() ? TTI::PSK_FastHardware : TTI::PSK_Software;
66 }
67 
68 llvm::Optional<unsigned> X86TTIImpl::getCacheSize(
69   TargetTransformInfo::CacheLevel Level) const {
70   switch (Level) {
71   case TargetTransformInfo::CacheLevel::L1D:
72     //   - Penryn
73     //   - Nehalem
74     //   - Westmere
75     //   - Sandy Bridge
76     //   - Ivy Bridge
77     //   - Haswell
78     //   - Broadwell
79     //   - Skylake
80     //   - Kabylake
81     return 32 * 1024;  //  32 KByte
82   case TargetTransformInfo::CacheLevel::L2D:
83     //   - Penryn
84     //   - Nehalem
85     //   - Westmere
86     //   - Sandy Bridge
87     //   - Ivy Bridge
88     //   - Haswell
89     //   - Broadwell
90     //   - Skylake
91     //   - Kabylake
92     return 256 * 1024; // 256 KByte
93   }
94 
95   llvm_unreachable("Unknown TargetTransformInfo::CacheLevel");
96 }
97 
98 llvm::Optional<unsigned> X86TTIImpl::getCacheAssociativity(
99   TargetTransformInfo::CacheLevel Level) const {
100   //   - Penryn
101   //   - Nehalem
102   //   - Westmere
103   //   - Sandy Bridge
104   //   - Ivy Bridge
105   //   - Haswell
106   //   - Broadwell
107   //   - Skylake
108   //   - Kabylake
109   switch (Level) {
110   case TargetTransformInfo::CacheLevel::L1D:
111     LLVM_FALLTHROUGH;
112   case TargetTransformInfo::CacheLevel::L2D:
113     return 8;
114   }
115 
116   llvm_unreachable("Unknown TargetTransformInfo::CacheLevel");
117 }
118 
119 unsigned X86TTIImpl::getNumberOfRegisters(unsigned ClassID) const {
120   bool Vector = (ClassID == 1);
121   if (Vector && !ST->hasSSE1())
122     return 0;
123 
124   if (ST->is64Bit()) {
125     if (Vector && ST->hasAVX512())
126       return 32;
127     return 16;
128   }
129   return 8;
130 }
131 
132 TypeSize
133 X86TTIImpl::getRegisterBitWidth(TargetTransformInfo::RegisterKind K) const {
134   unsigned PreferVectorWidth = ST->getPreferVectorWidth();
135   switch (K) {
136   case TargetTransformInfo::RGK_Scalar:
137     return TypeSize::getFixed(ST->is64Bit() ? 64 : 32);
138   case TargetTransformInfo::RGK_FixedWidthVector:
139     if (ST->hasAVX512() && PreferVectorWidth >= 512)
140       return TypeSize::getFixed(512);
141     if (ST->hasAVX() && PreferVectorWidth >= 256)
142       return TypeSize::getFixed(256);
143     if (ST->hasSSE1() && PreferVectorWidth >= 128)
144       return TypeSize::getFixed(128);
145     return TypeSize::getFixed(0);
146   case TargetTransformInfo::RGK_ScalableVector:
147     return TypeSize::getScalable(0);
148   }
149 
150   llvm_unreachable("Unsupported register kind");
151 }
152 
153 unsigned X86TTIImpl::getLoadStoreVecRegBitWidth(unsigned) const {
154   return getRegisterBitWidth(TargetTransformInfo::RGK_FixedWidthVector)
155       .getFixedSize();
156 }
157 
158 unsigned X86TTIImpl::getMaxInterleaveFactor(unsigned VF) {
159   // If the loop will not be vectorized, don't interleave the loop.
160   // Let regular unroll to unroll the loop, which saves the overflow
161   // check and memory check cost.
162   if (VF == 1)
163     return 1;
164 
165   if (ST->isAtom())
166     return 1;
167 
168   // Sandybridge and Haswell have multiple execution ports and pipelined
169   // vector units.
170   if (ST->hasAVX())
171     return 4;
172 
173   return 2;
174 }
175 
176 InstructionCost X86TTIImpl::getArithmeticInstrCost(
177     unsigned Opcode, Type *Ty, TTI::TargetCostKind CostKind,
178     TTI::OperandValueKind Op1Info, TTI::OperandValueKind Op2Info,
179     TTI::OperandValueProperties Opd1PropInfo,
180     TTI::OperandValueProperties Opd2PropInfo, ArrayRef<const Value *> Args,
181     const Instruction *CxtI) {
182   // TODO: Handle more cost kinds.
183   if (CostKind != TTI::TCK_RecipThroughput)
184     return BaseT::getArithmeticInstrCost(Opcode, Ty, CostKind, Op1Info,
185                                          Op2Info, Opd1PropInfo,
186                                          Opd2PropInfo, Args, CxtI);
187 
188   // vXi8 multiplications are always promoted to vXi16.
189   if (Opcode == Instruction::Mul && Ty->isVectorTy() &&
190       Ty->getScalarSizeInBits() == 8) {
191     Type *WideVecTy =
192         VectorType::getExtendedElementVectorType(cast<VectorType>(Ty));
193     return getCastInstrCost(Instruction::ZExt, WideVecTy, Ty,
194                             TargetTransformInfo::CastContextHint::None,
195                             CostKind) +
196            getCastInstrCost(Instruction::Trunc, Ty, WideVecTy,
197                             TargetTransformInfo::CastContextHint::None,
198                             CostKind) +
199            getArithmeticInstrCost(Opcode, WideVecTy, CostKind, Op1Info, Op2Info,
200                                   Opd1PropInfo, Opd2PropInfo);
201   }
202 
203   // Legalize the type.
204   std::pair<InstructionCost, MVT> LT = TLI->getTypeLegalizationCost(DL, Ty);
205 
206   int ISD = TLI->InstructionOpcodeToISD(Opcode);
207   assert(ISD && "Invalid opcode");
208 
209   if (ISD == ISD::MUL && Args.size() == 2 && LT.second.isVector() &&
210       LT.second.getScalarType() == MVT::i32) {
211     // Check if the operands can be represented as a smaller datatype.
212     bool Op1Signed = false, Op2Signed = false;
213     unsigned Op1MinSize = BaseT::minRequiredElementSize(Args[0], Op1Signed);
214     unsigned Op2MinSize = BaseT::minRequiredElementSize(Args[1], Op2Signed);
215     unsigned OpMinSize = std::max(Op1MinSize, Op2MinSize);
216 
217     // If both are representable as i15 and at least one is constant,
218     // zero-extended, or sign-extended from vXi16 (or less pre-SSE41) then we
219     // can treat this as PMADDWD which has the same costs as a vXi16 multiply.
220     if (OpMinSize <= 15 && !ST->isPMADDWDSlow()) {
221       bool Op1Constant =
222           isa<ConstantDataVector>(Args[0]) || isa<ConstantVector>(Args[0]);
223       bool Op2Constant =
224           isa<ConstantDataVector>(Args[1]) || isa<ConstantVector>(Args[1]);
225       bool Op1Sext = isa<SExtInst>(Args[0]) &&
226                      (Op1MinSize == 15 || (Op1MinSize < 15 && !ST->hasSSE41()));
227       bool Op2Sext = isa<SExtInst>(Args[1]) &&
228                      (Op2MinSize == 15 || (Op2MinSize < 15 && !ST->hasSSE41()));
229 
230       bool IsZeroExtended = !Op1Signed || !Op2Signed;
231       bool IsConstant = Op1Constant || Op2Constant;
232       bool IsSext = Op1Sext || Op2Sext;
233       if (IsConstant || IsZeroExtended || IsSext)
234         LT.second =
235             MVT::getVectorVT(MVT::i16, 2 * LT.second.getVectorNumElements());
236     }
237   }
238 
239   // Vector multiply by pow2 will be simplified to shifts.
240   if (ISD == ISD::MUL &&
241       (Op2Info == TargetTransformInfo::OK_UniformConstantValue ||
242        Op2Info == TargetTransformInfo::OK_NonUniformConstantValue) &&
243       Opd2PropInfo == TargetTransformInfo::OP_PowerOf2)
244     return getArithmeticInstrCost(Instruction::Shl, Ty, CostKind, Op1Info,
245                                   Op2Info, TargetTransformInfo::OP_None,
246                                   TargetTransformInfo::OP_None);
247 
248   // On X86, vector signed division by constants power-of-two are
249   // normally expanded to the sequence SRA + SRL + ADD + SRA.
250   // The OperandValue properties may not be the same as that of the previous
251   // operation; conservatively assume OP_None.
252   if ((ISD == ISD::SDIV || ISD == ISD::SREM) &&
253       (Op2Info == TargetTransformInfo::OK_UniformConstantValue ||
254        Op2Info == TargetTransformInfo::OK_NonUniformConstantValue) &&
255       Opd2PropInfo == TargetTransformInfo::OP_PowerOf2) {
256     InstructionCost Cost =
257         2 * getArithmeticInstrCost(Instruction::AShr, Ty, CostKind, Op1Info,
258                                    Op2Info, TargetTransformInfo::OP_None,
259                                    TargetTransformInfo::OP_None);
260     Cost += getArithmeticInstrCost(Instruction::LShr, Ty, CostKind, Op1Info,
261                                    Op2Info, TargetTransformInfo::OP_None,
262                                    TargetTransformInfo::OP_None);
263     Cost += getArithmeticInstrCost(Instruction::Add, Ty, CostKind, Op1Info,
264                                    Op2Info, TargetTransformInfo::OP_None,
265                                    TargetTransformInfo::OP_None);
266 
267     if (ISD == ISD::SREM) {
268       // For SREM: (X % C) is the equivalent of (X - (X/C)*C)
269       Cost += getArithmeticInstrCost(Instruction::Mul, Ty, CostKind, Op1Info,
270                                      Op2Info);
271       Cost += getArithmeticInstrCost(Instruction::Sub, Ty, CostKind, Op1Info,
272                                      Op2Info);
273     }
274 
275     return Cost;
276   }
277 
278   // Vector unsigned division/remainder will be simplified to shifts/masks.
279   if ((ISD == ISD::UDIV || ISD == ISD::UREM) &&
280       (Op2Info == TargetTransformInfo::OK_UniformConstantValue ||
281        Op2Info == TargetTransformInfo::OK_NonUniformConstantValue) &&
282       Opd2PropInfo == TargetTransformInfo::OP_PowerOf2) {
283     if (ISD == ISD::UDIV)
284       return getArithmeticInstrCost(Instruction::LShr, Ty, CostKind, Op1Info,
285                                     Op2Info, TargetTransformInfo::OP_None,
286                                     TargetTransformInfo::OP_None);
287     // UREM
288     return getArithmeticInstrCost(Instruction::And, Ty, CostKind, Op1Info,
289                                   Op2Info, TargetTransformInfo::OP_None,
290                                   TargetTransformInfo::OP_None);
291   }
292 
293   static const CostTblEntry GLMCostTable[] = {
294     { ISD::FDIV,  MVT::f32,   18 }, // divss
295     { ISD::FDIV,  MVT::v4f32, 35 }, // divps
296     { ISD::FDIV,  MVT::f64,   33 }, // divsd
297     { ISD::FDIV,  MVT::v2f64, 65 }, // divpd
298   };
299 
300   if (ST->useGLMDivSqrtCosts())
301     if (const auto *Entry = CostTableLookup(GLMCostTable, ISD,
302                                             LT.second))
303       return LT.first * Entry->Cost;
304 
305   static const CostTblEntry SLMCostTable[] = {
306     { ISD::MUL,   MVT::v4i32, 11 }, // pmulld
307     { ISD::MUL,   MVT::v8i16, 2  }, // pmullw
308     { ISD::FMUL,  MVT::f64,   2  }, // mulsd
309     { ISD::FMUL,  MVT::v2f64, 4  }, // mulpd
310     { ISD::FMUL,  MVT::v4f32, 2  }, // mulps
311     { ISD::FDIV,  MVT::f32,   17 }, // divss
312     { ISD::FDIV,  MVT::v4f32, 39 }, // divps
313     { ISD::FDIV,  MVT::f64,   32 }, // divsd
314     { ISD::FDIV,  MVT::v2f64, 69 }, // divpd
315     { ISD::FADD,  MVT::v2f64, 2  }, // addpd
316     { ISD::FSUB,  MVT::v2f64, 2  }, // subpd
317     // v2i64/v4i64 mul is custom lowered as a series of long:
318     // multiplies(3), shifts(3) and adds(2)
319     // slm muldq version throughput is 2 and addq throughput 4
320     // thus: 3X2 (muldq throughput) + 3X1 (shift throughput) +
321     //       3X4 (addq throughput) = 17
322     { ISD::MUL,   MVT::v2i64, 17 },
323     // slm addq\subq throughput is 4
324     { ISD::ADD,   MVT::v2i64, 4  },
325     { ISD::SUB,   MVT::v2i64, 4  },
326   };
327 
328   if (ST->useSLMArithCosts()) {
329     if (Args.size() == 2 && ISD == ISD::MUL && LT.second == MVT::v4i32) {
330       // Check if the operands can be shrinked into a smaller datatype.
331       // TODO: Merge this into generiic vXi32 MUL patterns above.
332       bool Op1Signed = false;
333       unsigned Op1MinSize = BaseT::minRequiredElementSize(Args[0], Op1Signed);
334       bool Op2Signed = false;
335       unsigned Op2MinSize = BaseT::minRequiredElementSize(Args[1], Op2Signed);
336 
337       bool SignedMode = Op1Signed || Op2Signed;
338       unsigned OpMinSize = std::max(Op1MinSize, Op2MinSize);
339 
340       if (OpMinSize <= 7)
341         return LT.first * 3; // pmullw/sext
342       if (!SignedMode && OpMinSize <= 8)
343         return LT.first * 3; // pmullw/zext
344       if (OpMinSize <= 15)
345         return LT.first * 5; // pmullw/pmulhw/pshuf
346       if (!SignedMode && OpMinSize <= 16)
347         return LT.first * 5; // pmullw/pmulhw/pshuf
348     }
349 
350     if (const auto *Entry = CostTableLookup(SLMCostTable, ISD,
351                                             LT.second)) {
352       return LT.first * Entry->Cost;
353     }
354   }
355 
356   static const CostTblEntry AVX512BWUniformConstCostTable[] = {
357     { ISD::SHL,  MVT::v64i8,   2 }, // psllw + pand.
358     { ISD::SRL,  MVT::v64i8,   2 }, // psrlw + pand.
359     { ISD::SRA,  MVT::v64i8,   4 }, // psrlw, pand, pxor, psubb.
360   };
361 
362   if (Op2Info == TargetTransformInfo::OK_UniformConstantValue &&
363       ST->hasBWI()) {
364     if (const auto *Entry = CostTableLookup(AVX512BWUniformConstCostTable, ISD,
365                                             LT.second))
366       return LT.first * Entry->Cost;
367   }
368 
369   static const CostTblEntry AVX512UniformConstCostTable[] = {
370     { ISD::SRA,  MVT::v2i64,   1 },
371     { ISD::SRA,  MVT::v4i64,   1 },
372     { ISD::SRA,  MVT::v8i64,   1 },
373 
374     { ISD::SHL,  MVT::v64i8,   4 }, // psllw + pand.
375     { ISD::SRL,  MVT::v64i8,   4 }, // psrlw + pand.
376     { ISD::SRA,  MVT::v64i8,   8 }, // psrlw, pand, pxor, psubb.
377 
378     { ISD::SDIV, MVT::v16i32,  6 }, // pmuludq sequence
379     { ISD::SREM, MVT::v16i32,  8 }, // pmuludq+mul+sub sequence
380     { ISD::UDIV, MVT::v16i32,  5 }, // pmuludq sequence
381     { ISD::UREM, MVT::v16i32,  7 }, // pmuludq+mul+sub sequence
382   };
383 
384   if (Op2Info == TargetTransformInfo::OK_UniformConstantValue &&
385       ST->hasAVX512()) {
386     if (const auto *Entry = CostTableLookup(AVX512UniformConstCostTable, ISD,
387                                             LT.second))
388       return LT.first * Entry->Cost;
389   }
390 
391   static const CostTblEntry AVX2UniformConstCostTable[] = {
392     { ISD::SHL,  MVT::v32i8,   2 }, // psllw + pand.
393     { ISD::SRL,  MVT::v32i8,   2 }, // psrlw + pand.
394     { ISD::SRA,  MVT::v32i8,   4 }, // psrlw, pand, pxor, psubb.
395 
396     { ISD::SRA,  MVT::v4i64,   4 }, // 2 x psrad + shuffle.
397 
398     { ISD::SDIV, MVT::v8i32,   6 }, // pmuludq sequence
399     { ISD::SREM, MVT::v8i32,   8 }, // pmuludq+mul+sub sequence
400     { ISD::UDIV, MVT::v8i32,   5 }, // pmuludq sequence
401     { ISD::UREM, MVT::v8i32,   7 }, // pmuludq+mul+sub sequence
402   };
403 
404   if (Op2Info == TargetTransformInfo::OK_UniformConstantValue &&
405       ST->hasAVX2()) {
406     if (const auto *Entry = CostTableLookup(AVX2UniformConstCostTable, ISD,
407                                             LT.second))
408       return LT.first * Entry->Cost;
409   }
410 
411   static const CostTblEntry SSE2UniformConstCostTable[] = {
412     { ISD::SHL,  MVT::v16i8,     2 }, // psllw + pand.
413     { ISD::SRL,  MVT::v16i8,     2 }, // psrlw + pand.
414     { ISD::SRA,  MVT::v16i8,     4 }, // psrlw, pand, pxor, psubb.
415 
416     { ISD::SHL,  MVT::v32i8,   4+2 }, // 2*(psllw + pand) + split.
417     { ISD::SRL,  MVT::v32i8,   4+2 }, // 2*(psrlw + pand) + split.
418     { ISD::SRA,  MVT::v32i8,   8+2 }, // 2*(psrlw, pand, pxor, psubb) + split.
419 
420     { ISD::SDIV, MVT::v8i32,  12+2 }, // 2*pmuludq sequence + split.
421     { ISD::SREM, MVT::v8i32,  16+2 }, // 2*pmuludq+mul+sub sequence + split.
422     { ISD::SDIV, MVT::v4i32,     6 }, // pmuludq sequence
423     { ISD::SREM, MVT::v4i32,     8 }, // pmuludq+mul+sub sequence
424     { ISD::UDIV, MVT::v8i32,  10+2 }, // 2*pmuludq sequence + split.
425     { ISD::UREM, MVT::v8i32,  14+2 }, // 2*pmuludq+mul+sub sequence + split.
426     { ISD::UDIV, MVT::v4i32,     5 }, // pmuludq sequence
427     { ISD::UREM, MVT::v4i32,     7 }, // pmuludq+mul+sub sequence
428   };
429 
430   // XOP has faster vXi8 shifts.
431   if (Op2Info == TargetTransformInfo::OK_UniformConstantValue &&
432       ST->hasSSE2() && !ST->hasXOP()) {
433     if (const auto *Entry =
434             CostTableLookup(SSE2UniformConstCostTable, ISD, LT.second))
435       return LT.first * Entry->Cost;
436   }
437 
438   static const CostTblEntry AVX512BWConstCostTable[] = {
439     { ISD::SDIV, MVT::v64i8,  14 }, // 2*ext+2*pmulhw sequence
440     { ISD::SREM, MVT::v64i8,  16 }, // 2*ext+2*pmulhw+mul+sub sequence
441     { ISD::UDIV, MVT::v64i8,  14 }, // 2*ext+2*pmulhw sequence
442     { ISD::UREM, MVT::v64i8,  16 }, // 2*ext+2*pmulhw+mul+sub sequence
443     { ISD::SDIV, MVT::v32i16,  6 }, // vpmulhw sequence
444     { ISD::SREM, MVT::v32i16,  8 }, // vpmulhw+mul+sub sequence
445     { ISD::UDIV, MVT::v32i16,  6 }, // vpmulhuw sequence
446     { ISD::UREM, MVT::v32i16,  8 }, // vpmulhuw+mul+sub sequence
447   };
448 
449   if ((Op2Info == TargetTransformInfo::OK_UniformConstantValue ||
450        Op2Info == TargetTransformInfo::OK_NonUniformConstantValue) &&
451       ST->hasBWI()) {
452     if (const auto *Entry =
453             CostTableLookup(AVX512BWConstCostTable, ISD, LT.second))
454       return LT.first * Entry->Cost;
455   }
456 
457   static const CostTblEntry AVX512ConstCostTable[] = {
458     { ISD::SDIV, MVT::v16i32, 15 }, // vpmuldq sequence
459     { ISD::SREM, MVT::v16i32, 17 }, // vpmuldq+mul+sub sequence
460     { ISD::UDIV, MVT::v16i32, 15 }, // vpmuludq sequence
461     { ISD::UREM, MVT::v16i32, 17 }, // vpmuludq+mul+sub sequence
462     { ISD::SDIV, MVT::v64i8,  28 }, // 4*ext+4*pmulhw sequence
463     { ISD::SREM, MVT::v64i8,  32 }, // 4*ext+4*pmulhw+mul+sub sequence
464     { ISD::UDIV, MVT::v64i8,  28 }, // 4*ext+4*pmulhw sequence
465     { ISD::UREM, MVT::v64i8,  32 }, // 4*ext+4*pmulhw+mul+sub sequence
466     { ISD::SDIV, MVT::v32i16, 12 }, // 2*vpmulhw sequence
467     { ISD::SREM, MVT::v32i16, 16 }, // 2*vpmulhw+mul+sub sequence
468     { ISD::UDIV, MVT::v32i16, 12 }, // 2*vpmulhuw sequence
469     { ISD::UREM, MVT::v32i16, 16 }, // 2*vpmulhuw+mul+sub sequence
470   };
471 
472   if ((Op2Info == TargetTransformInfo::OK_UniformConstantValue ||
473        Op2Info == TargetTransformInfo::OK_NonUniformConstantValue) &&
474       ST->hasAVX512()) {
475     if (const auto *Entry =
476             CostTableLookup(AVX512ConstCostTable, ISD, LT.second))
477       return LT.first * Entry->Cost;
478   }
479 
480   static const CostTblEntry AVX2ConstCostTable[] = {
481     { ISD::SDIV, MVT::v32i8,  14 }, // 2*ext+2*pmulhw sequence
482     { ISD::SREM, MVT::v32i8,  16 }, // 2*ext+2*pmulhw+mul+sub sequence
483     { ISD::UDIV, MVT::v32i8,  14 }, // 2*ext+2*pmulhw sequence
484     { ISD::UREM, MVT::v32i8,  16 }, // 2*ext+2*pmulhw+mul+sub sequence
485     { ISD::SDIV, MVT::v16i16,  6 }, // vpmulhw sequence
486     { ISD::SREM, MVT::v16i16,  8 }, // vpmulhw+mul+sub sequence
487     { ISD::UDIV, MVT::v16i16,  6 }, // vpmulhuw sequence
488     { ISD::UREM, MVT::v16i16,  8 }, // vpmulhuw+mul+sub sequence
489     { ISD::SDIV, MVT::v8i32,  15 }, // vpmuldq sequence
490     { ISD::SREM, MVT::v8i32,  19 }, // vpmuldq+mul+sub sequence
491     { ISD::UDIV, MVT::v8i32,  15 }, // vpmuludq sequence
492     { ISD::UREM, MVT::v8i32,  19 }, // vpmuludq+mul+sub sequence
493   };
494 
495   if ((Op2Info == TargetTransformInfo::OK_UniformConstantValue ||
496        Op2Info == TargetTransformInfo::OK_NonUniformConstantValue) &&
497       ST->hasAVX2()) {
498     if (const auto *Entry = CostTableLookup(AVX2ConstCostTable, ISD, LT.second))
499       return LT.first * Entry->Cost;
500   }
501 
502   static const CostTblEntry SSE2ConstCostTable[] = {
503     { ISD::SDIV, MVT::v32i8,  28+2 }, // 4*ext+4*pmulhw sequence + split.
504     { ISD::SREM, MVT::v32i8,  32+2 }, // 4*ext+4*pmulhw+mul+sub sequence + split.
505     { ISD::SDIV, MVT::v16i8,    14 }, // 2*ext+2*pmulhw sequence
506     { ISD::SREM, MVT::v16i8,    16 }, // 2*ext+2*pmulhw+mul+sub sequence
507     { ISD::UDIV, MVT::v32i8,  28+2 }, // 4*ext+4*pmulhw sequence + split.
508     { ISD::UREM, MVT::v32i8,  32+2 }, // 4*ext+4*pmulhw+mul+sub sequence + split.
509     { ISD::UDIV, MVT::v16i8,    14 }, // 2*ext+2*pmulhw sequence
510     { ISD::UREM, MVT::v16i8,    16 }, // 2*ext+2*pmulhw+mul+sub sequence
511     { ISD::SDIV, MVT::v16i16, 12+2 }, // 2*pmulhw sequence + split.
512     { ISD::SREM, MVT::v16i16, 16+2 }, // 2*pmulhw+mul+sub sequence + split.
513     { ISD::SDIV, MVT::v8i16,     6 }, // pmulhw sequence
514     { ISD::SREM, MVT::v8i16,     8 }, // pmulhw+mul+sub sequence
515     { ISD::UDIV, MVT::v16i16, 12+2 }, // 2*pmulhuw sequence + split.
516     { ISD::UREM, MVT::v16i16, 16+2 }, // 2*pmulhuw+mul+sub sequence + split.
517     { ISD::UDIV, MVT::v8i16,     6 }, // pmulhuw sequence
518     { ISD::UREM, MVT::v8i16,     8 }, // pmulhuw+mul+sub sequence
519     { ISD::SDIV, MVT::v8i32,  38+2 }, // 2*pmuludq sequence + split.
520     { ISD::SREM, MVT::v8i32,  48+2 }, // 2*pmuludq+mul+sub sequence + split.
521     { ISD::SDIV, MVT::v4i32,    19 }, // pmuludq sequence
522     { ISD::SREM, MVT::v4i32,    24 }, // pmuludq+mul+sub sequence
523     { ISD::UDIV, MVT::v8i32,  30+2 }, // 2*pmuludq sequence + split.
524     { ISD::UREM, MVT::v8i32,  40+2 }, // 2*pmuludq+mul+sub sequence + split.
525     { ISD::UDIV, MVT::v4i32,    15 }, // pmuludq sequence
526     { ISD::UREM, MVT::v4i32,    20 }, // pmuludq+mul+sub sequence
527   };
528 
529   if ((Op2Info == TargetTransformInfo::OK_UniformConstantValue ||
530        Op2Info == TargetTransformInfo::OK_NonUniformConstantValue) &&
531       ST->hasSSE2()) {
532     // pmuldq sequence.
533     if (ISD == ISD::SDIV && LT.second == MVT::v8i32 && ST->hasAVX())
534       return LT.first * 32;
535     if (ISD == ISD::SREM && LT.second == MVT::v8i32 && ST->hasAVX())
536       return LT.first * 38;
537     if (ISD == ISD::SDIV && LT.second == MVT::v4i32 && ST->hasSSE41())
538       return LT.first * 15;
539     if (ISD == ISD::SREM && LT.second == MVT::v4i32 && ST->hasSSE41())
540       return LT.first * 20;
541 
542     if (const auto *Entry = CostTableLookup(SSE2ConstCostTable, ISD, LT.second))
543       return LT.first * Entry->Cost;
544   }
545 
546   static const CostTblEntry AVX512BWShiftCostTable[] = {
547     { ISD::SHL,   MVT::v16i8,      4 }, // extend/vpsllvw/pack sequence.
548     { ISD::SRL,   MVT::v16i8,      4 }, // extend/vpsrlvw/pack sequence.
549     { ISD::SRA,   MVT::v16i8,      4 }, // extend/vpsravw/pack sequence.
550     { ISD::SHL,   MVT::v32i8,      4 }, // extend/vpsllvw/pack sequence.
551     { ISD::SRL,   MVT::v32i8,      4 }, // extend/vpsrlvw/pack sequence.
552     { ISD::SRA,   MVT::v32i8,      6 }, // extend/vpsravw/pack sequence.
553     { ISD::SHL,   MVT::v64i8,      6 }, // extend/vpsllvw/pack sequence.
554     { ISD::SRL,   MVT::v64i8,      7 }, // extend/vpsrlvw/pack sequence.
555     { ISD::SRA,   MVT::v64i8,     15 }, // extend/vpsravw/pack sequence.
556 
557     { ISD::SHL,   MVT::v8i16,      1 }, // vpsllvw
558     { ISD::SRL,   MVT::v8i16,      1 }, // vpsrlvw
559     { ISD::SRA,   MVT::v8i16,      1 }, // vpsravw
560     { ISD::SHL,   MVT::v16i16,     1 }, // vpsllvw
561     { ISD::SRL,   MVT::v16i16,     1 }, // vpsrlvw
562     { ISD::SRA,   MVT::v16i16,     1 }, // vpsravw
563     { ISD::SHL,   MVT::v32i16,     1 }, // vpsllvw
564     { ISD::SRL,   MVT::v32i16,     1 }, // vpsrlvw
565     { ISD::SRA,   MVT::v32i16,     1 }, // vpsravw
566   };
567 
568   if (ST->hasBWI())
569     if (const auto *Entry = CostTableLookup(AVX512BWShiftCostTable, ISD, LT.second))
570       return LT.first * Entry->Cost;
571 
572   static const CostTblEntry AVX2UniformCostTable[] = {
573     // Uniform splats are cheaper for the following instructions.
574     { ISD::SHL,  MVT::v16i16, 1 }, // psllw.
575     { ISD::SRL,  MVT::v16i16, 1 }, // psrlw.
576     { ISD::SRA,  MVT::v16i16, 1 }, // psraw.
577     { ISD::SHL,  MVT::v32i16, 2 }, // 2*psllw.
578     { ISD::SRL,  MVT::v32i16, 2 }, // 2*psrlw.
579     { ISD::SRA,  MVT::v32i16, 2 }, // 2*psraw.
580 
581     { ISD::SHL,  MVT::v8i32,  1 }, // pslld
582     { ISD::SRL,  MVT::v8i32,  1 }, // psrld
583     { ISD::SRA,  MVT::v8i32,  1 }, // psrad
584     { ISD::SHL,  MVT::v4i64,  1 }, // psllq
585     { ISD::SRL,  MVT::v4i64,  1 }, // psrlq
586   };
587 
588   if (ST->hasAVX2() &&
589       ((Op2Info == TargetTransformInfo::OK_UniformConstantValue) ||
590        (Op2Info == TargetTransformInfo::OK_UniformValue))) {
591     if (const auto *Entry =
592             CostTableLookup(AVX2UniformCostTable, ISD, LT.second))
593       return LT.first * Entry->Cost;
594   }
595 
596   static const CostTblEntry SSE2UniformCostTable[] = {
597     // Uniform splats are cheaper for the following instructions.
598     { ISD::SHL,  MVT::v8i16,  1 }, // psllw.
599     { ISD::SHL,  MVT::v4i32,  1 }, // pslld
600     { ISD::SHL,  MVT::v2i64,  1 }, // psllq.
601 
602     { ISD::SRL,  MVT::v8i16,  1 }, // psrlw.
603     { ISD::SRL,  MVT::v4i32,  1 }, // psrld.
604     { ISD::SRL,  MVT::v2i64,  1 }, // psrlq.
605 
606     { ISD::SRA,  MVT::v8i16,  1 }, // psraw.
607     { ISD::SRA,  MVT::v4i32,  1 }, // psrad.
608   };
609 
610   if (ST->hasSSE2() &&
611       ((Op2Info == TargetTransformInfo::OK_UniformConstantValue) ||
612        (Op2Info == TargetTransformInfo::OK_UniformValue))) {
613     if (const auto *Entry =
614             CostTableLookup(SSE2UniformCostTable, ISD, LT.second))
615       return LT.first * Entry->Cost;
616   }
617 
618   static const CostTblEntry AVX512DQCostTable[] = {
619     { ISD::MUL,  MVT::v2i64, 2 }, // pmullq
620     { ISD::MUL,  MVT::v4i64, 2 }, // pmullq
621     { ISD::MUL,  MVT::v8i64, 2 }  // pmullq
622   };
623 
624   // Look for AVX512DQ lowering tricks for custom cases.
625   if (ST->hasDQI())
626     if (const auto *Entry = CostTableLookup(AVX512DQCostTable, ISD, LT.second))
627       return LT.first * Entry->Cost;
628 
629   static const CostTblEntry AVX512BWCostTable[] = {
630     { ISD::SHL,   MVT::v64i8,     11 }, // vpblendvb sequence.
631     { ISD::SRL,   MVT::v64i8,     11 }, // vpblendvb sequence.
632     { ISD::SRA,   MVT::v64i8,     24 }, // vpblendvb sequence.
633   };
634 
635   // Look for AVX512BW lowering tricks for custom cases.
636   if (ST->hasBWI())
637     if (const auto *Entry = CostTableLookup(AVX512BWCostTable, ISD, LT.second))
638       return LT.first * Entry->Cost;
639 
640   static const CostTblEntry AVX512CostTable[] = {
641     { ISD::SHL,     MVT::v4i32,      1 },
642     { ISD::SRL,     MVT::v4i32,      1 },
643     { ISD::SRA,     MVT::v4i32,      1 },
644     { ISD::SHL,     MVT::v8i32,      1 },
645     { ISD::SRL,     MVT::v8i32,      1 },
646     { ISD::SRA,     MVT::v8i32,      1 },
647     { ISD::SHL,     MVT::v16i32,     1 },
648     { ISD::SRL,     MVT::v16i32,     1 },
649     { ISD::SRA,     MVT::v16i32,     1 },
650 
651     { ISD::SHL,     MVT::v2i64,      1 },
652     { ISD::SRL,     MVT::v2i64,      1 },
653     { ISD::SHL,     MVT::v4i64,      1 },
654     { ISD::SRL,     MVT::v4i64,      1 },
655     { ISD::SHL,     MVT::v8i64,      1 },
656     { ISD::SRL,     MVT::v8i64,      1 },
657 
658     { ISD::SRA,     MVT::v2i64,      1 },
659     { ISD::SRA,     MVT::v4i64,      1 },
660     { ISD::SRA,     MVT::v8i64,      1 },
661 
662     { ISD::MUL,     MVT::v16i32,     1 }, // pmulld (Skylake from agner.org)
663     { ISD::MUL,     MVT::v8i32,      1 }, // pmulld (Skylake from agner.org)
664     { ISD::MUL,     MVT::v4i32,      1 }, // pmulld (Skylake from agner.org)
665     { ISD::MUL,     MVT::v8i64,      6 }, // 3*pmuludq/3*shift/2*add
666     { ISD::MUL,     MVT::i64,        1 }, // Skylake from http://www.agner.org/
667 
668     { ISD::FNEG,    MVT::v8f64,      1 }, // Skylake from http://www.agner.org/
669     { ISD::FADD,    MVT::v8f64,      1 }, // Skylake from http://www.agner.org/
670     { ISD::FSUB,    MVT::v8f64,      1 }, // Skylake from http://www.agner.org/
671     { ISD::FMUL,    MVT::v8f64,      1 }, // Skylake from http://www.agner.org/
672     { ISD::FDIV,    MVT::f64,        4 }, // Skylake from http://www.agner.org/
673     { ISD::FDIV,    MVT::v2f64,      4 }, // Skylake from http://www.agner.org/
674     { ISD::FDIV,    MVT::v4f64,      8 }, // Skylake from http://www.agner.org/
675     { ISD::FDIV,    MVT::v8f64,     16 }, // Skylake from http://www.agner.org/
676 
677     { ISD::FNEG,    MVT::v16f32,     1 }, // Skylake from http://www.agner.org/
678     { ISD::FADD,    MVT::v16f32,     1 }, // Skylake from http://www.agner.org/
679     { ISD::FSUB,    MVT::v16f32,     1 }, // Skylake from http://www.agner.org/
680     { ISD::FMUL,    MVT::v16f32,     1 }, // Skylake from http://www.agner.org/
681     { ISD::FDIV,    MVT::f32,        3 }, // Skylake from http://www.agner.org/
682     { ISD::FDIV,    MVT::v4f32,      3 }, // Skylake from http://www.agner.org/
683     { ISD::FDIV,    MVT::v8f32,      5 }, // Skylake from http://www.agner.org/
684     { ISD::FDIV,    MVT::v16f32,    10 }, // Skylake from http://www.agner.org/
685   };
686 
687   if (ST->hasAVX512())
688     if (const auto *Entry = CostTableLookup(AVX512CostTable, ISD, LT.second))
689       return LT.first * Entry->Cost;
690 
691   static const CostTblEntry AVX2ShiftCostTable[] = {
692     // Shifts on vXi64/vXi32 on AVX2 is legal even though we declare to
693     // customize them to detect the cases where shift amount is a scalar one.
694     { ISD::SHL,     MVT::v4i32,    2 }, // vpsllvd (Haswell from agner.org)
695     { ISD::SRL,     MVT::v4i32,    2 }, // vpsrlvd (Haswell from agner.org)
696     { ISD::SRA,     MVT::v4i32,    2 }, // vpsravd (Haswell from agner.org)
697     { ISD::SHL,     MVT::v8i32,    2 }, // vpsllvd (Haswell from agner.org)
698     { ISD::SRL,     MVT::v8i32,    2 }, // vpsrlvd (Haswell from agner.org)
699     { ISD::SRA,     MVT::v8i32,    2 }, // vpsravd (Haswell from agner.org)
700     { ISD::SHL,     MVT::v2i64,    1 }, // vpsllvq (Haswell from agner.org)
701     { ISD::SRL,     MVT::v2i64,    1 }, // vpsrlvq (Haswell from agner.org)
702     { ISD::SHL,     MVT::v4i64,    1 }, // vpsllvq (Haswell from agner.org)
703     { ISD::SRL,     MVT::v4i64,    1 }, // vpsrlvq (Haswell from agner.org)
704   };
705 
706   if (ST->hasAVX512()) {
707     if (ISD == ISD::SHL && LT.second == MVT::v32i16 &&
708         (Op2Info == TargetTransformInfo::OK_UniformConstantValue ||
709          Op2Info == TargetTransformInfo::OK_NonUniformConstantValue))
710       // On AVX512, a packed v32i16 shift left by a constant build_vector
711       // is lowered into a vector multiply (vpmullw).
712       return getArithmeticInstrCost(Instruction::Mul, Ty, CostKind,
713                                     Op1Info, Op2Info,
714                                     TargetTransformInfo::OP_None,
715                                     TargetTransformInfo::OP_None);
716   }
717 
718   // Look for AVX2 lowering tricks (XOP is always better at v4i32 shifts).
719   if (ST->hasAVX2() && !(ST->hasXOP() && LT.second == MVT::v4i32)) {
720     if (ISD == ISD::SHL && LT.second == MVT::v16i16 &&
721         (Op2Info == TargetTransformInfo::OK_UniformConstantValue ||
722          Op2Info == TargetTransformInfo::OK_NonUniformConstantValue))
723       // On AVX2, a packed v16i16 shift left by a constant build_vector
724       // is lowered into a vector multiply (vpmullw).
725       return getArithmeticInstrCost(Instruction::Mul, Ty, CostKind,
726                                     Op1Info, Op2Info,
727                                     TargetTransformInfo::OP_None,
728                                     TargetTransformInfo::OP_None);
729 
730     if (const auto *Entry = CostTableLookup(AVX2ShiftCostTable, ISD, LT.second))
731       return LT.first * Entry->Cost;
732   }
733 
734   static const CostTblEntry XOPShiftCostTable[] = {
735     // 128bit shifts take 1cy, but right shifts require negation beforehand.
736     { ISD::SHL,     MVT::v16i8,    1 },
737     { ISD::SRL,     MVT::v16i8,    2 },
738     { ISD::SRA,     MVT::v16i8,    2 },
739     { ISD::SHL,     MVT::v8i16,    1 },
740     { ISD::SRL,     MVT::v8i16,    2 },
741     { ISD::SRA,     MVT::v8i16,    2 },
742     { ISD::SHL,     MVT::v4i32,    1 },
743     { ISD::SRL,     MVT::v4i32,    2 },
744     { ISD::SRA,     MVT::v4i32,    2 },
745     { ISD::SHL,     MVT::v2i64,    1 },
746     { ISD::SRL,     MVT::v2i64,    2 },
747     { ISD::SRA,     MVT::v2i64,    2 },
748     // 256bit shifts require splitting if AVX2 didn't catch them above.
749     { ISD::SHL,     MVT::v32i8,  2+2 },
750     { ISD::SRL,     MVT::v32i8,  4+2 },
751     { ISD::SRA,     MVT::v32i8,  4+2 },
752     { ISD::SHL,     MVT::v16i16, 2+2 },
753     { ISD::SRL,     MVT::v16i16, 4+2 },
754     { ISD::SRA,     MVT::v16i16, 4+2 },
755     { ISD::SHL,     MVT::v8i32,  2+2 },
756     { ISD::SRL,     MVT::v8i32,  4+2 },
757     { ISD::SRA,     MVT::v8i32,  4+2 },
758     { ISD::SHL,     MVT::v4i64,  2+2 },
759     { ISD::SRL,     MVT::v4i64,  4+2 },
760     { ISD::SRA,     MVT::v4i64,  4+2 },
761   };
762 
763   // Look for XOP lowering tricks.
764   if (ST->hasXOP()) {
765     // If the right shift is constant then we'll fold the negation so
766     // it's as cheap as a left shift.
767     int ShiftISD = ISD;
768     if ((ShiftISD == ISD::SRL || ShiftISD == ISD::SRA) &&
769         (Op2Info == TargetTransformInfo::OK_UniformConstantValue ||
770          Op2Info == TargetTransformInfo::OK_NonUniformConstantValue))
771       ShiftISD = ISD::SHL;
772     if (const auto *Entry =
773             CostTableLookup(XOPShiftCostTable, ShiftISD, LT.second))
774       return LT.first * Entry->Cost;
775   }
776 
777   static const CostTblEntry SSE2UniformShiftCostTable[] = {
778     // Uniform splats are cheaper for the following instructions.
779     { ISD::SHL,  MVT::v16i16, 2+2 }, // 2*psllw + split.
780     { ISD::SHL,  MVT::v8i32,  2+2 }, // 2*pslld + split.
781     { ISD::SHL,  MVT::v4i64,  2+2 }, // 2*psllq + split.
782 
783     { ISD::SRL,  MVT::v16i16, 2+2 }, // 2*psrlw + split.
784     { ISD::SRL,  MVT::v8i32,  2+2 }, // 2*psrld + split.
785     { ISD::SRL,  MVT::v4i64,  2+2 }, // 2*psrlq + split.
786 
787     { ISD::SRA,  MVT::v16i16, 2+2 }, // 2*psraw + split.
788     { ISD::SRA,  MVT::v8i32,  2+2 }, // 2*psrad + split.
789     { ISD::SRA,  MVT::v2i64,    4 }, // 2*psrad + shuffle.
790     { ISD::SRA,  MVT::v4i64,  8+2 }, // 2*(2*psrad + shuffle) + split.
791   };
792 
793   if (ST->hasSSE2() &&
794       ((Op2Info == TargetTransformInfo::OK_UniformConstantValue) ||
795        (Op2Info == TargetTransformInfo::OK_UniformValue))) {
796 
797     // Handle AVX2 uniform v4i64 ISD::SRA, it's not worth a table.
798     if (ISD == ISD::SRA && LT.second == MVT::v4i64 && ST->hasAVX2())
799       return LT.first * 4; // 2*psrad + shuffle.
800 
801     if (const auto *Entry =
802             CostTableLookup(SSE2UniformShiftCostTable, ISD, LT.second))
803       return LT.first * Entry->Cost;
804   }
805 
806   if (ISD == ISD::SHL &&
807       Op2Info == TargetTransformInfo::OK_NonUniformConstantValue) {
808     MVT VT = LT.second;
809     // Vector shift left by non uniform constant can be lowered
810     // into vector multiply.
811     if (((VT == MVT::v8i16 || VT == MVT::v4i32) && ST->hasSSE2()) ||
812         ((VT == MVT::v16i16 || VT == MVT::v8i32) && ST->hasAVX()))
813       ISD = ISD::MUL;
814   }
815 
816   static const CostTblEntry AVX2CostTable[] = {
817     { ISD::SHL,  MVT::v16i8,      6 }, // vpblendvb sequence.
818     { ISD::SHL,  MVT::v32i8,      6 }, // vpblendvb sequence.
819     { ISD::SHL,  MVT::v64i8,     12 }, // 2*vpblendvb sequence.
820     { ISD::SHL,  MVT::v8i16,      5 }, // extend/vpsrlvd/pack sequence.
821     { ISD::SHL,  MVT::v16i16,     7 }, // extend/vpsrlvd/pack sequence.
822     { ISD::SHL,  MVT::v32i16,    14 }, // 2*extend/vpsrlvd/pack sequence.
823 
824     { ISD::SRL,  MVT::v16i8,      6 }, // vpblendvb sequence.
825     { ISD::SRL,  MVT::v32i8,      6 }, // vpblendvb sequence.
826     { ISD::SRL,  MVT::v64i8,     12 }, // 2*vpblendvb sequence.
827     { ISD::SRL,  MVT::v8i16,      5 }, // extend/vpsrlvd/pack sequence.
828     { ISD::SRL,  MVT::v16i16,     7 }, // extend/vpsrlvd/pack sequence.
829     { ISD::SRL,  MVT::v32i16,    14 }, // 2*extend/vpsrlvd/pack sequence.
830 
831     { ISD::SRA,  MVT::v16i8,     17 }, // vpblendvb sequence.
832     { ISD::SRA,  MVT::v32i8,     17 }, // vpblendvb sequence.
833     { ISD::SRA,  MVT::v64i8,     34 }, // 2*vpblendvb sequence.
834     { ISD::SRA,  MVT::v8i16,      5 }, // extend/vpsravd/pack sequence.
835     { ISD::SRA,  MVT::v16i16,     7 }, // extend/vpsravd/pack sequence.
836     { ISD::SRA,  MVT::v32i16,    14 }, // 2*extend/vpsravd/pack sequence.
837     { ISD::SRA,  MVT::v2i64,      2 }, // srl/xor/sub sequence.
838     { ISD::SRA,  MVT::v4i64,      2 }, // srl/xor/sub sequence.
839 
840     { ISD::SUB,  MVT::v32i8,      1 }, // psubb
841     { ISD::ADD,  MVT::v32i8,      1 }, // paddb
842     { ISD::SUB,  MVT::v16i16,     1 }, // psubw
843     { ISD::ADD,  MVT::v16i16,     1 }, // paddw
844     { ISD::SUB,  MVT::v8i32,      1 }, // psubd
845     { ISD::ADD,  MVT::v8i32,      1 }, // paddd
846     { ISD::SUB,  MVT::v4i64,      1 }, // psubq
847     { ISD::ADD,  MVT::v4i64,      1 }, // paddq
848 
849     { ISD::MUL,  MVT::v16i16,     1 }, // pmullw
850     { ISD::MUL,  MVT::v8i32,      2 }, // pmulld (Haswell from agner.org)
851     { ISD::MUL,  MVT::v4i64,      6 }, // 3*pmuludq/3*shift/2*add
852 
853     { ISD::FNEG, MVT::v4f64,      1 }, // Haswell from http://www.agner.org/
854     { ISD::FNEG, MVT::v8f32,      1 }, // Haswell from http://www.agner.org/
855     { ISD::FADD, MVT::v4f64,      1 }, // Haswell from http://www.agner.org/
856     { ISD::FADD, MVT::v8f32,      1 }, // Haswell from http://www.agner.org/
857     { ISD::FSUB, MVT::v4f64,      1 }, // Haswell from http://www.agner.org/
858     { ISD::FSUB, MVT::v8f32,      1 }, // Haswell from http://www.agner.org/
859     { ISD::FMUL, MVT::f64,        1 }, // Haswell from http://www.agner.org/
860     { ISD::FMUL, MVT::v2f64,      1 }, // Haswell from http://www.agner.org/
861     { ISD::FMUL, MVT::v4f64,      1 }, // Haswell from http://www.agner.org/
862     { ISD::FMUL, MVT::v8f32,      1 }, // Haswell from http://www.agner.org/
863 
864     { ISD::FDIV, MVT::f32,        7 }, // Haswell from http://www.agner.org/
865     { ISD::FDIV, MVT::v4f32,      7 }, // Haswell from http://www.agner.org/
866     { ISD::FDIV, MVT::v8f32,     14 }, // Haswell from http://www.agner.org/
867     { ISD::FDIV, MVT::f64,       14 }, // Haswell from http://www.agner.org/
868     { ISD::FDIV, MVT::v2f64,     14 }, // Haswell from http://www.agner.org/
869     { ISD::FDIV, MVT::v4f64,     28 }, // Haswell from http://www.agner.org/
870   };
871 
872   // Look for AVX2 lowering tricks for custom cases.
873   if (ST->hasAVX2())
874     if (const auto *Entry = CostTableLookup(AVX2CostTable, ISD, LT.second))
875       return LT.first * Entry->Cost;
876 
877   static const CostTblEntry AVX1CostTable[] = {
878     // We don't have to scalarize unsupported ops. We can issue two half-sized
879     // operations and we only need to extract the upper YMM half.
880     // Two ops + 1 extract + 1 insert = 4.
881     { ISD::MUL,     MVT::v16i16,     4 },
882     { ISD::MUL,     MVT::v8i32,      5 }, // BTVER2 from http://www.agner.org/
883     { ISD::MUL,     MVT::v4i64,     12 },
884 
885     { ISD::SUB,     MVT::v32i8,      4 },
886     { ISD::ADD,     MVT::v32i8,      4 },
887     { ISD::SUB,     MVT::v16i16,     4 },
888     { ISD::ADD,     MVT::v16i16,     4 },
889     { ISD::SUB,     MVT::v8i32,      4 },
890     { ISD::ADD,     MVT::v8i32,      4 },
891     { ISD::SUB,     MVT::v4i64,      4 },
892     { ISD::ADD,     MVT::v4i64,      4 },
893 
894     { ISD::SHL,     MVT::v32i8,     22 }, // pblendvb sequence + split.
895     { ISD::SHL,     MVT::v8i16,      6 }, // pblendvb sequence.
896     { ISD::SHL,     MVT::v16i16,    13 }, // pblendvb sequence + split.
897     { ISD::SHL,     MVT::v4i32,      3 }, // pslld/paddd/cvttps2dq/pmulld
898     { ISD::SHL,     MVT::v8i32,      9 }, // pslld/paddd/cvttps2dq/pmulld + split
899     { ISD::SHL,     MVT::v2i64,      2 }, // Shift each lane + blend.
900     { ISD::SHL,     MVT::v4i64,      6 }, // Shift each lane + blend + split.
901 
902     { ISD::SRL,     MVT::v32i8,     23 }, // pblendvb sequence + split.
903     { ISD::SRL,     MVT::v16i16,    28 }, // pblendvb sequence + split.
904     { ISD::SRL,     MVT::v4i32,      6 }, // Shift each lane + blend.
905     { ISD::SRL,     MVT::v8i32,     14 }, // Shift each lane + blend + split.
906     { ISD::SRL,     MVT::v2i64,      2 }, // Shift each lane + blend.
907     { ISD::SRL,     MVT::v4i64,      6 }, // Shift each lane + blend + split.
908 
909     { ISD::SRA,     MVT::v32i8,     44 }, // pblendvb sequence + split.
910     { ISD::SRA,     MVT::v16i16,    28 }, // pblendvb sequence + split.
911     { ISD::SRA,     MVT::v4i32,      6 }, // Shift each lane + blend.
912     { ISD::SRA,     MVT::v8i32,     14 }, // Shift each lane + blend + split.
913     { ISD::SRA,     MVT::v2i64,      5 }, // Shift each lane + blend.
914     { ISD::SRA,     MVT::v4i64,     12 }, // Shift each lane + blend + split.
915 
916     { ISD::FNEG,    MVT::v4f64,      2 }, // BTVER2 from http://www.agner.org/
917     { ISD::FNEG,    MVT::v8f32,      2 }, // BTVER2 from http://www.agner.org/
918 
919     { ISD::FMUL,    MVT::f64,        2 }, // BTVER2 from http://www.agner.org/
920     { ISD::FMUL,    MVT::v2f64,      2 }, // BTVER2 from http://www.agner.org/
921     { ISD::FMUL,    MVT::v4f64,      4 }, // BTVER2 from http://www.agner.org/
922 
923     { ISD::FDIV,    MVT::f32,       14 }, // SNB from http://www.agner.org/
924     { ISD::FDIV,    MVT::v4f32,     14 }, // SNB from http://www.agner.org/
925     { ISD::FDIV,    MVT::v8f32,     28 }, // SNB from http://www.agner.org/
926     { ISD::FDIV,    MVT::f64,       22 }, // SNB from http://www.agner.org/
927     { ISD::FDIV,    MVT::v2f64,     22 }, // SNB from http://www.agner.org/
928     { ISD::FDIV,    MVT::v4f64,     44 }, // SNB from http://www.agner.org/
929   };
930 
931   if (ST->hasAVX())
932     if (const auto *Entry = CostTableLookup(AVX1CostTable, ISD, LT.second))
933       return LT.first * Entry->Cost;
934 
935   static const CostTblEntry SSE42CostTable[] = {
936     { ISD::FADD, MVT::f64,     1 }, // Nehalem from http://www.agner.org/
937     { ISD::FADD, MVT::f32,     1 }, // Nehalem from http://www.agner.org/
938     { ISD::FADD, MVT::v2f64,   1 }, // Nehalem from http://www.agner.org/
939     { ISD::FADD, MVT::v4f32,   1 }, // Nehalem from http://www.agner.org/
940 
941     { ISD::FSUB, MVT::f64,     1 }, // Nehalem from http://www.agner.org/
942     { ISD::FSUB, MVT::f32 ,    1 }, // Nehalem from http://www.agner.org/
943     { ISD::FSUB, MVT::v2f64,   1 }, // Nehalem from http://www.agner.org/
944     { ISD::FSUB, MVT::v4f32,   1 }, // Nehalem from http://www.agner.org/
945 
946     { ISD::FMUL, MVT::f64,     1 }, // Nehalem from http://www.agner.org/
947     { ISD::FMUL, MVT::f32,     1 }, // Nehalem from http://www.agner.org/
948     { ISD::FMUL, MVT::v2f64,   1 }, // Nehalem from http://www.agner.org/
949     { ISD::FMUL, MVT::v4f32,   1 }, // Nehalem from http://www.agner.org/
950 
951     { ISD::FDIV,  MVT::f32,   14 }, // Nehalem from http://www.agner.org/
952     { ISD::FDIV,  MVT::v4f32, 14 }, // Nehalem from http://www.agner.org/
953     { ISD::FDIV,  MVT::f64,   22 }, // Nehalem from http://www.agner.org/
954     { ISD::FDIV,  MVT::v2f64, 22 }, // Nehalem from http://www.agner.org/
955 
956     { ISD::MUL,   MVT::v2i64,  6 }  // 3*pmuludq/3*shift/2*add
957   };
958 
959   if (ST->hasSSE42())
960     if (const auto *Entry = CostTableLookup(SSE42CostTable, ISD, LT.second))
961       return LT.first * Entry->Cost;
962 
963   static const CostTblEntry SSE41CostTable[] = {
964     { ISD::SHL,  MVT::v16i8,      10 }, // pblendvb sequence.
965     { ISD::SHL,  MVT::v8i16,      11 }, // pblendvb sequence.
966     { ISD::SHL,  MVT::v4i32,       4 }, // pslld/paddd/cvttps2dq/pmulld
967 
968     { ISD::SRL,  MVT::v16i8,      11 }, // pblendvb sequence.
969     { ISD::SRL,  MVT::v8i16,      13 }, // pblendvb sequence.
970     { ISD::SRL,  MVT::v4i32,      16 }, // Shift each lane + blend.
971 
972     { ISD::SRA,  MVT::v16i8,      21 }, // pblendvb sequence.
973     { ISD::SRA,  MVT::v8i16,      13 }, // pblendvb sequence.
974 
975     { ISD::MUL,  MVT::v4i32,       2 }  // pmulld (Nehalem from agner.org)
976   };
977 
978   if (ST->hasSSE41())
979     if (const auto *Entry = CostTableLookup(SSE41CostTable, ISD, LT.second))
980       return LT.first * Entry->Cost;
981 
982   static const CostTblEntry SSE2CostTable[] = {
983     // We don't correctly identify costs of casts because they are marked as
984     // custom.
985     { ISD::SHL,  MVT::v16i8,      13 }, // cmpgtb sequence.
986     { ISD::SHL,  MVT::v8i16,      25 }, // cmpgtw sequence.
987     { ISD::SHL,  MVT::v4i32,      16 }, // pslld/paddd/cvttps2dq/pmuludq.
988     { ISD::SHL,  MVT::v2i64,       4 }, // splat+shuffle sequence.
989 
990     { ISD::SRL,  MVT::v16i8,      14 }, // cmpgtb sequence.
991     { ISD::SRL,  MVT::v8i16,      16 }, // cmpgtw sequence.
992     { ISD::SRL,  MVT::v4i32,      12 }, // Shift each lane + blend.
993     { ISD::SRL,  MVT::v2i64,       4 }, // splat+shuffle sequence.
994 
995     { ISD::SRA,  MVT::v16i8,      27 }, // unpacked cmpgtb sequence.
996     { ISD::SRA,  MVT::v8i16,      16 }, // cmpgtw sequence.
997     { ISD::SRA,  MVT::v4i32,      12 }, // Shift each lane + blend.
998     { ISD::SRA,  MVT::v2i64,       8 }, // srl/xor/sub splat+shuffle sequence.
999 
1000     { ISD::MUL,  MVT::v8i16,       1 }, // pmullw
1001     { ISD::MUL,  MVT::v4i32,       6 }, // 3*pmuludq/4*shuffle
1002     { ISD::MUL,  MVT::v2i64,       8 }, // 3*pmuludq/3*shift/2*add
1003 
1004     { ISD::FDIV, MVT::f32,        23 }, // Pentium IV from http://www.agner.org/
1005     { ISD::FDIV, MVT::v4f32,      39 }, // Pentium IV from http://www.agner.org/
1006     { ISD::FDIV, MVT::f64,        38 }, // Pentium IV from http://www.agner.org/
1007     { ISD::FDIV, MVT::v2f64,      69 }, // Pentium IV from http://www.agner.org/
1008 
1009     { ISD::FNEG, MVT::f32,         1 }, // Pentium IV from http://www.agner.org/
1010     { ISD::FNEG, MVT::f64,         1 }, // Pentium IV from http://www.agner.org/
1011     { ISD::FNEG, MVT::v4f32,       1 }, // Pentium IV from http://www.agner.org/
1012     { ISD::FNEG, MVT::v2f64,       1 }, // Pentium IV from http://www.agner.org/
1013 
1014     { ISD::FADD, MVT::f32,         2 }, // Pentium IV from http://www.agner.org/
1015     { ISD::FADD, MVT::f64,         2 }, // Pentium IV from http://www.agner.org/
1016 
1017     { ISD::FSUB, MVT::f32,         2 }, // Pentium IV from http://www.agner.org/
1018     { ISD::FSUB, MVT::f64,         2 }, // Pentium IV from http://www.agner.org/
1019   };
1020 
1021   if (ST->hasSSE2())
1022     if (const auto *Entry = CostTableLookup(SSE2CostTable, ISD, LT.second))
1023       return LT.first * Entry->Cost;
1024 
1025   static const CostTblEntry SSE1CostTable[] = {
1026     { ISD::FDIV, MVT::f32,   17 }, // Pentium III from http://www.agner.org/
1027     { ISD::FDIV, MVT::v4f32, 34 }, // Pentium III from http://www.agner.org/
1028 
1029     { ISD::FNEG, MVT::f32,    2 }, // Pentium III from http://www.agner.org/
1030     { ISD::FNEG, MVT::v4f32,  2 }, // Pentium III from http://www.agner.org/
1031 
1032     { ISD::FADD, MVT::f32,    1 }, // Pentium III from http://www.agner.org/
1033     { ISD::FADD, MVT::v4f32,  2 }, // Pentium III from http://www.agner.org/
1034 
1035     { ISD::FSUB, MVT::f32,    1 }, // Pentium III from http://www.agner.org/
1036     { ISD::FSUB, MVT::v4f32,  2 }, // Pentium III from http://www.agner.org/
1037   };
1038 
1039   if (ST->hasSSE1())
1040     if (const auto *Entry = CostTableLookup(SSE1CostTable, ISD, LT.second))
1041       return LT.first * Entry->Cost;
1042 
1043   static const CostTblEntry X64CostTbl[] = { // 64-bit targets
1044     { ISD::ADD,  MVT::i64,    1 }, // Core (Merom) from http://www.agner.org/
1045     { ISD::SUB,  MVT::i64,    1 }, // Core (Merom) from http://www.agner.org/
1046     { ISD::MUL,  MVT::i64,    2 }, // Nehalem from http://www.agner.org/
1047   };
1048 
1049   if (ST->is64Bit())
1050     if (const auto *Entry = CostTableLookup(X64CostTbl, ISD, LT.second))
1051       return LT.first * Entry->Cost;
1052 
1053   static const CostTblEntry X86CostTbl[] = { // 32 or 64-bit targets
1054     { ISD::ADD,  MVT::i8,    1 }, // Pentium III from http://www.agner.org/
1055     { ISD::ADD,  MVT::i16,   1 }, // Pentium III from http://www.agner.org/
1056     { ISD::ADD,  MVT::i32,   1 }, // Pentium III from http://www.agner.org/
1057 
1058     { ISD::SUB,  MVT::i8,    1 }, // Pentium III from http://www.agner.org/
1059     { ISD::SUB,  MVT::i16,   1 }, // Pentium III from http://www.agner.org/
1060     { ISD::SUB,  MVT::i32,   1 }, // Pentium III from http://www.agner.org/
1061   };
1062 
1063   if (const auto *Entry = CostTableLookup(X86CostTbl, ISD, LT.second))
1064     return LT.first * Entry->Cost;
1065 
1066   // It is not a good idea to vectorize division. We have to scalarize it and
1067   // in the process we will often end up having to spilling regular
1068   // registers. The overhead of division is going to dominate most kernels
1069   // anyways so try hard to prevent vectorization of division - it is
1070   // generally a bad idea. Assume somewhat arbitrarily that we have to be able
1071   // to hide "20 cycles" for each lane.
1072   if (LT.second.isVector() && (ISD == ISD::SDIV || ISD == ISD::SREM ||
1073                                ISD == ISD::UDIV || ISD == ISD::UREM)) {
1074     InstructionCost ScalarCost = getArithmeticInstrCost(
1075         Opcode, Ty->getScalarType(), CostKind, Op1Info, Op2Info,
1076         TargetTransformInfo::OP_None, TargetTransformInfo::OP_None);
1077     return 20 * LT.first * LT.second.getVectorNumElements() * ScalarCost;
1078   }
1079 
1080   // Fallback to the default implementation.
1081   return BaseT::getArithmeticInstrCost(Opcode, Ty, CostKind, Op1Info, Op2Info);
1082 }
1083 
1084 InstructionCost X86TTIImpl::getShuffleCost(TTI::ShuffleKind Kind,
1085                                            VectorType *BaseTp,
1086                                            ArrayRef<int> Mask, int Index,
1087                                            VectorType *SubTp) {
1088   // 64-bit packed float vectors (v2f32) are widened to type v4f32.
1089   // 64-bit packed integer vectors (v2i32) are widened to type v4i32.
1090   std::pair<InstructionCost, MVT> LT = TLI->getTypeLegalizationCost(DL, BaseTp);
1091 
1092   Kind = improveShuffleKindFromMask(Kind, Mask);
1093   // Treat Transpose as 2-op shuffles - there's no difference in lowering.
1094   if (Kind == TTI::SK_Transpose)
1095     Kind = TTI::SK_PermuteTwoSrc;
1096 
1097   // For Broadcasts we are splatting the first element from the first input
1098   // register, so only need to reference that input and all the output
1099   // registers are the same.
1100   if (Kind == TTI::SK_Broadcast)
1101     LT.first = 1;
1102 
1103   // Subvector extractions are free if they start at the beginning of a
1104   // vector and cheap if the subvectors are aligned.
1105   if (Kind == TTI::SK_ExtractSubvector && LT.second.isVector()) {
1106     int NumElts = LT.second.getVectorNumElements();
1107     if ((Index % NumElts) == 0)
1108       return 0;
1109     std::pair<InstructionCost, MVT> SubLT =
1110         TLI->getTypeLegalizationCost(DL, SubTp);
1111     if (SubLT.second.isVector()) {
1112       int NumSubElts = SubLT.second.getVectorNumElements();
1113       if ((Index % NumSubElts) == 0 && (NumElts % NumSubElts) == 0)
1114         return SubLT.first;
1115       // Handle some cases for widening legalization. For now we only handle
1116       // cases where the original subvector was naturally aligned and evenly
1117       // fit in its legalized subvector type.
1118       // FIXME: Remove some of the alignment restrictions.
1119       // FIXME: We can use permq for 64-bit or larger extracts from 256-bit
1120       // vectors.
1121       int OrigSubElts = cast<FixedVectorType>(SubTp)->getNumElements();
1122       if (NumSubElts > OrigSubElts && (Index % OrigSubElts) == 0 &&
1123           (NumSubElts % OrigSubElts) == 0 &&
1124           LT.second.getVectorElementType() ==
1125               SubLT.second.getVectorElementType() &&
1126           LT.second.getVectorElementType().getSizeInBits() ==
1127               BaseTp->getElementType()->getPrimitiveSizeInBits()) {
1128         assert(NumElts >= NumSubElts && NumElts > OrigSubElts &&
1129                "Unexpected number of elements!");
1130         auto *VecTy = FixedVectorType::get(BaseTp->getElementType(),
1131                                            LT.second.getVectorNumElements());
1132         auto *SubTy = FixedVectorType::get(BaseTp->getElementType(),
1133                                            SubLT.second.getVectorNumElements());
1134         int ExtractIndex = alignDown((Index % NumElts), NumSubElts);
1135         InstructionCost ExtractCost = getShuffleCost(
1136             TTI::SK_ExtractSubvector, VecTy, None, ExtractIndex, SubTy);
1137 
1138         // If the original size is 32-bits or more, we can use pshufd. Otherwise
1139         // if we have SSSE3 we can use pshufb.
1140         if (SubTp->getPrimitiveSizeInBits() >= 32 || ST->hasSSSE3())
1141           return ExtractCost + 1; // pshufd or pshufb
1142 
1143         assert(SubTp->getPrimitiveSizeInBits() == 16 &&
1144                "Unexpected vector size");
1145 
1146         return ExtractCost + 2; // worst case pshufhw + pshufd
1147       }
1148     }
1149   }
1150 
1151   // Subvector insertions are cheap if the subvectors are aligned.
1152   // Note that in general, the insertion starting at the beginning of a vector
1153   // isn't free, because we need to preserve the rest of the wide vector.
1154   if (Kind == TTI::SK_InsertSubvector && LT.second.isVector()) {
1155     int NumElts = LT.second.getVectorNumElements();
1156     std::pair<InstructionCost, MVT> SubLT =
1157         TLI->getTypeLegalizationCost(DL, SubTp);
1158     if (SubLT.second.isVector()) {
1159       int NumSubElts = SubLT.second.getVectorNumElements();
1160       if ((Index % NumSubElts) == 0 && (NumElts % NumSubElts) == 0)
1161         return SubLT.first;
1162     }
1163 
1164     // If the insertion isn't aligned, treat it like a 2-op shuffle.
1165     Kind = TTI::SK_PermuteTwoSrc;
1166   }
1167 
1168   // Handle some common (illegal) sub-vector types as they are often very cheap
1169   // to shuffle even on targets without PSHUFB.
1170   EVT VT = TLI->getValueType(DL, BaseTp);
1171   if (VT.isSimple() && VT.isVector() && VT.getSizeInBits() < 128 &&
1172       !ST->hasSSSE3()) {
1173      static const CostTblEntry SSE2SubVectorShuffleTbl[] = {
1174       {TTI::SK_Broadcast,        MVT::v4i16, 1}, // pshuflw
1175       {TTI::SK_Broadcast,        MVT::v2i16, 1}, // pshuflw
1176       {TTI::SK_Broadcast,        MVT::v8i8,  2}, // punpck/pshuflw
1177       {TTI::SK_Broadcast,        MVT::v4i8,  2}, // punpck/pshuflw
1178       {TTI::SK_Broadcast,        MVT::v2i8,  1}, // punpck
1179 
1180       {TTI::SK_Reverse,          MVT::v4i16, 1}, // pshuflw
1181       {TTI::SK_Reverse,          MVT::v2i16, 1}, // pshuflw
1182       {TTI::SK_Reverse,          MVT::v4i8,  3}, // punpck/pshuflw/packus
1183       {TTI::SK_Reverse,          MVT::v2i8,  1}, // punpck
1184 
1185       {TTI::SK_PermuteTwoSrc,    MVT::v4i16, 2}, // punpck/pshuflw
1186       {TTI::SK_PermuteTwoSrc,    MVT::v2i16, 2}, // punpck/pshuflw
1187       {TTI::SK_PermuteTwoSrc,    MVT::v8i8,  7}, // punpck/pshuflw
1188       {TTI::SK_PermuteTwoSrc,    MVT::v4i8,  4}, // punpck/pshuflw
1189       {TTI::SK_PermuteTwoSrc,    MVT::v2i8,  2}, // punpck
1190 
1191       {TTI::SK_PermuteSingleSrc, MVT::v4i16, 1}, // pshuflw
1192       {TTI::SK_PermuteSingleSrc, MVT::v2i16, 1}, // pshuflw
1193       {TTI::SK_PermuteSingleSrc, MVT::v8i8,  5}, // punpck/pshuflw
1194       {TTI::SK_PermuteSingleSrc, MVT::v4i8,  3}, // punpck/pshuflw
1195       {TTI::SK_PermuteSingleSrc, MVT::v2i8,  1}, // punpck
1196     };
1197 
1198     if (ST->hasSSE2())
1199       if (const auto *Entry =
1200               CostTableLookup(SSE2SubVectorShuffleTbl, Kind, VT.getSimpleVT()))
1201         return Entry->Cost;
1202   }
1203 
1204   // We are going to permute multiple sources and the result will be in multiple
1205   // destinations. Providing an accurate cost only for splits where the element
1206   // type remains the same.
1207   if (Kind == TTI::SK_PermuteSingleSrc && LT.first != 1) {
1208     MVT LegalVT = LT.second;
1209     if (LegalVT.isVector() &&
1210         LegalVT.getVectorElementType().getSizeInBits() ==
1211             BaseTp->getElementType()->getPrimitiveSizeInBits() &&
1212         LegalVT.getVectorNumElements() <
1213             cast<FixedVectorType>(BaseTp)->getNumElements()) {
1214 
1215       unsigned VecTySize = DL.getTypeStoreSize(BaseTp);
1216       unsigned LegalVTSize = LegalVT.getStoreSize();
1217       // Number of source vectors after legalization:
1218       unsigned NumOfSrcs = (VecTySize + LegalVTSize - 1) / LegalVTSize;
1219       // Number of destination vectors after legalization:
1220       InstructionCost NumOfDests = LT.first;
1221 
1222       auto *SingleOpTy = FixedVectorType::get(BaseTp->getElementType(),
1223                                               LegalVT.getVectorNumElements());
1224 
1225       InstructionCost NumOfShuffles = (NumOfSrcs - 1) * NumOfDests;
1226       return NumOfShuffles * getShuffleCost(TTI::SK_PermuteTwoSrc, SingleOpTy,
1227                                             None, 0, nullptr);
1228     }
1229 
1230     return BaseT::getShuffleCost(Kind, BaseTp, Mask, Index, SubTp);
1231   }
1232 
1233   // For 2-input shuffles, we must account for splitting the 2 inputs into many.
1234   if (Kind == TTI::SK_PermuteTwoSrc && LT.first != 1) {
1235     // We assume that source and destination have the same vector type.
1236     InstructionCost NumOfDests = LT.first;
1237     InstructionCost NumOfShufflesPerDest = LT.first * 2 - 1;
1238     LT.first = NumOfDests * NumOfShufflesPerDest;
1239   }
1240 
1241   static const CostTblEntry AVX512FP16ShuffleTbl[] = {
1242       {TTI::SK_Broadcast, MVT::v32f16, 1}, // vpbroadcastw
1243       {TTI::SK_Broadcast, MVT::v16f16, 1}, // vpbroadcastw
1244       {TTI::SK_Broadcast, MVT::v8f16, 1},  // vpbroadcastw
1245 
1246       {TTI::SK_Reverse, MVT::v32f16, 2}, // vpermw
1247       {TTI::SK_Reverse, MVT::v16f16, 2}, // vpermw
1248       {TTI::SK_Reverse, MVT::v8f16, 1},  // vpshufb
1249 
1250       {TTI::SK_PermuteSingleSrc, MVT::v32f16, 2}, // vpermw
1251       {TTI::SK_PermuteSingleSrc, MVT::v16f16, 2}, // vpermw
1252       {TTI::SK_PermuteSingleSrc, MVT::v8f16, 1},  // vpshufb
1253 
1254       {TTI::SK_PermuteTwoSrc, MVT::v32f16, 2}, // vpermt2w
1255       {TTI::SK_PermuteTwoSrc, MVT::v16f16, 2}, // vpermt2w
1256       {TTI::SK_PermuteTwoSrc, MVT::v8f16, 2}   // vpermt2w
1257   };
1258 
1259   if (!ST->useSoftFloat() && ST->hasFP16())
1260     if (const auto *Entry =
1261             CostTableLookup(AVX512FP16ShuffleTbl, Kind, LT.second))
1262       return LT.first * Entry->Cost;
1263 
1264   static const CostTblEntry AVX512VBMIShuffleTbl[] = {
1265       {TTI::SK_Reverse, MVT::v64i8, 1}, // vpermb
1266       {TTI::SK_Reverse, MVT::v32i8, 1}, // vpermb
1267 
1268       {TTI::SK_PermuteSingleSrc, MVT::v64i8, 1}, // vpermb
1269       {TTI::SK_PermuteSingleSrc, MVT::v32i8, 1}, // vpermb
1270 
1271       {TTI::SK_PermuteTwoSrc, MVT::v64i8, 2}, // vpermt2b
1272       {TTI::SK_PermuteTwoSrc, MVT::v32i8, 2}, // vpermt2b
1273       {TTI::SK_PermuteTwoSrc, MVT::v16i8, 2}  // vpermt2b
1274   };
1275 
1276   if (ST->hasVBMI())
1277     if (const auto *Entry =
1278             CostTableLookup(AVX512VBMIShuffleTbl, Kind, LT.second))
1279       return LT.first * Entry->Cost;
1280 
1281   static const CostTblEntry AVX512BWShuffleTbl[] = {
1282       {TTI::SK_Broadcast, MVT::v32i16, 1}, // vpbroadcastw
1283       {TTI::SK_Broadcast, MVT::v64i8, 1},  // vpbroadcastb
1284 
1285       {TTI::SK_Reverse, MVT::v32i16, 2}, // vpermw
1286       {TTI::SK_Reverse, MVT::v16i16, 2}, // vpermw
1287       {TTI::SK_Reverse, MVT::v64i8, 2},  // pshufb + vshufi64x2
1288 
1289       {TTI::SK_PermuteSingleSrc, MVT::v32i16, 2}, // vpermw
1290       {TTI::SK_PermuteSingleSrc, MVT::v16i16, 2}, // vpermw
1291       {TTI::SK_PermuteSingleSrc, MVT::v64i8, 8},  // extend to v32i16
1292 
1293       {TTI::SK_PermuteTwoSrc, MVT::v32i16, 2}, // vpermt2w
1294       {TTI::SK_PermuteTwoSrc, MVT::v16i16, 2}, // vpermt2w
1295       {TTI::SK_PermuteTwoSrc, MVT::v8i16, 2},  // vpermt2w
1296       {TTI::SK_PermuteTwoSrc, MVT::v64i8, 19}, // 6 * v32i8 + 1
1297 
1298       {TTI::SK_Select, MVT::v32i16, 1}, // vblendmw
1299       {TTI::SK_Select, MVT::v64i8,  1}, // vblendmb
1300   };
1301 
1302   if (ST->hasBWI())
1303     if (const auto *Entry =
1304             CostTableLookup(AVX512BWShuffleTbl, Kind, LT.second))
1305       return LT.first * Entry->Cost;
1306 
1307   static const CostTblEntry AVX512ShuffleTbl[] = {
1308       {TTI::SK_Broadcast, MVT::v8f64, 1},  // vbroadcastpd
1309       {TTI::SK_Broadcast, MVT::v16f32, 1}, // vbroadcastps
1310       {TTI::SK_Broadcast, MVT::v8i64, 1},  // vpbroadcastq
1311       {TTI::SK_Broadcast, MVT::v16i32, 1}, // vpbroadcastd
1312       {TTI::SK_Broadcast, MVT::v32i16, 1}, // vpbroadcastw
1313       {TTI::SK_Broadcast, MVT::v64i8, 1},  // vpbroadcastb
1314 
1315       {TTI::SK_Reverse, MVT::v8f64, 1},  // vpermpd
1316       {TTI::SK_Reverse, MVT::v16f32, 1}, // vpermps
1317       {TTI::SK_Reverse, MVT::v8i64, 1},  // vpermq
1318       {TTI::SK_Reverse, MVT::v16i32, 1}, // vpermd
1319       {TTI::SK_Reverse, MVT::v32i16, 7}, // per mca
1320       {TTI::SK_Reverse, MVT::v64i8,  7}, // per mca
1321 
1322       {TTI::SK_PermuteSingleSrc, MVT::v8f64, 1},  // vpermpd
1323       {TTI::SK_PermuteSingleSrc, MVT::v4f64, 1},  // vpermpd
1324       {TTI::SK_PermuteSingleSrc, MVT::v2f64, 1},  // vpermpd
1325       {TTI::SK_PermuteSingleSrc, MVT::v16f32, 1}, // vpermps
1326       {TTI::SK_PermuteSingleSrc, MVT::v8f32, 1},  // vpermps
1327       {TTI::SK_PermuteSingleSrc, MVT::v4f32, 1},  // vpermps
1328       {TTI::SK_PermuteSingleSrc, MVT::v8i64, 1},  // vpermq
1329       {TTI::SK_PermuteSingleSrc, MVT::v4i64, 1},  // vpermq
1330       {TTI::SK_PermuteSingleSrc, MVT::v2i64, 1},  // vpermq
1331       {TTI::SK_PermuteSingleSrc, MVT::v16i32, 1}, // vpermd
1332       {TTI::SK_PermuteSingleSrc, MVT::v8i32, 1},  // vpermd
1333       {TTI::SK_PermuteSingleSrc, MVT::v4i32, 1},  // vpermd
1334       {TTI::SK_PermuteSingleSrc, MVT::v16i8, 1},  // pshufb
1335 
1336       {TTI::SK_PermuteTwoSrc, MVT::v8f64, 1},  // vpermt2pd
1337       {TTI::SK_PermuteTwoSrc, MVT::v16f32, 1}, // vpermt2ps
1338       {TTI::SK_PermuteTwoSrc, MVT::v8i64, 1},  // vpermt2q
1339       {TTI::SK_PermuteTwoSrc, MVT::v16i32, 1}, // vpermt2d
1340       {TTI::SK_PermuteTwoSrc, MVT::v4f64, 1},  // vpermt2pd
1341       {TTI::SK_PermuteTwoSrc, MVT::v8f32, 1},  // vpermt2ps
1342       {TTI::SK_PermuteTwoSrc, MVT::v4i64, 1},  // vpermt2q
1343       {TTI::SK_PermuteTwoSrc, MVT::v8i32, 1},  // vpermt2d
1344       {TTI::SK_PermuteTwoSrc, MVT::v2f64, 1},  // vpermt2pd
1345       {TTI::SK_PermuteTwoSrc, MVT::v4f32, 1},  // vpermt2ps
1346       {TTI::SK_PermuteTwoSrc, MVT::v2i64, 1},  // vpermt2q
1347       {TTI::SK_PermuteTwoSrc, MVT::v4i32, 1},  // vpermt2d
1348 
1349       // FIXME: This just applies the type legalization cost rules above
1350       // assuming these completely split.
1351       {TTI::SK_PermuteSingleSrc, MVT::v32i16, 14},
1352       {TTI::SK_PermuteSingleSrc, MVT::v64i8,  14},
1353       {TTI::SK_PermuteTwoSrc,    MVT::v32i16, 42},
1354       {TTI::SK_PermuteTwoSrc,    MVT::v64i8,  42},
1355 
1356       {TTI::SK_Select, MVT::v32i16, 1}, // vpternlogq
1357       {TTI::SK_Select, MVT::v64i8,  1}, // vpternlogq
1358       {TTI::SK_Select, MVT::v8f64,  1}, // vblendmpd
1359       {TTI::SK_Select, MVT::v16f32, 1}, // vblendmps
1360       {TTI::SK_Select, MVT::v8i64,  1}, // vblendmq
1361       {TTI::SK_Select, MVT::v16i32, 1}, // vblendmd
1362   };
1363 
1364   if (ST->hasAVX512())
1365     if (const auto *Entry = CostTableLookup(AVX512ShuffleTbl, Kind, LT.second))
1366       return LT.first * Entry->Cost;
1367 
1368   static const CostTblEntry AVX2ShuffleTbl[] = {
1369       {TTI::SK_Broadcast, MVT::v4f64, 1},  // vbroadcastpd
1370       {TTI::SK_Broadcast, MVT::v8f32, 1},  // vbroadcastps
1371       {TTI::SK_Broadcast, MVT::v4i64, 1},  // vpbroadcastq
1372       {TTI::SK_Broadcast, MVT::v8i32, 1},  // vpbroadcastd
1373       {TTI::SK_Broadcast, MVT::v16i16, 1}, // vpbroadcastw
1374       {TTI::SK_Broadcast, MVT::v32i8, 1},  // vpbroadcastb
1375 
1376       {TTI::SK_Reverse, MVT::v4f64, 1},  // vpermpd
1377       {TTI::SK_Reverse, MVT::v8f32, 1},  // vpermps
1378       {TTI::SK_Reverse, MVT::v4i64, 1},  // vpermq
1379       {TTI::SK_Reverse, MVT::v8i32, 1},  // vpermd
1380       {TTI::SK_Reverse, MVT::v16i16, 2}, // vperm2i128 + pshufb
1381       {TTI::SK_Reverse, MVT::v32i8, 2},  // vperm2i128 + pshufb
1382 
1383       {TTI::SK_Select, MVT::v16i16, 1}, // vpblendvb
1384       {TTI::SK_Select, MVT::v32i8, 1},  // vpblendvb
1385 
1386       {TTI::SK_PermuteSingleSrc, MVT::v4f64, 1},  // vpermpd
1387       {TTI::SK_PermuteSingleSrc, MVT::v8f32, 1},  // vpermps
1388       {TTI::SK_PermuteSingleSrc, MVT::v4i64, 1},  // vpermq
1389       {TTI::SK_PermuteSingleSrc, MVT::v8i32, 1},  // vpermd
1390       {TTI::SK_PermuteSingleSrc, MVT::v16i16, 4}, // vperm2i128 + 2*vpshufb
1391                                                   // + vpblendvb
1392       {TTI::SK_PermuteSingleSrc, MVT::v32i8, 4},  // vperm2i128 + 2*vpshufb
1393                                                   // + vpblendvb
1394 
1395       {TTI::SK_PermuteTwoSrc, MVT::v4f64, 3},  // 2*vpermpd + vblendpd
1396       {TTI::SK_PermuteTwoSrc, MVT::v8f32, 3},  // 2*vpermps + vblendps
1397       {TTI::SK_PermuteTwoSrc, MVT::v4i64, 3},  // 2*vpermq + vpblendd
1398       {TTI::SK_PermuteTwoSrc, MVT::v8i32, 3},  // 2*vpermd + vpblendd
1399       {TTI::SK_PermuteTwoSrc, MVT::v16i16, 7}, // 2*vperm2i128 + 4*vpshufb
1400                                                // + vpblendvb
1401       {TTI::SK_PermuteTwoSrc, MVT::v32i8, 7},  // 2*vperm2i128 + 4*vpshufb
1402                                                // + vpblendvb
1403   };
1404 
1405   if (ST->hasAVX2())
1406     if (const auto *Entry = CostTableLookup(AVX2ShuffleTbl, Kind, LT.second))
1407       return LT.first * Entry->Cost;
1408 
1409   static const CostTblEntry XOPShuffleTbl[] = {
1410       {TTI::SK_PermuteSingleSrc, MVT::v4f64, 2},  // vperm2f128 + vpermil2pd
1411       {TTI::SK_PermuteSingleSrc, MVT::v8f32, 2},  // vperm2f128 + vpermil2ps
1412       {TTI::SK_PermuteSingleSrc, MVT::v4i64, 2},  // vperm2f128 + vpermil2pd
1413       {TTI::SK_PermuteSingleSrc, MVT::v8i32, 2},  // vperm2f128 + vpermil2ps
1414       {TTI::SK_PermuteSingleSrc, MVT::v16i16, 4}, // vextractf128 + 2*vpperm
1415                                                   // + vinsertf128
1416       {TTI::SK_PermuteSingleSrc, MVT::v32i8, 4},  // vextractf128 + 2*vpperm
1417                                                   // + vinsertf128
1418 
1419       {TTI::SK_PermuteTwoSrc, MVT::v16i16, 9}, // 2*vextractf128 + 6*vpperm
1420                                                // + vinsertf128
1421       {TTI::SK_PermuteTwoSrc, MVT::v8i16, 1},  // vpperm
1422       {TTI::SK_PermuteTwoSrc, MVT::v32i8, 9},  // 2*vextractf128 + 6*vpperm
1423                                                // + vinsertf128
1424       {TTI::SK_PermuteTwoSrc, MVT::v16i8, 1},  // vpperm
1425   };
1426 
1427   if (ST->hasXOP())
1428     if (const auto *Entry = CostTableLookup(XOPShuffleTbl, Kind, LT.second))
1429       return LT.first * Entry->Cost;
1430 
1431   static const CostTblEntry AVX1ShuffleTbl[] = {
1432       {TTI::SK_Broadcast, MVT::v4f64, 2},  // vperm2f128 + vpermilpd
1433       {TTI::SK_Broadcast, MVT::v8f32, 2},  // vperm2f128 + vpermilps
1434       {TTI::SK_Broadcast, MVT::v4i64, 2},  // vperm2f128 + vpermilpd
1435       {TTI::SK_Broadcast, MVT::v8i32, 2},  // vperm2f128 + vpermilps
1436       {TTI::SK_Broadcast, MVT::v16i16, 3}, // vpshuflw + vpshufd + vinsertf128
1437       {TTI::SK_Broadcast, MVT::v32i8, 2},  // vpshufb + vinsertf128
1438 
1439       {TTI::SK_Reverse, MVT::v4f64, 2},  // vperm2f128 + vpermilpd
1440       {TTI::SK_Reverse, MVT::v8f32, 2},  // vperm2f128 + vpermilps
1441       {TTI::SK_Reverse, MVT::v4i64, 2},  // vperm2f128 + vpermilpd
1442       {TTI::SK_Reverse, MVT::v8i32, 2},  // vperm2f128 + vpermilps
1443       {TTI::SK_Reverse, MVT::v16i16, 4}, // vextractf128 + 2*pshufb
1444                                          // + vinsertf128
1445       {TTI::SK_Reverse, MVT::v32i8, 4},  // vextractf128 + 2*pshufb
1446                                          // + vinsertf128
1447 
1448       {TTI::SK_Select, MVT::v4i64, 1},  // vblendpd
1449       {TTI::SK_Select, MVT::v4f64, 1},  // vblendpd
1450       {TTI::SK_Select, MVT::v8i32, 1},  // vblendps
1451       {TTI::SK_Select, MVT::v8f32, 1},  // vblendps
1452       {TTI::SK_Select, MVT::v16i16, 3}, // vpand + vpandn + vpor
1453       {TTI::SK_Select, MVT::v32i8, 3},  // vpand + vpandn + vpor
1454 
1455       {TTI::SK_PermuteSingleSrc, MVT::v4f64, 2},  // vperm2f128 + vshufpd
1456       {TTI::SK_PermuteSingleSrc, MVT::v4i64, 2},  // vperm2f128 + vshufpd
1457       {TTI::SK_PermuteSingleSrc, MVT::v8f32, 4},  // 2*vperm2f128 + 2*vshufps
1458       {TTI::SK_PermuteSingleSrc, MVT::v8i32, 4},  // 2*vperm2f128 + 2*vshufps
1459       {TTI::SK_PermuteSingleSrc, MVT::v16i16, 8}, // vextractf128 + 4*pshufb
1460                                                   // + 2*por + vinsertf128
1461       {TTI::SK_PermuteSingleSrc, MVT::v32i8, 8},  // vextractf128 + 4*pshufb
1462                                                   // + 2*por + vinsertf128
1463 
1464       {TTI::SK_PermuteTwoSrc, MVT::v4f64, 3},   // 2*vperm2f128 + vshufpd
1465       {TTI::SK_PermuteTwoSrc, MVT::v4i64, 3},   // 2*vperm2f128 + vshufpd
1466       {TTI::SK_PermuteTwoSrc, MVT::v8f32, 4},   // 2*vperm2f128 + 2*vshufps
1467       {TTI::SK_PermuteTwoSrc, MVT::v8i32, 4},   // 2*vperm2f128 + 2*vshufps
1468       {TTI::SK_PermuteTwoSrc, MVT::v16i16, 15}, // 2*vextractf128 + 8*pshufb
1469                                                 // + 4*por + vinsertf128
1470       {TTI::SK_PermuteTwoSrc, MVT::v32i8, 15},  // 2*vextractf128 + 8*pshufb
1471                                                 // + 4*por + vinsertf128
1472   };
1473 
1474   if (ST->hasAVX())
1475     if (const auto *Entry = CostTableLookup(AVX1ShuffleTbl, Kind, LT.second))
1476       return LT.first * Entry->Cost;
1477 
1478   static const CostTblEntry SSE41ShuffleTbl[] = {
1479       {TTI::SK_Select, MVT::v2i64, 1}, // pblendw
1480       {TTI::SK_Select, MVT::v2f64, 1}, // movsd
1481       {TTI::SK_Select, MVT::v4i32, 1}, // pblendw
1482       {TTI::SK_Select, MVT::v4f32, 1}, // blendps
1483       {TTI::SK_Select, MVT::v8i16, 1}, // pblendw
1484       {TTI::SK_Select, MVT::v16i8, 1}  // pblendvb
1485   };
1486 
1487   if (ST->hasSSE41())
1488     if (const auto *Entry = CostTableLookup(SSE41ShuffleTbl, Kind, LT.second))
1489       return LT.first * Entry->Cost;
1490 
1491   static const CostTblEntry SSSE3ShuffleTbl[] = {
1492       {TTI::SK_Broadcast, MVT::v8i16, 1}, // pshufb
1493       {TTI::SK_Broadcast, MVT::v16i8, 1}, // pshufb
1494 
1495       {TTI::SK_Reverse, MVT::v8i16, 1}, // pshufb
1496       {TTI::SK_Reverse, MVT::v16i8, 1}, // pshufb
1497 
1498       {TTI::SK_Select, MVT::v8i16, 3}, // 2*pshufb + por
1499       {TTI::SK_Select, MVT::v16i8, 3}, // 2*pshufb + por
1500 
1501       {TTI::SK_PermuteSingleSrc, MVT::v8i16, 1}, // pshufb
1502       {TTI::SK_PermuteSingleSrc, MVT::v16i8, 1}, // pshufb
1503 
1504       {TTI::SK_PermuteTwoSrc, MVT::v8i16, 3}, // 2*pshufb + por
1505       {TTI::SK_PermuteTwoSrc, MVT::v16i8, 3}, // 2*pshufb + por
1506   };
1507 
1508   if (ST->hasSSSE3())
1509     if (const auto *Entry = CostTableLookup(SSSE3ShuffleTbl, Kind, LT.second))
1510       return LT.first * Entry->Cost;
1511 
1512   static const CostTblEntry SSE2ShuffleTbl[] = {
1513       {TTI::SK_Broadcast, MVT::v2f64, 1}, // shufpd
1514       {TTI::SK_Broadcast, MVT::v2i64, 1}, // pshufd
1515       {TTI::SK_Broadcast, MVT::v4i32, 1}, // pshufd
1516       {TTI::SK_Broadcast, MVT::v8i16, 2}, // pshuflw + pshufd
1517       {TTI::SK_Broadcast, MVT::v16i8, 3}, // unpck + pshuflw + pshufd
1518 
1519       {TTI::SK_Reverse, MVT::v2f64, 1}, // shufpd
1520       {TTI::SK_Reverse, MVT::v2i64, 1}, // pshufd
1521       {TTI::SK_Reverse, MVT::v4i32, 1}, // pshufd
1522       {TTI::SK_Reverse, MVT::v8i16, 3}, // pshuflw + pshufhw + pshufd
1523       {TTI::SK_Reverse, MVT::v16i8, 9}, // 2*pshuflw + 2*pshufhw
1524                                         // + 2*pshufd + 2*unpck + packus
1525 
1526       {TTI::SK_Select, MVT::v2i64, 1}, // movsd
1527       {TTI::SK_Select, MVT::v2f64, 1}, // movsd
1528       {TTI::SK_Select, MVT::v4i32, 2}, // 2*shufps
1529       {TTI::SK_Select, MVT::v8i16, 3}, // pand + pandn + por
1530       {TTI::SK_Select, MVT::v16i8, 3}, // pand + pandn + por
1531 
1532       {TTI::SK_PermuteSingleSrc, MVT::v2f64, 1}, // shufpd
1533       {TTI::SK_PermuteSingleSrc, MVT::v2i64, 1}, // pshufd
1534       {TTI::SK_PermuteSingleSrc, MVT::v4i32, 1}, // pshufd
1535       {TTI::SK_PermuteSingleSrc, MVT::v8i16, 5}, // 2*pshuflw + 2*pshufhw
1536                                                   // + pshufd/unpck
1537     { TTI::SK_PermuteSingleSrc, MVT::v16i8, 10 }, // 2*pshuflw + 2*pshufhw
1538                                                   // + 2*pshufd + 2*unpck + 2*packus
1539 
1540     { TTI::SK_PermuteTwoSrc,    MVT::v2f64,  1 }, // shufpd
1541     { TTI::SK_PermuteTwoSrc,    MVT::v2i64,  1 }, // shufpd
1542     { TTI::SK_PermuteTwoSrc,    MVT::v4i32,  2 }, // 2*{unpck,movsd,pshufd}
1543     { TTI::SK_PermuteTwoSrc,    MVT::v8i16,  8 }, // blend+permute
1544     { TTI::SK_PermuteTwoSrc,    MVT::v16i8, 13 }, // blend+permute
1545   };
1546 
1547   if (ST->hasSSE2())
1548     if (const auto *Entry = CostTableLookup(SSE2ShuffleTbl, Kind, LT.second))
1549       return LT.first * Entry->Cost;
1550 
1551   static const CostTblEntry SSE1ShuffleTbl[] = {
1552     { TTI::SK_Broadcast,        MVT::v4f32, 1 }, // shufps
1553     { TTI::SK_Reverse,          MVT::v4f32, 1 }, // shufps
1554     { TTI::SK_Select,           MVT::v4f32, 2 }, // 2*shufps
1555     { TTI::SK_PermuteSingleSrc, MVT::v4f32, 1 }, // shufps
1556     { TTI::SK_PermuteTwoSrc,    MVT::v4f32, 2 }, // 2*shufps
1557   };
1558 
1559   if (ST->hasSSE1())
1560     if (const auto *Entry = CostTableLookup(SSE1ShuffleTbl, Kind, LT.second))
1561       return LT.first * Entry->Cost;
1562 
1563   return BaseT::getShuffleCost(Kind, BaseTp, Mask, Index, SubTp);
1564 }
1565 
1566 InstructionCost X86TTIImpl::getCastInstrCost(unsigned Opcode, Type *Dst,
1567                                              Type *Src,
1568                                              TTI::CastContextHint CCH,
1569                                              TTI::TargetCostKind CostKind,
1570                                              const Instruction *I) {
1571   int ISD = TLI->InstructionOpcodeToISD(Opcode);
1572   assert(ISD && "Invalid opcode");
1573 
1574   // TODO: Allow non-throughput costs that aren't binary.
1575   auto AdjustCost = [&CostKind](InstructionCost Cost) -> InstructionCost {
1576     if (CostKind != TTI::TCK_RecipThroughput)
1577       return Cost == 0 ? 0 : 1;
1578     return Cost;
1579   };
1580 
1581   // The cost tables include both specific, custom (non-legal) src/dst type
1582   // conversions and generic, legalized types. We test for customs first, before
1583   // falling back to legalization.
1584   // FIXME: Need a better design of the cost table to handle non-simple types of
1585   // potential massive combinations (elem_num x src_type x dst_type).
1586   static const TypeConversionCostTblEntry AVX512BWConversionTbl[] {
1587     { ISD::SIGN_EXTEND, MVT::v32i16, MVT::v32i8, 1 },
1588     { ISD::ZERO_EXTEND, MVT::v32i16, MVT::v32i8, 1 },
1589 
1590     // Mask sign extend has an instruction.
1591     { ISD::SIGN_EXTEND, MVT::v2i8,   MVT::v2i1,   1 },
1592     { ISD::SIGN_EXTEND, MVT::v16i8,  MVT::v2i1,   1 },
1593     { ISD::SIGN_EXTEND, MVT::v2i16,  MVT::v2i1,   1 },
1594     { ISD::SIGN_EXTEND, MVT::v8i16,  MVT::v2i1,   1 },
1595     { ISD::SIGN_EXTEND, MVT::v4i8,   MVT::v4i1,   1 },
1596     { ISD::SIGN_EXTEND, MVT::v16i8,  MVT::v4i1,   1 },
1597     { ISD::SIGN_EXTEND, MVT::v4i16,  MVT::v4i1,   1 },
1598     { ISD::SIGN_EXTEND, MVT::v8i16,  MVT::v4i1,   1 },
1599     { ISD::SIGN_EXTEND, MVT::v8i8,   MVT::v8i1,   1 },
1600     { ISD::SIGN_EXTEND, MVT::v16i8,  MVT::v8i1,   1 },
1601     { ISD::SIGN_EXTEND, MVT::v8i16,  MVT::v8i1,   1 },
1602     { ISD::SIGN_EXTEND, MVT::v16i8,  MVT::v16i1,  1 },
1603     { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i1,  1 },
1604     { ISD::SIGN_EXTEND, MVT::v32i8,  MVT::v32i1,  1 },
1605     { ISD::SIGN_EXTEND, MVT::v32i16, MVT::v32i1,  1 },
1606     { ISD::SIGN_EXTEND, MVT::v64i8,  MVT::v64i1,  1 },
1607     { ISD::SIGN_EXTEND, MVT::v32i16, MVT::v64i1,  1 },
1608 
1609     // Mask zero extend is a sext + shift.
1610     { ISD::ZERO_EXTEND, MVT::v2i8,   MVT::v2i1,   2 },
1611     { ISD::ZERO_EXTEND, MVT::v16i8,  MVT::v2i1,   2 },
1612     { ISD::ZERO_EXTEND, MVT::v2i16,  MVT::v2i1,   2 },
1613     { ISD::ZERO_EXTEND, MVT::v8i16,  MVT::v2i1,   2 },
1614     { ISD::ZERO_EXTEND, MVT::v4i8,   MVT::v4i1,   2 },
1615     { ISD::ZERO_EXTEND, MVT::v16i8,  MVT::v4i1,   2 },
1616     { ISD::ZERO_EXTEND, MVT::v4i16,  MVT::v4i1,   2 },
1617     { ISD::ZERO_EXTEND, MVT::v8i16,  MVT::v4i1,   2 },
1618     { ISD::ZERO_EXTEND, MVT::v8i8,   MVT::v8i1,   2 },
1619     { ISD::ZERO_EXTEND, MVT::v16i8,  MVT::v8i1,   2 },
1620     { ISD::ZERO_EXTEND, MVT::v8i16,  MVT::v8i1,   2 },
1621     { ISD::ZERO_EXTEND, MVT::v16i8,  MVT::v16i1,  2 },
1622     { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i1,  2 },
1623     { ISD::ZERO_EXTEND, MVT::v32i8,  MVT::v32i1,  2 },
1624     { ISD::ZERO_EXTEND, MVT::v32i16, MVT::v32i1,  2 },
1625     { ISD::ZERO_EXTEND, MVT::v64i8,  MVT::v64i1,  2 },
1626     { ISD::ZERO_EXTEND, MVT::v32i16, MVT::v64i1,  2 },
1627 
1628     { ISD::TRUNCATE,    MVT::v2i1,   MVT::v2i8,   2 },
1629     { ISD::TRUNCATE,    MVT::v2i1,   MVT::v16i8,  2 },
1630     { ISD::TRUNCATE,    MVT::v2i1,   MVT::v2i16,  2 },
1631     { ISD::TRUNCATE,    MVT::v2i1,   MVT::v8i16,  2 },
1632     { ISD::TRUNCATE,    MVT::v4i1,   MVT::v4i8,   2 },
1633     { ISD::TRUNCATE,    MVT::v4i1,   MVT::v16i8,  2 },
1634     { ISD::TRUNCATE,    MVT::v4i1,   MVT::v4i16,  2 },
1635     { ISD::TRUNCATE,    MVT::v4i1,   MVT::v8i16,  2 },
1636     { ISD::TRUNCATE,    MVT::v8i1,   MVT::v8i8,   2 },
1637     { ISD::TRUNCATE,    MVT::v8i1,   MVT::v16i8,  2 },
1638     { ISD::TRUNCATE,    MVT::v8i1,   MVT::v8i16,  2 },
1639     { ISD::TRUNCATE,    MVT::v16i1,  MVT::v16i8,  2 },
1640     { ISD::TRUNCATE,    MVT::v16i1,  MVT::v16i16, 2 },
1641     { ISD::TRUNCATE,    MVT::v32i1,  MVT::v32i8,  2 },
1642     { ISD::TRUNCATE,    MVT::v32i1,  MVT::v32i16, 2 },
1643     { ISD::TRUNCATE,    MVT::v64i1,  MVT::v64i8,  2 },
1644     { ISD::TRUNCATE,    MVT::v64i1,  MVT::v32i16, 2 },
1645 
1646     { ISD::TRUNCATE,    MVT::v32i8,  MVT::v32i16, 2 },
1647     { ISD::TRUNCATE,    MVT::v16i8,  MVT::v16i16, 2 }, // widen to zmm
1648     { ISD::TRUNCATE,    MVT::v2i8,   MVT::v2i16,  2 }, // vpmovwb
1649     { ISD::TRUNCATE,    MVT::v4i8,   MVT::v4i16,  2 }, // vpmovwb
1650     { ISD::TRUNCATE,    MVT::v8i8,   MVT::v8i16,  2 }, // vpmovwb
1651   };
1652 
1653   static const TypeConversionCostTblEntry AVX512DQConversionTbl[] = {
1654     // Mask sign extend has an instruction.
1655     { ISD::SIGN_EXTEND, MVT::v2i64,  MVT::v2i1,   1 },
1656     { ISD::SIGN_EXTEND, MVT::v4i32,  MVT::v2i1,   1 },
1657     { ISD::SIGN_EXTEND, MVT::v4i32,  MVT::v4i1,   1 },
1658     { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v4i1,   1 },
1659     { ISD::SIGN_EXTEND, MVT::v8i32,  MVT::v8i1,   1 },
1660     { ISD::SIGN_EXTEND, MVT::v8i64,  MVT::v16i1,  1 },
1661     { ISD::SIGN_EXTEND, MVT::v8i64,  MVT::v8i1,   1 },
1662     { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i1,  1 },
1663 
1664     // Mask zero extend is a sext + shift.
1665     { ISD::ZERO_EXTEND, MVT::v2i64,  MVT::v2i1,   2 },
1666     { ISD::ZERO_EXTEND, MVT::v4i32,  MVT::v2i1,   2 },
1667     { ISD::ZERO_EXTEND, MVT::v4i32,  MVT::v4i1,   2 },
1668     { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v4i1,   2 },
1669     { ISD::ZERO_EXTEND, MVT::v8i32,  MVT::v8i1,   2 },
1670     { ISD::ZERO_EXTEND, MVT::v8i64,  MVT::v16i1,  2 },
1671     { ISD::ZERO_EXTEND, MVT::v8i64,  MVT::v8i1,   2 },
1672     { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i1,  2 },
1673 
1674     { ISD::TRUNCATE,    MVT::v2i1,   MVT::v2i64,  2 },
1675     { ISD::TRUNCATE,    MVT::v2i1,   MVT::v4i32,  2 },
1676     { ISD::TRUNCATE,    MVT::v4i1,   MVT::v4i32,  2 },
1677     { ISD::TRUNCATE,    MVT::v4i1,   MVT::v4i64,  2 },
1678     { ISD::TRUNCATE,    MVT::v8i1,   MVT::v8i32,  2 },
1679     { ISD::TRUNCATE,    MVT::v8i1,   MVT::v8i64,  2 },
1680     { ISD::TRUNCATE,    MVT::v16i1,  MVT::v16i32, 2 },
1681     { ISD::TRUNCATE,    MVT::v16i1,  MVT::v8i64,  2 },
1682 
1683     { ISD::SINT_TO_FP,  MVT::v8f32,  MVT::v8i64,  1 },
1684     { ISD::SINT_TO_FP,  MVT::v8f64,  MVT::v8i64,  1 },
1685 
1686     { ISD::UINT_TO_FP,  MVT::v8f32,  MVT::v8i64,  1 },
1687     { ISD::UINT_TO_FP,  MVT::v8f64,  MVT::v8i64,  1 },
1688 
1689     { ISD::FP_TO_SINT,  MVT::v8i64,  MVT::v8f32,  1 },
1690     { ISD::FP_TO_SINT,  MVT::v8i64,  MVT::v8f64,  1 },
1691 
1692     { ISD::FP_TO_UINT,  MVT::v8i64,  MVT::v8f32,  1 },
1693     { ISD::FP_TO_UINT,  MVT::v8i64,  MVT::v8f64,  1 },
1694   };
1695 
1696   // TODO: For AVX512DQ + AVX512VL, we also have cheap casts for 128-bit and
1697   // 256-bit wide vectors.
1698 
1699   static const TypeConversionCostTblEntry AVX512FConversionTbl[] = {
1700     { ISD::FP_EXTEND, MVT::v8f64,   MVT::v8f32,  1 },
1701     { ISD::FP_EXTEND, MVT::v8f64,   MVT::v16f32, 3 },
1702     { ISD::FP_ROUND,  MVT::v8f32,   MVT::v8f64,  1 },
1703 
1704     { ISD::TRUNCATE,  MVT::v2i1,    MVT::v2i8,   3 }, // sext+vpslld+vptestmd
1705     { ISD::TRUNCATE,  MVT::v4i1,    MVT::v4i8,   3 }, // sext+vpslld+vptestmd
1706     { ISD::TRUNCATE,  MVT::v8i1,    MVT::v8i8,   3 }, // sext+vpslld+vptestmd
1707     { ISD::TRUNCATE,  MVT::v16i1,   MVT::v16i8,  3 }, // sext+vpslld+vptestmd
1708     { ISD::TRUNCATE,  MVT::v2i1,    MVT::v2i16,  3 }, // sext+vpsllq+vptestmq
1709     { ISD::TRUNCATE,  MVT::v4i1,    MVT::v4i16,  3 }, // sext+vpsllq+vptestmq
1710     { ISD::TRUNCATE,  MVT::v8i1,    MVT::v8i16,  3 }, // sext+vpsllq+vptestmq
1711     { ISD::TRUNCATE,  MVT::v16i1,   MVT::v16i16, 3 }, // sext+vpslld+vptestmd
1712     { ISD::TRUNCATE,  MVT::v2i1,    MVT::v2i32,  2 }, // zmm vpslld+vptestmd
1713     { ISD::TRUNCATE,  MVT::v4i1,    MVT::v4i32,  2 }, // zmm vpslld+vptestmd
1714     { ISD::TRUNCATE,  MVT::v8i1,    MVT::v8i32,  2 }, // zmm vpslld+vptestmd
1715     { ISD::TRUNCATE,  MVT::v16i1,   MVT::v16i32, 2 }, // vpslld+vptestmd
1716     { ISD::TRUNCATE,  MVT::v2i1,    MVT::v2i64,  2 }, // zmm vpsllq+vptestmq
1717     { ISD::TRUNCATE,  MVT::v4i1,    MVT::v4i64,  2 }, // zmm vpsllq+vptestmq
1718     { ISD::TRUNCATE,  MVT::v8i1,    MVT::v8i64,  2 }, // vpsllq+vptestmq
1719     { ISD::TRUNCATE,  MVT::v2i8,    MVT::v2i32,  2 }, // vpmovdb
1720     { ISD::TRUNCATE,  MVT::v4i8,    MVT::v4i32,  2 }, // vpmovdb
1721     { ISD::TRUNCATE,  MVT::v16i8,   MVT::v16i32, 2 }, // vpmovdb
1722     { ISD::TRUNCATE,  MVT::v32i8,   MVT::v16i32, 2 }, // vpmovdb
1723     { ISD::TRUNCATE,  MVT::v64i8,   MVT::v16i32, 2 }, // vpmovdb
1724     { ISD::TRUNCATE,  MVT::v16i16,  MVT::v16i32, 2 }, // vpmovdw
1725     { ISD::TRUNCATE,  MVT::v32i16,  MVT::v16i32, 2 }, // vpmovdw
1726     { ISD::TRUNCATE,  MVT::v2i8,    MVT::v2i64,  2 }, // vpmovqb
1727     { ISD::TRUNCATE,  MVT::v2i16,   MVT::v2i64,  1 }, // vpshufb
1728     { ISD::TRUNCATE,  MVT::v8i8,    MVT::v8i64,  2 }, // vpmovqb
1729     { ISD::TRUNCATE,  MVT::v16i8,   MVT::v8i64,  2 }, // vpmovqb
1730     { ISD::TRUNCATE,  MVT::v32i8,   MVT::v8i64,  2 }, // vpmovqb
1731     { ISD::TRUNCATE,  MVT::v64i8,   MVT::v8i64,  2 }, // vpmovqb
1732     { ISD::TRUNCATE,  MVT::v8i16,   MVT::v8i64,  2 }, // vpmovqw
1733     { ISD::TRUNCATE,  MVT::v16i16,  MVT::v8i64,  2 }, // vpmovqw
1734     { ISD::TRUNCATE,  MVT::v32i16,  MVT::v8i64,  2 }, // vpmovqw
1735     { ISD::TRUNCATE,  MVT::v8i32,   MVT::v8i64,  1 }, // vpmovqd
1736     { ISD::TRUNCATE,  MVT::v4i32,   MVT::v4i64,  1 }, // zmm vpmovqd
1737     { ISD::TRUNCATE,  MVT::v16i8,   MVT::v16i64, 5 },// 2*vpmovqd+concat+vpmovdb
1738 
1739     { ISD::TRUNCATE,  MVT::v16i8,  MVT::v16i16,  3 }, // extend to v16i32
1740     { ISD::TRUNCATE,  MVT::v32i8,  MVT::v32i16,  8 },
1741     { ISD::TRUNCATE,  MVT::v64i8,  MVT::v32i16,  8 },
1742 
1743     // Sign extend is zmm vpternlogd+vptruncdb.
1744     // Zero extend is zmm broadcast load+vptruncdw.
1745     { ISD::SIGN_EXTEND, MVT::v2i8,   MVT::v2i1,   3 },
1746     { ISD::ZERO_EXTEND, MVT::v2i8,   MVT::v2i1,   4 },
1747     { ISD::SIGN_EXTEND, MVT::v4i8,   MVT::v4i1,   3 },
1748     { ISD::ZERO_EXTEND, MVT::v4i8,   MVT::v4i1,   4 },
1749     { ISD::SIGN_EXTEND, MVT::v8i8,   MVT::v8i1,   3 },
1750     { ISD::ZERO_EXTEND, MVT::v8i8,   MVT::v8i1,   4 },
1751     { ISD::SIGN_EXTEND, MVT::v16i8,  MVT::v16i1,  3 },
1752     { ISD::ZERO_EXTEND, MVT::v16i8,  MVT::v16i1,  4 },
1753 
1754     // Sign extend is zmm vpternlogd+vptruncdw.
1755     // Zero extend is zmm vpternlogd+vptruncdw+vpsrlw.
1756     { ISD::SIGN_EXTEND, MVT::v2i16,  MVT::v2i1,   3 },
1757     { ISD::ZERO_EXTEND, MVT::v2i16,  MVT::v2i1,   4 },
1758     { ISD::SIGN_EXTEND, MVT::v4i16,  MVT::v4i1,   3 },
1759     { ISD::ZERO_EXTEND, MVT::v4i16,  MVT::v4i1,   4 },
1760     { ISD::SIGN_EXTEND, MVT::v8i16,  MVT::v8i1,   3 },
1761     { ISD::ZERO_EXTEND, MVT::v8i16,  MVT::v8i1,   4 },
1762     { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i1,  3 },
1763     { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i1,  4 },
1764 
1765     { ISD::SIGN_EXTEND, MVT::v2i32,  MVT::v2i1,   1 }, // zmm vpternlogd
1766     { ISD::ZERO_EXTEND, MVT::v2i32,  MVT::v2i1,   2 }, // zmm vpternlogd+psrld
1767     { ISD::SIGN_EXTEND, MVT::v4i32,  MVT::v4i1,   1 }, // zmm vpternlogd
1768     { ISD::ZERO_EXTEND, MVT::v4i32,  MVT::v4i1,   2 }, // zmm vpternlogd+psrld
1769     { ISD::SIGN_EXTEND, MVT::v8i32,  MVT::v8i1,   1 }, // zmm vpternlogd
1770     { ISD::ZERO_EXTEND, MVT::v8i32,  MVT::v8i1,   2 }, // zmm vpternlogd+psrld
1771     { ISD::SIGN_EXTEND, MVT::v2i64,  MVT::v2i1,   1 }, // zmm vpternlogq
1772     { ISD::ZERO_EXTEND, MVT::v2i64,  MVT::v2i1,   2 }, // zmm vpternlogq+psrlq
1773     { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v4i1,   1 }, // zmm vpternlogq
1774     { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v4i1,   2 }, // zmm vpternlogq+psrlq
1775 
1776     { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i1,  1 }, // vpternlogd
1777     { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i1,  2 }, // vpternlogd+psrld
1778     { ISD::SIGN_EXTEND, MVT::v8i64,  MVT::v8i1,   1 }, // vpternlogq
1779     { ISD::ZERO_EXTEND, MVT::v8i64,  MVT::v8i1,   2 }, // vpternlogq+psrlq
1780 
1781     { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i8,  1 },
1782     { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i8,  1 },
1783     { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i16, 1 },
1784     { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i16, 1 },
1785     { ISD::SIGN_EXTEND, MVT::v8i64,  MVT::v8i8,   1 },
1786     { ISD::ZERO_EXTEND, MVT::v8i64,  MVT::v8i8,   1 },
1787     { ISD::SIGN_EXTEND, MVT::v8i64,  MVT::v8i16,  1 },
1788     { ISD::ZERO_EXTEND, MVT::v8i64,  MVT::v8i16,  1 },
1789     { ISD::SIGN_EXTEND, MVT::v8i64,  MVT::v8i32,  1 },
1790     { ISD::ZERO_EXTEND, MVT::v8i64,  MVT::v8i32,  1 },
1791 
1792     { ISD::SIGN_EXTEND, MVT::v32i16, MVT::v32i8,  3 }, // FIXME: May not be right
1793     { ISD::ZERO_EXTEND, MVT::v32i16, MVT::v32i8,  3 }, // FIXME: May not be right
1794 
1795     { ISD::SINT_TO_FP,  MVT::v8f64,  MVT::v8i1,   4 },
1796     { ISD::SINT_TO_FP,  MVT::v16f32, MVT::v16i1,  3 },
1797     { ISD::SINT_TO_FP,  MVT::v8f64,  MVT::v16i8,  2 },
1798     { ISD::SINT_TO_FP,  MVT::v16f32, MVT::v16i8,  1 },
1799     { ISD::SINT_TO_FP,  MVT::v8f64,  MVT::v8i16,  2 },
1800     { ISD::SINT_TO_FP,  MVT::v16f32, MVT::v16i16, 1 },
1801     { ISD::SINT_TO_FP,  MVT::v8f64,  MVT::v8i32,  1 },
1802     { ISD::SINT_TO_FP,  MVT::v16f32, MVT::v16i32, 1 },
1803 
1804     { ISD::UINT_TO_FP,  MVT::v8f64,  MVT::v8i1,   4 },
1805     { ISD::UINT_TO_FP,  MVT::v16f32, MVT::v16i1,  3 },
1806     { ISD::UINT_TO_FP,  MVT::v8f64,  MVT::v16i8,  2 },
1807     { ISD::UINT_TO_FP,  MVT::v16f32, MVT::v16i8,  1 },
1808     { ISD::UINT_TO_FP,  MVT::v8f64,  MVT::v8i16,  2 },
1809     { ISD::UINT_TO_FP,  MVT::v16f32, MVT::v16i16, 1 },
1810     { ISD::UINT_TO_FP,  MVT::v8f64,  MVT::v8i32,  1 },
1811     { ISD::UINT_TO_FP,  MVT::v16f32, MVT::v16i32, 1 },
1812     { ISD::UINT_TO_FP,  MVT::v8f32,  MVT::v8i64, 26 },
1813     { ISD::UINT_TO_FP,  MVT::v8f64,  MVT::v8i64,  5 },
1814 
1815     { ISD::FP_TO_SINT,  MVT::v16i8,  MVT::v16f32, 2 },
1816     { ISD::FP_TO_SINT,  MVT::v16i8,  MVT::v16f64, 7 },
1817     { ISD::FP_TO_SINT,  MVT::v32i8,  MVT::v32f64,15 },
1818     { ISD::FP_TO_SINT,  MVT::v64i8,  MVT::v64f32,11 },
1819     { ISD::FP_TO_SINT,  MVT::v64i8,  MVT::v64f64,31 },
1820     { ISD::FP_TO_SINT,  MVT::v8i16,  MVT::v8f64,  3 },
1821     { ISD::FP_TO_SINT,  MVT::v16i16, MVT::v16f64, 7 },
1822     { ISD::FP_TO_SINT,  MVT::v32i16, MVT::v32f32, 5 },
1823     { ISD::FP_TO_SINT,  MVT::v32i16, MVT::v32f64,15 },
1824     { ISD::FP_TO_SINT,  MVT::v8i32,  MVT::v8f64,  1 },
1825     { ISD::FP_TO_SINT,  MVT::v16i32, MVT::v16f64, 3 },
1826 
1827     { ISD::FP_TO_UINT,  MVT::v8i32,  MVT::v8f64,  1 },
1828     { ISD::FP_TO_UINT,  MVT::v8i16,  MVT::v8f64,  3 },
1829     { ISD::FP_TO_UINT,  MVT::v8i8,   MVT::v8f64,  3 },
1830     { ISD::FP_TO_UINT,  MVT::v16i32, MVT::v16f32, 1 },
1831     { ISD::FP_TO_UINT,  MVT::v16i16, MVT::v16f32, 3 },
1832     { ISD::FP_TO_UINT,  MVT::v16i8,  MVT::v16f32, 3 },
1833   };
1834 
1835   static const TypeConversionCostTblEntry AVX512BWVLConversionTbl[] {
1836     // Mask sign extend has an instruction.
1837     { ISD::SIGN_EXTEND, MVT::v2i8,   MVT::v2i1,   1 },
1838     { ISD::SIGN_EXTEND, MVT::v16i8,  MVT::v2i1,   1 },
1839     { ISD::SIGN_EXTEND, MVT::v2i16,  MVT::v2i1,   1 },
1840     { ISD::SIGN_EXTEND, MVT::v8i16,  MVT::v2i1,   1 },
1841     { ISD::SIGN_EXTEND, MVT::v4i16,  MVT::v4i1,   1 },
1842     { ISD::SIGN_EXTEND, MVT::v16i8,  MVT::v4i1,   1 },
1843     { ISD::SIGN_EXTEND, MVT::v4i8,   MVT::v4i1,   1 },
1844     { ISD::SIGN_EXTEND, MVT::v8i16,  MVT::v4i1,   1 },
1845     { ISD::SIGN_EXTEND, MVT::v8i8,   MVT::v8i1,   1 },
1846     { ISD::SIGN_EXTEND, MVT::v16i8,  MVT::v8i1,   1 },
1847     { ISD::SIGN_EXTEND, MVT::v8i16,  MVT::v8i1,   1 },
1848     { ISD::SIGN_EXTEND, MVT::v16i8,  MVT::v16i1,  1 },
1849     { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i1,  1 },
1850     { ISD::SIGN_EXTEND, MVT::v32i8,  MVT::v32i1,  1 },
1851     { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v32i1,  1 },
1852     { ISD::SIGN_EXTEND, MVT::v32i8,  MVT::v64i1,  1 },
1853     { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v64i1,  1 },
1854 
1855     // Mask zero extend is a sext + shift.
1856     { ISD::ZERO_EXTEND, MVT::v2i8,   MVT::v2i1,   2 },
1857     { ISD::ZERO_EXTEND, MVT::v16i8,  MVT::v2i1,   2 },
1858     { ISD::ZERO_EXTEND, MVT::v2i16,  MVT::v2i1,   2 },
1859     { ISD::ZERO_EXTEND, MVT::v8i16,  MVT::v2i1,   2 },
1860     { ISD::ZERO_EXTEND, MVT::v4i8,   MVT::v4i1,   2 },
1861     { ISD::ZERO_EXTEND, MVT::v16i8,  MVT::v4i1,   2 },
1862     { ISD::ZERO_EXTEND, MVT::v4i16,  MVT::v4i1,   2 },
1863     { ISD::ZERO_EXTEND, MVT::v8i16,  MVT::v4i1,   2 },
1864     { ISD::ZERO_EXTEND, MVT::v8i8,   MVT::v8i1,   2 },
1865     { ISD::ZERO_EXTEND, MVT::v16i8,  MVT::v8i1,   2 },
1866     { ISD::ZERO_EXTEND, MVT::v8i16,  MVT::v8i1,   2 },
1867     { ISD::ZERO_EXTEND, MVT::v16i8,  MVT::v16i1,  2 },
1868     { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i1,  2 },
1869     { ISD::ZERO_EXTEND, MVT::v32i8,  MVT::v32i1,  2 },
1870     { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v32i1,  2 },
1871     { ISD::ZERO_EXTEND, MVT::v32i8,  MVT::v64i1,  2 },
1872     { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v64i1,  2 },
1873 
1874     { ISD::TRUNCATE,    MVT::v2i1,   MVT::v2i8,   2 },
1875     { ISD::TRUNCATE,    MVT::v2i1,   MVT::v16i8,  2 },
1876     { ISD::TRUNCATE,    MVT::v2i1,   MVT::v2i16,  2 },
1877     { ISD::TRUNCATE,    MVT::v2i1,   MVT::v8i16,  2 },
1878     { ISD::TRUNCATE,    MVT::v4i1,   MVT::v4i8,   2 },
1879     { ISD::TRUNCATE,    MVT::v4i1,   MVT::v16i8,  2 },
1880     { ISD::TRUNCATE,    MVT::v4i1,   MVT::v4i16,  2 },
1881     { ISD::TRUNCATE,    MVT::v4i1,   MVT::v8i16,  2 },
1882     { ISD::TRUNCATE,    MVT::v8i1,   MVT::v8i8,   2 },
1883     { ISD::TRUNCATE,    MVT::v8i1,   MVT::v16i8,  2 },
1884     { ISD::TRUNCATE,    MVT::v8i1,   MVT::v8i16,  2 },
1885     { ISD::TRUNCATE,    MVT::v16i1,  MVT::v16i8,  2 },
1886     { ISD::TRUNCATE,    MVT::v16i1,  MVT::v16i16, 2 },
1887     { ISD::TRUNCATE,    MVT::v32i1,  MVT::v32i8,  2 },
1888     { ISD::TRUNCATE,    MVT::v32i1,  MVT::v16i16, 2 },
1889     { ISD::TRUNCATE,    MVT::v64i1,  MVT::v32i8,  2 },
1890     { ISD::TRUNCATE,    MVT::v64i1,  MVT::v16i16, 2 },
1891 
1892     { ISD::TRUNCATE,    MVT::v16i8,  MVT::v16i16, 2 },
1893   };
1894 
1895   static const TypeConversionCostTblEntry AVX512DQVLConversionTbl[] = {
1896     // Mask sign extend has an instruction.
1897     { ISD::SIGN_EXTEND, MVT::v2i64,  MVT::v2i1,   1 },
1898     { ISD::SIGN_EXTEND, MVT::v4i32,  MVT::v2i1,   1 },
1899     { ISD::SIGN_EXTEND, MVT::v4i32,  MVT::v4i1,   1 },
1900     { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v16i1,  1 },
1901     { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v4i1,   1 },
1902     { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v8i1,   1 },
1903     { ISD::SIGN_EXTEND, MVT::v8i32,  MVT::v16i1,  1 },
1904     { ISD::SIGN_EXTEND, MVT::v8i32,  MVT::v8i1,   1 },
1905 
1906     // Mask zero extend is a sext + shift.
1907     { ISD::ZERO_EXTEND, MVT::v2i64,  MVT::v2i1,   2 },
1908     { ISD::ZERO_EXTEND, MVT::v4i32,  MVT::v2i1,   2 },
1909     { ISD::ZERO_EXTEND, MVT::v4i32,  MVT::v4i1,   2 },
1910     { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v16i1,  2 },
1911     { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v4i1,   2 },
1912     { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v8i1,   2 },
1913     { ISD::ZERO_EXTEND, MVT::v8i32,  MVT::v16i1,  2 },
1914     { ISD::ZERO_EXTEND, MVT::v8i32,  MVT::v8i1,   2 },
1915 
1916     { ISD::TRUNCATE,    MVT::v16i1,  MVT::v4i64,  2 },
1917     { ISD::TRUNCATE,    MVT::v16i1,  MVT::v8i32,  2 },
1918     { ISD::TRUNCATE,    MVT::v2i1,   MVT::v2i64,  2 },
1919     { ISD::TRUNCATE,    MVT::v2i1,   MVT::v4i32,  2 },
1920     { ISD::TRUNCATE,    MVT::v4i1,   MVT::v4i32,  2 },
1921     { ISD::TRUNCATE,    MVT::v4i1,   MVT::v4i64,  2 },
1922     { ISD::TRUNCATE,    MVT::v8i1,   MVT::v4i64,  2 },
1923     { ISD::TRUNCATE,    MVT::v8i1,   MVT::v8i32,  2 },
1924 
1925     { ISD::SINT_TO_FP,  MVT::v2f32,  MVT::v2i64,  1 },
1926     { ISD::SINT_TO_FP,  MVT::v2f64,  MVT::v2i64,  1 },
1927     { ISD::SINT_TO_FP,  MVT::v4f32,  MVT::v4i64,  1 },
1928     { ISD::SINT_TO_FP,  MVT::v4f64,  MVT::v4i64,  1 },
1929 
1930     { ISD::UINT_TO_FP,  MVT::v2f32,  MVT::v2i64,  1 },
1931     { ISD::UINT_TO_FP,  MVT::v2f64,  MVT::v2i64,  1 },
1932     { ISD::UINT_TO_FP,  MVT::v4f32,  MVT::v4i64,  1 },
1933     { ISD::UINT_TO_FP,  MVT::v4f64,  MVT::v4i64,  1 },
1934 
1935     { ISD::FP_TO_SINT,  MVT::v2i64,  MVT::v4f32,  1 },
1936     { ISD::FP_TO_SINT,  MVT::v4i64,  MVT::v4f32,  1 },
1937     { ISD::FP_TO_SINT,  MVT::v2i64,  MVT::v2f64,  1 },
1938     { ISD::FP_TO_SINT,  MVT::v4i64,  MVT::v4f64,  1 },
1939 
1940     { ISD::FP_TO_UINT,  MVT::v2i64,  MVT::v4f32,  1 },
1941     { ISD::FP_TO_UINT,  MVT::v4i64,  MVT::v4f32,  1 },
1942     { ISD::FP_TO_UINT,  MVT::v2i64,  MVT::v2f64,  1 },
1943     { ISD::FP_TO_UINT,  MVT::v4i64,  MVT::v4f64,  1 },
1944   };
1945 
1946   static const TypeConversionCostTblEntry AVX512VLConversionTbl[] = {
1947     { ISD::TRUNCATE,  MVT::v2i1,    MVT::v2i8,   3 }, // sext+vpslld+vptestmd
1948     { ISD::TRUNCATE,  MVT::v4i1,    MVT::v4i8,   3 }, // sext+vpslld+vptestmd
1949     { ISD::TRUNCATE,  MVT::v8i1,    MVT::v8i8,   3 }, // sext+vpslld+vptestmd
1950     { ISD::TRUNCATE,  MVT::v16i1,   MVT::v16i8,  8 }, // split+2*v8i8
1951     { ISD::TRUNCATE,  MVT::v2i1,    MVT::v2i16,  3 }, // sext+vpsllq+vptestmq
1952     { ISD::TRUNCATE,  MVT::v4i1,    MVT::v4i16,  3 }, // sext+vpsllq+vptestmq
1953     { ISD::TRUNCATE,  MVT::v8i1,    MVT::v8i16,  3 }, // sext+vpsllq+vptestmq
1954     { ISD::TRUNCATE,  MVT::v16i1,   MVT::v16i16, 8 }, // split+2*v8i16
1955     { ISD::TRUNCATE,  MVT::v2i1,    MVT::v2i32,  2 }, // vpslld+vptestmd
1956     { ISD::TRUNCATE,  MVT::v4i1,    MVT::v4i32,  2 }, // vpslld+vptestmd
1957     { ISD::TRUNCATE,  MVT::v8i1,    MVT::v8i32,  2 }, // vpslld+vptestmd
1958     { ISD::TRUNCATE,  MVT::v2i1,    MVT::v2i64,  2 }, // vpsllq+vptestmq
1959     { ISD::TRUNCATE,  MVT::v4i1,    MVT::v4i64,  2 }, // vpsllq+vptestmq
1960     { ISD::TRUNCATE,  MVT::v4i32,   MVT::v4i64,  1 }, // vpmovqd
1961     { ISD::TRUNCATE,  MVT::v4i8,    MVT::v4i64,  2 }, // vpmovqb
1962     { ISD::TRUNCATE,  MVT::v4i16,   MVT::v4i64,  2 }, // vpmovqw
1963     { ISD::TRUNCATE,  MVT::v8i8,    MVT::v8i32,  2 }, // vpmovwb
1964 
1965     // sign extend is vpcmpeq+maskedmove+vpmovdw+vpacksswb
1966     // zero extend is vpcmpeq+maskedmove+vpmovdw+vpsrlw+vpackuswb
1967     { ISD::SIGN_EXTEND, MVT::v2i8,   MVT::v2i1,   5 },
1968     { ISD::ZERO_EXTEND, MVT::v2i8,   MVT::v2i1,   6 },
1969     { ISD::SIGN_EXTEND, MVT::v4i8,   MVT::v4i1,   5 },
1970     { ISD::ZERO_EXTEND, MVT::v4i8,   MVT::v4i1,   6 },
1971     { ISD::SIGN_EXTEND, MVT::v8i8,   MVT::v8i1,   5 },
1972     { ISD::ZERO_EXTEND, MVT::v8i8,   MVT::v8i1,   6 },
1973     { ISD::SIGN_EXTEND, MVT::v16i8,  MVT::v16i1, 10 },
1974     { ISD::ZERO_EXTEND, MVT::v16i8,  MVT::v16i1, 12 },
1975 
1976     // sign extend is vpcmpeq+maskedmove+vpmovdw
1977     // zero extend is vpcmpeq+maskedmove+vpmovdw+vpsrlw
1978     { ISD::SIGN_EXTEND, MVT::v2i16,  MVT::v2i1,   4 },
1979     { ISD::ZERO_EXTEND, MVT::v2i16,  MVT::v2i1,   5 },
1980     { ISD::SIGN_EXTEND, MVT::v4i16,  MVT::v4i1,   4 },
1981     { ISD::ZERO_EXTEND, MVT::v4i16,  MVT::v4i1,   5 },
1982     { ISD::SIGN_EXTEND, MVT::v8i16,  MVT::v8i1,   4 },
1983     { ISD::ZERO_EXTEND, MVT::v8i16,  MVT::v8i1,   5 },
1984     { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i1, 10 },
1985     { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i1, 12 },
1986 
1987     { ISD::SIGN_EXTEND, MVT::v2i32,  MVT::v2i1,   1 }, // vpternlogd
1988     { ISD::ZERO_EXTEND, MVT::v2i32,  MVT::v2i1,   2 }, // vpternlogd+psrld
1989     { ISD::SIGN_EXTEND, MVT::v4i32,  MVT::v4i1,   1 }, // vpternlogd
1990     { ISD::ZERO_EXTEND, MVT::v4i32,  MVT::v4i1,   2 }, // vpternlogd+psrld
1991     { ISD::SIGN_EXTEND, MVT::v8i32,  MVT::v8i1,   1 }, // vpternlogd
1992     { ISD::ZERO_EXTEND, MVT::v8i32,  MVT::v8i1,   2 }, // vpternlogd+psrld
1993     { ISD::SIGN_EXTEND, MVT::v2i64,  MVT::v2i1,   1 }, // vpternlogq
1994     { ISD::ZERO_EXTEND, MVT::v2i64,  MVT::v2i1,   2 }, // vpternlogq+psrlq
1995     { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v4i1,   1 }, // vpternlogq
1996     { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v4i1,   2 }, // vpternlogq+psrlq
1997 
1998     { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v16i8,  1 },
1999     { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v16i8,  1 },
2000     { ISD::SIGN_EXTEND, MVT::v8i32,  MVT::v16i8,  1 },
2001     { ISD::ZERO_EXTEND, MVT::v8i32,  MVT::v16i8,  1 },
2002     { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i8,  1 },
2003     { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i8,  1 },
2004     { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v8i16,  1 },
2005     { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v8i16,  1 },
2006     { ISD::SIGN_EXTEND, MVT::v8i32,  MVT::v8i16,  1 },
2007     { ISD::ZERO_EXTEND, MVT::v8i32,  MVT::v8i16,  1 },
2008     { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v4i32,  1 },
2009     { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v4i32,  1 },
2010 
2011     { ISD::SINT_TO_FP,  MVT::v2f64,  MVT::v16i8,  1 },
2012     { ISD::SINT_TO_FP,  MVT::v8f32,  MVT::v16i8,  1 },
2013     { ISD::SINT_TO_FP,  MVT::v2f64,  MVT::v8i16,  1 },
2014     { ISD::SINT_TO_FP,  MVT::v8f32,  MVT::v8i16,  1 },
2015 
2016     { ISD::UINT_TO_FP,  MVT::f32,    MVT::i64,    1 },
2017     { ISD::UINT_TO_FP,  MVT::f64,    MVT::i64,    1 },
2018     { ISD::UINT_TO_FP,  MVT::v2f64,  MVT::v16i8,  1 },
2019     { ISD::UINT_TO_FP,  MVT::v8f32,  MVT::v16i8,  1 },
2020     { ISD::UINT_TO_FP,  MVT::v2f64,  MVT::v8i16,  1 },
2021     { ISD::UINT_TO_FP,  MVT::v8f32,  MVT::v8i16,  1 },
2022     { ISD::UINT_TO_FP,  MVT::v2f32,  MVT::v2i32,  1 },
2023     { ISD::UINT_TO_FP,  MVT::v4f32,  MVT::v4i32,  1 },
2024     { ISD::UINT_TO_FP,  MVT::v4f64,  MVT::v4i32,  1 },
2025     { ISD::UINT_TO_FP,  MVT::v8f32,  MVT::v8i32,  1 },
2026     { ISD::UINT_TO_FP,  MVT::v2f32,  MVT::v2i64,  5 },
2027     { ISD::UINT_TO_FP,  MVT::v2f64,  MVT::v2i64,  5 },
2028     { ISD::UINT_TO_FP,  MVT::v4f64,  MVT::v4i64,  5 },
2029 
2030     { ISD::FP_TO_SINT,  MVT::v16i8,  MVT::v8f32,  2 },
2031     { ISD::FP_TO_SINT,  MVT::v16i8,  MVT::v16f32, 2 },
2032     { ISD::FP_TO_SINT,  MVT::v32i8,  MVT::v32f32, 5 },
2033 
2034     { ISD::FP_TO_UINT,  MVT::i64,    MVT::f32,    1 },
2035     { ISD::FP_TO_UINT,  MVT::i64,    MVT::f64,    1 },
2036     { ISD::FP_TO_UINT,  MVT::v4i32,  MVT::v4f32,  1 },
2037     { ISD::FP_TO_UINT,  MVT::v4i32,  MVT::v2f64,  1 },
2038     { ISD::FP_TO_UINT,  MVT::v4i32,  MVT::v4f64,  1 },
2039     { ISD::FP_TO_UINT,  MVT::v8i32,  MVT::v8f32,  1 },
2040     { ISD::FP_TO_UINT,  MVT::v8i32,  MVT::v8f64,  1 },
2041   };
2042 
2043   static const TypeConversionCostTblEntry AVX2ConversionTbl[] = {
2044     { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v4i1,   3 },
2045     { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v4i1,   3 },
2046     { ISD::SIGN_EXTEND, MVT::v8i32,  MVT::v8i1,   3 },
2047     { ISD::ZERO_EXTEND, MVT::v8i32,  MVT::v8i1,   3 },
2048     { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i1,  1 },
2049     { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i1,  1 },
2050 
2051     { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v16i8,  2 },
2052     { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v16i8,  2 },
2053     { ISD::SIGN_EXTEND, MVT::v8i32,  MVT::v16i8,  2 },
2054     { ISD::ZERO_EXTEND, MVT::v8i32,  MVT::v16i8,  2 },
2055     { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i8,  2 },
2056     { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i8,  2 },
2057     { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v8i16,  2 },
2058     { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v8i16,  2 },
2059     { ISD::SIGN_EXTEND, MVT::v8i32,  MVT::v8i16,  2 },
2060     { ISD::ZERO_EXTEND, MVT::v8i32,  MVT::v8i16,  2 },
2061     { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i16, 3 },
2062     { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i16, 3 },
2063     { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v4i32,  2 },
2064     { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v4i32,  2 },
2065 
2066     { ISD::TRUNCATE,    MVT::v8i1,   MVT::v8i32,  2 },
2067 
2068     { ISD::TRUNCATE,    MVT::v16i16, MVT::v16i32, 4 },
2069     { ISD::TRUNCATE,    MVT::v16i8,  MVT::v16i32, 4 },
2070     { ISD::TRUNCATE,    MVT::v16i8,  MVT::v8i16,  1 },
2071     { ISD::TRUNCATE,    MVT::v16i8,  MVT::v4i32,  1 },
2072     { ISD::TRUNCATE,    MVT::v16i8,  MVT::v2i64,  1 },
2073     { ISD::TRUNCATE,    MVT::v16i8,  MVT::v8i32,  4 },
2074     { ISD::TRUNCATE,    MVT::v16i8,  MVT::v4i64,  4 },
2075     { ISD::TRUNCATE,    MVT::v8i16,  MVT::v4i32,  1 },
2076     { ISD::TRUNCATE,    MVT::v8i16,  MVT::v2i64,  1 },
2077     { ISD::TRUNCATE,    MVT::v8i16,  MVT::v4i64,  5 },
2078     { ISD::TRUNCATE,    MVT::v4i32,  MVT::v4i64,  1 },
2079     { ISD::TRUNCATE,    MVT::v8i16,  MVT::v8i32,  2 },
2080 
2081     { ISD::FP_EXTEND,   MVT::v8f64,  MVT::v8f32,  3 },
2082     { ISD::FP_ROUND,    MVT::v8f32,  MVT::v8f64,  3 },
2083 
2084     { ISD::FP_TO_SINT,  MVT::v16i16, MVT::v8f32,  1 },
2085     { ISD::FP_TO_SINT,  MVT::v4i32,  MVT::v4f64,  1 },
2086     { ISD::FP_TO_SINT,  MVT::v8i32,  MVT::v8f32,  1 },
2087     { ISD::FP_TO_SINT,  MVT::v8i32,  MVT::v8f64,  3 },
2088 
2089     { ISD::FP_TO_UINT,  MVT::i64,    MVT::f32,    3 },
2090     { ISD::FP_TO_UINT,  MVT::i64,    MVT::f64,    3 },
2091     { ISD::FP_TO_UINT,  MVT::v16i16, MVT::v8f32,  1 },
2092     { ISD::FP_TO_UINT,  MVT::v4i32,  MVT::v4f32,  3 },
2093     { ISD::FP_TO_UINT,  MVT::v4i32,  MVT::v2f64,  4 },
2094     { ISD::FP_TO_UINT,  MVT::v4i32,  MVT::v4f64,  4 },
2095     { ISD::FP_TO_UINT,  MVT::v8i32,  MVT::v8f32,  3 },
2096     { ISD::FP_TO_UINT,  MVT::v8i32,  MVT::v4f64,  4 },
2097 
2098     { ISD::SINT_TO_FP,  MVT::v2f64,  MVT::v16i8,  2 },
2099     { ISD::SINT_TO_FP,  MVT::v8f32,  MVT::v16i8,  2 },
2100     { ISD::SINT_TO_FP,  MVT::v2f64,  MVT::v8i16,  2 },
2101     { ISD::SINT_TO_FP,  MVT::v8f32,  MVT::v8i16,  2 },
2102     { ISD::SINT_TO_FP,  MVT::v4f64,  MVT::v4i32,  1 },
2103     { ISD::SINT_TO_FP,  MVT::v8f32,  MVT::v8i32,  1 },
2104     { ISD::SINT_TO_FP,  MVT::v8f64,  MVT::v8i32,  3 },
2105 
2106     { ISD::UINT_TO_FP,  MVT::v2f64,  MVT::v16i8,  2 },
2107     { ISD::UINT_TO_FP,  MVT::v8f32,  MVT::v16i8,  2 },
2108     { ISD::UINT_TO_FP,  MVT::v2f64,  MVT::v8i16,  2 },
2109     { ISD::UINT_TO_FP,  MVT::v8f32,  MVT::v8i16,  2 },
2110     { ISD::UINT_TO_FP,  MVT::v2f32,  MVT::v2i32,  2 },
2111     { ISD::UINT_TO_FP,  MVT::v2f64,  MVT::v2i32,  1 },
2112     { ISD::UINT_TO_FP,  MVT::v4f32,  MVT::v4i32,  2 },
2113     { ISD::UINT_TO_FP,  MVT::v4f64,  MVT::v4i32,  2 },
2114     { ISD::UINT_TO_FP,  MVT::v8f32,  MVT::v8i32,  2 },
2115     { ISD::UINT_TO_FP,  MVT::v8f64,  MVT::v8i32,  4 },
2116   };
2117 
2118   static const TypeConversionCostTblEntry AVXConversionTbl[] = {
2119     { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v4i1,   6 },
2120     { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v4i1,   4 },
2121     { ISD::SIGN_EXTEND, MVT::v8i32,  MVT::v8i1,   7 },
2122     { ISD::ZERO_EXTEND, MVT::v8i32,  MVT::v8i1,   4 },
2123     { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i1,  4 },
2124     { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i1,  4 },
2125 
2126     { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v16i8,  3 },
2127     { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v16i8,  3 },
2128     { ISD::SIGN_EXTEND, MVT::v8i32,  MVT::v16i8,  3 },
2129     { ISD::ZERO_EXTEND, MVT::v8i32,  MVT::v16i8,  3 },
2130     { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i8,  3 },
2131     { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i8,  3 },
2132     { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v8i16,  3 },
2133     { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v8i16,  3 },
2134     { ISD::SIGN_EXTEND, MVT::v8i32,  MVT::v8i16,  3 },
2135     { ISD::ZERO_EXTEND, MVT::v8i32,  MVT::v8i16,  3 },
2136     { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v4i32,  3 },
2137     { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v4i32,  3 },
2138 
2139     { ISD::TRUNCATE,    MVT::v4i1,   MVT::v4i64,  4 },
2140     { ISD::TRUNCATE,    MVT::v8i1,   MVT::v8i32,  5 },
2141     { ISD::TRUNCATE,    MVT::v16i1,  MVT::v16i16, 4 },
2142     { ISD::TRUNCATE,    MVT::v8i1,   MVT::v8i64,  9 },
2143     { ISD::TRUNCATE,    MVT::v16i1,  MVT::v16i64, 11 },
2144 
2145     { ISD::TRUNCATE,    MVT::v16i16, MVT::v16i32, 6 },
2146     { ISD::TRUNCATE,    MVT::v16i8,  MVT::v16i32, 6 },
2147     { ISD::TRUNCATE,    MVT::v16i8,  MVT::v16i16, 2 }, // and+extract+packuswb
2148     { ISD::TRUNCATE,    MVT::v16i8,  MVT::v8i32,  5 },
2149     { ISD::TRUNCATE,    MVT::v8i16,  MVT::v8i32,  5 },
2150     { ISD::TRUNCATE,    MVT::v16i8,  MVT::v4i64,  5 },
2151     { ISD::TRUNCATE,    MVT::v8i16,  MVT::v4i64,  3 }, // and+extract+2*packusdw
2152     { ISD::TRUNCATE,    MVT::v4i32,  MVT::v4i64,  2 },
2153 
2154     { ISD::SINT_TO_FP,  MVT::v4f32,  MVT::v4i1,   3 },
2155     { ISD::SINT_TO_FP,  MVT::v4f64,  MVT::v4i1,   3 },
2156     { ISD::SINT_TO_FP,  MVT::v8f32,  MVT::v8i1,   8 },
2157     { ISD::SINT_TO_FP,  MVT::v8f32,  MVT::v16i8,  4 },
2158     { ISD::SINT_TO_FP,  MVT::v4f64,  MVT::v16i8,  2 },
2159     { ISD::SINT_TO_FP,  MVT::v8f32,  MVT::v8i16,  4 },
2160     { ISD::SINT_TO_FP,  MVT::v4f64,  MVT::v8i16,  2 },
2161     { ISD::SINT_TO_FP,  MVT::v4f64,  MVT::v4i32,  2 },
2162     { ISD::SINT_TO_FP,  MVT::v8f32,  MVT::v8i32,  2 },
2163     { ISD::SINT_TO_FP,  MVT::v8f64,  MVT::v8i32,  4 },
2164     { ISD::SINT_TO_FP,  MVT::v4f32,  MVT::v2i64,  5 },
2165     { ISD::SINT_TO_FP,  MVT::v4f32,  MVT::v4i64,  8 },
2166 
2167     { ISD::UINT_TO_FP,  MVT::v4f32,  MVT::v4i1,   7 },
2168     { ISD::UINT_TO_FP,  MVT::v4f64,  MVT::v4i1,   7 },
2169     { ISD::UINT_TO_FP,  MVT::v8f32,  MVT::v8i1,   6 },
2170     { ISD::UINT_TO_FP,  MVT::v8f32,  MVT::v16i8,  4 },
2171     { ISD::UINT_TO_FP,  MVT::v4f64,  MVT::v16i8,  2 },
2172     { ISD::UINT_TO_FP,  MVT::v8f32,  MVT::v8i16,  4 },
2173     { ISD::UINT_TO_FP,  MVT::v4f64,  MVT::v8i16,  2 },
2174     { ISD::UINT_TO_FP,  MVT::v2f32,  MVT::v2i32,  4 },
2175     { ISD::UINT_TO_FP,  MVT::v2f64,  MVT::v2i32,  4 },
2176     { ISD::UINT_TO_FP,  MVT::v4f32,  MVT::v4i32,  5 },
2177     { ISD::UINT_TO_FP,  MVT::v4f64,  MVT::v4i32,  6 },
2178     { ISD::UINT_TO_FP,  MVT::v8f32,  MVT::v8i32,  8 },
2179     { ISD::UINT_TO_FP,  MVT::v8f64,  MVT::v8i32, 10 },
2180     { ISD::UINT_TO_FP,  MVT::v2f32,  MVT::v2i64, 10 },
2181     { ISD::UINT_TO_FP,  MVT::v4f32,  MVT::v4i64, 18 },
2182     { ISD::UINT_TO_FP,  MVT::v2f64,  MVT::v2i64,  5 },
2183     { ISD::UINT_TO_FP,  MVT::v4f64,  MVT::v4i64, 10 },
2184 
2185     { ISD::FP_TO_SINT,  MVT::v16i8,  MVT::v8f32,  2 },
2186     { ISD::FP_TO_SINT,  MVT::v16i8,  MVT::v4f64,  2 },
2187     { ISD::FP_TO_SINT,  MVT::v32i8,  MVT::v8f32,  2 },
2188     { ISD::FP_TO_SINT,  MVT::v32i8,  MVT::v4f64,  2 },
2189     { ISD::FP_TO_SINT,  MVT::v8i16,  MVT::v8f32,  2 },
2190     { ISD::FP_TO_SINT,  MVT::v8i16,  MVT::v4f64,  2 },
2191     { ISD::FP_TO_SINT,  MVT::v16i16, MVT::v8f32,  2 },
2192     { ISD::FP_TO_SINT,  MVT::v16i16, MVT::v4f64,  2 },
2193     { ISD::FP_TO_SINT,  MVT::v4i32,  MVT::v4f64,  2 },
2194     { ISD::FP_TO_SINT,  MVT::v8i32,  MVT::v8f32,  2 },
2195     { ISD::FP_TO_SINT,  MVT::v8i32,  MVT::v8f64,  5 },
2196 
2197     { ISD::FP_TO_UINT,  MVT::v16i8,  MVT::v8f32,  2 },
2198     { ISD::FP_TO_UINT,  MVT::v16i8,  MVT::v4f64,  2 },
2199     { ISD::FP_TO_UINT,  MVT::v32i8,  MVT::v8f32,  2 },
2200     { ISD::FP_TO_UINT,  MVT::v32i8,  MVT::v4f64,  2 },
2201     { ISD::FP_TO_UINT,  MVT::v8i16,  MVT::v8f32,  2 },
2202     { ISD::FP_TO_UINT,  MVT::v8i16,  MVT::v4f64,  2 },
2203     { ISD::FP_TO_UINT,  MVT::v16i16, MVT::v8f32,  2 },
2204     { ISD::FP_TO_UINT,  MVT::v16i16, MVT::v4f64,  2 },
2205     { ISD::FP_TO_UINT,  MVT::v4i32,  MVT::v4f32,  3 },
2206     { ISD::FP_TO_UINT,  MVT::v4i32,  MVT::v2f64,  4 },
2207     { ISD::FP_TO_UINT,  MVT::v4i32,  MVT::v4f64,  6 },
2208     { ISD::FP_TO_UINT,  MVT::v8i32,  MVT::v8f32,  7 },
2209     { ISD::FP_TO_UINT,  MVT::v8i32,  MVT::v4f64,  7 },
2210 
2211     { ISD::FP_EXTEND,   MVT::v4f64,  MVT::v4f32,  1 },
2212     { ISD::FP_ROUND,    MVT::v4f32,  MVT::v4f64,  1 },
2213   };
2214 
2215   static const TypeConversionCostTblEntry SSE41ConversionTbl[] = {
2216     { ISD::ZERO_EXTEND, MVT::v2i64, MVT::v16i8,   1 },
2217     { ISD::SIGN_EXTEND, MVT::v2i64, MVT::v16i8,   1 },
2218     { ISD::ZERO_EXTEND, MVT::v4i32, MVT::v16i8,   1 },
2219     { ISD::SIGN_EXTEND, MVT::v4i32, MVT::v16i8,   1 },
2220     { ISD::ZERO_EXTEND, MVT::v8i16, MVT::v16i8,   1 },
2221     { ISD::SIGN_EXTEND, MVT::v8i16, MVT::v16i8,   1 },
2222     { ISD::ZERO_EXTEND, MVT::v2i64, MVT::v8i16,   1 },
2223     { ISD::SIGN_EXTEND, MVT::v2i64, MVT::v8i16,   1 },
2224     { ISD::ZERO_EXTEND, MVT::v4i32, MVT::v8i16,   1 },
2225     { ISD::SIGN_EXTEND, MVT::v4i32, MVT::v8i16,   1 },
2226     { ISD::ZERO_EXTEND, MVT::v2i64, MVT::v4i32,   1 },
2227     { ISD::SIGN_EXTEND, MVT::v2i64, MVT::v4i32,   1 },
2228 
2229     // These truncates end up widening elements.
2230     { ISD::TRUNCATE,    MVT::v2i1,   MVT::v2i8,   1 }, // PMOVXZBQ
2231     { ISD::TRUNCATE,    MVT::v2i1,   MVT::v2i16,  1 }, // PMOVXZWQ
2232     { ISD::TRUNCATE,    MVT::v4i1,   MVT::v4i8,   1 }, // PMOVXZBD
2233 
2234     { ISD::TRUNCATE,    MVT::v16i8,  MVT::v4i32,  2 },
2235     { ISD::TRUNCATE,    MVT::v8i16,  MVT::v4i32,  2 },
2236     { ISD::TRUNCATE,    MVT::v16i8,  MVT::v2i64,  2 },
2237 
2238     { ISD::SINT_TO_FP,  MVT::f32,    MVT::i32,    1 },
2239     { ISD::SINT_TO_FP,  MVT::f64,    MVT::i32,    1 },
2240     { ISD::SINT_TO_FP,  MVT::f32,    MVT::i64,    1 },
2241     { ISD::SINT_TO_FP,  MVT::f64,    MVT::i64,    1 },
2242     { ISD::SINT_TO_FP,  MVT::v4f32,  MVT::v16i8,  1 },
2243     { ISD::SINT_TO_FP,  MVT::v2f64,  MVT::v16i8,  1 },
2244     { ISD::SINT_TO_FP,  MVT::v4f32,  MVT::v8i16,  1 },
2245     { ISD::SINT_TO_FP,  MVT::v2f64,  MVT::v8i16,  1 },
2246     { ISD::SINT_TO_FP,  MVT::v4f32,  MVT::v4i32,  1 },
2247     { ISD::SINT_TO_FP,  MVT::v2f64,  MVT::v4i32,  1 },
2248     { ISD::SINT_TO_FP,  MVT::v4f64,  MVT::v4i32,  2 },
2249 
2250     { ISD::UINT_TO_FP,  MVT::f32,    MVT::i32,    1 },
2251     { ISD::UINT_TO_FP,  MVT::f64,    MVT::i32,    1 },
2252     { ISD::UINT_TO_FP,  MVT::f32,    MVT::i64,    4 },
2253     { ISD::UINT_TO_FP,  MVT::f64,    MVT::i64,    4 },
2254     { ISD::UINT_TO_FP,  MVT::v4f32,  MVT::v16i8,  1 },
2255     { ISD::UINT_TO_FP,  MVT::v2f64,  MVT::v16i8,  1 },
2256     { ISD::UINT_TO_FP,  MVT::v4f32,  MVT::v8i16,  1 },
2257     { ISD::UINT_TO_FP,  MVT::v2f64,  MVT::v8i16,  1 },
2258     { ISD::UINT_TO_FP,  MVT::v2f32,  MVT::v2i32,  3 },
2259     { ISD::UINT_TO_FP,  MVT::v4f32,  MVT::v4i32,  3 },
2260     { ISD::UINT_TO_FP,  MVT::v2f64,  MVT::v4i32,  2 },
2261     { ISD::UINT_TO_FP,  MVT::v4f32,  MVT::v2i64, 12 },
2262     { ISD::UINT_TO_FP,  MVT::v4f32,  MVT::v4i64, 22 },
2263     { ISD::UINT_TO_FP,  MVT::v2f64,  MVT::v2i64,  4 },
2264 
2265     { ISD::FP_TO_SINT,  MVT::i32,    MVT::f32,    1 },
2266     { ISD::FP_TO_SINT,  MVT::i64,    MVT::f32,    1 },
2267     { ISD::FP_TO_SINT,  MVT::i32,    MVT::f64,    1 },
2268     { ISD::FP_TO_SINT,  MVT::i64,    MVT::f64,    1 },
2269     { ISD::FP_TO_SINT,  MVT::v16i8,  MVT::v4f32,  2 },
2270     { ISD::FP_TO_SINT,  MVT::v16i8,  MVT::v2f64,  2 },
2271     { ISD::FP_TO_SINT,  MVT::v8i16,  MVT::v4f32,  1 },
2272     { ISD::FP_TO_SINT,  MVT::v8i16,  MVT::v2f64,  1 },
2273     { ISD::FP_TO_SINT,  MVT::v4i32,  MVT::v4f32,  1 },
2274     { ISD::FP_TO_SINT,  MVT::v4i32,  MVT::v2f64,  1 },
2275 
2276     { ISD::FP_TO_UINT,  MVT::i32,    MVT::f32,    1 },
2277     { ISD::FP_TO_UINT,  MVT::i64,    MVT::f32,    4 },
2278     { ISD::FP_TO_UINT,  MVT::i32,    MVT::f64,    1 },
2279     { ISD::FP_TO_UINT,  MVT::i64,    MVT::f64,    4 },
2280     { ISD::FP_TO_UINT,  MVT::v16i8,  MVT::v4f32,  2 },
2281     { ISD::FP_TO_UINT,  MVT::v16i8,  MVT::v2f64,  2 },
2282     { ISD::FP_TO_UINT,  MVT::v8i16,  MVT::v4f32,  1 },
2283     { ISD::FP_TO_UINT,  MVT::v8i16,  MVT::v2f64,  1 },
2284     { ISD::FP_TO_UINT,  MVT::v4i32,  MVT::v4f32,  4 },
2285     { ISD::FP_TO_UINT,  MVT::v4i32,  MVT::v2f64,  4 },
2286   };
2287 
2288   static const TypeConversionCostTblEntry SSE2ConversionTbl[] = {
2289     // These are somewhat magic numbers justified by comparing the
2290     // output of llvm-mca for our various supported scheduler models
2291     // and basing it off the worst case scenario.
2292     { ISD::SINT_TO_FP,  MVT::f32,    MVT::i32,    3 },
2293     { ISD::SINT_TO_FP,  MVT::f64,    MVT::i32,    3 },
2294     { ISD::SINT_TO_FP,  MVT::f32,    MVT::i64,    3 },
2295     { ISD::SINT_TO_FP,  MVT::f64,    MVT::i64,    3 },
2296     { ISD::SINT_TO_FP,  MVT::v4f32,  MVT::v16i8,  3 },
2297     { ISD::SINT_TO_FP,  MVT::v2f64,  MVT::v16i8,  4 },
2298     { ISD::SINT_TO_FP,  MVT::v4f32,  MVT::v8i16,  3 },
2299     { ISD::SINT_TO_FP,  MVT::v2f64,  MVT::v8i16,  4 },
2300     { ISD::SINT_TO_FP,  MVT::v4f32,  MVT::v4i32,  3 },
2301     { ISD::SINT_TO_FP,  MVT::v2f64,  MVT::v4i32,  4 },
2302     { ISD::SINT_TO_FP,  MVT::v4f32,  MVT::v2i64,  8 },
2303     { ISD::SINT_TO_FP,  MVT::v2f64,  MVT::v2i64,  8 },
2304 
2305     { ISD::UINT_TO_FP,  MVT::f32,    MVT::i32,    3 },
2306     { ISD::UINT_TO_FP,  MVT::f64,    MVT::i32,    3 },
2307     { ISD::UINT_TO_FP,  MVT::f32,    MVT::i64,    8 },
2308     { ISD::UINT_TO_FP,  MVT::f64,    MVT::i64,    9 },
2309     { ISD::UINT_TO_FP,  MVT::v2f64,  MVT::v16i8,  4 },
2310     { ISD::UINT_TO_FP,  MVT::v4f32,  MVT::v16i8,  4 },
2311     { ISD::UINT_TO_FP,  MVT::v4f32,  MVT::v8i16,  4 },
2312     { ISD::UINT_TO_FP,  MVT::v2f64,  MVT::v8i16,  4 },
2313     { ISD::UINT_TO_FP,  MVT::v2f32,  MVT::v2i32,  7 },
2314     { ISD::UINT_TO_FP,  MVT::v2f64,  MVT::v4i32,  7 },
2315     { ISD::UINT_TO_FP,  MVT::v4f32,  MVT::v4i32,  5 },
2316     { ISD::UINT_TO_FP,  MVT::v2f64,  MVT::v2i64, 15 },
2317     { ISD::UINT_TO_FP,  MVT::v4f32,  MVT::v2i64, 18 },
2318 
2319     { ISD::FP_TO_SINT,  MVT::i32,    MVT::f32,    4 },
2320     { ISD::FP_TO_SINT,  MVT::i64,    MVT::f32,    4 },
2321     { ISD::FP_TO_SINT,  MVT::i32,    MVT::f64,    4 },
2322     { ISD::FP_TO_SINT,  MVT::i64,    MVT::f64,    4 },
2323     { ISD::FP_TO_SINT,  MVT::v16i8,  MVT::v4f32,  6 },
2324     { ISD::FP_TO_SINT,  MVT::v16i8,  MVT::v2f64,  6 },
2325     { ISD::FP_TO_SINT,  MVT::v8i16,  MVT::v4f32,  5 },
2326     { ISD::FP_TO_SINT,  MVT::v8i16,  MVT::v2f64,  5 },
2327     { ISD::FP_TO_SINT,  MVT::v4i32,  MVT::v4f32,  4 },
2328     { ISD::FP_TO_SINT,  MVT::v4i32,  MVT::v2f64,  4 },
2329 
2330     { ISD::FP_TO_UINT,  MVT::i32,    MVT::f32,    4 },
2331     { ISD::FP_TO_UINT,  MVT::i64,    MVT::f32,    4 },
2332     { ISD::FP_TO_UINT,  MVT::i32,    MVT::f64,    4 },
2333     { ISD::FP_TO_UINT,  MVT::i64,    MVT::f64,   15 },
2334     { ISD::FP_TO_UINT,  MVT::v16i8,  MVT::v4f32,  6 },
2335     { ISD::FP_TO_UINT,  MVT::v16i8,  MVT::v2f64,  6 },
2336     { ISD::FP_TO_UINT,  MVT::v8i16,  MVT::v4f32,  5 },
2337     { ISD::FP_TO_UINT,  MVT::v8i16,  MVT::v2f64,  5 },
2338     { ISD::FP_TO_UINT,  MVT::v4i32,  MVT::v4f32,  8 },
2339     { ISD::FP_TO_UINT,  MVT::v4i32,  MVT::v2f64,  8 },
2340 
2341     { ISD::ZERO_EXTEND, MVT::v2i64,  MVT::v16i8,  4 },
2342     { ISD::SIGN_EXTEND, MVT::v2i64,  MVT::v16i8,  4 },
2343     { ISD::ZERO_EXTEND, MVT::v4i32,  MVT::v16i8,  2 },
2344     { ISD::SIGN_EXTEND, MVT::v4i32,  MVT::v16i8,  3 },
2345     { ISD::ZERO_EXTEND, MVT::v8i16,  MVT::v16i8,  1 },
2346     { ISD::SIGN_EXTEND, MVT::v8i16,  MVT::v16i8,  2 },
2347     { ISD::ZERO_EXTEND, MVT::v2i64,  MVT::v8i16,  2 },
2348     { ISD::SIGN_EXTEND, MVT::v2i64,  MVT::v8i16,  3 },
2349     { ISD::ZERO_EXTEND, MVT::v4i32,  MVT::v8i16,  1 },
2350     { ISD::SIGN_EXTEND, MVT::v4i32,  MVT::v8i16,  2 },
2351     { ISD::ZERO_EXTEND, MVT::v2i64,  MVT::v4i32,  1 },
2352     { ISD::SIGN_EXTEND, MVT::v2i64,  MVT::v4i32,  2 },
2353 
2354     // These truncates are really widening elements.
2355     { ISD::TRUNCATE,    MVT::v2i1,   MVT::v2i32,  1 }, // PSHUFD
2356     { ISD::TRUNCATE,    MVT::v2i1,   MVT::v2i16,  2 }, // PUNPCKLWD+DQ
2357     { ISD::TRUNCATE,    MVT::v2i1,   MVT::v2i8,   3 }, // PUNPCKLBW+WD+PSHUFD
2358     { ISD::TRUNCATE,    MVT::v4i1,   MVT::v4i16,  1 }, // PUNPCKLWD
2359     { ISD::TRUNCATE,    MVT::v4i1,   MVT::v4i8,   2 }, // PUNPCKLBW+WD
2360     { ISD::TRUNCATE,    MVT::v8i1,   MVT::v8i8,   1 }, // PUNPCKLBW
2361 
2362     { ISD::TRUNCATE,    MVT::v16i8,  MVT::v8i16,  2 }, // PAND+PACKUSWB
2363     { ISD::TRUNCATE,    MVT::v16i8,  MVT::v16i16, 3 },
2364     { ISD::TRUNCATE,    MVT::v16i8,  MVT::v4i32,  3 }, // PAND+2*PACKUSWB
2365     { ISD::TRUNCATE,    MVT::v16i8,  MVT::v16i32, 7 },
2366     { ISD::TRUNCATE,    MVT::v2i16,  MVT::v2i32,  1 },
2367     { ISD::TRUNCATE,    MVT::v8i16,  MVT::v4i32,  3 },
2368     { ISD::TRUNCATE,    MVT::v8i16,  MVT::v8i32,  5 },
2369     { ISD::TRUNCATE,    MVT::v16i16, MVT::v16i32,10 },
2370     { ISD::TRUNCATE,    MVT::v16i8,  MVT::v2i64,  4 }, // PAND+3*PACKUSWB
2371     { ISD::TRUNCATE,    MVT::v8i16,  MVT::v2i64,  2 }, // PSHUFD+PSHUFLW
2372     { ISD::TRUNCATE,    MVT::v4i32,  MVT::v2i64,  1 }, // PSHUFD
2373   };
2374 
2375   // Attempt to map directly to (simple) MVT types to let us match custom entries.
2376   EVT SrcTy = TLI->getValueType(DL, Src);
2377   EVT DstTy = TLI->getValueType(DL, Dst);
2378 
2379   // The function getSimpleVT only handles simple value types.
2380   if (SrcTy.isSimple() && DstTy.isSimple()) {
2381     MVT SimpleSrcTy = SrcTy.getSimpleVT();
2382     MVT SimpleDstTy = DstTy.getSimpleVT();
2383 
2384     if (ST->useAVX512Regs()) {
2385       if (ST->hasBWI())
2386         if (const auto *Entry = ConvertCostTableLookup(
2387                 AVX512BWConversionTbl, ISD, SimpleDstTy, SimpleSrcTy))
2388           return AdjustCost(Entry->Cost);
2389 
2390       if (ST->hasDQI())
2391         if (const auto *Entry = ConvertCostTableLookup(
2392                 AVX512DQConversionTbl, ISD, SimpleDstTy, SimpleSrcTy))
2393           return AdjustCost(Entry->Cost);
2394 
2395       if (ST->hasAVX512())
2396         if (const auto *Entry = ConvertCostTableLookup(
2397                 AVX512FConversionTbl, ISD, SimpleDstTy, SimpleSrcTy))
2398           return AdjustCost(Entry->Cost);
2399     }
2400 
2401     if (ST->hasBWI())
2402       if (const auto *Entry = ConvertCostTableLookup(
2403               AVX512BWVLConversionTbl, ISD, SimpleDstTy, SimpleSrcTy))
2404         return AdjustCost(Entry->Cost);
2405 
2406     if (ST->hasDQI())
2407       if (const auto *Entry = ConvertCostTableLookup(
2408               AVX512DQVLConversionTbl, ISD, SimpleDstTy, SimpleSrcTy))
2409         return AdjustCost(Entry->Cost);
2410 
2411     if (ST->hasAVX512())
2412       if (const auto *Entry = ConvertCostTableLookup(AVX512VLConversionTbl, ISD,
2413                                                      SimpleDstTy, SimpleSrcTy))
2414         return AdjustCost(Entry->Cost);
2415 
2416     if (ST->hasAVX2()) {
2417       if (const auto *Entry = ConvertCostTableLookup(AVX2ConversionTbl, ISD,
2418                                                      SimpleDstTy, SimpleSrcTy))
2419         return AdjustCost(Entry->Cost);
2420     }
2421 
2422     if (ST->hasAVX()) {
2423       if (const auto *Entry = ConvertCostTableLookup(AVXConversionTbl, ISD,
2424                                                      SimpleDstTy, SimpleSrcTy))
2425         return AdjustCost(Entry->Cost);
2426     }
2427 
2428     if (ST->hasSSE41()) {
2429       if (const auto *Entry = ConvertCostTableLookup(SSE41ConversionTbl, ISD,
2430                                                      SimpleDstTy, SimpleSrcTy))
2431         return AdjustCost(Entry->Cost);
2432     }
2433 
2434     if (ST->hasSSE2()) {
2435       if (const auto *Entry = ConvertCostTableLookup(SSE2ConversionTbl, ISD,
2436                                                      SimpleDstTy, SimpleSrcTy))
2437         return AdjustCost(Entry->Cost);
2438     }
2439   }
2440 
2441   // Fall back to legalized types.
2442   std::pair<InstructionCost, MVT> LTSrc = TLI->getTypeLegalizationCost(DL, Src);
2443   std::pair<InstructionCost, MVT> LTDest =
2444       TLI->getTypeLegalizationCost(DL, Dst);
2445 
2446   if (ST->useAVX512Regs()) {
2447     if (ST->hasBWI())
2448       if (const auto *Entry = ConvertCostTableLookup(
2449               AVX512BWConversionTbl, ISD, LTDest.second, LTSrc.second))
2450         return AdjustCost(std::max(LTSrc.first, LTDest.first) * Entry->Cost);
2451 
2452     if (ST->hasDQI())
2453       if (const auto *Entry = ConvertCostTableLookup(
2454               AVX512DQConversionTbl, ISD, LTDest.second, LTSrc.second))
2455         return AdjustCost(std::max(LTSrc.first, LTDest.first) * Entry->Cost);
2456 
2457     if (ST->hasAVX512())
2458       if (const auto *Entry = ConvertCostTableLookup(
2459               AVX512FConversionTbl, ISD, LTDest.second, LTSrc.second))
2460         return AdjustCost(std::max(LTSrc.first, LTDest.first) * Entry->Cost);
2461   }
2462 
2463   if (ST->hasBWI())
2464     if (const auto *Entry = ConvertCostTableLookup(AVX512BWVLConversionTbl, ISD,
2465                                                    LTDest.second, LTSrc.second))
2466       return AdjustCost(std::max(LTSrc.first, LTDest.first) * Entry->Cost);
2467 
2468   if (ST->hasDQI())
2469     if (const auto *Entry = ConvertCostTableLookup(AVX512DQVLConversionTbl, ISD,
2470                                                    LTDest.second, LTSrc.second))
2471       return AdjustCost(std::max(LTSrc.first, LTDest.first) * Entry->Cost);
2472 
2473   if (ST->hasAVX512())
2474     if (const auto *Entry = ConvertCostTableLookup(AVX512VLConversionTbl, ISD,
2475                                                    LTDest.second, LTSrc.second))
2476       return AdjustCost(std::max(LTSrc.first, LTDest.first) * Entry->Cost);
2477 
2478   if (ST->hasAVX2())
2479     if (const auto *Entry = ConvertCostTableLookup(AVX2ConversionTbl, ISD,
2480                                                    LTDest.second, LTSrc.second))
2481       return AdjustCost(std::max(LTSrc.first, LTDest.first) * Entry->Cost);
2482 
2483   if (ST->hasAVX())
2484     if (const auto *Entry = ConvertCostTableLookup(AVXConversionTbl, ISD,
2485                                                    LTDest.second, LTSrc.second))
2486       return AdjustCost(std::max(LTSrc.first, LTDest.first) * Entry->Cost);
2487 
2488   if (ST->hasSSE41())
2489     if (const auto *Entry = ConvertCostTableLookup(SSE41ConversionTbl, ISD,
2490                                                    LTDest.second, LTSrc.second))
2491       return AdjustCost(std::max(LTSrc.first, LTDest.first) * Entry->Cost);
2492 
2493   if (ST->hasSSE2())
2494     if (const auto *Entry = ConvertCostTableLookup(SSE2ConversionTbl, ISD,
2495                                                    LTDest.second, LTSrc.second))
2496       return AdjustCost(std::max(LTSrc.first, LTDest.first) * Entry->Cost);
2497 
2498   // Fallback, for i8/i16 sitofp/uitofp cases we need to extend to i32 for
2499   // sitofp.
2500   if ((ISD == ISD::SINT_TO_FP || ISD == ISD::UINT_TO_FP) &&
2501       1 < Src->getScalarSizeInBits() && Src->getScalarSizeInBits() < 32) {
2502     Type *ExtSrc = Src->getWithNewBitWidth(32);
2503     unsigned ExtOpc =
2504         (ISD == ISD::SINT_TO_FP) ? Instruction::SExt : Instruction::ZExt;
2505 
2506     // For scalar loads the extend would be free.
2507     InstructionCost ExtCost = 0;
2508     if (!(Src->isIntegerTy() && I && isa<LoadInst>(I->getOperand(0))))
2509       ExtCost = getCastInstrCost(ExtOpc, ExtSrc, Src, CCH, CostKind);
2510 
2511     return ExtCost + getCastInstrCost(Instruction::SIToFP, Dst, ExtSrc,
2512                                       TTI::CastContextHint::None, CostKind);
2513   }
2514 
2515   // Fallback for fptosi/fptoui i8/i16 cases we need to truncate from fptosi
2516   // i32.
2517   if ((ISD == ISD::FP_TO_SINT || ISD == ISD::FP_TO_UINT) &&
2518       1 < Dst->getScalarSizeInBits() && Dst->getScalarSizeInBits() < 32) {
2519     Type *TruncDst = Dst->getWithNewBitWidth(32);
2520     return getCastInstrCost(Instruction::FPToSI, TruncDst, Src, CCH, CostKind) +
2521            getCastInstrCost(Instruction::Trunc, Dst, TruncDst,
2522                             TTI::CastContextHint::None, CostKind);
2523   }
2524 
2525   return AdjustCost(
2526       BaseT::getCastInstrCost(Opcode, Dst, Src, CCH, CostKind, I));
2527 }
2528 
2529 InstructionCost X86TTIImpl::getCmpSelInstrCost(unsigned Opcode, Type *ValTy,
2530                                                Type *CondTy,
2531                                                CmpInst::Predicate VecPred,
2532                                                TTI::TargetCostKind CostKind,
2533                                                const Instruction *I) {
2534   // TODO: Handle other cost kinds.
2535   if (CostKind != TTI::TCK_RecipThroughput)
2536     return BaseT::getCmpSelInstrCost(Opcode, ValTy, CondTy, VecPred, CostKind,
2537                                      I);
2538 
2539   // Legalize the type.
2540   std::pair<InstructionCost, MVT> LT = TLI->getTypeLegalizationCost(DL, ValTy);
2541 
2542   MVT MTy = LT.second;
2543 
2544   int ISD = TLI->InstructionOpcodeToISD(Opcode);
2545   assert(ISD && "Invalid opcode");
2546 
2547   unsigned ExtraCost = 0;
2548   if (Opcode == Instruction::ICmp || Opcode == Instruction::FCmp) {
2549     // Some vector comparison predicates cost extra instructions.
2550     // TODO: Should we invert this and assume worst case cmp costs
2551     // and reduce for particular predicates?
2552     if (MTy.isVector() &&
2553         !((ST->hasXOP() && (!ST->hasAVX2() || MTy.is128BitVector())) ||
2554           (ST->hasAVX512() && 32 <= MTy.getScalarSizeInBits()) ||
2555           ST->hasBWI())) {
2556       // Fallback to I if a specific predicate wasn't specified.
2557       CmpInst::Predicate Pred = VecPred;
2558       if (I && (Pred == CmpInst::BAD_ICMP_PREDICATE ||
2559                 Pred == CmpInst::BAD_FCMP_PREDICATE))
2560         Pred = cast<CmpInst>(I)->getPredicate();
2561 
2562       switch (Pred) {
2563       case CmpInst::Predicate::ICMP_NE:
2564         // xor(cmpeq(x,y),-1)
2565         ExtraCost = 1;
2566         break;
2567       case CmpInst::Predicate::ICMP_SGE:
2568       case CmpInst::Predicate::ICMP_SLE:
2569         // xor(cmpgt(x,y),-1)
2570         ExtraCost = 1;
2571         break;
2572       case CmpInst::Predicate::ICMP_ULT:
2573       case CmpInst::Predicate::ICMP_UGT:
2574         // cmpgt(xor(x,signbit),xor(y,signbit))
2575         // xor(cmpeq(pmaxu(x,y),x),-1)
2576         ExtraCost = 2;
2577         break;
2578       case CmpInst::Predicate::ICMP_ULE:
2579       case CmpInst::Predicate::ICMP_UGE:
2580         if ((ST->hasSSE41() && MTy.getScalarSizeInBits() == 32) ||
2581             (ST->hasSSE2() && MTy.getScalarSizeInBits() < 32)) {
2582           // cmpeq(psubus(x,y),0)
2583           // cmpeq(pminu(x,y),x)
2584           ExtraCost = 1;
2585         } else {
2586           // xor(cmpgt(xor(x,signbit),xor(y,signbit)),-1)
2587           ExtraCost = 3;
2588         }
2589         break;
2590       case CmpInst::Predicate::BAD_ICMP_PREDICATE:
2591       case CmpInst::Predicate::BAD_FCMP_PREDICATE:
2592         // Assume worst case scenario and add the maximum extra cost.
2593         ExtraCost = 3;
2594         break;
2595       default:
2596         break;
2597       }
2598     }
2599   }
2600 
2601   static const CostTblEntry SLMCostTbl[] = {
2602     // slm pcmpeq/pcmpgt throughput is 2
2603     { ISD::SETCC,   MVT::v2i64,   2 },
2604   };
2605 
2606   static const CostTblEntry AVX512BWCostTbl[] = {
2607     { ISD::SETCC,   MVT::v32i16,  1 },
2608     { ISD::SETCC,   MVT::v64i8,   1 },
2609 
2610     { ISD::SELECT,  MVT::v32i16,  1 },
2611     { ISD::SELECT,  MVT::v64i8,   1 },
2612   };
2613 
2614   static const CostTblEntry AVX512CostTbl[] = {
2615     { ISD::SETCC,   MVT::v8i64,   1 },
2616     { ISD::SETCC,   MVT::v16i32,  1 },
2617     { ISD::SETCC,   MVT::v8f64,   1 },
2618     { ISD::SETCC,   MVT::v16f32,  1 },
2619 
2620     { ISD::SELECT,  MVT::v8i64,   1 },
2621     { ISD::SELECT,  MVT::v16i32,  1 },
2622     { ISD::SELECT,  MVT::v8f64,   1 },
2623     { ISD::SELECT,  MVT::v16f32,  1 },
2624 
2625     { ISD::SETCC,   MVT::v32i16,  2 }, // FIXME: should probably be 4
2626     { ISD::SETCC,   MVT::v64i8,   2 }, // FIXME: should probably be 4
2627 
2628     { ISD::SELECT,  MVT::v32i16,  2 }, // FIXME: should be 3
2629     { ISD::SELECT,  MVT::v64i8,   2 }, // FIXME: should be 3
2630   };
2631 
2632   static const CostTblEntry AVX2CostTbl[] = {
2633     { ISD::SETCC,   MVT::v4i64,   1 },
2634     { ISD::SETCC,   MVT::v8i32,   1 },
2635     { ISD::SETCC,   MVT::v16i16,  1 },
2636     { ISD::SETCC,   MVT::v32i8,   1 },
2637 
2638     { ISD::SELECT,  MVT::v4i64,   1 }, // pblendvb
2639     { ISD::SELECT,  MVT::v8i32,   1 }, // pblendvb
2640     { ISD::SELECT,  MVT::v16i16,  1 }, // pblendvb
2641     { ISD::SELECT,  MVT::v32i8,   1 }, // pblendvb
2642   };
2643 
2644   static const CostTblEntry AVX1CostTbl[] = {
2645     { ISD::SETCC,   MVT::v4f64,   1 },
2646     { ISD::SETCC,   MVT::v8f32,   1 },
2647     // AVX1 does not support 8-wide integer compare.
2648     { ISD::SETCC,   MVT::v4i64,   4 },
2649     { ISD::SETCC,   MVT::v8i32,   4 },
2650     { ISD::SETCC,   MVT::v16i16,  4 },
2651     { ISD::SETCC,   MVT::v32i8,   4 },
2652 
2653     { ISD::SELECT,  MVT::v4f64,   1 }, // vblendvpd
2654     { ISD::SELECT,  MVT::v8f32,   1 }, // vblendvps
2655     { ISD::SELECT,  MVT::v4i64,   1 }, // vblendvpd
2656     { ISD::SELECT,  MVT::v8i32,   1 }, // vblendvps
2657     { ISD::SELECT,  MVT::v16i16,  3 }, // vandps + vandnps + vorps
2658     { ISD::SELECT,  MVT::v32i8,   3 }, // vandps + vandnps + vorps
2659   };
2660 
2661   static const CostTblEntry SSE42CostTbl[] = {
2662     { ISD::SETCC,   MVT::v2f64,   1 },
2663     { ISD::SETCC,   MVT::v4f32,   1 },
2664     { ISD::SETCC,   MVT::v2i64,   1 },
2665   };
2666 
2667   static const CostTblEntry SSE41CostTbl[] = {
2668     { ISD::SELECT,  MVT::v2f64,   1 }, // blendvpd
2669     { ISD::SELECT,  MVT::v4f32,   1 }, // blendvps
2670     { ISD::SELECT,  MVT::v2i64,   1 }, // pblendvb
2671     { ISD::SELECT,  MVT::v4i32,   1 }, // pblendvb
2672     { ISD::SELECT,  MVT::v8i16,   1 }, // pblendvb
2673     { ISD::SELECT,  MVT::v16i8,   1 }, // pblendvb
2674   };
2675 
2676   static const CostTblEntry SSE2CostTbl[] = {
2677     { ISD::SETCC,   MVT::v2f64,   2 },
2678     { ISD::SETCC,   MVT::f64,     1 },
2679     { ISD::SETCC,   MVT::v2i64,   8 },
2680     { ISD::SETCC,   MVT::v4i32,   1 },
2681     { ISD::SETCC,   MVT::v8i16,   1 },
2682     { ISD::SETCC,   MVT::v16i8,   1 },
2683 
2684     { ISD::SELECT,  MVT::v2f64,   3 }, // andpd + andnpd + orpd
2685     { ISD::SELECT,  MVT::v2i64,   3 }, // pand + pandn + por
2686     { ISD::SELECT,  MVT::v4i32,   3 }, // pand + pandn + por
2687     { ISD::SELECT,  MVT::v8i16,   3 }, // pand + pandn + por
2688     { ISD::SELECT,  MVT::v16i8,   3 }, // pand + pandn + por
2689   };
2690 
2691   static const CostTblEntry SSE1CostTbl[] = {
2692     { ISD::SETCC,   MVT::v4f32,   2 },
2693     { ISD::SETCC,   MVT::f32,     1 },
2694 
2695     { ISD::SELECT,  MVT::v4f32,   3 }, // andps + andnps + orps
2696   };
2697 
2698   if (ST->useSLMArithCosts())
2699     if (const auto *Entry = CostTableLookup(SLMCostTbl, ISD, MTy))
2700       return LT.first * (ExtraCost + Entry->Cost);
2701 
2702   if (ST->hasBWI())
2703     if (const auto *Entry = CostTableLookup(AVX512BWCostTbl, ISD, MTy))
2704       return LT.first * (ExtraCost + Entry->Cost);
2705 
2706   if (ST->hasAVX512())
2707     if (const auto *Entry = CostTableLookup(AVX512CostTbl, ISD, MTy))
2708       return LT.first * (ExtraCost + Entry->Cost);
2709 
2710   if (ST->hasAVX2())
2711     if (const auto *Entry = CostTableLookup(AVX2CostTbl, ISD, MTy))
2712       return LT.first * (ExtraCost + Entry->Cost);
2713 
2714   if (ST->hasAVX())
2715     if (const auto *Entry = CostTableLookup(AVX1CostTbl, ISD, MTy))
2716       return LT.first * (ExtraCost + Entry->Cost);
2717 
2718   if (ST->hasSSE42())
2719     if (const auto *Entry = CostTableLookup(SSE42CostTbl, ISD, MTy))
2720       return LT.first * (ExtraCost + Entry->Cost);
2721 
2722   if (ST->hasSSE41())
2723     if (const auto *Entry = CostTableLookup(SSE41CostTbl, ISD, MTy))
2724       return LT.first * (ExtraCost + Entry->Cost);
2725 
2726   if (ST->hasSSE2())
2727     if (const auto *Entry = CostTableLookup(SSE2CostTbl, ISD, MTy))
2728       return LT.first * (ExtraCost + Entry->Cost);
2729 
2730   if (ST->hasSSE1())
2731     if (const auto *Entry = CostTableLookup(SSE1CostTbl, ISD, MTy))
2732       return LT.first * (ExtraCost + Entry->Cost);
2733 
2734   return BaseT::getCmpSelInstrCost(Opcode, ValTy, CondTy, VecPred, CostKind, I);
2735 }
2736 
2737 unsigned X86TTIImpl::getAtomicMemIntrinsicMaxElementSize() const { return 16; }
2738 
2739 InstructionCost
2740 X86TTIImpl::getTypeBasedIntrinsicInstrCost(const IntrinsicCostAttributes &ICA,
2741                                            TTI::TargetCostKind CostKind) {
2742 
2743   // Costs should match the codegen from:
2744   // BITREVERSE: llvm\test\CodeGen\X86\vector-bitreverse.ll
2745   // BSWAP: llvm\test\CodeGen\X86\bswap-vector.ll
2746   // CTLZ: llvm\test\CodeGen\X86\vector-lzcnt-*.ll
2747   // CTPOP: llvm\test\CodeGen\X86\vector-popcnt-*.ll
2748   // CTTZ: llvm\test\CodeGen\X86\vector-tzcnt-*.ll
2749 
2750   // TODO: Overflow intrinsics (*ADDO, *SUBO, *MULO) with vector types are not
2751   //       specialized in these tables yet.
2752   static const CostTblEntry AVX512BITALGCostTbl[] = {
2753     { ISD::CTPOP,      MVT::v32i16,  1 },
2754     { ISD::CTPOP,      MVT::v64i8,   1 },
2755     { ISD::CTPOP,      MVT::v16i16,  1 },
2756     { ISD::CTPOP,      MVT::v32i8,   1 },
2757     { ISD::CTPOP,      MVT::v8i16,   1 },
2758     { ISD::CTPOP,      MVT::v16i8,   1 },
2759   };
2760   static const CostTblEntry AVX512VPOPCNTDQCostTbl[] = {
2761     { ISD::CTPOP,      MVT::v8i64,   1 },
2762     { ISD::CTPOP,      MVT::v16i32,  1 },
2763     { ISD::CTPOP,      MVT::v4i64,   1 },
2764     { ISD::CTPOP,      MVT::v8i32,   1 },
2765     { ISD::CTPOP,      MVT::v2i64,   1 },
2766     { ISD::CTPOP,      MVT::v4i32,   1 },
2767   };
2768   static const CostTblEntry AVX512CDCostTbl[] = {
2769     { ISD::CTLZ,       MVT::v8i64,   1 },
2770     { ISD::CTLZ,       MVT::v16i32,  1 },
2771     { ISD::CTLZ,       MVT::v32i16,  8 },
2772     { ISD::CTLZ,       MVT::v64i8,  20 },
2773     { ISD::CTLZ,       MVT::v4i64,   1 },
2774     { ISD::CTLZ,       MVT::v8i32,   1 },
2775     { ISD::CTLZ,       MVT::v16i16,  4 },
2776     { ISD::CTLZ,       MVT::v32i8,  10 },
2777     { ISD::CTLZ,       MVT::v2i64,   1 },
2778     { ISD::CTLZ,       MVT::v4i32,   1 },
2779     { ISD::CTLZ,       MVT::v8i16,   4 },
2780     { ISD::CTLZ,       MVT::v16i8,   4 },
2781   };
2782   static const CostTblEntry AVX512BWCostTbl[] = {
2783     { ISD::ABS,        MVT::v32i16,  1 },
2784     { ISD::ABS,        MVT::v64i8,   1 },
2785     { ISD::BITREVERSE, MVT::v8i64,   3 },
2786     { ISD::BITREVERSE, MVT::v16i32,  3 },
2787     { ISD::BITREVERSE, MVT::v32i16,  3 },
2788     { ISD::BITREVERSE, MVT::v64i8,   2 },
2789     { ISD::BSWAP,      MVT::v8i64,   1 },
2790     { ISD::BSWAP,      MVT::v16i32,  1 },
2791     { ISD::BSWAP,      MVT::v32i16,  1 },
2792     { ISD::CTLZ,       MVT::v8i64,  23 },
2793     { ISD::CTLZ,       MVT::v16i32, 22 },
2794     { ISD::CTLZ,       MVT::v32i16, 18 },
2795     { ISD::CTLZ,       MVT::v64i8,  17 },
2796     { ISD::CTPOP,      MVT::v8i64,   7 },
2797     { ISD::CTPOP,      MVT::v16i32, 11 },
2798     { ISD::CTPOP,      MVT::v32i16,  9 },
2799     { ISD::CTPOP,      MVT::v64i8,   6 },
2800     { ISD::CTTZ,       MVT::v8i64,  10 },
2801     { ISD::CTTZ,       MVT::v16i32, 14 },
2802     { ISD::CTTZ,       MVT::v32i16, 12 },
2803     { ISD::CTTZ,       MVT::v64i8,   9 },
2804     { ISD::SADDSAT,    MVT::v32i16,  1 },
2805     { ISD::SADDSAT,    MVT::v64i8,   1 },
2806     { ISD::SMAX,       MVT::v32i16,  1 },
2807     { ISD::SMAX,       MVT::v64i8,   1 },
2808     { ISD::SMIN,       MVT::v32i16,  1 },
2809     { ISD::SMIN,       MVT::v64i8,   1 },
2810     { ISD::SSUBSAT,    MVT::v32i16,  1 },
2811     { ISD::SSUBSAT,    MVT::v64i8,   1 },
2812     { ISD::UADDSAT,    MVT::v32i16,  1 },
2813     { ISD::UADDSAT,    MVT::v64i8,   1 },
2814     { ISD::UMAX,       MVT::v32i16,  1 },
2815     { ISD::UMAX,       MVT::v64i8,   1 },
2816     { ISD::UMIN,       MVT::v32i16,  1 },
2817     { ISD::UMIN,       MVT::v64i8,   1 },
2818     { ISD::USUBSAT,    MVT::v32i16,  1 },
2819     { ISD::USUBSAT,    MVT::v64i8,   1 },
2820   };
2821   static const CostTblEntry AVX512CostTbl[] = {
2822     { ISD::ABS,        MVT::v8i64,   1 },
2823     { ISD::ABS,        MVT::v16i32,  1 },
2824     { ISD::ABS,        MVT::v32i16,  2 },
2825     { ISD::ABS,        MVT::v64i8,   2 },
2826     { ISD::ABS,        MVT::v4i64,   1 },
2827     { ISD::ABS,        MVT::v2i64,   1 },
2828     { ISD::BITREVERSE, MVT::v8i64,  36 },
2829     { ISD::BITREVERSE, MVT::v16i32, 24 },
2830     { ISD::BITREVERSE, MVT::v32i16, 10 },
2831     { ISD::BITREVERSE, MVT::v64i8,  10 },
2832     { ISD::BSWAP,      MVT::v8i64,   4 },
2833     { ISD::BSWAP,      MVT::v16i32,  4 },
2834     { ISD::BSWAP,      MVT::v32i16,  4 },
2835     { ISD::CTLZ,       MVT::v8i64,  29 },
2836     { ISD::CTLZ,       MVT::v16i32, 35 },
2837     { ISD::CTLZ,       MVT::v32i16, 28 },
2838     { ISD::CTLZ,       MVT::v64i8,  18 },
2839     { ISD::CTPOP,      MVT::v8i64,  16 },
2840     { ISD::CTPOP,      MVT::v16i32, 24 },
2841     { ISD::CTPOP,      MVT::v32i16, 18 },
2842     { ISD::CTPOP,      MVT::v64i8,  12 },
2843     { ISD::CTTZ,       MVT::v8i64,  20 },
2844     { ISD::CTTZ,       MVT::v16i32, 28 },
2845     { ISD::CTTZ,       MVT::v32i16, 24 },
2846     { ISD::CTTZ,       MVT::v64i8,  18 },
2847     { ISD::SMAX,       MVT::v8i64,   1 },
2848     { ISD::SMAX,       MVT::v16i32,  1 },
2849     { ISD::SMAX,       MVT::v32i16,  2 },
2850     { ISD::SMAX,       MVT::v64i8,   2 },
2851     { ISD::SMAX,       MVT::v4i64,   1 },
2852     { ISD::SMAX,       MVT::v2i64,   1 },
2853     { ISD::SMIN,       MVT::v8i64,   1 },
2854     { ISD::SMIN,       MVT::v16i32,  1 },
2855     { ISD::SMIN,       MVT::v32i16,  2 },
2856     { ISD::SMIN,       MVT::v64i8,   2 },
2857     { ISD::SMIN,       MVT::v4i64,   1 },
2858     { ISD::SMIN,       MVT::v2i64,   1 },
2859     { ISD::UMAX,       MVT::v8i64,   1 },
2860     { ISD::UMAX,       MVT::v16i32,  1 },
2861     { ISD::UMAX,       MVT::v32i16,  2 },
2862     { ISD::UMAX,       MVT::v64i8,   2 },
2863     { ISD::UMAX,       MVT::v4i64,   1 },
2864     { ISD::UMAX,       MVT::v2i64,   1 },
2865     { ISD::UMIN,       MVT::v8i64,   1 },
2866     { ISD::UMIN,       MVT::v16i32,  1 },
2867     { ISD::UMIN,       MVT::v32i16,  2 },
2868     { ISD::UMIN,       MVT::v64i8,   2 },
2869     { ISD::UMIN,       MVT::v4i64,   1 },
2870     { ISD::UMIN,       MVT::v2i64,   1 },
2871     { ISD::USUBSAT,    MVT::v16i32,  2 }, // pmaxud + psubd
2872     { ISD::USUBSAT,    MVT::v2i64,   2 }, // pmaxuq + psubq
2873     { ISD::USUBSAT,    MVT::v4i64,   2 }, // pmaxuq + psubq
2874     { ISD::USUBSAT,    MVT::v8i64,   2 }, // pmaxuq + psubq
2875     { ISD::UADDSAT,    MVT::v16i32,  3 }, // not + pminud + paddd
2876     { ISD::UADDSAT,    MVT::v2i64,   3 }, // not + pminuq + paddq
2877     { ISD::UADDSAT,    MVT::v4i64,   3 }, // not + pminuq + paddq
2878     { ISD::UADDSAT,    MVT::v8i64,   3 }, // not + pminuq + paddq
2879     { ISD::SADDSAT,    MVT::v32i16,  2 },
2880     { ISD::SADDSAT,    MVT::v64i8,   2 },
2881     { ISD::SSUBSAT,    MVT::v32i16,  2 },
2882     { ISD::SSUBSAT,    MVT::v64i8,   2 },
2883     { ISD::UADDSAT,    MVT::v32i16,  2 },
2884     { ISD::UADDSAT,    MVT::v64i8,   2 },
2885     { ISD::USUBSAT,    MVT::v32i16,  2 },
2886     { ISD::USUBSAT,    MVT::v64i8,   2 },
2887     { ISD::FMAXNUM,    MVT::f32,     2 },
2888     { ISD::FMAXNUM,    MVT::v4f32,   2 },
2889     { ISD::FMAXNUM,    MVT::v8f32,   2 },
2890     { ISD::FMAXNUM,    MVT::v16f32,  2 },
2891     { ISD::FMAXNUM,    MVT::f64,     2 },
2892     { ISD::FMAXNUM,    MVT::v2f64,   2 },
2893     { ISD::FMAXNUM,    MVT::v4f64,   2 },
2894     { ISD::FMAXNUM,    MVT::v8f64,   2 },
2895   };
2896   static const CostTblEntry XOPCostTbl[] = {
2897     { ISD::BITREVERSE, MVT::v4i64,   4 },
2898     { ISD::BITREVERSE, MVT::v8i32,   4 },
2899     { ISD::BITREVERSE, MVT::v16i16,  4 },
2900     { ISD::BITREVERSE, MVT::v32i8,   4 },
2901     { ISD::BITREVERSE, MVT::v2i64,   1 },
2902     { ISD::BITREVERSE, MVT::v4i32,   1 },
2903     { ISD::BITREVERSE, MVT::v8i16,   1 },
2904     { ISD::BITREVERSE, MVT::v16i8,   1 },
2905     { ISD::BITREVERSE, MVT::i64,     3 },
2906     { ISD::BITREVERSE, MVT::i32,     3 },
2907     { ISD::BITREVERSE, MVT::i16,     3 },
2908     { ISD::BITREVERSE, MVT::i8,      3 }
2909   };
2910   static const CostTblEntry AVX2CostTbl[] = {
2911     { ISD::ABS,        MVT::v4i64,   2 }, // VBLENDVPD(X,VPSUBQ(0,X),X)
2912     { ISD::ABS,        MVT::v8i32,   1 },
2913     { ISD::ABS,        MVT::v16i16,  1 },
2914     { ISD::ABS,        MVT::v32i8,   1 },
2915     { ISD::BITREVERSE, MVT::v2i64,   3 },
2916     { ISD::BITREVERSE, MVT::v4i64,   3 },
2917     { ISD::BITREVERSE, MVT::v4i32,   3 },
2918     { ISD::BITREVERSE, MVT::v8i32,   3 },
2919     { ISD::BITREVERSE, MVT::v8i16,   3 },
2920     { ISD::BITREVERSE, MVT::v16i16,  3 },
2921     { ISD::BITREVERSE, MVT::v16i8,   3 },
2922     { ISD::BITREVERSE, MVT::v32i8,   3 },
2923     { ISD::BSWAP,      MVT::v4i64,   1 },
2924     { ISD::BSWAP,      MVT::v8i32,   1 },
2925     { ISD::BSWAP,      MVT::v16i16,  1 },
2926     { ISD::CTLZ,       MVT::v2i64,   7 },
2927     { ISD::CTLZ,       MVT::v4i64,   7 },
2928     { ISD::CTLZ,       MVT::v4i32,   5 },
2929     { ISD::CTLZ,       MVT::v8i32,   5 },
2930     { ISD::CTLZ,       MVT::v8i16,   4 },
2931     { ISD::CTLZ,       MVT::v16i16,  4 },
2932     { ISD::CTLZ,       MVT::v16i8,   3 },
2933     { ISD::CTLZ,       MVT::v32i8,   3 },
2934     { ISD::CTPOP,      MVT::v2i64,   3 },
2935     { ISD::CTPOP,      MVT::v4i64,   3 },
2936     { ISD::CTPOP,      MVT::v4i32,   7 },
2937     { ISD::CTPOP,      MVT::v8i32,   7 },
2938     { ISD::CTPOP,      MVT::v8i16,   3 },
2939     { ISD::CTPOP,      MVT::v16i16,  3 },
2940     { ISD::CTPOP,      MVT::v16i8,   2 },
2941     { ISD::CTPOP,      MVT::v32i8,   2 },
2942     { ISD::CTTZ,       MVT::v2i64,   4 },
2943     { ISD::CTTZ,       MVT::v4i64,   4 },
2944     { ISD::CTTZ,       MVT::v4i32,   7 },
2945     { ISD::CTTZ,       MVT::v8i32,   7 },
2946     { ISD::CTTZ,       MVT::v8i16,   4 },
2947     { ISD::CTTZ,       MVT::v16i16,  4 },
2948     { ISD::CTTZ,       MVT::v16i8,   3 },
2949     { ISD::CTTZ,       MVT::v32i8,   3 },
2950     { ISD::SADDSAT,    MVT::v16i16,  1 },
2951     { ISD::SADDSAT,    MVT::v32i8,   1 },
2952     { ISD::SMAX,       MVT::v8i32,   1 },
2953     { ISD::SMAX,       MVT::v16i16,  1 },
2954     { ISD::SMAX,       MVT::v32i8,   1 },
2955     { ISD::SMIN,       MVT::v8i32,   1 },
2956     { ISD::SMIN,       MVT::v16i16,  1 },
2957     { ISD::SMIN,       MVT::v32i8,   1 },
2958     { ISD::SSUBSAT,    MVT::v16i16,  1 },
2959     { ISD::SSUBSAT,    MVT::v32i8,   1 },
2960     { ISD::UADDSAT,    MVT::v16i16,  1 },
2961     { ISD::UADDSAT,    MVT::v32i8,   1 },
2962     { ISD::UADDSAT,    MVT::v8i32,   3 }, // not + pminud + paddd
2963     { ISD::UMAX,       MVT::v8i32,   1 },
2964     { ISD::UMAX,       MVT::v16i16,  1 },
2965     { ISD::UMAX,       MVT::v32i8,   1 },
2966     { ISD::UMIN,       MVT::v8i32,   1 },
2967     { ISD::UMIN,       MVT::v16i16,  1 },
2968     { ISD::UMIN,       MVT::v32i8,   1 },
2969     { ISD::USUBSAT,    MVT::v16i16,  1 },
2970     { ISD::USUBSAT,    MVT::v32i8,   1 },
2971     { ISD::USUBSAT,    MVT::v8i32,   2 }, // pmaxud + psubd
2972     { ISD::FMAXNUM,    MVT::v8f32,   3 }, // MAXPS + CMPUNORDPS + BLENDVPS
2973     { ISD::FMAXNUM,    MVT::v4f64,   3 }, // MAXPD + CMPUNORDPD + BLENDVPD
2974     { ISD::FSQRT,      MVT::f32,     7 }, // Haswell from http://www.agner.org/
2975     { ISD::FSQRT,      MVT::v4f32,   7 }, // Haswell from http://www.agner.org/
2976     { ISD::FSQRT,      MVT::v8f32,  14 }, // Haswell from http://www.agner.org/
2977     { ISD::FSQRT,      MVT::f64,    14 }, // Haswell from http://www.agner.org/
2978     { ISD::FSQRT,      MVT::v2f64,  14 }, // Haswell from http://www.agner.org/
2979     { ISD::FSQRT,      MVT::v4f64,  28 }, // Haswell from http://www.agner.org/
2980   };
2981   static const CostTblEntry AVX1CostTbl[] = {
2982     { ISD::ABS,        MVT::v4i64,   5 }, // VBLENDVPD(X,VPSUBQ(0,X),X)
2983     { ISD::ABS,        MVT::v8i32,   3 },
2984     { ISD::ABS,        MVT::v16i16,  3 },
2985     { ISD::ABS,        MVT::v32i8,   3 },
2986     { ISD::BITREVERSE, MVT::v4i64,  12 }, // 2 x 128-bit Op + extract/insert
2987     { ISD::BITREVERSE, MVT::v8i32,  12 }, // 2 x 128-bit Op + extract/insert
2988     { ISD::BITREVERSE, MVT::v16i16, 12 }, // 2 x 128-bit Op + extract/insert
2989     { ISD::BITREVERSE, MVT::v32i8,  12 }, // 2 x 128-bit Op + extract/insert
2990     { ISD::BSWAP,      MVT::v4i64,   4 },
2991     { ISD::BSWAP,      MVT::v8i32,   4 },
2992     { ISD::BSWAP,      MVT::v16i16,  4 },
2993     { ISD::CTLZ,       MVT::v4i64,  48 }, // 2 x 128-bit Op + extract/insert
2994     { ISD::CTLZ,       MVT::v8i32,  38 }, // 2 x 128-bit Op + extract/insert
2995     { ISD::CTLZ,       MVT::v16i16, 30 }, // 2 x 128-bit Op + extract/insert
2996     { ISD::CTLZ,       MVT::v32i8,  20 }, // 2 x 128-bit Op + extract/insert
2997     { ISD::CTPOP,      MVT::v4i64,  16 }, // 2 x 128-bit Op + extract/insert
2998     { ISD::CTPOP,      MVT::v8i32,  24 }, // 2 x 128-bit Op + extract/insert
2999     { ISD::CTPOP,      MVT::v16i16, 20 }, // 2 x 128-bit Op + extract/insert
3000     { ISD::CTPOP,      MVT::v32i8,  14 }, // 2 x 128-bit Op + extract/insert
3001     { ISD::CTTZ,       MVT::v4i64,  22 }, // 2 x 128-bit Op + extract/insert
3002     { ISD::CTTZ,       MVT::v8i32,  30 }, // 2 x 128-bit Op + extract/insert
3003     { ISD::CTTZ,       MVT::v16i16, 26 }, // 2 x 128-bit Op + extract/insert
3004     { ISD::CTTZ,       MVT::v32i8,  20 }, // 2 x 128-bit Op + extract/insert
3005     { ISD::SADDSAT,    MVT::v16i16,  4 }, // 2 x 128-bit Op + extract/insert
3006     { ISD::SADDSAT,    MVT::v32i8,   4 }, // 2 x 128-bit Op + extract/insert
3007     { ISD::SMAX,       MVT::v8i32,   4 }, // 2 x 128-bit Op + extract/insert
3008     { ISD::SMAX,       MVT::v16i16,  4 }, // 2 x 128-bit Op + extract/insert
3009     { ISD::SMAX,       MVT::v32i8,   4 }, // 2 x 128-bit Op + extract/insert
3010     { ISD::SMIN,       MVT::v8i32,   4 }, // 2 x 128-bit Op + extract/insert
3011     { ISD::SMIN,       MVT::v16i16,  4 }, // 2 x 128-bit Op + extract/insert
3012     { ISD::SMIN,       MVT::v32i8,   4 }, // 2 x 128-bit Op + extract/insert
3013     { ISD::SSUBSAT,    MVT::v16i16,  4 }, // 2 x 128-bit Op + extract/insert
3014     { ISD::SSUBSAT,    MVT::v32i8,   4 }, // 2 x 128-bit Op + extract/insert
3015     { ISD::UADDSAT,    MVT::v16i16,  4 }, // 2 x 128-bit Op + extract/insert
3016     { ISD::UADDSAT,    MVT::v32i8,   4 }, // 2 x 128-bit Op + extract/insert
3017     { ISD::UADDSAT,    MVT::v8i32,   8 }, // 2 x 128-bit Op + extract/insert
3018     { ISD::UMAX,       MVT::v8i32,   4 }, // 2 x 128-bit Op + extract/insert
3019     { ISD::UMAX,       MVT::v16i16,  4 }, // 2 x 128-bit Op + extract/insert
3020     { ISD::UMAX,       MVT::v32i8,   4 }, // 2 x 128-bit Op + extract/insert
3021     { ISD::UMIN,       MVT::v8i32,   4 }, // 2 x 128-bit Op + extract/insert
3022     { ISD::UMIN,       MVT::v16i16,  4 }, // 2 x 128-bit Op + extract/insert
3023     { ISD::UMIN,       MVT::v32i8,   4 }, // 2 x 128-bit Op + extract/insert
3024     { ISD::USUBSAT,    MVT::v16i16,  4 }, // 2 x 128-bit Op + extract/insert
3025     { ISD::USUBSAT,    MVT::v32i8,   4 }, // 2 x 128-bit Op + extract/insert
3026     { ISD::USUBSAT,    MVT::v8i32,   6 }, // 2 x 128-bit Op + extract/insert
3027     { ISD::FMAXNUM,    MVT::f32,     3 }, // MAXSS + CMPUNORDSS + BLENDVPS
3028     { ISD::FMAXNUM,    MVT::v4f32,   3 }, // MAXPS + CMPUNORDPS + BLENDVPS
3029     { ISD::FMAXNUM,    MVT::v8f32,   5 }, // MAXPS + CMPUNORDPS + BLENDVPS + ?
3030     { ISD::FMAXNUM,    MVT::f64,     3 }, // MAXSD + CMPUNORDSD + BLENDVPD
3031     { ISD::FMAXNUM,    MVT::v2f64,   3 }, // MAXPD + CMPUNORDPD + BLENDVPD
3032     { ISD::FMAXNUM,    MVT::v4f64,   5 }, // MAXPD + CMPUNORDPD + BLENDVPD + ?
3033     { ISD::FSQRT,      MVT::f32,    14 }, // SNB from http://www.agner.org/
3034     { ISD::FSQRT,      MVT::v4f32,  14 }, // SNB from http://www.agner.org/
3035     { ISD::FSQRT,      MVT::v8f32,  28 }, // SNB from http://www.agner.org/
3036     { ISD::FSQRT,      MVT::f64,    21 }, // SNB from http://www.agner.org/
3037     { ISD::FSQRT,      MVT::v2f64,  21 }, // SNB from http://www.agner.org/
3038     { ISD::FSQRT,      MVT::v4f64,  43 }, // SNB from http://www.agner.org/
3039   };
3040   static const CostTblEntry GLMCostTbl[] = {
3041     { ISD::FSQRT, MVT::f32,   19 }, // sqrtss
3042     { ISD::FSQRT, MVT::v4f32, 37 }, // sqrtps
3043     { ISD::FSQRT, MVT::f64,   34 }, // sqrtsd
3044     { ISD::FSQRT, MVT::v2f64, 67 }, // sqrtpd
3045   };
3046   static const CostTblEntry SLMCostTbl[] = {
3047     { ISD::FSQRT, MVT::f32,   20 }, // sqrtss
3048     { ISD::FSQRT, MVT::v4f32, 40 }, // sqrtps
3049     { ISD::FSQRT, MVT::f64,   35 }, // sqrtsd
3050     { ISD::FSQRT, MVT::v2f64, 70 }, // sqrtpd
3051   };
3052   static const CostTblEntry SSE42CostTbl[] = {
3053     { ISD::USUBSAT,    MVT::v4i32,   2 }, // pmaxud + psubd
3054     { ISD::UADDSAT,    MVT::v4i32,   3 }, // not + pminud + paddd
3055     { ISD::FSQRT,      MVT::f32,    18 }, // Nehalem from http://www.agner.org/
3056     { ISD::FSQRT,      MVT::v4f32,  18 }, // Nehalem from http://www.agner.org/
3057   };
3058   static const CostTblEntry SSE41CostTbl[] = {
3059     { ISD::ABS,        MVT::v2i64,   2 }, // BLENDVPD(X,PSUBQ(0,X),X)
3060     { ISD::SMAX,       MVT::v4i32,   1 },
3061     { ISD::SMAX,       MVT::v16i8,   1 },
3062     { ISD::SMIN,       MVT::v4i32,   1 },
3063     { ISD::SMIN,       MVT::v16i8,   1 },
3064     { ISD::UMAX,       MVT::v4i32,   1 },
3065     { ISD::UMAX,       MVT::v8i16,   1 },
3066     { ISD::UMIN,       MVT::v4i32,   1 },
3067     { ISD::UMIN,       MVT::v8i16,   1 },
3068   };
3069   static const CostTblEntry SSSE3CostTbl[] = {
3070     { ISD::ABS,        MVT::v4i32,   1 },
3071     { ISD::ABS,        MVT::v8i16,   1 },
3072     { ISD::ABS,        MVT::v16i8,   1 },
3073     { ISD::BITREVERSE, MVT::v2i64,   5 },
3074     { ISD::BITREVERSE, MVT::v4i32,   5 },
3075     { ISD::BITREVERSE, MVT::v8i16,   5 },
3076     { ISD::BITREVERSE, MVT::v16i8,   5 },
3077     { ISD::BSWAP,      MVT::v2i64,   1 },
3078     { ISD::BSWAP,      MVT::v4i32,   1 },
3079     { ISD::BSWAP,      MVT::v8i16,   1 },
3080     { ISD::CTLZ,       MVT::v2i64,  23 },
3081     { ISD::CTLZ,       MVT::v4i32,  18 },
3082     { ISD::CTLZ,       MVT::v8i16,  14 },
3083     { ISD::CTLZ,       MVT::v16i8,   9 },
3084     { ISD::CTPOP,      MVT::v2i64,   7 },
3085     { ISD::CTPOP,      MVT::v4i32,  11 },
3086     { ISD::CTPOP,      MVT::v8i16,   9 },
3087     { ISD::CTPOP,      MVT::v16i8,   6 },
3088     { ISD::CTTZ,       MVT::v2i64,  10 },
3089     { ISD::CTTZ,       MVT::v4i32,  14 },
3090     { ISD::CTTZ,       MVT::v8i16,  12 },
3091     { ISD::CTTZ,       MVT::v16i8,   9 }
3092   };
3093   static const CostTblEntry SSE2CostTbl[] = {
3094     { ISD::ABS,        MVT::v2i64,   4 },
3095     { ISD::ABS,        MVT::v4i32,   3 },
3096     { ISD::ABS,        MVT::v8i16,   2 },
3097     { ISD::ABS,        MVT::v16i8,   2 },
3098     { ISD::BITREVERSE, MVT::v2i64,  29 },
3099     { ISD::BITREVERSE, MVT::v4i32,  27 },
3100     { ISD::BITREVERSE, MVT::v8i16,  27 },
3101     { ISD::BITREVERSE, MVT::v16i8,  20 },
3102     { ISD::BSWAP,      MVT::v2i64,   7 },
3103     { ISD::BSWAP,      MVT::v4i32,   7 },
3104     { ISD::BSWAP,      MVT::v8i16,   7 },
3105     { ISD::CTLZ,       MVT::v2i64,  25 },
3106     { ISD::CTLZ,       MVT::v4i32,  26 },
3107     { ISD::CTLZ,       MVT::v8i16,  20 },
3108     { ISD::CTLZ,       MVT::v16i8,  17 },
3109     { ISD::CTPOP,      MVT::v2i64,  12 },
3110     { ISD::CTPOP,      MVT::v4i32,  15 },
3111     { ISD::CTPOP,      MVT::v8i16,  13 },
3112     { ISD::CTPOP,      MVT::v16i8,  10 },
3113     { ISD::CTTZ,       MVT::v2i64,  14 },
3114     { ISD::CTTZ,       MVT::v4i32,  18 },
3115     { ISD::CTTZ,       MVT::v8i16,  16 },
3116     { ISD::CTTZ,       MVT::v16i8,  13 },
3117     { ISD::SADDSAT,    MVT::v8i16,   1 },
3118     { ISD::SADDSAT,    MVT::v16i8,   1 },
3119     { ISD::SMAX,       MVT::v8i16,   1 },
3120     { ISD::SMIN,       MVT::v8i16,   1 },
3121     { ISD::SSUBSAT,    MVT::v8i16,   1 },
3122     { ISD::SSUBSAT,    MVT::v16i8,   1 },
3123     { ISD::UADDSAT,    MVT::v8i16,   1 },
3124     { ISD::UADDSAT,    MVT::v16i8,   1 },
3125     { ISD::UMAX,       MVT::v8i16,   2 },
3126     { ISD::UMAX,       MVT::v16i8,   1 },
3127     { ISD::UMIN,       MVT::v8i16,   2 },
3128     { ISD::UMIN,       MVT::v16i8,   1 },
3129     { ISD::USUBSAT,    MVT::v8i16,   1 },
3130     { ISD::USUBSAT,    MVT::v16i8,   1 },
3131     { ISD::FMAXNUM,    MVT::f64,     4 },
3132     { ISD::FMAXNUM,    MVT::v2f64,   4 },
3133     { ISD::FSQRT,      MVT::f64,    32 }, // Nehalem from http://www.agner.org/
3134     { ISD::FSQRT,      MVT::v2f64,  32 }, // Nehalem from http://www.agner.org/
3135   };
3136   static const CostTblEntry SSE1CostTbl[] = {
3137     { ISD::FMAXNUM,    MVT::f32,     4 },
3138     { ISD::FMAXNUM,    MVT::v4f32,   4 },
3139     { ISD::FSQRT,      MVT::f32,    28 }, // Pentium III from http://www.agner.org/
3140     { ISD::FSQRT,      MVT::v4f32,  56 }, // Pentium III from http://www.agner.org/
3141   };
3142   static const CostTblEntry BMI64CostTbl[] = { // 64-bit targets
3143     { ISD::CTTZ,       MVT::i64,     1 },
3144   };
3145   static const CostTblEntry BMI32CostTbl[] = { // 32 or 64-bit targets
3146     { ISD::CTTZ,       MVT::i32,     1 },
3147     { ISD::CTTZ,       MVT::i16,     1 },
3148     { ISD::CTTZ,       MVT::i8,      1 },
3149   };
3150   static const CostTblEntry LZCNT64CostTbl[] = { // 64-bit targets
3151     { ISD::CTLZ,       MVT::i64,     1 },
3152   };
3153   static const CostTblEntry LZCNT32CostTbl[] = { // 32 or 64-bit targets
3154     { ISD::CTLZ,       MVT::i32,     1 },
3155     { ISD::CTLZ,       MVT::i16,     1 },
3156     { ISD::CTLZ,       MVT::i8,      1 },
3157   };
3158   static const CostTblEntry POPCNT64CostTbl[] = { // 64-bit targets
3159     { ISD::CTPOP,      MVT::i64,     1 },
3160   };
3161   static const CostTblEntry POPCNT32CostTbl[] = { // 32 or 64-bit targets
3162     { ISD::CTPOP,      MVT::i32,     1 },
3163     { ISD::CTPOP,      MVT::i16,     1 },
3164     { ISD::CTPOP,      MVT::i8,      1 },
3165   };
3166   static const CostTblEntry X64CostTbl[] = { // 64-bit targets
3167     { ISD::ABS,        MVT::i64,     2 }, // SUB+CMOV
3168     { ISD::BITREVERSE, MVT::i64,    14 },
3169     { ISD::BSWAP,      MVT::i64,     1 },
3170     { ISD::CTLZ,       MVT::i64,     4 }, // BSR+XOR or BSR+XOR+CMOV
3171     { ISD::CTTZ,       MVT::i64,     3 }, // TEST+BSF+CMOV/BRANCH
3172     { ISD::CTPOP,      MVT::i64,    10 },
3173     { ISD::SADDO,      MVT::i64,     1 },
3174     { ISD::UADDO,      MVT::i64,     1 },
3175     { ISD::UMULO,      MVT::i64,     2 }, // mulq + seto
3176   };
3177   static const CostTblEntry X86CostTbl[] = { // 32 or 64-bit targets
3178     { ISD::ABS,        MVT::i32,     2 }, // SUB+CMOV
3179     { ISD::ABS,        MVT::i16,     2 }, // SUB+CMOV
3180     { ISD::BITREVERSE, MVT::i32,    14 },
3181     { ISD::BITREVERSE, MVT::i16,    14 },
3182     { ISD::BITREVERSE, MVT::i8,     11 },
3183     { ISD::BSWAP,      MVT::i32,     1 },
3184     { ISD::BSWAP,      MVT::i16,     1 }, // ROL
3185     { ISD::CTLZ,       MVT::i32,     4 }, // BSR+XOR or BSR+XOR+CMOV
3186     { ISD::CTLZ,       MVT::i16,     4 }, // BSR+XOR or BSR+XOR+CMOV
3187     { ISD::CTLZ,       MVT::i8,      4 }, // BSR+XOR or BSR+XOR+CMOV
3188     { ISD::CTTZ,       MVT::i32,     3 }, // TEST+BSF+CMOV/BRANCH
3189     { ISD::CTTZ,       MVT::i16,     3 }, // TEST+BSF+CMOV/BRANCH
3190     { ISD::CTTZ,       MVT::i8,      3 }, // TEST+BSF+CMOV/BRANCH
3191     { ISD::CTPOP,      MVT::i32,     8 },
3192     { ISD::CTPOP,      MVT::i16,     9 },
3193     { ISD::CTPOP,      MVT::i8,      7 },
3194     { ISD::SADDO,      MVT::i32,     1 },
3195     { ISD::SADDO,      MVT::i16,     1 },
3196     { ISD::SADDO,      MVT::i8,      1 },
3197     { ISD::UADDO,      MVT::i32,     1 },
3198     { ISD::UADDO,      MVT::i16,     1 },
3199     { ISD::UADDO,      MVT::i8,      1 },
3200     { ISD::UMULO,      MVT::i32,     2 }, // mul + seto
3201     { ISD::UMULO,      MVT::i16,     2 },
3202     { ISD::UMULO,      MVT::i8,      2 },
3203   };
3204 
3205   Type *RetTy = ICA.getReturnType();
3206   Type *OpTy = RetTy;
3207   Intrinsic::ID IID = ICA.getID();
3208   unsigned ISD = ISD::DELETED_NODE;
3209   switch (IID) {
3210   default:
3211     break;
3212   case Intrinsic::abs:
3213     ISD = ISD::ABS;
3214     break;
3215   case Intrinsic::bitreverse:
3216     ISD = ISD::BITREVERSE;
3217     break;
3218   case Intrinsic::bswap:
3219     ISD = ISD::BSWAP;
3220     break;
3221   case Intrinsic::ctlz:
3222     ISD = ISD::CTLZ;
3223     break;
3224   case Intrinsic::ctpop:
3225     ISD = ISD::CTPOP;
3226     break;
3227   case Intrinsic::cttz:
3228     ISD = ISD::CTTZ;
3229     break;
3230   case Intrinsic::maxnum:
3231   case Intrinsic::minnum:
3232     // FMINNUM has same costs so don't duplicate.
3233     ISD = ISD::FMAXNUM;
3234     break;
3235   case Intrinsic::sadd_sat:
3236     ISD = ISD::SADDSAT;
3237     break;
3238   case Intrinsic::smax:
3239     ISD = ISD::SMAX;
3240     break;
3241   case Intrinsic::smin:
3242     ISD = ISD::SMIN;
3243     break;
3244   case Intrinsic::ssub_sat:
3245     ISD = ISD::SSUBSAT;
3246     break;
3247   case Intrinsic::uadd_sat:
3248     ISD = ISD::UADDSAT;
3249     break;
3250   case Intrinsic::umax:
3251     ISD = ISD::UMAX;
3252     break;
3253   case Intrinsic::umin:
3254     ISD = ISD::UMIN;
3255     break;
3256   case Intrinsic::usub_sat:
3257     ISD = ISD::USUBSAT;
3258     break;
3259   case Intrinsic::sqrt:
3260     ISD = ISD::FSQRT;
3261     break;
3262   case Intrinsic::sadd_with_overflow:
3263   case Intrinsic::ssub_with_overflow:
3264     // SSUBO has same costs so don't duplicate.
3265     ISD = ISD::SADDO;
3266     OpTy = RetTy->getContainedType(0);
3267     break;
3268   case Intrinsic::uadd_with_overflow:
3269   case Intrinsic::usub_with_overflow:
3270     // USUBO has same costs so don't duplicate.
3271     ISD = ISD::UADDO;
3272     OpTy = RetTy->getContainedType(0);
3273     break;
3274   case Intrinsic::umul_with_overflow:
3275   case Intrinsic::smul_with_overflow:
3276     // SMULO has same costs so don't duplicate.
3277     ISD = ISD::UMULO;
3278     OpTy = RetTy->getContainedType(0);
3279     break;
3280   }
3281 
3282   if (ISD != ISD::DELETED_NODE) {
3283     // Legalize the type.
3284     std::pair<InstructionCost, MVT> LT = TLI->getTypeLegalizationCost(DL, OpTy);
3285     MVT MTy = LT.second;
3286 
3287     // Attempt to lookup cost.
3288     if (ISD == ISD::BITREVERSE && ST->hasGFNI() && ST->hasSSSE3() &&
3289         MTy.isVector()) {
3290       // With PSHUFB the code is very similar for all types. If we have integer
3291       // byte operations, we just need a GF2P8AFFINEQB for vXi8. For other types
3292       // we also need a PSHUFB.
3293       unsigned Cost = MTy.getVectorElementType() == MVT::i8 ? 1 : 2;
3294 
3295       // Without byte operations, we need twice as many GF2P8AFFINEQB and PSHUFB
3296       // instructions. We also need an extract and an insert.
3297       if (!(MTy.is128BitVector() || (ST->hasAVX2() && MTy.is256BitVector()) ||
3298             (ST->hasBWI() && MTy.is512BitVector())))
3299         Cost = Cost * 2 + 2;
3300 
3301       return LT.first * Cost;
3302     }
3303 
3304     auto adjustTableCost = [](const CostTblEntry &Entry,
3305                               InstructionCost LegalizationCost,
3306                               FastMathFlags FMF) {
3307       // If there are no NANs to deal with, then these are reduced to a
3308       // single MIN** or MAX** instruction instead of the MIN/CMP/SELECT that we
3309       // assume is used in the non-fast case.
3310       if (Entry.ISD == ISD::FMAXNUM || Entry.ISD == ISD::FMINNUM) {
3311         if (FMF.noNaNs())
3312           return LegalizationCost * 1;
3313       }
3314       return LegalizationCost * (int)Entry.Cost;
3315     };
3316 
3317     if (ST->useGLMDivSqrtCosts())
3318       if (const auto *Entry = CostTableLookup(GLMCostTbl, ISD, MTy))
3319         return adjustTableCost(*Entry, LT.first, ICA.getFlags());
3320 
3321     if (ST->useSLMArithCosts())
3322       if (const auto *Entry = CostTableLookup(SLMCostTbl, ISD, MTy))
3323         return adjustTableCost(*Entry, LT.first, ICA.getFlags());
3324 
3325     if (ST->hasBITALG())
3326       if (const auto *Entry = CostTableLookup(AVX512BITALGCostTbl, ISD, MTy))
3327         return adjustTableCost(*Entry, LT.first, ICA.getFlags());
3328 
3329     if (ST->hasVPOPCNTDQ())
3330       if (const auto *Entry = CostTableLookup(AVX512VPOPCNTDQCostTbl, ISD, MTy))
3331         return adjustTableCost(*Entry, LT.first, ICA.getFlags());
3332 
3333     if (ST->hasCDI())
3334       if (const auto *Entry = CostTableLookup(AVX512CDCostTbl, ISD, MTy))
3335         return adjustTableCost(*Entry, LT.first, ICA.getFlags());
3336 
3337     if (ST->hasBWI())
3338       if (const auto *Entry = CostTableLookup(AVX512BWCostTbl, ISD, MTy))
3339         return adjustTableCost(*Entry, LT.first, ICA.getFlags());
3340 
3341     if (ST->hasAVX512())
3342       if (const auto *Entry = CostTableLookup(AVX512CostTbl, ISD, MTy))
3343         return adjustTableCost(*Entry, LT.first, ICA.getFlags());
3344 
3345     if (ST->hasXOP())
3346       if (const auto *Entry = CostTableLookup(XOPCostTbl, ISD, MTy))
3347         return adjustTableCost(*Entry, LT.first, ICA.getFlags());
3348 
3349     if (ST->hasAVX2())
3350       if (const auto *Entry = CostTableLookup(AVX2CostTbl, ISD, MTy))
3351         return adjustTableCost(*Entry, LT.first, ICA.getFlags());
3352 
3353     if (ST->hasAVX())
3354       if (const auto *Entry = CostTableLookup(AVX1CostTbl, ISD, MTy))
3355         return adjustTableCost(*Entry, LT.first, ICA.getFlags());
3356 
3357     if (ST->hasSSE42())
3358       if (const auto *Entry = CostTableLookup(SSE42CostTbl, ISD, MTy))
3359         return adjustTableCost(*Entry, LT.first, ICA.getFlags());
3360 
3361     if (ST->hasSSE41())
3362       if (const auto *Entry = CostTableLookup(SSE41CostTbl, ISD, MTy))
3363         return adjustTableCost(*Entry, LT.first, ICA.getFlags());
3364 
3365     if (ST->hasSSSE3())
3366       if (const auto *Entry = CostTableLookup(SSSE3CostTbl, ISD, MTy))
3367         return adjustTableCost(*Entry, LT.first, ICA.getFlags());
3368 
3369     if (ST->hasSSE2())
3370       if (const auto *Entry = CostTableLookup(SSE2CostTbl, ISD, MTy))
3371         return adjustTableCost(*Entry, LT.first, ICA.getFlags());
3372 
3373     if (ST->hasSSE1())
3374       if (const auto *Entry = CostTableLookup(SSE1CostTbl, ISD, MTy))
3375         return adjustTableCost(*Entry, LT.first, ICA.getFlags());
3376 
3377     if (ST->hasBMI()) {
3378       if (ST->is64Bit())
3379         if (const auto *Entry = CostTableLookup(BMI64CostTbl, ISD, MTy))
3380           return adjustTableCost(*Entry, LT.first, ICA.getFlags());
3381 
3382       if (const auto *Entry = CostTableLookup(BMI32CostTbl, ISD, MTy))
3383         return adjustTableCost(*Entry, LT.first, ICA.getFlags());
3384     }
3385 
3386     if (ST->hasLZCNT()) {
3387       if (ST->is64Bit())
3388         if (const auto *Entry = CostTableLookup(LZCNT64CostTbl, ISD, MTy))
3389           return adjustTableCost(*Entry, LT.first, ICA.getFlags());
3390 
3391       if (const auto *Entry = CostTableLookup(LZCNT32CostTbl, ISD, MTy))
3392         return adjustTableCost(*Entry, LT.first, ICA.getFlags());
3393     }
3394 
3395     if (ST->hasPOPCNT()) {
3396       if (ST->is64Bit())
3397         if (const auto *Entry = CostTableLookup(POPCNT64CostTbl, ISD, MTy))
3398           return adjustTableCost(*Entry, LT.first, ICA.getFlags());
3399 
3400       if (const auto *Entry = CostTableLookup(POPCNT32CostTbl, ISD, MTy))
3401         return adjustTableCost(*Entry, LT.first, ICA.getFlags());
3402     }
3403 
3404     if (ISD == ISD::BSWAP && ST->hasMOVBE() && ST->hasFastMOVBE()) {
3405       if (const Instruction *II = ICA.getInst()) {
3406         if (II->hasOneUse() && isa<StoreInst>(II->user_back()))
3407           return TTI::TCC_Free;
3408         if (auto *LI = dyn_cast<LoadInst>(II->getOperand(0))) {
3409           if (LI->hasOneUse())
3410             return TTI::TCC_Free;
3411         }
3412       }
3413     }
3414 
3415     if (ST->is64Bit())
3416       if (const auto *Entry = CostTableLookup(X64CostTbl, ISD, MTy))
3417         return adjustTableCost(*Entry, LT.first, ICA.getFlags());
3418 
3419     if (const auto *Entry = CostTableLookup(X86CostTbl, ISD, MTy))
3420       return adjustTableCost(*Entry, LT.first, ICA.getFlags());
3421   }
3422 
3423   return BaseT::getIntrinsicInstrCost(ICA, CostKind);
3424 }
3425 
3426 InstructionCost
3427 X86TTIImpl::getIntrinsicInstrCost(const IntrinsicCostAttributes &ICA,
3428                                   TTI::TargetCostKind CostKind) {
3429   if (ICA.isTypeBasedOnly())
3430     return getTypeBasedIntrinsicInstrCost(ICA, CostKind);
3431 
3432   static const CostTblEntry AVX512CostTbl[] = {
3433     { ISD::ROTL,       MVT::v8i64,   1 },
3434     { ISD::ROTL,       MVT::v4i64,   1 },
3435     { ISD::ROTL,       MVT::v2i64,   1 },
3436     { ISD::ROTL,       MVT::v16i32,  1 },
3437     { ISD::ROTL,       MVT::v8i32,   1 },
3438     { ISD::ROTL,       MVT::v4i32,   1 },
3439     { ISD::ROTR,       MVT::v8i64,   1 },
3440     { ISD::ROTR,       MVT::v4i64,   1 },
3441     { ISD::ROTR,       MVT::v2i64,   1 },
3442     { ISD::ROTR,       MVT::v16i32,  1 },
3443     { ISD::ROTR,       MVT::v8i32,   1 },
3444     { ISD::ROTR,       MVT::v4i32,   1 }
3445   };
3446   // XOP: ROTL = VPROT(X,Y), ROTR = VPROT(X,SUB(0,Y))
3447   static const CostTblEntry XOPCostTbl[] = {
3448     { ISD::ROTL,       MVT::v4i64,   4 },
3449     { ISD::ROTL,       MVT::v8i32,   4 },
3450     { ISD::ROTL,       MVT::v16i16,  4 },
3451     { ISD::ROTL,       MVT::v32i8,   4 },
3452     { ISD::ROTL,       MVT::v2i64,   1 },
3453     { ISD::ROTL,       MVT::v4i32,   1 },
3454     { ISD::ROTL,       MVT::v8i16,   1 },
3455     { ISD::ROTL,       MVT::v16i8,   1 },
3456     { ISD::ROTR,       MVT::v4i64,   6 },
3457     { ISD::ROTR,       MVT::v8i32,   6 },
3458     { ISD::ROTR,       MVT::v16i16,  6 },
3459     { ISD::ROTR,       MVT::v32i8,   6 },
3460     { ISD::ROTR,       MVT::v2i64,   2 },
3461     { ISD::ROTR,       MVT::v4i32,   2 },
3462     { ISD::ROTR,       MVT::v8i16,   2 },
3463     { ISD::ROTR,       MVT::v16i8,   2 }
3464   };
3465   static const CostTblEntry X64CostTbl[] = { // 64-bit targets
3466     { ISD::ROTL,       MVT::i64,     1 },
3467     { ISD::ROTR,       MVT::i64,     1 },
3468     { ISD::FSHL,       MVT::i64,     4 }
3469   };
3470   static const CostTblEntry X86CostTbl[] = { // 32 or 64-bit targets
3471     { ISD::ROTL,       MVT::i32,     1 },
3472     { ISD::ROTL,       MVT::i16,     1 },
3473     { ISD::ROTL,       MVT::i8,      1 },
3474     { ISD::ROTR,       MVT::i32,     1 },
3475     { ISD::ROTR,       MVT::i16,     1 },
3476     { ISD::ROTR,       MVT::i8,      1 },
3477     { ISD::FSHL,       MVT::i32,     4 },
3478     { ISD::FSHL,       MVT::i16,     4 },
3479     { ISD::FSHL,       MVT::i8,      4 }
3480   };
3481 
3482   Intrinsic::ID IID = ICA.getID();
3483   Type *RetTy = ICA.getReturnType();
3484   const SmallVectorImpl<const Value *> &Args = ICA.getArgs();
3485   unsigned ISD = ISD::DELETED_NODE;
3486   switch (IID) {
3487   default:
3488     break;
3489   case Intrinsic::fshl:
3490     ISD = ISD::FSHL;
3491     if (Args[0] == Args[1])
3492       ISD = ISD::ROTL;
3493     break;
3494   case Intrinsic::fshr:
3495     // FSHR has same costs so don't duplicate.
3496     ISD = ISD::FSHL;
3497     if (Args[0] == Args[1])
3498       ISD = ISD::ROTR;
3499     break;
3500   }
3501 
3502   if (ISD != ISD::DELETED_NODE) {
3503     // Legalize the type.
3504     std::pair<InstructionCost, MVT> LT =
3505         TLI->getTypeLegalizationCost(DL, RetTy);
3506     MVT MTy = LT.second;
3507 
3508     // Attempt to lookup cost.
3509     if (ST->hasAVX512())
3510       if (const auto *Entry = CostTableLookup(AVX512CostTbl, ISD, MTy))
3511         return LT.first * Entry->Cost;
3512 
3513     if (ST->hasXOP())
3514       if (const auto *Entry = CostTableLookup(XOPCostTbl, ISD, MTy))
3515         return LT.first * Entry->Cost;
3516 
3517     if (ST->is64Bit())
3518       if (const auto *Entry = CostTableLookup(X64CostTbl, ISD, MTy))
3519         return LT.first * Entry->Cost;
3520 
3521     if (const auto *Entry = CostTableLookup(X86CostTbl, ISD, MTy))
3522       return LT.first * Entry->Cost;
3523   }
3524 
3525   return BaseT::getIntrinsicInstrCost(ICA, CostKind);
3526 }
3527 
3528 InstructionCost X86TTIImpl::getVectorInstrCost(unsigned Opcode, Type *Val,
3529                                                unsigned Index) {
3530   static const CostTblEntry SLMCostTbl[] = {
3531      { ISD::EXTRACT_VECTOR_ELT,       MVT::i8,      4 },
3532      { ISD::EXTRACT_VECTOR_ELT,       MVT::i16,     4 },
3533      { ISD::EXTRACT_VECTOR_ELT,       MVT::i32,     4 },
3534      { ISD::EXTRACT_VECTOR_ELT,       MVT::i64,     7 }
3535    };
3536 
3537   assert(Val->isVectorTy() && "This must be a vector type");
3538   Type *ScalarType = Val->getScalarType();
3539   int RegisterFileMoveCost = 0;
3540 
3541   // Non-immediate extraction/insertion can be handled as a sequence of
3542   // aliased loads+stores via the stack.
3543   if (Index == -1U && (Opcode == Instruction::ExtractElement ||
3544                        Opcode == Instruction::InsertElement)) {
3545     // TODO: On some SSE41+ targets, we expand to cmp+splat+select patterns:
3546     // inselt N0, N1, N2 --> select (SplatN2 == {0,1,2...}) ? SplatN1 : N0.
3547 
3548     // TODO: Move this to BasicTTIImpl.h? We'd need better gep + index handling.
3549     assert(isa<FixedVectorType>(Val) && "Fixed vector type expected");
3550     Align VecAlign = DL.getPrefTypeAlign(Val);
3551     Align SclAlign = DL.getPrefTypeAlign(ScalarType);
3552 
3553     // Extract - store vector to stack, load scalar.
3554     if (Opcode == Instruction::ExtractElement) {
3555       return getMemoryOpCost(Instruction::Store, Val, VecAlign, 0,
3556                              TTI::TargetCostKind::TCK_RecipThroughput) +
3557              getMemoryOpCost(Instruction::Load, ScalarType, SclAlign, 0,
3558                              TTI::TargetCostKind::TCK_RecipThroughput);
3559     }
3560     // Insert - store vector to stack, store scalar, load vector.
3561     if (Opcode == Instruction::InsertElement) {
3562       return getMemoryOpCost(Instruction::Store, Val, VecAlign, 0,
3563                              TTI::TargetCostKind::TCK_RecipThroughput) +
3564              getMemoryOpCost(Instruction::Store, ScalarType, SclAlign, 0,
3565                              TTI::TargetCostKind::TCK_RecipThroughput) +
3566              getMemoryOpCost(Instruction::Load, Val, VecAlign, 0,
3567                              TTI::TargetCostKind::TCK_RecipThroughput);
3568     }
3569   }
3570 
3571   if (Index != -1U && (Opcode == Instruction::ExtractElement ||
3572                        Opcode == Instruction::InsertElement)) {
3573     // Legalize the type.
3574     std::pair<InstructionCost, MVT> LT = TLI->getTypeLegalizationCost(DL, Val);
3575 
3576     // This type is legalized to a scalar type.
3577     if (!LT.second.isVector())
3578       return 0;
3579 
3580     // The type may be split. Normalize the index to the new type.
3581     unsigned NumElts = LT.second.getVectorNumElements();
3582     unsigned SubNumElts = NumElts;
3583     Index = Index % NumElts;
3584 
3585     // For >128-bit vectors, we need to extract higher 128-bit subvectors.
3586     // For inserts, we also need to insert the subvector back.
3587     if (LT.second.getSizeInBits() > 128) {
3588       assert((LT.second.getSizeInBits() % 128) == 0 && "Illegal vector");
3589       unsigned NumSubVecs = LT.second.getSizeInBits() / 128;
3590       SubNumElts = NumElts / NumSubVecs;
3591       if (SubNumElts <= Index) {
3592         RegisterFileMoveCost += (Opcode == Instruction::InsertElement ? 2 : 1);
3593         Index %= SubNumElts;
3594       }
3595     }
3596 
3597     if (Index == 0) {
3598       // Floating point scalars are already located in index #0.
3599       // Many insertions to #0 can fold away for scalar fp-ops, so let's assume
3600       // true for all.
3601       if (ScalarType->isFloatingPointTy())
3602         return RegisterFileMoveCost;
3603 
3604       // Assume movd/movq XMM -> GPR is relatively cheap on all targets.
3605       if (ScalarType->isIntegerTy() && Opcode == Instruction::ExtractElement)
3606         return 1 + RegisterFileMoveCost;
3607     }
3608 
3609     int ISD = TLI->InstructionOpcodeToISD(Opcode);
3610     assert(ISD && "Unexpected vector opcode");
3611     MVT MScalarTy = LT.second.getScalarType();
3612     if (ST->useSLMArithCosts())
3613       if (auto *Entry = CostTableLookup(SLMCostTbl, ISD, MScalarTy))
3614         return Entry->Cost + RegisterFileMoveCost;
3615 
3616     // Assume pinsr/pextr XMM <-> GPR is relatively cheap on all targets.
3617     if ((MScalarTy == MVT::i16 && ST->hasSSE2()) ||
3618         (MScalarTy.isInteger() && ST->hasSSE41()))
3619       return 1 + RegisterFileMoveCost;
3620 
3621     // Assume insertps is relatively cheap on all targets.
3622     if (MScalarTy == MVT::f32 && ST->hasSSE41() &&
3623         Opcode == Instruction::InsertElement)
3624       return 1 + RegisterFileMoveCost;
3625 
3626     // For extractions we just need to shuffle the element to index 0, which
3627     // should be very cheap (assume cost = 1). For insertions we need to shuffle
3628     // the elements to its destination. In both cases we must handle the
3629     // subvector move(s).
3630     // If the vector type is already less than 128-bits then don't reduce it.
3631     // TODO: Under what circumstances should we shuffle using the full width?
3632     InstructionCost ShuffleCost = 1;
3633     if (Opcode == Instruction::InsertElement) {
3634       auto *SubTy = cast<VectorType>(Val);
3635       EVT VT = TLI->getValueType(DL, Val);
3636       if (VT.getScalarType() != MScalarTy || VT.getSizeInBits() >= 128)
3637         SubTy = FixedVectorType::get(ScalarType, SubNumElts);
3638       ShuffleCost =
3639           getShuffleCost(TTI::SK_PermuteTwoSrc, SubTy, None, 0, SubTy);
3640     }
3641     int IntOrFpCost = ScalarType->isFloatingPointTy() ? 0 : 1;
3642     return ShuffleCost + IntOrFpCost + RegisterFileMoveCost;
3643   }
3644 
3645   // Add to the base cost if we know that the extracted element of a vector is
3646   // destined to be moved to and used in the integer register file.
3647   if (Opcode == Instruction::ExtractElement && ScalarType->isPointerTy())
3648     RegisterFileMoveCost += 1;
3649 
3650   return BaseT::getVectorInstrCost(Opcode, Val, Index) + RegisterFileMoveCost;
3651 }
3652 
3653 InstructionCost X86TTIImpl::getScalarizationOverhead(VectorType *Ty,
3654                                                      const APInt &DemandedElts,
3655                                                      bool Insert,
3656                                                      bool Extract) {
3657   InstructionCost Cost = 0;
3658 
3659   // For insertions, a ISD::BUILD_VECTOR style vector initialization can be much
3660   // cheaper than an accumulation of ISD::INSERT_VECTOR_ELT.
3661   if (Insert) {
3662     std::pair<InstructionCost, MVT> LT = TLI->getTypeLegalizationCost(DL, Ty);
3663     MVT MScalarTy = LT.second.getScalarType();
3664 
3665     if ((MScalarTy == MVT::i16 && ST->hasSSE2()) ||
3666         (MScalarTy.isInteger() && ST->hasSSE41()) ||
3667         (MScalarTy == MVT::f32 && ST->hasSSE41())) {
3668       // For types we can insert directly, insertion into 128-bit sub vectors is
3669       // cheap, followed by a cheap chain of concatenations.
3670       if (LT.second.getSizeInBits() <= 128) {
3671         Cost +=
3672             BaseT::getScalarizationOverhead(Ty, DemandedElts, Insert, false);
3673       } else {
3674         // In each 128-lane, if at least one index is demanded but not all
3675         // indices are demanded and this 128-lane is not the first 128-lane of
3676         // the legalized-vector, then this 128-lane needs a extracti128; If in
3677         // each 128-lane, there is at least one demanded index, this 128-lane
3678         // needs a inserti128.
3679 
3680         // The following cases will help you build a better understanding:
3681         // Assume we insert several elements into a v8i32 vector in avx2,
3682         // Case#1: inserting into 1th index needs vpinsrd + inserti128.
3683         // Case#2: inserting into 5th index needs extracti128 + vpinsrd +
3684         // inserti128.
3685         // Case#3: inserting into 4,5,6,7 index needs 4*vpinsrd + inserti128.
3686         const int CostValue = *LT.first.getValue();
3687         assert(CostValue >= 0 && "Negative cost!");
3688         unsigned Num128Lanes = LT.second.getSizeInBits() / 128 * CostValue;
3689         unsigned NumElts = LT.second.getVectorNumElements() * CostValue;
3690         APInt WidenedDemandedElts = DemandedElts.zextOrSelf(NumElts);
3691         unsigned Scale = NumElts / Num128Lanes;
3692         // We iterate each 128-lane, and check if we need a
3693         // extracti128/inserti128 for this 128-lane.
3694         for (unsigned I = 0; I < NumElts; I += Scale) {
3695           APInt Mask = WidenedDemandedElts.getBitsSet(NumElts, I, I + Scale);
3696           APInt MaskedDE = Mask & WidenedDemandedElts;
3697           unsigned Population = MaskedDE.countPopulation();
3698           Cost += (Population > 0 && Population != Scale &&
3699                    I % LT.second.getVectorNumElements() != 0);
3700           Cost += Population > 0;
3701         }
3702         Cost += DemandedElts.countPopulation();
3703 
3704         // For vXf32 cases, insertion into the 0'th index in each v4f32
3705         // 128-bit vector is free.
3706         // NOTE: This assumes legalization widens vXf32 vectors.
3707         if (MScalarTy == MVT::f32)
3708           for (unsigned i = 0, e = cast<FixedVectorType>(Ty)->getNumElements();
3709                i < e; i += 4)
3710             if (DemandedElts[i])
3711               Cost--;
3712       }
3713     } else if (LT.second.isVector()) {
3714       // Without fast insertion, we need to use MOVD/MOVQ to pass each demanded
3715       // integer element as a SCALAR_TO_VECTOR, then we build the vector as a
3716       // series of UNPCK followed by CONCAT_VECTORS - all of these can be
3717       // considered cheap.
3718       if (Ty->isIntOrIntVectorTy())
3719         Cost += DemandedElts.countPopulation();
3720 
3721       // Get the smaller of the legalized or original pow2-extended number of
3722       // vector elements, which represents the number of unpacks we'll end up
3723       // performing.
3724       unsigned NumElts = LT.second.getVectorNumElements();
3725       unsigned Pow2Elts =
3726           PowerOf2Ceil(cast<FixedVectorType>(Ty)->getNumElements());
3727       Cost += (std::min<unsigned>(NumElts, Pow2Elts) - 1) * LT.first;
3728     }
3729   }
3730 
3731   // TODO: Use default extraction for now, but we should investigate extending this
3732   // to handle repeated subvector extraction.
3733   if (Extract)
3734     Cost += BaseT::getScalarizationOverhead(Ty, DemandedElts, false, Extract);
3735 
3736   return Cost;
3737 }
3738 
3739 InstructionCost
3740 X86TTIImpl::getReplicationShuffleCost(Type *EltTy, int ReplicationFactor,
3741                                       int VF, const APInt &DemandedDstElts,
3742                                       TTI::TargetCostKind CostKind) {
3743   const unsigned EltTyBits = DL.getTypeSizeInBits(EltTy);
3744   // We don't differentiate element types here, only element bit width.
3745   EltTy = IntegerType::getIntNTy(EltTy->getContext(), EltTyBits);
3746 
3747   auto bailout = [&]() {
3748     return BaseT::getReplicationShuffleCost(EltTy, ReplicationFactor, VF,
3749                                             DemandedDstElts, CostKind);
3750   };
3751 
3752   // For now, only deal with AVX512 cases.
3753   if (!ST->hasAVX512())
3754     return bailout();
3755 
3756   // Do we have a native shuffle for this element type, or should we promote?
3757   unsigned PromEltTyBits = EltTyBits;
3758   switch (EltTyBits) {
3759   case 32:
3760   case 64:
3761     break; // AVX512F.
3762   case 16:
3763     if (!ST->hasBWI())
3764       PromEltTyBits = 32; // promote to i32, AVX512F.
3765     break;                // AVX512BW
3766   case 8:
3767     if (!ST->hasVBMI())
3768       PromEltTyBits = 32; // promote to i32, AVX512F.
3769     break;                // AVX512VBMI
3770   case 1:
3771     // There is no support for shuffling i1 elements. We *must* promote.
3772     if (ST->hasBWI()) {
3773       if (ST->hasVBMI())
3774         PromEltTyBits = 8; // promote to i8, AVX512VBMI.
3775       else
3776         PromEltTyBits = 16; // promote to i16, AVX512BW.
3777       break;
3778     }
3779     if (ST->hasDQI()) {
3780       PromEltTyBits = 32; // promote to i32, AVX512F.
3781       break;
3782     }
3783     return bailout();
3784   default:
3785     return bailout();
3786   }
3787   auto *PromEltTy = IntegerType::getIntNTy(EltTy->getContext(), PromEltTyBits);
3788 
3789   auto *SrcVecTy = FixedVectorType::get(EltTy, VF);
3790   auto *PromSrcVecTy = FixedVectorType::get(PromEltTy, VF);
3791 
3792   int NumDstElements = VF * ReplicationFactor;
3793   auto *PromDstVecTy = FixedVectorType::get(PromEltTy, NumDstElements);
3794   auto *DstVecTy = FixedVectorType::get(EltTy, NumDstElements);
3795 
3796   // Legalize the types.
3797   MVT LegalSrcVecTy = TLI->getTypeLegalizationCost(DL, SrcVecTy).second;
3798   MVT LegalPromSrcVecTy = TLI->getTypeLegalizationCost(DL, PromSrcVecTy).second;
3799   MVT LegalPromDstVecTy = TLI->getTypeLegalizationCost(DL, PromDstVecTy).second;
3800   MVT LegalDstVecTy = TLI->getTypeLegalizationCost(DL, DstVecTy).second;
3801   // They should have legalized into vector types.
3802   if (!LegalSrcVecTy.isVector() || !LegalPromSrcVecTy.isVector() ||
3803       !LegalPromDstVecTy.isVector() || !LegalDstVecTy.isVector())
3804     return bailout();
3805 
3806   if (PromEltTyBits != EltTyBits) {
3807     // If we have to perform the shuffle with wider elt type than our data type,
3808     // then we will first need to anyext (we don't care about the new bits)
3809     // the source elements, and then truncate Dst elements.
3810     InstructionCost PromotionCost;
3811     PromotionCost += getCastInstrCost(
3812         Instruction::SExt, /*Dst=*/PromSrcVecTy, /*Src=*/SrcVecTy,
3813         TargetTransformInfo::CastContextHint::None, CostKind);
3814     PromotionCost +=
3815         getCastInstrCost(Instruction::Trunc, /*Dst=*/DstVecTy,
3816                          /*Src=*/PromDstVecTy,
3817                          TargetTransformInfo::CastContextHint::None, CostKind);
3818     return PromotionCost + getReplicationShuffleCost(PromEltTy,
3819                                                      ReplicationFactor, VF,
3820                                                      DemandedDstElts, CostKind);
3821   }
3822 
3823   assert(LegalSrcVecTy.getScalarSizeInBits() == EltTyBits &&
3824          LegalSrcVecTy.getScalarType() == LegalDstVecTy.getScalarType() &&
3825          "We expect that the legalization doesn't affect the element width, "
3826          "doesn't coalesce/split elements.");
3827 
3828   unsigned NumEltsPerDstVec = LegalDstVecTy.getVectorNumElements();
3829   unsigned NumDstVectors =
3830       divideCeil(DstVecTy->getNumElements(), NumEltsPerDstVec);
3831 
3832   auto *SingleDstVecTy = FixedVectorType::get(EltTy, NumEltsPerDstVec);
3833 
3834   // Not all the produced Dst elements may be demanded. In our case,
3835   // given that a single Dst vector is formed by a single shuffle,
3836   // if all elements that will form a single Dst vector aren't demanded,
3837   // then we won't need to do that shuffle, so adjust the cost accordingly.
3838   APInt DemandedDstVectors = APIntOps::ScaleBitMask(
3839       DemandedDstElts.zextOrSelf(NumDstVectors * NumEltsPerDstVec),
3840       NumDstVectors);
3841   unsigned NumDstVectorsDemanded = DemandedDstVectors.countPopulation();
3842 
3843   InstructionCost SingleShuffleCost =
3844       getShuffleCost(TTI::SK_PermuteSingleSrc, SingleDstVecTy,
3845                      /*Mask=*/None, /*Index=*/0, /*SubTp=*/nullptr);
3846   return NumDstVectorsDemanded * SingleShuffleCost;
3847 }
3848 
3849 InstructionCost X86TTIImpl::getMemoryOpCost(unsigned Opcode, Type *Src,
3850                                             MaybeAlign Alignment,
3851                                             unsigned AddressSpace,
3852                                             TTI::TargetCostKind CostKind,
3853                                             const Instruction *I) {
3854   // TODO: Handle other cost kinds.
3855   if (CostKind != TTI::TCK_RecipThroughput) {
3856     if (auto *SI = dyn_cast_or_null<StoreInst>(I)) {
3857       // Store instruction with index and scale costs 2 Uops.
3858       // Check the preceding GEP to identify non-const indices.
3859       if (auto *GEP = dyn_cast<GetElementPtrInst>(SI->getPointerOperand())) {
3860         if (!all_of(GEP->indices(), [](Value *V) { return isa<Constant>(V); }))
3861           return TTI::TCC_Basic * 2;
3862       }
3863     }
3864     return TTI::TCC_Basic;
3865   }
3866 
3867   assert((Opcode == Instruction::Load || Opcode == Instruction::Store) &&
3868          "Invalid Opcode");
3869   // Type legalization can't handle structs
3870   if (TLI->getValueType(DL, Src, true) == MVT::Other)
3871     return BaseT::getMemoryOpCost(Opcode, Src, Alignment, AddressSpace,
3872                                   CostKind);
3873 
3874   // Legalize the type.
3875   std::pair<InstructionCost, MVT> LT = TLI->getTypeLegalizationCost(DL, Src);
3876 
3877   auto *VTy = dyn_cast<FixedVectorType>(Src);
3878 
3879   // Handle the simple case of non-vectors.
3880   // NOTE: this assumes that legalization never creates vector from scalars!
3881   if (!VTy || !LT.second.isVector())
3882     // Each load/store unit costs 1.
3883     return LT.first * 1;
3884 
3885   bool IsLoad = Opcode == Instruction::Load;
3886 
3887   Type *EltTy = VTy->getElementType();
3888 
3889   const int EltTyBits = DL.getTypeSizeInBits(EltTy);
3890 
3891   InstructionCost Cost = 0;
3892 
3893   // Source of truth: how many elements were there in the original IR vector?
3894   const unsigned SrcNumElt = VTy->getNumElements();
3895 
3896   // How far have we gotten?
3897   int NumEltRemaining = SrcNumElt;
3898   // Note that we intentionally capture by-reference, NumEltRemaining changes.
3899   auto NumEltDone = [&]() { return SrcNumElt - NumEltRemaining; };
3900 
3901   const int MaxLegalOpSizeBytes = divideCeil(LT.second.getSizeInBits(), 8);
3902 
3903   // Note that even if we can store 64 bits of an XMM, we still operate on XMM.
3904   const unsigned XMMBits = 128;
3905   if (XMMBits % EltTyBits != 0)
3906     // Vector size must be a multiple of the element size. I.e. no padding.
3907     return BaseT::getMemoryOpCost(Opcode, Src, Alignment, AddressSpace,
3908                                   CostKind);
3909   const int NumEltPerXMM = XMMBits / EltTyBits;
3910 
3911   auto *XMMVecTy = FixedVectorType::get(EltTy, NumEltPerXMM);
3912 
3913   for (int CurrOpSizeBytes = MaxLegalOpSizeBytes, SubVecEltsLeft = 0;
3914        NumEltRemaining > 0; CurrOpSizeBytes /= 2) {
3915     // How many elements would a single op deal with at once?
3916     if ((8 * CurrOpSizeBytes) % EltTyBits != 0)
3917       // Vector size must be a multiple of the element size. I.e. no padding.
3918       return BaseT::getMemoryOpCost(Opcode, Src, Alignment, AddressSpace,
3919                                     CostKind);
3920     int CurrNumEltPerOp = (8 * CurrOpSizeBytes) / EltTyBits;
3921 
3922     assert(CurrOpSizeBytes > 0 && CurrNumEltPerOp > 0 && "How'd we get here?");
3923     assert((((NumEltRemaining * EltTyBits) < (2 * 8 * CurrOpSizeBytes)) ||
3924             (CurrOpSizeBytes == MaxLegalOpSizeBytes)) &&
3925            "Unless we haven't halved the op size yet, "
3926            "we have less than two op's sized units of work left.");
3927 
3928     auto *CurrVecTy = CurrNumEltPerOp > NumEltPerXMM
3929                           ? FixedVectorType::get(EltTy, CurrNumEltPerOp)
3930                           : XMMVecTy;
3931 
3932     assert(CurrVecTy->getNumElements() % CurrNumEltPerOp == 0 &&
3933            "After halving sizes, the vector elt count is no longer a multiple "
3934            "of number of elements per operation?");
3935     auto *CoalescedVecTy =
3936         CurrNumEltPerOp == 1
3937             ? CurrVecTy
3938             : FixedVectorType::get(
3939                   IntegerType::get(Src->getContext(),
3940                                    EltTyBits * CurrNumEltPerOp),
3941                   CurrVecTy->getNumElements() / CurrNumEltPerOp);
3942     assert(DL.getTypeSizeInBits(CoalescedVecTy) ==
3943                DL.getTypeSizeInBits(CurrVecTy) &&
3944            "coalesciing elements doesn't change vector width.");
3945 
3946     while (NumEltRemaining > 0) {
3947       assert(SubVecEltsLeft >= 0 && "Subreg element count overconsumtion?");
3948 
3949       // Can we use this vector size, as per the remaining element count?
3950       // Iff the vector is naturally aligned, we can do a wide load regardless.
3951       if (NumEltRemaining < CurrNumEltPerOp &&
3952           (!IsLoad || Alignment.valueOrOne() < CurrOpSizeBytes) &&
3953           CurrOpSizeBytes != 1)
3954         break; // Try smalled vector size.
3955 
3956       bool Is0thSubVec = (NumEltDone() % LT.second.getVectorNumElements()) == 0;
3957 
3958       // If we have fully processed the previous reg, we need to replenish it.
3959       if (SubVecEltsLeft == 0) {
3960         SubVecEltsLeft += CurrVecTy->getNumElements();
3961         // And that's free only for the 0'th subvector of a legalized vector.
3962         if (!Is0thSubVec)
3963           Cost += getShuffleCost(IsLoad ? TTI::ShuffleKind::SK_InsertSubvector
3964                                         : TTI::ShuffleKind::SK_ExtractSubvector,
3965                                  VTy, None, NumEltDone(), CurrVecTy);
3966       }
3967 
3968       // While we can directly load/store ZMM, YMM, and 64-bit halves of XMM,
3969       // for smaller widths (32/16/8) we have to insert/extract them separately.
3970       // Again, it's free for the 0'th subreg (if op is 32/64 bit wide,
3971       // but let's pretend that it is also true for 16/8 bit wide ops...)
3972       if (CurrOpSizeBytes <= 32 / 8 && !Is0thSubVec) {
3973         int NumEltDoneInCurrXMM = NumEltDone() % NumEltPerXMM;
3974         assert(NumEltDoneInCurrXMM % CurrNumEltPerOp == 0 && "");
3975         int CoalescedVecEltIdx = NumEltDoneInCurrXMM / CurrNumEltPerOp;
3976         APInt DemandedElts =
3977             APInt::getBitsSet(CoalescedVecTy->getNumElements(),
3978                               CoalescedVecEltIdx, CoalescedVecEltIdx + 1);
3979         assert(DemandedElts.countPopulation() == 1 && "Inserting single value");
3980         Cost += getScalarizationOverhead(CoalescedVecTy, DemandedElts, IsLoad,
3981                                          !IsLoad);
3982       }
3983 
3984       // This isn't exactly right. We're using slow unaligned 32-byte accesses
3985       // as a proxy for a double-pumped AVX memory interface such as on
3986       // Sandybridge.
3987       if (CurrOpSizeBytes == 32 && ST->isUnalignedMem32Slow())
3988         Cost += 2;
3989       else
3990         Cost += 1;
3991 
3992       SubVecEltsLeft -= CurrNumEltPerOp;
3993       NumEltRemaining -= CurrNumEltPerOp;
3994       Alignment = commonAlignment(Alignment.valueOrOne(), CurrOpSizeBytes);
3995     }
3996   }
3997 
3998   assert(NumEltRemaining <= 0 && "Should have processed all the elements.");
3999 
4000   return Cost;
4001 }
4002 
4003 InstructionCost
4004 X86TTIImpl::getMaskedMemoryOpCost(unsigned Opcode, Type *SrcTy, Align Alignment,
4005                                   unsigned AddressSpace,
4006                                   TTI::TargetCostKind CostKind) {
4007   bool IsLoad = (Instruction::Load == Opcode);
4008   bool IsStore = (Instruction::Store == Opcode);
4009 
4010   auto *SrcVTy = dyn_cast<FixedVectorType>(SrcTy);
4011   if (!SrcVTy)
4012     // To calculate scalar take the regular cost, without mask
4013     return getMemoryOpCost(Opcode, SrcTy, Alignment, AddressSpace, CostKind);
4014 
4015   unsigned NumElem = SrcVTy->getNumElements();
4016   auto *MaskTy =
4017       FixedVectorType::get(Type::getInt8Ty(SrcVTy->getContext()), NumElem);
4018   if ((IsLoad && !isLegalMaskedLoad(SrcVTy, Alignment)) ||
4019       (IsStore && !isLegalMaskedStore(SrcVTy, Alignment))) {
4020     // Scalarization
4021     APInt DemandedElts = APInt::getAllOnes(NumElem);
4022     InstructionCost MaskSplitCost =
4023         getScalarizationOverhead(MaskTy, DemandedElts, false, true);
4024     InstructionCost ScalarCompareCost = getCmpSelInstrCost(
4025         Instruction::ICmp, Type::getInt8Ty(SrcVTy->getContext()), nullptr,
4026         CmpInst::BAD_ICMP_PREDICATE, CostKind);
4027     InstructionCost BranchCost = getCFInstrCost(Instruction::Br, CostKind);
4028     InstructionCost MaskCmpCost = NumElem * (BranchCost + ScalarCompareCost);
4029     InstructionCost ValueSplitCost =
4030         getScalarizationOverhead(SrcVTy, DemandedElts, IsLoad, IsStore);
4031     InstructionCost MemopCost =
4032         NumElem * BaseT::getMemoryOpCost(Opcode, SrcVTy->getScalarType(),
4033                                          Alignment, AddressSpace, CostKind);
4034     return MemopCost + ValueSplitCost + MaskSplitCost + MaskCmpCost;
4035   }
4036 
4037   // Legalize the type.
4038   std::pair<InstructionCost, MVT> LT = TLI->getTypeLegalizationCost(DL, SrcVTy);
4039   auto VT = TLI->getValueType(DL, SrcVTy);
4040   InstructionCost Cost = 0;
4041   if (VT.isSimple() && LT.second != VT.getSimpleVT() &&
4042       LT.second.getVectorNumElements() == NumElem)
4043     // Promotion requires extend/truncate for data and a shuffle for mask.
4044     Cost += getShuffleCost(TTI::SK_PermuteTwoSrc, SrcVTy, None, 0, nullptr) +
4045             getShuffleCost(TTI::SK_PermuteTwoSrc, MaskTy, None, 0, nullptr);
4046 
4047   else if (LT.first * LT.second.getVectorNumElements() > NumElem) {
4048     auto *NewMaskTy = FixedVectorType::get(MaskTy->getElementType(),
4049                                            LT.second.getVectorNumElements());
4050     // Expanding requires fill mask with zeroes
4051     Cost += getShuffleCost(TTI::SK_InsertSubvector, NewMaskTy, None, 0, MaskTy);
4052   }
4053 
4054   // Pre-AVX512 - each maskmov load costs 2 + store costs ~8.
4055   if (!ST->hasAVX512())
4056     return Cost + LT.first * (IsLoad ? 2 : 8);
4057 
4058   // AVX-512 masked load/store is cheapper
4059   return Cost + LT.first;
4060 }
4061 
4062 InstructionCost X86TTIImpl::getAddressComputationCost(Type *Ty,
4063                                                       ScalarEvolution *SE,
4064                                                       const SCEV *Ptr) {
4065   // Address computations in vectorized code with non-consecutive addresses will
4066   // likely result in more instructions compared to scalar code where the
4067   // computation can more often be merged into the index mode. The resulting
4068   // extra micro-ops can significantly decrease throughput.
4069   const unsigned NumVectorInstToHideOverhead = 10;
4070 
4071   // Cost modeling of Strided Access Computation is hidden by the indexing
4072   // modes of X86 regardless of the stride value. We dont believe that there
4073   // is a difference between constant strided access in gerenal and constant
4074   // strided value which is less than or equal to 64.
4075   // Even in the case of (loop invariant) stride whose value is not known at
4076   // compile time, the address computation will not incur more than one extra
4077   // ADD instruction.
4078   if (Ty->isVectorTy() && SE && !ST->hasAVX2()) {
4079     // TODO: AVX2 is the current cut-off because we don't have correct
4080     //       interleaving costs for prior ISA's.
4081     if (!BaseT::isStridedAccess(Ptr))
4082       return NumVectorInstToHideOverhead;
4083     if (!BaseT::getConstantStrideStep(SE, Ptr))
4084       return 1;
4085   }
4086 
4087   return BaseT::getAddressComputationCost(Ty, SE, Ptr);
4088 }
4089 
4090 InstructionCost
4091 X86TTIImpl::getArithmeticReductionCost(unsigned Opcode, VectorType *ValTy,
4092                                        Optional<FastMathFlags> FMF,
4093                                        TTI::TargetCostKind CostKind) {
4094   if (TTI::requiresOrderedReduction(FMF))
4095     return BaseT::getArithmeticReductionCost(Opcode, ValTy, FMF, CostKind);
4096 
4097   // We use the Intel Architecture Code Analyzer(IACA) to measure the throughput
4098   // and make it as the cost.
4099 
4100   static const CostTblEntry SLMCostTblNoPairWise[] = {
4101     { ISD::FADD,  MVT::v2f64,   3 },
4102     { ISD::ADD,   MVT::v2i64,   5 },
4103   };
4104 
4105   static const CostTblEntry SSE2CostTblNoPairWise[] = {
4106     { ISD::FADD,  MVT::v2f64,   2 },
4107     { ISD::FADD,  MVT::v2f32,   2 },
4108     { ISD::FADD,  MVT::v4f32,   4 },
4109     { ISD::ADD,   MVT::v2i64,   2 },      // The data reported by the IACA tool is "1.6".
4110     { ISD::ADD,   MVT::v2i32,   2 }, // FIXME: chosen to be less than v4i32
4111     { ISD::ADD,   MVT::v4i32,   3 },      // The data reported by the IACA tool is "3.3".
4112     { ISD::ADD,   MVT::v2i16,   2 },      // The data reported by the IACA tool is "4.3".
4113     { ISD::ADD,   MVT::v4i16,   3 },      // The data reported by the IACA tool is "4.3".
4114     { ISD::ADD,   MVT::v8i16,   4 },      // The data reported by the IACA tool is "4.3".
4115     { ISD::ADD,   MVT::v2i8,    2 },
4116     { ISD::ADD,   MVT::v4i8,    2 },
4117     { ISD::ADD,   MVT::v8i8,    2 },
4118     { ISD::ADD,   MVT::v16i8,   3 },
4119   };
4120 
4121   static const CostTblEntry AVX1CostTblNoPairWise[] = {
4122     { ISD::FADD,  MVT::v4f64,   3 },
4123     { ISD::FADD,  MVT::v4f32,   3 },
4124     { ISD::FADD,  MVT::v8f32,   4 },
4125     { ISD::ADD,   MVT::v2i64,   1 },      // The data reported by the IACA tool is "1.5".
4126     { ISD::ADD,   MVT::v4i64,   3 },
4127     { ISD::ADD,   MVT::v8i32,   5 },
4128     { ISD::ADD,   MVT::v16i16,  5 },
4129     { ISD::ADD,   MVT::v32i8,   4 },
4130   };
4131 
4132   int ISD = TLI->InstructionOpcodeToISD(Opcode);
4133   assert(ISD && "Invalid opcode");
4134 
4135   // Before legalizing the type, give a chance to look up illegal narrow types
4136   // in the table.
4137   // FIXME: Is there a better way to do this?
4138   EVT VT = TLI->getValueType(DL, ValTy);
4139   if (VT.isSimple()) {
4140     MVT MTy = VT.getSimpleVT();
4141     if (ST->useSLMArithCosts())
4142       if (const auto *Entry = CostTableLookup(SLMCostTblNoPairWise, ISD, MTy))
4143         return Entry->Cost;
4144 
4145     if (ST->hasAVX())
4146       if (const auto *Entry = CostTableLookup(AVX1CostTblNoPairWise, ISD, MTy))
4147         return Entry->Cost;
4148 
4149     if (ST->hasSSE2())
4150       if (const auto *Entry = CostTableLookup(SSE2CostTblNoPairWise, ISD, MTy))
4151         return Entry->Cost;
4152   }
4153 
4154   std::pair<InstructionCost, MVT> LT = TLI->getTypeLegalizationCost(DL, ValTy);
4155 
4156   MVT MTy = LT.second;
4157 
4158   auto *ValVTy = cast<FixedVectorType>(ValTy);
4159 
4160   // Special case: vXi8 mul reductions are performed as vXi16.
4161   if (ISD == ISD::MUL && MTy.getScalarType() == MVT::i8) {
4162     auto *WideSclTy = IntegerType::get(ValVTy->getContext(), 16);
4163     auto *WideVecTy = FixedVectorType::get(WideSclTy, ValVTy->getNumElements());
4164     return getCastInstrCost(Instruction::ZExt, WideVecTy, ValTy,
4165                             TargetTransformInfo::CastContextHint::None,
4166                             CostKind) +
4167            getArithmeticReductionCost(Opcode, WideVecTy, FMF, CostKind);
4168   }
4169 
4170   InstructionCost ArithmeticCost = 0;
4171   if (LT.first != 1 && MTy.isVector() &&
4172       MTy.getVectorNumElements() < ValVTy->getNumElements()) {
4173     // Type needs to be split. We need LT.first - 1 arithmetic ops.
4174     auto *SingleOpTy = FixedVectorType::get(ValVTy->getElementType(),
4175                                             MTy.getVectorNumElements());
4176     ArithmeticCost = getArithmeticInstrCost(Opcode, SingleOpTy, CostKind);
4177     ArithmeticCost *= LT.first - 1;
4178   }
4179 
4180   if (ST->useSLMArithCosts())
4181     if (const auto *Entry = CostTableLookup(SLMCostTblNoPairWise, ISD, MTy))
4182       return ArithmeticCost + Entry->Cost;
4183 
4184   if (ST->hasAVX())
4185     if (const auto *Entry = CostTableLookup(AVX1CostTblNoPairWise, ISD, MTy))
4186       return ArithmeticCost + Entry->Cost;
4187 
4188   if (ST->hasSSE2())
4189     if (const auto *Entry = CostTableLookup(SSE2CostTblNoPairWise, ISD, MTy))
4190       return ArithmeticCost + Entry->Cost;
4191 
4192   // FIXME: These assume a naive kshift+binop lowering, which is probably
4193   // conservative in most cases.
4194   static const CostTblEntry AVX512BoolReduction[] = {
4195     { ISD::AND,  MVT::v2i1,   3 },
4196     { ISD::AND,  MVT::v4i1,   5 },
4197     { ISD::AND,  MVT::v8i1,   7 },
4198     { ISD::AND,  MVT::v16i1,  9 },
4199     { ISD::AND,  MVT::v32i1, 11 },
4200     { ISD::AND,  MVT::v64i1, 13 },
4201     { ISD::OR,   MVT::v2i1,   3 },
4202     { ISD::OR,   MVT::v4i1,   5 },
4203     { ISD::OR,   MVT::v8i1,   7 },
4204     { ISD::OR,   MVT::v16i1,  9 },
4205     { ISD::OR,   MVT::v32i1, 11 },
4206     { ISD::OR,   MVT::v64i1, 13 },
4207   };
4208 
4209   static const CostTblEntry AVX2BoolReduction[] = {
4210     { ISD::AND,  MVT::v16i16,  2 }, // vpmovmskb + cmp
4211     { ISD::AND,  MVT::v32i8,   2 }, // vpmovmskb + cmp
4212     { ISD::OR,   MVT::v16i16,  2 }, // vpmovmskb + cmp
4213     { ISD::OR,   MVT::v32i8,   2 }, // vpmovmskb + cmp
4214   };
4215 
4216   static const CostTblEntry AVX1BoolReduction[] = {
4217     { ISD::AND,  MVT::v4i64,   2 }, // vmovmskpd + cmp
4218     { ISD::AND,  MVT::v8i32,   2 }, // vmovmskps + cmp
4219     { ISD::AND,  MVT::v16i16,  4 }, // vextractf128 + vpand + vpmovmskb + cmp
4220     { ISD::AND,  MVT::v32i8,   4 }, // vextractf128 + vpand + vpmovmskb + cmp
4221     { ISD::OR,   MVT::v4i64,   2 }, // vmovmskpd + cmp
4222     { ISD::OR,   MVT::v8i32,   2 }, // vmovmskps + cmp
4223     { ISD::OR,   MVT::v16i16,  4 }, // vextractf128 + vpor + vpmovmskb + cmp
4224     { ISD::OR,   MVT::v32i8,   4 }, // vextractf128 + vpor + vpmovmskb + cmp
4225   };
4226 
4227   static const CostTblEntry SSE2BoolReduction[] = {
4228     { ISD::AND,  MVT::v2i64,   2 }, // movmskpd + cmp
4229     { ISD::AND,  MVT::v4i32,   2 }, // movmskps + cmp
4230     { ISD::AND,  MVT::v8i16,   2 }, // pmovmskb + cmp
4231     { ISD::AND,  MVT::v16i8,   2 }, // pmovmskb + cmp
4232     { ISD::OR,   MVT::v2i64,   2 }, // movmskpd + cmp
4233     { ISD::OR,   MVT::v4i32,   2 }, // movmskps + cmp
4234     { ISD::OR,   MVT::v8i16,   2 }, // pmovmskb + cmp
4235     { ISD::OR,   MVT::v16i8,   2 }, // pmovmskb + cmp
4236   };
4237 
4238   // Handle bool allof/anyof patterns.
4239   if (ValVTy->getElementType()->isIntegerTy(1)) {
4240     InstructionCost ArithmeticCost = 0;
4241     if (LT.first != 1 && MTy.isVector() &&
4242         MTy.getVectorNumElements() < ValVTy->getNumElements()) {
4243       // Type needs to be split. We need LT.first - 1 arithmetic ops.
4244       auto *SingleOpTy = FixedVectorType::get(ValVTy->getElementType(),
4245                                               MTy.getVectorNumElements());
4246       ArithmeticCost = getArithmeticInstrCost(Opcode, SingleOpTy, CostKind);
4247       ArithmeticCost *= LT.first - 1;
4248     }
4249 
4250     if (ST->hasAVX512())
4251       if (const auto *Entry = CostTableLookup(AVX512BoolReduction, ISD, MTy))
4252         return ArithmeticCost + Entry->Cost;
4253     if (ST->hasAVX2())
4254       if (const auto *Entry = CostTableLookup(AVX2BoolReduction, ISD, MTy))
4255         return ArithmeticCost + Entry->Cost;
4256     if (ST->hasAVX())
4257       if (const auto *Entry = CostTableLookup(AVX1BoolReduction, ISD, MTy))
4258         return ArithmeticCost + Entry->Cost;
4259     if (ST->hasSSE2())
4260       if (const auto *Entry = CostTableLookup(SSE2BoolReduction, ISD, MTy))
4261         return ArithmeticCost + Entry->Cost;
4262 
4263     return BaseT::getArithmeticReductionCost(Opcode, ValVTy, FMF, CostKind);
4264   }
4265 
4266   unsigned NumVecElts = ValVTy->getNumElements();
4267   unsigned ScalarSize = ValVTy->getScalarSizeInBits();
4268 
4269   // Special case power of 2 reductions where the scalar type isn't changed
4270   // by type legalization.
4271   if (!isPowerOf2_32(NumVecElts) || ScalarSize != MTy.getScalarSizeInBits())
4272     return BaseT::getArithmeticReductionCost(Opcode, ValVTy, FMF, CostKind);
4273 
4274   InstructionCost ReductionCost = 0;
4275 
4276   auto *Ty = ValVTy;
4277   if (LT.first != 1 && MTy.isVector() &&
4278       MTy.getVectorNumElements() < ValVTy->getNumElements()) {
4279     // Type needs to be split. We need LT.first - 1 arithmetic ops.
4280     Ty = FixedVectorType::get(ValVTy->getElementType(),
4281                               MTy.getVectorNumElements());
4282     ReductionCost = getArithmeticInstrCost(Opcode, Ty, CostKind);
4283     ReductionCost *= LT.first - 1;
4284     NumVecElts = MTy.getVectorNumElements();
4285   }
4286 
4287   // Now handle reduction with the legal type, taking into account size changes
4288   // at each level.
4289   while (NumVecElts > 1) {
4290     // Determine the size of the remaining vector we need to reduce.
4291     unsigned Size = NumVecElts * ScalarSize;
4292     NumVecElts /= 2;
4293     // If we're reducing from 256/512 bits, use an extract_subvector.
4294     if (Size > 128) {
4295       auto *SubTy = FixedVectorType::get(ValVTy->getElementType(), NumVecElts);
4296       ReductionCost +=
4297           getShuffleCost(TTI::SK_ExtractSubvector, Ty, None, NumVecElts, SubTy);
4298       Ty = SubTy;
4299     } else if (Size == 128) {
4300       // Reducing from 128 bits is a permute of v2f64/v2i64.
4301       FixedVectorType *ShufTy;
4302       if (ValVTy->isFloatingPointTy())
4303         ShufTy =
4304             FixedVectorType::get(Type::getDoubleTy(ValVTy->getContext()), 2);
4305       else
4306         ShufTy =
4307             FixedVectorType::get(Type::getInt64Ty(ValVTy->getContext()), 2);
4308       ReductionCost +=
4309           getShuffleCost(TTI::SK_PermuteSingleSrc, ShufTy, None, 0, nullptr);
4310     } else if (Size == 64) {
4311       // Reducing from 64 bits is a shuffle of v4f32/v4i32.
4312       FixedVectorType *ShufTy;
4313       if (ValVTy->isFloatingPointTy())
4314         ShufTy =
4315             FixedVectorType::get(Type::getFloatTy(ValVTy->getContext()), 4);
4316       else
4317         ShufTy =
4318             FixedVectorType::get(Type::getInt32Ty(ValVTy->getContext()), 4);
4319       ReductionCost +=
4320           getShuffleCost(TTI::SK_PermuteSingleSrc, ShufTy, None, 0, nullptr);
4321     } else {
4322       // Reducing from smaller size is a shift by immediate.
4323       auto *ShiftTy = FixedVectorType::get(
4324           Type::getIntNTy(ValVTy->getContext(), Size), 128 / Size);
4325       ReductionCost += getArithmeticInstrCost(
4326           Instruction::LShr, ShiftTy, CostKind,
4327           TargetTransformInfo::OK_AnyValue,
4328           TargetTransformInfo::OK_UniformConstantValue,
4329           TargetTransformInfo::OP_None, TargetTransformInfo::OP_None);
4330     }
4331 
4332     // Add the arithmetic op for this level.
4333     ReductionCost += getArithmeticInstrCost(Opcode, Ty, CostKind);
4334   }
4335 
4336   // Add the final extract element to the cost.
4337   return ReductionCost + getVectorInstrCost(Instruction::ExtractElement, Ty, 0);
4338 }
4339 
4340 InstructionCost X86TTIImpl::getMinMaxCost(Type *Ty, Type *CondTy,
4341                                           bool IsUnsigned) {
4342   std::pair<InstructionCost, MVT> LT = TLI->getTypeLegalizationCost(DL, Ty);
4343 
4344   MVT MTy = LT.second;
4345 
4346   int ISD;
4347   if (Ty->isIntOrIntVectorTy()) {
4348     ISD = IsUnsigned ? ISD::UMIN : ISD::SMIN;
4349   } else {
4350     assert(Ty->isFPOrFPVectorTy() &&
4351            "Expected float point or integer vector type.");
4352     ISD = ISD::FMINNUM;
4353   }
4354 
4355   static const CostTblEntry SSE1CostTbl[] = {
4356     {ISD::FMINNUM, MVT::v4f32, 1},
4357   };
4358 
4359   static const CostTblEntry SSE2CostTbl[] = {
4360     {ISD::FMINNUM, MVT::v2f64, 1},
4361     {ISD::SMIN,    MVT::v8i16, 1},
4362     {ISD::UMIN,    MVT::v16i8, 1},
4363   };
4364 
4365   static const CostTblEntry SSE41CostTbl[] = {
4366     {ISD::SMIN,    MVT::v4i32, 1},
4367     {ISD::UMIN,    MVT::v4i32, 1},
4368     {ISD::UMIN,    MVT::v8i16, 1},
4369     {ISD::SMIN,    MVT::v16i8, 1},
4370   };
4371 
4372   static const CostTblEntry SSE42CostTbl[] = {
4373     {ISD::UMIN,    MVT::v2i64, 3}, // xor+pcmpgtq+blendvpd
4374   };
4375 
4376   static const CostTblEntry AVX1CostTbl[] = {
4377     {ISD::FMINNUM, MVT::v8f32,  1},
4378     {ISD::FMINNUM, MVT::v4f64,  1},
4379     {ISD::SMIN,    MVT::v8i32,  3},
4380     {ISD::UMIN,    MVT::v8i32,  3},
4381     {ISD::SMIN,    MVT::v16i16, 3},
4382     {ISD::UMIN,    MVT::v16i16, 3},
4383     {ISD::SMIN,    MVT::v32i8,  3},
4384     {ISD::UMIN,    MVT::v32i8,  3},
4385   };
4386 
4387   static const CostTblEntry AVX2CostTbl[] = {
4388     {ISD::SMIN,    MVT::v8i32,  1},
4389     {ISD::UMIN,    MVT::v8i32,  1},
4390     {ISD::SMIN,    MVT::v16i16, 1},
4391     {ISD::UMIN,    MVT::v16i16, 1},
4392     {ISD::SMIN,    MVT::v32i8,  1},
4393     {ISD::UMIN,    MVT::v32i8,  1},
4394   };
4395 
4396   static const CostTblEntry AVX512CostTbl[] = {
4397     {ISD::FMINNUM, MVT::v16f32, 1},
4398     {ISD::FMINNUM, MVT::v8f64,  1},
4399     {ISD::SMIN,    MVT::v2i64,  1},
4400     {ISD::UMIN,    MVT::v2i64,  1},
4401     {ISD::SMIN,    MVT::v4i64,  1},
4402     {ISD::UMIN,    MVT::v4i64,  1},
4403     {ISD::SMIN,    MVT::v8i64,  1},
4404     {ISD::UMIN,    MVT::v8i64,  1},
4405     {ISD::SMIN,    MVT::v16i32, 1},
4406     {ISD::UMIN,    MVT::v16i32, 1},
4407   };
4408 
4409   static const CostTblEntry AVX512BWCostTbl[] = {
4410     {ISD::SMIN,    MVT::v32i16, 1},
4411     {ISD::UMIN,    MVT::v32i16, 1},
4412     {ISD::SMIN,    MVT::v64i8,  1},
4413     {ISD::UMIN,    MVT::v64i8,  1},
4414   };
4415 
4416   // If we have a native MIN/MAX instruction for this type, use it.
4417   if (ST->hasBWI())
4418     if (const auto *Entry = CostTableLookup(AVX512BWCostTbl, ISD, MTy))
4419       return LT.first * Entry->Cost;
4420 
4421   if (ST->hasAVX512())
4422     if (const auto *Entry = CostTableLookup(AVX512CostTbl, ISD, MTy))
4423       return LT.first * Entry->Cost;
4424 
4425   if (ST->hasAVX2())
4426     if (const auto *Entry = CostTableLookup(AVX2CostTbl, ISD, MTy))
4427       return LT.first * Entry->Cost;
4428 
4429   if (ST->hasAVX())
4430     if (const auto *Entry = CostTableLookup(AVX1CostTbl, ISD, MTy))
4431       return LT.first * Entry->Cost;
4432 
4433   if (ST->hasSSE42())
4434     if (const auto *Entry = CostTableLookup(SSE42CostTbl, ISD, MTy))
4435       return LT.first * Entry->Cost;
4436 
4437   if (ST->hasSSE41())
4438     if (const auto *Entry = CostTableLookup(SSE41CostTbl, ISD, MTy))
4439       return LT.first * Entry->Cost;
4440 
4441   if (ST->hasSSE2())
4442     if (const auto *Entry = CostTableLookup(SSE2CostTbl, ISD, MTy))
4443       return LT.first * Entry->Cost;
4444 
4445   if (ST->hasSSE1())
4446     if (const auto *Entry = CostTableLookup(SSE1CostTbl, ISD, MTy))
4447       return LT.first * Entry->Cost;
4448 
4449   unsigned CmpOpcode;
4450   if (Ty->isFPOrFPVectorTy()) {
4451     CmpOpcode = Instruction::FCmp;
4452   } else {
4453     assert(Ty->isIntOrIntVectorTy() &&
4454            "expecting floating point or integer type for min/max reduction");
4455     CmpOpcode = Instruction::ICmp;
4456   }
4457 
4458   TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
4459   // Otherwise fall back to cmp+select.
4460   InstructionCost Result =
4461       getCmpSelInstrCost(CmpOpcode, Ty, CondTy, CmpInst::BAD_ICMP_PREDICATE,
4462                          CostKind) +
4463       getCmpSelInstrCost(Instruction::Select, Ty, CondTy,
4464                          CmpInst::BAD_ICMP_PREDICATE, CostKind);
4465   return Result;
4466 }
4467 
4468 InstructionCost
4469 X86TTIImpl::getMinMaxReductionCost(VectorType *ValTy, VectorType *CondTy,
4470                                    bool IsUnsigned,
4471                                    TTI::TargetCostKind CostKind) {
4472   std::pair<InstructionCost, MVT> LT = TLI->getTypeLegalizationCost(DL, ValTy);
4473 
4474   MVT MTy = LT.second;
4475 
4476   int ISD;
4477   if (ValTy->isIntOrIntVectorTy()) {
4478     ISD = IsUnsigned ? ISD::UMIN : ISD::SMIN;
4479   } else {
4480     assert(ValTy->isFPOrFPVectorTy() &&
4481            "Expected float point or integer vector type.");
4482     ISD = ISD::FMINNUM;
4483   }
4484 
4485   // We use the Intel Architecture Code Analyzer(IACA) to measure the throughput
4486   // and make it as the cost.
4487 
4488   static const CostTblEntry SSE2CostTblNoPairWise[] = {
4489       {ISD::UMIN, MVT::v2i16, 5}, // need pxors to use pminsw/pmaxsw
4490       {ISD::UMIN, MVT::v4i16, 7}, // need pxors to use pminsw/pmaxsw
4491       {ISD::UMIN, MVT::v8i16, 9}, // need pxors to use pminsw/pmaxsw
4492   };
4493 
4494   static const CostTblEntry SSE41CostTblNoPairWise[] = {
4495       {ISD::SMIN, MVT::v2i16, 3}, // same as sse2
4496       {ISD::SMIN, MVT::v4i16, 5}, // same as sse2
4497       {ISD::UMIN, MVT::v2i16, 5}, // same as sse2
4498       {ISD::UMIN, MVT::v4i16, 7}, // same as sse2
4499       {ISD::SMIN, MVT::v8i16, 4}, // phminposuw+xor
4500       {ISD::UMIN, MVT::v8i16, 4}, // FIXME: umin is cheaper than umax
4501       {ISD::SMIN, MVT::v2i8,  3}, // pminsb
4502       {ISD::SMIN, MVT::v4i8,  5}, // pminsb
4503       {ISD::SMIN, MVT::v8i8,  7}, // pminsb
4504       {ISD::SMIN, MVT::v16i8, 6},
4505       {ISD::UMIN, MVT::v2i8,  3}, // same as sse2
4506       {ISD::UMIN, MVT::v4i8,  5}, // same as sse2
4507       {ISD::UMIN, MVT::v8i8,  7}, // same as sse2
4508       {ISD::UMIN, MVT::v16i8, 6}, // FIXME: umin is cheaper than umax
4509   };
4510 
4511   static const CostTblEntry AVX1CostTblNoPairWise[] = {
4512       {ISD::SMIN, MVT::v16i16, 6},
4513       {ISD::UMIN, MVT::v16i16, 6}, // FIXME: umin is cheaper than umax
4514       {ISD::SMIN, MVT::v32i8, 8},
4515       {ISD::UMIN, MVT::v32i8, 8},
4516   };
4517 
4518   static const CostTblEntry AVX512BWCostTblNoPairWise[] = {
4519       {ISD::SMIN, MVT::v32i16, 8},
4520       {ISD::UMIN, MVT::v32i16, 8}, // FIXME: umin is cheaper than umax
4521       {ISD::SMIN, MVT::v64i8, 10},
4522       {ISD::UMIN, MVT::v64i8, 10},
4523   };
4524 
4525   // Before legalizing the type, give a chance to look up illegal narrow types
4526   // in the table.
4527   // FIXME: Is there a better way to do this?
4528   EVT VT = TLI->getValueType(DL, ValTy);
4529   if (VT.isSimple()) {
4530     MVT MTy = VT.getSimpleVT();
4531     if (ST->hasBWI())
4532       if (const auto *Entry = CostTableLookup(AVX512BWCostTblNoPairWise, ISD, MTy))
4533         return Entry->Cost;
4534 
4535     if (ST->hasAVX())
4536       if (const auto *Entry = CostTableLookup(AVX1CostTblNoPairWise, ISD, MTy))
4537         return Entry->Cost;
4538 
4539     if (ST->hasSSE41())
4540       if (const auto *Entry = CostTableLookup(SSE41CostTblNoPairWise, ISD, MTy))
4541         return Entry->Cost;
4542 
4543     if (ST->hasSSE2())
4544       if (const auto *Entry = CostTableLookup(SSE2CostTblNoPairWise, ISD, MTy))
4545         return Entry->Cost;
4546   }
4547 
4548   auto *ValVTy = cast<FixedVectorType>(ValTy);
4549   unsigned NumVecElts = ValVTy->getNumElements();
4550 
4551   auto *Ty = ValVTy;
4552   InstructionCost MinMaxCost = 0;
4553   if (LT.first != 1 && MTy.isVector() &&
4554       MTy.getVectorNumElements() < ValVTy->getNumElements()) {
4555     // Type needs to be split. We need LT.first - 1 operations ops.
4556     Ty = FixedVectorType::get(ValVTy->getElementType(),
4557                               MTy.getVectorNumElements());
4558     auto *SubCondTy = FixedVectorType::get(CondTy->getElementType(),
4559                                            MTy.getVectorNumElements());
4560     MinMaxCost = getMinMaxCost(Ty, SubCondTy, IsUnsigned);
4561     MinMaxCost *= LT.first - 1;
4562     NumVecElts = MTy.getVectorNumElements();
4563   }
4564 
4565   if (ST->hasBWI())
4566     if (const auto *Entry = CostTableLookup(AVX512BWCostTblNoPairWise, ISD, MTy))
4567       return MinMaxCost + Entry->Cost;
4568 
4569   if (ST->hasAVX())
4570     if (const auto *Entry = CostTableLookup(AVX1CostTblNoPairWise, ISD, MTy))
4571       return MinMaxCost + Entry->Cost;
4572 
4573   if (ST->hasSSE41())
4574     if (const auto *Entry = CostTableLookup(SSE41CostTblNoPairWise, ISD, MTy))
4575       return MinMaxCost + Entry->Cost;
4576 
4577   if (ST->hasSSE2())
4578     if (const auto *Entry = CostTableLookup(SSE2CostTblNoPairWise, ISD, MTy))
4579       return MinMaxCost + Entry->Cost;
4580 
4581   unsigned ScalarSize = ValTy->getScalarSizeInBits();
4582 
4583   // Special case power of 2 reductions where the scalar type isn't changed
4584   // by type legalization.
4585   if (!isPowerOf2_32(ValVTy->getNumElements()) ||
4586       ScalarSize != MTy.getScalarSizeInBits())
4587     return BaseT::getMinMaxReductionCost(ValTy, CondTy, IsUnsigned, CostKind);
4588 
4589   // Now handle reduction with the legal type, taking into account size changes
4590   // at each level.
4591   while (NumVecElts > 1) {
4592     // Determine the size of the remaining vector we need to reduce.
4593     unsigned Size = NumVecElts * ScalarSize;
4594     NumVecElts /= 2;
4595     // If we're reducing from 256/512 bits, use an extract_subvector.
4596     if (Size > 128) {
4597       auto *SubTy = FixedVectorType::get(ValVTy->getElementType(), NumVecElts);
4598       MinMaxCost +=
4599           getShuffleCost(TTI::SK_ExtractSubvector, Ty, None, NumVecElts, SubTy);
4600       Ty = SubTy;
4601     } else if (Size == 128) {
4602       // Reducing from 128 bits is a permute of v2f64/v2i64.
4603       VectorType *ShufTy;
4604       if (ValTy->isFloatingPointTy())
4605         ShufTy =
4606             FixedVectorType::get(Type::getDoubleTy(ValTy->getContext()), 2);
4607       else
4608         ShufTy = FixedVectorType::get(Type::getInt64Ty(ValTy->getContext()), 2);
4609       MinMaxCost +=
4610           getShuffleCost(TTI::SK_PermuteSingleSrc, ShufTy, None, 0, nullptr);
4611     } else if (Size == 64) {
4612       // Reducing from 64 bits is a shuffle of v4f32/v4i32.
4613       FixedVectorType *ShufTy;
4614       if (ValTy->isFloatingPointTy())
4615         ShufTy = FixedVectorType::get(Type::getFloatTy(ValTy->getContext()), 4);
4616       else
4617         ShufTy = FixedVectorType::get(Type::getInt32Ty(ValTy->getContext()), 4);
4618       MinMaxCost +=
4619           getShuffleCost(TTI::SK_PermuteSingleSrc, ShufTy, None, 0, nullptr);
4620     } else {
4621       // Reducing from smaller size is a shift by immediate.
4622       auto *ShiftTy = FixedVectorType::get(
4623           Type::getIntNTy(ValTy->getContext(), Size), 128 / Size);
4624       MinMaxCost += getArithmeticInstrCost(
4625           Instruction::LShr, ShiftTy, TTI::TCK_RecipThroughput,
4626           TargetTransformInfo::OK_AnyValue,
4627           TargetTransformInfo::OK_UniformConstantValue,
4628           TargetTransformInfo::OP_None, TargetTransformInfo::OP_None);
4629     }
4630 
4631     // Add the arithmetic op for this level.
4632     auto *SubCondTy =
4633         FixedVectorType::get(CondTy->getElementType(), Ty->getNumElements());
4634     MinMaxCost += getMinMaxCost(Ty, SubCondTy, IsUnsigned);
4635   }
4636 
4637   // Add the final extract element to the cost.
4638   return MinMaxCost + getVectorInstrCost(Instruction::ExtractElement, Ty, 0);
4639 }
4640 
4641 /// Calculate the cost of materializing a 64-bit value. This helper
4642 /// method might only calculate a fraction of a larger immediate. Therefore it
4643 /// is valid to return a cost of ZERO.
4644 InstructionCost X86TTIImpl::getIntImmCost(int64_t Val) {
4645   if (Val == 0)
4646     return TTI::TCC_Free;
4647 
4648   if (isInt<32>(Val))
4649     return TTI::TCC_Basic;
4650 
4651   return 2 * TTI::TCC_Basic;
4652 }
4653 
4654 InstructionCost X86TTIImpl::getIntImmCost(const APInt &Imm, Type *Ty,
4655                                           TTI::TargetCostKind CostKind) {
4656   assert(Ty->isIntegerTy());
4657 
4658   unsigned BitSize = Ty->getPrimitiveSizeInBits();
4659   if (BitSize == 0)
4660     return ~0U;
4661 
4662   // Never hoist constants larger than 128bit, because this might lead to
4663   // incorrect code generation or assertions in codegen.
4664   // Fixme: Create a cost model for types larger than i128 once the codegen
4665   // issues have been fixed.
4666   if (BitSize > 128)
4667     return TTI::TCC_Free;
4668 
4669   if (Imm == 0)
4670     return TTI::TCC_Free;
4671 
4672   // Sign-extend all constants to a multiple of 64-bit.
4673   APInt ImmVal = Imm;
4674   if (BitSize % 64 != 0)
4675     ImmVal = Imm.sext(alignTo(BitSize, 64));
4676 
4677   // Split the constant into 64-bit chunks and calculate the cost for each
4678   // chunk.
4679   InstructionCost Cost = 0;
4680   for (unsigned ShiftVal = 0; ShiftVal < BitSize; ShiftVal += 64) {
4681     APInt Tmp = ImmVal.ashr(ShiftVal).sextOrTrunc(64);
4682     int64_t Val = Tmp.getSExtValue();
4683     Cost += getIntImmCost(Val);
4684   }
4685   // We need at least one instruction to materialize the constant.
4686   return std::max<InstructionCost>(1, Cost);
4687 }
4688 
4689 InstructionCost X86TTIImpl::getIntImmCostInst(unsigned Opcode, unsigned Idx,
4690                                               const APInt &Imm, Type *Ty,
4691                                               TTI::TargetCostKind CostKind,
4692                                               Instruction *Inst) {
4693   assert(Ty->isIntegerTy());
4694 
4695   unsigned BitSize = Ty->getPrimitiveSizeInBits();
4696   // There is no cost model for constants with a bit size of 0. Return TCC_Free
4697   // here, so that constant hoisting will ignore this constant.
4698   if (BitSize == 0)
4699     return TTI::TCC_Free;
4700 
4701   unsigned ImmIdx = ~0U;
4702   switch (Opcode) {
4703   default:
4704     return TTI::TCC_Free;
4705   case Instruction::GetElementPtr:
4706     // Always hoist the base address of a GetElementPtr. This prevents the
4707     // creation of new constants for every base constant that gets constant
4708     // folded with the offset.
4709     if (Idx == 0)
4710       return 2 * TTI::TCC_Basic;
4711     return TTI::TCC_Free;
4712   case Instruction::Store:
4713     ImmIdx = 0;
4714     break;
4715   case Instruction::ICmp:
4716     // This is an imperfect hack to prevent constant hoisting of
4717     // compares that might be trying to check if a 64-bit value fits in
4718     // 32-bits. The backend can optimize these cases using a right shift by 32.
4719     // Ideally we would check the compare predicate here. There also other
4720     // similar immediates the backend can use shifts for.
4721     if (Idx == 1 && Imm.getBitWidth() == 64) {
4722       uint64_t ImmVal = Imm.getZExtValue();
4723       if (ImmVal == 0x100000000ULL || ImmVal == 0xffffffff)
4724         return TTI::TCC_Free;
4725     }
4726     ImmIdx = 1;
4727     break;
4728   case Instruction::And:
4729     // We support 64-bit ANDs with immediates with 32-bits of leading zeroes
4730     // by using a 32-bit operation with implicit zero extension. Detect such
4731     // immediates here as the normal path expects bit 31 to be sign extended.
4732     if (Idx == 1 && Imm.getBitWidth() == 64 && isUInt<32>(Imm.getZExtValue()))
4733       return TTI::TCC_Free;
4734     ImmIdx = 1;
4735     break;
4736   case Instruction::Add:
4737   case Instruction::Sub:
4738     // For add/sub, we can use the opposite instruction for INT32_MIN.
4739     if (Idx == 1 && Imm.getBitWidth() == 64 && Imm.getZExtValue() == 0x80000000)
4740       return TTI::TCC_Free;
4741     ImmIdx = 1;
4742     break;
4743   case Instruction::UDiv:
4744   case Instruction::SDiv:
4745   case Instruction::URem:
4746   case Instruction::SRem:
4747     // Division by constant is typically expanded later into a different
4748     // instruction sequence. This completely changes the constants.
4749     // Report them as "free" to stop ConstantHoist from marking them as opaque.
4750     return TTI::TCC_Free;
4751   case Instruction::Mul:
4752   case Instruction::Or:
4753   case Instruction::Xor:
4754     ImmIdx = 1;
4755     break;
4756   // Always return TCC_Free for the shift value of a shift instruction.
4757   case Instruction::Shl:
4758   case Instruction::LShr:
4759   case Instruction::AShr:
4760     if (Idx == 1)
4761       return TTI::TCC_Free;
4762     break;
4763   case Instruction::Trunc:
4764   case Instruction::ZExt:
4765   case Instruction::SExt:
4766   case Instruction::IntToPtr:
4767   case Instruction::PtrToInt:
4768   case Instruction::BitCast:
4769   case Instruction::PHI:
4770   case Instruction::Call:
4771   case Instruction::Select:
4772   case Instruction::Ret:
4773   case Instruction::Load:
4774     break;
4775   }
4776 
4777   if (Idx == ImmIdx) {
4778     int NumConstants = divideCeil(BitSize, 64);
4779     InstructionCost Cost = X86TTIImpl::getIntImmCost(Imm, Ty, CostKind);
4780     return (Cost <= NumConstants * TTI::TCC_Basic)
4781                ? static_cast<int>(TTI::TCC_Free)
4782                : Cost;
4783   }
4784 
4785   return X86TTIImpl::getIntImmCost(Imm, Ty, CostKind);
4786 }
4787 
4788 InstructionCost X86TTIImpl::getIntImmCostIntrin(Intrinsic::ID IID, unsigned Idx,
4789                                                 const APInt &Imm, Type *Ty,
4790                                                 TTI::TargetCostKind CostKind) {
4791   assert(Ty->isIntegerTy());
4792 
4793   unsigned BitSize = Ty->getPrimitiveSizeInBits();
4794   // There is no cost model for constants with a bit size of 0. Return TCC_Free
4795   // here, so that constant hoisting will ignore this constant.
4796   if (BitSize == 0)
4797     return TTI::TCC_Free;
4798 
4799   switch (IID) {
4800   default:
4801     return TTI::TCC_Free;
4802   case Intrinsic::sadd_with_overflow:
4803   case Intrinsic::uadd_with_overflow:
4804   case Intrinsic::ssub_with_overflow:
4805   case Intrinsic::usub_with_overflow:
4806   case Intrinsic::smul_with_overflow:
4807   case Intrinsic::umul_with_overflow:
4808     if ((Idx == 1) && Imm.getBitWidth() <= 64 && isInt<32>(Imm.getSExtValue()))
4809       return TTI::TCC_Free;
4810     break;
4811   case Intrinsic::experimental_stackmap:
4812     if ((Idx < 2) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue())))
4813       return TTI::TCC_Free;
4814     break;
4815   case Intrinsic::experimental_patchpoint_void:
4816   case Intrinsic::experimental_patchpoint_i64:
4817     if ((Idx < 4) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue())))
4818       return TTI::TCC_Free;
4819     break;
4820   }
4821   return X86TTIImpl::getIntImmCost(Imm, Ty, CostKind);
4822 }
4823 
4824 InstructionCost X86TTIImpl::getCFInstrCost(unsigned Opcode,
4825                                            TTI::TargetCostKind CostKind,
4826                                            const Instruction *I) {
4827   if (CostKind != TTI::TCK_RecipThroughput)
4828     return Opcode == Instruction::PHI ? 0 : 1;
4829   // Branches are assumed to be predicted.
4830   return 0;
4831 }
4832 
4833 int X86TTIImpl::getGatherOverhead() const {
4834   // Some CPUs have more overhead for gather. The specified overhead is relative
4835   // to the Load operation. "2" is the number provided by Intel architects. This
4836   // parameter is used for cost estimation of Gather Op and comparison with
4837   // other alternatives.
4838   // TODO: Remove the explicit hasAVX512()?, That would mean we would only
4839   // enable gather with a -march.
4840   if (ST->hasAVX512() || (ST->hasAVX2() && ST->hasFastGather()))
4841     return 2;
4842 
4843   return 1024;
4844 }
4845 
4846 int X86TTIImpl::getScatterOverhead() const {
4847   if (ST->hasAVX512())
4848     return 2;
4849 
4850   return 1024;
4851 }
4852 
4853 // Return an average cost of Gather / Scatter instruction, maybe improved later.
4854 // FIXME: Add TargetCostKind support.
4855 InstructionCost X86TTIImpl::getGSVectorCost(unsigned Opcode, Type *SrcVTy,
4856                                             const Value *Ptr, Align Alignment,
4857                                             unsigned AddressSpace) {
4858 
4859   assert(isa<VectorType>(SrcVTy) && "Unexpected type in getGSVectorCost");
4860   unsigned VF = cast<FixedVectorType>(SrcVTy)->getNumElements();
4861 
4862   // Try to reduce index size from 64 bit (default for GEP)
4863   // to 32. It is essential for VF 16. If the index can't be reduced to 32, the
4864   // operation will use 16 x 64 indices which do not fit in a zmm and needs
4865   // to split. Also check that the base pointer is the same for all lanes,
4866   // and that there's at most one variable index.
4867   auto getIndexSizeInBits = [](const Value *Ptr, const DataLayout &DL) {
4868     unsigned IndexSize = DL.getPointerSizeInBits();
4869     const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr);
4870     if (IndexSize < 64 || !GEP)
4871       return IndexSize;
4872 
4873     unsigned NumOfVarIndices = 0;
4874     const Value *Ptrs = GEP->getPointerOperand();
4875     if (Ptrs->getType()->isVectorTy() && !getSplatValue(Ptrs))
4876       return IndexSize;
4877     for (unsigned i = 1; i < GEP->getNumOperands(); ++i) {
4878       if (isa<Constant>(GEP->getOperand(i)))
4879         continue;
4880       Type *IndxTy = GEP->getOperand(i)->getType();
4881       if (auto *IndexVTy = dyn_cast<VectorType>(IndxTy))
4882         IndxTy = IndexVTy->getElementType();
4883       if ((IndxTy->getPrimitiveSizeInBits() == 64 &&
4884           !isa<SExtInst>(GEP->getOperand(i))) ||
4885          ++NumOfVarIndices > 1)
4886         return IndexSize; // 64
4887     }
4888     return (unsigned)32;
4889   };
4890 
4891   // Trying to reduce IndexSize to 32 bits for vector 16.
4892   // By default the IndexSize is equal to pointer size.
4893   unsigned IndexSize = (ST->hasAVX512() && VF >= 16)
4894                            ? getIndexSizeInBits(Ptr, DL)
4895                            : DL.getPointerSizeInBits();
4896 
4897   auto *IndexVTy = FixedVectorType::get(
4898       IntegerType::get(SrcVTy->getContext(), IndexSize), VF);
4899   std::pair<InstructionCost, MVT> IdxsLT =
4900       TLI->getTypeLegalizationCost(DL, IndexVTy);
4901   std::pair<InstructionCost, MVT> SrcLT =
4902       TLI->getTypeLegalizationCost(DL, SrcVTy);
4903   InstructionCost::CostType SplitFactor =
4904       *std::max(IdxsLT.first, SrcLT.first).getValue();
4905   if (SplitFactor > 1) {
4906     // Handle splitting of vector of pointers
4907     auto *SplitSrcTy =
4908         FixedVectorType::get(SrcVTy->getScalarType(), VF / SplitFactor);
4909     return SplitFactor * getGSVectorCost(Opcode, SplitSrcTy, Ptr, Alignment,
4910                                          AddressSpace);
4911   }
4912 
4913   // The gather / scatter cost is given by Intel architects. It is a rough
4914   // number since we are looking at one instruction in a time.
4915   const int GSOverhead = (Opcode == Instruction::Load)
4916                              ? getGatherOverhead()
4917                              : getScatterOverhead();
4918   return GSOverhead + VF * getMemoryOpCost(Opcode, SrcVTy->getScalarType(),
4919                                            MaybeAlign(Alignment), AddressSpace,
4920                                            TTI::TCK_RecipThroughput);
4921 }
4922 
4923 /// Return the cost of full scalarization of gather / scatter operation.
4924 ///
4925 /// Opcode - Load or Store instruction.
4926 /// SrcVTy - The type of the data vector that should be gathered or scattered.
4927 /// VariableMask - The mask is non-constant at compile time.
4928 /// Alignment - Alignment for one element.
4929 /// AddressSpace - pointer[s] address space.
4930 ///
4931 /// FIXME: Add TargetCostKind support.
4932 InstructionCost X86TTIImpl::getGSScalarCost(unsigned Opcode, Type *SrcVTy,
4933                                             bool VariableMask, Align Alignment,
4934                                             unsigned AddressSpace) {
4935   Type *ScalarTy = SrcVTy->getScalarType();
4936   unsigned VF = cast<FixedVectorType>(SrcVTy)->getNumElements();
4937   APInt DemandedElts = APInt::getAllOnes(VF);
4938   TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
4939 
4940   InstructionCost MaskUnpackCost = 0;
4941   if (VariableMask) {
4942     auto *MaskTy =
4943         FixedVectorType::get(Type::getInt1Ty(SrcVTy->getContext()), VF);
4944     MaskUnpackCost = getScalarizationOverhead(
4945         MaskTy, DemandedElts, /*Insert=*/false, /*Extract=*/true);
4946     InstructionCost ScalarCompareCost = getCmpSelInstrCost(
4947         Instruction::ICmp, Type::getInt1Ty(SrcVTy->getContext()), nullptr,
4948         CmpInst::BAD_ICMP_PREDICATE, CostKind);
4949     InstructionCost BranchCost = getCFInstrCost(Instruction::Br, CostKind);
4950     MaskUnpackCost += VF * (BranchCost + ScalarCompareCost);
4951   }
4952 
4953   InstructionCost AddressUnpackCost = getScalarizationOverhead(
4954       FixedVectorType::get(ScalarTy->getPointerTo(), VF), DemandedElts,
4955       /*Insert=*/false, /*Extract=*/true);
4956 
4957   // The cost of the scalar loads/stores.
4958   InstructionCost MemoryOpCost =
4959       VF * getMemoryOpCost(Opcode, ScalarTy, MaybeAlign(Alignment),
4960                            AddressSpace, CostKind);
4961 
4962   // The cost of forming the vector from loaded scalars/
4963   // scalarizing the vector to perform scalar stores.
4964   InstructionCost InsertExtractCost =
4965       getScalarizationOverhead(cast<FixedVectorType>(SrcVTy), DemandedElts,
4966                                /*Insert=*/Opcode == Instruction::Load,
4967                                /*Extract=*/Opcode == Instruction::Store);
4968 
4969   return AddressUnpackCost + MemoryOpCost + MaskUnpackCost + InsertExtractCost;
4970 }
4971 
4972 /// Calculate the cost of Gather / Scatter operation
4973 InstructionCost X86TTIImpl::getGatherScatterOpCost(
4974     unsigned Opcode, Type *SrcVTy, const Value *Ptr, bool VariableMask,
4975     Align Alignment, TTI::TargetCostKind CostKind,
4976     const Instruction *I = nullptr) {
4977   if (CostKind != TTI::TCK_RecipThroughput) {
4978     if ((Opcode == Instruction::Load &&
4979          isLegalMaskedGather(SrcVTy, Align(Alignment))) ||
4980         (Opcode == Instruction::Store &&
4981          isLegalMaskedScatter(SrcVTy, Align(Alignment))))
4982       return 1;
4983     return BaseT::getGatherScatterOpCost(Opcode, SrcVTy, Ptr, VariableMask,
4984                                          Alignment, CostKind, I);
4985   }
4986 
4987   assert(SrcVTy->isVectorTy() && "Unexpected data type for Gather/Scatter");
4988   PointerType *PtrTy = dyn_cast<PointerType>(Ptr->getType());
4989   if (!PtrTy && Ptr->getType()->isVectorTy())
4990     PtrTy = dyn_cast<PointerType>(
4991         cast<VectorType>(Ptr->getType())->getElementType());
4992   assert(PtrTy && "Unexpected type for Ptr argument");
4993   unsigned AddressSpace = PtrTy->getAddressSpace();
4994 
4995   if ((Opcode == Instruction::Load &&
4996        !isLegalMaskedGather(SrcVTy, Align(Alignment))) ||
4997       (Opcode == Instruction::Store &&
4998        !isLegalMaskedScatter(SrcVTy, Align(Alignment))))
4999     return getGSScalarCost(Opcode, SrcVTy, VariableMask, Alignment,
5000                            AddressSpace);
5001 
5002   return getGSVectorCost(Opcode, SrcVTy, Ptr, Alignment, AddressSpace);
5003 }
5004 
5005 bool X86TTIImpl::isLSRCostLess(TargetTransformInfo::LSRCost &C1,
5006                                TargetTransformInfo::LSRCost &C2) {
5007     // X86 specific here are "instruction number 1st priority".
5008     return std::tie(C1.Insns, C1.NumRegs, C1.AddRecCost,
5009                     C1.NumIVMuls, C1.NumBaseAdds,
5010                     C1.ScaleCost, C1.ImmCost, C1.SetupCost) <
5011            std::tie(C2.Insns, C2.NumRegs, C2.AddRecCost,
5012                     C2.NumIVMuls, C2.NumBaseAdds,
5013                     C2.ScaleCost, C2.ImmCost, C2.SetupCost);
5014 }
5015 
5016 bool X86TTIImpl::canMacroFuseCmp() {
5017   return ST->hasMacroFusion() || ST->hasBranchFusion();
5018 }
5019 
5020 bool X86TTIImpl::isLegalMaskedLoad(Type *DataTy, Align Alignment) {
5021   if (!ST->hasAVX())
5022     return false;
5023 
5024   // The backend can't handle a single element vector.
5025   if (isa<VectorType>(DataTy) &&
5026       cast<FixedVectorType>(DataTy)->getNumElements() == 1)
5027     return false;
5028   Type *ScalarTy = DataTy->getScalarType();
5029 
5030   if (ScalarTy->isPointerTy())
5031     return true;
5032 
5033   if (ScalarTy->isFloatTy() || ScalarTy->isDoubleTy())
5034     return true;
5035 
5036   if (ScalarTy->isHalfTy() && ST->hasBWI() && ST->hasFP16())
5037     return true;
5038 
5039   if (!ScalarTy->isIntegerTy())
5040     return false;
5041 
5042   unsigned IntWidth = ScalarTy->getIntegerBitWidth();
5043   return IntWidth == 32 || IntWidth == 64 ||
5044          ((IntWidth == 8 || IntWidth == 16) && ST->hasBWI());
5045 }
5046 
5047 bool X86TTIImpl::isLegalMaskedStore(Type *DataType, Align Alignment) {
5048   return isLegalMaskedLoad(DataType, Alignment);
5049 }
5050 
5051 bool X86TTIImpl::isLegalNTLoad(Type *DataType, Align Alignment) {
5052   unsigned DataSize = DL.getTypeStoreSize(DataType);
5053   // The only supported nontemporal loads are for aligned vectors of 16 or 32
5054   // bytes.  Note that 32-byte nontemporal vector loads are supported by AVX2
5055   // (the equivalent stores only require AVX).
5056   if (Alignment >= DataSize && (DataSize == 16 || DataSize == 32))
5057     return DataSize == 16 ?  ST->hasSSE1() : ST->hasAVX2();
5058 
5059   return false;
5060 }
5061 
5062 bool X86TTIImpl::isLegalNTStore(Type *DataType, Align Alignment) {
5063   unsigned DataSize = DL.getTypeStoreSize(DataType);
5064 
5065   // SSE4A supports nontemporal stores of float and double at arbitrary
5066   // alignment.
5067   if (ST->hasSSE4A() && (DataType->isFloatTy() || DataType->isDoubleTy()))
5068     return true;
5069 
5070   // Besides the SSE4A subtarget exception above, only aligned stores are
5071   // available nontemporaly on any other subtarget.  And only stores with a size
5072   // of 4..32 bytes (powers of 2, only) are permitted.
5073   if (Alignment < DataSize || DataSize < 4 || DataSize > 32 ||
5074       !isPowerOf2_32(DataSize))
5075     return false;
5076 
5077   // 32-byte vector nontemporal stores are supported by AVX (the equivalent
5078   // loads require AVX2).
5079   if (DataSize == 32)
5080     return ST->hasAVX();
5081   if (DataSize == 16)
5082     return ST->hasSSE1();
5083   return true;
5084 }
5085 
5086 bool X86TTIImpl::isLegalMaskedExpandLoad(Type *DataTy) {
5087   if (!isa<VectorType>(DataTy))
5088     return false;
5089 
5090   if (!ST->hasAVX512())
5091     return false;
5092 
5093   // The backend can't handle a single element vector.
5094   if (cast<FixedVectorType>(DataTy)->getNumElements() == 1)
5095     return false;
5096 
5097   Type *ScalarTy = cast<VectorType>(DataTy)->getElementType();
5098 
5099   if (ScalarTy->isFloatTy() || ScalarTy->isDoubleTy())
5100     return true;
5101 
5102   if (!ScalarTy->isIntegerTy())
5103     return false;
5104 
5105   unsigned IntWidth = ScalarTy->getIntegerBitWidth();
5106   return IntWidth == 32 || IntWidth == 64 ||
5107          ((IntWidth == 8 || IntWidth == 16) && ST->hasVBMI2());
5108 }
5109 
5110 bool X86TTIImpl::isLegalMaskedCompressStore(Type *DataTy) {
5111   return isLegalMaskedExpandLoad(DataTy);
5112 }
5113 
5114 bool X86TTIImpl::supportsGather() const {
5115   // Some CPUs have better gather performance than others.
5116   // TODO: Remove the explicit ST->hasAVX512()?, That would mean we would only
5117   // enable gather with a -march.
5118   return ST->hasAVX512() || (ST->hasFastGather() && ST->hasAVX2());
5119 }
5120 
5121 bool X86TTIImpl::isLegalMaskedGather(Type *DataTy, Align Alignment) {
5122   if (!supportsGather())
5123     return false;
5124 
5125   // This function is called now in two cases: from the Loop Vectorizer
5126   // and from the Scalarizer.
5127   // When the Loop Vectorizer asks about legality of the feature,
5128   // the vectorization factor is not calculated yet. The Loop Vectorizer
5129   // sends a scalar type and the decision is based on the width of the
5130   // scalar element.
5131   // Later on, the cost model will estimate usage this intrinsic based on
5132   // the vector type.
5133   // The Scalarizer asks again about legality. It sends a vector type.
5134   // In this case we can reject non-power-of-2 vectors.
5135   // We also reject single element vectors as the type legalizer can't
5136   // scalarize it.
5137   if (auto *DataVTy = dyn_cast<FixedVectorType>(DataTy)) {
5138     unsigned NumElts = DataVTy->getNumElements();
5139     if (NumElts == 1)
5140       return false;
5141     // Gather / Scatter for vector 2 is not profitable on KNL / SKX
5142     // Vector-4 of gather/scatter instruction does not exist on KNL.
5143     // We can extend it to 8 elements, but zeroing upper bits of
5144     // the mask vector will add more instructions. Right now we give the scalar
5145     // cost of vector-4 for KNL. TODO: Check, maybe the gather/scatter
5146     // instruction is better in the VariableMask case.
5147     if (ST->hasAVX512() && (NumElts == 2 || (NumElts == 4 && !ST->hasVLX())))
5148       return false;
5149   }
5150   Type *ScalarTy = DataTy->getScalarType();
5151   if (ScalarTy->isPointerTy())
5152     return true;
5153 
5154   if (ScalarTy->isFloatTy() || ScalarTy->isDoubleTy())
5155     return true;
5156 
5157   if (!ScalarTy->isIntegerTy())
5158     return false;
5159 
5160   unsigned IntWidth = ScalarTy->getIntegerBitWidth();
5161   return IntWidth == 32 || IntWidth == 64;
5162 }
5163 
5164 bool X86TTIImpl::isLegalMaskedScatter(Type *DataType, Align Alignment) {
5165   // AVX2 doesn't support scatter
5166   if (!ST->hasAVX512())
5167     return false;
5168   return isLegalMaskedGather(DataType, Alignment);
5169 }
5170 
5171 bool X86TTIImpl::hasDivRemOp(Type *DataType, bool IsSigned) {
5172   EVT VT = TLI->getValueType(DL, DataType);
5173   return TLI->isOperationLegal(IsSigned ? ISD::SDIVREM : ISD::UDIVREM, VT);
5174 }
5175 
5176 bool X86TTIImpl::isFCmpOrdCheaperThanFCmpZero(Type *Ty) {
5177   return false;
5178 }
5179 
5180 bool X86TTIImpl::areInlineCompatible(const Function *Caller,
5181                                      const Function *Callee) const {
5182   const TargetMachine &TM = getTLI()->getTargetMachine();
5183 
5184   // Work this as a subsetting of subtarget features.
5185   const FeatureBitset &CallerBits =
5186       TM.getSubtargetImpl(*Caller)->getFeatureBits();
5187   const FeatureBitset &CalleeBits =
5188       TM.getSubtargetImpl(*Callee)->getFeatureBits();
5189 
5190   FeatureBitset RealCallerBits = CallerBits & ~InlineFeatureIgnoreList;
5191   FeatureBitset RealCalleeBits = CalleeBits & ~InlineFeatureIgnoreList;
5192   return (RealCallerBits & RealCalleeBits) == RealCalleeBits;
5193 }
5194 
5195 bool X86TTIImpl::areFunctionArgsABICompatible(
5196     const Function *Caller, const Function *Callee,
5197     SmallPtrSetImpl<Argument *> &Args) const {
5198   if (!BaseT::areFunctionArgsABICompatible(Caller, Callee, Args))
5199     return false;
5200 
5201   // If we get here, we know the target features match. If one function
5202   // considers 512-bit vectors legal and the other does not, consider them
5203   // incompatible.
5204   const TargetMachine &TM = getTLI()->getTargetMachine();
5205 
5206   if (TM.getSubtarget<X86Subtarget>(*Caller).useAVX512Regs() ==
5207       TM.getSubtarget<X86Subtarget>(*Callee).useAVX512Regs())
5208     return true;
5209 
5210   // Consider the arguments compatible if they aren't vectors or aggregates.
5211   // FIXME: Look at the size of vectors.
5212   // FIXME: Look at the element types of aggregates to see if there are vectors.
5213   // FIXME: The API of this function seems intended to allow arguments
5214   // to be removed from the set, but the caller doesn't check if the set
5215   // becomes empty so that may not work in practice.
5216   return llvm::none_of(Args, [](Argument *A) {
5217     auto *EltTy = cast<PointerType>(A->getType())->getElementType();
5218     return EltTy->isVectorTy() || EltTy->isAggregateType();
5219   });
5220 }
5221 
5222 X86TTIImpl::TTI::MemCmpExpansionOptions
5223 X86TTIImpl::enableMemCmpExpansion(bool OptSize, bool IsZeroCmp) const {
5224   TTI::MemCmpExpansionOptions Options;
5225   Options.MaxNumLoads = TLI->getMaxExpandSizeMemcmp(OptSize);
5226   Options.NumLoadsPerBlock = 2;
5227   // All GPR and vector loads can be unaligned.
5228   Options.AllowOverlappingLoads = true;
5229   if (IsZeroCmp) {
5230     // Only enable vector loads for equality comparison. Right now the vector
5231     // version is not as fast for three way compare (see #33329).
5232     const unsigned PreferredWidth = ST->getPreferVectorWidth();
5233     if (PreferredWidth >= 512 && ST->hasAVX512()) Options.LoadSizes.push_back(64);
5234     if (PreferredWidth >= 256 && ST->hasAVX()) Options.LoadSizes.push_back(32);
5235     if (PreferredWidth >= 128 && ST->hasSSE2()) Options.LoadSizes.push_back(16);
5236   }
5237   if (ST->is64Bit()) {
5238     Options.LoadSizes.push_back(8);
5239   }
5240   Options.LoadSizes.push_back(4);
5241   Options.LoadSizes.push_back(2);
5242   Options.LoadSizes.push_back(1);
5243   return Options;
5244 }
5245 
5246 bool X86TTIImpl::prefersVectorizedAddressing() const {
5247   return supportsGather();
5248 }
5249 
5250 bool X86TTIImpl::supportsEfficientVectorElementLoadStore() const {
5251   return false;
5252 }
5253 
5254 bool X86TTIImpl::enableInterleavedAccessVectorization() {
5255   // TODO: We expect this to be beneficial regardless of arch,
5256   // but there are currently some unexplained performance artifacts on Atom.
5257   // As a temporary solution, disable on Atom.
5258   return !(ST->isAtom());
5259 }
5260 
5261 // Get estimation for interleaved load/store operations and strided load.
5262 // \p Indices contains indices for strided load.
5263 // \p Factor - the factor of interleaving.
5264 // AVX-512 provides 3-src shuffles that significantly reduces the cost.
5265 InstructionCost X86TTIImpl::getInterleavedMemoryOpCostAVX512(
5266     unsigned Opcode, FixedVectorType *VecTy, unsigned Factor,
5267     ArrayRef<unsigned> Indices, Align Alignment, unsigned AddressSpace,
5268     TTI::TargetCostKind CostKind, bool UseMaskForCond, bool UseMaskForGaps) {
5269   // VecTy for interleave memop is <VF*Factor x Elt>.
5270   // So, for VF=4, Interleave Factor = 3, Element type = i32 we have
5271   // VecTy = <12 x i32>.
5272 
5273   // Calculate the number of memory operations (NumOfMemOps), required
5274   // for load/store the VecTy.
5275   MVT LegalVT = getTLI()->getTypeLegalizationCost(DL, VecTy).second;
5276   unsigned VecTySize = DL.getTypeStoreSize(VecTy);
5277   unsigned LegalVTSize = LegalVT.getStoreSize();
5278   unsigned NumOfMemOps = (VecTySize + LegalVTSize - 1) / LegalVTSize;
5279 
5280   // Get the cost of one memory operation.
5281   auto *SingleMemOpTy = FixedVectorType::get(VecTy->getElementType(),
5282                                              LegalVT.getVectorNumElements());
5283   InstructionCost MemOpCost;
5284   bool UseMaskedMemOp = UseMaskForCond || UseMaskForGaps;
5285   if (UseMaskedMemOp)
5286     MemOpCost = getMaskedMemoryOpCost(Opcode, SingleMemOpTy, Alignment,
5287                                       AddressSpace, CostKind);
5288   else
5289     MemOpCost = getMemoryOpCost(Opcode, SingleMemOpTy, MaybeAlign(Alignment),
5290                                 AddressSpace, CostKind);
5291 
5292   unsigned VF = VecTy->getNumElements() / Factor;
5293   MVT VT = MVT::getVectorVT(MVT::getVT(VecTy->getScalarType()), VF);
5294 
5295   InstructionCost MaskCost;
5296   if (UseMaskedMemOp) {
5297     APInt DemandedLoadStoreElts = APInt::getZero(VecTy->getNumElements());
5298     for (unsigned Index : Indices) {
5299       assert(Index < Factor && "Invalid index for interleaved memory op");
5300       for (unsigned Elm = 0; Elm < VF; Elm++)
5301         DemandedLoadStoreElts.setBit(Index + Elm * Factor);
5302     }
5303 
5304     Type *I1Type = Type::getInt1Ty(VecTy->getContext());
5305 
5306     MaskCost = getReplicationShuffleCost(
5307         I1Type, Factor, VF,
5308         UseMaskForGaps ? DemandedLoadStoreElts
5309                        : APInt::getAllOnes(VecTy->getNumElements()),
5310         CostKind);
5311 
5312     // The Gaps mask is invariant and created outside the loop, therefore the
5313     // cost of creating it is not accounted for here. However if we have both
5314     // a MaskForGaps and some other mask that guards the execution of the
5315     // memory access, we need to account for the cost of And-ing the two masks
5316     // inside the loop.
5317     if (UseMaskForGaps) {
5318       auto *MaskVT = FixedVectorType::get(I1Type, VecTy->getNumElements());
5319       MaskCost += getArithmeticInstrCost(BinaryOperator::And, MaskVT, CostKind);
5320     }
5321   }
5322 
5323   if (Opcode == Instruction::Load) {
5324     // The tables (AVX512InterleavedLoadTbl and AVX512InterleavedStoreTbl)
5325     // contain the cost of the optimized shuffle sequence that the
5326     // X86InterleavedAccess pass will generate.
5327     // The cost of loads and stores are computed separately from the table.
5328 
5329     // X86InterleavedAccess support only the following interleaved-access group.
5330     static const CostTblEntry AVX512InterleavedLoadTbl[] = {
5331         {3, MVT::v16i8, 12}, //(load 48i8 and) deinterleave into 3 x 16i8
5332         {3, MVT::v32i8, 14}, //(load 96i8 and) deinterleave into 3 x 32i8
5333         {3, MVT::v64i8, 22}, //(load 96i8 and) deinterleave into 3 x 32i8
5334     };
5335 
5336     if (const auto *Entry =
5337             CostTableLookup(AVX512InterleavedLoadTbl, Factor, VT))
5338       return MaskCost + NumOfMemOps * MemOpCost + Entry->Cost;
5339     //If an entry does not exist, fallback to the default implementation.
5340 
5341     // Kind of shuffle depends on number of loaded values.
5342     // If we load the entire data in one register, we can use a 1-src shuffle.
5343     // Otherwise, we'll merge 2 sources in each operation.
5344     TTI::ShuffleKind ShuffleKind =
5345         (NumOfMemOps > 1) ? TTI::SK_PermuteTwoSrc : TTI::SK_PermuteSingleSrc;
5346 
5347     InstructionCost ShuffleCost =
5348         getShuffleCost(ShuffleKind, SingleMemOpTy, None, 0, nullptr);
5349 
5350     unsigned NumOfLoadsInInterleaveGrp =
5351         Indices.size() ? Indices.size() : Factor;
5352     auto *ResultTy = FixedVectorType::get(VecTy->getElementType(),
5353                                           VecTy->getNumElements() / Factor);
5354     InstructionCost NumOfResults =
5355         getTLI()->getTypeLegalizationCost(DL, ResultTy).first *
5356         NumOfLoadsInInterleaveGrp;
5357 
5358     // About a half of the loads may be folded in shuffles when we have only
5359     // one result. If we have more than one result, or the loads are masked,
5360     // we do not fold loads at all.
5361     unsigned NumOfUnfoldedLoads =
5362         UseMaskedMemOp || NumOfResults > 1 ? NumOfMemOps : NumOfMemOps / 2;
5363 
5364     // Get a number of shuffle operations per result.
5365     unsigned NumOfShufflesPerResult =
5366         std::max((unsigned)1, (unsigned)(NumOfMemOps - 1));
5367 
5368     // The SK_MergeTwoSrc shuffle clobbers one of src operands.
5369     // When we have more than one destination, we need additional instructions
5370     // to keep sources.
5371     InstructionCost NumOfMoves = 0;
5372     if (NumOfResults > 1 && ShuffleKind == TTI::SK_PermuteTwoSrc)
5373       NumOfMoves = NumOfResults * NumOfShufflesPerResult / 2;
5374 
5375     InstructionCost Cost = NumOfResults * NumOfShufflesPerResult * ShuffleCost +
5376                            MaskCost + NumOfUnfoldedLoads * MemOpCost +
5377                            NumOfMoves;
5378 
5379     return Cost;
5380   }
5381 
5382   // Store.
5383   assert(Opcode == Instruction::Store &&
5384          "Expected Store Instruction at this  point");
5385   // X86InterleavedAccess support only the following interleaved-access group.
5386   static const CostTblEntry AVX512InterleavedStoreTbl[] = {
5387       {3, MVT::v16i8, 12}, // interleave 3 x 16i8 into 48i8 (and store)
5388       {3, MVT::v32i8, 14}, // interleave 3 x 32i8 into 96i8 (and store)
5389       {3, MVT::v64i8, 26}, // interleave 3 x 64i8 into 96i8 (and store)
5390 
5391       {4, MVT::v8i8, 10},  // interleave 4 x 8i8  into 32i8  (and store)
5392       {4, MVT::v16i8, 11}, // interleave 4 x 16i8 into 64i8  (and store)
5393       {4, MVT::v32i8, 14}, // interleave 4 x 32i8 into 128i8 (and store)
5394       {4, MVT::v64i8, 24}  // interleave 4 x 32i8 into 256i8 (and store)
5395   };
5396 
5397   if (const auto *Entry =
5398           CostTableLookup(AVX512InterleavedStoreTbl, Factor, VT))
5399     return MaskCost + NumOfMemOps * MemOpCost + Entry->Cost;
5400   //If an entry does not exist, fallback to the default implementation.
5401 
5402   // There is no strided stores meanwhile. And store can't be folded in
5403   // shuffle.
5404   unsigned NumOfSources = Factor; // The number of values to be merged.
5405   InstructionCost ShuffleCost =
5406       getShuffleCost(TTI::SK_PermuteTwoSrc, SingleMemOpTy, None, 0, nullptr);
5407   unsigned NumOfShufflesPerStore = NumOfSources - 1;
5408 
5409   // The SK_MergeTwoSrc shuffle clobbers one of src operands.
5410   // We need additional instructions to keep sources.
5411   unsigned NumOfMoves = NumOfMemOps * NumOfShufflesPerStore / 2;
5412   InstructionCost Cost =
5413       MaskCost +
5414       NumOfMemOps * (MemOpCost + NumOfShufflesPerStore * ShuffleCost) +
5415       NumOfMoves;
5416   return Cost;
5417 }
5418 
5419 InstructionCost X86TTIImpl::getInterleavedMemoryOpCost(
5420     unsigned Opcode, Type *BaseTy, unsigned Factor, ArrayRef<unsigned> Indices,
5421     Align Alignment, unsigned AddressSpace, TTI::TargetCostKind CostKind,
5422     bool UseMaskForCond, bool UseMaskForGaps) {
5423   auto *VecTy = cast<FixedVectorType>(BaseTy);
5424 
5425   auto isSupportedOnAVX512 = [&](Type *VecTy, bool HasBW) {
5426     Type *EltTy = cast<VectorType>(VecTy)->getElementType();
5427     if (EltTy->isFloatTy() || EltTy->isDoubleTy() || EltTy->isIntegerTy(64) ||
5428         EltTy->isIntegerTy(32) || EltTy->isPointerTy())
5429       return true;
5430     if (EltTy->isIntegerTy(16) || EltTy->isIntegerTy(8) ||
5431         (!ST->useSoftFloat() && ST->hasFP16() && EltTy->isHalfTy()))
5432       return HasBW;
5433     return false;
5434   };
5435   if (ST->hasAVX512() && isSupportedOnAVX512(VecTy, ST->hasBWI()))
5436     return getInterleavedMemoryOpCostAVX512(
5437         Opcode, VecTy, Factor, Indices, Alignment,
5438         AddressSpace, CostKind, UseMaskForCond, UseMaskForGaps);
5439 
5440   if (UseMaskForCond || UseMaskForGaps)
5441     return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices,
5442                                              Alignment, AddressSpace, CostKind,
5443                                              UseMaskForCond, UseMaskForGaps);
5444 
5445   // Get estimation for interleaved load/store operations for SSE-AVX2.
5446   // As opposed to AVX-512, SSE-AVX2 do not have generic shuffles that allow
5447   // computing the cost using a generic formula as a function of generic
5448   // shuffles. We therefore use a lookup table instead, filled according to
5449   // the instruction sequences that codegen currently generates.
5450 
5451   // VecTy for interleave memop is <VF*Factor x Elt>.
5452   // So, for VF=4, Interleave Factor = 3, Element type = i32 we have
5453   // VecTy = <12 x i32>.
5454   MVT LegalVT = getTLI()->getTypeLegalizationCost(DL, VecTy).second;
5455 
5456   // This function can be called with VecTy=<6xi128>, Factor=3, in which case
5457   // the VF=2, while v2i128 is an unsupported MVT vector type
5458   // (see MachineValueType.h::getVectorVT()).
5459   if (!LegalVT.isVector())
5460     return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices,
5461                                              Alignment, AddressSpace, CostKind);
5462 
5463   unsigned VF = VecTy->getNumElements() / Factor;
5464   Type *ScalarTy = VecTy->getElementType();
5465   // Deduplicate entries, model floats/pointers as appropriately-sized integers.
5466   if (!ScalarTy->isIntegerTy())
5467     ScalarTy =
5468         Type::getIntNTy(ScalarTy->getContext(), DL.getTypeSizeInBits(ScalarTy));
5469 
5470   // Get the cost of all the memory operations.
5471   // FIXME: discount dead loads.
5472   InstructionCost MemOpCosts = getMemoryOpCost(
5473       Opcode, VecTy, MaybeAlign(Alignment), AddressSpace, CostKind);
5474 
5475   auto *VT = FixedVectorType::get(ScalarTy, VF);
5476   EVT ETy = TLI->getValueType(DL, VT);
5477   if (!ETy.isSimple())
5478     return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices,
5479                                              Alignment, AddressSpace, CostKind);
5480 
5481   // TODO: Complete for other data-types and strides.
5482   // Each combination of Stride, element bit width and VF results in a different
5483   // sequence; The cost tables are therefore accessed with:
5484   // Factor (stride) and VectorType=VFxiN.
5485   // The Cost accounts only for the shuffle sequence;
5486   // The cost of the loads/stores is accounted for separately.
5487   //
5488   static const CostTblEntry AVX2InterleavedLoadTbl[] = {
5489       {2, MVT::v2i8, 2},  // (load 4i8 and) deinterleave into 2 x 2i8
5490       {2, MVT::v4i8, 2},  // (load 8i8 and) deinterleave into 2 x 4i8
5491       {2, MVT::v8i8, 2},  // (load 16i8 and) deinterleave into 2 x 8i8
5492       {2, MVT::v16i8, 4}, // (load 32i8 and) deinterleave into 2 x 16i8
5493       {2, MVT::v32i8, 6}, // (load 64i8 and) deinterleave into 2 x 32i8
5494 
5495       {2, MVT::v8i16, 6},   // (load 16i16 and) deinterleave into 2 x 8i16
5496       {2, MVT::v16i16, 9},  // (load 32i16 and) deinterleave into 2 x 16i16
5497       {2, MVT::v32i16, 18}, // (load 64i16 and) deinterleave into 2 x 32i16
5498 
5499       {2, MVT::v8i32, 4},   // (load 16i32 and) deinterleave into 2 x 8i32
5500       {2, MVT::v16i32, 8},  // (load 32i32 and) deinterleave into 2 x 16i32
5501       {2, MVT::v32i32, 16}, // (load 64i32 and) deinterleave into 2 x 32i32
5502 
5503       {2, MVT::v4i64, 4},   // (load 8i64 and) deinterleave into 2 x 4i64
5504       {2, MVT::v8i64, 8},   // (load 16i64 and) deinterleave into 2 x 8i64
5505       {2, MVT::v16i64, 16}, // (load 32i64 and) deinterleave into 2 x 16i64
5506       {2, MVT::v32i64, 32}, // (load 64i64 and) deinterleave into 2 x 32i64
5507 
5508       {3, MVT::v2i8, 3},   // (load 6i8 and) deinterleave into 3 x 2i8
5509       {3, MVT::v4i8, 3},   // (load 12i8 and) deinterleave into 3 x 4i8
5510       {3, MVT::v8i8, 6},   // (load 24i8 and) deinterleave into 3 x 8i8
5511       {3, MVT::v16i8, 11}, // (load 48i8 and) deinterleave into 3 x 16i8
5512       {3, MVT::v32i8, 14}, // (load 96i8 and) deinterleave into 3 x 32i8
5513 
5514       {3, MVT::v2i16, 5},   // (load 6i16 and) deinterleave into 3 x 2i16
5515       {3, MVT::v4i16, 7},   // (load 12i16 and) deinterleave into 3 x 4i16
5516       {3, MVT::v8i16, 9},   // (load 24i16 and) deinterleave into 3 x 8i16
5517       {3, MVT::v16i16, 28}, // (load 48i16 and) deinterleave into 3 x 16i16
5518       {3, MVT::v32i16, 56}, // (load 96i16 and) deinterleave into 3 x 32i16
5519 
5520       {3, MVT::v2i32, 3},   // (load 6i32 and) deinterleave into 3 x 2i32
5521       {3, MVT::v4i32, 3},   // (load 12i32 and) deinterleave into 3 x 4i32
5522       {3, MVT::v8i32, 7},   // (load 24i32 and) deinterleave into 3 x 8i32
5523       {3, MVT::v16i32, 14}, // (load 48i32 and) deinterleave into 3 x 16i32
5524       {3, MVT::v32i32, 32}, // (load 96i32 and) deinterleave into 3 x 32i32
5525 
5526       {3, MVT::v2i64, 1},   // (load 6i64 and) deinterleave into 3 x 2i64
5527       {3, MVT::v4i64, 5},   // (load 12i64 and) deinterleave into 3 x 4i64
5528       {3, MVT::v8i64, 10},  // (load 24i64 and) deinterleave into 3 x 8i64
5529       {3, MVT::v16i64, 20}, // (load 48i64 and) deinterleave into 3 x 16i64
5530 
5531       {4, MVT::v2i8, 4},   // (load 8i8 and) deinterleave into 4 x 2i8
5532       {4, MVT::v4i8, 4},   // (load 16i8 and) deinterleave into 4 x 4i8
5533       {4, MVT::v8i8, 12},  // (load 32i8 and) deinterleave into 4 x 8i8
5534       {4, MVT::v16i8, 24}, // (load 64i8 and) deinterleave into 4 x 16i8
5535       {4, MVT::v32i8, 56}, // (load 128i8 and) deinterleave into 4 x 32i8
5536 
5537       {4, MVT::v2i16, 6},    // (load 8i16 and) deinterleave into 4 x 2i16
5538       {4, MVT::v4i16, 17},   // (load 16i16 and) deinterleave into 4 x 4i16
5539       {4, MVT::v8i16, 33},   // (load 32i16 and) deinterleave into 4 x 8i16
5540       {4, MVT::v16i16, 75},  // (load 64i16 and) deinterleave into 4 x 16i16
5541       {4, MVT::v32i16, 150}, // (load 128i16 and) deinterleave into 4 x 32i16
5542 
5543       {4, MVT::v2i32, 4},   // (load 8i32 and) deinterleave into 4 x 2i32
5544       {4, MVT::v4i32, 8},   // (load 16i32 and) deinterleave into 4 x 4i32
5545       {4, MVT::v8i32, 16},  // (load 32i32 and) deinterleave into 4 x 8i32
5546       {4, MVT::v16i32, 32}, // (load 64i32 and) deinterleave into 4 x 16i32
5547       {4, MVT::v32i32, 68}, // (load 128i32 and) deinterleave into 4 x 32i32
5548 
5549       {4, MVT::v2i64, 6},  // (load 8i64 and) deinterleave into 4 x 2i64
5550       {4, MVT::v4i64, 8},  // (load 16i64 and) deinterleave into 4 x 4i64
5551       {4, MVT::v8i64, 20}, // (load 32i64 and) deinterleave into 4 x 8i64
5552       {4, MVT::v16i64, 40}, // (load 64i64 and) deinterleave into 4 x 16i64
5553 
5554       {6, MVT::v2i8, 6},   // (load 12i8 and) deinterleave into 6 x 2i8
5555       {6, MVT::v4i8, 14},  // (load 24i8 and) deinterleave into 6 x 4i8
5556       {6, MVT::v8i8, 18},  // (load 48i8 and) deinterleave into 6 x 8i8
5557       {6, MVT::v16i8, 43}, // (load 96i8 and) deinterleave into 6 x 16i8
5558       {6, MVT::v32i8, 82}, // (load 192i8 and) deinterleave into 6 x 32i8
5559 
5560       {6, MVT::v2i16, 13},   // (load 12i16 and) deinterleave into 6 x 2i16
5561       {6, MVT::v4i16, 9},    // (load 24i16 and) deinterleave into 6 x 4i16
5562       {6, MVT::v8i16, 39},   // (load 48i16 and) deinterleave into 6 x 8i16
5563       {6, MVT::v16i16, 106}, // (load 96i16 and) deinterleave into 6 x 16i16
5564       {6, MVT::v32i16, 212}, // (load 192i16 and) deinterleave into 6 x 32i16
5565 
5566       {6, MVT::v2i32, 6},   // (load 12i32 and) deinterleave into 6 x 2i32
5567       {6, MVT::v4i32, 15},  // (load 24i32 and) deinterleave into 6 x 4i32
5568       {6, MVT::v8i32, 31},  // (load 48i32 and) deinterleave into 6 x 8i32
5569       {6, MVT::v16i32, 64}, // (load 96i32 and) deinterleave into 6 x 16i32
5570 
5571       {6, MVT::v2i64, 6},  // (load 12i64 and) deinterleave into 6 x 2i64
5572       {6, MVT::v4i64, 18}, // (load 24i64 and) deinterleave into 6 x 4i64
5573       {6, MVT::v8i64, 36}, // (load 48i64 and) deinterleave into 6 x 8i64
5574 
5575       {8, MVT::v8i32, 40} // (load 64i32 and) deinterleave into 8 x 8i32
5576   };
5577 
5578   static const CostTblEntry SSSE3InterleavedLoadTbl[] = {
5579       {2, MVT::v4i16, 2},   // (load 8i16 and) deinterleave into 2 x 4i16
5580   };
5581 
5582   static const CostTblEntry SSE2InterleavedLoadTbl[] = {
5583       {2, MVT::v2i16, 2},   // (load 4i16 and) deinterleave into 2 x 2i16
5584       {2, MVT::v4i16, 7},   // (load 8i16 and) deinterleave into 2 x 4i16
5585 
5586       {2, MVT::v2i32, 2},   // (load 4i32 and) deinterleave into 2 x 2i32
5587       {2, MVT::v4i32, 2},   // (load 8i32 and) deinterleave into 2 x 4i32
5588 
5589       {2, MVT::v2i64, 2},   // (load 4i64 and) deinterleave into 2 x 2i64
5590   };
5591 
5592   static const CostTblEntry AVX2InterleavedStoreTbl[] = {
5593       {2, MVT::v16i8, 3}, // interleave 2 x 16i8 into 32i8 (and store)
5594       {2, MVT::v32i8, 4}, // interleave 2 x 32i8 into 64i8 (and store)
5595 
5596       {2, MVT::v8i16, 3},  // interleave 2 x 8i16 into 16i16 (and store)
5597       {2, MVT::v16i16, 4}, // interleave 2 x 16i16 into 32i16 (and store)
5598       {2, MVT::v32i16, 8}, // interleave 2 x 32i16 into 64i16 (and store)
5599 
5600       {2, MVT::v4i32, 2},   // interleave 2 x 4i32 into 8i32 (and store)
5601       {2, MVT::v8i32, 4},   // interleave 2 x 8i32 into 16i32 (and store)
5602       {2, MVT::v16i32, 8},  // interleave 2 x 16i32 into 32i32 (and store)
5603       {2, MVT::v32i32, 16}, // interleave 2 x 32i32 into 64i32 (and store)
5604 
5605       {2, MVT::v2i64, 2},   // interleave 2 x 2i64 into 4i64 (and store)
5606       {2, MVT::v4i64, 4},   // interleave 2 x 4i64 into 8i64 (and store)
5607       {2, MVT::v8i64, 8},   // interleave 2 x 8i64 into 16i64 (and store)
5608       {2, MVT::v16i64, 16}, // interleave 2 x 16i64 into 32i64 (and store)
5609       {2, MVT::v32i64, 32}, // interleave 2 x 32i64 into 64i64 (and store)
5610 
5611       {3, MVT::v2i8, 4},   // interleave 3 x 2i8 into 6i8 (and store)
5612       {3, MVT::v4i8, 4},   // interleave 3 x 4i8 into 12i8 (and store)
5613       {3, MVT::v8i8, 6},   // interleave 3 x 8i8 into 24i8 (and store)
5614       {3, MVT::v16i8, 11}, // interleave 3 x 16i8 into 48i8 (and store)
5615       {3, MVT::v32i8, 13}, // interleave 3 x 32i8 into 96i8 (and store)
5616 
5617       {3, MVT::v2i16, 4},   // interleave 3 x 2i16 into 6i16 (and store)
5618       {3, MVT::v4i16, 6},   // interleave 3 x 4i16 into 12i16 (and store)
5619       {3, MVT::v8i16, 12},  // interleave 3 x 8i16 into 24i16 (and store)
5620       {3, MVT::v16i16, 27}, // interleave 3 x 16i16 into 48i16 (and store)
5621       {3, MVT::v32i16, 54}, // interleave 3 x 32i16 into 96i16 (and store)
5622 
5623       {3, MVT::v2i32, 4},   // interleave 3 x 2i32 into 6i32 (and store)
5624       {3, MVT::v4i32, 5},   // interleave 3 x 4i32 into 12i32 (and store)
5625       {3, MVT::v8i32, 11},  // interleave 3 x 8i32 into 24i32 (and store)
5626       {3, MVT::v16i32, 22}, // interleave 3 x 16i32 into 48i32 (and store)
5627       {3, MVT::v32i32, 48}, // interleave 3 x 32i32 into 96i32 (and store)
5628 
5629       {3, MVT::v2i64, 4},   // interleave 3 x 2i64 into 6i64 (and store)
5630       {3, MVT::v4i64, 6},   // interleave 3 x 4i64 into 12i64 (and store)
5631       {3, MVT::v8i64, 12},  // interleave 3 x 8i64 into 24i64 (and store)
5632       {3, MVT::v16i64, 24}, // interleave 3 x 16i64 into 48i64 (and store)
5633 
5634       {4, MVT::v2i8, 4},   // interleave 4 x 2i8 into 8i8 (and store)
5635       {4, MVT::v4i8, 4},   // interleave 4 x 4i8 into 16i8 (and store)
5636       {4, MVT::v8i8, 4},   // interleave 4 x 8i8 into 32i8 (and store)
5637       {4, MVT::v16i8, 8},  // interleave 4 x 16i8 into 64i8 (and store)
5638       {4, MVT::v32i8, 12}, // interleave 4 x 32i8 into 128i8 (and store)
5639 
5640       {4, MVT::v2i16, 2},   // interleave 4 x 2i16 into 8i16 (and store)
5641       {4, MVT::v4i16, 6},   // interleave 4 x 4i16 into 16i16 (and store)
5642       {4, MVT::v8i16, 10},  // interleave 4 x 8i16 into 32i16 (and store)
5643       {4, MVT::v16i16, 32}, // interleave 4 x 16i16 into 64i16 (and store)
5644       {4, MVT::v32i16, 64}, // interleave 4 x 32i16 into 128i16 (and store)
5645 
5646       {4, MVT::v2i32, 5},   // interleave 4 x 2i32 into 8i32 (and store)
5647       {4, MVT::v4i32, 6},   // interleave 4 x 4i32 into 16i32 (and store)
5648       {4, MVT::v8i32, 16},  // interleave 4 x 8i32 into 32i32 (and store)
5649       {4, MVT::v16i32, 32}, // interleave 4 x 16i32 into 64i32 (and store)
5650       {4, MVT::v32i32, 64}, // interleave 4 x 32i32 into 128i32 (and store)
5651 
5652       {4, MVT::v2i64, 6},  // interleave 4 x 2i64 into 8i64 (and store)
5653       {4, MVT::v4i64, 8},  // interleave 4 x 4i64 into 16i64 (and store)
5654       {4, MVT::v8i64, 20}, // interleave 4 x 8i64 into 32i64 (and store)
5655       {4, MVT::v16i64, 40}, // interleave 4 x 16i64 into 64i64 (and store)
5656 
5657       {6, MVT::v2i8, 7},   // interleave 6 x 2i8 into 12i8 (and store)
5658       {6, MVT::v4i8, 9},   // interleave 6 x 4i8 into 24i8 (and store)
5659       {6, MVT::v8i8, 16},  // interleave 6 x 8i8 into 48i8 (and store)
5660       {6, MVT::v16i8, 27}, // interleave 6 x 16i8 into 96i8 (and store)
5661       {6, MVT::v32i8, 90}, // interleave 6 x 32i8 into 192i8 (and store)
5662 
5663       {6, MVT::v2i16, 10},  // interleave 6 x 2i16 into 12i16 (and store)
5664       {6, MVT::v4i16, 15},  // interleave 6 x 4i16 into 24i16 (and store)
5665       {6, MVT::v8i16, 21},  // interleave 6 x 8i16 into 48i16 (and store)
5666       {6, MVT::v16i16, 58}, // interleave 6 x 16i16 into 96i16 (and store)
5667       {6, MVT::v32i16, 90}, // interleave 6 x 32i16 into 192i16 (and store)
5668 
5669       {6, MVT::v2i32, 9},   // interleave 6 x 2i32 into 12i32 (and store)
5670       {6, MVT::v4i32, 12},  // interleave 6 x 4i32 into 24i32 (and store)
5671       {6, MVT::v8i32, 33},  // interleave 6 x 8i32 into 48i32 (and store)
5672       {6, MVT::v16i32, 66}, // interleave 6 x 16i32 into 96i32 (and store)
5673 
5674       {6, MVT::v2i64, 8},  // interleave 6 x 2i64 into 12i64 (and store)
5675       {6, MVT::v4i64, 15}, // interleave 6 x 4i64 into 24i64 (and store)
5676       {6, MVT::v8i64, 30}, // interleave 6 x 8i64 into 48i64 (and store)
5677   };
5678 
5679   static const CostTblEntry SSE2InterleavedStoreTbl[] = {
5680       {2, MVT::v2i8, 1},   // interleave 2 x 2i8 into 4i8 (and store)
5681       {2, MVT::v4i8, 1},   // interleave 2 x 4i8 into 8i8 (and store)
5682       {2, MVT::v8i8, 1},   // interleave 2 x 8i8 into 16i8 (and store)
5683 
5684       {2, MVT::v2i16, 1},  // interleave 2 x 2i16 into 4i16 (and store)
5685       {2, MVT::v4i16, 1},  // interleave 2 x 4i16 into 8i16 (and store)
5686 
5687       {2, MVT::v2i32, 1},  // interleave 2 x 2i32 into 4i32 (and store)
5688   };
5689 
5690   if (Opcode == Instruction::Load) {
5691     auto GetDiscountedCost = [Factor, NumMembers = Indices.size(),
5692                               MemOpCosts](const CostTblEntry *Entry) {
5693       // NOTE: this is just an approximation!
5694       //       It can over/under -estimate the cost!
5695       return MemOpCosts + divideCeil(NumMembers * Entry->Cost, Factor);
5696     };
5697 
5698     if (ST->hasAVX2())
5699       if (const auto *Entry = CostTableLookup(AVX2InterleavedLoadTbl, Factor,
5700                                               ETy.getSimpleVT()))
5701         return GetDiscountedCost(Entry);
5702 
5703     if (ST->hasSSSE3())
5704       if (const auto *Entry = CostTableLookup(SSSE3InterleavedLoadTbl, Factor,
5705                                               ETy.getSimpleVT()))
5706         return GetDiscountedCost(Entry);
5707 
5708     if (ST->hasSSE2())
5709       if (const auto *Entry = CostTableLookup(SSE2InterleavedLoadTbl, Factor,
5710                                               ETy.getSimpleVT()))
5711         return GetDiscountedCost(Entry);
5712   } else {
5713     assert(Opcode == Instruction::Store &&
5714            "Expected Store Instruction at this point");
5715     assert((!Indices.size() || Indices.size() == Factor) &&
5716            "Interleaved store only supports fully-interleaved groups.");
5717     if (ST->hasAVX2())
5718       if (const auto *Entry = CostTableLookup(AVX2InterleavedStoreTbl, Factor,
5719                                               ETy.getSimpleVT()))
5720         return MemOpCosts + Entry->Cost;
5721 
5722     if (ST->hasSSE2())
5723       if (const auto *Entry = CostTableLookup(SSE2InterleavedStoreTbl, Factor,
5724                                               ETy.getSimpleVT()))
5725         return MemOpCosts + Entry->Cost;
5726   }
5727 
5728   return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices,
5729                                            Alignment, AddressSpace, CostKind,
5730                                            UseMaskForCond, UseMaskForGaps);
5731 }
5732