1 //===-- X86TargetTransformInfo.cpp - X86 specific TTI pass ----------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 /// \file
10 /// This file implements a TargetTransformInfo analysis pass specific to the
11 /// X86 target machine. It uses the target's detailed information to provide
12 /// more precise answers to certain TTI queries, while letting the target
13 /// independent and default TTI implementations handle the rest.
14 ///
15 //===----------------------------------------------------------------------===//
16 /// About Cost Model numbers used below it's necessary to say the following:
17 /// the numbers correspond to some "generic" X86 CPU instead of usage of
18 /// concrete CPU model. Usually the numbers correspond to CPU where the feature
19 /// apeared at the first time. For example, if we do Subtarget.hasSSE42() in
20 /// the lookups below the cost is based on Nehalem as that was the first CPU
21 /// to support that feature level and thus has most likely the worst case cost.
22 /// Some examples of other technologies/CPUs:
23 ///   SSE 3   - Pentium4 / Athlon64
24 ///   SSE 4.1 - Penryn
25 ///   SSE 4.2 - Nehalem
26 ///   AVX     - Sandy Bridge
27 ///   AVX2    - Haswell
28 ///   AVX-512 - Xeon Phi / Skylake
29 /// And some examples of instruction target dependent costs (latency)
30 ///                   divss     sqrtss          rsqrtss
31 ///   AMD K7            11-16     19              3
32 ///   Piledriver        9-24      13-15           5
33 ///   Jaguar            14        16              2
34 ///   Pentium II,III    18        30              2
35 ///   Nehalem           7-14      7-18            3
36 ///   Haswell           10-13     11              5
37 /// TODO: Develop and implement  the target dependent cost model and
38 /// specialize cost numbers for different Cost Model Targets such as throughput,
39 /// code size, latency and uop count.
40 //===----------------------------------------------------------------------===//
41 
42 #include "X86TargetTransformInfo.h"
43 #include "llvm/Analysis/TargetTransformInfo.h"
44 #include "llvm/CodeGen/BasicTTIImpl.h"
45 #include "llvm/IR/IntrinsicInst.h"
46 #include "llvm/Support/Debug.h"
47 #include "llvm/Target/CostTable.h"
48 #include "llvm/Target/TargetLowering.h"
49 
50 using namespace llvm;
51 
52 #define DEBUG_TYPE "x86tti"
53 
54 //===----------------------------------------------------------------------===//
55 //
56 // X86 cost model.
57 //
58 //===----------------------------------------------------------------------===//
59 
60 TargetTransformInfo::PopcntSupportKind
61 X86TTIImpl::getPopcntSupport(unsigned TyWidth) {
62   assert(isPowerOf2_32(TyWidth) && "Ty width must be power of 2");
63   // TODO: Currently the __builtin_popcount() implementation using SSE3
64   //   instructions is inefficient. Once the problem is fixed, we should
65   //   call ST->hasSSE3() instead of ST->hasPOPCNT().
66   return ST->hasPOPCNT() ? TTI::PSK_FastHardware : TTI::PSK_Software;
67 }
68 
69 unsigned X86TTIImpl::getNumberOfRegisters(bool Vector) {
70   if (Vector && !ST->hasSSE1())
71     return 0;
72 
73   if (ST->is64Bit()) {
74     if (Vector && ST->hasAVX512())
75       return 32;
76     return 16;
77   }
78   return 8;
79 }
80 
81 unsigned X86TTIImpl::getRegisterBitWidth(bool Vector) {
82   if (Vector) {
83     if (ST->hasAVX512())
84       return 512;
85     if (ST->hasAVX())
86       return 256;
87     if (ST->hasSSE1())
88       return 128;
89     return 0;
90   }
91 
92   if (ST->is64Bit())
93     return 64;
94 
95   return 32;
96 }
97 
98 unsigned X86TTIImpl::getMaxInterleaveFactor(unsigned VF) {
99   // If the loop will not be vectorized, don't interleave the loop.
100   // Let regular unroll to unroll the loop, which saves the overflow
101   // check and memory check cost.
102   if (VF == 1)
103     return 1;
104 
105   if (ST->isAtom())
106     return 1;
107 
108   // Sandybridge and Haswell have multiple execution ports and pipelined
109   // vector units.
110   if (ST->hasAVX())
111     return 4;
112 
113   return 2;
114 }
115 
116 int X86TTIImpl::getArithmeticInstrCost(
117     unsigned Opcode, Type *Ty,
118     TTI::OperandValueKind Op1Info, TTI::OperandValueKind Op2Info,
119     TTI::OperandValueProperties Opd1PropInfo,
120     TTI::OperandValueProperties Opd2PropInfo,
121     ArrayRef<const Value *> Args) {
122   // Legalize the type.
123   std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Ty);
124 
125   int ISD = TLI->InstructionOpcodeToISD(Opcode);
126   assert(ISD && "Invalid opcode");
127 
128   static const CostTblEntry SLMCostTable[] = {
129     { ISD::MUL,  MVT::v4i32, 11 }, // pmulld
130     { ISD::MUL,  MVT::v8i16, 2  }, // pmullw
131     { ISD::MUL,  MVT::v16i8, 14 }, // extend/pmullw/trunc sequence.
132     { ISD::FMUL, MVT::f64,   2  }, // mulsd
133     { ISD::FMUL, MVT::v2f64, 4  }, // mulpd
134     { ISD::FMUL, MVT::v4f32, 2  }, // mulps
135     { ISD::FDIV, MVT::f32,   17 }, // divss
136     { ISD::FDIV, MVT::v4f32, 39 }, // divps
137     { ISD::FDIV, MVT::f64,   32 }, // divsd
138     { ISD::FDIV, MVT::v2f64, 69 }, // divpd
139     { ISD::FADD, MVT::v2f64, 2  }, // addpd
140     { ISD::FSUB, MVT::v2f64, 2  }, // subpd
141     // v2i64/v4i64 mul is custom lowered as a series of long
142     // multiplies(3), shifts(3) and adds(2).
143     // slm muldq version throughput is 2
144     { ISD::MUL,  MVT::v2i64, 11 },
145   };
146 
147   if (ST->isSLM()) {
148     if (Args.size() == 2 && ISD == ISD::MUL && LT.second == MVT::v4i32) {
149       // Check if the operands can be shrinked into a smaller datatype.
150       bool Op1Signed = false;
151       unsigned Op1MinSize = BaseT::minRequiredElementSize(Args[0], Op1Signed);
152       bool Op2Signed = false;
153       unsigned Op2MinSize = BaseT::minRequiredElementSize(Args[1], Op2Signed);
154 
155       bool signedMode = Op1Signed | Op2Signed;
156       unsigned OpMinSize = std::max(Op1MinSize, Op2MinSize);
157 
158       if (OpMinSize <= 7)
159         return LT.first * 3; // pmullw/sext
160       if (!signedMode && OpMinSize <= 8)
161         return LT.first * 3; // pmullw/zext
162       if (OpMinSize <= 15)
163         return LT.first * 5; // pmullw/pmulhw/pshuf
164       if (!signedMode && OpMinSize <= 16)
165         return LT.first * 5; // pmullw/pmulhw/pshuf
166     }
167     if (const auto *Entry = CostTableLookup(SLMCostTable, ISD,
168                                             LT.second)) {
169       return LT.first * Entry->Cost;
170     }
171   }
172 
173   if (ISD == ISD::SDIV &&
174       Op2Info == TargetTransformInfo::OK_UniformConstantValue &&
175       Opd2PropInfo == TargetTransformInfo::OP_PowerOf2) {
176     // On X86, vector signed division by constants power-of-two are
177     // normally expanded to the sequence SRA + SRL + ADD + SRA.
178     // The OperandValue properties many not be same as that of previous
179     // operation;conservatively assume OP_None.
180     int Cost = 2 * getArithmeticInstrCost(Instruction::AShr, Ty, Op1Info,
181                                           Op2Info, TargetTransformInfo::OP_None,
182                                           TargetTransformInfo::OP_None);
183     Cost += getArithmeticInstrCost(Instruction::LShr, Ty, Op1Info, Op2Info,
184                                    TargetTransformInfo::OP_None,
185                                    TargetTransformInfo::OP_None);
186     Cost += getArithmeticInstrCost(Instruction::Add, Ty, Op1Info, Op2Info,
187                                    TargetTransformInfo::OP_None,
188                                    TargetTransformInfo::OP_None);
189 
190     return Cost;
191   }
192 
193   static const CostTblEntry AVX512BWUniformConstCostTable[] = {
194     { ISD::SHL,  MVT::v64i8,   2 }, // psllw + pand.
195     { ISD::SRL,  MVT::v64i8,   2 }, // psrlw + pand.
196     { ISD::SRA,  MVT::v64i8,   4 }, // psrlw, pand, pxor, psubb.
197 
198     { ISD::SDIV, MVT::v32i16,  6 }, // vpmulhw sequence
199     { ISD::UDIV, MVT::v32i16,  6 }, // vpmulhuw sequence
200   };
201 
202   if (Op2Info == TargetTransformInfo::OK_UniformConstantValue &&
203       ST->hasBWI()) {
204     if (const auto *Entry = CostTableLookup(AVX512BWUniformConstCostTable, ISD,
205                                             LT.second))
206       return LT.first * Entry->Cost;
207   }
208 
209   static const CostTblEntry AVX512UniformConstCostTable[] = {
210     { ISD::SRA,  MVT::v2i64,   1 },
211     { ISD::SRA,  MVT::v4i64,   1 },
212     { ISD::SRA,  MVT::v8i64,   1 },
213 
214     { ISD::SDIV, MVT::v16i32, 15 }, // vpmuldq sequence
215     { ISD::UDIV, MVT::v16i32, 15 }, // vpmuludq sequence
216   };
217 
218   if (Op2Info == TargetTransformInfo::OK_UniformConstantValue &&
219       ST->hasAVX512()) {
220     if (const auto *Entry = CostTableLookup(AVX512UniformConstCostTable, ISD,
221                                             LT.second))
222       return LT.first * Entry->Cost;
223   }
224 
225   static const CostTblEntry AVX2UniformConstCostTable[] = {
226     { ISD::SHL,  MVT::v32i8,   2 }, // psllw + pand.
227     { ISD::SRL,  MVT::v32i8,   2 }, // psrlw + pand.
228     { ISD::SRA,  MVT::v32i8,   4 }, // psrlw, pand, pxor, psubb.
229 
230     { ISD::SRA,  MVT::v4i64,   4 }, // 2 x psrad + shuffle.
231 
232     { ISD::SDIV, MVT::v16i16,  6 }, // vpmulhw sequence
233     { ISD::UDIV, MVT::v16i16,  6 }, // vpmulhuw sequence
234     { ISD::SDIV, MVT::v8i32,  15 }, // vpmuldq sequence
235     { ISD::UDIV, MVT::v8i32,  15 }, // vpmuludq sequence
236   };
237 
238   if (Op2Info == TargetTransformInfo::OK_UniformConstantValue &&
239       ST->hasAVX2()) {
240     if (const auto *Entry = CostTableLookup(AVX2UniformConstCostTable, ISD,
241                                             LT.second))
242       return LT.first * Entry->Cost;
243   }
244 
245   static const CostTblEntry SSE2UniformConstCostTable[] = {
246     { ISD::SHL,  MVT::v16i8,   2 }, // psllw + pand.
247     { ISD::SRL,  MVT::v16i8,   2 }, // psrlw + pand.
248     { ISD::SRA,  MVT::v16i8,   4 }, // psrlw, pand, pxor, psubb.
249 
250     { ISD::SHL,  MVT::v32i8,   4 }, // 2*(psllw + pand).
251     { ISD::SRL,  MVT::v32i8,   4 }, // 2*(psrlw + pand).
252     { ISD::SRA,  MVT::v32i8,   8 }, // 2*(psrlw, pand, pxor, psubb).
253 
254     { ISD::SDIV, MVT::v16i16, 12 }, // pmulhw sequence
255     { ISD::SDIV, MVT::v8i16,   6 }, // pmulhw sequence
256     { ISD::UDIV, MVT::v16i16, 12 }, // pmulhuw sequence
257     { ISD::UDIV, MVT::v8i16,   6 }, // pmulhuw sequence
258     { ISD::SDIV, MVT::v8i32,  38 }, // pmuludq sequence
259     { ISD::SDIV, MVT::v4i32,  19 }, // pmuludq sequence
260     { ISD::UDIV, MVT::v8i32,  30 }, // pmuludq sequence
261     { ISD::UDIV, MVT::v4i32,  15 }, // pmuludq sequence
262   };
263 
264   if (Op2Info == TargetTransformInfo::OK_UniformConstantValue &&
265       ST->hasSSE2()) {
266     // pmuldq sequence.
267     if (ISD == ISD::SDIV && LT.second == MVT::v8i32 && ST->hasAVX())
268       return LT.first * 30;
269     if (ISD == ISD::SDIV && LT.second == MVT::v4i32 && ST->hasSSE41())
270       return LT.first * 15;
271 
272     if (const auto *Entry = CostTableLookup(SSE2UniformConstCostTable, ISD,
273                                             LT.second))
274       return LT.first * Entry->Cost;
275   }
276 
277   static const CostTblEntry AVX2UniformCostTable[] = {
278     // Uniform splats are cheaper for the following instructions.
279     { ISD::SHL,  MVT::v16i16, 1 }, // psllw.
280     { ISD::SRL,  MVT::v16i16, 1 }, // psrlw.
281     { ISD::SRA,  MVT::v16i16, 1 }, // psraw.
282   };
283 
284   if (ST->hasAVX2() &&
285       ((Op2Info == TargetTransformInfo::OK_UniformConstantValue) ||
286        (Op2Info == TargetTransformInfo::OK_UniformValue))) {
287     if (const auto *Entry =
288             CostTableLookup(AVX2UniformCostTable, ISD, LT.second))
289       return LT.first * Entry->Cost;
290   }
291 
292   static const CostTblEntry SSE2UniformCostTable[] = {
293     // Uniform splats are cheaper for the following instructions.
294     { ISD::SHL,  MVT::v8i16,  1 }, // psllw.
295     { ISD::SHL,  MVT::v4i32,  1 }, // pslld
296     { ISD::SHL,  MVT::v2i64,  1 }, // psllq.
297 
298     { ISD::SRL,  MVT::v8i16,  1 }, // psrlw.
299     { ISD::SRL,  MVT::v4i32,  1 }, // psrld.
300     { ISD::SRL,  MVT::v2i64,  1 }, // psrlq.
301 
302     { ISD::SRA,  MVT::v8i16,  1 }, // psraw.
303     { ISD::SRA,  MVT::v4i32,  1 }, // psrad.
304   };
305 
306   if (ST->hasSSE2() &&
307       ((Op2Info == TargetTransformInfo::OK_UniformConstantValue) ||
308        (Op2Info == TargetTransformInfo::OK_UniformValue))) {
309     if (const auto *Entry =
310             CostTableLookup(SSE2UniformCostTable, ISD, LT.second))
311       return LT.first * Entry->Cost;
312   }
313 
314   static const CostTblEntry AVX512DQCostTable[] = {
315     { ISD::MUL,  MVT::v2i64, 1 },
316     { ISD::MUL,  MVT::v4i64, 1 },
317     { ISD::MUL,  MVT::v8i64, 1 }
318   };
319 
320   // Look for AVX512DQ lowering tricks for custom cases.
321   if (ST->hasDQI())
322     if (const auto *Entry = CostTableLookup(AVX512DQCostTable, ISD, LT.second))
323       return LT.first * Entry->Cost;
324 
325   static const CostTblEntry AVX512BWCostTable[] = {
326     { ISD::SHL,   MVT::v8i16,      1 }, // vpsllvw
327     { ISD::SRL,   MVT::v8i16,      1 }, // vpsrlvw
328     { ISD::SRA,   MVT::v8i16,      1 }, // vpsravw
329 
330     { ISD::SHL,   MVT::v16i16,     1 }, // vpsllvw
331     { ISD::SRL,   MVT::v16i16,     1 }, // vpsrlvw
332     { ISD::SRA,   MVT::v16i16,     1 }, // vpsravw
333 
334     { ISD::SHL,   MVT::v32i16,     1 }, // vpsllvw
335     { ISD::SRL,   MVT::v32i16,     1 }, // vpsrlvw
336     { ISD::SRA,   MVT::v32i16,     1 }, // vpsravw
337 
338     { ISD::SHL,   MVT::v64i8,     11 }, // vpblendvb sequence.
339     { ISD::SRL,   MVT::v64i8,     11 }, // vpblendvb sequence.
340     { ISD::SRA,   MVT::v64i8,     24 }, // vpblendvb sequence.
341 
342     { ISD::MUL,   MVT::v64i8,     11 }, // extend/pmullw/trunc sequence.
343     { ISD::MUL,   MVT::v32i8,      4 }, // extend/pmullw/trunc sequence.
344     { ISD::MUL,   MVT::v16i8,      4 }, // extend/pmullw/trunc sequence.
345 
346     // Vectorizing division is a bad idea. See the SSE2 table for more comments.
347     { ISD::SDIV,  MVT::v64i8,  64*20 },
348     { ISD::SDIV,  MVT::v32i16, 32*20 },
349     { ISD::UDIV,  MVT::v64i8,  64*20 },
350     { ISD::UDIV,  MVT::v32i16, 32*20 }
351   };
352 
353   // Look for AVX512BW lowering tricks for custom cases.
354   if (ST->hasBWI())
355     if (const auto *Entry = CostTableLookup(AVX512BWCostTable, ISD, LT.second))
356       return LT.first * Entry->Cost;
357 
358   static const CostTblEntry AVX512CostTable[] = {
359     { ISD::SHL,     MVT::v16i32,     1 },
360     { ISD::SRL,     MVT::v16i32,     1 },
361     { ISD::SRA,     MVT::v16i32,     1 },
362 
363     { ISD::SHL,     MVT::v8i64,      1 },
364     { ISD::SRL,     MVT::v8i64,      1 },
365 
366     { ISD::SRA,     MVT::v2i64,      1 },
367     { ISD::SRA,     MVT::v4i64,      1 },
368     { ISD::SRA,     MVT::v8i64,      1 },
369 
370     { ISD::MUL,     MVT::v32i8,     13 }, // extend/pmullw/trunc sequence.
371     { ISD::MUL,     MVT::v16i8,      5 }, // extend/pmullw/trunc sequence.
372     { ISD::MUL,     MVT::v16i32,     1 }, // pmulld
373     { ISD::MUL,     MVT::v8i64,      8 }, // 3*pmuludq/3*shift/2*add
374 
375     // Vectorizing division is a bad idea. See the SSE2 table for more comments.
376     { ISD::SDIV,    MVT::v16i32, 16*20 },
377     { ISD::SDIV,    MVT::v8i64,   8*20 },
378     { ISD::UDIV,    MVT::v16i32, 16*20 },
379     { ISD::UDIV,    MVT::v8i64,   8*20 }
380   };
381 
382   if (ST->hasAVX512())
383     if (const auto *Entry = CostTableLookup(AVX512CostTable, ISD, LT.second))
384       return LT.first * Entry->Cost;
385 
386   static const CostTblEntry AVX2ShiftCostTable[] = {
387     // Shifts on v4i64/v8i32 on AVX2 is legal even though we declare to
388     // customize them to detect the cases where shift amount is a scalar one.
389     { ISD::SHL,     MVT::v4i32,    1 },
390     { ISD::SRL,     MVT::v4i32,    1 },
391     { ISD::SRA,     MVT::v4i32,    1 },
392     { ISD::SHL,     MVT::v8i32,    1 },
393     { ISD::SRL,     MVT::v8i32,    1 },
394     { ISD::SRA,     MVT::v8i32,    1 },
395     { ISD::SHL,     MVT::v2i64,    1 },
396     { ISD::SRL,     MVT::v2i64,    1 },
397     { ISD::SHL,     MVT::v4i64,    1 },
398     { ISD::SRL,     MVT::v4i64,    1 },
399   };
400 
401   // Look for AVX2 lowering tricks.
402   if (ST->hasAVX2()) {
403     if (ISD == ISD::SHL && LT.second == MVT::v16i16 &&
404         (Op2Info == TargetTransformInfo::OK_UniformConstantValue ||
405          Op2Info == TargetTransformInfo::OK_NonUniformConstantValue))
406       // On AVX2, a packed v16i16 shift left by a constant build_vector
407       // is lowered into a vector multiply (vpmullw).
408       return LT.first;
409 
410     if (const auto *Entry = CostTableLookup(AVX2ShiftCostTable, ISD, LT.second))
411       return LT.first * Entry->Cost;
412   }
413 
414   static const CostTblEntry XOPShiftCostTable[] = {
415     // 128bit shifts take 1cy, but right shifts require negation beforehand.
416     { ISD::SHL,     MVT::v16i8,    1 },
417     { ISD::SRL,     MVT::v16i8,    2 },
418     { ISD::SRA,     MVT::v16i8,    2 },
419     { ISD::SHL,     MVT::v8i16,    1 },
420     { ISD::SRL,     MVT::v8i16,    2 },
421     { ISD::SRA,     MVT::v8i16,    2 },
422     { ISD::SHL,     MVT::v4i32,    1 },
423     { ISD::SRL,     MVT::v4i32,    2 },
424     { ISD::SRA,     MVT::v4i32,    2 },
425     { ISD::SHL,     MVT::v2i64,    1 },
426     { ISD::SRL,     MVT::v2i64,    2 },
427     { ISD::SRA,     MVT::v2i64,    2 },
428     // 256bit shifts require splitting if AVX2 didn't catch them above.
429     { ISD::SHL,     MVT::v32i8,    2 },
430     { ISD::SRL,     MVT::v32i8,    4 },
431     { ISD::SRA,     MVT::v32i8,    4 },
432     { ISD::SHL,     MVT::v16i16,   2 },
433     { ISD::SRL,     MVT::v16i16,   4 },
434     { ISD::SRA,     MVT::v16i16,   4 },
435     { ISD::SHL,     MVT::v8i32,    2 },
436     { ISD::SRL,     MVT::v8i32,    4 },
437     { ISD::SRA,     MVT::v8i32,    4 },
438     { ISD::SHL,     MVT::v4i64,    2 },
439     { ISD::SRL,     MVT::v4i64,    4 },
440     { ISD::SRA,     MVT::v4i64,    4 },
441   };
442 
443   // Look for XOP lowering tricks.
444   if (ST->hasXOP())
445     if (const auto *Entry = CostTableLookup(XOPShiftCostTable, ISD, LT.second))
446       return LT.first * Entry->Cost;
447 
448   static const CostTblEntry SSE2UniformShiftCostTable[] = {
449     // Uniform splats are cheaper for the following instructions.
450     { ISD::SHL,  MVT::v16i16, 2 }, // psllw.
451     { ISD::SHL,  MVT::v8i32,  2 }, // pslld
452     { ISD::SHL,  MVT::v4i64,  2 }, // psllq.
453 
454     { ISD::SRL,  MVT::v16i16, 2 }, // psrlw.
455     { ISD::SRL,  MVT::v8i32,  2 }, // psrld.
456     { ISD::SRL,  MVT::v4i64,  2 }, // psrlq.
457 
458     { ISD::SRA,  MVT::v16i16, 2 }, // psraw.
459     { ISD::SRA,  MVT::v8i32,  2 }, // psrad.
460     { ISD::SRA,  MVT::v2i64,  4 }, // 2 x psrad + shuffle.
461     { ISD::SRA,  MVT::v4i64,  8 }, // 2 x psrad + shuffle.
462   };
463 
464   if (ST->hasSSE2() &&
465       ((Op2Info == TargetTransformInfo::OK_UniformConstantValue) ||
466        (Op2Info == TargetTransformInfo::OK_UniformValue))) {
467     if (const auto *Entry =
468             CostTableLookup(SSE2UniformShiftCostTable, ISD, LT.second))
469       return LT.first * Entry->Cost;
470   }
471 
472   if (ISD == ISD::SHL &&
473       Op2Info == TargetTransformInfo::OK_NonUniformConstantValue) {
474     MVT VT = LT.second;
475     // Vector shift left by non uniform constant can be lowered
476     // into vector multiply.
477     if (((VT == MVT::v8i16 || VT == MVT::v4i32) && ST->hasSSE2()) ||
478         ((VT == MVT::v16i16 || VT == MVT::v8i32) && ST->hasAVX()))
479       ISD = ISD::MUL;
480   }
481 
482   static const CostTblEntry AVX2CostTable[] = {
483     { ISD::SHL,  MVT::v32i8,     11 }, // vpblendvb sequence.
484     { ISD::SHL,  MVT::v16i16,    10 }, // extend/vpsrlvd/pack sequence.
485 
486     { ISD::SRL,  MVT::v32i8,     11 }, // vpblendvb sequence.
487     { ISD::SRL,  MVT::v16i16,    10 }, // extend/vpsrlvd/pack sequence.
488 
489     { ISD::SRA,  MVT::v32i8,     24 }, // vpblendvb sequence.
490     { ISD::SRA,  MVT::v16i16,    10 }, // extend/vpsravd/pack sequence.
491     { ISD::SRA,  MVT::v2i64,      4 }, // srl/xor/sub sequence.
492     { ISD::SRA,  MVT::v4i64,      4 }, // srl/xor/sub sequence.
493 
494     { ISD::SUB,  MVT::v32i8,      1 }, // psubb
495     { ISD::ADD,  MVT::v32i8,      1 }, // paddb
496     { ISD::SUB,  MVT::v16i16,     1 }, // psubw
497     { ISD::ADD,  MVT::v16i16,     1 }, // paddw
498     { ISD::SUB,  MVT::v8i32,      1 }, // psubd
499     { ISD::ADD,  MVT::v8i32,      1 }, // paddd
500     { ISD::SUB,  MVT::v4i64,      1 }, // psubq
501     { ISD::ADD,  MVT::v4i64,      1 }, // paddq
502 
503     { ISD::MUL,  MVT::v32i8,     17 }, // extend/pmullw/trunc sequence.
504     { ISD::MUL,  MVT::v16i8,      7 }, // extend/pmullw/trunc sequence.
505     { ISD::MUL,  MVT::v16i16,     1 }, // pmullw
506     { ISD::MUL,  MVT::v8i32,      1 }, // pmulld
507     { ISD::MUL,  MVT::v4i64,      8 }, // 3*pmuludq/3*shift/2*add
508 
509     { ISD::FDIV, MVT::f32,        7 }, // Haswell from http://www.agner.org/
510     { ISD::FDIV, MVT::v4f32,      7 }, // Haswell from http://www.agner.org/
511     { ISD::FDIV, MVT::v8f32,     14 }, // Haswell from http://www.agner.org/
512     { ISD::FDIV, MVT::f64,       14 }, // Haswell from http://www.agner.org/
513     { ISD::FDIV, MVT::v2f64,     14 }, // Haswell from http://www.agner.org/
514     { ISD::FDIV, MVT::v4f64,     28 }, // Haswell from http://www.agner.org/
515   };
516 
517   // Look for AVX2 lowering tricks for custom cases.
518   if (ST->hasAVX2())
519     if (const auto *Entry = CostTableLookup(AVX2CostTable, ISD, LT.second))
520       return LT.first * Entry->Cost;
521 
522   static const CostTblEntry AVX1CostTable[] = {
523     // We don't have to scalarize unsupported ops. We can issue two half-sized
524     // operations and we only need to extract the upper YMM half.
525     // Two ops + 1 extract + 1 insert = 4.
526     { ISD::MUL,     MVT::v16i16,     4 },
527     { ISD::MUL,     MVT::v8i32,      4 },
528     { ISD::SUB,     MVT::v32i8,      4 },
529     { ISD::ADD,     MVT::v32i8,      4 },
530     { ISD::SUB,     MVT::v16i16,     4 },
531     { ISD::ADD,     MVT::v16i16,     4 },
532     { ISD::SUB,     MVT::v8i32,      4 },
533     { ISD::ADD,     MVT::v8i32,      4 },
534     { ISD::SUB,     MVT::v4i64,      4 },
535     { ISD::ADD,     MVT::v4i64,      4 },
536 
537     // A v4i64 multiply is custom lowered as two split v2i64 vectors that then
538     // are lowered as a series of long multiplies(3), shifts(3) and adds(2)
539     // Because we believe v4i64 to be a legal type, we must also include the
540     // extract+insert in the cost table. Therefore, the cost here is 18
541     // instead of 8.
542     { ISD::MUL,     MVT::v4i64,     18 },
543 
544     { ISD::MUL,     MVT::v32i8,     26 }, // extend/pmullw/trunc sequence.
545 
546     { ISD::FDIV,    MVT::f32,       14 }, // SNB from http://www.agner.org/
547     { ISD::FDIV,    MVT::v4f32,     14 }, // SNB from http://www.agner.org/
548     { ISD::FDIV,    MVT::v8f32,     28 }, // SNB from http://www.agner.org/
549     { ISD::FDIV,    MVT::f64,       22 }, // SNB from http://www.agner.org/
550     { ISD::FDIV,    MVT::v2f64,     22 }, // SNB from http://www.agner.org/
551     { ISD::FDIV,    MVT::v4f64,     44 }, // SNB from http://www.agner.org/
552 
553     // Vectorizing division is a bad idea. See the SSE2 table for more comments.
554     { ISD::SDIV,    MVT::v32i8,  32*20 },
555     { ISD::SDIV,    MVT::v16i16, 16*20 },
556     { ISD::SDIV,    MVT::v8i32,   8*20 },
557     { ISD::SDIV,    MVT::v4i64,   4*20 },
558     { ISD::UDIV,    MVT::v32i8,  32*20 },
559     { ISD::UDIV,    MVT::v16i16, 16*20 },
560     { ISD::UDIV,    MVT::v8i32,   8*20 },
561     { ISD::UDIV,    MVT::v4i64,   4*20 },
562   };
563 
564   if (ST->hasAVX())
565     if (const auto *Entry = CostTableLookup(AVX1CostTable, ISD, LT.second))
566       return LT.first * Entry->Cost;
567 
568   static const CostTblEntry SSE42CostTable[] = {
569     { ISD::FDIV,  MVT::f32,   14 }, // Nehalem from http://www.agner.org/
570     { ISD::FDIV,  MVT::v4f32, 14 }, // Nehalem from http://www.agner.org/
571     { ISD::FDIV,  MVT::f64,   22 }, // Nehalem from http://www.agner.org/
572     { ISD::FDIV,  MVT::v2f64, 22 }, // Nehalem from http://www.agner.org/
573   };
574 
575   if (ST->hasSSE42())
576     if (const auto *Entry = CostTableLookup(SSE42CostTable, ISD, LT.second))
577       return LT.first * Entry->Cost;
578 
579   static const CostTblEntry SSE41CostTable[] = {
580     { ISD::SHL,  MVT::v16i8,    11 }, // pblendvb sequence.
581     { ISD::SHL,  MVT::v32i8,  2*11 }, // pblendvb sequence.
582     { ISD::SHL,  MVT::v8i16,    14 }, // pblendvb sequence.
583     { ISD::SHL,  MVT::v16i16, 2*14 }, // pblendvb sequence.
584     { ISD::SHL,  MVT::v4i32,     4 }, // pslld/paddd/cvttps2dq/pmulld
585     { ISD::SHL,  MVT::v8i32,   2*4 }, // pslld/paddd/cvttps2dq/pmulld
586 
587     { ISD::SRL,  MVT::v16i8,    12 }, // pblendvb sequence.
588     { ISD::SRL,  MVT::v32i8,  2*12 }, // pblendvb sequence.
589     { ISD::SRL,  MVT::v8i16,    14 }, // pblendvb sequence.
590     { ISD::SRL,  MVT::v16i16, 2*14 }, // pblendvb sequence.
591     { ISD::SRL,  MVT::v4i32,    11 }, // Shift each lane + blend.
592     { ISD::SRL,  MVT::v8i32,  2*11 }, // Shift each lane + blend.
593 
594     { ISD::SRA,  MVT::v16i8,    24 }, // pblendvb sequence.
595     { ISD::SRA,  MVT::v32i8,  2*24 }, // pblendvb sequence.
596     { ISD::SRA,  MVT::v8i16,    14 }, // pblendvb sequence.
597     { ISD::SRA,  MVT::v16i16, 2*14 }, // pblendvb sequence.
598     { ISD::SRA,  MVT::v4i32,    12 }, // Shift each lane + blend.
599     { ISD::SRA,  MVT::v8i32,  2*12 }, // Shift each lane + blend.
600 
601     { ISD::MUL,  MVT::v4i32,     1 }  // pmulld
602   };
603 
604   if (ST->hasSSE41())
605     if (const auto *Entry = CostTableLookup(SSE41CostTable, ISD, LT.second))
606       return LT.first * Entry->Cost;
607 
608   static const CostTblEntry SSE2CostTable[] = {
609     // We don't correctly identify costs of casts because they are marked as
610     // custom.
611     { ISD::SHL,  MVT::v16i8,    26 }, // cmpgtb sequence.
612     { ISD::SHL,  MVT::v8i16,    32 }, // cmpgtb sequence.
613     { ISD::SHL,  MVT::v4i32,   2*5 }, // We optimized this using mul.
614     { ISD::SHL,  MVT::v2i64,     4 }, // splat+shuffle sequence.
615     { ISD::SHL,  MVT::v4i64,   2*4 }, // splat+shuffle sequence.
616 
617     { ISD::SRL,  MVT::v16i8,    26 }, // cmpgtb sequence.
618     { ISD::SRL,  MVT::v8i16,    32 }, // cmpgtb sequence.
619     { ISD::SRL,  MVT::v4i32,    16 }, // Shift each lane + blend.
620     { ISD::SRL,  MVT::v2i64,     4 }, // splat+shuffle sequence.
621     { ISD::SRL,  MVT::v4i64,   2*4 }, // splat+shuffle sequence.
622 
623     { ISD::SRA,  MVT::v16i8,    54 }, // unpacked cmpgtb sequence.
624     { ISD::SRA,  MVT::v8i16,    32 }, // cmpgtb sequence.
625     { ISD::SRA,  MVT::v4i32,    16 }, // Shift each lane + blend.
626     { ISD::SRA,  MVT::v2i64,    12 }, // srl/xor/sub sequence.
627     { ISD::SRA,  MVT::v4i64,  2*12 }, // srl/xor/sub sequence.
628 
629     { ISD::MUL,  MVT::v16i8,    12 }, // extend/pmullw/trunc sequence.
630     { ISD::MUL,  MVT::v8i16,     1 }, // pmullw
631     { ISD::MUL,  MVT::v4i32,     6 }, // 3*pmuludq/4*shuffle
632     { ISD::MUL,  MVT::v2i64,     8 }, // 3*pmuludq/3*shift/2*add
633 
634     { ISD::FDIV, MVT::f32,      23 }, // Pentium IV from http://www.agner.org/
635     { ISD::FDIV, MVT::v4f32,    39 }, // Pentium IV from http://www.agner.org/
636     { ISD::FDIV, MVT::f64,      38 }, // Pentium IV from http://www.agner.org/
637     { ISD::FDIV, MVT::v2f64,    69 }, // Pentium IV from http://www.agner.org/
638 
639     // It is not a good idea to vectorize division. We have to scalarize it and
640     // in the process we will often end up having to spilling regular
641     // registers. The overhead of division is going to dominate most kernels
642     // anyways so try hard to prevent vectorization of division - it is
643     // generally a bad idea. Assume somewhat arbitrarily that we have to be able
644     // to hide "20 cycles" for each lane.
645     { ISD::SDIV,  MVT::v16i8,  16*20 },
646     { ISD::SDIV,  MVT::v8i16,   8*20 },
647     { ISD::SDIV,  MVT::v4i32,   4*20 },
648     { ISD::SDIV,  MVT::v2i64,   2*20 },
649     { ISD::UDIV,  MVT::v16i8,  16*20 },
650     { ISD::UDIV,  MVT::v8i16,   8*20 },
651     { ISD::UDIV,  MVT::v4i32,   4*20 },
652     { ISD::UDIV,  MVT::v2i64,   2*20 },
653   };
654 
655   if (ST->hasSSE2())
656     if (const auto *Entry = CostTableLookup(SSE2CostTable, ISD, LT.second))
657       return LT.first * Entry->Cost;
658 
659   static const CostTblEntry SSE1CostTable[] = {
660     { ISD::FDIV, MVT::f32,   17 }, // Pentium III from http://www.agner.org/
661     { ISD::FDIV, MVT::v4f32, 34 }, // Pentium III from http://www.agner.org/
662   };
663 
664   if (ST->hasSSE1())
665     if (const auto *Entry = CostTableLookup(SSE1CostTable, ISD, LT.second))
666       return LT.first * Entry->Cost;
667 
668   // Fallback to the default implementation.
669   return BaseT::getArithmeticInstrCost(Opcode, Ty, Op1Info, Op2Info);
670 }
671 
672 int X86TTIImpl::getShuffleCost(TTI::ShuffleKind Kind, Type *Tp, int Index,
673                                Type *SubTp) {
674   // 64-bit packed float vectors (v2f32) are widened to type v4f32.
675   // 64-bit packed integer vectors (v2i32) are promoted to type v2i64.
676   std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Tp);
677 
678   // For Broadcasts we are splatting the first element from the first input
679   // register, so only need to reference that input and all the output
680   // registers are the same.
681   if (Kind == TTI::SK_Broadcast)
682     LT.first = 1;
683 
684   // We are going to permute multiple sources and the result will be in multiple
685   // destinations. Providing an accurate cost only for splits where the element
686   // type remains the same.
687   if (Kind == TTI::SK_PermuteSingleSrc && LT.first != 1) {
688     MVT LegalVT = LT.second;
689     if (LegalVT.getVectorElementType().getSizeInBits() ==
690             Tp->getVectorElementType()->getPrimitiveSizeInBits() &&
691         LegalVT.getVectorNumElements() < Tp->getVectorNumElements()) {
692 
693       unsigned VecTySize = DL.getTypeStoreSize(Tp);
694       unsigned LegalVTSize = LegalVT.getStoreSize();
695       // Number of source vectors after legalization:
696       unsigned NumOfSrcs = (VecTySize + LegalVTSize - 1) / LegalVTSize;
697       // Number of destination vectors after legalization:
698       unsigned NumOfDests = LT.first;
699 
700       Type *SingleOpTy = VectorType::get(Tp->getVectorElementType(),
701                                          LegalVT.getVectorNumElements());
702 
703       unsigned NumOfShuffles = (NumOfSrcs - 1) * NumOfDests;
704       return NumOfShuffles *
705              getShuffleCost(TTI::SK_PermuteTwoSrc, SingleOpTy, 0, nullptr);
706     }
707 
708     return BaseT::getShuffleCost(Kind, Tp, Index, SubTp);
709   }
710 
711   // For 2-input shuffles, we must account for splitting the 2 inputs into many.
712   if (Kind == TTI::SK_PermuteTwoSrc && LT.first != 1) {
713     // We assume that source and destination have the same vector type.
714     int NumOfDests = LT.first;
715     int NumOfShufflesPerDest = LT.first * 2 - 1;
716     LT.first = NumOfDests * NumOfShufflesPerDest;
717   }
718 
719   static const CostTblEntry AVX512VBMIShuffleTbl[] = {
720     { TTI::SK_Reverse,          MVT::v64i8,  1 }, // vpermb
721     { TTI::SK_Reverse,          MVT::v32i8,  1 }, // vpermb
722 
723     { TTI::SK_PermuteSingleSrc, MVT::v64i8,  1 }, // vpermb
724     { TTI::SK_PermuteSingleSrc, MVT::v32i8,  1 }, // vpermb
725 
726     { TTI::SK_PermuteTwoSrc,    MVT::v64i8,  1 }, // vpermt2b
727     { TTI::SK_PermuteTwoSrc,    MVT::v32i8,  1 }, // vpermt2b
728     { TTI::SK_PermuteTwoSrc,    MVT::v16i8,  1 }  // vpermt2b
729   };
730 
731   if (ST->hasVBMI())
732     if (const auto *Entry =
733             CostTableLookup(AVX512VBMIShuffleTbl, Kind, LT.second))
734       return LT.first * Entry->Cost;
735 
736   static const CostTblEntry AVX512BWShuffleTbl[] = {
737     { TTI::SK_Broadcast,        MVT::v32i16, 1 }, // vpbroadcastw
738     { TTI::SK_Broadcast,        MVT::v64i8,  1 }, // vpbroadcastb
739 
740     { TTI::SK_Reverse,          MVT::v32i16, 1 }, // vpermw
741     { TTI::SK_Reverse,          MVT::v16i16, 1 }, // vpermw
742     { TTI::SK_Reverse,          MVT::v64i8,  2 }, // pshufb + vshufi64x2
743 
744     { TTI::SK_PermuteSingleSrc, MVT::v32i16, 1 }, // vpermw
745     { TTI::SK_PermuteSingleSrc, MVT::v16i16, 1 }, // vpermw
746     { TTI::SK_PermuteSingleSrc, MVT::v8i16,  1 }, // vpermw
747     { TTI::SK_PermuteSingleSrc, MVT::v64i8,  8 }, // extend to v32i16
748     { TTI::SK_PermuteSingleSrc, MVT::v32i8,  3 }, // vpermw + zext/trunc
749 
750     { TTI::SK_PermuteTwoSrc,    MVT::v32i16, 1 }, // vpermt2w
751     { TTI::SK_PermuteTwoSrc,    MVT::v16i16, 1 }, // vpermt2w
752     { TTI::SK_PermuteTwoSrc,    MVT::v8i16,  1 }, // vpermt2w
753     { TTI::SK_PermuteTwoSrc,    MVT::v32i8,  3 }, // zext + vpermt2w + trunc
754     { TTI::SK_PermuteTwoSrc,    MVT::v64i8, 19 }, // 6 * v32i8 + 1
755     { TTI::SK_PermuteTwoSrc,    MVT::v16i8,  3 }  // zext + vpermt2w + trunc
756   };
757 
758   if (ST->hasBWI())
759     if (const auto *Entry =
760             CostTableLookup(AVX512BWShuffleTbl, Kind, LT.second))
761       return LT.first * Entry->Cost;
762 
763   static const CostTblEntry AVX512ShuffleTbl[] = {
764     { TTI::SK_Broadcast,        MVT::v8f64,  1 }, // vbroadcastpd
765     { TTI::SK_Broadcast,        MVT::v16f32, 1 }, // vbroadcastps
766     { TTI::SK_Broadcast,        MVT::v8i64,  1 }, // vpbroadcastq
767     { TTI::SK_Broadcast,        MVT::v16i32, 1 }, // vpbroadcastd
768 
769     { TTI::SK_Reverse,          MVT::v8f64,  1 }, // vpermpd
770     { TTI::SK_Reverse,          MVT::v16f32, 1 }, // vpermps
771     { TTI::SK_Reverse,          MVT::v8i64,  1 }, // vpermq
772     { TTI::SK_Reverse,          MVT::v16i32, 1 }, // vpermd
773 
774     { TTI::SK_PermuteSingleSrc, MVT::v8f64,  1 }, // vpermpd
775     { TTI::SK_PermuteSingleSrc, MVT::v4f64,  1 }, // vpermpd
776     { TTI::SK_PermuteSingleSrc, MVT::v2f64,  1 }, // vpermpd
777     { TTI::SK_PermuteSingleSrc, MVT::v16f32, 1 }, // vpermps
778     { TTI::SK_PermuteSingleSrc, MVT::v8f32,  1 }, // vpermps
779     { TTI::SK_PermuteSingleSrc, MVT::v4f32,  1 }, // vpermps
780     { TTI::SK_PermuteSingleSrc, MVT::v8i64,  1 }, // vpermq
781     { TTI::SK_PermuteSingleSrc, MVT::v4i64,  1 }, // vpermq
782     { TTI::SK_PermuteSingleSrc, MVT::v2i64,  1 }, // vpermq
783     { TTI::SK_PermuteSingleSrc, MVT::v16i32, 1 }, // vpermd
784     { TTI::SK_PermuteSingleSrc, MVT::v8i32,  1 }, // vpermd
785     { TTI::SK_PermuteSingleSrc, MVT::v4i32,  1 }, // vpermd
786     { TTI::SK_PermuteSingleSrc, MVT::v16i8,  1 }, // pshufb
787 
788     { TTI::SK_PermuteTwoSrc,    MVT::v8f64,  1 }, // vpermt2pd
789     { TTI::SK_PermuteTwoSrc,    MVT::v16f32, 1 }, // vpermt2ps
790     { TTI::SK_PermuteTwoSrc,    MVT::v8i64,  1 }, // vpermt2q
791     { TTI::SK_PermuteTwoSrc,    MVT::v16i32, 1 }, // vpermt2d
792     { TTI::SK_PermuteTwoSrc,    MVT::v4f64,  1 }, // vpermt2pd
793     { TTI::SK_PermuteTwoSrc,    MVT::v8f32,  1 }, // vpermt2ps
794     { TTI::SK_PermuteTwoSrc,    MVT::v4i64,  1 }, // vpermt2q
795     { TTI::SK_PermuteTwoSrc,    MVT::v8i32,  1 }, // vpermt2d
796     { TTI::SK_PermuteTwoSrc,    MVT::v2f64,  1 }, // vpermt2pd
797     { TTI::SK_PermuteTwoSrc,    MVT::v4f32,  1 }, // vpermt2ps
798     { TTI::SK_PermuteTwoSrc,    MVT::v2i64,  1 }, // vpermt2q
799     { TTI::SK_PermuteTwoSrc,    MVT::v4i32,  1 }  // vpermt2d
800   };
801 
802   if (ST->hasAVX512())
803     if (const auto *Entry = CostTableLookup(AVX512ShuffleTbl, Kind, LT.second))
804       return LT.first * Entry->Cost;
805 
806   static const CostTblEntry AVX2ShuffleTbl[] = {
807     { TTI::SK_Broadcast, MVT::v4f64,  1 }, // vbroadcastpd
808     { TTI::SK_Broadcast, MVT::v8f32,  1 }, // vbroadcastps
809     { TTI::SK_Broadcast, MVT::v4i64,  1 }, // vpbroadcastq
810     { TTI::SK_Broadcast, MVT::v8i32,  1 }, // vpbroadcastd
811     { TTI::SK_Broadcast, MVT::v16i16, 1 }, // vpbroadcastw
812     { TTI::SK_Broadcast, MVT::v32i8,  1 }, // vpbroadcastb
813 
814     { TTI::SK_Reverse,   MVT::v4f64,  1 }, // vpermpd
815     { TTI::SK_Reverse,   MVT::v8f32,  1 }, // vpermps
816     { TTI::SK_Reverse,   MVT::v4i64,  1 }, // vpermq
817     { TTI::SK_Reverse,   MVT::v8i32,  1 }, // vpermd
818     { TTI::SK_Reverse,   MVT::v16i16, 2 }, // vperm2i128 + pshufb
819     { TTI::SK_Reverse,   MVT::v32i8,  2 }, // vperm2i128 + pshufb
820 
821     { TTI::SK_Alternate, MVT::v16i16, 1 }, // vpblendw
822     { TTI::SK_Alternate, MVT::v32i8,  1 }, // vpblendvb
823 
824     { TTI::SK_PermuteSingleSrc, MVT::v4i64,  1 }, // vpermq
825     { TTI::SK_PermuteSingleSrc, MVT::v8i32,  1 }, // vpermd
826     { TTI::SK_PermuteSingleSrc, MVT::v16i16, 4 }, // vperm2i128 + 2 * vpshufb
827                                                   // + vpblendvb
828     { TTI::SK_PermuteSingleSrc, MVT::v32i8,  4 }  // vperm2i128 + 2 * vpshufb
829                                                   // + vpblendvb
830   };
831 
832   if (ST->hasAVX2())
833     if (const auto *Entry = CostTableLookup(AVX2ShuffleTbl, Kind, LT.second))
834       return LT.first * Entry->Cost;
835 
836   static const CostTblEntry AVX1ShuffleTbl[] = {
837     { TTI::SK_Broadcast, MVT::v4f64,  2 }, // vperm2f128 + vpermilpd
838     { TTI::SK_Broadcast, MVT::v8f32,  2 }, // vperm2f128 + vpermilps
839     { TTI::SK_Broadcast, MVT::v4i64,  2 }, // vperm2f128 + vpermilpd
840     { TTI::SK_Broadcast, MVT::v8i32,  2 }, // vperm2f128 + vpermilps
841     { TTI::SK_Broadcast, MVT::v16i16, 3 }, // vpshuflw + vpshufd + vinsertf128
842     { TTI::SK_Broadcast, MVT::v32i8,  2 }, // vpshufb + vinsertf128
843 
844     { TTI::SK_Reverse,   MVT::v4f64,  2 }, // vperm2f128 + vpermilpd
845     { TTI::SK_Reverse,   MVT::v8f32,  2 }, // vperm2f128 + vpermilps
846     { TTI::SK_Reverse,   MVT::v4i64,  2 }, // vperm2f128 + vpermilpd
847     { TTI::SK_Reverse,   MVT::v8i32,  2 }, // vperm2f128 + vpermilps
848     { TTI::SK_Reverse,   MVT::v16i16, 4 }, // vextractf128 + 2*pshufb
849                                            // + vinsertf128
850     { TTI::SK_Reverse,   MVT::v32i8,  4 }, // vextractf128 + 2*pshufb
851                                            // + vinsertf128
852 
853     { TTI::SK_Alternate, MVT::v4i64,  1 }, // vblendpd
854     { TTI::SK_Alternate, MVT::v4f64,  1 }, // vblendpd
855     { TTI::SK_Alternate, MVT::v8i32,  1 }, // vblendps
856     { TTI::SK_Alternate, MVT::v8f32,  1 }, // vblendps
857     { TTI::SK_Alternate, MVT::v16i16, 3 }, // vpand + vpandn + vpor
858     { TTI::SK_Alternate, MVT::v32i8,  3 }  // vpand + vpandn + vpor
859   };
860 
861   if (ST->hasAVX())
862     if (const auto *Entry = CostTableLookup(AVX1ShuffleTbl, Kind, LT.second))
863       return LT.first * Entry->Cost;
864 
865   static const CostTblEntry SSE41ShuffleTbl[] = {
866     { TTI::SK_Alternate, MVT::v2i64,  1 }, // pblendw
867     { TTI::SK_Alternate, MVT::v2f64,  1 }, // movsd
868     { TTI::SK_Alternate, MVT::v4i32,  1 }, // pblendw
869     { TTI::SK_Alternate, MVT::v4f32,  1 }, // blendps
870     { TTI::SK_Alternate, MVT::v8i16,  1 }, // pblendw
871     { TTI::SK_Alternate, MVT::v16i8,  1 }  // pblendvb
872   };
873 
874   if (ST->hasSSE41())
875     if (const auto *Entry = CostTableLookup(SSE41ShuffleTbl, Kind, LT.second))
876       return LT.first * Entry->Cost;
877 
878   static const CostTblEntry SSSE3ShuffleTbl[] = {
879     { TTI::SK_Broadcast, MVT::v8i16,  1 }, // pshufb
880     { TTI::SK_Broadcast, MVT::v16i8,  1 }, // pshufb
881 
882     { TTI::SK_Reverse,   MVT::v8i16,  1 }, // pshufb
883     { TTI::SK_Reverse,   MVT::v16i8,  1 }, // pshufb
884 
885     { TTI::SK_Alternate, MVT::v8i16,  3 }, // pshufb + pshufb + por
886     { TTI::SK_Alternate, MVT::v16i8,  3 }, // pshufb + pshufb + por
887 
888     { TTI::SK_PermuteSingleSrc, MVT::v8i16, 1 }, // pshufb
889     { TTI::SK_PermuteSingleSrc, MVT::v16i8, 1 }  // pshufb
890   };
891 
892   if (ST->hasSSSE3())
893     if (const auto *Entry = CostTableLookup(SSSE3ShuffleTbl, Kind, LT.second))
894       return LT.first * Entry->Cost;
895 
896   static const CostTblEntry SSE2ShuffleTbl[] = {
897     { TTI::SK_Broadcast, MVT::v2f64,  1 }, // shufpd
898     { TTI::SK_Broadcast, MVT::v2i64,  1 }, // pshufd
899     { TTI::SK_Broadcast, MVT::v4i32,  1 }, // pshufd
900     { TTI::SK_Broadcast, MVT::v8i16,  2 }, // pshuflw  + pshufd
901     { TTI::SK_Broadcast, MVT::v16i8,  3 }, // unpck + pshuflw + pshufd
902 
903     { TTI::SK_Reverse,   MVT::v2f64,  1 }, // shufpd
904     { TTI::SK_Reverse,   MVT::v2i64,  1 }, // pshufd
905     { TTI::SK_Reverse,   MVT::v4i32,  1 }, // pshufd
906     { TTI::SK_Reverse,   MVT::v8i16,  3 }, // pshuflw + pshufhw  + pshufd
907     { TTI::SK_Reverse,   MVT::v16i8,  9 }, // 2*pshuflw + 2*pshufhw
908                                            // + 2*pshufd + 2*unpck + packus
909 
910     { TTI::SK_Alternate, MVT::v2i64,  1 }, // movsd
911     { TTI::SK_Alternate, MVT::v2f64,  1 }, // movsd
912     { TTI::SK_Alternate, MVT::v4i32,  2 }, // 2*shufps
913     { TTI::SK_Alternate, MVT::v8i16,  3 }, // pand + pandn + por
914     { TTI::SK_Alternate, MVT::v16i8,  3 }, // pand + pandn + por
915 
916     { TTI::SK_PermuteSingleSrc, MVT::v2i64, 1 }, // pshufd
917     { TTI::SK_PermuteSingleSrc, MVT::v4i32, 1 }  // pshufd
918   };
919 
920   if (ST->hasSSE2())
921     if (const auto *Entry = CostTableLookup(SSE2ShuffleTbl, Kind, LT.second))
922       return LT.first * Entry->Cost;
923 
924   static const CostTblEntry SSE1ShuffleTbl[] = {
925     { TTI::SK_Broadcast, MVT::v4f32,  1 }, // shufps
926     { TTI::SK_Reverse,   MVT::v4f32,  1 }, // shufps
927     { TTI::SK_Alternate, MVT::v4f32,  2 }  // 2*shufps
928   };
929 
930   if (ST->hasSSE1())
931     if (const auto *Entry = CostTableLookup(SSE1ShuffleTbl, Kind, LT.second))
932       return LT.first * Entry->Cost;
933 
934   return BaseT::getShuffleCost(Kind, Tp, Index, SubTp);
935 }
936 
937 int X86TTIImpl::getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src) {
938   int ISD = TLI->InstructionOpcodeToISD(Opcode);
939   assert(ISD && "Invalid opcode");
940 
941   // FIXME: Need a better design of the cost table to handle non-simple types of
942   // potential massive combinations (elem_num x src_type x dst_type).
943 
944   static const TypeConversionCostTblEntry AVX512DQConversionTbl[] = {
945     { ISD::SINT_TO_FP,  MVT::v2f32,  MVT::v2i64,  1 },
946     { ISD::SINT_TO_FP,  MVT::v2f64,  MVT::v2i64,  1 },
947     { ISD::SINT_TO_FP,  MVT::v4f32,  MVT::v4i64,  1 },
948     { ISD::SINT_TO_FP,  MVT::v4f64,  MVT::v4i64,  1 },
949     { ISD::SINT_TO_FP,  MVT::v8f32,  MVT::v8i64,  1 },
950     { ISD::SINT_TO_FP,  MVT::v8f64,  MVT::v8i64,  1 },
951 
952     { ISD::UINT_TO_FP,  MVT::v2f32,  MVT::v2i64,  1 },
953     { ISD::UINT_TO_FP,  MVT::v2f64,  MVT::v2i64,  1 },
954     { ISD::UINT_TO_FP,  MVT::v4f32,  MVT::v4i64,  1 },
955     { ISD::UINT_TO_FP,  MVT::v4f64,  MVT::v4i64,  1 },
956     { ISD::UINT_TO_FP,  MVT::v8f32,  MVT::v8i64,  1 },
957     { ISD::UINT_TO_FP,  MVT::v8f64,  MVT::v8i64,  1 },
958 
959     { ISD::FP_TO_SINT,  MVT::v2i64,  MVT::v2f32,  1 },
960     { ISD::FP_TO_SINT,  MVT::v4i64,  MVT::v4f32,  1 },
961     { ISD::FP_TO_SINT,  MVT::v8i64,  MVT::v8f32,  1 },
962     { ISD::FP_TO_SINT,  MVT::v2i64,  MVT::v2f64,  1 },
963     { ISD::FP_TO_SINT,  MVT::v4i64,  MVT::v4f64,  1 },
964     { ISD::FP_TO_SINT,  MVT::v8i64,  MVT::v8f64,  1 },
965 
966     { ISD::FP_TO_UINT,  MVT::v2i64,  MVT::v2f32,  1 },
967     { ISD::FP_TO_UINT,  MVT::v4i64,  MVT::v4f32,  1 },
968     { ISD::FP_TO_UINT,  MVT::v8i64,  MVT::v8f32,  1 },
969     { ISD::FP_TO_UINT,  MVT::v2i64,  MVT::v2f64,  1 },
970     { ISD::FP_TO_UINT,  MVT::v4i64,  MVT::v4f64,  1 },
971     { ISD::FP_TO_UINT,  MVT::v8i64,  MVT::v8f64,  1 },
972   };
973 
974   // TODO: For AVX512DQ + AVX512VL, we also have cheap casts for 128-bit and
975   // 256-bit wide vectors.
976 
977   static const TypeConversionCostTblEntry AVX512FConversionTbl[] = {
978     { ISD::FP_EXTEND, MVT::v8f64,   MVT::v8f32,  1 },
979     { ISD::FP_EXTEND, MVT::v8f64,   MVT::v16f32, 3 },
980     { ISD::FP_ROUND,  MVT::v8f32,   MVT::v8f64,  1 },
981 
982     { ISD::TRUNCATE,  MVT::v16i8,   MVT::v16i32, 1 },
983     { ISD::TRUNCATE,  MVT::v16i16,  MVT::v16i32, 1 },
984     { ISD::TRUNCATE,  MVT::v8i16,   MVT::v8i64,  1 },
985     { ISD::TRUNCATE,  MVT::v8i32,   MVT::v8i64,  1 },
986 
987     // v16i1 -> v16i32 - load + broadcast
988     { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i1,  2 },
989     { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i1,  2 },
990     { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i8,  1 },
991     { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i8,  1 },
992     { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i16, 1 },
993     { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i16, 1 },
994     { ISD::ZERO_EXTEND, MVT::v8i64,  MVT::v8i16,  1 },
995     { ISD::SIGN_EXTEND, MVT::v8i64,  MVT::v8i16,  1 },
996     { ISD::SIGN_EXTEND, MVT::v8i64,  MVT::v8i32,  1 },
997     { ISD::ZERO_EXTEND, MVT::v8i64,  MVT::v8i32,  1 },
998 
999     { ISD::SINT_TO_FP,  MVT::v8f64,  MVT::v8i1,   4 },
1000     { ISD::SINT_TO_FP,  MVT::v16f32, MVT::v16i1,  3 },
1001     { ISD::SINT_TO_FP,  MVT::v8f64,  MVT::v8i8,   2 },
1002     { ISD::SINT_TO_FP,  MVT::v16f32, MVT::v16i8,  2 },
1003     { ISD::SINT_TO_FP,  MVT::v8f64,  MVT::v8i16,  2 },
1004     { ISD::SINT_TO_FP,  MVT::v16f32, MVT::v16i16, 2 },
1005     { ISD::SINT_TO_FP,  MVT::v16f32, MVT::v16i32, 1 },
1006     { ISD::SINT_TO_FP,  MVT::v8f64,  MVT::v8i32,  1 },
1007     { ISD::UINT_TO_FP,  MVT::v8f32,  MVT::v8i64, 26 },
1008     { ISD::UINT_TO_FP,  MVT::v8f64,  MVT::v8i64, 26 },
1009 
1010     { ISD::UINT_TO_FP,  MVT::v8f64,  MVT::v8i1,   4 },
1011     { ISD::UINT_TO_FP,  MVT::v16f32, MVT::v16i1,  3 },
1012     { ISD::UINT_TO_FP,  MVT::v2f64,  MVT::v2i8,   2 },
1013     { ISD::UINT_TO_FP,  MVT::v4f64,  MVT::v4i8,   2 },
1014     { ISD::UINT_TO_FP,  MVT::v8f32,  MVT::v8i8,   2 },
1015     { ISD::UINT_TO_FP,  MVT::v8f64,  MVT::v8i8,   2 },
1016     { ISD::UINT_TO_FP,  MVT::v16f32, MVT::v16i8,  2 },
1017     { ISD::UINT_TO_FP,  MVT::v2f64,  MVT::v2i16,  5 },
1018     { ISD::UINT_TO_FP,  MVT::v4f64,  MVT::v4i16,  2 },
1019     { ISD::UINT_TO_FP,  MVT::v8f32,  MVT::v8i16,  2 },
1020     { ISD::UINT_TO_FP,  MVT::v8f64,  MVT::v8i16,  2 },
1021     { ISD::UINT_TO_FP,  MVT::v16f32, MVT::v16i16, 2 },
1022     { ISD::UINT_TO_FP,  MVT::v2f32,  MVT::v2i32,  2 },
1023     { ISD::UINT_TO_FP,  MVT::v2f64,  MVT::v2i32,  1 },
1024     { ISD::UINT_TO_FP,  MVT::v4f32,  MVT::v4i32,  1 },
1025     { ISD::UINT_TO_FP,  MVT::v4f64,  MVT::v4i32,  1 },
1026     { ISD::UINT_TO_FP,  MVT::v8f32,  MVT::v8i32,  1 },
1027     { ISD::UINT_TO_FP,  MVT::v8f64,  MVT::v8i32,  1 },
1028     { ISD::UINT_TO_FP,  MVT::v16f32, MVT::v16i32, 1 },
1029     { ISD::UINT_TO_FP,  MVT::v2f32,  MVT::v2i64,  5 },
1030     { ISD::UINT_TO_FP,  MVT::v2f64,  MVT::v2i64,  5 },
1031     { ISD::UINT_TO_FP,  MVT::v4f64,  MVT::v4i64, 12 },
1032     { ISD::UINT_TO_FP,  MVT::v8f64,  MVT::v8i64, 26 },
1033 
1034     { ISD::FP_TO_UINT,  MVT::v2i32,  MVT::v2f32,  1 },
1035     { ISD::FP_TO_UINT,  MVT::v4i32,  MVT::v4f32,  1 },
1036     { ISD::FP_TO_UINT,  MVT::v8i32,  MVT::v8f32,  1 },
1037     { ISD::FP_TO_UINT,  MVT::v16i32, MVT::v16f32, 1 },
1038   };
1039 
1040   static const TypeConversionCostTblEntry AVX2ConversionTbl[] = {
1041     { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v4i1,   3 },
1042     { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v4i1,   3 },
1043     { ISD::SIGN_EXTEND, MVT::v8i32,  MVT::v8i1,   3 },
1044     { ISD::ZERO_EXTEND, MVT::v8i32,  MVT::v8i1,   3 },
1045     { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v4i8,   3 },
1046     { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v4i8,   3 },
1047     { ISD::SIGN_EXTEND, MVT::v8i32,  MVT::v8i8,   3 },
1048     { ISD::ZERO_EXTEND, MVT::v8i32,  MVT::v8i8,   3 },
1049     { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i8,  1 },
1050     { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i8,  1 },
1051     { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v4i16,  3 },
1052     { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v4i16,  3 },
1053     { ISD::SIGN_EXTEND, MVT::v8i32,  MVT::v8i16,  1 },
1054     { ISD::ZERO_EXTEND, MVT::v8i32,  MVT::v8i16,  1 },
1055     { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v4i32,  1 },
1056     { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v4i32,  1 },
1057 
1058     { ISD::TRUNCATE,    MVT::v4i8,   MVT::v4i64,  2 },
1059     { ISD::TRUNCATE,    MVT::v4i16,  MVT::v4i64,  2 },
1060     { ISD::TRUNCATE,    MVT::v4i32,  MVT::v4i64,  2 },
1061     { ISD::TRUNCATE,    MVT::v8i8,   MVT::v8i32,  2 },
1062     { ISD::TRUNCATE,    MVT::v8i16,  MVT::v8i32,  2 },
1063     { ISD::TRUNCATE,    MVT::v8i32,  MVT::v8i64,  4 },
1064 
1065     { ISD::FP_EXTEND,   MVT::v8f64,  MVT::v8f32,  3 },
1066     { ISD::FP_ROUND,    MVT::v8f32,  MVT::v8f64,  3 },
1067 
1068     { ISD::UINT_TO_FP,  MVT::v8f32,  MVT::v8i32,  8 },
1069   };
1070 
1071   static const TypeConversionCostTblEntry AVXConversionTbl[] = {
1072     { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v4i1,  6 },
1073     { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v4i1,  4 },
1074     { ISD::SIGN_EXTEND, MVT::v8i32,  MVT::v8i1,  7 },
1075     { ISD::ZERO_EXTEND, MVT::v8i32,  MVT::v8i1,  4 },
1076     { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v4i8,  6 },
1077     { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v4i8,  4 },
1078     { ISD::SIGN_EXTEND, MVT::v8i32,  MVT::v8i8,  7 },
1079     { ISD::ZERO_EXTEND, MVT::v8i32,  MVT::v8i8,  4 },
1080     { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i8, 4 },
1081     { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i8, 4 },
1082     { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v4i16, 6 },
1083     { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v4i16, 3 },
1084     { ISD::SIGN_EXTEND, MVT::v8i32,  MVT::v8i16, 4 },
1085     { ISD::ZERO_EXTEND, MVT::v8i32,  MVT::v8i16, 4 },
1086     { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v4i32, 4 },
1087     { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v4i32, 4 },
1088 
1089     { ISD::TRUNCATE,    MVT::v16i8, MVT::v16i16, 4 },
1090     { ISD::TRUNCATE,    MVT::v8i8,  MVT::v8i32,  4 },
1091     { ISD::TRUNCATE,    MVT::v8i16, MVT::v8i32,  5 },
1092     { ISD::TRUNCATE,    MVT::v4i8,  MVT::v4i64,  4 },
1093     { ISD::TRUNCATE,    MVT::v4i16, MVT::v4i64,  4 },
1094     { ISD::TRUNCATE,    MVT::v4i32, MVT::v4i64,  4 },
1095     { ISD::TRUNCATE,    MVT::v8i32, MVT::v8i64,  9 },
1096 
1097     { ISD::SINT_TO_FP,  MVT::v4f32, MVT::v4i1,  3 },
1098     { ISD::SINT_TO_FP,  MVT::v4f64, MVT::v4i1,  3 },
1099     { ISD::SINT_TO_FP,  MVT::v8f32, MVT::v8i1,  8 },
1100     { ISD::SINT_TO_FP,  MVT::v4f32, MVT::v4i8,  3 },
1101     { ISD::SINT_TO_FP,  MVT::v4f64, MVT::v4i8,  3 },
1102     { ISD::SINT_TO_FP,  MVT::v8f32, MVT::v8i8,  8 },
1103     { ISD::SINT_TO_FP,  MVT::v4f32, MVT::v4i16, 3 },
1104     { ISD::SINT_TO_FP,  MVT::v4f64, MVT::v4i16, 3 },
1105     { ISD::SINT_TO_FP,  MVT::v8f32, MVT::v8i16, 5 },
1106     { ISD::SINT_TO_FP,  MVT::v4f32, MVT::v4i32, 1 },
1107     { ISD::SINT_TO_FP,  MVT::v4f64, MVT::v4i32, 1 },
1108     { ISD::SINT_TO_FP,  MVT::v8f32, MVT::v8i32, 1 },
1109 
1110     { ISD::UINT_TO_FP,  MVT::v4f32, MVT::v4i1,  7 },
1111     { ISD::UINT_TO_FP,  MVT::v4f64, MVT::v4i1,  7 },
1112     { ISD::UINT_TO_FP,  MVT::v8f32, MVT::v8i1,  6 },
1113     { ISD::UINT_TO_FP,  MVT::v4f32, MVT::v4i8,  2 },
1114     { ISD::UINT_TO_FP,  MVT::v4f64, MVT::v4i8,  2 },
1115     { ISD::UINT_TO_FP,  MVT::v8f32, MVT::v8i8,  5 },
1116     { ISD::UINT_TO_FP,  MVT::v4f32, MVT::v4i16, 2 },
1117     { ISD::UINT_TO_FP,  MVT::v4f64, MVT::v4i16, 2 },
1118     { ISD::UINT_TO_FP,  MVT::v8f32, MVT::v8i16, 5 },
1119     { ISD::UINT_TO_FP,  MVT::v2f64, MVT::v2i32, 6 },
1120     { ISD::UINT_TO_FP,  MVT::v4f32, MVT::v4i32, 6 },
1121     { ISD::UINT_TO_FP,  MVT::v4f64, MVT::v4i32, 6 },
1122     { ISD::UINT_TO_FP,  MVT::v8f32, MVT::v8i32, 9 },
1123     // The generic code to compute the scalar overhead is currently broken.
1124     // Workaround this limitation by estimating the scalarization overhead
1125     // here. We have roughly 10 instructions per scalar element.
1126     // Multiply that by the vector width.
1127     // FIXME: remove that when PR19268 is fixed.
1128     { ISD::UINT_TO_FP,  MVT::v2f64, MVT::v2i64, 10 },
1129     { ISD::UINT_TO_FP,  MVT::v4f64, MVT::v4i64, 20 },
1130     { ISD::SINT_TO_FP,  MVT::v4f64, MVT::v4i64, 13 },
1131     { ISD::SINT_TO_FP,  MVT::v4f64, MVT::v4i64, 13 },
1132 
1133     { ISD::FP_TO_SINT,  MVT::v4i8,  MVT::v4f32, 1 },
1134     { ISD::FP_TO_SINT,  MVT::v8i8,  MVT::v8f32, 7 },
1135     // This node is expanded into scalarized operations but BasicTTI is overly
1136     // optimistic estimating its cost.  It computes 3 per element (one
1137     // vector-extract, one scalar conversion and one vector-insert).  The
1138     // problem is that the inserts form a read-modify-write chain so latency
1139     // should be factored in too.  Inflating the cost per element by 1.
1140     { ISD::FP_TO_UINT,  MVT::v8i32, MVT::v8f32, 8*4 },
1141     { ISD::FP_TO_UINT,  MVT::v4i32, MVT::v4f64, 4*4 },
1142 
1143     { ISD::FP_EXTEND,   MVT::v4f64,  MVT::v4f32,  1 },
1144     { ISD::FP_ROUND,    MVT::v4f32,  MVT::v4f64,  1 },
1145   };
1146 
1147   static const TypeConversionCostTblEntry SSE41ConversionTbl[] = {
1148     { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i8,    2 },
1149     { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i8,    2 },
1150     { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i16,   2 },
1151     { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i16,   2 },
1152     { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i32,   2 },
1153     { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i32,   2 },
1154 
1155     { ISD::ZERO_EXTEND, MVT::v4i16,  MVT::v4i8,   1 },
1156     { ISD::SIGN_EXTEND, MVT::v4i16,  MVT::v4i8,   2 },
1157     { ISD::ZERO_EXTEND, MVT::v4i32,  MVT::v4i8,   1 },
1158     { ISD::SIGN_EXTEND, MVT::v4i32,  MVT::v4i8,   1 },
1159     { ISD::ZERO_EXTEND, MVT::v8i16,  MVT::v8i8,   1 },
1160     { ISD::SIGN_EXTEND, MVT::v8i16,  MVT::v8i8,   1 },
1161     { ISD::ZERO_EXTEND, MVT::v8i32,  MVT::v8i8,   2 },
1162     { ISD::SIGN_EXTEND, MVT::v8i32,  MVT::v8i8,   2 },
1163     { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i8,  2 },
1164     { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i8,  2 },
1165     { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i8,  4 },
1166     { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i8,  4 },
1167     { ISD::ZERO_EXTEND, MVT::v4i32,  MVT::v4i16,  1 },
1168     { ISD::SIGN_EXTEND, MVT::v4i32,  MVT::v4i16,  1 },
1169     { ISD::ZERO_EXTEND, MVT::v8i32,  MVT::v8i16,  2 },
1170     { ISD::SIGN_EXTEND, MVT::v8i32,  MVT::v8i16,  2 },
1171     { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i16, 4 },
1172     { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i16, 4 },
1173 
1174     { ISD::TRUNCATE,    MVT::v4i8,   MVT::v4i16,  2 },
1175     { ISD::TRUNCATE,    MVT::v8i8,   MVT::v8i16,  1 },
1176     { ISD::TRUNCATE,    MVT::v4i8,   MVT::v4i32,  1 },
1177     { ISD::TRUNCATE,    MVT::v4i16,  MVT::v4i32,  1 },
1178     { ISD::TRUNCATE,    MVT::v8i8,   MVT::v8i32,  3 },
1179     { ISD::TRUNCATE,    MVT::v8i16,  MVT::v8i32,  3 },
1180     { ISD::TRUNCATE,    MVT::v16i16, MVT::v16i32, 6 },
1181 
1182   };
1183 
1184   static const TypeConversionCostTblEntry SSE2ConversionTbl[] = {
1185     // These are somewhat magic numbers justified by looking at the output of
1186     // Intel's IACA, running some kernels and making sure when we take
1187     // legalization into account the throughput will be overestimated.
1188     { ISD::SINT_TO_FP, MVT::v4f32, MVT::v16i8, 8 },
1189     { ISD::SINT_TO_FP, MVT::v2f64, MVT::v16i8, 16*10 },
1190     { ISD::SINT_TO_FP, MVT::v4f32, MVT::v8i16, 15 },
1191     { ISD::SINT_TO_FP, MVT::v2f64, MVT::v8i16, 8*10 },
1192     { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i32, 5 },
1193     { ISD::SINT_TO_FP, MVT::v2f64, MVT::v4i32, 4*10 },
1194     { ISD::SINT_TO_FP, MVT::v4f32, MVT::v2i64, 15 },
1195     { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i64, 2*10 },
1196 
1197     { ISD::UINT_TO_FP, MVT::v2f64, MVT::v16i8, 16*10 },
1198     { ISD::UINT_TO_FP, MVT::v4f32, MVT::v16i8, 8 },
1199     { ISD::UINT_TO_FP, MVT::v4f32, MVT::v8i16, 15 },
1200     { ISD::UINT_TO_FP, MVT::v2f64, MVT::v8i16, 8*10 },
1201     { ISD::UINT_TO_FP, MVT::v2f64, MVT::v4i32, 4*10 },
1202     { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i32, 8 },
1203     { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i64, 2*10 },
1204     { ISD::UINT_TO_FP, MVT::v4f32, MVT::v2i64, 15 },
1205 
1206     { ISD::FP_TO_SINT,  MVT::v2i32,  MVT::v2f64,  3 },
1207 
1208     { ISD::ZERO_EXTEND, MVT::v4i16,  MVT::v4i8,   1 },
1209     { ISD::SIGN_EXTEND, MVT::v4i16,  MVT::v4i8,   6 },
1210     { ISD::ZERO_EXTEND, MVT::v4i32,  MVT::v4i8,   2 },
1211     { ISD::SIGN_EXTEND, MVT::v4i32,  MVT::v4i8,   3 },
1212     { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v4i8,   4 },
1213     { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v4i8,   8 },
1214     { ISD::ZERO_EXTEND, MVT::v8i16,  MVT::v8i8,   1 },
1215     { ISD::SIGN_EXTEND, MVT::v8i16,  MVT::v8i8,   2 },
1216     { ISD::ZERO_EXTEND, MVT::v8i32,  MVT::v8i8,   6 },
1217     { ISD::SIGN_EXTEND, MVT::v8i32,  MVT::v8i8,   6 },
1218     { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i8,  3 },
1219     { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i8,  4 },
1220     { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i8,  9 },
1221     { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i8,  12 },
1222     { ISD::ZERO_EXTEND, MVT::v4i32,  MVT::v4i16,  1 },
1223     { ISD::SIGN_EXTEND, MVT::v4i32,  MVT::v4i16,  2 },
1224     { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v4i16,  3 },
1225     { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v4i16,  10 },
1226     { ISD::ZERO_EXTEND, MVT::v8i32,  MVT::v8i16,  3 },
1227     { ISD::SIGN_EXTEND, MVT::v8i32,  MVT::v8i16,  4 },
1228     { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i16, 6 },
1229     { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i16, 8 },
1230     { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v4i32,  3 },
1231     { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v4i32,  5 },
1232 
1233     { ISD::TRUNCATE,    MVT::v4i8,   MVT::v4i16,  4 },
1234     { ISD::TRUNCATE,    MVT::v8i8,   MVT::v8i16,  2 },
1235     { ISD::TRUNCATE,    MVT::v16i8,  MVT::v16i16, 3 },
1236     { ISD::TRUNCATE,    MVT::v4i8,   MVT::v4i32,  3 },
1237     { ISD::TRUNCATE,    MVT::v4i16,  MVT::v4i32,  3 },
1238     { ISD::TRUNCATE,    MVT::v8i8,   MVT::v8i32,  4 },
1239     { ISD::TRUNCATE,    MVT::v16i8,  MVT::v16i32, 7 },
1240     { ISD::TRUNCATE,    MVT::v8i16,  MVT::v8i32,  5 },
1241     { ISD::TRUNCATE,    MVT::v16i16, MVT::v16i32, 10 },
1242   };
1243 
1244   std::pair<int, MVT> LTSrc = TLI->getTypeLegalizationCost(DL, Src);
1245   std::pair<int, MVT> LTDest = TLI->getTypeLegalizationCost(DL, Dst);
1246 
1247   if (ST->hasSSE2() && !ST->hasAVX()) {
1248     if (const auto *Entry = ConvertCostTableLookup(SSE2ConversionTbl, ISD,
1249                                                    LTDest.second, LTSrc.second))
1250       return LTSrc.first * Entry->Cost;
1251   }
1252 
1253   EVT SrcTy = TLI->getValueType(DL, Src);
1254   EVT DstTy = TLI->getValueType(DL, Dst);
1255 
1256   // The function getSimpleVT only handles simple value types.
1257   if (!SrcTy.isSimple() || !DstTy.isSimple())
1258     return BaseT::getCastInstrCost(Opcode, Dst, Src);
1259 
1260   if (ST->hasDQI())
1261     if (const auto *Entry = ConvertCostTableLookup(AVX512DQConversionTbl, ISD,
1262                                                    DstTy.getSimpleVT(),
1263                                                    SrcTy.getSimpleVT()))
1264       return Entry->Cost;
1265 
1266   if (ST->hasAVX512())
1267     if (const auto *Entry = ConvertCostTableLookup(AVX512FConversionTbl, ISD,
1268                                                    DstTy.getSimpleVT(),
1269                                                    SrcTy.getSimpleVT()))
1270       return Entry->Cost;
1271 
1272   if (ST->hasAVX2()) {
1273     if (const auto *Entry = ConvertCostTableLookup(AVX2ConversionTbl, ISD,
1274                                                    DstTy.getSimpleVT(),
1275                                                    SrcTy.getSimpleVT()))
1276       return Entry->Cost;
1277   }
1278 
1279   if (ST->hasAVX()) {
1280     if (const auto *Entry = ConvertCostTableLookup(AVXConversionTbl, ISD,
1281                                                    DstTy.getSimpleVT(),
1282                                                    SrcTy.getSimpleVT()))
1283       return Entry->Cost;
1284   }
1285 
1286   if (ST->hasSSE41()) {
1287     if (const auto *Entry = ConvertCostTableLookup(SSE41ConversionTbl, ISD,
1288                                                    DstTy.getSimpleVT(),
1289                                                    SrcTy.getSimpleVT()))
1290       return Entry->Cost;
1291   }
1292 
1293   if (ST->hasSSE2()) {
1294     if (const auto *Entry = ConvertCostTableLookup(SSE2ConversionTbl, ISD,
1295                                                    DstTy.getSimpleVT(),
1296                                                    SrcTy.getSimpleVT()))
1297       return Entry->Cost;
1298   }
1299 
1300   return BaseT::getCastInstrCost(Opcode, Dst, Src);
1301 }
1302 
1303 int X86TTIImpl::getCmpSelInstrCost(unsigned Opcode, Type *ValTy, Type *CondTy) {
1304   // Legalize the type.
1305   std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, ValTy);
1306 
1307   MVT MTy = LT.second;
1308 
1309   int ISD = TLI->InstructionOpcodeToISD(Opcode);
1310   assert(ISD && "Invalid opcode");
1311 
1312   static const CostTblEntry SSE2CostTbl[] = {
1313     { ISD::SETCC,   MVT::v2i64,   8 },
1314     { ISD::SETCC,   MVT::v4i32,   1 },
1315     { ISD::SETCC,   MVT::v8i16,   1 },
1316     { ISD::SETCC,   MVT::v16i8,   1 },
1317   };
1318 
1319   static const CostTblEntry SSE42CostTbl[] = {
1320     { ISD::SETCC,   MVT::v2f64,   1 },
1321     { ISD::SETCC,   MVT::v4f32,   1 },
1322     { ISD::SETCC,   MVT::v2i64,   1 },
1323   };
1324 
1325   static const CostTblEntry AVX1CostTbl[] = {
1326     { ISD::SETCC,   MVT::v4f64,   1 },
1327     { ISD::SETCC,   MVT::v8f32,   1 },
1328     // AVX1 does not support 8-wide integer compare.
1329     { ISD::SETCC,   MVT::v4i64,   4 },
1330     { ISD::SETCC,   MVT::v8i32,   4 },
1331     { ISD::SETCC,   MVT::v16i16,  4 },
1332     { ISD::SETCC,   MVT::v32i8,   4 },
1333   };
1334 
1335   static const CostTblEntry AVX2CostTbl[] = {
1336     { ISD::SETCC,   MVT::v4i64,   1 },
1337     { ISD::SETCC,   MVT::v8i32,   1 },
1338     { ISD::SETCC,   MVT::v16i16,  1 },
1339     { ISD::SETCC,   MVT::v32i8,   1 },
1340   };
1341 
1342   static const CostTblEntry AVX512CostTbl[] = {
1343     { ISD::SETCC,   MVT::v8i64,   1 },
1344     { ISD::SETCC,   MVT::v16i32,  1 },
1345     { ISD::SETCC,   MVT::v8f64,   1 },
1346     { ISD::SETCC,   MVT::v16f32,  1 },
1347   };
1348 
1349   if (ST->hasAVX512())
1350     if (const auto *Entry = CostTableLookup(AVX512CostTbl, ISD, MTy))
1351       return LT.first * Entry->Cost;
1352 
1353   if (ST->hasAVX2())
1354     if (const auto *Entry = CostTableLookup(AVX2CostTbl, ISD, MTy))
1355       return LT.first * Entry->Cost;
1356 
1357   if (ST->hasAVX())
1358     if (const auto *Entry = CostTableLookup(AVX1CostTbl, ISD, MTy))
1359       return LT.first * Entry->Cost;
1360 
1361   if (ST->hasSSE42())
1362     if (const auto *Entry = CostTableLookup(SSE42CostTbl, ISD, MTy))
1363       return LT.first * Entry->Cost;
1364 
1365   if (ST->hasSSE2())
1366     if (const auto *Entry = CostTableLookup(SSE2CostTbl, ISD, MTy))
1367       return LT.first * Entry->Cost;
1368 
1369   return BaseT::getCmpSelInstrCost(Opcode, ValTy, CondTy);
1370 }
1371 
1372 int X86TTIImpl::getIntrinsicInstrCost(Intrinsic::ID IID, Type *RetTy,
1373                                       ArrayRef<Type *> Tys, FastMathFlags FMF,
1374                                       unsigned ScalarizationCostPassed) {
1375   // Costs should match the codegen from:
1376   // BITREVERSE: llvm\test\CodeGen\X86\vector-bitreverse.ll
1377   // BSWAP: llvm\test\CodeGen\X86\bswap-vector.ll
1378   // CTLZ: llvm\test\CodeGen\X86\vector-lzcnt-*.ll
1379   // CTPOP: llvm\test\CodeGen\X86\vector-popcnt-*.ll
1380   // CTTZ: llvm\test\CodeGen\X86\vector-tzcnt-*.ll
1381   static const CostTblEntry XOPCostTbl[] = {
1382     { ISD::BITREVERSE, MVT::v4i64,   4 },
1383     { ISD::BITREVERSE, MVT::v8i32,   4 },
1384     { ISD::BITREVERSE, MVT::v16i16,  4 },
1385     { ISD::BITREVERSE, MVT::v32i8,   4 },
1386     { ISD::BITREVERSE, MVT::v2i64,   1 },
1387     { ISD::BITREVERSE, MVT::v4i32,   1 },
1388     { ISD::BITREVERSE, MVT::v8i16,   1 },
1389     { ISD::BITREVERSE, MVT::v16i8,   1 },
1390     { ISD::BITREVERSE, MVT::i64,     3 },
1391     { ISD::BITREVERSE, MVT::i32,     3 },
1392     { ISD::BITREVERSE, MVT::i16,     3 },
1393     { ISD::BITREVERSE, MVT::i8,      3 }
1394   };
1395   static const CostTblEntry AVX2CostTbl[] = {
1396     { ISD::BITREVERSE, MVT::v4i64,   5 },
1397     { ISD::BITREVERSE, MVT::v8i32,   5 },
1398     { ISD::BITREVERSE, MVT::v16i16,  5 },
1399     { ISD::BITREVERSE, MVT::v32i8,   5 },
1400     { ISD::BSWAP,      MVT::v4i64,   1 },
1401     { ISD::BSWAP,      MVT::v8i32,   1 },
1402     { ISD::BSWAP,      MVT::v16i16,  1 },
1403     { ISD::CTLZ,       MVT::v4i64,  23 },
1404     { ISD::CTLZ,       MVT::v8i32,  18 },
1405     { ISD::CTLZ,       MVT::v16i16, 14 },
1406     { ISD::CTLZ,       MVT::v32i8,   9 },
1407     { ISD::CTPOP,      MVT::v4i64,   7 },
1408     { ISD::CTPOP,      MVT::v8i32,  11 },
1409     { ISD::CTPOP,      MVT::v16i16,  9 },
1410     { ISD::CTPOP,      MVT::v32i8,   6 },
1411     { ISD::CTTZ,       MVT::v4i64,  10 },
1412     { ISD::CTTZ,       MVT::v8i32,  14 },
1413     { ISD::CTTZ,       MVT::v16i16, 12 },
1414     { ISD::CTTZ,       MVT::v32i8,   9 },
1415     { ISD::FSQRT,      MVT::f32,     7 }, // Haswell from http://www.agner.org/
1416     { ISD::FSQRT,      MVT::v4f32,   7 }, // Haswell from http://www.agner.org/
1417     { ISD::FSQRT,      MVT::v8f32,  14 }, // Haswell from http://www.agner.org/
1418     { ISD::FSQRT,      MVT::f64,    14 }, // Haswell from http://www.agner.org/
1419     { ISD::FSQRT,      MVT::v2f64,  14 }, // Haswell from http://www.agner.org/
1420     { ISD::FSQRT,      MVT::v4f64,  28 }, // Haswell from http://www.agner.org/
1421   };
1422   static const CostTblEntry AVX1CostTbl[] = {
1423     { ISD::BITREVERSE, MVT::v4i64,  10 },
1424     { ISD::BITREVERSE, MVT::v8i32,  10 },
1425     { ISD::BITREVERSE, MVT::v16i16, 10 },
1426     { ISD::BITREVERSE, MVT::v32i8,  10 },
1427     { ISD::BSWAP,      MVT::v4i64,   4 },
1428     { ISD::BSWAP,      MVT::v8i32,   4 },
1429     { ISD::BSWAP,      MVT::v16i16,  4 },
1430     { ISD::CTLZ,       MVT::v4i64,  46 },
1431     { ISD::CTLZ,       MVT::v8i32,  36 },
1432     { ISD::CTLZ,       MVT::v16i16, 28 },
1433     { ISD::CTLZ,       MVT::v32i8,  18 },
1434     { ISD::CTPOP,      MVT::v4i64,  14 },
1435     { ISD::CTPOP,      MVT::v8i32,  22 },
1436     { ISD::CTPOP,      MVT::v16i16, 18 },
1437     { ISD::CTPOP,      MVT::v32i8,  12 },
1438     { ISD::CTTZ,       MVT::v4i64,  20 },
1439     { ISD::CTTZ,       MVT::v8i32,  28 },
1440     { ISD::CTTZ,       MVT::v16i16, 24 },
1441     { ISD::CTTZ,       MVT::v32i8,  18 },
1442     { ISD::FSQRT,      MVT::f32,    14 }, // SNB from http://www.agner.org/
1443     { ISD::FSQRT,      MVT::v4f32,  14 }, // SNB from http://www.agner.org/
1444     { ISD::FSQRT,      MVT::v8f32,  28 }, // SNB from http://www.agner.org/
1445     { ISD::FSQRT,      MVT::f64,    21 }, // SNB from http://www.agner.org/
1446     { ISD::FSQRT,      MVT::v2f64,  21 }, // SNB from http://www.agner.org/
1447     { ISD::FSQRT,      MVT::v4f64,  43 }, // SNB from http://www.agner.org/
1448   };
1449   static const CostTblEntry SSE42CostTbl[] = {
1450     { ISD::FSQRT,      MVT::f32,    18 }, // Nehalem from http://www.agner.org/
1451     { ISD::FSQRT,      MVT::v4f32,  18 }, // Nehalem from http://www.agner.org/
1452   };
1453   static const CostTblEntry SSSE3CostTbl[] = {
1454     { ISD::BITREVERSE, MVT::v2i64,   5 },
1455     { ISD::BITREVERSE, MVT::v4i32,   5 },
1456     { ISD::BITREVERSE, MVT::v8i16,   5 },
1457     { ISD::BITREVERSE, MVT::v16i8,   5 },
1458     { ISD::BSWAP,      MVT::v2i64,   1 },
1459     { ISD::BSWAP,      MVT::v4i32,   1 },
1460     { ISD::BSWAP,      MVT::v8i16,   1 },
1461     { ISD::CTLZ,       MVT::v2i64,  23 },
1462     { ISD::CTLZ,       MVT::v4i32,  18 },
1463     { ISD::CTLZ,       MVT::v8i16,  14 },
1464     { ISD::CTLZ,       MVT::v16i8,   9 },
1465     { ISD::CTPOP,      MVT::v2i64,   7 },
1466     { ISD::CTPOP,      MVT::v4i32,  11 },
1467     { ISD::CTPOP,      MVT::v8i16,   9 },
1468     { ISD::CTPOP,      MVT::v16i8,   6 },
1469     { ISD::CTTZ,       MVT::v2i64,  10 },
1470     { ISD::CTTZ,       MVT::v4i32,  14 },
1471     { ISD::CTTZ,       MVT::v8i16,  12 },
1472     { ISD::CTTZ,       MVT::v16i8,   9 }
1473   };
1474   static const CostTblEntry SSE2CostTbl[] = {
1475     { ISD::BITREVERSE, MVT::v2i64,  29 },
1476     { ISD::BITREVERSE, MVT::v4i32,  27 },
1477     { ISD::BITREVERSE, MVT::v8i16,  27 },
1478     { ISD::BITREVERSE, MVT::v16i8,  20 },
1479     { ISD::BSWAP,      MVT::v2i64,   7 },
1480     { ISD::BSWAP,      MVT::v4i32,   7 },
1481     { ISD::BSWAP,      MVT::v8i16,   7 },
1482     { ISD::CTLZ,       MVT::v2i64,  25 },
1483     { ISD::CTLZ,       MVT::v4i32,  26 },
1484     { ISD::CTLZ,       MVT::v8i16,  20 },
1485     { ISD::CTLZ,       MVT::v16i8,  17 },
1486     { ISD::CTPOP,      MVT::v2i64,  12 },
1487     { ISD::CTPOP,      MVT::v4i32,  15 },
1488     { ISD::CTPOP,      MVT::v8i16,  13 },
1489     { ISD::CTPOP,      MVT::v16i8,  10 },
1490     { ISD::CTTZ,       MVT::v2i64,  14 },
1491     { ISD::CTTZ,       MVT::v4i32,  18 },
1492     { ISD::CTTZ,       MVT::v8i16,  16 },
1493     { ISD::CTTZ,       MVT::v16i8,  13 },
1494     { ISD::FSQRT,      MVT::f64,    32 }, // Nehalem from http://www.agner.org/
1495     { ISD::FSQRT,      MVT::v2f64,  32 }, // Nehalem from http://www.agner.org/
1496   };
1497   static const CostTblEntry SSE1CostTbl[] = {
1498     { ISD::FSQRT,      MVT::f32,    28 }, // Pentium III from http://www.agner.org/
1499     { ISD::FSQRT,      MVT::v4f32,  56 }, // Pentium III from http://www.agner.org/
1500   };
1501   static const CostTblEntry X64CostTbl[] = { // 64-bit targets
1502     { ISD::BITREVERSE, MVT::i64,    14 }
1503   };
1504   static const CostTblEntry X86CostTbl[] = { // 32 or 64-bit targets
1505     { ISD::BITREVERSE, MVT::i32,    14 },
1506     { ISD::BITREVERSE, MVT::i16,    14 },
1507     { ISD::BITREVERSE, MVT::i8,     11 }
1508   };
1509 
1510   unsigned ISD = ISD::DELETED_NODE;
1511   switch (IID) {
1512   default:
1513     break;
1514   case Intrinsic::bitreverse:
1515     ISD = ISD::BITREVERSE;
1516     break;
1517   case Intrinsic::bswap:
1518     ISD = ISD::BSWAP;
1519     break;
1520   case Intrinsic::ctlz:
1521     ISD = ISD::CTLZ;
1522     break;
1523   case Intrinsic::ctpop:
1524     ISD = ISD::CTPOP;
1525     break;
1526   case Intrinsic::cttz:
1527     ISD = ISD::CTTZ;
1528     break;
1529   case Intrinsic::sqrt:
1530     ISD = ISD::FSQRT;
1531     break;
1532   }
1533 
1534   // Legalize the type.
1535   std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, RetTy);
1536   MVT MTy = LT.second;
1537 
1538   // Attempt to lookup cost.
1539   if (ST->hasXOP())
1540     if (const auto *Entry = CostTableLookup(XOPCostTbl, ISD, MTy))
1541       return LT.first * Entry->Cost;
1542 
1543   if (ST->hasAVX2())
1544     if (const auto *Entry = CostTableLookup(AVX2CostTbl, ISD, MTy))
1545       return LT.first * Entry->Cost;
1546 
1547   if (ST->hasAVX())
1548     if (const auto *Entry = CostTableLookup(AVX1CostTbl, ISD, MTy))
1549       return LT.first * Entry->Cost;
1550 
1551   if (ST->hasSSE42())
1552     if (const auto *Entry = CostTableLookup(SSE42CostTbl, ISD, MTy))
1553       return LT.first * Entry->Cost;
1554 
1555   if (ST->hasSSSE3())
1556     if (const auto *Entry = CostTableLookup(SSSE3CostTbl, ISD, MTy))
1557       return LT.first * Entry->Cost;
1558 
1559   if (ST->hasSSE2())
1560     if (const auto *Entry = CostTableLookup(SSE2CostTbl, ISD, MTy))
1561       return LT.first * Entry->Cost;
1562 
1563   if (ST->hasSSE1())
1564     if (const auto *Entry = CostTableLookup(SSE1CostTbl, ISD, MTy))
1565       return LT.first * Entry->Cost;
1566 
1567   if (ST->is64Bit())
1568     if (const auto *Entry = CostTableLookup(X64CostTbl, ISD, MTy))
1569       return LT.first * Entry->Cost;
1570 
1571   if (const auto *Entry = CostTableLookup(X86CostTbl, ISD, MTy))
1572     return LT.first * Entry->Cost;
1573 
1574   return BaseT::getIntrinsicInstrCost(IID, RetTy, Tys, FMF, ScalarizationCostPassed);
1575 }
1576 
1577 int X86TTIImpl::getIntrinsicInstrCost(Intrinsic::ID IID, Type *RetTy,
1578                      ArrayRef<Value *> Args, FastMathFlags FMF, unsigned VF) {
1579   return BaseT::getIntrinsicInstrCost(IID, RetTy, Args, FMF, VF);
1580 }
1581 
1582 int X86TTIImpl::getVectorInstrCost(unsigned Opcode, Type *Val, unsigned Index) {
1583   assert(Val->isVectorTy() && "This must be a vector type");
1584 
1585   Type *ScalarType = Val->getScalarType();
1586 
1587   if (Index != -1U) {
1588     // Legalize the type.
1589     std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Val);
1590 
1591     // This type is legalized to a scalar type.
1592     if (!LT.second.isVector())
1593       return 0;
1594 
1595     // The type may be split. Normalize the index to the new type.
1596     unsigned Width = LT.second.getVectorNumElements();
1597     Index = Index % Width;
1598 
1599     // Floating point scalars are already located in index #0.
1600     if (ScalarType->isFloatingPointTy() && Index == 0)
1601       return 0;
1602   }
1603 
1604   // Add to the base cost if we know that the extracted element of a vector is
1605   // destined to be moved to and used in the integer register file.
1606   int RegisterFileMoveCost = 0;
1607   if (Opcode == Instruction::ExtractElement && ScalarType->isPointerTy())
1608     RegisterFileMoveCost = 1;
1609 
1610   return BaseT::getVectorInstrCost(Opcode, Val, Index) + RegisterFileMoveCost;
1611 }
1612 
1613 int X86TTIImpl::getMemoryOpCost(unsigned Opcode, Type *Src, unsigned Alignment,
1614                                 unsigned AddressSpace) {
1615   // Handle non-power-of-two vectors such as <3 x float>
1616   if (VectorType *VTy = dyn_cast<VectorType>(Src)) {
1617     unsigned NumElem = VTy->getVectorNumElements();
1618 
1619     // Handle a few common cases:
1620     // <3 x float>
1621     if (NumElem == 3 && VTy->getScalarSizeInBits() == 32)
1622       // Cost = 64 bit store + extract + 32 bit store.
1623       return 3;
1624 
1625     // <3 x double>
1626     if (NumElem == 3 && VTy->getScalarSizeInBits() == 64)
1627       // Cost = 128 bit store + unpack + 64 bit store.
1628       return 3;
1629 
1630     // Assume that all other non-power-of-two numbers are scalarized.
1631     if (!isPowerOf2_32(NumElem)) {
1632       int Cost = BaseT::getMemoryOpCost(Opcode, VTy->getScalarType(), Alignment,
1633                                         AddressSpace);
1634       int SplitCost = getScalarizationOverhead(Src, Opcode == Instruction::Load,
1635                                                Opcode == Instruction::Store);
1636       return NumElem * Cost + SplitCost;
1637     }
1638   }
1639 
1640   // Legalize the type.
1641   std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Src);
1642   assert((Opcode == Instruction::Load || Opcode == Instruction::Store) &&
1643          "Invalid Opcode");
1644 
1645   // Each load/store unit costs 1.
1646   int Cost = LT.first * 1;
1647 
1648   // This isn't exactly right. We're using slow unaligned 32-byte accesses as a
1649   // proxy for a double-pumped AVX memory interface such as on Sandybridge.
1650   if (LT.second.getStoreSize() == 32 && ST->isUnalignedMem32Slow())
1651     Cost *= 2;
1652 
1653   return Cost;
1654 }
1655 
1656 int X86TTIImpl::getMaskedMemoryOpCost(unsigned Opcode, Type *SrcTy,
1657                                       unsigned Alignment,
1658                                       unsigned AddressSpace) {
1659   VectorType *SrcVTy = dyn_cast<VectorType>(SrcTy);
1660   if (!SrcVTy)
1661     // To calculate scalar take the regular cost, without mask
1662     return getMemoryOpCost(Opcode, SrcTy, Alignment, AddressSpace);
1663 
1664   unsigned NumElem = SrcVTy->getVectorNumElements();
1665   VectorType *MaskTy =
1666     VectorType::get(Type::getInt8Ty(SrcVTy->getContext()), NumElem);
1667   if ((Opcode == Instruction::Load && !isLegalMaskedLoad(SrcVTy)) ||
1668       (Opcode == Instruction::Store && !isLegalMaskedStore(SrcVTy)) ||
1669       !isPowerOf2_32(NumElem)) {
1670     // Scalarization
1671     int MaskSplitCost = getScalarizationOverhead(MaskTy, false, true);
1672     int ScalarCompareCost = getCmpSelInstrCost(
1673         Instruction::ICmp, Type::getInt8Ty(SrcVTy->getContext()), nullptr);
1674     int BranchCost = getCFInstrCost(Instruction::Br);
1675     int MaskCmpCost = NumElem * (BranchCost + ScalarCompareCost);
1676 
1677     int ValueSplitCost = getScalarizationOverhead(
1678         SrcVTy, Opcode == Instruction::Load, Opcode == Instruction::Store);
1679     int MemopCost =
1680         NumElem * BaseT::getMemoryOpCost(Opcode, SrcVTy->getScalarType(),
1681                                          Alignment, AddressSpace);
1682     return MemopCost + ValueSplitCost + MaskSplitCost + MaskCmpCost;
1683   }
1684 
1685   // Legalize the type.
1686   std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, SrcVTy);
1687   auto VT = TLI->getValueType(DL, SrcVTy);
1688   int Cost = 0;
1689   if (VT.isSimple() && LT.second != VT.getSimpleVT() &&
1690       LT.second.getVectorNumElements() == NumElem)
1691     // Promotion requires expand/truncate for data and a shuffle for mask.
1692     Cost += getShuffleCost(TTI::SK_Alternate, SrcVTy, 0, nullptr) +
1693             getShuffleCost(TTI::SK_Alternate, MaskTy, 0, nullptr);
1694 
1695   else if (LT.second.getVectorNumElements() > NumElem) {
1696     VectorType *NewMaskTy = VectorType::get(MaskTy->getVectorElementType(),
1697                                             LT.second.getVectorNumElements());
1698     // Expanding requires fill mask with zeroes
1699     Cost += getShuffleCost(TTI::SK_InsertSubvector, NewMaskTy, 0, MaskTy);
1700   }
1701   if (!ST->hasAVX512())
1702     return Cost + LT.first*4; // Each maskmov costs 4
1703 
1704   // AVX-512 masked load/store is cheapper
1705   return Cost+LT.first;
1706 }
1707 
1708 int X86TTIImpl::getAddressComputationCost(Type *Ty, ScalarEvolution *SE,
1709                                           const SCEV *Ptr) {
1710   // Address computations in vectorized code with non-consecutive addresses will
1711   // likely result in more instructions compared to scalar code where the
1712   // computation can more often be merged into the index mode. The resulting
1713   // extra micro-ops can significantly decrease throughput.
1714   unsigned NumVectorInstToHideOverhead = 10;
1715 
1716   // Cost modeling of Strided Access Computation is hidden by the indexing
1717   // modes of X86 regardless of the stride value. We dont believe that there
1718   // is a difference between constant strided access in gerenal and constant
1719   // strided value which is less than or equal to 64.
1720   // Even in the case of (loop invariant) stride whose value is not known at
1721   // compile time, the address computation will not incur more than one extra
1722   // ADD instruction.
1723   if (Ty->isVectorTy() && SE) {
1724     if (!BaseT::isStridedAccess(Ptr))
1725       return NumVectorInstToHideOverhead;
1726     if (!BaseT::getConstantStrideStep(SE, Ptr))
1727       return 1;
1728   }
1729 
1730   return BaseT::getAddressComputationCost(Ty, SE, Ptr);
1731 }
1732 
1733 int X86TTIImpl::getReductionCost(unsigned Opcode, Type *ValTy,
1734                                  bool IsPairwise) {
1735 
1736   std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, ValTy);
1737 
1738   MVT MTy = LT.second;
1739 
1740   int ISD = TLI->InstructionOpcodeToISD(Opcode);
1741   assert(ISD && "Invalid opcode");
1742 
1743   // We use the Intel Architecture Code Analyzer(IACA) to measure the throughput
1744   // and make it as the cost.
1745 
1746   static const CostTblEntry SSE42CostTblPairWise[] = {
1747     { ISD::FADD,  MVT::v2f64,   2 },
1748     { ISD::FADD,  MVT::v4f32,   4 },
1749     { ISD::ADD,   MVT::v2i64,   2 },      // The data reported by the IACA tool is "1.6".
1750     { ISD::ADD,   MVT::v4i32,   3 },      // The data reported by the IACA tool is "3.5".
1751     { ISD::ADD,   MVT::v8i16,   5 },
1752   };
1753 
1754   static const CostTblEntry AVX1CostTblPairWise[] = {
1755     { ISD::FADD,  MVT::v4f32,   4 },
1756     { ISD::FADD,  MVT::v4f64,   5 },
1757     { ISD::FADD,  MVT::v8f32,   7 },
1758     { ISD::ADD,   MVT::v2i64,   1 },      // The data reported by the IACA tool is "1.5".
1759     { ISD::ADD,   MVT::v4i32,   3 },      // The data reported by the IACA tool is "3.5".
1760     { ISD::ADD,   MVT::v4i64,   5 },      // The data reported by the IACA tool is "4.8".
1761     { ISD::ADD,   MVT::v8i16,   5 },
1762     { ISD::ADD,   MVT::v8i32,   5 },
1763   };
1764 
1765   static const CostTblEntry SSE42CostTblNoPairWise[] = {
1766     { ISD::FADD,  MVT::v2f64,   2 },
1767     { ISD::FADD,  MVT::v4f32,   4 },
1768     { ISD::ADD,   MVT::v2i64,   2 },      // The data reported by the IACA tool is "1.6".
1769     { ISD::ADD,   MVT::v4i32,   3 },      // The data reported by the IACA tool is "3.3".
1770     { ISD::ADD,   MVT::v8i16,   4 },      // The data reported by the IACA tool is "4.3".
1771   };
1772 
1773   static const CostTblEntry AVX1CostTblNoPairWise[] = {
1774     { ISD::FADD,  MVT::v4f32,   3 },
1775     { ISD::FADD,  MVT::v4f64,   3 },
1776     { ISD::FADD,  MVT::v8f32,   4 },
1777     { ISD::ADD,   MVT::v2i64,   1 },      // The data reported by the IACA tool is "1.5".
1778     { ISD::ADD,   MVT::v4i32,   3 },      // The data reported by the IACA tool is "2.8".
1779     { ISD::ADD,   MVT::v4i64,   3 },
1780     { ISD::ADD,   MVT::v8i16,   4 },
1781     { ISD::ADD,   MVT::v8i32,   5 },
1782   };
1783 
1784   if (IsPairwise) {
1785     if (ST->hasAVX())
1786       if (const auto *Entry = CostTableLookup(AVX1CostTblPairWise, ISD, MTy))
1787         return LT.first * Entry->Cost;
1788 
1789     if (ST->hasSSE42())
1790       if (const auto *Entry = CostTableLookup(SSE42CostTblPairWise, ISD, MTy))
1791         return LT.first * Entry->Cost;
1792   } else {
1793     if (ST->hasAVX())
1794       if (const auto *Entry = CostTableLookup(AVX1CostTblNoPairWise, ISD, MTy))
1795         return LT.first * Entry->Cost;
1796 
1797     if (ST->hasSSE42())
1798       if (const auto *Entry = CostTableLookup(SSE42CostTblNoPairWise, ISD, MTy))
1799         return LT.first * Entry->Cost;
1800   }
1801 
1802   return BaseT::getReductionCost(Opcode, ValTy, IsPairwise);
1803 }
1804 
1805 /// \brief Calculate the cost of materializing a 64-bit value. This helper
1806 /// method might only calculate a fraction of a larger immediate. Therefore it
1807 /// is valid to return a cost of ZERO.
1808 int X86TTIImpl::getIntImmCost(int64_t Val) {
1809   if (Val == 0)
1810     return TTI::TCC_Free;
1811 
1812   if (isInt<32>(Val))
1813     return TTI::TCC_Basic;
1814 
1815   return 2 * TTI::TCC_Basic;
1816 }
1817 
1818 int X86TTIImpl::getIntImmCost(const APInt &Imm, Type *Ty) {
1819   assert(Ty->isIntegerTy());
1820 
1821   unsigned BitSize = Ty->getPrimitiveSizeInBits();
1822   if (BitSize == 0)
1823     return ~0U;
1824 
1825   // Never hoist constants larger than 128bit, because this might lead to
1826   // incorrect code generation or assertions in codegen.
1827   // Fixme: Create a cost model for types larger than i128 once the codegen
1828   // issues have been fixed.
1829   if (BitSize > 128)
1830     return TTI::TCC_Free;
1831 
1832   if (Imm == 0)
1833     return TTI::TCC_Free;
1834 
1835   // Sign-extend all constants to a multiple of 64-bit.
1836   APInt ImmVal = Imm;
1837   if (BitSize & 0x3f)
1838     ImmVal = Imm.sext((BitSize + 63) & ~0x3fU);
1839 
1840   // Split the constant into 64-bit chunks and calculate the cost for each
1841   // chunk.
1842   int Cost = 0;
1843   for (unsigned ShiftVal = 0; ShiftVal < BitSize; ShiftVal += 64) {
1844     APInt Tmp = ImmVal.ashr(ShiftVal).sextOrTrunc(64);
1845     int64_t Val = Tmp.getSExtValue();
1846     Cost += getIntImmCost(Val);
1847   }
1848   // We need at least one instruction to materialize the constant.
1849   return std::max(1, Cost);
1850 }
1851 
1852 int X86TTIImpl::getIntImmCost(unsigned Opcode, unsigned Idx, const APInt &Imm,
1853                               Type *Ty) {
1854   assert(Ty->isIntegerTy());
1855 
1856   unsigned BitSize = Ty->getPrimitiveSizeInBits();
1857   // There is no cost model for constants with a bit size of 0. Return TCC_Free
1858   // here, so that constant hoisting will ignore this constant.
1859   if (BitSize == 0)
1860     return TTI::TCC_Free;
1861 
1862   unsigned ImmIdx = ~0U;
1863   switch (Opcode) {
1864   default:
1865     return TTI::TCC_Free;
1866   case Instruction::GetElementPtr:
1867     // Always hoist the base address of a GetElementPtr. This prevents the
1868     // creation of new constants for every base constant that gets constant
1869     // folded with the offset.
1870     if (Idx == 0)
1871       return 2 * TTI::TCC_Basic;
1872     return TTI::TCC_Free;
1873   case Instruction::Store:
1874     ImmIdx = 0;
1875     break;
1876   case Instruction::ICmp:
1877     // This is an imperfect hack to prevent constant hoisting of
1878     // compares that might be trying to check if a 64-bit value fits in
1879     // 32-bits. The backend can optimize these cases using a right shift by 32.
1880     // Ideally we would check the compare predicate here. There also other
1881     // similar immediates the backend can use shifts for.
1882     if (Idx == 1 && Imm.getBitWidth() == 64) {
1883       uint64_t ImmVal = Imm.getZExtValue();
1884       if (ImmVal == 0x100000000ULL || ImmVal == 0xffffffff)
1885         return TTI::TCC_Free;
1886     }
1887     ImmIdx = 1;
1888     break;
1889   case Instruction::And:
1890     // We support 64-bit ANDs with immediates with 32-bits of leading zeroes
1891     // by using a 32-bit operation with implicit zero extension. Detect such
1892     // immediates here as the normal path expects bit 31 to be sign extended.
1893     if (Idx == 1 && Imm.getBitWidth() == 64 && isUInt<32>(Imm.getZExtValue()))
1894       return TTI::TCC_Free;
1895     LLVM_FALLTHROUGH;
1896   case Instruction::Add:
1897   case Instruction::Sub:
1898   case Instruction::Mul:
1899   case Instruction::UDiv:
1900   case Instruction::SDiv:
1901   case Instruction::URem:
1902   case Instruction::SRem:
1903   case Instruction::Or:
1904   case Instruction::Xor:
1905     ImmIdx = 1;
1906     break;
1907   // Always return TCC_Free for the shift value of a shift instruction.
1908   case Instruction::Shl:
1909   case Instruction::LShr:
1910   case Instruction::AShr:
1911     if (Idx == 1)
1912       return TTI::TCC_Free;
1913     break;
1914   case Instruction::Trunc:
1915   case Instruction::ZExt:
1916   case Instruction::SExt:
1917   case Instruction::IntToPtr:
1918   case Instruction::PtrToInt:
1919   case Instruction::BitCast:
1920   case Instruction::PHI:
1921   case Instruction::Call:
1922   case Instruction::Select:
1923   case Instruction::Ret:
1924   case Instruction::Load:
1925     break;
1926   }
1927 
1928   if (Idx == ImmIdx) {
1929     int NumConstants = (BitSize + 63) / 64;
1930     int Cost = X86TTIImpl::getIntImmCost(Imm, Ty);
1931     return (Cost <= NumConstants * TTI::TCC_Basic)
1932                ? static_cast<int>(TTI::TCC_Free)
1933                : Cost;
1934   }
1935 
1936   return X86TTIImpl::getIntImmCost(Imm, Ty);
1937 }
1938 
1939 int X86TTIImpl::getIntImmCost(Intrinsic::ID IID, unsigned Idx, const APInt &Imm,
1940                               Type *Ty) {
1941   assert(Ty->isIntegerTy());
1942 
1943   unsigned BitSize = Ty->getPrimitiveSizeInBits();
1944   // There is no cost model for constants with a bit size of 0. Return TCC_Free
1945   // here, so that constant hoisting will ignore this constant.
1946   if (BitSize == 0)
1947     return TTI::TCC_Free;
1948 
1949   switch (IID) {
1950   default:
1951     return TTI::TCC_Free;
1952   case Intrinsic::sadd_with_overflow:
1953   case Intrinsic::uadd_with_overflow:
1954   case Intrinsic::ssub_with_overflow:
1955   case Intrinsic::usub_with_overflow:
1956   case Intrinsic::smul_with_overflow:
1957   case Intrinsic::umul_with_overflow:
1958     if ((Idx == 1) && Imm.getBitWidth() <= 64 && isInt<32>(Imm.getSExtValue()))
1959       return TTI::TCC_Free;
1960     break;
1961   case Intrinsic::experimental_stackmap:
1962     if ((Idx < 2) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue())))
1963       return TTI::TCC_Free;
1964     break;
1965   case Intrinsic::experimental_patchpoint_void:
1966   case Intrinsic::experimental_patchpoint_i64:
1967     if ((Idx < 4) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue())))
1968       return TTI::TCC_Free;
1969     break;
1970   }
1971   return X86TTIImpl::getIntImmCost(Imm, Ty);
1972 }
1973 
1974 // Return an average cost of Gather / Scatter instruction, maybe improved later
1975 int X86TTIImpl::getGSVectorCost(unsigned Opcode, Type *SrcVTy, Value *Ptr,
1976                                 unsigned Alignment, unsigned AddressSpace) {
1977 
1978   assert(isa<VectorType>(SrcVTy) && "Unexpected type in getGSVectorCost");
1979   unsigned VF = SrcVTy->getVectorNumElements();
1980 
1981   // Try to reduce index size from 64 bit (default for GEP)
1982   // to 32. It is essential for VF 16. If the index can't be reduced to 32, the
1983   // operation will use 16 x 64 indices which do not fit in a zmm and needs
1984   // to split. Also check that the base pointer is the same for all lanes,
1985   // and that there's at most one variable index.
1986   auto getIndexSizeInBits = [](Value *Ptr, const DataLayout& DL) {
1987     unsigned IndexSize = DL.getPointerSizeInBits();
1988     GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr);
1989     if (IndexSize < 64 || !GEP)
1990       return IndexSize;
1991 
1992     unsigned NumOfVarIndices = 0;
1993     Value *Ptrs = GEP->getPointerOperand();
1994     if (Ptrs->getType()->isVectorTy() && !getSplatValue(Ptrs))
1995       return IndexSize;
1996     for (unsigned i = 1; i < GEP->getNumOperands(); ++i) {
1997       if (isa<Constant>(GEP->getOperand(i)))
1998         continue;
1999       Type *IndxTy = GEP->getOperand(i)->getType();
2000       if (IndxTy->isVectorTy())
2001         IndxTy = IndxTy->getVectorElementType();
2002       if ((IndxTy->getPrimitiveSizeInBits() == 64 &&
2003           !isa<SExtInst>(GEP->getOperand(i))) ||
2004          ++NumOfVarIndices > 1)
2005         return IndexSize; // 64
2006     }
2007     return (unsigned)32;
2008   };
2009 
2010 
2011   // Trying to reduce IndexSize to 32 bits for vector 16.
2012   // By default the IndexSize is equal to pointer size.
2013   unsigned IndexSize = (VF >= 16) ? getIndexSizeInBits(Ptr, DL) :
2014     DL.getPointerSizeInBits();
2015 
2016   Type *IndexVTy = VectorType::get(IntegerType::get(SrcVTy->getContext(),
2017                                                     IndexSize), VF);
2018   std::pair<int, MVT> IdxsLT = TLI->getTypeLegalizationCost(DL, IndexVTy);
2019   std::pair<int, MVT> SrcLT = TLI->getTypeLegalizationCost(DL, SrcVTy);
2020   int SplitFactor = std::max(IdxsLT.first, SrcLT.first);
2021   if (SplitFactor > 1) {
2022     // Handle splitting of vector of pointers
2023     Type *SplitSrcTy = VectorType::get(SrcVTy->getScalarType(), VF / SplitFactor);
2024     return SplitFactor * getGSVectorCost(Opcode, SplitSrcTy, Ptr, Alignment,
2025                                          AddressSpace);
2026   }
2027 
2028   // The gather / scatter cost is given by Intel architects. It is a rough
2029   // number since we are looking at one instruction in a time.
2030   const int GSOverhead = 2;
2031   return GSOverhead + VF * getMemoryOpCost(Opcode, SrcVTy->getScalarType(),
2032                                            Alignment, AddressSpace);
2033 }
2034 
2035 /// Return the cost of full scalarization of gather / scatter operation.
2036 ///
2037 /// Opcode - Load or Store instruction.
2038 /// SrcVTy - The type of the data vector that should be gathered or scattered.
2039 /// VariableMask - The mask is non-constant at compile time.
2040 /// Alignment - Alignment for one element.
2041 /// AddressSpace - pointer[s] address space.
2042 ///
2043 int X86TTIImpl::getGSScalarCost(unsigned Opcode, Type *SrcVTy,
2044                                 bool VariableMask, unsigned Alignment,
2045                                 unsigned AddressSpace) {
2046   unsigned VF = SrcVTy->getVectorNumElements();
2047 
2048   int MaskUnpackCost = 0;
2049   if (VariableMask) {
2050     VectorType *MaskTy =
2051       VectorType::get(Type::getInt1Ty(SrcVTy->getContext()), VF);
2052     MaskUnpackCost = getScalarizationOverhead(MaskTy, false, true);
2053     int ScalarCompareCost =
2054       getCmpSelInstrCost(Instruction::ICmp, Type::getInt1Ty(SrcVTy->getContext()),
2055                          nullptr);
2056     int BranchCost = getCFInstrCost(Instruction::Br);
2057     MaskUnpackCost += VF * (BranchCost + ScalarCompareCost);
2058   }
2059 
2060   // The cost of the scalar loads/stores.
2061   int MemoryOpCost = VF * getMemoryOpCost(Opcode, SrcVTy->getScalarType(),
2062                                           Alignment, AddressSpace);
2063 
2064   int InsertExtractCost = 0;
2065   if (Opcode == Instruction::Load)
2066     for (unsigned i = 0; i < VF; ++i)
2067       // Add the cost of inserting each scalar load into the vector
2068       InsertExtractCost +=
2069         getVectorInstrCost(Instruction::InsertElement, SrcVTy, i);
2070   else
2071     for (unsigned i = 0; i < VF; ++i)
2072       // Add the cost of extracting each element out of the data vector
2073       InsertExtractCost +=
2074         getVectorInstrCost(Instruction::ExtractElement, SrcVTy, i);
2075 
2076   return MemoryOpCost + MaskUnpackCost + InsertExtractCost;
2077 }
2078 
2079 /// Calculate the cost of Gather / Scatter operation
2080 int X86TTIImpl::getGatherScatterOpCost(unsigned Opcode, Type *SrcVTy,
2081                                        Value *Ptr, bool VariableMask,
2082                                        unsigned Alignment) {
2083   assert(SrcVTy->isVectorTy() && "Unexpected data type for Gather/Scatter");
2084   unsigned VF = SrcVTy->getVectorNumElements();
2085   PointerType *PtrTy = dyn_cast<PointerType>(Ptr->getType());
2086   if (!PtrTy && Ptr->getType()->isVectorTy())
2087     PtrTy = dyn_cast<PointerType>(Ptr->getType()->getVectorElementType());
2088   assert(PtrTy && "Unexpected type for Ptr argument");
2089   unsigned AddressSpace = PtrTy->getAddressSpace();
2090 
2091   bool Scalarize = false;
2092   if ((Opcode == Instruction::Load && !isLegalMaskedGather(SrcVTy)) ||
2093       (Opcode == Instruction::Store && !isLegalMaskedScatter(SrcVTy)))
2094     Scalarize = true;
2095   // Gather / Scatter for vector 2 is not profitable on KNL / SKX
2096   // Vector-4 of gather/scatter instruction does not exist on KNL.
2097   // We can extend it to 8 elements, but zeroing upper bits of
2098   // the mask vector will add more instructions. Right now we give the scalar
2099   // cost of vector-4 for KNL. TODO: Check, maybe the gather/scatter instruction
2100   // is better in the VariableMask case.
2101   if (VF == 2 || (VF == 4 && !ST->hasVLX()))
2102     Scalarize = true;
2103 
2104   if (Scalarize)
2105     return getGSScalarCost(Opcode, SrcVTy, VariableMask, Alignment,
2106                            AddressSpace);
2107 
2108   return getGSVectorCost(Opcode, SrcVTy, Ptr, Alignment, AddressSpace);
2109 }
2110 
2111 bool X86TTIImpl::isLegalMaskedLoad(Type *DataTy) {
2112   Type *ScalarTy = DataTy->getScalarType();
2113   int DataWidth = isa<PointerType>(ScalarTy) ?
2114     DL.getPointerSizeInBits() : ScalarTy->getPrimitiveSizeInBits();
2115 
2116   return ((DataWidth == 32 || DataWidth == 64) && ST->hasAVX()) ||
2117          ((DataWidth == 8 || DataWidth == 16) && ST->hasBWI());
2118 }
2119 
2120 bool X86TTIImpl::isLegalMaskedStore(Type *DataType) {
2121   return isLegalMaskedLoad(DataType);
2122 }
2123 
2124 bool X86TTIImpl::isLegalMaskedGather(Type *DataTy) {
2125   // This function is called now in two cases: from the Loop Vectorizer
2126   // and from the Scalarizer.
2127   // When the Loop Vectorizer asks about legality of the feature,
2128   // the vectorization factor is not calculated yet. The Loop Vectorizer
2129   // sends a scalar type and the decision is based on the width of the
2130   // scalar element.
2131   // Later on, the cost model will estimate usage this intrinsic based on
2132   // the vector type.
2133   // The Scalarizer asks again about legality. It sends a vector type.
2134   // In this case we can reject non-power-of-2 vectors.
2135   if (isa<VectorType>(DataTy) && !isPowerOf2_32(DataTy->getVectorNumElements()))
2136     return false;
2137   Type *ScalarTy = DataTy->getScalarType();
2138   int DataWidth = isa<PointerType>(ScalarTy) ?
2139     DL.getPointerSizeInBits() : ScalarTy->getPrimitiveSizeInBits();
2140 
2141   // AVX-512 allows gather and scatter
2142   return (DataWidth == 32 || DataWidth == 64) && ST->hasAVX512();
2143 }
2144 
2145 bool X86TTIImpl::isLegalMaskedScatter(Type *DataType) {
2146   return isLegalMaskedGather(DataType);
2147 }
2148 
2149 bool X86TTIImpl::areInlineCompatible(const Function *Caller,
2150                                      const Function *Callee) const {
2151   const TargetMachine &TM = getTLI()->getTargetMachine();
2152 
2153   // Work this as a subsetting of subtarget features.
2154   const FeatureBitset &CallerBits =
2155       TM.getSubtargetImpl(*Caller)->getFeatureBits();
2156   const FeatureBitset &CalleeBits =
2157       TM.getSubtargetImpl(*Callee)->getFeatureBits();
2158 
2159   // FIXME: This is likely too limiting as it will include subtarget features
2160   // that we might not care about for inlining, but it is conservatively
2161   // correct.
2162   return (CallerBits & CalleeBits) == CalleeBits;
2163 }
2164 
2165 bool X86TTIImpl::enableInterleavedAccessVectorization() {
2166   // TODO: We expect this to be beneficial regardless of arch,
2167   // but there are currently some unexplained performance artifacts on Atom.
2168   // As a temporary solution, disable on Atom.
2169   return !(ST->isAtom());
2170 }
2171 
2172 // Get estimation for interleaved load/store operations and strided load.
2173 // \p Indices contains indices for strided load.
2174 // \p Factor - the factor of interleaving.
2175 // AVX-512 provides 3-src shuffles that significantly reduces the cost.
2176 int X86TTIImpl::getInterleavedMemoryOpCostAVX512(unsigned Opcode, Type *VecTy,
2177                                                  unsigned Factor,
2178                                                  ArrayRef<unsigned> Indices,
2179                                                  unsigned Alignment,
2180                                                  unsigned AddressSpace) {
2181 
2182   // VecTy for interleave memop is <VF*Factor x Elt>.
2183   // So, for VF=4, Interleave Factor = 3, Element type = i32 we have
2184   // VecTy = <12 x i32>.
2185 
2186   // Calculate the number of memory operations (NumOfMemOps), required
2187   // for load/store the VecTy.
2188   MVT LegalVT = getTLI()->getTypeLegalizationCost(DL, VecTy).second;
2189   unsigned VecTySize = DL.getTypeStoreSize(VecTy);
2190   unsigned LegalVTSize = LegalVT.getStoreSize();
2191   unsigned NumOfMemOps = (VecTySize + LegalVTSize - 1) / LegalVTSize;
2192 
2193   // Get the cost of one memory operation.
2194   Type *SingleMemOpTy = VectorType::get(VecTy->getVectorElementType(),
2195                                         LegalVT.getVectorNumElements());
2196   unsigned MemOpCost =
2197       getMemoryOpCost(Opcode, SingleMemOpTy, Alignment, AddressSpace);
2198 
2199   if (Opcode == Instruction::Load) {
2200     // Kind of shuffle depends on number of loaded values.
2201     // If we load the entire data in one register, we can use a 1-src shuffle.
2202     // Otherwise, we'll merge 2 sources in each operation.
2203     TTI::ShuffleKind ShuffleKind =
2204         (NumOfMemOps > 1) ? TTI::SK_PermuteTwoSrc : TTI::SK_PermuteSingleSrc;
2205 
2206     unsigned ShuffleCost =
2207         getShuffleCost(ShuffleKind, SingleMemOpTy, 0, nullptr);
2208 
2209     unsigned NumOfLoadsInInterleaveGrp =
2210         Indices.size() ? Indices.size() : Factor;
2211     Type *ResultTy = VectorType::get(VecTy->getVectorElementType(),
2212                                      VecTy->getVectorNumElements() / Factor);
2213     unsigned NumOfResults =
2214         getTLI()->getTypeLegalizationCost(DL, ResultTy).first *
2215         NumOfLoadsInInterleaveGrp;
2216 
2217     // About a half of the loads may be folded in shuffles when we have only
2218     // one result. If we have more than one result, we do not fold loads at all.
2219     unsigned NumOfUnfoldedLoads =
2220         NumOfResults > 1 ? NumOfMemOps : NumOfMemOps / 2;
2221 
2222     // Get a number of shuffle operations per result.
2223     unsigned NumOfShufflesPerResult =
2224         std::max((unsigned)1, (unsigned)(NumOfMemOps - 1));
2225 
2226     // The SK_MergeTwoSrc shuffle clobbers one of src operands.
2227     // When we have more than one destination, we need additional instructions
2228     // to keep sources.
2229     unsigned NumOfMoves = 0;
2230     if (NumOfResults > 1 && ShuffleKind == TTI::SK_PermuteTwoSrc)
2231       NumOfMoves = NumOfResults * NumOfShufflesPerResult / 2;
2232 
2233     int Cost = NumOfResults * NumOfShufflesPerResult * ShuffleCost +
2234                NumOfUnfoldedLoads * MemOpCost + NumOfMoves;
2235 
2236     return Cost;
2237   }
2238 
2239   // Store.
2240   assert(Opcode == Instruction::Store &&
2241          "Expected Store Instruction at this  point");
2242 
2243   // There is no strided stores meanwhile. And store can't be folded in
2244   // shuffle.
2245   unsigned NumOfSources = Factor; // The number of values to be merged.
2246   unsigned ShuffleCost =
2247       getShuffleCost(TTI::SK_PermuteTwoSrc, SingleMemOpTy, 0, nullptr);
2248   unsigned NumOfShufflesPerStore = NumOfSources - 1;
2249 
2250   // The SK_MergeTwoSrc shuffle clobbers one of src operands.
2251   // We need additional instructions to keep sources.
2252   unsigned NumOfMoves = NumOfMemOps * NumOfShufflesPerStore / 2;
2253   int Cost = NumOfMemOps * (MemOpCost + NumOfShufflesPerStore * ShuffleCost) +
2254              NumOfMoves;
2255   return Cost;
2256 }
2257 
2258 int X86TTIImpl::getInterleavedMemoryOpCost(unsigned Opcode, Type *VecTy,
2259                                            unsigned Factor,
2260                                            ArrayRef<unsigned> Indices,
2261                                            unsigned Alignment,
2262                                            unsigned AddressSpace) {
2263   auto isSupportedOnAVX512 = [](Type *VecTy, bool &RequiresBW) {
2264     RequiresBW = false;
2265     Type *EltTy = VecTy->getVectorElementType();
2266     if (EltTy->isFloatTy() || EltTy->isDoubleTy() || EltTy->isIntegerTy(64) ||
2267         EltTy->isIntegerTy(32) || EltTy->isPointerTy())
2268       return true;
2269     if (EltTy->isIntegerTy(16) || EltTy->isIntegerTy(8)) {
2270       RequiresBW = true;
2271       return true;
2272     }
2273     return false;
2274   };
2275   bool RequiresBW;
2276   bool HasAVX512Solution = isSupportedOnAVX512(VecTy, RequiresBW);
2277   if (ST->hasAVX512() && HasAVX512Solution && (!RequiresBW || ST->hasBWI()))
2278     return getInterleavedMemoryOpCostAVX512(Opcode, VecTy, Factor, Indices,
2279                                             Alignment, AddressSpace);
2280   return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices,
2281                                            Alignment, AddressSpace);
2282 }
2283