1 //===-- X86TargetTransformInfo.cpp - X86 specific TTI pass ----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 /// \file
9 /// This file implements a TargetTransformInfo analysis pass specific to the
10 /// X86 target machine. It uses the target's detailed information to provide
11 /// more precise answers to certain TTI queries, while letting the target
12 /// independent and default TTI implementations handle the rest.
13 ///
14 //===----------------------------------------------------------------------===//
15 /// About Cost Model numbers used below it's necessary to say the following:
16 /// the numbers correspond to some "generic" X86 CPU instead of usage of
17 /// concrete CPU model. Usually the numbers correspond to CPU where the feature
18 /// apeared at the first time. For example, if we do Subtarget.hasSSE42() in
19 /// the lookups below the cost is based on Nehalem as that was the first CPU
20 /// to support that feature level and thus has most likely the worst case cost.
21 /// Some examples of other technologies/CPUs:
22 ///   SSE 3   - Pentium4 / Athlon64
23 ///   SSE 4.1 - Penryn
24 ///   SSE 4.2 - Nehalem
25 ///   AVX     - Sandy Bridge
26 ///   AVX2    - Haswell
27 ///   AVX-512 - Xeon Phi / Skylake
28 /// And some examples of instruction target dependent costs (latency)
29 ///                   divss     sqrtss          rsqrtss
30 ///   AMD K7            11-16     19              3
31 ///   Piledriver        9-24      13-15           5
32 ///   Jaguar            14        16              2
33 ///   Pentium II,III    18        30              2
34 ///   Nehalem           7-14      7-18            3
35 ///   Haswell           10-13     11              5
36 /// TODO: Develop and implement  the target dependent cost model and
37 /// specialize cost numbers for different Cost Model Targets such as throughput,
38 /// code size, latency and uop count.
39 //===----------------------------------------------------------------------===//
40 
41 #include "X86TargetTransformInfo.h"
42 #include "llvm/Analysis/TargetTransformInfo.h"
43 #include "llvm/CodeGen/BasicTTIImpl.h"
44 #include "llvm/CodeGen/CostTable.h"
45 #include "llvm/CodeGen/TargetLowering.h"
46 #include "llvm/IR/IntrinsicInst.h"
47 #include "llvm/Support/Debug.h"
48 
49 using namespace llvm;
50 
51 #define DEBUG_TYPE "x86tti"
52 
53 //===----------------------------------------------------------------------===//
54 //
55 // X86 cost model.
56 //
57 //===----------------------------------------------------------------------===//
58 
59 TargetTransformInfo::PopcntSupportKind
60 X86TTIImpl::getPopcntSupport(unsigned TyWidth) {
61   assert(isPowerOf2_32(TyWidth) && "Ty width must be power of 2");
62   // TODO: Currently the __builtin_popcount() implementation using SSE3
63   //   instructions is inefficient. Once the problem is fixed, we should
64   //   call ST->hasSSE3() instead of ST->hasPOPCNT().
65   return ST->hasPOPCNT() ? TTI::PSK_FastHardware : TTI::PSK_Software;
66 }
67 
68 llvm::Optional<unsigned> X86TTIImpl::getCacheSize(
69   TargetTransformInfo::CacheLevel Level) const {
70   switch (Level) {
71   case TargetTransformInfo::CacheLevel::L1D:
72     //   - Penryn
73     //   - Nehalem
74     //   - Westmere
75     //   - Sandy Bridge
76     //   - Ivy Bridge
77     //   - Haswell
78     //   - Broadwell
79     //   - Skylake
80     //   - Kabylake
81     return 32 * 1024;  //  32 KByte
82   case TargetTransformInfo::CacheLevel::L2D:
83     //   - Penryn
84     //   - Nehalem
85     //   - Westmere
86     //   - Sandy Bridge
87     //   - Ivy Bridge
88     //   - Haswell
89     //   - Broadwell
90     //   - Skylake
91     //   - Kabylake
92     return 256 * 1024; // 256 KByte
93   }
94 
95   llvm_unreachable("Unknown TargetTransformInfo::CacheLevel");
96 }
97 
98 llvm::Optional<unsigned> X86TTIImpl::getCacheAssociativity(
99   TargetTransformInfo::CacheLevel Level) const {
100   //   - Penryn
101   //   - Nehalem
102   //   - Westmere
103   //   - Sandy Bridge
104   //   - Ivy Bridge
105   //   - Haswell
106   //   - Broadwell
107   //   - Skylake
108   //   - Kabylake
109   switch (Level) {
110   case TargetTransformInfo::CacheLevel::L1D:
111     LLVM_FALLTHROUGH;
112   case TargetTransformInfo::CacheLevel::L2D:
113     return 8;
114   }
115 
116   llvm_unreachable("Unknown TargetTransformInfo::CacheLevel");
117 }
118 
119 unsigned X86TTIImpl::getNumberOfRegisters(unsigned ClassID) const {
120   bool Vector = (ClassID == 1);
121   if (Vector && !ST->hasSSE1())
122     return 0;
123 
124   if (ST->is64Bit()) {
125     if (Vector && ST->hasAVX512())
126       return 32;
127     return 16;
128   }
129   return 8;
130 }
131 
132 unsigned X86TTIImpl::getRegisterBitWidth(bool Vector) const {
133   unsigned PreferVectorWidth = ST->getPreferVectorWidth();
134   if (Vector) {
135     if (ST->hasAVX512() && PreferVectorWidth >= 512)
136       return 512;
137     if (ST->hasAVX() && PreferVectorWidth >= 256)
138       return 256;
139     if (ST->hasSSE1() && PreferVectorWidth >= 128)
140       return 128;
141     return 0;
142   }
143 
144   if (ST->is64Bit())
145     return 64;
146 
147   return 32;
148 }
149 
150 unsigned X86TTIImpl::getLoadStoreVecRegBitWidth(unsigned) const {
151   return getRegisterBitWidth(true);
152 }
153 
154 unsigned X86TTIImpl::getMaxInterleaveFactor(unsigned VF) {
155   // If the loop will not be vectorized, don't interleave the loop.
156   // Let regular unroll to unroll the loop, which saves the overflow
157   // check and memory check cost.
158   if (VF == 1)
159     return 1;
160 
161   if (ST->isAtom())
162     return 1;
163 
164   // Sandybridge and Haswell have multiple execution ports and pipelined
165   // vector units.
166   if (ST->hasAVX())
167     return 4;
168 
169   return 2;
170 }
171 
172 int X86TTIImpl::getArithmeticInstrCost(
173     unsigned Opcode, Type *Ty,
174     TTI::OperandValueKind Op1Info, TTI::OperandValueKind Op2Info,
175     TTI::OperandValueProperties Opd1PropInfo,
176     TTI::OperandValueProperties Opd2PropInfo,
177     ArrayRef<const Value *> Args) {
178   // Legalize the type.
179   std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Ty);
180 
181   int ISD = TLI->InstructionOpcodeToISD(Opcode);
182   assert(ISD && "Invalid opcode");
183 
184   static const CostTblEntry GLMCostTable[] = {
185     { ISD::FDIV,  MVT::f32,   18 }, // divss
186     { ISD::FDIV,  MVT::v4f32, 35 }, // divps
187     { ISD::FDIV,  MVT::f64,   33 }, // divsd
188     { ISD::FDIV,  MVT::v2f64, 65 }, // divpd
189   };
190 
191   if (ST->isGLM())
192     if (const auto *Entry = CostTableLookup(GLMCostTable, ISD,
193                                             LT.second))
194       return LT.first * Entry->Cost;
195 
196   static const CostTblEntry SLMCostTable[] = {
197     { ISD::MUL,   MVT::v4i32, 11 }, // pmulld
198     { ISD::MUL,   MVT::v8i16, 2  }, // pmullw
199     { ISD::MUL,   MVT::v16i8, 14 }, // extend/pmullw/trunc sequence.
200     { ISD::FMUL,  MVT::f64,   2  }, // mulsd
201     { ISD::FMUL,  MVT::v2f64, 4  }, // mulpd
202     { ISD::FMUL,  MVT::v4f32, 2  }, // mulps
203     { ISD::FDIV,  MVT::f32,   17 }, // divss
204     { ISD::FDIV,  MVT::v4f32, 39 }, // divps
205     { ISD::FDIV,  MVT::f64,   32 }, // divsd
206     { ISD::FDIV,  MVT::v2f64, 69 }, // divpd
207     { ISD::FADD,  MVT::v2f64, 2  }, // addpd
208     { ISD::FSUB,  MVT::v2f64, 2  }, // subpd
209     // v2i64/v4i64 mul is custom lowered as a series of long:
210     // multiplies(3), shifts(3) and adds(2)
211     // slm muldq version throughput is 2 and addq throughput 4
212     // thus: 3X2 (muldq throughput) + 3X1 (shift throughput) +
213     //       3X4 (addq throughput) = 17
214     { ISD::MUL,   MVT::v2i64, 17 },
215     // slm addq\subq throughput is 4
216     { ISD::ADD,   MVT::v2i64, 4  },
217     { ISD::SUB,   MVT::v2i64, 4  },
218   };
219 
220   if (ST->isSLM()) {
221     if (Args.size() == 2 && ISD == ISD::MUL && LT.second == MVT::v4i32) {
222       // Check if the operands can be shrinked into a smaller datatype.
223       bool Op1Signed = false;
224       unsigned Op1MinSize = BaseT::minRequiredElementSize(Args[0], Op1Signed);
225       bool Op2Signed = false;
226       unsigned Op2MinSize = BaseT::minRequiredElementSize(Args[1], Op2Signed);
227 
228       bool signedMode = Op1Signed | Op2Signed;
229       unsigned OpMinSize = std::max(Op1MinSize, Op2MinSize);
230 
231       if (OpMinSize <= 7)
232         return LT.first * 3; // pmullw/sext
233       if (!signedMode && OpMinSize <= 8)
234         return LT.first * 3; // pmullw/zext
235       if (OpMinSize <= 15)
236         return LT.first * 5; // pmullw/pmulhw/pshuf
237       if (!signedMode && OpMinSize <= 16)
238         return LT.first * 5; // pmullw/pmulhw/pshuf
239     }
240 
241     if (const auto *Entry = CostTableLookup(SLMCostTable, ISD,
242                                             LT.second)) {
243       return LT.first * Entry->Cost;
244     }
245   }
246 
247   if ((ISD == ISD::SDIV || ISD == ISD::SREM || ISD == ISD::UDIV ||
248        ISD == ISD::UREM) &&
249       (Op2Info == TargetTransformInfo::OK_UniformConstantValue ||
250        Op2Info == TargetTransformInfo::OK_NonUniformConstantValue) &&
251       Opd2PropInfo == TargetTransformInfo::OP_PowerOf2) {
252     if (ISD == ISD::SDIV || ISD == ISD::SREM) {
253       // On X86, vector signed division by constants power-of-two are
254       // normally expanded to the sequence SRA + SRL + ADD + SRA.
255       // The OperandValue properties may not be the same as that of the previous
256       // operation; conservatively assume OP_None.
257       int Cost =
258           2 * getArithmeticInstrCost(Instruction::AShr, Ty, Op1Info, Op2Info,
259                                      TargetTransformInfo::OP_None,
260                                      TargetTransformInfo::OP_None);
261       Cost += getArithmeticInstrCost(Instruction::LShr, Ty, Op1Info, Op2Info,
262                                      TargetTransformInfo::OP_None,
263                                      TargetTransformInfo::OP_None);
264       Cost += getArithmeticInstrCost(Instruction::Add, Ty, Op1Info, Op2Info,
265                                      TargetTransformInfo::OP_None,
266                                      TargetTransformInfo::OP_None);
267 
268       if (ISD == ISD::SREM) {
269         // For SREM: (X % C) is the equivalent of (X - (X/C)*C)
270         Cost += getArithmeticInstrCost(Instruction::Mul, Ty, Op1Info, Op2Info);
271         Cost += getArithmeticInstrCost(Instruction::Sub, Ty, Op1Info, Op2Info);
272       }
273 
274       return Cost;
275     }
276 
277     // Vector unsigned division/remainder will be simplified to shifts/masks.
278     if (ISD == ISD::UDIV)
279       return getArithmeticInstrCost(Instruction::LShr, Ty, Op1Info, Op2Info,
280                                     TargetTransformInfo::OP_None,
281                                     TargetTransformInfo::OP_None);
282 
283     if (ISD == ISD::UREM)
284       return getArithmeticInstrCost(Instruction::And, Ty, Op1Info, Op2Info,
285                                     TargetTransformInfo::OP_None,
286                                     TargetTransformInfo::OP_None);
287   }
288 
289   static const CostTblEntry AVX512BWUniformConstCostTable[] = {
290     { ISD::SHL,  MVT::v64i8,   2 }, // psllw + pand.
291     { ISD::SRL,  MVT::v64i8,   2 }, // psrlw + pand.
292     { ISD::SRA,  MVT::v64i8,   4 }, // psrlw, pand, pxor, psubb.
293   };
294 
295   if (Op2Info == TargetTransformInfo::OK_UniformConstantValue &&
296       ST->hasBWI()) {
297     if (const auto *Entry = CostTableLookup(AVX512BWUniformConstCostTable, ISD,
298                                             LT.second))
299       return LT.first * Entry->Cost;
300   }
301 
302   static const CostTblEntry AVX512UniformConstCostTable[] = {
303     { ISD::SRA,  MVT::v2i64,   1 },
304     { ISD::SRA,  MVT::v4i64,   1 },
305     { ISD::SRA,  MVT::v8i64,   1 },
306   };
307 
308   if (Op2Info == TargetTransformInfo::OK_UniformConstantValue &&
309       ST->hasAVX512()) {
310     if (const auto *Entry = CostTableLookup(AVX512UniformConstCostTable, ISD,
311                                             LT.second))
312       return LT.first * Entry->Cost;
313   }
314 
315   static const CostTblEntry AVX2UniformConstCostTable[] = {
316     { ISD::SHL,  MVT::v32i8,   2 }, // psllw + pand.
317     { ISD::SRL,  MVT::v32i8,   2 }, // psrlw + pand.
318     { ISD::SRA,  MVT::v32i8,   4 }, // psrlw, pand, pxor, psubb.
319 
320     { ISD::SRA,  MVT::v4i64,   4 }, // 2 x psrad + shuffle.
321   };
322 
323   if (Op2Info == TargetTransformInfo::OK_UniformConstantValue &&
324       ST->hasAVX2()) {
325     if (const auto *Entry = CostTableLookup(AVX2UniformConstCostTable, ISD,
326                                             LT.second))
327       return LT.first * Entry->Cost;
328   }
329 
330   static const CostTblEntry SSE2UniformConstCostTable[] = {
331     { ISD::SHL,  MVT::v16i8,     2 }, // psllw + pand.
332     { ISD::SRL,  MVT::v16i8,     2 }, // psrlw + pand.
333     { ISD::SRA,  MVT::v16i8,     4 }, // psrlw, pand, pxor, psubb.
334 
335     { ISD::SHL,  MVT::v32i8,   4+2 }, // 2*(psllw + pand) + split.
336     { ISD::SRL,  MVT::v32i8,   4+2 }, // 2*(psrlw + pand) + split.
337     { ISD::SRA,  MVT::v32i8,   8+2 }, // 2*(psrlw, pand, pxor, psubb) + split.
338   };
339 
340   // XOP has faster vXi8 shifts.
341   if (Op2Info == TargetTransformInfo::OK_UniformConstantValue &&
342       ST->hasSSE2() && !ST->hasXOP()) {
343     if (const auto *Entry =
344             CostTableLookup(SSE2UniformConstCostTable, ISD, LT.second))
345       return LT.first * Entry->Cost;
346   }
347 
348   static const CostTblEntry AVX512BWConstCostTable[] = {
349     { ISD::SDIV, MVT::v64i8,  14 }, // 2*ext+2*pmulhw sequence
350     { ISD::SREM, MVT::v64i8,  16 }, // 2*ext+2*pmulhw+mul+sub sequence
351     { ISD::UDIV, MVT::v64i8,  14 }, // 2*ext+2*pmulhw sequence
352     { ISD::UREM, MVT::v64i8,  16 }, // 2*ext+2*pmulhw+mul+sub sequence
353     { ISD::SDIV, MVT::v32i16,  6 }, // vpmulhw sequence
354     { ISD::SREM, MVT::v32i16,  8 }, // vpmulhw+mul+sub sequence
355     { ISD::UDIV, MVT::v32i16,  6 }, // vpmulhuw sequence
356     { ISD::UREM, MVT::v32i16,  8 }, // vpmulhuw+mul+sub sequence
357   };
358 
359   if ((Op2Info == TargetTransformInfo::OK_UniformConstantValue ||
360        Op2Info == TargetTransformInfo::OK_NonUniformConstantValue) &&
361       ST->hasBWI()) {
362     if (const auto *Entry =
363             CostTableLookup(AVX512BWConstCostTable, ISD, LT.second))
364       return LT.first * Entry->Cost;
365   }
366 
367   static const CostTblEntry AVX512ConstCostTable[] = {
368     { ISD::SDIV, MVT::v16i32, 15 }, // vpmuldq sequence
369     { ISD::SREM, MVT::v16i32, 17 }, // vpmuldq+mul+sub sequence
370     { ISD::UDIV, MVT::v16i32, 15 }, // vpmuludq sequence
371     { ISD::UREM, MVT::v16i32, 17 }, // vpmuludq+mul+sub sequence
372   };
373 
374   if ((Op2Info == TargetTransformInfo::OK_UniformConstantValue ||
375        Op2Info == TargetTransformInfo::OK_NonUniformConstantValue) &&
376       ST->hasAVX512()) {
377     if (const auto *Entry =
378             CostTableLookup(AVX512ConstCostTable, ISD, LT.second))
379       return LT.first * Entry->Cost;
380   }
381 
382   static const CostTblEntry AVX2ConstCostTable[] = {
383     { ISD::SDIV, MVT::v32i8,  14 }, // 2*ext+2*pmulhw sequence
384     { ISD::SREM, MVT::v32i8,  16 }, // 2*ext+2*pmulhw+mul+sub sequence
385     { ISD::UDIV, MVT::v32i8,  14 }, // 2*ext+2*pmulhw sequence
386     { ISD::UREM, MVT::v32i8,  16 }, // 2*ext+2*pmulhw+mul+sub sequence
387     { ISD::SDIV, MVT::v16i16,  6 }, // vpmulhw sequence
388     { ISD::SREM, MVT::v16i16,  8 }, // vpmulhw+mul+sub sequence
389     { ISD::UDIV, MVT::v16i16,  6 }, // vpmulhuw sequence
390     { ISD::UREM, MVT::v16i16,  8 }, // vpmulhuw+mul+sub sequence
391     { ISD::SDIV, MVT::v8i32,  15 }, // vpmuldq sequence
392     { ISD::SREM, MVT::v8i32,  19 }, // vpmuldq+mul+sub sequence
393     { ISD::UDIV, MVT::v8i32,  15 }, // vpmuludq sequence
394     { ISD::UREM, MVT::v8i32,  19 }, // vpmuludq+mul+sub sequence
395   };
396 
397   if ((Op2Info == TargetTransformInfo::OK_UniformConstantValue ||
398        Op2Info == TargetTransformInfo::OK_NonUniformConstantValue) &&
399       ST->hasAVX2()) {
400     if (const auto *Entry = CostTableLookup(AVX2ConstCostTable, ISD, LT.second))
401       return LT.first * Entry->Cost;
402   }
403 
404   static const CostTblEntry SSE2ConstCostTable[] = {
405     { ISD::SDIV, MVT::v32i8,  28+2 }, // 4*ext+4*pmulhw sequence + split.
406     { ISD::SREM, MVT::v32i8,  32+2 }, // 4*ext+4*pmulhw+mul+sub sequence + split.
407     { ISD::SDIV, MVT::v16i8,    14 }, // 2*ext+2*pmulhw sequence
408     { ISD::SREM, MVT::v16i8,    16 }, // 2*ext+2*pmulhw+mul+sub sequence
409     { ISD::UDIV, MVT::v32i8,  28+2 }, // 4*ext+4*pmulhw sequence + split.
410     { ISD::UREM, MVT::v32i8,  32+2 }, // 4*ext+4*pmulhw+mul+sub sequence + split.
411     { ISD::UDIV, MVT::v16i8,    14 }, // 2*ext+2*pmulhw sequence
412     { ISD::UREM, MVT::v16i8,    16 }, // 2*ext+2*pmulhw+mul+sub sequence
413     { ISD::SDIV, MVT::v16i16, 12+2 }, // 2*pmulhw sequence + split.
414     { ISD::SREM, MVT::v16i16, 16+2 }, // 2*pmulhw+mul+sub sequence + split.
415     { ISD::SDIV, MVT::v8i16,     6 }, // pmulhw sequence
416     { ISD::SREM, MVT::v8i16,     8 }, // pmulhw+mul+sub sequence
417     { ISD::UDIV, MVT::v16i16, 12+2 }, // 2*pmulhuw sequence + split.
418     { ISD::UREM, MVT::v16i16, 16+2 }, // 2*pmulhuw+mul+sub sequence + split.
419     { ISD::UDIV, MVT::v8i16,     6 }, // pmulhuw sequence
420     { ISD::UREM, MVT::v8i16,     8 }, // pmulhuw+mul+sub sequence
421     { ISD::SDIV, MVT::v8i32,  38+2 }, // 2*pmuludq sequence + split.
422     { ISD::SREM, MVT::v8i32,  48+2 }, // 2*pmuludq+mul+sub sequence + split.
423     { ISD::SDIV, MVT::v4i32,    19 }, // pmuludq sequence
424     { ISD::SREM, MVT::v4i32,    24 }, // pmuludq+mul+sub sequence
425     { ISD::UDIV, MVT::v8i32,  30+2 }, // 2*pmuludq sequence + split.
426     { ISD::UREM, MVT::v8i32,  40+2 }, // 2*pmuludq+mul+sub sequence + split.
427     { ISD::UDIV, MVT::v4i32,    15 }, // pmuludq sequence
428     { ISD::UREM, MVT::v4i32,    20 }, // pmuludq+mul+sub sequence
429   };
430 
431   if ((Op2Info == TargetTransformInfo::OK_UniformConstantValue ||
432        Op2Info == TargetTransformInfo::OK_NonUniformConstantValue) &&
433       ST->hasSSE2()) {
434     // pmuldq sequence.
435     if (ISD == ISD::SDIV && LT.second == MVT::v8i32 && ST->hasAVX())
436       return LT.first * 32;
437     if (ISD == ISD::SREM && LT.second == MVT::v8i32 && ST->hasAVX())
438       return LT.first * 38;
439     if (ISD == ISD::SDIV && LT.second == MVT::v4i32 && ST->hasSSE41())
440       return LT.first * 15;
441     if (ISD == ISD::SREM && LT.second == MVT::v4i32 && ST->hasSSE41())
442       return LT.first * 20;
443 
444     if (const auto *Entry = CostTableLookup(SSE2ConstCostTable, ISD, LT.second))
445       return LT.first * Entry->Cost;
446   }
447 
448   static const CostTblEntry AVX2UniformCostTable[] = {
449     // Uniform splats are cheaper for the following instructions.
450     { ISD::SHL,  MVT::v16i16, 1 }, // psllw.
451     { ISD::SRL,  MVT::v16i16, 1 }, // psrlw.
452     { ISD::SRA,  MVT::v16i16, 1 }, // psraw.
453   };
454 
455   if (ST->hasAVX2() &&
456       ((Op2Info == TargetTransformInfo::OK_UniformConstantValue) ||
457        (Op2Info == TargetTransformInfo::OK_UniformValue))) {
458     if (const auto *Entry =
459             CostTableLookup(AVX2UniformCostTable, ISD, LT.second))
460       return LT.first * Entry->Cost;
461   }
462 
463   static const CostTblEntry SSE2UniformCostTable[] = {
464     // Uniform splats are cheaper for the following instructions.
465     { ISD::SHL,  MVT::v8i16,  1 }, // psllw.
466     { ISD::SHL,  MVT::v4i32,  1 }, // pslld
467     { ISD::SHL,  MVT::v2i64,  1 }, // psllq.
468 
469     { ISD::SRL,  MVT::v8i16,  1 }, // psrlw.
470     { ISD::SRL,  MVT::v4i32,  1 }, // psrld.
471     { ISD::SRL,  MVT::v2i64,  1 }, // psrlq.
472 
473     { ISD::SRA,  MVT::v8i16,  1 }, // psraw.
474     { ISD::SRA,  MVT::v4i32,  1 }, // psrad.
475   };
476 
477   if (ST->hasSSE2() &&
478       ((Op2Info == TargetTransformInfo::OK_UniformConstantValue) ||
479        (Op2Info == TargetTransformInfo::OK_UniformValue))) {
480     if (const auto *Entry =
481             CostTableLookup(SSE2UniformCostTable, ISD, LT.second))
482       return LT.first * Entry->Cost;
483   }
484 
485   static const CostTblEntry AVX512DQCostTable[] = {
486     { ISD::MUL,  MVT::v2i64, 1 },
487     { ISD::MUL,  MVT::v4i64, 1 },
488     { ISD::MUL,  MVT::v8i64, 1 }
489   };
490 
491   // Look for AVX512DQ lowering tricks for custom cases.
492   if (ST->hasDQI())
493     if (const auto *Entry = CostTableLookup(AVX512DQCostTable, ISD, LT.second))
494       return LT.first * Entry->Cost;
495 
496   static const CostTblEntry AVX512BWCostTable[] = {
497     { ISD::SHL,   MVT::v8i16,      1 }, // vpsllvw
498     { ISD::SRL,   MVT::v8i16,      1 }, // vpsrlvw
499     { ISD::SRA,   MVT::v8i16,      1 }, // vpsravw
500 
501     { ISD::SHL,   MVT::v16i16,     1 }, // vpsllvw
502     { ISD::SRL,   MVT::v16i16,     1 }, // vpsrlvw
503     { ISD::SRA,   MVT::v16i16,     1 }, // vpsravw
504 
505     { ISD::SHL,   MVT::v32i16,     1 }, // vpsllvw
506     { ISD::SRL,   MVT::v32i16,     1 }, // vpsrlvw
507     { ISD::SRA,   MVT::v32i16,     1 }, // vpsravw
508 
509     { ISD::SHL,   MVT::v64i8,     11 }, // vpblendvb sequence.
510     { ISD::SRL,   MVT::v64i8,     11 }, // vpblendvb sequence.
511     { ISD::SRA,   MVT::v64i8,     24 }, // vpblendvb sequence.
512 
513     { ISD::MUL,   MVT::v64i8,     11 }, // extend/pmullw/trunc sequence.
514     { ISD::MUL,   MVT::v32i8,      4 }, // extend/pmullw/trunc sequence.
515     { ISD::MUL,   MVT::v16i8,      4 }, // extend/pmullw/trunc sequence.
516   };
517 
518   // Look for AVX512BW lowering tricks for custom cases.
519   if (ST->hasBWI())
520     if (const auto *Entry = CostTableLookup(AVX512BWCostTable, ISD, LT.second))
521       return LT.first * Entry->Cost;
522 
523   static const CostTblEntry AVX512CostTable[] = {
524     { ISD::SHL,     MVT::v16i32,     1 },
525     { ISD::SRL,     MVT::v16i32,     1 },
526     { ISD::SRA,     MVT::v16i32,     1 },
527 
528     { ISD::SHL,     MVT::v8i64,      1 },
529     { ISD::SRL,     MVT::v8i64,      1 },
530 
531     { ISD::SRA,     MVT::v2i64,      1 },
532     { ISD::SRA,     MVT::v4i64,      1 },
533     { ISD::SRA,     MVT::v8i64,      1 },
534 
535     { ISD::MUL,     MVT::v32i8,     13 }, // extend/pmullw/trunc sequence.
536     { ISD::MUL,     MVT::v16i8,      5 }, // extend/pmullw/trunc sequence.
537     { ISD::MUL,     MVT::v16i32,     1 }, // pmulld (Skylake from agner.org)
538     { ISD::MUL,     MVT::v8i32,      1 }, // pmulld (Skylake from agner.org)
539     { ISD::MUL,     MVT::v4i32,      1 }, // pmulld (Skylake from agner.org)
540     { ISD::MUL,     MVT::v8i64,      8 }, // 3*pmuludq/3*shift/2*add
541 
542     { ISD::FADD,    MVT::v8f64,      1 }, // Skylake from http://www.agner.org/
543     { ISD::FSUB,    MVT::v8f64,      1 }, // Skylake from http://www.agner.org/
544     { ISD::FMUL,    MVT::v8f64,      1 }, // Skylake from http://www.agner.org/
545 
546     { ISD::FADD,    MVT::v16f32,     1 }, // Skylake from http://www.agner.org/
547     { ISD::FSUB,    MVT::v16f32,     1 }, // Skylake from http://www.agner.org/
548     { ISD::FMUL,    MVT::v16f32,     1 }, // Skylake from http://www.agner.org/
549   };
550 
551   if (ST->hasAVX512())
552     if (const auto *Entry = CostTableLookup(AVX512CostTable, ISD, LT.second))
553       return LT.first * Entry->Cost;
554 
555   static const CostTblEntry AVX2ShiftCostTable[] = {
556     // Shifts on v4i64/v8i32 on AVX2 is legal even though we declare to
557     // customize them to detect the cases where shift amount is a scalar one.
558     { ISD::SHL,     MVT::v4i32,    1 },
559     { ISD::SRL,     MVT::v4i32,    1 },
560     { ISD::SRA,     MVT::v4i32,    1 },
561     { ISD::SHL,     MVT::v8i32,    1 },
562     { ISD::SRL,     MVT::v8i32,    1 },
563     { ISD::SRA,     MVT::v8i32,    1 },
564     { ISD::SHL,     MVT::v2i64,    1 },
565     { ISD::SRL,     MVT::v2i64,    1 },
566     { ISD::SHL,     MVT::v4i64,    1 },
567     { ISD::SRL,     MVT::v4i64,    1 },
568   };
569 
570   // Look for AVX2 lowering tricks.
571   if (ST->hasAVX2()) {
572     if (ISD == ISD::SHL && LT.second == MVT::v16i16 &&
573         (Op2Info == TargetTransformInfo::OK_UniformConstantValue ||
574          Op2Info == TargetTransformInfo::OK_NonUniformConstantValue))
575       // On AVX2, a packed v16i16 shift left by a constant build_vector
576       // is lowered into a vector multiply (vpmullw).
577       return getArithmeticInstrCost(Instruction::Mul, Ty, Op1Info, Op2Info,
578                                     TargetTransformInfo::OP_None,
579                                     TargetTransformInfo::OP_None);
580 
581     if (const auto *Entry = CostTableLookup(AVX2ShiftCostTable, ISD, LT.second))
582       return LT.first * Entry->Cost;
583   }
584 
585   static const CostTblEntry XOPShiftCostTable[] = {
586     // 128bit shifts take 1cy, but right shifts require negation beforehand.
587     { ISD::SHL,     MVT::v16i8,    1 },
588     { ISD::SRL,     MVT::v16i8,    2 },
589     { ISD::SRA,     MVT::v16i8,    2 },
590     { ISD::SHL,     MVT::v8i16,    1 },
591     { ISD::SRL,     MVT::v8i16,    2 },
592     { ISD::SRA,     MVT::v8i16,    2 },
593     { ISD::SHL,     MVT::v4i32,    1 },
594     { ISD::SRL,     MVT::v4i32,    2 },
595     { ISD::SRA,     MVT::v4i32,    2 },
596     { ISD::SHL,     MVT::v2i64,    1 },
597     { ISD::SRL,     MVT::v2i64,    2 },
598     { ISD::SRA,     MVT::v2i64,    2 },
599     // 256bit shifts require splitting if AVX2 didn't catch them above.
600     { ISD::SHL,     MVT::v32i8,  2+2 },
601     { ISD::SRL,     MVT::v32i8,  4+2 },
602     { ISD::SRA,     MVT::v32i8,  4+2 },
603     { ISD::SHL,     MVT::v16i16, 2+2 },
604     { ISD::SRL,     MVT::v16i16, 4+2 },
605     { ISD::SRA,     MVT::v16i16, 4+2 },
606     { ISD::SHL,     MVT::v8i32,  2+2 },
607     { ISD::SRL,     MVT::v8i32,  4+2 },
608     { ISD::SRA,     MVT::v8i32,  4+2 },
609     { ISD::SHL,     MVT::v4i64,  2+2 },
610     { ISD::SRL,     MVT::v4i64,  4+2 },
611     { ISD::SRA,     MVT::v4i64,  4+2 },
612   };
613 
614   // Look for XOP lowering tricks.
615   if (ST->hasXOP()) {
616     // If the right shift is constant then we'll fold the negation so
617     // it's as cheap as a left shift.
618     int ShiftISD = ISD;
619     if ((ShiftISD == ISD::SRL || ShiftISD == ISD::SRA) &&
620         (Op2Info == TargetTransformInfo::OK_UniformConstantValue ||
621          Op2Info == TargetTransformInfo::OK_NonUniformConstantValue))
622       ShiftISD = ISD::SHL;
623     if (const auto *Entry =
624             CostTableLookup(XOPShiftCostTable, ShiftISD, LT.second))
625       return LT.first * Entry->Cost;
626   }
627 
628   static const CostTblEntry SSE2UniformShiftCostTable[] = {
629     // Uniform splats are cheaper for the following instructions.
630     { ISD::SHL,  MVT::v16i16, 2+2 }, // 2*psllw + split.
631     { ISD::SHL,  MVT::v8i32,  2+2 }, // 2*pslld + split.
632     { ISD::SHL,  MVT::v4i64,  2+2 }, // 2*psllq + split.
633 
634     { ISD::SRL,  MVT::v16i16, 2+2 }, // 2*psrlw + split.
635     { ISD::SRL,  MVT::v8i32,  2+2 }, // 2*psrld + split.
636     { ISD::SRL,  MVT::v4i64,  2+2 }, // 2*psrlq + split.
637 
638     { ISD::SRA,  MVT::v16i16, 2+2 }, // 2*psraw + split.
639     { ISD::SRA,  MVT::v8i32,  2+2 }, // 2*psrad + split.
640     { ISD::SRA,  MVT::v2i64,    4 }, // 2*psrad + shuffle.
641     { ISD::SRA,  MVT::v4i64,  8+2 }, // 2*(2*psrad + shuffle) + split.
642   };
643 
644   if (ST->hasSSE2() &&
645       ((Op2Info == TargetTransformInfo::OK_UniformConstantValue) ||
646        (Op2Info == TargetTransformInfo::OK_UniformValue))) {
647 
648     // Handle AVX2 uniform v4i64 ISD::SRA, it's not worth a table.
649     if (ISD == ISD::SRA && LT.second == MVT::v4i64 && ST->hasAVX2())
650       return LT.first * 4; // 2*psrad + shuffle.
651 
652     if (const auto *Entry =
653             CostTableLookup(SSE2UniformShiftCostTable, ISD, LT.second))
654       return LT.first * Entry->Cost;
655   }
656 
657   if (ISD == ISD::SHL &&
658       Op2Info == TargetTransformInfo::OK_NonUniformConstantValue) {
659     MVT VT = LT.second;
660     // Vector shift left by non uniform constant can be lowered
661     // into vector multiply.
662     if (((VT == MVT::v8i16 || VT == MVT::v4i32) && ST->hasSSE2()) ||
663         ((VT == MVT::v16i16 || VT == MVT::v8i32) && ST->hasAVX()))
664       ISD = ISD::MUL;
665   }
666 
667   static const CostTblEntry AVX2CostTable[] = {
668     { ISD::SHL,  MVT::v32i8,     11 }, // vpblendvb sequence.
669     { ISD::SHL,  MVT::v16i16,    10 }, // extend/vpsrlvd/pack sequence.
670 
671     { ISD::SRL,  MVT::v32i8,     11 }, // vpblendvb sequence.
672     { ISD::SRL,  MVT::v16i16,    10 }, // extend/vpsrlvd/pack sequence.
673 
674     { ISD::SRA,  MVT::v32i8,     24 }, // vpblendvb sequence.
675     { ISD::SRA,  MVT::v16i16,    10 }, // extend/vpsravd/pack sequence.
676     { ISD::SRA,  MVT::v2i64,      4 }, // srl/xor/sub sequence.
677     { ISD::SRA,  MVT::v4i64,      4 }, // srl/xor/sub sequence.
678 
679     { ISD::SUB,  MVT::v32i8,      1 }, // psubb
680     { ISD::ADD,  MVT::v32i8,      1 }, // paddb
681     { ISD::SUB,  MVT::v16i16,     1 }, // psubw
682     { ISD::ADD,  MVT::v16i16,     1 }, // paddw
683     { ISD::SUB,  MVT::v8i32,      1 }, // psubd
684     { ISD::ADD,  MVT::v8i32,      1 }, // paddd
685     { ISD::SUB,  MVT::v4i64,      1 }, // psubq
686     { ISD::ADD,  MVT::v4i64,      1 }, // paddq
687 
688     { ISD::MUL,  MVT::v32i8,     17 }, // extend/pmullw/trunc sequence.
689     { ISD::MUL,  MVT::v16i8,      7 }, // extend/pmullw/trunc sequence.
690     { ISD::MUL,  MVT::v16i16,     1 }, // pmullw
691     { ISD::MUL,  MVT::v8i32,      2 }, // pmulld (Haswell from agner.org)
692     { ISD::MUL,  MVT::v4i64,      8 }, // 3*pmuludq/3*shift/2*add
693 
694     { ISD::FADD, MVT::v4f64,      1 }, // Haswell from http://www.agner.org/
695     { ISD::FADD, MVT::v8f32,      1 }, // Haswell from http://www.agner.org/
696     { ISD::FSUB, MVT::v4f64,      1 }, // Haswell from http://www.agner.org/
697     { ISD::FSUB, MVT::v8f32,      1 }, // Haswell from http://www.agner.org/
698     { ISD::FMUL, MVT::v4f64,      1 }, // Haswell from http://www.agner.org/
699     { ISD::FMUL, MVT::v8f32,      1 }, // Haswell from http://www.agner.org/
700 
701     { ISD::FDIV, MVT::f32,        7 }, // Haswell from http://www.agner.org/
702     { ISD::FDIV, MVT::v4f32,      7 }, // Haswell from http://www.agner.org/
703     { ISD::FDIV, MVT::v8f32,     14 }, // Haswell from http://www.agner.org/
704     { ISD::FDIV, MVT::f64,       14 }, // Haswell from http://www.agner.org/
705     { ISD::FDIV, MVT::v2f64,     14 }, // Haswell from http://www.agner.org/
706     { ISD::FDIV, MVT::v4f64,     28 }, // Haswell from http://www.agner.org/
707   };
708 
709   // Look for AVX2 lowering tricks for custom cases.
710   if (ST->hasAVX2())
711     if (const auto *Entry = CostTableLookup(AVX2CostTable, ISD, LT.second))
712       return LT.first * Entry->Cost;
713 
714   static const CostTblEntry AVX1CostTable[] = {
715     // We don't have to scalarize unsupported ops. We can issue two half-sized
716     // operations and we only need to extract the upper YMM half.
717     // Two ops + 1 extract + 1 insert = 4.
718     { ISD::MUL,     MVT::v16i16,     4 },
719     { ISD::MUL,     MVT::v8i32,      4 },
720     { ISD::SUB,     MVT::v32i8,      4 },
721     { ISD::ADD,     MVT::v32i8,      4 },
722     { ISD::SUB,     MVT::v16i16,     4 },
723     { ISD::ADD,     MVT::v16i16,     4 },
724     { ISD::SUB,     MVT::v8i32,      4 },
725     { ISD::ADD,     MVT::v8i32,      4 },
726     { ISD::SUB,     MVT::v4i64,      4 },
727     { ISD::ADD,     MVT::v4i64,      4 },
728 
729     // A v4i64 multiply is custom lowered as two split v2i64 vectors that then
730     // are lowered as a series of long multiplies(3), shifts(3) and adds(2)
731     // Because we believe v4i64 to be a legal type, we must also include the
732     // extract+insert in the cost table. Therefore, the cost here is 18
733     // instead of 8.
734     { ISD::MUL,     MVT::v4i64,     18 },
735 
736     { ISD::MUL,     MVT::v32i8,     26 }, // extend/pmullw/trunc sequence.
737 
738     { ISD::FDIV,    MVT::f32,       14 }, // SNB from http://www.agner.org/
739     { ISD::FDIV,    MVT::v4f32,     14 }, // SNB from http://www.agner.org/
740     { ISD::FDIV,    MVT::v8f32,     28 }, // SNB from http://www.agner.org/
741     { ISD::FDIV,    MVT::f64,       22 }, // SNB from http://www.agner.org/
742     { ISD::FDIV,    MVT::v2f64,     22 }, // SNB from http://www.agner.org/
743     { ISD::FDIV,    MVT::v4f64,     44 }, // SNB from http://www.agner.org/
744   };
745 
746   if (ST->hasAVX())
747     if (const auto *Entry = CostTableLookup(AVX1CostTable, ISD, LT.second))
748       return LT.first * Entry->Cost;
749 
750   static const CostTblEntry SSE42CostTable[] = {
751     { ISD::FADD, MVT::f64,     1 }, // Nehalem from http://www.agner.org/
752     { ISD::FADD, MVT::f32,     1 }, // Nehalem from http://www.agner.org/
753     { ISD::FADD, MVT::v2f64,   1 }, // Nehalem from http://www.agner.org/
754     { ISD::FADD, MVT::v4f32,   1 }, // Nehalem from http://www.agner.org/
755 
756     { ISD::FSUB, MVT::f64,     1 }, // Nehalem from http://www.agner.org/
757     { ISD::FSUB, MVT::f32 ,    1 }, // Nehalem from http://www.agner.org/
758     { ISD::FSUB, MVT::v2f64,   1 }, // Nehalem from http://www.agner.org/
759     { ISD::FSUB, MVT::v4f32,   1 }, // Nehalem from http://www.agner.org/
760 
761     { ISD::FMUL, MVT::f64,     1 }, // Nehalem from http://www.agner.org/
762     { ISD::FMUL, MVT::f32,     1 }, // Nehalem from http://www.agner.org/
763     { ISD::FMUL, MVT::v2f64,   1 }, // Nehalem from http://www.agner.org/
764     { ISD::FMUL, MVT::v4f32,   1 }, // Nehalem from http://www.agner.org/
765 
766     { ISD::FDIV,  MVT::f32,   14 }, // Nehalem from http://www.agner.org/
767     { ISD::FDIV,  MVT::v4f32, 14 }, // Nehalem from http://www.agner.org/
768     { ISD::FDIV,  MVT::f64,   22 }, // Nehalem from http://www.agner.org/
769     { ISD::FDIV,  MVT::v2f64, 22 }, // Nehalem from http://www.agner.org/
770   };
771 
772   if (ST->hasSSE42())
773     if (const auto *Entry = CostTableLookup(SSE42CostTable, ISD, LT.second))
774       return LT.first * Entry->Cost;
775 
776   static const CostTblEntry SSE41CostTable[] = {
777     { ISD::SHL,  MVT::v16i8,      11 }, // pblendvb sequence.
778     { ISD::SHL,  MVT::v32i8,  2*11+2 }, // pblendvb sequence + split.
779     { ISD::SHL,  MVT::v8i16,      14 }, // pblendvb sequence.
780     { ISD::SHL,  MVT::v16i16, 2*14+2 }, // pblendvb sequence + split.
781     { ISD::SHL,  MVT::v4i32,       4 }, // pslld/paddd/cvttps2dq/pmulld
782     { ISD::SHL,  MVT::v8i32,   2*4+2 }, // pslld/paddd/cvttps2dq/pmulld + split
783 
784     { ISD::SRL,  MVT::v16i8,      12 }, // pblendvb sequence.
785     { ISD::SRL,  MVT::v32i8,  2*12+2 }, // pblendvb sequence + split.
786     { ISD::SRL,  MVT::v8i16,      14 }, // pblendvb sequence.
787     { ISD::SRL,  MVT::v16i16, 2*14+2 }, // pblendvb sequence + split.
788     { ISD::SRL,  MVT::v4i32,      11 }, // Shift each lane + blend.
789     { ISD::SRL,  MVT::v8i32,  2*11+2 }, // Shift each lane + blend + split.
790 
791     { ISD::SRA,  MVT::v16i8,      24 }, // pblendvb sequence.
792     { ISD::SRA,  MVT::v32i8,  2*24+2 }, // pblendvb sequence + split.
793     { ISD::SRA,  MVT::v8i16,      14 }, // pblendvb sequence.
794     { ISD::SRA,  MVT::v16i16, 2*14+2 }, // pblendvb sequence + split.
795     { ISD::SRA,  MVT::v4i32,      12 }, // Shift each lane + blend.
796     { ISD::SRA,  MVT::v8i32,  2*12+2 }, // Shift each lane + blend + split.
797 
798     { ISD::MUL,  MVT::v4i32,       2 }  // pmulld (Nehalem from agner.org)
799   };
800 
801   if (ST->hasSSE41())
802     if (const auto *Entry = CostTableLookup(SSE41CostTable, ISD, LT.second))
803       return LT.first * Entry->Cost;
804 
805   static const CostTblEntry SSE2CostTable[] = {
806     // We don't correctly identify costs of casts because they are marked as
807     // custom.
808     { ISD::SHL,  MVT::v16i8,      26 }, // cmpgtb sequence.
809     { ISD::SHL,  MVT::v8i16,      32 }, // cmpgtb sequence.
810     { ISD::SHL,  MVT::v4i32,     2*5 }, // We optimized this using mul.
811     { ISD::SHL,  MVT::v2i64,       4 }, // splat+shuffle sequence.
812     { ISD::SHL,  MVT::v4i64,   2*4+2 }, // splat+shuffle sequence + split.
813 
814     { ISD::SRL,  MVT::v16i8,      26 }, // cmpgtb sequence.
815     { ISD::SRL,  MVT::v8i16,      32 }, // cmpgtb sequence.
816     { ISD::SRL,  MVT::v4i32,      16 }, // Shift each lane + blend.
817     { ISD::SRL,  MVT::v2i64,       4 }, // splat+shuffle sequence.
818     { ISD::SRL,  MVT::v4i64,   2*4+2 }, // splat+shuffle sequence + split.
819 
820     { ISD::SRA,  MVT::v16i8,      54 }, // unpacked cmpgtb sequence.
821     { ISD::SRA,  MVT::v8i16,      32 }, // cmpgtb sequence.
822     { ISD::SRA,  MVT::v4i32,      16 }, // Shift each lane + blend.
823     { ISD::SRA,  MVT::v2i64,      12 }, // srl/xor/sub sequence.
824     { ISD::SRA,  MVT::v4i64,  2*12+2 }, // srl/xor/sub sequence+split.
825 
826     { ISD::MUL,  MVT::v16i8,      12 }, // extend/pmullw/trunc sequence.
827     { ISD::MUL,  MVT::v8i16,       1 }, // pmullw
828     { ISD::MUL,  MVT::v4i32,       6 }, // 3*pmuludq/4*shuffle
829     { ISD::MUL,  MVT::v2i64,       8 }, // 3*pmuludq/3*shift/2*add
830 
831     { ISD::FDIV, MVT::f32,        23 }, // Pentium IV from http://www.agner.org/
832     { ISD::FDIV, MVT::v4f32,      39 }, // Pentium IV from http://www.agner.org/
833     { ISD::FDIV, MVT::f64,        38 }, // Pentium IV from http://www.agner.org/
834     { ISD::FDIV, MVT::v2f64,      69 }, // Pentium IV from http://www.agner.org/
835 
836     { ISD::FADD, MVT::f32,         2 }, // Pentium IV from http://www.agner.org/
837     { ISD::FADD, MVT::f64,         2 }, // Pentium IV from http://www.agner.org/
838 
839     { ISD::FSUB, MVT::f32,         2 }, // Pentium IV from http://www.agner.org/
840     { ISD::FSUB, MVT::f64,         2 }, // Pentium IV from http://www.agner.org/
841   };
842 
843   if (ST->hasSSE2())
844     if (const auto *Entry = CostTableLookup(SSE2CostTable, ISD, LT.second))
845       return LT.first * Entry->Cost;
846 
847   static const CostTblEntry SSE1CostTable[] = {
848     { ISD::FDIV, MVT::f32,   17 }, // Pentium III from http://www.agner.org/
849     { ISD::FDIV, MVT::v4f32, 34 }, // Pentium III from http://www.agner.org/
850 
851     { ISD::FADD, MVT::f32,    1 }, // Pentium III from http://www.agner.org/
852     { ISD::FADD, MVT::v4f32,  2 }, // Pentium III from http://www.agner.org/
853 
854     { ISD::FSUB, MVT::f32,    1 }, // Pentium III from http://www.agner.org/
855     { ISD::FSUB, MVT::v4f32,  2 }, // Pentium III from http://www.agner.org/
856 
857     { ISD::ADD, MVT::i8,      1 }, // Pentium III from http://www.agner.org/
858     { ISD::ADD, MVT::i16,     1 }, // Pentium III from http://www.agner.org/
859     { ISD::ADD, MVT::i32,     1 }, // Pentium III from http://www.agner.org/
860 
861     { ISD::SUB, MVT::i8,      1 }, // Pentium III from http://www.agner.org/
862     { ISD::SUB, MVT::i16,     1 }, // Pentium III from http://www.agner.org/
863     { ISD::SUB, MVT::i32,     1 }, // Pentium III from http://www.agner.org/
864   };
865 
866   if (ST->hasSSE1())
867     if (const auto *Entry = CostTableLookup(SSE1CostTable, ISD, LT.second))
868       return LT.first * Entry->Cost;
869 
870   // It is not a good idea to vectorize division. We have to scalarize it and
871   // in the process we will often end up having to spilling regular
872   // registers. The overhead of division is going to dominate most kernels
873   // anyways so try hard to prevent vectorization of division - it is
874   // generally a bad idea. Assume somewhat arbitrarily that we have to be able
875   // to hide "20 cycles" for each lane.
876   if (LT.second.isVector() && (ISD == ISD::SDIV || ISD == ISD::SREM ||
877                                ISD == ISD::UDIV || ISD == ISD::UREM)) {
878     int ScalarCost = getArithmeticInstrCost(
879         Opcode, Ty->getScalarType(), Op1Info, Op2Info,
880         TargetTransformInfo::OP_None, TargetTransformInfo::OP_None);
881     return 20 * LT.first * LT.second.getVectorNumElements() * ScalarCost;
882   }
883 
884   // Fallback to the default implementation.
885   return BaseT::getArithmeticInstrCost(Opcode, Ty, Op1Info, Op2Info);
886 }
887 
888 int X86TTIImpl::getShuffleCost(TTI::ShuffleKind Kind, Type *Tp, int Index,
889                                Type *SubTp) {
890   // 64-bit packed float vectors (v2f32) are widened to type v4f32.
891   // 64-bit packed integer vectors (v2i32) are widened to type v4i32.
892   std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Tp);
893 
894   // Treat Transpose as 2-op shuffles - there's no difference in lowering.
895   if (Kind == TTI::SK_Transpose)
896     Kind = TTI::SK_PermuteTwoSrc;
897 
898   // For Broadcasts we are splatting the first element from the first input
899   // register, so only need to reference that input and all the output
900   // registers are the same.
901   if (Kind == TTI::SK_Broadcast)
902     LT.first = 1;
903 
904   // Subvector extractions are free if they start at the beginning of a
905   // vector and cheap if the subvectors are aligned.
906   if (Kind == TTI::SK_ExtractSubvector && LT.second.isVector()) {
907     int NumElts = LT.second.getVectorNumElements();
908     if ((Index % NumElts) == 0)
909       return 0;
910     std::pair<int, MVT> SubLT = TLI->getTypeLegalizationCost(DL, SubTp);
911     if (SubLT.second.isVector()) {
912       int NumSubElts = SubLT.second.getVectorNumElements();
913       if ((Index % NumSubElts) == 0 && (NumElts % NumSubElts) == 0)
914         return SubLT.first;
915       // Handle some cases for widening legalization. For now we only handle
916       // cases where the original subvector was naturally aligned and evenly
917       // fit in its legalized subvector type.
918       // FIXME: Remove some of the alignment restrictions.
919       // FIXME: We can use permq for 64-bit or larger extracts from 256-bit
920       // vectors.
921       int OrigSubElts = SubTp->getVectorNumElements();
922       if (NumSubElts > OrigSubElts &&
923           (Index % OrigSubElts) == 0 && (NumSubElts % OrigSubElts) == 0 &&
924           LT.second.getVectorElementType() ==
925             SubLT.second.getVectorElementType() &&
926           LT.second.getVectorElementType().getSizeInBits() ==
927             Tp->getVectorElementType()->getPrimitiveSizeInBits()) {
928         assert(NumElts >= NumSubElts && NumElts > OrigSubElts &&
929                "Unexpected number of elements!");
930         Type *VecTy = VectorType::get(Tp->getVectorElementType(),
931                                       LT.second.getVectorNumElements());
932         Type *SubTy = VectorType::get(Tp->getVectorElementType(),
933                                       SubLT.second.getVectorNumElements());
934         int ExtractIndex = alignDown((Index % NumElts), NumSubElts);
935         int ExtractCost = getShuffleCost(TTI::SK_ExtractSubvector, VecTy,
936                                          ExtractIndex, SubTy);
937 
938         // If the original size is 32-bits or more, we can use pshufd. Otherwise
939         // if we have SSSE3 we can use pshufb.
940         if (SubTp->getPrimitiveSizeInBits() >= 32 || ST->hasSSSE3())
941           return ExtractCost + 1; // pshufd or pshufb
942 
943         assert(SubTp->getPrimitiveSizeInBits() == 16 &&
944                "Unexpected vector size");
945 
946         return ExtractCost + 2; // worst case pshufhw + pshufd
947       }
948     }
949   }
950 
951   // We are going to permute multiple sources and the result will be in multiple
952   // destinations. Providing an accurate cost only for splits where the element
953   // type remains the same.
954   if (Kind == TTI::SK_PermuteSingleSrc && LT.first != 1) {
955     MVT LegalVT = LT.second;
956     if (LegalVT.isVector() &&
957         LegalVT.getVectorElementType().getSizeInBits() ==
958             Tp->getVectorElementType()->getPrimitiveSizeInBits() &&
959         LegalVT.getVectorNumElements() < Tp->getVectorNumElements()) {
960 
961       unsigned VecTySize = DL.getTypeStoreSize(Tp);
962       unsigned LegalVTSize = LegalVT.getStoreSize();
963       // Number of source vectors after legalization:
964       unsigned NumOfSrcs = (VecTySize + LegalVTSize - 1) / LegalVTSize;
965       // Number of destination vectors after legalization:
966       unsigned NumOfDests = LT.first;
967 
968       Type *SingleOpTy = VectorType::get(Tp->getVectorElementType(),
969                                          LegalVT.getVectorNumElements());
970 
971       unsigned NumOfShuffles = (NumOfSrcs - 1) * NumOfDests;
972       return NumOfShuffles *
973              getShuffleCost(TTI::SK_PermuteTwoSrc, SingleOpTy, 0, nullptr);
974     }
975 
976     return BaseT::getShuffleCost(Kind, Tp, Index, SubTp);
977   }
978 
979   // For 2-input shuffles, we must account for splitting the 2 inputs into many.
980   if (Kind == TTI::SK_PermuteTwoSrc && LT.first != 1) {
981     // We assume that source and destination have the same vector type.
982     int NumOfDests = LT.first;
983     int NumOfShufflesPerDest = LT.first * 2 - 1;
984     LT.first = NumOfDests * NumOfShufflesPerDest;
985   }
986 
987   static const CostTblEntry AVX512VBMIShuffleTbl[] = {
988       {TTI::SK_Reverse, MVT::v64i8, 1}, // vpermb
989       {TTI::SK_Reverse, MVT::v32i8, 1}, // vpermb
990 
991       {TTI::SK_PermuteSingleSrc, MVT::v64i8, 1}, // vpermb
992       {TTI::SK_PermuteSingleSrc, MVT::v32i8, 1}, // vpermb
993 
994       {TTI::SK_PermuteTwoSrc, MVT::v64i8, 1}, // vpermt2b
995       {TTI::SK_PermuteTwoSrc, MVT::v32i8, 1}, // vpermt2b
996       {TTI::SK_PermuteTwoSrc, MVT::v16i8, 1}  // vpermt2b
997   };
998 
999   if (ST->hasVBMI())
1000     if (const auto *Entry =
1001             CostTableLookup(AVX512VBMIShuffleTbl, Kind, LT.second))
1002       return LT.first * Entry->Cost;
1003 
1004   static const CostTblEntry AVX512BWShuffleTbl[] = {
1005       {TTI::SK_Broadcast, MVT::v32i16, 1}, // vpbroadcastw
1006       {TTI::SK_Broadcast, MVT::v64i8, 1},  // vpbroadcastb
1007 
1008       {TTI::SK_Reverse, MVT::v32i16, 1}, // vpermw
1009       {TTI::SK_Reverse, MVT::v16i16, 1}, // vpermw
1010       {TTI::SK_Reverse, MVT::v64i8, 2},  // pshufb + vshufi64x2
1011 
1012       {TTI::SK_PermuteSingleSrc, MVT::v32i16, 1}, // vpermw
1013       {TTI::SK_PermuteSingleSrc, MVT::v16i16, 1}, // vpermw
1014       {TTI::SK_PermuteSingleSrc, MVT::v8i16, 1},  // vpermw
1015       {TTI::SK_PermuteSingleSrc, MVT::v64i8, 8},  // extend to v32i16
1016       {TTI::SK_PermuteSingleSrc, MVT::v32i8, 3},  // vpermw + zext/trunc
1017 
1018       {TTI::SK_PermuteTwoSrc, MVT::v32i16, 1}, // vpermt2w
1019       {TTI::SK_PermuteTwoSrc, MVT::v16i16, 1}, // vpermt2w
1020       {TTI::SK_PermuteTwoSrc, MVT::v8i16, 1},  // vpermt2w
1021       {TTI::SK_PermuteTwoSrc, MVT::v32i8, 3},  // zext + vpermt2w + trunc
1022       {TTI::SK_PermuteTwoSrc, MVT::v64i8, 19}, // 6 * v32i8 + 1
1023       {TTI::SK_PermuteTwoSrc, MVT::v16i8, 3}   // zext + vpermt2w + trunc
1024   };
1025 
1026   if (ST->hasBWI())
1027     if (const auto *Entry =
1028             CostTableLookup(AVX512BWShuffleTbl, Kind, LT.second))
1029       return LT.first * Entry->Cost;
1030 
1031   static const CostTblEntry AVX512ShuffleTbl[] = {
1032       {TTI::SK_Broadcast, MVT::v8f64, 1},  // vbroadcastpd
1033       {TTI::SK_Broadcast, MVT::v16f32, 1}, // vbroadcastps
1034       {TTI::SK_Broadcast, MVT::v8i64, 1},  // vpbroadcastq
1035       {TTI::SK_Broadcast, MVT::v16i32, 1}, // vpbroadcastd
1036 
1037       {TTI::SK_Reverse, MVT::v8f64, 1},  // vpermpd
1038       {TTI::SK_Reverse, MVT::v16f32, 1}, // vpermps
1039       {TTI::SK_Reverse, MVT::v8i64, 1},  // vpermq
1040       {TTI::SK_Reverse, MVT::v16i32, 1}, // vpermd
1041 
1042       {TTI::SK_PermuteSingleSrc, MVT::v8f64, 1},  // vpermpd
1043       {TTI::SK_PermuteSingleSrc, MVT::v4f64, 1},  // vpermpd
1044       {TTI::SK_PermuteSingleSrc, MVT::v2f64, 1},  // vpermpd
1045       {TTI::SK_PermuteSingleSrc, MVT::v16f32, 1}, // vpermps
1046       {TTI::SK_PermuteSingleSrc, MVT::v8f32, 1},  // vpermps
1047       {TTI::SK_PermuteSingleSrc, MVT::v4f32, 1},  // vpermps
1048       {TTI::SK_PermuteSingleSrc, MVT::v8i64, 1},  // vpermq
1049       {TTI::SK_PermuteSingleSrc, MVT::v4i64, 1},  // vpermq
1050       {TTI::SK_PermuteSingleSrc, MVT::v2i64, 1},  // vpermq
1051       {TTI::SK_PermuteSingleSrc, MVT::v16i32, 1}, // vpermd
1052       {TTI::SK_PermuteSingleSrc, MVT::v8i32, 1},  // vpermd
1053       {TTI::SK_PermuteSingleSrc, MVT::v4i32, 1},  // vpermd
1054       {TTI::SK_PermuteSingleSrc, MVT::v16i8, 1},  // pshufb
1055 
1056       {TTI::SK_PermuteTwoSrc, MVT::v8f64, 1},  // vpermt2pd
1057       {TTI::SK_PermuteTwoSrc, MVT::v16f32, 1}, // vpermt2ps
1058       {TTI::SK_PermuteTwoSrc, MVT::v8i64, 1},  // vpermt2q
1059       {TTI::SK_PermuteTwoSrc, MVT::v16i32, 1}, // vpermt2d
1060       {TTI::SK_PermuteTwoSrc, MVT::v4f64, 1},  // vpermt2pd
1061       {TTI::SK_PermuteTwoSrc, MVT::v8f32, 1},  // vpermt2ps
1062       {TTI::SK_PermuteTwoSrc, MVT::v4i64, 1},  // vpermt2q
1063       {TTI::SK_PermuteTwoSrc, MVT::v8i32, 1},  // vpermt2d
1064       {TTI::SK_PermuteTwoSrc, MVT::v2f64, 1},  // vpermt2pd
1065       {TTI::SK_PermuteTwoSrc, MVT::v4f32, 1},  // vpermt2ps
1066       {TTI::SK_PermuteTwoSrc, MVT::v2i64, 1},  // vpermt2q
1067       {TTI::SK_PermuteTwoSrc, MVT::v4i32, 1}   // vpermt2d
1068   };
1069 
1070   if (ST->hasAVX512())
1071     if (const auto *Entry = CostTableLookup(AVX512ShuffleTbl, Kind, LT.second))
1072       return LT.first * Entry->Cost;
1073 
1074   static const CostTblEntry AVX2ShuffleTbl[] = {
1075       {TTI::SK_Broadcast, MVT::v4f64, 1},  // vbroadcastpd
1076       {TTI::SK_Broadcast, MVT::v8f32, 1},  // vbroadcastps
1077       {TTI::SK_Broadcast, MVT::v4i64, 1},  // vpbroadcastq
1078       {TTI::SK_Broadcast, MVT::v8i32, 1},  // vpbroadcastd
1079       {TTI::SK_Broadcast, MVT::v16i16, 1}, // vpbroadcastw
1080       {TTI::SK_Broadcast, MVT::v32i8, 1},  // vpbroadcastb
1081 
1082       {TTI::SK_Reverse, MVT::v4f64, 1},  // vpermpd
1083       {TTI::SK_Reverse, MVT::v8f32, 1},  // vpermps
1084       {TTI::SK_Reverse, MVT::v4i64, 1},  // vpermq
1085       {TTI::SK_Reverse, MVT::v8i32, 1},  // vpermd
1086       {TTI::SK_Reverse, MVT::v16i16, 2}, // vperm2i128 + pshufb
1087       {TTI::SK_Reverse, MVT::v32i8, 2},  // vperm2i128 + pshufb
1088 
1089       {TTI::SK_Select, MVT::v16i16, 1}, // vpblendvb
1090       {TTI::SK_Select, MVT::v32i8, 1},  // vpblendvb
1091 
1092       {TTI::SK_PermuteSingleSrc, MVT::v4f64, 1},  // vpermpd
1093       {TTI::SK_PermuteSingleSrc, MVT::v8f32, 1},  // vpermps
1094       {TTI::SK_PermuteSingleSrc, MVT::v4i64, 1},  // vpermq
1095       {TTI::SK_PermuteSingleSrc, MVT::v8i32, 1},  // vpermd
1096       {TTI::SK_PermuteSingleSrc, MVT::v16i16, 4}, // vperm2i128 + 2*vpshufb
1097                                                   // + vpblendvb
1098       {TTI::SK_PermuteSingleSrc, MVT::v32i8, 4},  // vperm2i128 + 2*vpshufb
1099                                                   // + vpblendvb
1100 
1101       {TTI::SK_PermuteTwoSrc, MVT::v4f64, 3},  // 2*vpermpd + vblendpd
1102       {TTI::SK_PermuteTwoSrc, MVT::v8f32, 3},  // 2*vpermps + vblendps
1103       {TTI::SK_PermuteTwoSrc, MVT::v4i64, 3},  // 2*vpermq + vpblendd
1104       {TTI::SK_PermuteTwoSrc, MVT::v8i32, 3},  // 2*vpermd + vpblendd
1105       {TTI::SK_PermuteTwoSrc, MVT::v16i16, 7}, // 2*vperm2i128 + 4*vpshufb
1106                                                // + vpblendvb
1107       {TTI::SK_PermuteTwoSrc, MVT::v32i8, 7},  // 2*vperm2i128 + 4*vpshufb
1108                                                // + vpblendvb
1109   };
1110 
1111   if (ST->hasAVX2())
1112     if (const auto *Entry = CostTableLookup(AVX2ShuffleTbl, Kind, LT.second))
1113       return LT.first * Entry->Cost;
1114 
1115   static const CostTblEntry XOPShuffleTbl[] = {
1116       {TTI::SK_PermuteSingleSrc, MVT::v4f64, 2},  // vperm2f128 + vpermil2pd
1117       {TTI::SK_PermuteSingleSrc, MVT::v8f32, 2},  // vperm2f128 + vpermil2ps
1118       {TTI::SK_PermuteSingleSrc, MVT::v4i64, 2},  // vperm2f128 + vpermil2pd
1119       {TTI::SK_PermuteSingleSrc, MVT::v8i32, 2},  // vperm2f128 + vpermil2ps
1120       {TTI::SK_PermuteSingleSrc, MVT::v16i16, 4}, // vextractf128 + 2*vpperm
1121                                                   // + vinsertf128
1122       {TTI::SK_PermuteSingleSrc, MVT::v32i8, 4},  // vextractf128 + 2*vpperm
1123                                                   // + vinsertf128
1124 
1125       {TTI::SK_PermuteTwoSrc, MVT::v16i16, 9}, // 2*vextractf128 + 6*vpperm
1126                                                // + vinsertf128
1127       {TTI::SK_PermuteTwoSrc, MVT::v8i16, 1},  // vpperm
1128       {TTI::SK_PermuteTwoSrc, MVT::v32i8, 9},  // 2*vextractf128 + 6*vpperm
1129                                                // + vinsertf128
1130       {TTI::SK_PermuteTwoSrc, MVT::v16i8, 1},  // vpperm
1131   };
1132 
1133   if (ST->hasXOP())
1134     if (const auto *Entry = CostTableLookup(XOPShuffleTbl, Kind, LT.second))
1135       return LT.first * Entry->Cost;
1136 
1137   static const CostTblEntry AVX1ShuffleTbl[] = {
1138       {TTI::SK_Broadcast, MVT::v4f64, 2},  // vperm2f128 + vpermilpd
1139       {TTI::SK_Broadcast, MVT::v8f32, 2},  // vperm2f128 + vpermilps
1140       {TTI::SK_Broadcast, MVT::v4i64, 2},  // vperm2f128 + vpermilpd
1141       {TTI::SK_Broadcast, MVT::v8i32, 2},  // vperm2f128 + vpermilps
1142       {TTI::SK_Broadcast, MVT::v16i16, 3}, // vpshuflw + vpshufd + vinsertf128
1143       {TTI::SK_Broadcast, MVT::v32i8, 2},  // vpshufb + vinsertf128
1144 
1145       {TTI::SK_Reverse, MVT::v4f64, 2},  // vperm2f128 + vpermilpd
1146       {TTI::SK_Reverse, MVT::v8f32, 2},  // vperm2f128 + vpermilps
1147       {TTI::SK_Reverse, MVT::v4i64, 2},  // vperm2f128 + vpermilpd
1148       {TTI::SK_Reverse, MVT::v8i32, 2},  // vperm2f128 + vpermilps
1149       {TTI::SK_Reverse, MVT::v16i16, 4}, // vextractf128 + 2*pshufb
1150                                          // + vinsertf128
1151       {TTI::SK_Reverse, MVT::v32i8, 4},  // vextractf128 + 2*pshufb
1152                                          // + vinsertf128
1153 
1154       {TTI::SK_Select, MVT::v4i64, 1},  // vblendpd
1155       {TTI::SK_Select, MVT::v4f64, 1},  // vblendpd
1156       {TTI::SK_Select, MVT::v8i32, 1},  // vblendps
1157       {TTI::SK_Select, MVT::v8f32, 1},  // vblendps
1158       {TTI::SK_Select, MVT::v16i16, 3}, // vpand + vpandn + vpor
1159       {TTI::SK_Select, MVT::v32i8, 3},  // vpand + vpandn + vpor
1160 
1161       {TTI::SK_PermuteSingleSrc, MVT::v4f64, 2},  // vperm2f128 + vshufpd
1162       {TTI::SK_PermuteSingleSrc, MVT::v4i64, 2},  // vperm2f128 + vshufpd
1163       {TTI::SK_PermuteSingleSrc, MVT::v8f32, 4},  // 2*vperm2f128 + 2*vshufps
1164       {TTI::SK_PermuteSingleSrc, MVT::v8i32, 4},  // 2*vperm2f128 + 2*vshufps
1165       {TTI::SK_PermuteSingleSrc, MVT::v16i16, 8}, // vextractf128 + 4*pshufb
1166                                                   // + 2*por + vinsertf128
1167       {TTI::SK_PermuteSingleSrc, MVT::v32i8, 8},  // vextractf128 + 4*pshufb
1168                                                   // + 2*por + vinsertf128
1169 
1170       {TTI::SK_PermuteTwoSrc, MVT::v4f64, 3},   // 2*vperm2f128 + vshufpd
1171       {TTI::SK_PermuteTwoSrc, MVT::v4i64, 3},   // 2*vperm2f128 + vshufpd
1172       {TTI::SK_PermuteTwoSrc, MVT::v8f32, 4},   // 2*vperm2f128 + 2*vshufps
1173       {TTI::SK_PermuteTwoSrc, MVT::v8i32, 4},   // 2*vperm2f128 + 2*vshufps
1174       {TTI::SK_PermuteTwoSrc, MVT::v16i16, 15}, // 2*vextractf128 + 8*pshufb
1175                                                 // + 4*por + vinsertf128
1176       {TTI::SK_PermuteTwoSrc, MVT::v32i8, 15},  // 2*vextractf128 + 8*pshufb
1177                                                 // + 4*por + vinsertf128
1178   };
1179 
1180   if (ST->hasAVX())
1181     if (const auto *Entry = CostTableLookup(AVX1ShuffleTbl, Kind, LT.second))
1182       return LT.first * Entry->Cost;
1183 
1184   static const CostTblEntry SSE41ShuffleTbl[] = {
1185       {TTI::SK_Select, MVT::v2i64, 1}, // pblendw
1186       {TTI::SK_Select, MVT::v2f64, 1}, // movsd
1187       {TTI::SK_Select, MVT::v4i32, 1}, // pblendw
1188       {TTI::SK_Select, MVT::v4f32, 1}, // blendps
1189       {TTI::SK_Select, MVT::v8i16, 1}, // pblendw
1190       {TTI::SK_Select, MVT::v16i8, 1}  // pblendvb
1191   };
1192 
1193   if (ST->hasSSE41())
1194     if (const auto *Entry = CostTableLookup(SSE41ShuffleTbl, Kind, LT.second))
1195       return LT.first * Entry->Cost;
1196 
1197   static const CostTblEntry SSSE3ShuffleTbl[] = {
1198       {TTI::SK_Broadcast, MVT::v8i16, 1}, // pshufb
1199       {TTI::SK_Broadcast, MVT::v16i8, 1}, // pshufb
1200 
1201       {TTI::SK_Reverse, MVT::v8i16, 1}, // pshufb
1202       {TTI::SK_Reverse, MVT::v16i8, 1}, // pshufb
1203 
1204       {TTI::SK_Select, MVT::v8i16, 3}, // 2*pshufb + por
1205       {TTI::SK_Select, MVT::v16i8, 3}, // 2*pshufb + por
1206 
1207       {TTI::SK_PermuteSingleSrc, MVT::v8i16, 1}, // pshufb
1208       {TTI::SK_PermuteSingleSrc, MVT::v16i8, 1}, // pshufb
1209 
1210       {TTI::SK_PermuteTwoSrc, MVT::v8i16, 3}, // 2*pshufb + por
1211       {TTI::SK_PermuteTwoSrc, MVT::v16i8, 3}, // 2*pshufb + por
1212   };
1213 
1214   if (ST->hasSSSE3())
1215     if (const auto *Entry = CostTableLookup(SSSE3ShuffleTbl, Kind, LT.second))
1216       return LT.first * Entry->Cost;
1217 
1218   static const CostTblEntry SSE2ShuffleTbl[] = {
1219       {TTI::SK_Broadcast, MVT::v2f64, 1}, // shufpd
1220       {TTI::SK_Broadcast, MVT::v2i64, 1}, // pshufd
1221       {TTI::SK_Broadcast, MVT::v4i32, 1}, // pshufd
1222       {TTI::SK_Broadcast, MVT::v8i16, 2}, // pshuflw + pshufd
1223       {TTI::SK_Broadcast, MVT::v16i8, 3}, // unpck + pshuflw + pshufd
1224 
1225       {TTI::SK_Reverse, MVT::v2f64, 1}, // shufpd
1226       {TTI::SK_Reverse, MVT::v2i64, 1}, // pshufd
1227       {TTI::SK_Reverse, MVT::v4i32, 1}, // pshufd
1228       {TTI::SK_Reverse, MVT::v8i16, 3}, // pshuflw + pshufhw + pshufd
1229       {TTI::SK_Reverse, MVT::v16i8, 9}, // 2*pshuflw + 2*pshufhw
1230                                         // + 2*pshufd + 2*unpck + packus
1231 
1232       {TTI::SK_Select, MVT::v2i64, 1}, // movsd
1233       {TTI::SK_Select, MVT::v2f64, 1}, // movsd
1234       {TTI::SK_Select, MVT::v4i32, 2}, // 2*shufps
1235       {TTI::SK_Select, MVT::v8i16, 3}, // pand + pandn + por
1236       {TTI::SK_Select, MVT::v16i8, 3}, // pand + pandn + por
1237 
1238       {TTI::SK_PermuteSingleSrc, MVT::v2f64, 1}, // shufpd
1239       {TTI::SK_PermuteSingleSrc, MVT::v2i64, 1}, // pshufd
1240       {TTI::SK_PermuteSingleSrc, MVT::v4i32, 1}, // pshufd
1241       {TTI::SK_PermuteSingleSrc, MVT::v8i16, 5}, // 2*pshuflw + 2*pshufhw
1242                                                   // + pshufd/unpck
1243     { TTI::SK_PermuteSingleSrc, MVT::v16i8, 10 }, // 2*pshuflw + 2*pshufhw
1244                                                   // + 2*pshufd + 2*unpck + 2*packus
1245 
1246     { TTI::SK_PermuteTwoSrc,    MVT::v2f64,  1 }, // shufpd
1247     { TTI::SK_PermuteTwoSrc,    MVT::v2i64,  1 }, // shufpd
1248     { TTI::SK_PermuteTwoSrc,    MVT::v4i32,  2 }, // 2*{unpck,movsd,pshufd}
1249     { TTI::SK_PermuteTwoSrc,    MVT::v8i16,  8 }, // blend+permute
1250     { TTI::SK_PermuteTwoSrc,    MVT::v16i8, 13 }, // blend+permute
1251   };
1252 
1253   if (ST->hasSSE2())
1254     if (const auto *Entry = CostTableLookup(SSE2ShuffleTbl, Kind, LT.second))
1255       return LT.first * Entry->Cost;
1256 
1257   static const CostTblEntry SSE1ShuffleTbl[] = {
1258     { TTI::SK_Broadcast,        MVT::v4f32, 1 }, // shufps
1259     { TTI::SK_Reverse,          MVT::v4f32, 1 }, // shufps
1260     { TTI::SK_Select,           MVT::v4f32, 2 }, // 2*shufps
1261     { TTI::SK_PermuteSingleSrc, MVT::v4f32, 1 }, // shufps
1262     { TTI::SK_PermuteTwoSrc,    MVT::v4f32, 2 }, // 2*shufps
1263   };
1264 
1265   if (ST->hasSSE1())
1266     if (const auto *Entry = CostTableLookup(SSE1ShuffleTbl, Kind, LT.second))
1267       return LT.first * Entry->Cost;
1268 
1269   return BaseT::getShuffleCost(Kind, Tp, Index, SubTp);
1270 }
1271 
1272 int X86TTIImpl::getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src,
1273                                  const Instruction *I) {
1274   int ISD = TLI->InstructionOpcodeToISD(Opcode);
1275   assert(ISD && "Invalid opcode");
1276 
1277   // FIXME: Need a better design of the cost table to handle non-simple types of
1278   // potential massive combinations (elem_num x src_type x dst_type).
1279 
1280   static const TypeConversionCostTblEntry AVX512BWConversionTbl[] {
1281     { ISD::SIGN_EXTEND, MVT::v32i16, MVT::v32i8, 1 },
1282     { ISD::ZERO_EXTEND, MVT::v32i16, MVT::v32i8, 1 },
1283 
1284     // Mask sign extend has an instruction.
1285     { ISD::SIGN_EXTEND, MVT::v8i16,  MVT::v8i1,  1 },
1286     { ISD::SIGN_EXTEND, MVT::v16i8,  MVT::v16i1, 1 },
1287     { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i1, 1 },
1288     { ISD::SIGN_EXTEND, MVT::v32i8,  MVT::v32i1, 1 },
1289     { ISD::SIGN_EXTEND, MVT::v32i16, MVT::v32i1, 1 },
1290     { ISD::SIGN_EXTEND, MVT::v64i8,  MVT::v64i1, 1 },
1291 
1292     // Mask zero extend is a load + broadcast.
1293     { ISD::ZERO_EXTEND, MVT::v8i16,  MVT::v8i1,  2 },
1294     { ISD::ZERO_EXTEND, MVT::v16i8,  MVT::v16i1, 2 },
1295     { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i1, 2 },
1296     { ISD::ZERO_EXTEND, MVT::v32i8,  MVT::v32i1, 2 },
1297     { ISD::ZERO_EXTEND, MVT::v32i16, MVT::v32i1, 2 },
1298     { ISD::ZERO_EXTEND, MVT::v64i8,  MVT::v64i1, 2 },
1299   };
1300 
1301   static const TypeConversionCostTblEntry AVX512DQConversionTbl[] = {
1302     { ISD::SINT_TO_FP,  MVT::v2f32,  MVT::v2i64,  1 },
1303     { ISD::SINT_TO_FP,  MVT::v2f64,  MVT::v2i64,  1 },
1304     { ISD::SINT_TO_FP,  MVT::v4f32,  MVT::v4i64,  1 },
1305     { ISD::SINT_TO_FP,  MVT::v4f64,  MVT::v4i64,  1 },
1306     { ISD::SINT_TO_FP,  MVT::v8f32,  MVT::v8i64,  1 },
1307     { ISD::SINT_TO_FP,  MVT::v8f64,  MVT::v8i64,  1 },
1308 
1309     { ISD::UINT_TO_FP,  MVT::v2f32,  MVT::v2i64,  1 },
1310     { ISD::UINT_TO_FP,  MVT::v2f64,  MVT::v2i64,  1 },
1311     { ISD::UINT_TO_FP,  MVT::v4f32,  MVT::v4i64,  1 },
1312     { ISD::UINT_TO_FP,  MVT::v4f64,  MVT::v4i64,  1 },
1313     { ISD::UINT_TO_FP,  MVT::v8f32,  MVT::v8i64,  1 },
1314     { ISD::UINT_TO_FP,  MVT::v8f64,  MVT::v8i64,  1 },
1315 
1316     { ISD::FP_TO_SINT,  MVT::v2i64,  MVT::v2f32,  1 },
1317     { ISD::FP_TO_SINT,  MVT::v4i64,  MVT::v4f32,  1 },
1318     { ISD::FP_TO_SINT,  MVT::v8i64,  MVT::v8f32,  1 },
1319     { ISD::FP_TO_SINT,  MVT::v2i64,  MVT::v2f64,  1 },
1320     { ISD::FP_TO_SINT,  MVT::v4i64,  MVT::v4f64,  1 },
1321     { ISD::FP_TO_SINT,  MVT::v8i64,  MVT::v8f64,  1 },
1322 
1323     { ISD::FP_TO_UINT,  MVT::v2i64,  MVT::v2f32,  1 },
1324     { ISD::FP_TO_UINT,  MVT::v4i64,  MVT::v4f32,  1 },
1325     { ISD::FP_TO_UINT,  MVT::v8i64,  MVT::v8f32,  1 },
1326     { ISD::FP_TO_UINT,  MVT::v2i64,  MVT::v2f64,  1 },
1327     { ISD::FP_TO_UINT,  MVT::v4i64,  MVT::v4f64,  1 },
1328     { ISD::FP_TO_UINT,  MVT::v8i64,  MVT::v8f64,  1 },
1329   };
1330 
1331   // TODO: For AVX512DQ + AVX512VL, we also have cheap casts for 128-bit and
1332   // 256-bit wide vectors.
1333 
1334   static const TypeConversionCostTblEntry AVX512FConversionTbl[] = {
1335     { ISD::FP_EXTEND, MVT::v8f64,   MVT::v8f32,  1 },
1336     { ISD::FP_EXTEND, MVT::v8f64,   MVT::v16f32, 3 },
1337     { ISD::FP_ROUND,  MVT::v8f32,   MVT::v8f64,  1 },
1338 
1339     { ISD::TRUNCATE,  MVT::v16i8,   MVT::v16i32, 1 },
1340     { ISD::TRUNCATE,  MVT::v16i16,  MVT::v16i32, 1 },
1341     { ISD::TRUNCATE,  MVT::v8i16,   MVT::v8i64,  1 },
1342     { ISD::TRUNCATE,  MVT::v8i32,   MVT::v8i64,  1 },
1343 
1344     // v16i1 -> v16i32 - load + broadcast
1345     { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i1,  2 },
1346     { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i1,  2 },
1347     { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i8,  1 },
1348     { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i8,  1 },
1349     { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i16, 1 },
1350     { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i16, 1 },
1351     { ISD::SIGN_EXTEND, MVT::v8i64,  MVT::v8i8,   1 },
1352     { ISD::ZERO_EXTEND, MVT::v8i64,  MVT::v8i8,   1 },
1353     { ISD::SIGN_EXTEND, MVT::v8i64,  MVT::v8i16,  1 },
1354     { ISD::ZERO_EXTEND, MVT::v8i64,  MVT::v8i16,  1 },
1355     { ISD::SIGN_EXTEND, MVT::v8i64,  MVT::v8i32,  1 },
1356     { ISD::ZERO_EXTEND, MVT::v8i64,  MVT::v8i32,  1 },
1357 
1358     { ISD::SINT_TO_FP,  MVT::v8f64,  MVT::v8i1,   4 },
1359     { ISD::SINT_TO_FP,  MVT::v16f32, MVT::v16i1,  3 },
1360     { ISD::SINT_TO_FP,  MVT::v8f64,  MVT::v8i8,   2 },
1361     { ISD::SINT_TO_FP,  MVT::v16f32, MVT::v16i8,  2 },
1362     { ISD::SINT_TO_FP,  MVT::v8f64,  MVT::v8i16,  2 },
1363     { ISD::SINT_TO_FP,  MVT::v16f32, MVT::v16i16, 2 },
1364     { ISD::SINT_TO_FP,  MVT::v16f32, MVT::v16i32, 1 },
1365     { ISD::SINT_TO_FP,  MVT::v8f64,  MVT::v8i32,  1 },
1366 
1367     { ISD::UINT_TO_FP,  MVT::v8f64,  MVT::v8i1,   4 },
1368     { ISD::UINT_TO_FP,  MVT::v16f32, MVT::v16i1,  3 },
1369     { ISD::UINT_TO_FP,  MVT::v2f64,  MVT::v2i8,   2 },
1370     { ISD::UINT_TO_FP,  MVT::v4f64,  MVT::v4i8,   2 },
1371     { ISD::UINT_TO_FP,  MVT::v8f32,  MVT::v8i8,   2 },
1372     { ISD::UINT_TO_FP,  MVT::v8f64,  MVT::v8i8,   2 },
1373     { ISD::UINT_TO_FP,  MVT::v16f32, MVT::v16i8,  2 },
1374     { ISD::UINT_TO_FP,  MVT::v2f64,  MVT::v2i16,  5 },
1375     { ISD::UINT_TO_FP,  MVT::v4f64,  MVT::v4i16,  2 },
1376     { ISD::UINT_TO_FP,  MVT::v8f32,  MVT::v8i16,  2 },
1377     { ISD::UINT_TO_FP,  MVT::v8f64,  MVT::v8i16,  2 },
1378     { ISD::UINT_TO_FP,  MVT::v16f32, MVT::v16i16, 2 },
1379     { ISD::UINT_TO_FP,  MVT::v2f32,  MVT::v2i32,  2 },
1380     { ISD::UINT_TO_FP,  MVT::v2f64,  MVT::v2i32,  1 },
1381     { ISD::UINT_TO_FP,  MVT::v4f32,  MVT::v4i32,  1 },
1382     { ISD::UINT_TO_FP,  MVT::v4f64,  MVT::v4i32,  1 },
1383     { ISD::UINT_TO_FP,  MVT::v8f32,  MVT::v8i32,  1 },
1384     { ISD::UINT_TO_FP,  MVT::v8f64,  MVT::v8i32,  1 },
1385     { ISD::UINT_TO_FP,  MVT::v16f32, MVT::v16i32, 1 },
1386     { ISD::UINT_TO_FP,  MVT::v2f32,  MVT::v2i64,  5 },
1387     { ISD::UINT_TO_FP,  MVT::v8f32,  MVT::v8i64, 26 },
1388     { ISD::UINT_TO_FP,  MVT::v2f64,  MVT::v2i64,  5 },
1389     { ISD::UINT_TO_FP,  MVT::v4f64,  MVT::v4i64,  5 },
1390     { ISD::UINT_TO_FP,  MVT::v8f64,  MVT::v8i64,  5 },
1391 
1392     { ISD::UINT_TO_FP,  MVT::f64,    MVT::i64,    1 },
1393     { ISD::FP_TO_UINT,  MVT::i64,    MVT::f32,    1 },
1394     { ISD::FP_TO_UINT,  MVT::i64,    MVT::f64,    1 },
1395 
1396     { ISD::FP_TO_UINT,  MVT::v2i32,  MVT::v2f32,  1 },
1397     { ISD::FP_TO_UINT,  MVT::v4i32,  MVT::v4f32,  1 },
1398     { ISD::FP_TO_UINT,  MVT::v4i32,  MVT::v4f64,  1 },
1399     { ISD::FP_TO_UINT,  MVT::v8i32,  MVT::v8f32,  1 },
1400     { ISD::FP_TO_UINT,  MVT::v8i16,  MVT::v8f64,  2 },
1401     { ISD::FP_TO_UINT,  MVT::v8i8,   MVT::v8f64,  2 },
1402     { ISD::FP_TO_UINT,  MVT::v16i32, MVT::v16f32, 1 },
1403     { ISD::FP_TO_UINT,  MVT::v16i16, MVT::v16f32, 2 },
1404     { ISD::FP_TO_UINT,  MVT::v16i8,  MVT::v16f32, 2 },
1405   };
1406 
1407   static const TypeConversionCostTblEntry AVX2ConversionTbl[] = {
1408     { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v4i1,   3 },
1409     { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v4i1,   3 },
1410     { ISD::SIGN_EXTEND, MVT::v8i32,  MVT::v8i1,   3 },
1411     { ISD::ZERO_EXTEND, MVT::v8i32,  MVT::v8i1,   3 },
1412     { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v4i8,   1 },
1413     { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v4i8,   1 },
1414     { ISD::SIGN_EXTEND, MVT::v8i32,  MVT::v8i8,   1 },
1415     { ISD::ZERO_EXTEND, MVT::v8i32,  MVT::v8i8,   1 },
1416     { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i8,  1 },
1417     { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i8,  1 },
1418     { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v4i16,  1 },
1419     { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v4i16,  1 },
1420     { ISD::SIGN_EXTEND, MVT::v8i32,  MVT::v8i16,  1 },
1421     { ISD::ZERO_EXTEND, MVT::v8i32,  MVT::v8i16,  1 },
1422     { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v4i32,  1 },
1423     { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v4i32,  1 },
1424 
1425     { ISD::TRUNCATE,    MVT::v4i8,   MVT::v4i64,  2 },
1426     { ISD::TRUNCATE,    MVT::v4i16,  MVT::v4i64,  2 },
1427     { ISD::TRUNCATE,    MVT::v4i32,  MVT::v4i64,  2 },
1428     { ISD::TRUNCATE,    MVT::v8i8,   MVT::v8i32,  2 },
1429     { ISD::TRUNCATE,    MVT::v8i16,  MVT::v8i32,  2 },
1430     { ISD::TRUNCATE,    MVT::v8i32,  MVT::v8i64,  4 },
1431 
1432     { ISD::FP_EXTEND,   MVT::v8f64,  MVT::v8f32,  3 },
1433     { ISD::FP_ROUND,    MVT::v8f32,  MVT::v8f64,  3 },
1434 
1435     { ISD::UINT_TO_FP,  MVT::v8f32,  MVT::v8i32,  8 },
1436   };
1437 
1438   static const TypeConversionCostTblEntry AVXConversionTbl[] = {
1439     { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v4i1,  6 },
1440     { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v4i1,  4 },
1441     { ISD::SIGN_EXTEND, MVT::v8i32,  MVT::v8i1,  7 },
1442     { ISD::ZERO_EXTEND, MVT::v8i32,  MVT::v8i1,  4 },
1443     { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v4i8,  4 },
1444     { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v4i8,  4 },
1445     { ISD::SIGN_EXTEND, MVT::v8i32,  MVT::v8i8,  4 },
1446     { ISD::ZERO_EXTEND, MVT::v8i32,  MVT::v8i8,  4 },
1447     { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i8, 4 },
1448     { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i8, 4 },
1449     { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v4i16, 4 },
1450     { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v4i16, 3 },
1451     { ISD::SIGN_EXTEND, MVT::v8i32,  MVT::v8i16, 4 },
1452     { ISD::ZERO_EXTEND, MVT::v8i32,  MVT::v8i16, 4 },
1453     { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v4i32, 4 },
1454     { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v4i32, 4 },
1455 
1456     { ISD::TRUNCATE,    MVT::v16i8, MVT::v16i16, 4 },
1457     { ISD::TRUNCATE,    MVT::v8i8,  MVT::v8i32,  4 },
1458     { ISD::TRUNCATE,    MVT::v8i16, MVT::v8i32,  5 },
1459     { ISD::TRUNCATE,    MVT::v4i8,  MVT::v4i64,  4 },
1460     { ISD::TRUNCATE,    MVT::v4i16, MVT::v4i64,  4 },
1461     { ISD::TRUNCATE,    MVT::v4i32, MVT::v4i64,  4 },
1462     { ISD::TRUNCATE,    MVT::v8i8,  MVT::v8i64, 11 },
1463     { ISD::TRUNCATE,    MVT::v8i16, MVT::v8i64,  9 },
1464     { ISD::TRUNCATE,    MVT::v8i32, MVT::v8i64,  9 },
1465     { ISD::TRUNCATE,    MVT::v16i8, MVT::v16i64, 11 },
1466 
1467     { ISD::SINT_TO_FP,  MVT::v4f32, MVT::v4i1,  3 },
1468     { ISD::SINT_TO_FP,  MVT::v4f64, MVT::v4i1,  3 },
1469     { ISD::SINT_TO_FP,  MVT::v8f32, MVT::v8i1,  8 },
1470     { ISD::SINT_TO_FP,  MVT::v4f32, MVT::v4i8,  3 },
1471     { ISD::SINT_TO_FP,  MVT::v4f64, MVT::v4i8,  3 },
1472     { ISD::SINT_TO_FP,  MVT::v8f32, MVT::v8i8,  8 },
1473     { ISD::SINT_TO_FP,  MVT::v4f32, MVT::v4i16, 3 },
1474     { ISD::SINT_TO_FP,  MVT::v4f64, MVT::v4i16, 3 },
1475     { ISD::SINT_TO_FP,  MVT::v8f32, MVT::v8i16, 5 },
1476     { ISD::SINT_TO_FP,  MVT::v4f32, MVT::v4i32, 1 },
1477     { ISD::SINT_TO_FP,  MVT::v4f64, MVT::v4i32, 1 },
1478     { ISD::SINT_TO_FP,  MVT::v8f32, MVT::v8i32, 1 },
1479 
1480     { ISD::UINT_TO_FP,  MVT::v4f32, MVT::v4i1,  7 },
1481     { ISD::UINT_TO_FP,  MVT::v4f64, MVT::v4i1,  7 },
1482     { ISD::UINT_TO_FP,  MVT::v8f32, MVT::v8i1,  6 },
1483     { ISD::UINT_TO_FP,  MVT::v4f32, MVT::v4i8,  2 },
1484     { ISD::UINT_TO_FP,  MVT::v4f64, MVT::v4i8,  2 },
1485     { ISD::UINT_TO_FP,  MVT::v8f32, MVT::v8i8,  5 },
1486     { ISD::UINT_TO_FP,  MVT::v4f32, MVT::v4i16, 2 },
1487     { ISD::UINT_TO_FP,  MVT::v4f64, MVT::v4i16, 2 },
1488     { ISD::UINT_TO_FP,  MVT::v8f32, MVT::v8i16, 5 },
1489     { ISD::UINT_TO_FP,  MVT::v2f64, MVT::v2i32, 6 },
1490     { ISD::UINT_TO_FP,  MVT::v4f32, MVT::v4i32, 6 },
1491     { ISD::UINT_TO_FP,  MVT::v4f64, MVT::v4i32, 6 },
1492     { ISD::UINT_TO_FP,  MVT::v8f32, MVT::v8i32, 9 },
1493     { ISD::UINT_TO_FP,  MVT::v2f64, MVT::v2i64, 5 },
1494     { ISD::UINT_TO_FP,  MVT::v4f64, MVT::v4i64, 6 },
1495     // The generic code to compute the scalar overhead is currently broken.
1496     // Workaround this limitation by estimating the scalarization overhead
1497     // here. We have roughly 10 instructions per scalar element.
1498     // Multiply that by the vector width.
1499     // FIXME: remove that when PR19268 is fixed.
1500     { ISD::SINT_TO_FP,  MVT::v4f64, MVT::v4i64, 13 },
1501     { ISD::SINT_TO_FP,  MVT::v4f64, MVT::v4i64, 13 },
1502 
1503     { ISD::FP_TO_SINT,  MVT::v4i8,  MVT::v4f32, 1 },
1504     { ISD::FP_TO_SINT,  MVT::v8i8,  MVT::v8f32, 7 },
1505     // This node is expanded into scalarized operations but BasicTTI is overly
1506     // optimistic estimating its cost.  It computes 3 per element (one
1507     // vector-extract, one scalar conversion and one vector-insert).  The
1508     // problem is that the inserts form a read-modify-write chain so latency
1509     // should be factored in too.  Inflating the cost per element by 1.
1510     { ISD::FP_TO_UINT,  MVT::v8i32, MVT::v8f32, 8*4 },
1511     { ISD::FP_TO_UINT,  MVT::v4i32, MVT::v4f64, 4*4 },
1512 
1513     { ISD::FP_EXTEND,   MVT::v4f64,  MVT::v4f32,  1 },
1514     { ISD::FP_ROUND,    MVT::v4f32,  MVT::v4f64,  1 },
1515   };
1516 
1517   static const TypeConversionCostTblEntry SSE41ConversionTbl[] = {
1518     { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i8,    2 },
1519     { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i8,    2 },
1520     { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i16,   2 },
1521     { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i16,   2 },
1522     { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i32,   2 },
1523     { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i32,   2 },
1524 
1525     { ISD::ZERO_EXTEND, MVT::v4i16,  MVT::v4i8,   1 },
1526     { ISD::SIGN_EXTEND, MVT::v4i16,  MVT::v4i8,   2 },
1527     { ISD::ZERO_EXTEND, MVT::v4i32,  MVT::v4i8,   1 },
1528     { ISD::SIGN_EXTEND, MVT::v4i32,  MVT::v4i8,   1 },
1529     { ISD::ZERO_EXTEND, MVT::v8i16,  MVT::v8i8,   1 },
1530     { ISD::SIGN_EXTEND, MVT::v8i16,  MVT::v8i8,   1 },
1531     { ISD::ZERO_EXTEND, MVT::v8i32,  MVT::v8i8,   2 },
1532     { ISD::SIGN_EXTEND, MVT::v8i32,  MVT::v8i8,   2 },
1533     { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i8,  2 },
1534     { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i8,  2 },
1535     { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i8,  4 },
1536     { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i8,  4 },
1537     { ISD::ZERO_EXTEND, MVT::v4i32,  MVT::v4i16,  1 },
1538     { ISD::SIGN_EXTEND, MVT::v4i32,  MVT::v4i16,  1 },
1539     { ISD::ZERO_EXTEND, MVT::v8i32,  MVT::v8i16,  2 },
1540     { ISD::SIGN_EXTEND, MVT::v8i32,  MVT::v8i16,  2 },
1541     { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i16, 4 },
1542     { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i16, 4 },
1543 
1544     { ISD::TRUNCATE,    MVT::v4i8,   MVT::v4i16,  2 },
1545     { ISD::TRUNCATE,    MVT::v8i8,   MVT::v8i16,  1 },
1546     { ISD::TRUNCATE,    MVT::v4i8,   MVT::v4i32,  1 },
1547     { ISD::TRUNCATE,    MVT::v4i16,  MVT::v4i32,  1 },
1548     { ISD::TRUNCATE,    MVT::v8i8,   MVT::v8i32,  3 },
1549     { ISD::TRUNCATE,    MVT::v8i16,  MVT::v8i32,  3 },
1550     { ISD::TRUNCATE,    MVT::v16i16, MVT::v16i32, 6 },
1551     { ISD::TRUNCATE,    MVT::v2i8,   MVT::v2i64,  1 }, // PSHUFB
1552 
1553     { ISD::UINT_TO_FP,  MVT::f64,    MVT::i64,    4 },
1554   };
1555 
1556   static const TypeConversionCostTblEntry SSE2ConversionTbl[] = {
1557     // These are somewhat magic numbers justified by looking at the output of
1558     // Intel's IACA, running some kernels and making sure when we take
1559     // legalization into account the throughput will be overestimated.
1560     { ISD::SINT_TO_FP, MVT::v4f32, MVT::v16i8, 8 },
1561     { ISD::SINT_TO_FP, MVT::v2f64, MVT::v16i8, 16*10 },
1562     { ISD::SINT_TO_FP, MVT::v4f32, MVT::v8i16, 15 },
1563     { ISD::SINT_TO_FP, MVT::v2f64, MVT::v8i16, 8*10 },
1564     { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i32, 5 },
1565     { ISD::SINT_TO_FP, MVT::v2f64, MVT::v4i32, 2*10 },
1566     { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i32, 2*10 },
1567     { ISD::SINT_TO_FP, MVT::v4f32, MVT::v2i64, 15 },
1568     { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i64, 2*10 },
1569 
1570     { ISD::UINT_TO_FP, MVT::v2f64, MVT::v16i8, 16*10 },
1571     { ISD::UINT_TO_FP, MVT::v4f32, MVT::v16i8, 8 },
1572     { ISD::UINT_TO_FP, MVT::v4f32, MVT::v8i16, 15 },
1573     { ISD::UINT_TO_FP, MVT::v2f64, MVT::v8i16, 8*10 },
1574     { ISD::UINT_TO_FP, MVT::v2f64, MVT::v4i32, 4*10 },
1575     { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i32, 8 },
1576     { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i64, 6 },
1577     { ISD::UINT_TO_FP, MVT::v4f32, MVT::v2i64, 15 },
1578 
1579     { ISD::FP_TO_SINT,  MVT::v2i32,  MVT::v2f64,  3 },
1580 
1581     { ISD::UINT_TO_FP,  MVT::f64,    MVT::i64,    6 },
1582     { ISD::FP_TO_UINT,  MVT::i64,    MVT::f32,    4 },
1583     { ISD::FP_TO_UINT,  MVT::i64,    MVT::f64,    4 },
1584 
1585     { ISD::ZERO_EXTEND, MVT::v4i16,  MVT::v4i8,   1 },
1586     { ISD::SIGN_EXTEND, MVT::v4i16,  MVT::v4i8,   6 },
1587     { ISD::ZERO_EXTEND, MVT::v4i32,  MVT::v4i8,   2 },
1588     { ISD::SIGN_EXTEND, MVT::v4i32,  MVT::v4i8,   3 },
1589     { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v4i8,   4 },
1590     { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v4i8,   8 },
1591     { ISD::ZERO_EXTEND, MVT::v8i16,  MVT::v8i8,   1 },
1592     { ISD::SIGN_EXTEND, MVT::v8i16,  MVT::v8i8,   2 },
1593     { ISD::ZERO_EXTEND, MVT::v8i32,  MVT::v8i8,   6 },
1594     { ISD::SIGN_EXTEND, MVT::v8i32,  MVT::v8i8,   6 },
1595     { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i8,  3 },
1596     { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i8,  4 },
1597     { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i8,  9 },
1598     { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i8,  12 },
1599     { ISD::ZERO_EXTEND, MVT::v4i32,  MVT::v4i16,  1 },
1600     { ISD::SIGN_EXTEND, MVT::v4i32,  MVT::v4i16,  2 },
1601     { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v4i16,  3 },
1602     { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v4i16,  10 },
1603     { ISD::ZERO_EXTEND, MVT::v8i32,  MVT::v8i16,  3 },
1604     { ISD::SIGN_EXTEND, MVT::v8i32,  MVT::v8i16,  4 },
1605     { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i16, 6 },
1606     { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i16, 8 },
1607     { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v4i32,  3 },
1608     { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v4i32,  5 },
1609 
1610     { ISD::TRUNCATE,    MVT::v2i8,   MVT::v2i16,  2 }, // PAND+PACKUSWB
1611     { ISD::TRUNCATE,    MVT::v4i8,   MVT::v4i16,  4 },
1612     { ISD::TRUNCATE,    MVT::v8i8,   MVT::v8i16,  2 },
1613     { ISD::TRUNCATE,    MVT::v16i8,  MVT::v16i16, 3 },
1614     { ISD::TRUNCATE,    MVT::v2i8,   MVT::v2i32,  3 }, // PAND+3*PACKUSWB
1615     { ISD::TRUNCATE,    MVT::v2i16,  MVT::v2i32,  1 },
1616     { ISD::TRUNCATE,    MVT::v4i8,   MVT::v4i32,  3 },
1617     { ISD::TRUNCATE,    MVT::v4i16,  MVT::v4i32,  3 },
1618     { ISD::TRUNCATE,    MVT::v8i8,   MVT::v8i32,  4 },
1619     { ISD::TRUNCATE,    MVT::v16i8,  MVT::v16i32, 7 },
1620     { ISD::TRUNCATE,    MVT::v8i16,  MVT::v8i32,  5 },
1621     { ISD::TRUNCATE,    MVT::v16i16, MVT::v16i32, 10 },
1622     { ISD::TRUNCATE,    MVT::v2i8,   MVT::v2i64,  4 }, // PAND+3*PACKUSWB
1623     { ISD::TRUNCATE,    MVT::v2i16,  MVT::v2i64,  2 }, // PSHUFD+PSHUFLW
1624     { ISD::TRUNCATE,    MVT::v2i32,  MVT::v2i64,  1 }, // PSHUFD
1625   };
1626 
1627   std::pair<int, MVT> LTSrc = TLI->getTypeLegalizationCost(DL, Src);
1628   std::pair<int, MVT> LTDest = TLI->getTypeLegalizationCost(DL, Dst);
1629 
1630   if (ST->hasSSE2() && !ST->hasAVX()) {
1631     if (const auto *Entry = ConvertCostTableLookup(SSE2ConversionTbl, ISD,
1632                                                    LTDest.second, LTSrc.second))
1633       return LTSrc.first * Entry->Cost;
1634   }
1635 
1636   EVT SrcTy = TLI->getValueType(DL, Src);
1637   EVT DstTy = TLI->getValueType(DL, Dst);
1638 
1639   // The function getSimpleVT only handles simple value types.
1640   if (!SrcTy.isSimple() || !DstTy.isSimple())
1641     return BaseT::getCastInstrCost(Opcode, Dst, Src);
1642 
1643   MVT SimpleSrcTy = SrcTy.getSimpleVT();
1644   MVT SimpleDstTy = DstTy.getSimpleVT();
1645 
1646   // Make sure that neither type is going to be split before using the
1647   // AVX512 tables. This handles -mprefer-vector-width=256
1648   // with -min-legal-vector-width<=256
1649   if (TLI->getTypeAction(SimpleSrcTy) != TargetLowering::TypeSplitVector &&
1650       TLI->getTypeAction(SimpleDstTy) != TargetLowering::TypeSplitVector) {
1651     if (ST->hasBWI())
1652       if (const auto *Entry = ConvertCostTableLookup(AVX512BWConversionTbl, ISD,
1653                                                      SimpleDstTy, SimpleSrcTy))
1654         return Entry->Cost;
1655 
1656     if (ST->hasDQI())
1657       if (const auto *Entry = ConvertCostTableLookup(AVX512DQConversionTbl, ISD,
1658                                                      SimpleDstTy, SimpleSrcTy))
1659         return Entry->Cost;
1660 
1661     if (ST->hasAVX512())
1662       if (const auto *Entry = ConvertCostTableLookup(AVX512FConversionTbl, ISD,
1663                                                      SimpleDstTy, SimpleSrcTy))
1664         return Entry->Cost;
1665   }
1666 
1667   if (ST->hasAVX2()) {
1668     if (const auto *Entry = ConvertCostTableLookup(AVX2ConversionTbl, ISD,
1669                                                    SimpleDstTy, SimpleSrcTy))
1670       return Entry->Cost;
1671   }
1672 
1673   if (ST->hasAVX()) {
1674     if (const auto *Entry = ConvertCostTableLookup(AVXConversionTbl, ISD,
1675                                                    SimpleDstTy, SimpleSrcTy))
1676       return Entry->Cost;
1677   }
1678 
1679   if (ST->hasSSE41()) {
1680     if (const auto *Entry = ConvertCostTableLookup(SSE41ConversionTbl, ISD,
1681                                                    SimpleDstTy, SimpleSrcTy))
1682       return Entry->Cost;
1683   }
1684 
1685   if (ST->hasSSE2()) {
1686     if (const auto *Entry = ConvertCostTableLookup(SSE2ConversionTbl, ISD,
1687                                                    SimpleDstTy, SimpleSrcTy))
1688       return Entry->Cost;
1689   }
1690 
1691   return BaseT::getCastInstrCost(Opcode, Dst, Src, I);
1692 }
1693 
1694 int X86TTIImpl::getCmpSelInstrCost(unsigned Opcode, Type *ValTy, Type *CondTy,
1695                                    const Instruction *I) {
1696   // Legalize the type.
1697   std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, ValTy);
1698 
1699   MVT MTy = LT.second;
1700 
1701   int ISD = TLI->InstructionOpcodeToISD(Opcode);
1702   assert(ISD && "Invalid opcode");
1703 
1704   unsigned ExtraCost = 0;
1705   if (I && (Opcode == Instruction::ICmp || Opcode == Instruction::FCmp)) {
1706     // Some vector comparison predicates cost extra instructions.
1707     if (MTy.isVector() &&
1708         !((ST->hasXOP() && (!ST->hasAVX2() || MTy.is128BitVector())) ||
1709           (ST->hasAVX512() && 32 <= MTy.getScalarSizeInBits()) ||
1710           ST->hasBWI())) {
1711       switch (cast<CmpInst>(I)->getPredicate()) {
1712       case CmpInst::Predicate::ICMP_NE:
1713         // xor(cmpeq(x,y),-1)
1714         ExtraCost = 1;
1715         break;
1716       case CmpInst::Predicate::ICMP_SGE:
1717       case CmpInst::Predicate::ICMP_SLE:
1718         // xor(cmpgt(x,y),-1)
1719         ExtraCost = 1;
1720         break;
1721       case CmpInst::Predicate::ICMP_ULT:
1722       case CmpInst::Predicate::ICMP_UGT:
1723         // cmpgt(xor(x,signbit),xor(y,signbit))
1724         // xor(cmpeq(pmaxu(x,y),x),-1)
1725         ExtraCost = 2;
1726         break;
1727       case CmpInst::Predicate::ICMP_ULE:
1728       case CmpInst::Predicate::ICMP_UGE:
1729         if ((ST->hasSSE41() && MTy.getScalarSizeInBits() == 32) ||
1730             (ST->hasSSE2() && MTy.getScalarSizeInBits() < 32)) {
1731           // cmpeq(psubus(x,y),0)
1732           // cmpeq(pminu(x,y),x)
1733           ExtraCost = 1;
1734         } else {
1735           // xor(cmpgt(xor(x,signbit),xor(y,signbit)),-1)
1736           ExtraCost = 3;
1737         }
1738         break;
1739       default:
1740         break;
1741       }
1742     }
1743   }
1744 
1745   static const CostTblEntry SLMCostTbl[] = {
1746     // slm pcmpeq/pcmpgt throughput is 2
1747     { ISD::SETCC,   MVT::v2i64,   2 },
1748   };
1749 
1750   static const CostTblEntry AVX512BWCostTbl[] = {
1751     { ISD::SETCC,   MVT::v32i16,  1 },
1752     { ISD::SETCC,   MVT::v64i8,   1 },
1753 
1754     { ISD::SELECT,  MVT::v32i16,  1 },
1755     { ISD::SELECT,  MVT::v64i8,   1 },
1756   };
1757 
1758   static const CostTblEntry AVX512CostTbl[] = {
1759     { ISD::SETCC,   MVT::v8i64,   1 },
1760     { ISD::SETCC,   MVT::v16i32,  1 },
1761     { ISD::SETCC,   MVT::v8f64,   1 },
1762     { ISD::SETCC,   MVT::v16f32,  1 },
1763 
1764     { ISD::SELECT,  MVT::v8i64,   1 },
1765     { ISD::SELECT,  MVT::v16i32,  1 },
1766     { ISD::SELECT,  MVT::v8f64,   1 },
1767     { ISD::SELECT,  MVT::v16f32,  1 },
1768   };
1769 
1770   static const CostTblEntry AVX2CostTbl[] = {
1771     { ISD::SETCC,   MVT::v4i64,   1 },
1772     { ISD::SETCC,   MVT::v8i32,   1 },
1773     { ISD::SETCC,   MVT::v16i16,  1 },
1774     { ISD::SETCC,   MVT::v32i8,   1 },
1775 
1776     { ISD::SELECT,  MVT::v4i64,   1 }, // pblendvb
1777     { ISD::SELECT,  MVT::v8i32,   1 }, // pblendvb
1778     { ISD::SELECT,  MVT::v16i16,  1 }, // pblendvb
1779     { ISD::SELECT,  MVT::v32i8,   1 }, // pblendvb
1780   };
1781 
1782   static const CostTblEntry AVX1CostTbl[] = {
1783     { ISD::SETCC,   MVT::v4f64,   1 },
1784     { ISD::SETCC,   MVT::v8f32,   1 },
1785     // AVX1 does not support 8-wide integer compare.
1786     { ISD::SETCC,   MVT::v4i64,   4 },
1787     { ISD::SETCC,   MVT::v8i32,   4 },
1788     { ISD::SETCC,   MVT::v16i16,  4 },
1789     { ISD::SETCC,   MVT::v32i8,   4 },
1790 
1791     { ISD::SELECT,  MVT::v4f64,   1 }, // vblendvpd
1792     { ISD::SELECT,  MVT::v8f32,   1 }, // vblendvps
1793     { ISD::SELECT,  MVT::v4i64,   1 }, // vblendvpd
1794     { ISD::SELECT,  MVT::v8i32,   1 }, // vblendvps
1795     { ISD::SELECT,  MVT::v16i16,  3 }, // vandps + vandnps + vorps
1796     { ISD::SELECT,  MVT::v32i8,   3 }, // vandps + vandnps + vorps
1797   };
1798 
1799   static const CostTblEntry SSE42CostTbl[] = {
1800     { ISD::SETCC,   MVT::v2f64,   1 },
1801     { ISD::SETCC,   MVT::v4f32,   1 },
1802     { ISD::SETCC,   MVT::v2i64,   1 },
1803   };
1804 
1805   static const CostTblEntry SSE41CostTbl[] = {
1806     { ISD::SELECT,  MVT::v2f64,   1 }, // blendvpd
1807     { ISD::SELECT,  MVT::v4f32,   1 }, // blendvps
1808     { ISD::SELECT,  MVT::v2i64,   1 }, // pblendvb
1809     { ISD::SELECT,  MVT::v4i32,   1 }, // pblendvb
1810     { ISD::SELECT,  MVT::v8i16,   1 }, // pblendvb
1811     { ISD::SELECT,  MVT::v16i8,   1 }, // pblendvb
1812   };
1813 
1814   static const CostTblEntry SSE2CostTbl[] = {
1815     { ISD::SETCC,   MVT::v2f64,   2 },
1816     { ISD::SETCC,   MVT::f64,     1 },
1817     { ISD::SETCC,   MVT::v2i64,   8 },
1818     { ISD::SETCC,   MVT::v4i32,   1 },
1819     { ISD::SETCC,   MVT::v8i16,   1 },
1820     { ISD::SETCC,   MVT::v16i8,   1 },
1821 
1822     { ISD::SELECT,  MVT::v2f64,   3 }, // andpd + andnpd + orpd
1823     { ISD::SELECT,  MVT::v2i64,   3 }, // pand + pandn + por
1824     { ISD::SELECT,  MVT::v4i32,   3 }, // pand + pandn + por
1825     { ISD::SELECT,  MVT::v8i16,   3 }, // pand + pandn + por
1826     { ISD::SELECT,  MVT::v16i8,   3 }, // pand + pandn + por
1827   };
1828 
1829   static const CostTblEntry SSE1CostTbl[] = {
1830     { ISD::SETCC,   MVT::v4f32,   2 },
1831     { ISD::SETCC,   MVT::f32,     1 },
1832 
1833     { ISD::SELECT,  MVT::v4f32,   3 }, // andps + andnps + orps
1834   };
1835 
1836   if (ST->isSLM())
1837     if (const auto *Entry = CostTableLookup(SLMCostTbl, ISD, MTy))
1838       return LT.first * (ExtraCost + Entry->Cost);
1839 
1840   if (ST->hasBWI())
1841     if (const auto *Entry = CostTableLookup(AVX512BWCostTbl, ISD, MTy))
1842       return LT.first * (ExtraCost + Entry->Cost);
1843 
1844   if (ST->hasAVX512())
1845     if (const auto *Entry = CostTableLookup(AVX512CostTbl, ISD, MTy))
1846       return LT.first * (ExtraCost + Entry->Cost);
1847 
1848   if (ST->hasAVX2())
1849     if (const auto *Entry = CostTableLookup(AVX2CostTbl, ISD, MTy))
1850       return LT.first * (ExtraCost + Entry->Cost);
1851 
1852   if (ST->hasAVX())
1853     if (const auto *Entry = CostTableLookup(AVX1CostTbl, ISD, MTy))
1854       return LT.first * (ExtraCost + Entry->Cost);
1855 
1856   if (ST->hasSSE42())
1857     if (const auto *Entry = CostTableLookup(SSE42CostTbl, ISD, MTy))
1858       return LT.first * (ExtraCost + Entry->Cost);
1859 
1860   if (ST->hasSSE41())
1861     if (const auto *Entry = CostTableLookup(SSE41CostTbl, ISD, MTy))
1862       return LT.first * (ExtraCost + Entry->Cost);
1863 
1864   if (ST->hasSSE2())
1865     if (const auto *Entry = CostTableLookup(SSE2CostTbl, ISD, MTy))
1866       return LT.first * (ExtraCost + Entry->Cost);
1867 
1868   if (ST->hasSSE1())
1869     if (const auto *Entry = CostTableLookup(SSE1CostTbl, ISD, MTy))
1870       return LT.first * (ExtraCost + Entry->Cost);
1871 
1872   return BaseT::getCmpSelInstrCost(Opcode, ValTy, CondTy, I);
1873 }
1874 
1875 unsigned X86TTIImpl::getAtomicMemIntrinsicMaxElementSize() const { return 16; }
1876 
1877 int X86TTIImpl::getIntrinsicInstrCost(Intrinsic::ID IID, Type *RetTy,
1878                                       ArrayRef<Type *> Tys, FastMathFlags FMF,
1879                                       unsigned ScalarizationCostPassed) {
1880   // Costs should match the codegen from:
1881   // BITREVERSE: llvm\test\CodeGen\X86\vector-bitreverse.ll
1882   // BSWAP: llvm\test\CodeGen\X86\bswap-vector.ll
1883   // CTLZ: llvm\test\CodeGen\X86\vector-lzcnt-*.ll
1884   // CTPOP: llvm\test\CodeGen\X86\vector-popcnt-*.ll
1885   // CTTZ: llvm\test\CodeGen\X86\vector-tzcnt-*.ll
1886   static const CostTblEntry AVX512CDCostTbl[] = {
1887     { ISD::CTLZ,       MVT::v8i64,   1 },
1888     { ISD::CTLZ,       MVT::v16i32,  1 },
1889     { ISD::CTLZ,       MVT::v32i16,  8 },
1890     { ISD::CTLZ,       MVT::v64i8,  20 },
1891     { ISD::CTLZ,       MVT::v4i64,   1 },
1892     { ISD::CTLZ,       MVT::v8i32,   1 },
1893     { ISD::CTLZ,       MVT::v16i16,  4 },
1894     { ISD::CTLZ,       MVT::v32i8,  10 },
1895     { ISD::CTLZ,       MVT::v2i64,   1 },
1896     { ISD::CTLZ,       MVT::v4i32,   1 },
1897     { ISD::CTLZ,       MVT::v8i16,   4 },
1898     { ISD::CTLZ,       MVT::v16i8,   4 },
1899   };
1900   static const CostTblEntry AVX512BWCostTbl[] = {
1901     { ISD::BITREVERSE, MVT::v8i64,   5 },
1902     { ISD::BITREVERSE, MVT::v16i32,  5 },
1903     { ISD::BITREVERSE, MVT::v32i16,  5 },
1904     { ISD::BITREVERSE, MVT::v64i8,   5 },
1905     { ISD::CTLZ,       MVT::v8i64,  23 },
1906     { ISD::CTLZ,       MVT::v16i32, 22 },
1907     { ISD::CTLZ,       MVT::v32i16, 18 },
1908     { ISD::CTLZ,       MVT::v64i8,  17 },
1909     { ISD::CTPOP,      MVT::v8i64,   7 },
1910     { ISD::CTPOP,      MVT::v16i32, 11 },
1911     { ISD::CTPOP,      MVT::v32i16,  9 },
1912     { ISD::CTPOP,      MVT::v64i8,   6 },
1913     { ISD::CTTZ,       MVT::v8i64,  10 },
1914     { ISD::CTTZ,       MVT::v16i32, 14 },
1915     { ISD::CTTZ,       MVT::v32i16, 12 },
1916     { ISD::CTTZ,       MVT::v64i8,   9 },
1917     { ISD::SADDSAT,    MVT::v32i16,  1 },
1918     { ISD::SADDSAT,    MVT::v64i8,   1 },
1919     { ISD::SSUBSAT,    MVT::v32i16,  1 },
1920     { ISD::SSUBSAT,    MVT::v64i8,   1 },
1921     { ISD::UADDSAT,    MVT::v32i16,  1 },
1922     { ISD::UADDSAT,    MVT::v64i8,   1 },
1923     { ISD::USUBSAT,    MVT::v32i16,  1 },
1924     { ISD::USUBSAT,    MVT::v64i8,   1 },
1925   };
1926   static const CostTblEntry AVX512CostTbl[] = {
1927     { ISD::BITREVERSE, MVT::v8i64,  36 },
1928     { ISD::BITREVERSE, MVT::v16i32, 24 },
1929     { ISD::CTLZ,       MVT::v8i64,  29 },
1930     { ISD::CTLZ,       MVT::v16i32, 35 },
1931     { ISD::CTPOP,      MVT::v8i64,  16 },
1932     { ISD::CTPOP,      MVT::v16i32, 24 },
1933     { ISD::CTTZ,       MVT::v8i64,  20 },
1934     { ISD::CTTZ,       MVT::v16i32, 28 },
1935     { ISD::USUBSAT,    MVT::v16i32,  2 }, // pmaxud + psubd
1936     { ISD::USUBSAT,    MVT::v2i64,   2 }, // pmaxuq + psubq
1937     { ISD::USUBSAT,    MVT::v4i64,   2 }, // pmaxuq + psubq
1938     { ISD::USUBSAT,    MVT::v8i64,   2 }, // pmaxuq + psubq
1939     { ISD::UADDSAT,    MVT::v16i32,  3 }, // not + pminud + paddd
1940     { ISD::UADDSAT,    MVT::v2i64,   3 }, // not + pminuq + paddq
1941     { ISD::UADDSAT,    MVT::v4i64,   3 }, // not + pminuq + paddq
1942     { ISD::UADDSAT,    MVT::v8i64,   3 }, // not + pminuq + paddq
1943   };
1944   static const CostTblEntry XOPCostTbl[] = {
1945     { ISD::BITREVERSE, MVT::v4i64,   4 },
1946     { ISD::BITREVERSE, MVT::v8i32,   4 },
1947     { ISD::BITREVERSE, MVT::v16i16,  4 },
1948     { ISD::BITREVERSE, MVT::v32i8,   4 },
1949     { ISD::BITREVERSE, MVT::v2i64,   1 },
1950     { ISD::BITREVERSE, MVT::v4i32,   1 },
1951     { ISD::BITREVERSE, MVT::v8i16,   1 },
1952     { ISD::BITREVERSE, MVT::v16i8,   1 },
1953     { ISD::BITREVERSE, MVT::i64,     3 },
1954     { ISD::BITREVERSE, MVT::i32,     3 },
1955     { ISD::BITREVERSE, MVT::i16,     3 },
1956     { ISD::BITREVERSE, MVT::i8,      3 }
1957   };
1958   static const CostTblEntry AVX2CostTbl[] = {
1959     { ISD::BITREVERSE, MVT::v4i64,   5 },
1960     { ISD::BITREVERSE, MVT::v8i32,   5 },
1961     { ISD::BITREVERSE, MVT::v16i16,  5 },
1962     { ISD::BITREVERSE, MVT::v32i8,   5 },
1963     { ISD::BSWAP,      MVT::v4i64,   1 },
1964     { ISD::BSWAP,      MVT::v8i32,   1 },
1965     { ISD::BSWAP,      MVT::v16i16,  1 },
1966     { ISD::CTLZ,       MVT::v4i64,  23 },
1967     { ISD::CTLZ,       MVT::v8i32,  18 },
1968     { ISD::CTLZ,       MVT::v16i16, 14 },
1969     { ISD::CTLZ,       MVT::v32i8,   9 },
1970     { ISD::CTPOP,      MVT::v4i64,   7 },
1971     { ISD::CTPOP,      MVT::v8i32,  11 },
1972     { ISD::CTPOP,      MVT::v16i16,  9 },
1973     { ISD::CTPOP,      MVT::v32i8,   6 },
1974     { ISD::CTTZ,       MVT::v4i64,  10 },
1975     { ISD::CTTZ,       MVT::v8i32,  14 },
1976     { ISD::CTTZ,       MVT::v16i16, 12 },
1977     { ISD::CTTZ,       MVT::v32i8,   9 },
1978     { ISD::SADDSAT,    MVT::v16i16,  1 },
1979     { ISD::SADDSAT,    MVT::v32i8,   1 },
1980     { ISD::SSUBSAT,    MVT::v16i16,  1 },
1981     { ISD::SSUBSAT,    MVT::v32i8,   1 },
1982     { ISD::UADDSAT,    MVT::v16i16,  1 },
1983     { ISD::UADDSAT,    MVT::v32i8,   1 },
1984     { ISD::UADDSAT,    MVT::v8i32,   3 }, // not + pminud + paddd
1985     { ISD::USUBSAT,    MVT::v16i16,  1 },
1986     { ISD::USUBSAT,    MVT::v32i8,   1 },
1987     { ISD::USUBSAT,    MVT::v8i32,   2 }, // pmaxud + psubd
1988     { ISD::FSQRT,      MVT::f32,     7 }, // Haswell from http://www.agner.org/
1989     { ISD::FSQRT,      MVT::v4f32,   7 }, // Haswell from http://www.agner.org/
1990     { ISD::FSQRT,      MVT::v8f32,  14 }, // Haswell from http://www.agner.org/
1991     { ISD::FSQRT,      MVT::f64,    14 }, // Haswell from http://www.agner.org/
1992     { ISD::FSQRT,      MVT::v2f64,  14 }, // Haswell from http://www.agner.org/
1993     { ISD::FSQRT,      MVT::v4f64,  28 }, // Haswell from http://www.agner.org/
1994   };
1995   static const CostTblEntry AVX1CostTbl[] = {
1996     { ISD::BITREVERSE, MVT::v4i64,  12 }, // 2 x 128-bit Op + extract/insert
1997     { ISD::BITREVERSE, MVT::v8i32,  12 }, // 2 x 128-bit Op + extract/insert
1998     { ISD::BITREVERSE, MVT::v16i16, 12 }, // 2 x 128-bit Op + extract/insert
1999     { ISD::BITREVERSE, MVT::v32i8,  12 }, // 2 x 128-bit Op + extract/insert
2000     { ISD::BSWAP,      MVT::v4i64,   4 },
2001     { ISD::BSWAP,      MVT::v8i32,   4 },
2002     { ISD::BSWAP,      MVT::v16i16,  4 },
2003     { ISD::CTLZ,       MVT::v4i64,  48 }, // 2 x 128-bit Op + extract/insert
2004     { ISD::CTLZ,       MVT::v8i32,  38 }, // 2 x 128-bit Op + extract/insert
2005     { ISD::CTLZ,       MVT::v16i16, 30 }, // 2 x 128-bit Op + extract/insert
2006     { ISD::CTLZ,       MVT::v32i8,  20 }, // 2 x 128-bit Op + extract/insert
2007     { ISD::CTPOP,      MVT::v4i64,  16 }, // 2 x 128-bit Op + extract/insert
2008     { ISD::CTPOP,      MVT::v8i32,  24 }, // 2 x 128-bit Op + extract/insert
2009     { ISD::CTPOP,      MVT::v16i16, 20 }, // 2 x 128-bit Op + extract/insert
2010     { ISD::CTPOP,      MVT::v32i8,  14 }, // 2 x 128-bit Op + extract/insert
2011     { ISD::CTTZ,       MVT::v4i64,  22 }, // 2 x 128-bit Op + extract/insert
2012     { ISD::CTTZ,       MVT::v8i32,  30 }, // 2 x 128-bit Op + extract/insert
2013     { ISD::CTTZ,       MVT::v16i16, 26 }, // 2 x 128-bit Op + extract/insert
2014     { ISD::CTTZ,       MVT::v32i8,  20 }, // 2 x 128-bit Op + extract/insert
2015     { ISD::SADDSAT,    MVT::v16i16,  4 }, // 2 x 128-bit Op + extract/insert
2016     { ISD::SADDSAT,    MVT::v32i8,   4 }, // 2 x 128-bit Op + extract/insert
2017     { ISD::SSUBSAT,    MVT::v16i16,  4 }, // 2 x 128-bit Op + extract/insert
2018     { ISD::SSUBSAT,    MVT::v32i8,   4 }, // 2 x 128-bit Op + extract/insert
2019     { ISD::UADDSAT,    MVT::v16i16,  4 }, // 2 x 128-bit Op + extract/insert
2020     { ISD::UADDSAT,    MVT::v32i8,   4 }, // 2 x 128-bit Op + extract/insert
2021     { ISD::UADDSAT,    MVT::v8i32,   8 }, // 2 x 128-bit Op + extract/insert
2022     { ISD::USUBSAT,    MVT::v16i16,  4 }, // 2 x 128-bit Op + extract/insert
2023     { ISD::USUBSAT,    MVT::v32i8,   4 }, // 2 x 128-bit Op + extract/insert
2024     { ISD::USUBSAT,    MVT::v8i32,   6 }, // 2 x 128-bit Op + extract/insert
2025     { ISD::FSQRT,      MVT::f32,    14 }, // SNB from http://www.agner.org/
2026     { ISD::FSQRT,      MVT::v4f32,  14 }, // SNB from http://www.agner.org/
2027     { ISD::FSQRT,      MVT::v8f32,  28 }, // SNB from http://www.agner.org/
2028     { ISD::FSQRT,      MVT::f64,    21 }, // SNB from http://www.agner.org/
2029     { ISD::FSQRT,      MVT::v2f64,  21 }, // SNB from http://www.agner.org/
2030     { ISD::FSQRT,      MVT::v4f64,  43 }, // SNB from http://www.agner.org/
2031   };
2032   static const CostTblEntry GLMCostTbl[] = {
2033     { ISD::FSQRT, MVT::f32,   19 }, // sqrtss
2034     { ISD::FSQRT, MVT::v4f32, 37 }, // sqrtps
2035     { ISD::FSQRT, MVT::f64,   34 }, // sqrtsd
2036     { ISD::FSQRT, MVT::v2f64, 67 }, // sqrtpd
2037   };
2038   static const CostTblEntry SLMCostTbl[] = {
2039     { ISD::FSQRT, MVT::f32,   20 }, // sqrtss
2040     { ISD::FSQRT, MVT::v4f32, 40 }, // sqrtps
2041     { ISD::FSQRT, MVT::f64,   35 }, // sqrtsd
2042     { ISD::FSQRT, MVT::v2f64, 70 }, // sqrtpd
2043   };
2044   static const CostTblEntry SSE42CostTbl[] = {
2045     { ISD::USUBSAT,    MVT::v4i32,   2 }, // pmaxud + psubd
2046     { ISD::UADDSAT,    MVT::v4i32,   3 }, // not + pminud + paddd
2047     { ISD::FSQRT,      MVT::f32,    18 }, // Nehalem from http://www.agner.org/
2048     { ISD::FSQRT,      MVT::v4f32,  18 }, // Nehalem from http://www.agner.org/
2049   };
2050   static const CostTblEntry SSSE3CostTbl[] = {
2051     { ISD::BITREVERSE, MVT::v2i64,   5 },
2052     { ISD::BITREVERSE, MVT::v4i32,   5 },
2053     { ISD::BITREVERSE, MVT::v8i16,   5 },
2054     { ISD::BITREVERSE, MVT::v16i8,   5 },
2055     { ISD::BSWAP,      MVT::v2i64,   1 },
2056     { ISD::BSWAP,      MVT::v4i32,   1 },
2057     { ISD::BSWAP,      MVT::v8i16,   1 },
2058     { ISD::CTLZ,       MVT::v2i64,  23 },
2059     { ISD::CTLZ,       MVT::v4i32,  18 },
2060     { ISD::CTLZ,       MVT::v8i16,  14 },
2061     { ISD::CTLZ,       MVT::v16i8,   9 },
2062     { ISD::CTPOP,      MVT::v2i64,   7 },
2063     { ISD::CTPOP,      MVT::v4i32,  11 },
2064     { ISD::CTPOP,      MVT::v8i16,   9 },
2065     { ISD::CTPOP,      MVT::v16i8,   6 },
2066     { ISD::CTTZ,       MVT::v2i64,  10 },
2067     { ISD::CTTZ,       MVT::v4i32,  14 },
2068     { ISD::CTTZ,       MVT::v8i16,  12 },
2069     { ISD::CTTZ,       MVT::v16i8,   9 }
2070   };
2071   static const CostTblEntry SSE2CostTbl[] = {
2072     { ISD::BITREVERSE, MVT::v2i64,  29 },
2073     { ISD::BITREVERSE, MVT::v4i32,  27 },
2074     { ISD::BITREVERSE, MVT::v8i16,  27 },
2075     { ISD::BITREVERSE, MVT::v16i8,  20 },
2076     { ISD::BSWAP,      MVT::v2i64,   7 },
2077     { ISD::BSWAP,      MVT::v4i32,   7 },
2078     { ISD::BSWAP,      MVT::v8i16,   7 },
2079     { ISD::CTLZ,       MVT::v2i64,  25 },
2080     { ISD::CTLZ,       MVT::v4i32,  26 },
2081     { ISD::CTLZ,       MVT::v8i16,  20 },
2082     { ISD::CTLZ,       MVT::v16i8,  17 },
2083     { ISD::CTPOP,      MVT::v2i64,  12 },
2084     { ISD::CTPOP,      MVT::v4i32,  15 },
2085     { ISD::CTPOP,      MVT::v8i16,  13 },
2086     { ISD::CTPOP,      MVT::v16i8,  10 },
2087     { ISD::CTTZ,       MVT::v2i64,  14 },
2088     { ISD::CTTZ,       MVT::v4i32,  18 },
2089     { ISD::CTTZ,       MVT::v8i16,  16 },
2090     { ISD::CTTZ,       MVT::v16i8,  13 },
2091     { ISD::SADDSAT,    MVT::v8i16,   1 },
2092     { ISD::SADDSAT,    MVT::v16i8,   1 },
2093     { ISD::SSUBSAT,    MVT::v8i16,   1 },
2094     { ISD::SSUBSAT,    MVT::v16i8,   1 },
2095     { ISD::UADDSAT,    MVT::v8i16,   1 },
2096     { ISD::UADDSAT,    MVT::v16i8,   1 },
2097     { ISD::USUBSAT,    MVT::v8i16,   1 },
2098     { ISD::USUBSAT,    MVT::v16i8,   1 },
2099     { ISD::FSQRT,      MVT::f64,    32 }, // Nehalem from http://www.agner.org/
2100     { ISD::FSQRT,      MVT::v2f64,  32 }, // Nehalem from http://www.agner.org/
2101   };
2102   static const CostTblEntry SSE1CostTbl[] = {
2103     { ISD::FSQRT,      MVT::f32,    28 }, // Pentium III from http://www.agner.org/
2104     { ISD::FSQRT,      MVT::v4f32,  56 }, // Pentium III from http://www.agner.org/
2105   };
2106   static const CostTblEntry LZCNT64CostTbl[] = { // 64-bit targets
2107     { ISD::CTLZ,       MVT::i64,     1 },
2108   };
2109   static const CostTblEntry LZCNT32CostTbl[] = { // 32 or 64-bit targets
2110     { ISD::CTLZ,       MVT::i32,     1 },
2111     { ISD::CTLZ,       MVT::i16,     1 },
2112     { ISD::CTLZ,       MVT::i8,      1 },
2113   };
2114   static const CostTblEntry POPCNT64CostTbl[] = { // 64-bit targets
2115     { ISD::CTPOP,      MVT::i64,     1 },
2116   };
2117   static const CostTblEntry POPCNT32CostTbl[] = { // 32 or 64-bit targets
2118     { ISD::CTPOP,      MVT::i32,     1 },
2119     { ISD::CTPOP,      MVT::i16,     1 },
2120     { ISD::CTPOP,      MVT::i8,      1 },
2121   };
2122   static const CostTblEntry X64CostTbl[] = { // 64-bit targets
2123     { ISD::BITREVERSE, MVT::i64,    14 },
2124     { ISD::CTLZ,       MVT::i64,     4 }, // BSR+XOR or BSR+XOR+CMOV
2125     { ISD::CTPOP,      MVT::i64,    10 },
2126     { ISD::SADDO,      MVT::i64,     1 },
2127     { ISD::UADDO,      MVT::i64,     1 },
2128   };
2129   static const CostTblEntry X86CostTbl[] = { // 32 or 64-bit targets
2130     { ISD::BITREVERSE, MVT::i32,    14 },
2131     { ISD::BITREVERSE, MVT::i16,    14 },
2132     { ISD::BITREVERSE, MVT::i8,     11 },
2133     { ISD::CTLZ,       MVT::i32,     4 }, // BSR+XOR or BSR+XOR+CMOV
2134     { ISD::CTLZ,       MVT::i16,     4 }, // BSR+XOR or BSR+XOR+CMOV
2135     { ISD::CTLZ,       MVT::i8,      4 }, // BSR+XOR or BSR+XOR+CMOV
2136     { ISD::CTPOP,      MVT::i32,     8 },
2137     { ISD::CTPOP,      MVT::i16,     9 },
2138     { ISD::CTPOP,      MVT::i8,      7 },
2139     { ISD::SADDO,      MVT::i32,     1 },
2140     { ISD::SADDO,      MVT::i16,     1 },
2141     { ISD::SADDO,      MVT::i8,      1 },
2142     { ISD::UADDO,      MVT::i32,     1 },
2143     { ISD::UADDO,      MVT::i16,     1 },
2144     { ISD::UADDO,      MVT::i8,      1 },
2145   };
2146 
2147   Type *OpTy = RetTy;
2148   unsigned ISD = ISD::DELETED_NODE;
2149   switch (IID) {
2150   default:
2151     break;
2152   case Intrinsic::bitreverse:
2153     ISD = ISD::BITREVERSE;
2154     break;
2155   case Intrinsic::bswap:
2156     ISD = ISD::BSWAP;
2157     break;
2158   case Intrinsic::ctlz:
2159     ISD = ISD::CTLZ;
2160     break;
2161   case Intrinsic::ctpop:
2162     ISD = ISD::CTPOP;
2163     break;
2164   case Intrinsic::cttz:
2165     ISD = ISD::CTTZ;
2166     break;
2167   case Intrinsic::sadd_sat:
2168     ISD = ISD::SADDSAT;
2169     break;
2170   case Intrinsic::ssub_sat:
2171     ISD = ISD::SSUBSAT;
2172     break;
2173   case Intrinsic::uadd_sat:
2174     ISD = ISD::UADDSAT;
2175     break;
2176   case Intrinsic::usub_sat:
2177     ISD = ISD::USUBSAT;
2178     break;
2179   case Intrinsic::sqrt:
2180     ISD = ISD::FSQRT;
2181     break;
2182   case Intrinsic::sadd_with_overflow:
2183   case Intrinsic::ssub_with_overflow:
2184     // SSUBO has same costs so don't duplicate.
2185     ISD = ISD::SADDO;
2186     OpTy = RetTy->getContainedType(0);
2187     break;
2188   case Intrinsic::uadd_with_overflow:
2189   case Intrinsic::usub_with_overflow:
2190     // USUBO has same costs so don't duplicate.
2191     ISD = ISD::UADDO;
2192     OpTy = RetTy->getContainedType(0);
2193     break;
2194   }
2195 
2196   if (ISD != ISD::DELETED_NODE) {
2197     // Legalize the type.
2198     std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, OpTy);
2199     MVT MTy = LT.second;
2200 
2201     // Attempt to lookup cost.
2202     if (ST->isGLM())
2203       if (const auto *Entry = CostTableLookup(GLMCostTbl, ISD, MTy))
2204         return LT.first * Entry->Cost;
2205 
2206     if (ST->isSLM())
2207       if (const auto *Entry = CostTableLookup(SLMCostTbl, ISD, MTy))
2208         return LT.first * Entry->Cost;
2209 
2210     if (ST->hasCDI())
2211       if (const auto *Entry = CostTableLookup(AVX512CDCostTbl, ISD, MTy))
2212         return LT.first * Entry->Cost;
2213 
2214     if (ST->hasBWI())
2215       if (const auto *Entry = CostTableLookup(AVX512BWCostTbl, ISD, MTy))
2216         return LT.first * Entry->Cost;
2217 
2218     if (ST->hasAVX512())
2219       if (const auto *Entry = CostTableLookup(AVX512CostTbl, ISD, MTy))
2220         return LT.first * Entry->Cost;
2221 
2222     if (ST->hasXOP())
2223       if (const auto *Entry = CostTableLookup(XOPCostTbl, ISD, MTy))
2224         return LT.first * Entry->Cost;
2225 
2226     if (ST->hasAVX2())
2227       if (const auto *Entry = CostTableLookup(AVX2CostTbl, ISD, MTy))
2228         return LT.first * Entry->Cost;
2229 
2230     if (ST->hasAVX())
2231       if (const auto *Entry = CostTableLookup(AVX1CostTbl, ISD, MTy))
2232         return LT.first * Entry->Cost;
2233 
2234     if (ST->hasSSE42())
2235       if (const auto *Entry = CostTableLookup(SSE42CostTbl, ISD, MTy))
2236         return LT.first * Entry->Cost;
2237 
2238     if (ST->hasSSSE3())
2239       if (const auto *Entry = CostTableLookup(SSSE3CostTbl, ISD, MTy))
2240         return LT.first * Entry->Cost;
2241 
2242     if (ST->hasSSE2())
2243       if (const auto *Entry = CostTableLookup(SSE2CostTbl, ISD, MTy))
2244         return LT.first * Entry->Cost;
2245 
2246     if (ST->hasSSE1())
2247       if (const auto *Entry = CostTableLookup(SSE1CostTbl, ISD, MTy))
2248         return LT.first * Entry->Cost;
2249 
2250     if (ST->hasLZCNT()) {
2251       if (ST->is64Bit())
2252         if (const auto *Entry = CostTableLookup(LZCNT64CostTbl, ISD, MTy))
2253           return LT.first * Entry->Cost;
2254 
2255       if (const auto *Entry = CostTableLookup(LZCNT32CostTbl, ISD, MTy))
2256         return LT.first * Entry->Cost;
2257     }
2258 
2259     if (ST->hasPOPCNT()) {
2260       if (ST->is64Bit())
2261         if (const auto *Entry = CostTableLookup(POPCNT64CostTbl, ISD, MTy))
2262           return LT.first * Entry->Cost;
2263 
2264       if (const auto *Entry = CostTableLookup(POPCNT32CostTbl, ISD, MTy))
2265         return LT.first * Entry->Cost;
2266     }
2267 
2268     // TODO - add BMI (TZCNT) scalar handling
2269 
2270     if (ST->is64Bit())
2271       if (const auto *Entry = CostTableLookup(X64CostTbl, ISD, MTy))
2272         return LT.first * Entry->Cost;
2273 
2274     if (const auto *Entry = CostTableLookup(X86CostTbl, ISD, MTy))
2275       return LT.first * Entry->Cost;
2276   }
2277 
2278   return BaseT::getIntrinsicInstrCost(IID, RetTy, Tys, FMF, ScalarizationCostPassed);
2279 }
2280 
2281 int X86TTIImpl::getIntrinsicInstrCost(Intrinsic::ID IID, Type *RetTy,
2282                                       ArrayRef<Value *> Args, FastMathFlags FMF,
2283                                       unsigned VF) {
2284   static const CostTblEntry AVX512CostTbl[] = {
2285     { ISD::ROTL,       MVT::v8i64,   1 },
2286     { ISD::ROTL,       MVT::v4i64,   1 },
2287     { ISD::ROTL,       MVT::v2i64,   1 },
2288     { ISD::ROTL,       MVT::v16i32,  1 },
2289     { ISD::ROTL,       MVT::v8i32,   1 },
2290     { ISD::ROTL,       MVT::v4i32,   1 },
2291     { ISD::ROTR,       MVT::v8i64,   1 },
2292     { ISD::ROTR,       MVT::v4i64,   1 },
2293     { ISD::ROTR,       MVT::v2i64,   1 },
2294     { ISD::ROTR,       MVT::v16i32,  1 },
2295     { ISD::ROTR,       MVT::v8i32,   1 },
2296     { ISD::ROTR,       MVT::v4i32,   1 }
2297   };
2298   // XOP: ROTL = VPROT(X,Y), ROTR = VPROT(X,SUB(0,Y))
2299   static const CostTblEntry XOPCostTbl[] = {
2300     { ISD::ROTL,       MVT::v4i64,   4 },
2301     { ISD::ROTL,       MVT::v8i32,   4 },
2302     { ISD::ROTL,       MVT::v16i16,  4 },
2303     { ISD::ROTL,       MVT::v32i8,   4 },
2304     { ISD::ROTL,       MVT::v2i64,   1 },
2305     { ISD::ROTL,       MVT::v4i32,   1 },
2306     { ISD::ROTL,       MVT::v8i16,   1 },
2307     { ISD::ROTL,       MVT::v16i8,   1 },
2308     { ISD::ROTR,       MVT::v4i64,   6 },
2309     { ISD::ROTR,       MVT::v8i32,   6 },
2310     { ISD::ROTR,       MVT::v16i16,  6 },
2311     { ISD::ROTR,       MVT::v32i8,   6 },
2312     { ISD::ROTR,       MVT::v2i64,   2 },
2313     { ISD::ROTR,       MVT::v4i32,   2 },
2314     { ISD::ROTR,       MVT::v8i16,   2 },
2315     { ISD::ROTR,       MVT::v16i8,   2 }
2316   };
2317   static const CostTblEntry X64CostTbl[] = { // 64-bit targets
2318     { ISD::ROTL,       MVT::i64,     1 },
2319     { ISD::ROTR,       MVT::i64,     1 },
2320     { ISD::FSHL,       MVT::i64,     4 }
2321   };
2322   static const CostTblEntry X86CostTbl[] = { // 32 or 64-bit targets
2323     { ISD::ROTL,       MVT::i32,     1 },
2324     { ISD::ROTL,       MVT::i16,     1 },
2325     { ISD::ROTL,       MVT::i8,      1 },
2326     { ISD::ROTR,       MVT::i32,     1 },
2327     { ISD::ROTR,       MVT::i16,     1 },
2328     { ISD::ROTR,       MVT::i8,      1 },
2329     { ISD::FSHL,       MVT::i32,     4 },
2330     { ISD::FSHL,       MVT::i16,     4 },
2331     { ISD::FSHL,       MVT::i8,      4 }
2332   };
2333 
2334   unsigned ISD = ISD::DELETED_NODE;
2335   switch (IID) {
2336   default:
2337     break;
2338   case Intrinsic::fshl:
2339     ISD = ISD::FSHL;
2340     if (Args[0] == Args[1])
2341       ISD = ISD::ROTL;
2342     break;
2343   case Intrinsic::fshr:
2344     // FSHR has same costs so don't duplicate.
2345     ISD = ISD::FSHL;
2346     if (Args[0] == Args[1])
2347       ISD = ISD::ROTR;
2348     break;
2349   }
2350 
2351   if (ISD != ISD::DELETED_NODE) {
2352     // Legalize the type.
2353     std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, RetTy);
2354     MVT MTy = LT.second;
2355 
2356     // Attempt to lookup cost.
2357     if (ST->hasAVX512())
2358       if (const auto *Entry = CostTableLookup(AVX512CostTbl, ISD, MTy))
2359         return LT.first * Entry->Cost;
2360 
2361     if (ST->hasXOP())
2362       if (const auto *Entry = CostTableLookup(XOPCostTbl, ISD, MTy))
2363         return LT.first * Entry->Cost;
2364 
2365     if (ST->is64Bit())
2366       if (const auto *Entry = CostTableLookup(X64CostTbl, ISD, MTy))
2367         return LT.first * Entry->Cost;
2368 
2369     if (const auto *Entry = CostTableLookup(X86CostTbl, ISD, MTy))
2370       return LT.first * Entry->Cost;
2371   }
2372 
2373   return BaseT::getIntrinsicInstrCost(IID, RetTy, Args, FMF, VF);
2374 }
2375 
2376 int X86TTIImpl::getVectorInstrCost(unsigned Opcode, Type *Val, unsigned Index) {
2377   assert(Val->isVectorTy() && "This must be a vector type");
2378 
2379   Type *ScalarType = Val->getScalarType();
2380 
2381   if (Index != -1U) {
2382     // Legalize the type.
2383     std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Val);
2384 
2385     // This type is legalized to a scalar type.
2386     if (!LT.second.isVector())
2387       return 0;
2388 
2389     // The type may be split. Normalize the index to the new type.
2390     unsigned Width = LT.second.getVectorNumElements();
2391     Index = Index % Width;
2392 
2393     // Floating point scalars are already located in index #0.
2394     if (ScalarType->isFloatingPointTy() && Index == 0)
2395       return 0;
2396   }
2397 
2398   // Add to the base cost if we know that the extracted element of a vector is
2399   // destined to be moved to and used in the integer register file.
2400   int RegisterFileMoveCost = 0;
2401   if (Opcode == Instruction::ExtractElement && ScalarType->isPointerTy())
2402     RegisterFileMoveCost = 1;
2403 
2404   return BaseT::getVectorInstrCost(Opcode, Val, Index) + RegisterFileMoveCost;
2405 }
2406 
2407 int X86TTIImpl::getMemoryOpCost(unsigned Opcode, Type *Src,
2408                                 MaybeAlign Alignment, unsigned AddressSpace,
2409                                 const Instruction *I) {
2410   // Handle non-power-of-two vectors such as <3 x float>
2411   if (VectorType *VTy = dyn_cast<VectorType>(Src)) {
2412     unsigned NumElem = VTy->getVectorNumElements();
2413 
2414     // Handle a few common cases:
2415     // <3 x float>
2416     if (NumElem == 3 && VTy->getScalarSizeInBits() == 32)
2417       // Cost = 64 bit store + extract + 32 bit store.
2418       return 3;
2419 
2420     // <3 x double>
2421     if (NumElem == 3 && VTy->getScalarSizeInBits() == 64)
2422       // Cost = 128 bit store + unpack + 64 bit store.
2423       return 3;
2424 
2425     // Assume that all other non-power-of-two numbers are scalarized.
2426     if (!isPowerOf2_32(NumElem)) {
2427       int Cost = BaseT::getMemoryOpCost(Opcode, VTy->getScalarType(), Alignment,
2428                                         AddressSpace);
2429       int SplitCost = getScalarizationOverhead(Src, Opcode == Instruction::Load,
2430                                                Opcode == Instruction::Store);
2431       return NumElem * Cost + SplitCost;
2432     }
2433   }
2434 
2435   // Legalize the type.
2436   std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Src);
2437   assert((Opcode == Instruction::Load || Opcode == Instruction::Store) &&
2438          "Invalid Opcode");
2439 
2440   // Each load/store unit costs 1.
2441   int Cost = LT.first * 1;
2442 
2443   // This isn't exactly right. We're using slow unaligned 32-byte accesses as a
2444   // proxy for a double-pumped AVX memory interface such as on Sandybridge.
2445   if (LT.second.getStoreSize() == 32 && ST->isUnalignedMem32Slow())
2446     Cost *= 2;
2447 
2448   return Cost;
2449 }
2450 
2451 int X86TTIImpl::getMaskedMemoryOpCost(unsigned Opcode, Type *SrcTy,
2452                                       unsigned Alignment,
2453                                       unsigned AddressSpace) {
2454   bool IsLoad = (Instruction::Load == Opcode);
2455   bool IsStore = (Instruction::Store == Opcode);
2456 
2457   VectorType *SrcVTy = dyn_cast<VectorType>(SrcTy);
2458   if (!SrcVTy)
2459     // To calculate scalar take the regular cost, without mask
2460     return getMemoryOpCost(Opcode, SrcTy, MaybeAlign(Alignment), AddressSpace);
2461 
2462   unsigned NumElem = SrcVTy->getVectorNumElements();
2463   VectorType *MaskTy =
2464       VectorType::get(Type::getInt8Ty(SrcVTy->getContext()), NumElem);
2465   if ((IsLoad && !isLegalMaskedLoad(SrcVTy, MaybeAlign(Alignment))) ||
2466       (IsStore && !isLegalMaskedStore(SrcVTy, MaybeAlign(Alignment))) ||
2467       !isPowerOf2_32(NumElem)) {
2468     // Scalarization
2469     int MaskSplitCost = getScalarizationOverhead(MaskTy, false, true);
2470     int ScalarCompareCost = getCmpSelInstrCost(
2471         Instruction::ICmp, Type::getInt8Ty(SrcVTy->getContext()), nullptr);
2472     int BranchCost = getCFInstrCost(Instruction::Br);
2473     int MaskCmpCost = NumElem * (BranchCost + ScalarCompareCost);
2474 
2475     int ValueSplitCost = getScalarizationOverhead(SrcVTy, IsLoad, IsStore);
2476     int MemopCost =
2477         NumElem * BaseT::getMemoryOpCost(Opcode, SrcVTy->getScalarType(),
2478                                          MaybeAlign(Alignment), AddressSpace);
2479     return MemopCost + ValueSplitCost + MaskSplitCost + MaskCmpCost;
2480   }
2481 
2482   // Legalize the type.
2483   std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, SrcVTy);
2484   auto VT = TLI->getValueType(DL, SrcVTy);
2485   int Cost = 0;
2486   if (VT.isSimple() && LT.second != VT.getSimpleVT() &&
2487       LT.second.getVectorNumElements() == NumElem)
2488     // Promotion requires expand/truncate for data and a shuffle for mask.
2489     Cost += getShuffleCost(TTI::SK_PermuteTwoSrc, SrcVTy, 0, nullptr) +
2490             getShuffleCost(TTI::SK_PermuteTwoSrc, MaskTy, 0, nullptr);
2491 
2492   else if (LT.second.getVectorNumElements() > NumElem) {
2493     VectorType *NewMaskTy = VectorType::get(MaskTy->getVectorElementType(),
2494                                             LT.second.getVectorNumElements());
2495     // Expanding requires fill mask with zeroes
2496     Cost += getShuffleCost(TTI::SK_InsertSubvector, NewMaskTy, 0, MaskTy);
2497   }
2498 
2499   // Pre-AVX512 - each maskmov load costs 2 + store costs ~8.
2500   if (!ST->hasAVX512())
2501     return Cost + LT.first * (IsLoad ? 2 : 8);
2502 
2503   // AVX-512 masked load/store is cheapper
2504   return Cost + LT.first;
2505 }
2506 
2507 int X86TTIImpl::getAddressComputationCost(Type *Ty, ScalarEvolution *SE,
2508                                           const SCEV *Ptr) {
2509   // Address computations in vectorized code with non-consecutive addresses will
2510   // likely result in more instructions compared to scalar code where the
2511   // computation can more often be merged into the index mode. The resulting
2512   // extra micro-ops can significantly decrease throughput.
2513   const unsigned NumVectorInstToHideOverhead = 10;
2514 
2515   // Cost modeling of Strided Access Computation is hidden by the indexing
2516   // modes of X86 regardless of the stride value. We dont believe that there
2517   // is a difference between constant strided access in gerenal and constant
2518   // strided value which is less than or equal to 64.
2519   // Even in the case of (loop invariant) stride whose value is not known at
2520   // compile time, the address computation will not incur more than one extra
2521   // ADD instruction.
2522   if (Ty->isVectorTy() && SE) {
2523     if (!BaseT::isStridedAccess(Ptr))
2524       return NumVectorInstToHideOverhead;
2525     if (!BaseT::getConstantStrideStep(SE, Ptr))
2526       return 1;
2527   }
2528 
2529   return BaseT::getAddressComputationCost(Ty, SE, Ptr);
2530 }
2531 
2532 int X86TTIImpl::getArithmeticReductionCost(unsigned Opcode, Type *ValTy,
2533                                            bool IsPairwise) {
2534   // We use the Intel Architecture Code Analyzer(IACA) to measure the throughput
2535   // and make it as the cost.
2536 
2537   static const CostTblEntry SSE2CostTblPairWise[] = {
2538     { ISD::FADD,  MVT::v2f64,   2 },
2539     { ISD::FADD,  MVT::v4f32,   4 },
2540     { ISD::ADD,   MVT::v2i64,   2 },      // The data reported by the IACA tool is "1.6".
2541     { ISD::ADD,   MVT::v2i32,   2 }, // FIXME: chosen to be less than v4i32.
2542     { ISD::ADD,   MVT::v4i32,   3 },      // The data reported by the IACA tool is "3.5".
2543     { ISD::ADD,   MVT::v2i16,   3 }, // FIXME: chosen to be less than v4i16
2544     { ISD::ADD,   MVT::v4i16,   4 }, // FIXME: chosen to be less than v8i16
2545     { ISD::ADD,   MVT::v8i16,   5 },
2546     { ISD::ADD,   MVT::v2i8,    2 },
2547     { ISD::ADD,   MVT::v4i8,    2 },
2548     { ISD::ADD,   MVT::v8i8,    2 },
2549     { ISD::ADD,   MVT::v16i8,   3 },
2550   };
2551 
2552   static const CostTblEntry AVX1CostTblPairWise[] = {
2553     { ISD::FADD,  MVT::v4f64,   5 },
2554     { ISD::FADD,  MVT::v8f32,   7 },
2555     { ISD::ADD,   MVT::v2i64,   1 },      // The data reported by the IACA tool is "1.5".
2556     { ISD::ADD,   MVT::v4i64,   5 },      // The data reported by the IACA tool is "4.8".
2557     { ISD::ADD,   MVT::v8i32,   5 },
2558     { ISD::ADD,   MVT::v16i16,  6 },
2559     { ISD::ADD,   MVT::v32i8,   4 },
2560   };
2561 
2562   static const CostTblEntry SSE2CostTblNoPairWise[] = {
2563     { ISD::FADD,  MVT::v2f64,   2 },
2564     { ISD::FADD,  MVT::v4f32,   4 },
2565     { ISD::ADD,   MVT::v2i64,   2 },      // The data reported by the IACA tool is "1.6".
2566     { ISD::ADD,   MVT::v2i32,   2 }, // FIXME: chosen to be less than v4i32
2567     { ISD::ADD,   MVT::v4i32,   3 },      // The data reported by the IACA tool is "3.3".
2568     { ISD::ADD,   MVT::v2i16,   2 },      // The data reported by the IACA tool is "4.3".
2569     { ISD::ADD,   MVT::v4i16,   3 },      // The data reported by the IACA tool is "4.3".
2570     { ISD::ADD,   MVT::v8i16,   4 },      // The data reported by the IACA tool is "4.3".
2571     { ISD::ADD,   MVT::v2i8,    2 },
2572     { ISD::ADD,   MVT::v4i8,    2 },
2573     { ISD::ADD,   MVT::v8i8,    2 },
2574     { ISD::ADD,   MVT::v16i8,   3 },
2575   };
2576 
2577   static const CostTblEntry AVX1CostTblNoPairWise[] = {
2578     { ISD::FADD,  MVT::v4f64,   3 },
2579     { ISD::FADD,  MVT::v4f32,   3 },
2580     { ISD::FADD,  MVT::v8f32,   4 },
2581     { ISD::ADD,   MVT::v2i64,   1 },      // The data reported by the IACA tool is "1.5".
2582     { ISD::ADD,   MVT::v4i64,   3 },
2583     { ISD::ADD,   MVT::v8i32,   5 },
2584     { ISD::ADD,   MVT::v16i16,  5 },
2585     { ISD::ADD,   MVT::v32i8,   4 },
2586   };
2587 
2588   int ISD = TLI->InstructionOpcodeToISD(Opcode);
2589   assert(ISD && "Invalid opcode");
2590 
2591   // Before legalizing the type, give a chance to look up illegal narrow types
2592   // in the table.
2593   // FIXME: Is there a better way to do this?
2594   EVT VT = TLI->getValueType(DL, ValTy);
2595   if (VT.isSimple()) {
2596     MVT MTy = VT.getSimpleVT();
2597     if (IsPairwise) {
2598       if (ST->hasAVX())
2599         if (const auto *Entry = CostTableLookup(AVX1CostTblPairWise, ISD, MTy))
2600           return Entry->Cost;
2601 
2602       if (ST->hasSSE2())
2603         if (const auto *Entry = CostTableLookup(SSE2CostTblPairWise, ISD, MTy))
2604           return Entry->Cost;
2605     } else {
2606       if (ST->hasAVX())
2607         if (const auto *Entry = CostTableLookup(AVX1CostTblNoPairWise, ISD, MTy))
2608           return Entry->Cost;
2609 
2610       if (ST->hasSSE2())
2611         if (const auto *Entry = CostTableLookup(SSE2CostTblNoPairWise, ISD, MTy))
2612           return Entry->Cost;
2613     }
2614   }
2615 
2616   std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, ValTy);
2617 
2618   MVT MTy = LT.second;
2619 
2620   if (IsPairwise) {
2621     if (ST->hasAVX())
2622       if (const auto *Entry = CostTableLookup(AVX1CostTblPairWise, ISD, MTy))
2623         return LT.first * Entry->Cost;
2624 
2625     if (ST->hasSSE2())
2626       if (const auto *Entry = CostTableLookup(SSE2CostTblPairWise, ISD, MTy))
2627         return LT.first * Entry->Cost;
2628   } else {
2629     if (ST->hasAVX())
2630       if (const auto *Entry = CostTableLookup(AVX1CostTblNoPairWise, ISD, MTy))
2631         return LT.first * Entry->Cost;
2632 
2633     if (ST->hasSSE2())
2634       if (const auto *Entry = CostTableLookup(SSE2CostTblNoPairWise, ISD, MTy))
2635         return LT.first * Entry->Cost;
2636   }
2637 
2638   static const CostTblEntry AVX2BoolReduction[] = {
2639     { ISD::AND,  MVT::v16i16,  2 }, // vpmovmskb + cmp
2640     { ISD::AND,  MVT::v32i8,   2 }, // vpmovmskb + cmp
2641     { ISD::OR,   MVT::v16i16,  2 }, // vpmovmskb + cmp
2642     { ISD::OR,   MVT::v32i8,   2 }, // vpmovmskb + cmp
2643   };
2644 
2645   static const CostTblEntry AVX1BoolReduction[] = {
2646     { ISD::AND,  MVT::v4i64,   2 }, // vmovmskpd + cmp
2647     { ISD::AND,  MVT::v8i32,   2 }, // vmovmskps + cmp
2648     { ISD::AND,  MVT::v16i16,  4 }, // vextractf128 + vpand + vpmovmskb + cmp
2649     { ISD::AND,  MVT::v32i8,   4 }, // vextractf128 + vpand + vpmovmskb + cmp
2650     { ISD::OR,   MVT::v4i64,   2 }, // vmovmskpd + cmp
2651     { ISD::OR,   MVT::v8i32,   2 }, // vmovmskps + cmp
2652     { ISD::OR,   MVT::v16i16,  4 }, // vextractf128 + vpor + vpmovmskb + cmp
2653     { ISD::OR,   MVT::v32i8,   4 }, // vextractf128 + vpor + vpmovmskb + cmp
2654   };
2655 
2656   static const CostTblEntry SSE2BoolReduction[] = {
2657     { ISD::AND,  MVT::v2i64,   2 }, // movmskpd + cmp
2658     { ISD::AND,  MVT::v4i32,   2 }, // movmskps + cmp
2659     { ISD::AND,  MVT::v8i16,   2 }, // pmovmskb + cmp
2660     { ISD::AND,  MVT::v16i8,   2 }, // pmovmskb + cmp
2661     { ISD::OR,   MVT::v2i64,   2 }, // movmskpd + cmp
2662     { ISD::OR,   MVT::v4i32,   2 }, // movmskps + cmp
2663     { ISD::OR,   MVT::v8i16,   2 }, // pmovmskb + cmp
2664     { ISD::OR,   MVT::v16i8,   2 }, // pmovmskb + cmp
2665   };
2666 
2667   // Handle bool allof/anyof patterns.
2668   if (!IsPairwise && ValTy->getVectorElementType()->isIntegerTy(1)) {
2669     if (ST->hasAVX2())
2670       if (const auto *Entry = CostTableLookup(AVX2BoolReduction, ISD, MTy))
2671         return LT.first * Entry->Cost;
2672     if (ST->hasAVX())
2673       if (const auto *Entry = CostTableLookup(AVX1BoolReduction, ISD, MTy))
2674         return LT.first * Entry->Cost;
2675     if (ST->hasSSE2())
2676       if (const auto *Entry = CostTableLookup(SSE2BoolReduction, ISD, MTy))
2677         return LT.first * Entry->Cost;
2678   }
2679 
2680   return BaseT::getArithmeticReductionCost(Opcode, ValTy, IsPairwise);
2681 }
2682 
2683 int X86TTIImpl::getMinMaxReductionCost(Type *ValTy, Type *CondTy,
2684                                        bool IsPairwise, bool IsUnsigned) {
2685   std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, ValTy);
2686 
2687   MVT MTy = LT.second;
2688 
2689   int ISD;
2690   if (ValTy->isIntOrIntVectorTy()) {
2691     ISD = IsUnsigned ? ISD::UMIN : ISD::SMIN;
2692   } else {
2693     assert(ValTy->isFPOrFPVectorTy() &&
2694            "Expected float point or integer vector type.");
2695     ISD = ISD::FMINNUM;
2696   }
2697 
2698   // We use the Intel Architecture Code Analyzer(IACA) to measure the throughput
2699   // and make it as the cost.
2700 
2701   static const CostTblEntry SSE1CostTblPairWise[] = {
2702       {ISD::FMINNUM, MVT::v4f32, 4},
2703   };
2704 
2705   static const CostTblEntry SSE2CostTblPairWise[] = {
2706       {ISD::FMINNUM, MVT::v2f64, 3},
2707       {ISD::SMIN, MVT::v2i64, 6},
2708       {ISD::UMIN, MVT::v2i64, 8},
2709       {ISD::SMIN, MVT::v4i32, 6},
2710       {ISD::UMIN, MVT::v4i32, 8},
2711       {ISD::SMIN, MVT::v8i16, 4},
2712       {ISD::UMIN, MVT::v8i16, 6},
2713       {ISD::SMIN, MVT::v16i8, 8},
2714       {ISD::UMIN, MVT::v16i8, 6},
2715   };
2716 
2717   static const CostTblEntry SSE41CostTblPairWise[] = {
2718       {ISD::FMINNUM, MVT::v4f32, 2},
2719       {ISD::SMIN, MVT::v2i64, 9},
2720       {ISD::UMIN, MVT::v2i64,10},
2721       {ISD::SMIN, MVT::v4i32, 1}, // The data reported by the IACA is "1.5"
2722       {ISD::UMIN, MVT::v4i32, 2}, // The data reported by the IACA is "1.8"
2723       {ISD::SMIN, MVT::v8i16, 2},
2724       {ISD::UMIN, MVT::v8i16, 2},
2725       {ISD::SMIN, MVT::v16i8, 3},
2726       {ISD::UMIN, MVT::v16i8, 3},
2727   };
2728 
2729   static const CostTblEntry SSE42CostTblPairWise[] = {
2730       {ISD::SMIN, MVT::v2i64, 7}, // The data reported by the IACA is "6.8"
2731       {ISD::UMIN, MVT::v2i64, 8}, // The data reported by the IACA is "8.6"
2732   };
2733 
2734   static const CostTblEntry AVX1CostTblPairWise[] = {
2735       {ISD::FMINNUM, MVT::v4f32, 1},
2736       {ISD::FMINNUM, MVT::v4f64, 1},
2737       {ISD::FMINNUM, MVT::v8f32, 2},
2738       {ISD::SMIN, MVT::v2i64, 3},
2739       {ISD::UMIN, MVT::v2i64, 3},
2740       {ISD::SMIN, MVT::v4i32, 1},
2741       {ISD::UMIN, MVT::v4i32, 1},
2742       {ISD::SMIN, MVT::v8i16, 1},
2743       {ISD::UMIN, MVT::v8i16, 1},
2744       {ISD::SMIN, MVT::v16i8, 2},
2745       {ISD::UMIN, MVT::v16i8, 2},
2746       {ISD::SMIN, MVT::v4i64, 7},
2747       {ISD::UMIN, MVT::v4i64, 7},
2748       {ISD::SMIN, MVT::v8i32, 3},
2749       {ISD::UMIN, MVT::v8i32, 3},
2750       {ISD::SMIN, MVT::v16i16, 3},
2751       {ISD::UMIN, MVT::v16i16, 3},
2752       {ISD::SMIN, MVT::v32i8, 3},
2753       {ISD::UMIN, MVT::v32i8, 3},
2754   };
2755 
2756   static const CostTblEntry AVX2CostTblPairWise[] = {
2757       {ISD::SMIN, MVT::v4i64, 2},
2758       {ISD::UMIN, MVT::v4i64, 2},
2759       {ISD::SMIN, MVT::v8i32, 1},
2760       {ISD::UMIN, MVT::v8i32, 1},
2761       {ISD::SMIN, MVT::v16i16, 1},
2762       {ISD::UMIN, MVT::v16i16, 1},
2763       {ISD::SMIN, MVT::v32i8, 2},
2764       {ISD::UMIN, MVT::v32i8, 2},
2765   };
2766 
2767   static const CostTblEntry AVX512CostTblPairWise[] = {
2768       {ISD::FMINNUM, MVT::v8f64, 1},
2769       {ISD::FMINNUM, MVT::v16f32, 2},
2770       {ISD::SMIN, MVT::v8i64, 2},
2771       {ISD::UMIN, MVT::v8i64, 2},
2772       {ISD::SMIN, MVT::v16i32, 1},
2773       {ISD::UMIN, MVT::v16i32, 1},
2774   };
2775 
2776   static const CostTblEntry SSE1CostTblNoPairWise[] = {
2777       {ISD::FMINNUM, MVT::v4f32, 4},
2778   };
2779 
2780   static const CostTblEntry SSE2CostTblNoPairWise[] = {
2781       {ISD::FMINNUM, MVT::v2f64, 3},
2782       {ISD::SMIN, MVT::v2i64, 6},
2783       {ISD::UMIN, MVT::v2i64, 8},
2784       {ISD::SMIN, MVT::v4i32, 6},
2785       {ISD::UMIN, MVT::v4i32, 8},
2786       {ISD::SMIN, MVT::v8i16, 4},
2787       {ISD::UMIN, MVT::v8i16, 6},
2788       {ISD::SMIN, MVT::v16i8, 8},
2789       {ISD::UMIN, MVT::v16i8, 6},
2790   };
2791 
2792   static const CostTblEntry SSE41CostTblNoPairWise[] = {
2793       {ISD::FMINNUM, MVT::v4f32, 3},
2794       {ISD::SMIN, MVT::v2i64, 9},
2795       {ISD::UMIN, MVT::v2i64,11},
2796       {ISD::SMIN, MVT::v4i32, 1}, // The data reported by the IACA is "1.5"
2797       {ISD::UMIN, MVT::v4i32, 2}, // The data reported by the IACA is "1.8"
2798       {ISD::SMIN, MVT::v8i16, 1}, // The data reported by the IACA is "1.5"
2799       {ISD::UMIN, MVT::v8i16, 2}, // The data reported by the IACA is "1.8"
2800       {ISD::SMIN, MVT::v16i8, 3},
2801       {ISD::UMIN, MVT::v16i8, 3},
2802   };
2803 
2804   static const CostTblEntry SSE42CostTblNoPairWise[] = {
2805       {ISD::SMIN, MVT::v2i64, 7}, // The data reported by the IACA is "6.8"
2806       {ISD::UMIN, MVT::v2i64, 9}, // The data reported by the IACA is "8.6"
2807   };
2808 
2809   static const CostTblEntry AVX1CostTblNoPairWise[] = {
2810       {ISD::FMINNUM, MVT::v4f32, 1},
2811       {ISD::FMINNUM, MVT::v4f64, 1},
2812       {ISD::FMINNUM, MVT::v8f32, 1},
2813       {ISD::SMIN, MVT::v2i64, 3},
2814       {ISD::UMIN, MVT::v2i64, 3},
2815       {ISD::SMIN, MVT::v4i32, 1},
2816       {ISD::UMIN, MVT::v4i32, 1},
2817       {ISD::SMIN, MVT::v8i16, 1},
2818       {ISD::UMIN, MVT::v8i16, 1},
2819       {ISD::SMIN, MVT::v16i8, 2},
2820       {ISD::UMIN, MVT::v16i8, 2},
2821       {ISD::SMIN, MVT::v4i64, 7},
2822       {ISD::UMIN, MVT::v4i64, 7},
2823       {ISD::SMIN, MVT::v8i32, 2},
2824       {ISD::UMIN, MVT::v8i32, 2},
2825       {ISD::SMIN, MVT::v16i16, 2},
2826       {ISD::UMIN, MVT::v16i16, 2},
2827       {ISD::SMIN, MVT::v32i8, 2},
2828       {ISD::UMIN, MVT::v32i8, 2},
2829   };
2830 
2831   static const CostTblEntry AVX2CostTblNoPairWise[] = {
2832       {ISD::SMIN, MVT::v4i64, 1},
2833       {ISD::UMIN, MVT::v4i64, 1},
2834       {ISD::SMIN, MVT::v8i32, 1},
2835       {ISD::UMIN, MVT::v8i32, 1},
2836       {ISD::SMIN, MVT::v16i16, 1},
2837       {ISD::UMIN, MVT::v16i16, 1},
2838       {ISD::SMIN, MVT::v32i8, 1},
2839       {ISD::UMIN, MVT::v32i8, 1},
2840   };
2841 
2842   static const CostTblEntry AVX512CostTblNoPairWise[] = {
2843       {ISD::FMINNUM, MVT::v8f64, 1},
2844       {ISD::FMINNUM, MVT::v16f32, 2},
2845       {ISD::SMIN, MVT::v8i64, 1},
2846       {ISD::UMIN, MVT::v8i64, 1},
2847       {ISD::SMIN, MVT::v16i32, 1},
2848       {ISD::UMIN, MVT::v16i32, 1},
2849   };
2850 
2851   if (IsPairwise) {
2852     if (ST->hasAVX512())
2853       if (const auto *Entry = CostTableLookup(AVX512CostTblPairWise, ISD, MTy))
2854         return LT.first * Entry->Cost;
2855 
2856     if (ST->hasAVX2())
2857       if (const auto *Entry = CostTableLookup(AVX2CostTblPairWise, ISD, MTy))
2858         return LT.first * Entry->Cost;
2859 
2860     if (ST->hasAVX())
2861       if (const auto *Entry = CostTableLookup(AVX1CostTblPairWise, ISD, MTy))
2862         return LT.first * Entry->Cost;
2863 
2864     if (ST->hasSSE42())
2865       if (const auto *Entry = CostTableLookup(SSE42CostTblPairWise, ISD, MTy))
2866         return LT.first * Entry->Cost;
2867 
2868     if (ST->hasSSE41())
2869       if (const auto *Entry = CostTableLookup(SSE41CostTblPairWise, ISD, MTy))
2870         return LT.first * Entry->Cost;
2871 
2872     if (ST->hasSSE2())
2873       if (const auto *Entry = CostTableLookup(SSE2CostTblPairWise, ISD, MTy))
2874         return LT.first * Entry->Cost;
2875 
2876     if (ST->hasSSE1())
2877       if (const auto *Entry = CostTableLookup(SSE1CostTblPairWise, ISD, MTy))
2878         return LT.first * Entry->Cost;
2879   } else {
2880     if (ST->hasAVX512())
2881       if (const auto *Entry =
2882               CostTableLookup(AVX512CostTblNoPairWise, ISD, MTy))
2883         return LT.first * Entry->Cost;
2884 
2885     if (ST->hasAVX2())
2886       if (const auto *Entry = CostTableLookup(AVX2CostTblNoPairWise, ISD, MTy))
2887         return LT.first * Entry->Cost;
2888 
2889     if (ST->hasAVX())
2890       if (const auto *Entry = CostTableLookup(AVX1CostTblNoPairWise, ISD, MTy))
2891         return LT.first * Entry->Cost;
2892 
2893     if (ST->hasSSE42())
2894       if (const auto *Entry = CostTableLookup(SSE42CostTblNoPairWise, ISD, MTy))
2895         return LT.first * Entry->Cost;
2896 
2897     if (ST->hasSSE41())
2898       if (const auto *Entry = CostTableLookup(SSE41CostTblNoPairWise, ISD, MTy))
2899         return LT.first * Entry->Cost;
2900 
2901     if (ST->hasSSE2())
2902       if (const auto *Entry = CostTableLookup(SSE2CostTblNoPairWise, ISD, MTy))
2903         return LT.first * Entry->Cost;
2904 
2905     if (ST->hasSSE1())
2906       if (const auto *Entry = CostTableLookup(SSE1CostTblNoPairWise, ISD, MTy))
2907         return LT.first * Entry->Cost;
2908   }
2909 
2910   return BaseT::getMinMaxReductionCost(ValTy, CondTy, IsPairwise, IsUnsigned);
2911 }
2912 
2913 /// Calculate the cost of materializing a 64-bit value. This helper
2914 /// method might only calculate a fraction of a larger immediate. Therefore it
2915 /// is valid to return a cost of ZERO.
2916 int X86TTIImpl::getIntImmCost(int64_t Val) {
2917   if (Val == 0)
2918     return TTI::TCC_Free;
2919 
2920   if (isInt<32>(Val))
2921     return TTI::TCC_Basic;
2922 
2923   return 2 * TTI::TCC_Basic;
2924 }
2925 
2926 int X86TTIImpl::getIntImmCost(const APInt &Imm, Type *Ty) {
2927   assert(Ty->isIntegerTy());
2928 
2929   unsigned BitSize = Ty->getPrimitiveSizeInBits();
2930   if (BitSize == 0)
2931     return ~0U;
2932 
2933   // Never hoist constants larger than 128bit, because this might lead to
2934   // incorrect code generation or assertions in codegen.
2935   // Fixme: Create a cost model for types larger than i128 once the codegen
2936   // issues have been fixed.
2937   if (BitSize > 128)
2938     return TTI::TCC_Free;
2939 
2940   if (Imm == 0)
2941     return TTI::TCC_Free;
2942 
2943   // Sign-extend all constants to a multiple of 64-bit.
2944   APInt ImmVal = Imm;
2945   if (BitSize % 64 != 0)
2946     ImmVal = Imm.sext(alignTo(BitSize, 64));
2947 
2948   // Split the constant into 64-bit chunks and calculate the cost for each
2949   // chunk.
2950   int Cost = 0;
2951   for (unsigned ShiftVal = 0; ShiftVal < BitSize; ShiftVal += 64) {
2952     APInt Tmp = ImmVal.ashr(ShiftVal).sextOrTrunc(64);
2953     int64_t Val = Tmp.getSExtValue();
2954     Cost += getIntImmCost(Val);
2955   }
2956   // We need at least one instruction to materialize the constant.
2957   return std::max(1, Cost);
2958 }
2959 
2960 int X86TTIImpl::getIntImmCost(unsigned Opcode, unsigned Idx, const APInt &Imm,
2961                               Type *Ty) {
2962   assert(Ty->isIntegerTy());
2963 
2964   unsigned BitSize = Ty->getPrimitiveSizeInBits();
2965   // There is no cost model for constants with a bit size of 0. Return TCC_Free
2966   // here, so that constant hoisting will ignore this constant.
2967   if (BitSize == 0)
2968     return TTI::TCC_Free;
2969 
2970   unsigned ImmIdx = ~0U;
2971   switch (Opcode) {
2972   default:
2973     return TTI::TCC_Free;
2974   case Instruction::GetElementPtr:
2975     // Always hoist the base address of a GetElementPtr. This prevents the
2976     // creation of new constants for every base constant that gets constant
2977     // folded with the offset.
2978     if (Idx == 0)
2979       return 2 * TTI::TCC_Basic;
2980     return TTI::TCC_Free;
2981   case Instruction::Store:
2982     ImmIdx = 0;
2983     break;
2984   case Instruction::ICmp:
2985     // This is an imperfect hack to prevent constant hoisting of
2986     // compares that might be trying to check if a 64-bit value fits in
2987     // 32-bits. The backend can optimize these cases using a right shift by 32.
2988     // Ideally we would check the compare predicate here. There also other
2989     // similar immediates the backend can use shifts for.
2990     if (Idx == 1 && Imm.getBitWidth() == 64) {
2991       uint64_t ImmVal = Imm.getZExtValue();
2992       if (ImmVal == 0x100000000ULL || ImmVal == 0xffffffff)
2993         return TTI::TCC_Free;
2994     }
2995     ImmIdx = 1;
2996     break;
2997   case Instruction::And:
2998     // We support 64-bit ANDs with immediates with 32-bits of leading zeroes
2999     // by using a 32-bit operation with implicit zero extension. Detect such
3000     // immediates here as the normal path expects bit 31 to be sign extended.
3001     if (Idx == 1 && Imm.getBitWidth() == 64 && isUInt<32>(Imm.getZExtValue()))
3002       return TTI::TCC_Free;
3003     ImmIdx = 1;
3004     break;
3005   case Instruction::Add:
3006   case Instruction::Sub:
3007     // For add/sub, we can use the opposite instruction for INT32_MIN.
3008     if (Idx == 1 && Imm.getBitWidth() == 64 && Imm.getZExtValue() == 0x80000000)
3009       return TTI::TCC_Free;
3010     ImmIdx = 1;
3011     break;
3012   case Instruction::UDiv:
3013   case Instruction::SDiv:
3014   case Instruction::URem:
3015   case Instruction::SRem:
3016     // Division by constant is typically expanded later into a different
3017     // instruction sequence. This completely changes the constants.
3018     // Report them as "free" to stop ConstantHoist from marking them as opaque.
3019     return TTI::TCC_Free;
3020   case Instruction::Mul:
3021   case Instruction::Or:
3022   case Instruction::Xor:
3023     ImmIdx = 1;
3024     break;
3025   // Always return TCC_Free for the shift value of a shift instruction.
3026   case Instruction::Shl:
3027   case Instruction::LShr:
3028   case Instruction::AShr:
3029     if (Idx == 1)
3030       return TTI::TCC_Free;
3031     break;
3032   case Instruction::Trunc:
3033   case Instruction::ZExt:
3034   case Instruction::SExt:
3035   case Instruction::IntToPtr:
3036   case Instruction::PtrToInt:
3037   case Instruction::BitCast:
3038   case Instruction::PHI:
3039   case Instruction::Call:
3040   case Instruction::Select:
3041   case Instruction::Ret:
3042   case Instruction::Load:
3043     break;
3044   }
3045 
3046   if (Idx == ImmIdx) {
3047     int NumConstants = divideCeil(BitSize, 64);
3048     int Cost = X86TTIImpl::getIntImmCost(Imm, Ty);
3049     return (Cost <= NumConstants * TTI::TCC_Basic)
3050                ? static_cast<int>(TTI::TCC_Free)
3051                : Cost;
3052   }
3053 
3054   return X86TTIImpl::getIntImmCost(Imm, Ty);
3055 }
3056 
3057 int X86TTIImpl::getIntImmCost(Intrinsic::ID IID, unsigned Idx, const APInt &Imm,
3058                               Type *Ty) {
3059   assert(Ty->isIntegerTy());
3060 
3061   unsigned BitSize = Ty->getPrimitiveSizeInBits();
3062   // There is no cost model for constants with a bit size of 0. Return TCC_Free
3063   // here, so that constant hoisting will ignore this constant.
3064   if (BitSize == 0)
3065     return TTI::TCC_Free;
3066 
3067   switch (IID) {
3068   default:
3069     return TTI::TCC_Free;
3070   case Intrinsic::sadd_with_overflow:
3071   case Intrinsic::uadd_with_overflow:
3072   case Intrinsic::ssub_with_overflow:
3073   case Intrinsic::usub_with_overflow:
3074   case Intrinsic::smul_with_overflow:
3075   case Intrinsic::umul_with_overflow:
3076     if ((Idx == 1) && Imm.getBitWidth() <= 64 && isInt<32>(Imm.getSExtValue()))
3077       return TTI::TCC_Free;
3078     break;
3079   case Intrinsic::experimental_stackmap:
3080     if ((Idx < 2) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue())))
3081       return TTI::TCC_Free;
3082     break;
3083   case Intrinsic::experimental_patchpoint_void:
3084   case Intrinsic::experimental_patchpoint_i64:
3085     if ((Idx < 4) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue())))
3086       return TTI::TCC_Free;
3087     break;
3088   }
3089   return X86TTIImpl::getIntImmCost(Imm, Ty);
3090 }
3091 
3092 unsigned X86TTIImpl::getUserCost(const User *U,
3093                                  ArrayRef<const Value *> Operands) {
3094   if (isa<StoreInst>(U)) {
3095     Value *Ptr = U->getOperand(1);
3096     // Store instruction with index and scale costs 2 Uops.
3097     // Check the preceding GEP to identify non-const indices.
3098     if (auto GEP = dyn_cast<GetElementPtrInst>(Ptr)) {
3099       if (!all_of(GEP->indices(), [](Value *V) { return isa<Constant>(V); }))
3100         return TTI::TCC_Basic * 2;
3101     }
3102     return TTI::TCC_Basic;
3103   }
3104   return BaseT::getUserCost(U, Operands);
3105 }
3106 
3107 // Return an average cost of Gather / Scatter instruction, maybe improved later
3108 int X86TTIImpl::getGSVectorCost(unsigned Opcode, Type *SrcVTy, Value *Ptr,
3109                                 unsigned Alignment, unsigned AddressSpace) {
3110 
3111   assert(isa<VectorType>(SrcVTy) && "Unexpected type in getGSVectorCost");
3112   unsigned VF = SrcVTy->getVectorNumElements();
3113 
3114   // Try to reduce index size from 64 bit (default for GEP)
3115   // to 32. It is essential for VF 16. If the index can't be reduced to 32, the
3116   // operation will use 16 x 64 indices which do not fit in a zmm and needs
3117   // to split. Also check that the base pointer is the same for all lanes,
3118   // and that there's at most one variable index.
3119   auto getIndexSizeInBits = [](Value *Ptr, const DataLayout& DL) {
3120     unsigned IndexSize = DL.getPointerSizeInBits();
3121     GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr);
3122     if (IndexSize < 64 || !GEP)
3123       return IndexSize;
3124 
3125     unsigned NumOfVarIndices = 0;
3126     Value *Ptrs = GEP->getPointerOperand();
3127     if (Ptrs->getType()->isVectorTy() && !getSplatValue(Ptrs))
3128       return IndexSize;
3129     for (unsigned i = 1; i < GEP->getNumOperands(); ++i) {
3130       if (isa<Constant>(GEP->getOperand(i)))
3131         continue;
3132       Type *IndxTy = GEP->getOperand(i)->getType();
3133       if (IndxTy->isVectorTy())
3134         IndxTy = IndxTy->getVectorElementType();
3135       if ((IndxTy->getPrimitiveSizeInBits() == 64 &&
3136           !isa<SExtInst>(GEP->getOperand(i))) ||
3137          ++NumOfVarIndices > 1)
3138         return IndexSize; // 64
3139     }
3140     return (unsigned)32;
3141   };
3142 
3143 
3144   // Trying to reduce IndexSize to 32 bits for vector 16.
3145   // By default the IndexSize is equal to pointer size.
3146   unsigned IndexSize = (ST->hasAVX512() && VF >= 16)
3147                            ? getIndexSizeInBits(Ptr, DL)
3148                            : DL.getPointerSizeInBits();
3149 
3150   Type *IndexVTy = VectorType::get(IntegerType::get(SrcVTy->getContext(),
3151                                                     IndexSize), VF);
3152   std::pair<int, MVT> IdxsLT = TLI->getTypeLegalizationCost(DL, IndexVTy);
3153   std::pair<int, MVT> SrcLT = TLI->getTypeLegalizationCost(DL, SrcVTy);
3154   int SplitFactor = std::max(IdxsLT.first, SrcLT.first);
3155   if (SplitFactor > 1) {
3156     // Handle splitting of vector of pointers
3157     Type *SplitSrcTy = VectorType::get(SrcVTy->getScalarType(), VF / SplitFactor);
3158     return SplitFactor * getGSVectorCost(Opcode, SplitSrcTy, Ptr, Alignment,
3159                                          AddressSpace);
3160   }
3161 
3162   // The gather / scatter cost is given by Intel architects. It is a rough
3163   // number since we are looking at one instruction in a time.
3164   const int GSOverhead = (Opcode == Instruction::Load)
3165                              ? ST->getGatherOverhead()
3166                              : ST->getScatterOverhead();
3167   return GSOverhead + VF * getMemoryOpCost(Opcode, SrcVTy->getScalarType(),
3168                                            MaybeAlign(Alignment), AddressSpace);
3169 }
3170 
3171 /// Return the cost of full scalarization of gather / scatter operation.
3172 ///
3173 /// Opcode - Load or Store instruction.
3174 /// SrcVTy - The type of the data vector that should be gathered or scattered.
3175 /// VariableMask - The mask is non-constant at compile time.
3176 /// Alignment - Alignment for one element.
3177 /// AddressSpace - pointer[s] address space.
3178 ///
3179 int X86TTIImpl::getGSScalarCost(unsigned Opcode, Type *SrcVTy,
3180                                 bool VariableMask, unsigned Alignment,
3181                                 unsigned AddressSpace) {
3182   unsigned VF = SrcVTy->getVectorNumElements();
3183 
3184   int MaskUnpackCost = 0;
3185   if (VariableMask) {
3186     VectorType *MaskTy =
3187       VectorType::get(Type::getInt1Ty(SrcVTy->getContext()), VF);
3188     MaskUnpackCost = getScalarizationOverhead(MaskTy, false, true);
3189     int ScalarCompareCost =
3190       getCmpSelInstrCost(Instruction::ICmp, Type::getInt1Ty(SrcVTy->getContext()),
3191                          nullptr);
3192     int BranchCost = getCFInstrCost(Instruction::Br);
3193     MaskUnpackCost += VF * (BranchCost + ScalarCompareCost);
3194   }
3195 
3196   // The cost of the scalar loads/stores.
3197   int MemoryOpCost = VF * getMemoryOpCost(Opcode, SrcVTy->getScalarType(),
3198                                           MaybeAlign(Alignment), AddressSpace);
3199 
3200   int InsertExtractCost = 0;
3201   if (Opcode == Instruction::Load)
3202     for (unsigned i = 0; i < VF; ++i)
3203       // Add the cost of inserting each scalar load into the vector
3204       InsertExtractCost +=
3205         getVectorInstrCost(Instruction::InsertElement, SrcVTy, i);
3206   else
3207     for (unsigned i = 0; i < VF; ++i)
3208       // Add the cost of extracting each element out of the data vector
3209       InsertExtractCost +=
3210         getVectorInstrCost(Instruction::ExtractElement, SrcVTy, i);
3211 
3212   return MemoryOpCost + MaskUnpackCost + InsertExtractCost;
3213 }
3214 
3215 /// Calculate the cost of Gather / Scatter operation
3216 int X86TTIImpl::getGatherScatterOpCost(unsigned Opcode, Type *SrcVTy,
3217                                        Value *Ptr, bool VariableMask,
3218                                        unsigned Alignment) {
3219   assert(SrcVTy->isVectorTy() && "Unexpected data type for Gather/Scatter");
3220   unsigned VF = SrcVTy->getVectorNumElements();
3221   PointerType *PtrTy = dyn_cast<PointerType>(Ptr->getType());
3222   if (!PtrTy && Ptr->getType()->isVectorTy())
3223     PtrTy = dyn_cast<PointerType>(Ptr->getType()->getVectorElementType());
3224   assert(PtrTy && "Unexpected type for Ptr argument");
3225   unsigned AddressSpace = PtrTy->getAddressSpace();
3226 
3227   bool Scalarize = false;
3228   if ((Opcode == Instruction::Load && !isLegalMaskedGather(SrcVTy)) ||
3229       (Opcode == Instruction::Store && !isLegalMaskedScatter(SrcVTy)))
3230     Scalarize = true;
3231   // Gather / Scatter for vector 2 is not profitable on KNL / SKX
3232   // Vector-4 of gather/scatter instruction does not exist on KNL.
3233   // We can extend it to 8 elements, but zeroing upper bits of
3234   // the mask vector will add more instructions. Right now we give the scalar
3235   // cost of vector-4 for KNL. TODO: Check, maybe the gather/scatter instruction
3236   // is better in the VariableMask case.
3237   if (ST->hasAVX512() && (VF == 2 || (VF == 4 && !ST->hasVLX())))
3238     Scalarize = true;
3239 
3240   if (Scalarize)
3241     return getGSScalarCost(Opcode, SrcVTy, VariableMask, Alignment,
3242                            AddressSpace);
3243 
3244   return getGSVectorCost(Opcode, SrcVTy, Ptr, Alignment, AddressSpace);
3245 }
3246 
3247 bool X86TTIImpl::isLSRCostLess(TargetTransformInfo::LSRCost &C1,
3248                                TargetTransformInfo::LSRCost &C2) {
3249     // X86 specific here are "instruction number 1st priority".
3250     return std::tie(C1.Insns, C1.NumRegs, C1.AddRecCost,
3251                     C1.NumIVMuls, C1.NumBaseAdds,
3252                     C1.ScaleCost, C1.ImmCost, C1.SetupCost) <
3253            std::tie(C2.Insns, C2.NumRegs, C2.AddRecCost,
3254                     C2.NumIVMuls, C2.NumBaseAdds,
3255                     C2.ScaleCost, C2.ImmCost, C2.SetupCost);
3256 }
3257 
3258 bool X86TTIImpl::canMacroFuseCmp() {
3259   return ST->hasMacroFusion() || ST->hasBranchFusion();
3260 }
3261 
3262 bool X86TTIImpl::isLegalMaskedLoad(Type *DataTy, MaybeAlign Alignment) {
3263   if (!ST->hasAVX())
3264     return false;
3265 
3266   // The backend can't handle a single element vector.
3267   if (isa<VectorType>(DataTy) && DataTy->getVectorNumElements() == 1)
3268     return false;
3269   Type *ScalarTy = DataTy->getScalarType();
3270 
3271   if (ScalarTy->isPointerTy())
3272     return true;
3273 
3274   if (ScalarTy->isFloatTy() || ScalarTy->isDoubleTy())
3275     return true;
3276 
3277   if (!ScalarTy->isIntegerTy())
3278     return false;
3279 
3280   unsigned IntWidth = ScalarTy->getIntegerBitWidth();
3281   return IntWidth == 32 || IntWidth == 64 ||
3282          ((IntWidth == 8 || IntWidth == 16) && ST->hasBWI());
3283 }
3284 
3285 bool X86TTIImpl::isLegalMaskedStore(Type *DataType, MaybeAlign Alignment) {
3286   return isLegalMaskedLoad(DataType, Alignment);
3287 }
3288 
3289 bool X86TTIImpl::isLegalNTLoad(Type *DataType, Align Alignment) {
3290   unsigned DataSize = DL.getTypeStoreSize(DataType);
3291   // The only supported nontemporal loads are for aligned vectors of 16 or 32
3292   // bytes.  Note that 32-byte nontemporal vector loads are supported by AVX2
3293   // (the equivalent stores only require AVX).
3294   if (Alignment >= DataSize && (DataSize == 16 || DataSize == 32))
3295     return DataSize == 16 ?  ST->hasSSE1() : ST->hasAVX2();
3296 
3297   return false;
3298 }
3299 
3300 bool X86TTIImpl::isLegalNTStore(Type *DataType, Align Alignment) {
3301   unsigned DataSize = DL.getTypeStoreSize(DataType);
3302 
3303   // SSE4A supports nontemporal stores of float and double at arbitrary
3304   // alignment.
3305   if (ST->hasSSE4A() && (DataType->isFloatTy() || DataType->isDoubleTy()))
3306     return true;
3307 
3308   // Besides the SSE4A subtarget exception above, only aligned stores are
3309   // available nontemporaly on any other subtarget.  And only stores with a size
3310   // of 4..32 bytes (powers of 2, only) are permitted.
3311   if (Alignment < DataSize || DataSize < 4 || DataSize > 32 ||
3312       !isPowerOf2_32(DataSize))
3313     return false;
3314 
3315   // 32-byte vector nontemporal stores are supported by AVX (the equivalent
3316   // loads require AVX2).
3317   if (DataSize == 32)
3318     return ST->hasAVX();
3319   else if (DataSize == 16)
3320     return ST->hasSSE1();
3321   return true;
3322 }
3323 
3324 bool X86TTIImpl::isLegalMaskedExpandLoad(Type *DataTy) {
3325   if (!isa<VectorType>(DataTy))
3326     return false;
3327 
3328   if (!ST->hasAVX512())
3329     return false;
3330 
3331   // The backend can't handle a single element vector.
3332   if (DataTy->getVectorNumElements() == 1)
3333     return false;
3334 
3335   Type *ScalarTy = DataTy->getVectorElementType();
3336 
3337   if (ScalarTy->isFloatTy() || ScalarTy->isDoubleTy())
3338     return true;
3339 
3340   if (!ScalarTy->isIntegerTy())
3341     return false;
3342 
3343   unsigned IntWidth = ScalarTy->getIntegerBitWidth();
3344   return IntWidth == 32 || IntWidth == 64 ||
3345          ((IntWidth == 8 || IntWidth == 16) && ST->hasVBMI2());
3346 }
3347 
3348 bool X86TTIImpl::isLegalMaskedCompressStore(Type *DataTy) {
3349   return isLegalMaskedExpandLoad(DataTy);
3350 }
3351 
3352 bool X86TTIImpl::isLegalMaskedGather(Type *DataTy) {
3353   // Some CPUs have better gather performance than others.
3354   // TODO: Remove the explicit ST->hasAVX512()?, That would mean we would only
3355   // enable gather with a -march.
3356   if (!(ST->hasAVX512() || (ST->hasFastGather() && ST->hasAVX2())))
3357     return false;
3358 
3359   // This function is called now in two cases: from the Loop Vectorizer
3360   // and from the Scalarizer.
3361   // When the Loop Vectorizer asks about legality of the feature,
3362   // the vectorization factor is not calculated yet. The Loop Vectorizer
3363   // sends a scalar type and the decision is based on the width of the
3364   // scalar element.
3365   // Later on, the cost model will estimate usage this intrinsic based on
3366   // the vector type.
3367   // The Scalarizer asks again about legality. It sends a vector type.
3368   // In this case we can reject non-power-of-2 vectors.
3369   // We also reject single element vectors as the type legalizer can't
3370   // scalarize it.
3371   if (isa<VectorType>(DataTy)) {
3372     unsigned NumElts = DataTy->getVectorNumElements();
3373     if (NumElts == 1 || !isPowerOf2_32(NumElts))
3374       return false;
3375   }
3376   Type *ScalarTy = DataTy->getScalarType();
3377   if (ScalarTy->isPointerTy())
3378     return true;
3379 
3380   if (ScalarTy->isFloatTy() || ScalarTy->isDoubleTy())
3381     return true;
3382 
3383   if (!ScalarTy->isIntegerTy())
3384     return false;
3385 
3386   unsigned IntWidth = ScalarTy->getIntegerBitWidth();
3387   return IntWidth == 32 || IntWidth == 64;
3388 }
3389 
3390 bool X86TTIImpl::isLegalMaskedScatter(Type *DataType) {
3391   // AVX2 doesn't support scatter
3392   if (!ST->hasAVX512())
3393     return false;
3394   return isLegalMaskedGather(DataType);
3395 }
3396 
3397 bool X86TTIImpl::hasDivRemOp(Type *DataType, bool IsSigned) {
3398   EVT VT = TLI->getValueType(DL, DataType);
3399   return TLI->isOperationLegal(IsSigned ? ISD::SDIVREM : ISD::UDIVREM, VT);
3400 }
3401 
3402 bool X86TTIImpl::isFCmpOrdCheaperThanFCmpZero(Type *Ty) {
3403   return false;
3404 }
3405 
3406 bool X86TTIImpl::areInlineCompatible(const Function *Caller,
3407                                      const Function *Callee) const {
3408   const TargetMachine &TM = getTLI()->getTargetMachine();
3409 
3410   // Work this as a subsetting of subtarget features.
3411   const FeatureBitset &CallerBits =
3412       TM.getSubtargetImpl(*Caller)->getFeatureBits();
3413   const FeatureBitset &CalleeBits =
3414       TM.getSubtargetImpl(*Callee)->getFeatureBits();
3415 
3416   FeatureBitset RealCallerBits = CallerBits & ~InlineFeatureIgnoreList;
3417   FeatureBitset RealCalleeBits = CalleeBits & ~InlineFeatureIgnoreList;
3418   return (RealCallerBits & RealCalleeBits) == RealCalleeBits;
3419 }
3420 
3421 bool X86TTIImpl::areFunctionArgsABICompatible(
3422     const Function *Caller, const Function *Callee,
3423     SmallPtrSetImpl<Argument *> &Args) const {
3424   if (!BaseT::areFunctionArgsABICompatible(Caller, Callee, Args))
3425     return false;
3426 
3427   // If we get here, we know the target features match. If one function
3428   // considers 512-bit vectors legal and the other does not, consider them
3429   // incompatible.
3430   // FIXME Look at the arguments and only consider 512 bit or larger vectors?
3431   const TargetMachine &TM = getTLI()->getTargetMachine();
3432 
3433   return TM.getSubtarget<X86Subtarget>(*Caller).useAVX512Regs() ==
3434          TM.getSubtarget<X86Subtarget>(*Callee).useAVX512Regs();
3435 }
3436 
3437 X86TTIImpl::TTI::MemCmpExpansionOptions
3438 X86TTIImpl::enableMemCmpExpansion(bool OptSize, bool IsZeroCmp) const {
3439   TTI::MemCmpExpansionOptions Options;
3440   Options.MaxNumLoads = TLI->getMaxExpandSizeMemcmp(OptSize);
3441   Options.NumLoadsPerBlock = 2;
3442   if (IsZeroCmp) {
3443     // Only enable vector loads for equality comparison. Right now the vector
3444     // version is not as fast for three way compare (see #33329).
3445     const unsigned PreferredWidth = ST->getPreferVectorWidth();
3446     if (PreferredWidth >= 512 && ST->hasAVX512()) Options.LoadSizes.push_back(64);
3447     if (PreferredWidth >= 256 && ST->hasAVX2()) Options.LoadSizes.push_back(32);
3448     if (PreferredWidth >= 128 && ST->hasSSE2()) Options.LoadSizes.push_back(16);
3449     // All GPR and vector loads can be unaligned. SIMD compare requires integer
3450     // vectors (SSE2/AVX2).
3451     Options.AllowOverlappingLoads = true;
3452   }
3453   if (ST->is64Bit()) {
3454     Options.LoadSizes.push_back(8);
3455   }
3456   Options.LoadSizes.push_back(4);
3457   Options.LoadSizes.push_back(2);
3458   Options.LoadSizes.push_back(1);
3459   return Options;
3460 }
3461 
3462 bool X86TTIImpl::enableInterleavedAccessVectorization() {
3463   // TODO: We expect this to be beneficial regardless of arch,
3464   // but there are currently some unexplained performance artifacts on Atom.
3465   // As a temporary solution, disable on Atom.
3466   return !(ST->isAtom());
3467 }
3468 
3469 // Get estimation for interleaved load/store operations for AVX2.
3470 // \p Factor is the interleaved-access factor (stride) - number of
3471 // (interleaved) elements in the group.
3472 // \p Indices contains the indices for a strided load: when the
3473 // interleaved load has gaps they indicate which elements are used.
3474 // If Indices is empty (or if the number of indices is equal to the size
3475 // of the interleaved-access as given in \p Factor) the access has no gaps.
3476 //
3477 // As opposed to AVX-512, AVX2 does not have generic shuffles that allow
3478 // computing the cost using a generic formula as a function of generic
3479 // shuffles. We therefore use a lookup table instead, filled according to
3480 // the instruction sequences that codegen currently generates.
3481 int X86TTIImpl::getInterleavedMemoryOpCostAVX2(unsigned Opcode, Type *VecTy,
3482                                                unsigned Factor,
3483                                                ArrayRef<unsigned> Indices,
3484                                                unsigned Alignment,
3485                                                unsigned AddressSpace,
3486                                                bool UseMaskForCond,
3487                                                bool UseMaskForGaps) {
3488 
3489   if (UseMaskForCond || UseMaskForGaps)
3490     return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices,
3491                                              Alignment, AddressSpace,
3492                                              UseMaskForCond, UseMaskForGaps);
3493 
3494   // We currently Support only fully-interleaved groups, with no gaps.
3495   // TODO: Support also strided loads (interleaved-groups with gaps).
3496   if (Indices.size() && Indices.size() != Factor)
3497     return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices,
3498                                              Alignment, AddressSpace);
3499 
3500   // VecTy for interleave memop is <VF*Factor x Elt>.
3501   // So, for VF=4, Interleave Factor = 3, Element type = i32 we have
3502   // VecTy = <12 x i32>.
3503   MVT LegalVT = getTLI()->getTypeLegalizationCost(DL, VecTy).second;
3504 
3505   // This function can be called with VecTy=<6xi128>, Factor=3, in which case
3506   // the VF=2, while v2i128 is an unsupported MVT vector type
3507   // (see MachineValueType.h::getVectorVT()).
3508   if (!LegalVT.isVector())
3509     return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices,
3510                                              Alignment, AddressSpace);
3511 
3512   unsigned VF = VecTy->getVectorNumElements() / Factor;
3513   Type *ScalarTy = VecTy->getVectorElementType();
3514 
3515   // Calculate the number of memory operations (NumOfMemOps), required
3516   // for load/store the VecTy.
3517   unsigned VecTySize = DL.getTypeStoreSize(VecTy);
3518   unsigned LegalVTSize = LegalVT.getStoreSize();
3519   unsigned NumOfMemOps = (VecTySize + LegalVTSize - 1) / LegalVTSize;
3520 
3521   // Get the cost of one memory operation.
3522   Type *SingleMemOpTy = VectorType::get(VecTy->getVectorElementType(),
3523                                         LegalVT.getVectorNumElements());
3524   unsigned MemOpCost = getMemoryOpCost(Opcode, SingleMemOpTy,
3525                                        MaybeAlign(Alignment), AddressSpace);
3526 
3527   VectorType *VT = VectorType::get(ScalarTy, VF);
3528   EVT ETy = TLI->getValueType(DL, VT);
3529   if (!ETy.isSimple())
3530     return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices,
3531                                              Alignment, AddressSpace);
3532 
3533   // TODO: Complete for other data-types and strides.
3534   // Each combination of Stride, ElementTy and VF results in a different
3535   // sequence; The cost tables are therefore accessed with:
3536   // Factor (stride) and VectorType=VFxElemType.
3537   // The Cost accounts only for the shuffle sequence;
3538   // The cost of the loads/stores is accounted for separately.
3539   //
3540   static const CostTblEntry AVX2InterleavedLoadTbl[] = {
3541     { 2, MVT::v4i64, 6 }, //(load 8i64 and) deinterleave into 2 x 4i64
3542     { 2, MVT::v4f64, 6 }, //(load 8f64 and) deinterleave into 2 x 4f64
3543 
3544     { 3, MVT::v2i8,  10 }, //(load 6i8 and)  deinterleave into 3 x 2i8
3545     { 3, MVT::v4i8,  4 },  //(load 12i8 and) deinterleave into 3 x 4i8
3546     { 3, MVT::v8i8,  9 },  //(load 24i8 and) deinterleave into 3 x 8i8
3547     { 3, MVT::v16i8, 11},  //(load 48i8 and) deinterleave into 3 x 16i8
3548     { 3, MVT::v32i8, 13},  //(load 96i8 and) deinterleave into 3 x 32i8
3549     { 3, MVT::v8f32, 17 }, //(load 24f32 and)deinterleave into 3 x 8f32
3550 
3551     { 4, MVT::v2i8,  12 }, //(load 8i8 and)   deinterleave into 4 x 2i8
3552     { 4, MVT::v4i8,  4 },  //(load 16i8 and)  deinterleave into 4 x 4i8
3553     { 4, MVT::v8i8,  20 }, //(load 32i8 and)  deinterleave into 4 x 8i8
3554     { 4, MVT::v16i8, 39 }, //(load 64i8 and)  deinterleave into 4 x 16i8
3555     { 4, MVT::v32i8, 80 }, //(load 128i8 and) deinterleave into 4 x 32i8
3556 
3557     { 8, MVT::v8f32, 40 }  //(load 64f32 and)deinterleave into 8 x 8f32
3558   };
3559 
3560   static const CostTblEntry AVX2InterleavedStoreTbl[] = {
3561     { 2, MVT::v4i64, 6 }, //interleave into 2 x 4i64 into 8i64 (and store)
3562     { 2, MVT::v4f64, 6 }, //interleave into 2 x 4f64 into 8f64 (and store)
3563 
3564     { 3, MVT::v2i8,  7 },  //interleave 3 x 2i8  into 6i8 (and store)
3565     { 3, MVT::v4i8,  8 },  //interleave 3 x 4i8  into 12i8 (and store)
3566     { 3, MVT::v8i8,  11 }, //interleave 3 x 8i8  into 24i8 (and store)
3567     { 3, MVT::v16i8, 11 }, //interleave 3 x 16i8 into 48i8 (and store)
3568     { 3, MVT::v32i8, 13 }, //interleave 3 x 32i8 into 96i8 (and store)
3569 
3570     { 4, MVT::v2i8,  12 }, //interleave 4 x 2i8  into 8i8 (and store)
3571     { 4, MVT::v4i8,  9 },  //interleave 4 x 4i8  into 16i8 (and store)
3572     { 4, MVT::v8i8,  10 }, //interleave 4 x 8i8  into 32i8 (and store)
3573     { 4, MVT::v16i8, 10 }, //interleave 4 x 16i8 into 64i8 (and store)
3574     { 4, MVT::v32i8, 12 }  //interleave 4 x 32i8 into 128i8 (and store)
3575   };
3576 
3577   if (Opcode == Instruction::Load) {
3578     if (const auto *Entry =
3579             CostTableLookup(AVX2InterleavedLoadTbl, Factor, ETy.getSimpleVT()))
3580       return NumOfMemOps * MemOpCost + Entry->Cost;
3581   } else {
3582     assert(Opcode == Instruction::Store &&
3583            "Expected Store Instruction at this  point");
3584     if (const auto *Entry =
3585             CostTableLookup(AVX2InterleavedStoreTbl, Factor, ETy.getSimpleVT()))
3586       return NumOfMemOps * MemOpCost + Entry->Cost;
3587   }
3588 
3589   return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices,
3590                                            Alignment, AddressSpace);
3591 }
3592 
3593 // Get estimation for interleaved load/store operations and strided load.
3594 // \p Indices contains indices for strided load.
3595 // \p Factor - the factor of interleaving.
3596 // AVX-512 provides 3-src shuffles that significantly reduces the cost.
3597 int X86TTIImpl::getInterleavedMemoryOpCostAVX512(unsigned Opcode, Type *VecTy,
3598                                                  unsigned Factor,
3599                                                  ArrayRef<unsigned> Indices,
3600                                                  unsigned Alignment,
3601                                                  unsigned AddressSpace,
3602                                                  bool UseMaskForCond,
3603                                                  bool UseMaskForGaps) {
3604 
3605   if (UseMaskForCond || UseMaskForGaps)
3606     return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices,
3607                                              Alignment, AddressSpace,
3608                                              UseMaskForCond, UseMaskForGaps);
3609 
3610   // VecTy for interleave memop is <VF*Factor x Elt>.
3611   // So, for VF=4, Interleave Factor = 3, Element type = i32 we have
3612   // VecTy = <12 x i32>.
3613 
3614   // Calculate the number of memory operations (NumOfMemOps), required
3615   // for load/store the VecTy.
3616   MVT LegalVT = getTLI()->getTypeLegalizationCost(DL, VecTy).second;
3617   unsigned VecTySize = DL.getTypeStoreSize(VecTy);
3618   unsigned LegalVTSize = LegalVT.getStoreSize();
3619   unsigned NumOfMemOps = (VecTySize + LegalVTSize - 1) / LegalVTSize;
3620 
3621   // Get the cost of one memory operation.
3622   Type *SingleMemOpTy = VectorType::get(VecTy->getVectorElementType(),
3623                                         LegalVT.getVectorNumElements());
3624   unsigned MemOpCost = getMemoryOpCost(Opcode, SingleMemOpTy,
3625                                        MaybeAlign(Alignment), AddressSpace);
3626 
3627   unsigned VF = VecTy->getVectorNumElements() / Factor;
3628   MVT VT = MVT::getVectorVT(MVT::getVT(VecTy->getScalarType()), VF);
3629 
3630   if (Opcode == Instruction::Load) {
3631     // The tables (AVX512InterleavedLoadTbl and AVX512InterleavedStoreTbl)
3632     // contain the cost of the optimized shuffle sequence that the
3633     // X86InterleavedAccess pass will generate.
3634     // The cost of loads and stores are computed separately from the table.
3635 
3636     // X86InterleavedAccess support only the following interleaved-access group.
3637     static const CostTblEntry AVX512InterleavedLoadTbl[] = {
3638         {3, MVT::v16i8, 12}, //(load 48i8 and) deinterleave into 3 x 16i8
3639         {3, MVT::v32i8, 14}, //(load 96i8 and) deinterleave into 3 x 32i8
3640         {3, MVT::v64i8, 22}, //(load 96i8 and) deinterleave into 3 x 32i8
3641     };
3642 
3643     if (const auto *Entry =
3644             CostTableLookup(AVX512InterleavedLoadTbl, Factor, VT))
3645       return NumOfMemOps * MemOpCost + Entry->Cost;
3646     //If an entry does not exist, fallback to the default implementation.
3647 
3648     // Kind of shuffle depends on number of loaded values.
3649     // If we load the entire data in one register, we can use a 1-src shuffle.
3650     // Otherwise, we'll merge 2 sources in each operation.
3651     TTI::ShuffleKind ShuffleKind =
3652         (NumOfMemOps > 1) ? TTI::SK_PermuteTwoSrc : TTI::SK_PermuteSingleSrc;
3653 
3654     unsigned ShuffleCost =
3655         getShuffleCost(ShuffleKind, SingleMemOpTy, 0, nullptr);
3656 
3657     unsigned NumOfLoadsInInterleaveGrp =
3658         Indices.size() ? Indices.size() : Factor;
3659     Type *ResultTy = VectorType::get(VecTy->getVectorElementType(),
3660                                      VecTy->getVectorNumElements() / Factor);
3661     unsigned NumOfResults =
3662         getTLI()->getTypeLegalizationCost(DL, ResultTy).first *
3663         NumOfLoadsInInterleaveGrp;
3664 
3665     // About a half of the loads may be folded in shuffles when we have only
3666     // one result. If we have more than one result, we do not fold loads at all.
3667     unsigned NumOfUnfoldedLoads =
3668         NumOfResults > 1 ? NumOfMemOps : NumOfMemOps / 2;
3669 
3670     // Get a number of shuffle operations per result.
3671     unsigned NumOfShufflesPerResult =
3672         std::max((unsigned)1, (unsigned)(NumOfMemOps - 1));
3673 
3674     // The SK_MergeTwoSrc shuffle clobbers one of src operands.
3675     // When we have more than one destination, we need additional instructions
3676     // to keep sources.
3677     unsigned NumOfMoves = 0;
3678     if (NumOfResults > 1 && ShuffleKind == TTI::SK_PermuteTwoSrc)
3679       NumOfMoves = NumOfResults * NumOfShufflesPerResult / 2;
3680 
3681     int Cost = NumOfResults * NumOfShufflesPerResult * ShuffleCost +
3682                NumOfUnfoldedLoads * MemOpCost + NumOfMoves;
3683 
3684     return Cost;
3685   }
3686 
3687   // Store.
3688   assert(Opcode == Instruction::Store &&
3689          "Expected Store Instruction at this  point");
3690   // X86InterleavedAccess support only the following interleaved-access group.
3691   static const CostTblEntry AVX512InterleavedStoreTbl[] = {
3692       {3, MVT::v16i8, 12}, // interleave 3 x 16i8 into 48i8 (and store)
3693       {3, MVT::v32i8, 14}, // interleave 3 x 32i8 into 96i8 (and store)
3694       {3, MVT::v64i8, 26}, // interleave 3 x 64i8 into 96i8 (and store)
3695 
3696       {4, MVT::v8i8, 10},  // interleave 4 x 8i8  into 32i8  (and store)
3697       {4, MVT::v16i8, 11}, // interleave 4 x 16i8 into 64i8  (and store)
3698       {4, MVT::v32i8, 14}, // interleave 4 x 32i8 into 128i8 (and store)
3699       {4, MVT::v64i8, 24}  // interleave 4 x 32i8 into 256i8 (and store)
3700   };
3701 
3702   if (const auto *Entry =
3703           CostTableLookup(AVX512InterleavedStoreTbl, Factor, VT))
3704     return NumOfMemOps * MemOpCost + Entry->Cost;
3705   //If an entry does not exist, fallback to the default implementation.
3706 
3707   // There is no strided stores meanwhile. And store can't be folded in
3708   // shuffle.
3709   unsigned NumOfSources = Factor; // The number of values to be merged.
3710   unsigned ShuffleCost =
3711       getShuffleCost(TTI::SK_PermuteTwoSrc, SingleMemOpTy, 0, nullptr);
3712   unsigned NumOfShufflesPerStore = NumOfSources - 1;
3713 
3714   // The SK_MergeTwoSrc shuffle clobbers one of src operands.
3715   // We need additional instructions to keep sources.
3716   unsigned NumOfMoves = NumOfMemOps * NumOfShufflesPerStore / 2;
3717   int Cost = NumOfMemOps * (MemOpCost + NumOfShufflesPerStore * ShuffleCost) +
3718              NumOfMoves;
3719   return Cost;
3720 }
3721 
3722 int X86TTIImpl::getInterleavedMemoryOpCost(unsigned Opcode, Type *VecTy,
3723                                            unsigned Factor,
3724                                            ArrayRef<unsigned> Indices,
3725                                            unsigned Alignment,
3726                                            unsigned AddressSpace,
3727                                            bool UseMaskForCond,
3728                                            bool UseMaskForGaps) {
3729   auto isSupportedOnAVX512 = [](Type *VecTy, bool HasBW) {
3730     Type *EltTy = VecTy->getVectorElementType();
3731     if (EltTy->isFloatTy() || EltTy->isDoubleTy() || EltTy->isIntegerTy(64) ||
3732         EltTy->isIntegerTy(32) || EltTy->isPointerTy())
3733       return true;
3734     if (EltTy->isIntegerTy(16) || EltTy->isIntegerTy(8))
3735       return HasBW;
3736     return false;
3737   };
3738   if (ST->hasAVX512() && isSupportedOnAVX512(VecTy, ST->hasBWI()))
3739     return getInterleavedMemoryOpCostAVX512(Opcode, VecTy, Factor, Indices,
3740                                             Alignment, AddressSpace,
3741                                             UseMaskForCond, UseMaskForGaps);
3742   if (ST->hasAVX2())
3743     return getInterleavedMemoryOpCostAVX2(Opcode, VecTy, Factor, Indices,
3744                                           Alignment, AddressSpace,
3745                                           UseMaskForCond, UseMaskForGaps);
3746 
3747   return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices,
3748                                            Alignment, AddressSpace,
3749                                            UseMaskForCond, UseMaskForGaps);
3750 }
3751