1 //===-- X86TargetMachine.cpp - Define TargetMachine for the X86 -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the X86 specific subclass of TargetMachine.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "X86TargetMachine.h"
14 #include "MCTargetDesc/X86MCTargetDesc.h"
15 #include "TargetInfo/X86TargetInfo.h"
16 #include "X86.h"
17 #include "X86CallLowering.h"
18 #include "X86LegalizerInfo.h"
19 #include "X86MacroFusion.h"
20 #include "X86Subtarget.h"
21 #include "X86TargetObjectFile.h"
22 #include "X86TargetTransformInfo.h"
23 #include "llvm/ADT/Optional.h"
24 #include "llvm/ADT/STLExtras.h"
25 #include "llvm/ADT/SmallString.h"
26 #include "llvm/ADT/StringRef.h"
27 #include "llvm/ADT/Triple.h"
28 #include "llvm/Analysis/TargetTransformInfo.h"
29 #include "llvm/CodeGen/ExecutionDomainFix.h"
30 #include "llvm/CodeGen/GlobalISel/CallLowering.h"
31 #include "llvm/CodeGen/GlobalISel/IRTranslator.h"
32 #include "llvm/CodeGen/GlobalISel/InstructionSelect.h"
33 #include "llvm/CodeGen/GlobalISel/Legalizer.h"
34 #include "llvm/CodeGen/GlobalISel/RegBankSelect.h"
35 #include "llvm/CodeGen/MachineScheduler.h"
36 #include "llvm/CodeGen/Passes.h"
37 #include "llvm/CodeGen/TargetPassConfig.h"
38 #include "llvm/IR/Attributes.h"
39 #include "llvm/IR/DataLayout.h"
40 #include "llvm/IR/Function.h"
41 #include "llvm/MC/MCAsmInfo.h"
42 #include "llvm/Pass.h"
43 #include "llvm/Support/CodeGen.h"
44 #include "llvm/Support/CommandLine.h"
45 #include "llvm/Support/ErrorHandling.h"
46 #include "llvm/Support/TargetRegistry.h"
47 #include "llvm/Target/TargetLoweringObjectFile.h"
48 #include "llvm/Target/TargetOptions.h"
49 #include "llvm/Transforms/CFGuard.h"
50 #include <memory>
51 #include <string>
52 
53 using namespace llvm;
54 
55 static cl::opt<bool> EnableMachineCombinerPass("x86-machine-combiner",
56                                cl::desc("Enable the machine combiner pass"),
57                                cl::init(true), cl::Hidden);
58 
59 static cl::opt<bool> EnableCondBrFoldingPass("x86-condbr-folding",
60                                cl::desc("Enable the conditional branch "
61                                         "folding pass"),
62                                cl::init(false), cl::Hidden);
63 
64 extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeX86Target() {
65   // Register the target.
66   RegisterTargetMachine<X86TargetMachine> X(getTheX86_32Target());
67   RegisterTargetMachine<X86TargetMachine> Y(getTheX86_64Target());
68 
69   PassRegistry &PR = *PassRegistry::getPassRegistry();
70   initializeGlobalISel(PR);
71   initializeWinEHStatePassPass(PR);
72   initializeFixupBWInstPassPass(PR);
73   initializeEvexToVexInstPassPass(PR);
74   initializeFixupLEAPassPass(PR);
75   initializeFPSPass(PR);
76   initializeX86CallFrameOptimizationPass(PR);
77   initializeX86CmovConverterPassPass(PR);
78   initializeX86ExpandPseudoPass(PR);
79   initializeX86ExecutionDomainFixPass(PR);
80   initializeX86DomainReassignmentPass(PR);
81   initializeX86AvoidSFBPassPass(PR);
82   initializeX86SpeculativeLoadHardeningPassPass(PR);
83   initializeX86FlagsCopyLoweringPassPass(PR);
84   initializeX86CondBrFoldingPassPass(PR);
85   initializeX86OptimizeLEAPassPass(PR);
86 }
87 
88 static std::unique_ptr<TargetLoweringObjectFile> createTLOF(const Triple &TT) {
89   if (TT.isOSBinFormatMachO()) {
90     if (TT.getArch() == Triple::x86_64)
91       return std::make_unique<X86_64MachoTargetObjectFile>();
92     return std::make_unique<TargetLoweringObjectFileMachO>();
93   }
94 
95   if (TT.isOSFreeBSD())
96     return std::make_unique<X86FreeBSDTargetObjectFile>();
97   if (TT.isOSLinux() || TT.isOSNaCl() || TT.isOSIAMCU())
98     return std::make_unique<X86LinuxNaClTargetObjectFile>();
99   if (TT.isOSSolaris())
100     return std::make_unique<X86SolarisTargetObjectFile>();
101   if (TT.isOSFuchsia())
102     return std::make_unique<X86FuchsiaTargetObjectFile>();
103   if (TT.isOSBinFormatELF())
104     return std::make_unique<X86ELFTargetObjectFile>();
105   if (TT.isOSBinFormatCOFF())
106     return std::make_unique<TargetLoweringObjectFileCOFF>();
107   llvm_unreachable("unknown subtarget type");
108 }
109 
110 static std::string computeDataLayout(const Triple &TT) {
111   // X86 is little endian
112   std::string Ret = "e";
113 
114   Ret += DataLayout::getManglingComponent(TT);
115   // X86 and x32 have 32 bit pointers.
116   if ((TT.isArch64Bit() &&
117        (TT.getEnvironment() == Triple::GNUX32 || TT.isOSNaCl())) ||
118       !TT.isArch64Bit())
119     Ret += "-p:32:32";
120 
121   // Address spaces for 32 bit signed, 32 bit unsigned, and 64 bit pointers.
122   Ret += "-p270:32:32-p271:32:32-p272:64:64";
123 
124   // Some ABIs align 64 bit integers and doubles to 64 bits, others to 32.
125   if (TT.isArch64Bit() || TT.isOSWindows() || TT.isOSNaCl())
126     Ret += "-i64:64";
127   else if (TT.isOSIAMCU())
128     Ret += "-i64:32-f64:32";
129   else
130     Ret += "-f64:32:64";
131 
132   // Some ABIs align long double to 128 bits, others to 32.
133   if (TT.isOSNaCl() || TT.isOSIAMCU())
134     ; // No f80
135   else if (TT.isArch64Bit() || TT.isOSDarwin())
136     Ret += "-f80:128";
137   else
138     Ret += "-f80:32";
139 
140   if (TT.isOSIAMCU())
141     Ret += "-f128:32";
142 
143   // The registers can hold 8, 16, 32 or, in x86-64, 64 bits.
144   if (TT.isArch64Bit())
145     Ret += "-n8:16:32:64";
146   else
147     Ret += "-n8:16:32";
148 
149   // The stack is aligned to 32 bits on some ABIs and 128 bits on others.
150   if ((!TT.isArch64Bit() && TT.isOSWindows()) || TT.isOSIAMCU())
151     Ret += "-a:0:32-S32";
152   else
153     Ret += "-S128";
154 
155   return Ret;
156 }
157 
158 static Reloc::Model getEffectiveRelocModel(const Triple &TT,
159                                            bool JIT,
160                                            Optional<Reloc::Model> RM) {
161   bool is64Bit = TT.getArch() == Triple::x86_64;
162   if (!RM.hasValue()) {
163     // JIT codegen should use static relocations by default, since it's
164     // typically executed in process and not relocatable.
165     if (JIT)
166       return Reloc::Static;
167 
168     // Darwin defaults to PIC in 64 bit mode and dynamic-no-pic in 32 bit mode.
169     // Win64 requires rip-rel addressing, thus we force it to PIC. Otherwise we
170     // use static relocation model by default.
171     if (TT.isOSDarwin()) {
172       if (is64Bit)
173         return Reloc::PIC_;
174       return Reloc::DynamicNoPIC;
175     }
176     if (TT.isOSWindows() && is64Bit)
177       return Reloc::PIC_;
178     return Reloc::Static;
179   }
180 
181   // ELF and X86-64 don't have a distinct DynamicNoPIC model.  DynamicNoPIC
182   // is defined as a model for code which may be used in static or dynamic
183   // executables but not necessarily a shared library. On X86-32 we just
184   // compile in -static mode, in x86-64 we use PIC.
185   if (*RM == Reloc::DynamicNoPIC) {
186     if (is64Bit)
187       return Reloc::PIC_;
188     if (!TT.isOSDarwin())
189       return Reloc::Static;
190   }
191 
192   // If we are on Darwin, disallow static relocation model in X86-64 mode, since
193   // the Mach-O file format doesn't support it.
194   if (*RM == Reloc::Static && TT.isOSDarwin() && is64Bit)
195     return Reloc::PIC_;
196 
197   return *RM;
198 }
199 
200 static CodeModel::Model getEffectiveX86CodeModel(Optional<CodeModel::Model> CM,
201                                                  bool JIT, bool Is64Bit) {
202   if (CM) {
203     if (*CM == CodeModel::Tiny)
204       report_fatal_error("Target does not support the tiny CodeModel", false);
205     return *CM;
206   }
207   if (JIT)
208     return Is64Bit ? CodeModel::Large : CodeModel::Small;
209   return CodeModel::Small;
210 }
211 
212 /// Create an X86 target.
213 ///
214 X86TargetMachine::X86TargetMachine(const Target &T, const Triple &TT,
215                                    StringRef CPU, StringRef FS,
216                                    const TargetOptions &Options,
217                                    Optional<Reloc::Model> RM,
218                                    Optional<CodeModel::Model> CM,
219                                    CodeGenOpt::Level OL, bool JIT)
220     : LLVMTargetMachine(
221           T, computeDataLayout(TT), TT, CPU, FS, Options,
222           getEffectiveRelocModel(TT, JIT, RM),
223           getEffectiveX86CodeModel(CM, JIT, TT.getArch() == Triple::x86_64),
224           OL),
225       TLOF(createTLOF(getTargetTriple())) {
226   // On PS4, the "return address" of a 'noreturn' call must still be within
227   // the calling function, and TrapUnreachable is an easy way to get that.
228   if (TT.isPS4() || TT.isOSBinFormatMachO()) {
229     this->Options.TrapUnreachable = true;
230     this->Options.NoTrapAfterNoreturn = TT.isOSBinFormatMachO();
231   }
232 
233   setMachineOutliner(true);
234 
235   // x86 supports the debug entry values.
236   setSupportsDebugEntryValues(true);
237 
238   initAsmInfo();
239 }
240 
241 X86TargetMachine::~X86TargetMachine() = default;
242 
243 const X86Subtarget *
244 X86TargetMachine::getSubtargetImpl(const Function &F) const {
245   Attribute CPUAttr = F.getFnAttribute("target-cpu");
246   Attribute FSAttr = F.getFnAttribute("target-features");
247 
248   StringRef CPU = !CPUAttr.hasAttribute(Attribute::None)
249                       ? CPUAttr.getValueAsString()
250                       : (StringRef)TargetCPU;
251   StringRef FS = !FSAttr.hasAttribute(Attribute::None)
252                      ? FSAttr.getValueAsString()
253                      : (StringRef)TargetFS;
254 
255   SmallString<512> Key;
256   Key.reserve(CPU.size() + FS.size());
257   Key += CPU;
258   Key += FS;
259 
260   // FIXME: This is related to the code below to reset the target options,
261   // we need to know whether or not the soft float flag is set on the
262   // function before we can generate a subtarget. We also need to use
263   // it as a key for the subtarget since that can be the only difference
264   // between two functions.
265   bool SoftFloat =
266       F.getFnAttribute("use-soft-float").getValueAsString() == "true";
267   // If the soft float attribute is set on the function turn on the soft float
268   // subtarget feature.
269   if (SoftFloat)
270     Key += FS.empty() ? "+soft-float" : ",+soft-float";
271 
272   // Keep track of the key width after all features are added so we can extract
273   // the feature string out later.
274   unsigned CPUFSWidth = Key.size();
275 
276   // Extract prefer-vector-width attribute.
277   unsigned PreferVectorWidthOverride = 0;
278   if (F.hasFnAttribute("prefer-vector-width")) {
279     StringRef Val = F.getFnAttribute("prefer-vector-width").getValueAsString();
280     unsigned Width;
281     if (!Val.getAsInteger(0, Width)) {
282       Key += ",prefer-vector-width=";
283       Key += Val;
284       PreferVectorWidthOverride = Width;
285     }
286   }
287 
288   // Extract min-legal-vector-width attribute.
289   unsigned RequiredVectorWidth = UINT32_MAX;
290   if (F.hasFnAttribute("min-legal-vector-width")) {
291     StringRef Val =
292         F.getFnAttribute("min-legal-vector-width").getValueAsString();
293     unsigned Width;
294     if (!Val.getAsInteger(0, Width)) {
295       Key += ",min-legal-vector-width=";
296       Key += Val;
297       RequiredVectorWidth = Width;
298     }
299   }
300 
301   // Extracted here so that we make sure there is backing for the StringRef. If
302   // we assigned earlier, its possible the SmallString reallocated leaving a
303   // dangling StringRef.
304   FS = Key.slice(CPU.size(), CPUFSWidth);
305 
306   auto &I = SubtargetMap[Key];
307   if (!I) {
308     // This needs to be done before we create a new subtarget since any
309     // creation will depend on the TM and the code generation flags on the
310     // function that reside in TargetOptions.
311     resetTargetOptions(F);
312     I = std::make_unique<X86Subtarget>(
313         TargetTriple, CPU, FS, *this,
314         MaybeAlign(Options.StackAlignmentOverride), PreferVectorWidthOverride,
315         RequiredVectorWidth);
316   }
317   return I.get();
318 }
319 
320 //===----------------------------------------------------------------------===//
321 // Command line options for x86
322 //===----------------------------------------------------------------------===//
323 static cl::opt<bool>
324 UseVZeroUpper("x86-use-vzeroupper", cl::Hidden,
325   cl::desc("Minimize AVX to SSE transition penalty"),
326   cl::init(true));
327 
328 //===----------------------------------------------------------------------===//
329 // X86 TTI query.
330 //===----------------------------------------------------------------------===//
331 
332 TargetTransformInfo
333 X86TargetMachine::getTargetTransformInfo(const Function &F) {
334   return TargetTransformInfo(X86TTIImpl(this, F));
335 }
336 
337 //===----------------------------------------------------------------------===//
338 // Pass Pipeline Configuration
339 //===----------------------------------------------------------------------===//
340 
341 namespace {
342 
343 /// X86 Code Generator Pass Configuration Options.
344 class X86PassConfig : public TargetPassConfig {
345 public:
346   X86PassConfig(X86TargetMachine &TM, PassManagerBase &PM)
347     : TargetPassConfig(TM, PM) {}
348 
349   X86TargetMachine &getX86TargetMachine() const {
350     return getTM<X86TargetMachine>();
351   }
352 
353   ScheduleDAGInstrs *
354   createMachineScheduler(MachineSchedContext *C) const override {
355     ScheduleDAGMILive *DAG = createGenericSchedLive(C);
356     DAG->addMutation(createX86MacroFusionDAGMutation());
357     return DAG;
358   }
359 
360   ScheduleDAGInstrs *
361   createPostMachineScheduler(MachineSchedContext *C) const override {
362     ScheduleDAGMI *DAG = createGenericSchedPostRA(C);
363     DAG->addMutation(createX86MacroFusionDAGMutation());
364     return DAG;
365   }
366 
367   void addIRPasses() override;
368   bool addInstSelector() override;
369   bool addIRTranslator() override;
370   bool addLegalizeMachineIR() override;
371   bool addRegBankSelect() override;
372   bool addGlobalInstructionSelect() override;
373   bool addILPOpts() override;
374   bool addPreISel() override;
375   void addMachineSSAOptimization() override;
376   void addPreRegAlloc() override;
377   void addPostRegAlloc() override;
378   void addPreEmitPass() override;
379   void addPreEmitPass2() override;
380   void addPreSched2() override;
381 
382   std::unique_ptr<CSEConfigBase> getCSEConfig() const override;
383 };
384 
385 class X86ExecutionDomainFix : public ExecutionDomainFix {
386 public:
387   static char ID;
388   X86ExecutionDomainFix() : ExecutionDomainFix(ID, X86::VR128XRegClass) {}
389   StringRef getPassName() const override {
390     return "X86 Execution Dependency Fix";
391   }
392 };
393 char X86ExecutionDomainFix::ID;
394 
395 } // end anonymous namespace
396 
397 INITIALIZE_PASS_BEGIN(X86ExecutionDomainFix, "x86-execution-domain-fix",
398   "X86 Execution Domain Fix", false, false)
399 INITIALIZE_PASS_DEPENDENCY(ReachingDefAnalysis)
400 INITIALIZE_PASS_END(X86ExecutionDomainFix, "x86-execution-domain-fix",
401   "X86 Execution Domain Fix", false, false)
402 
403 TargetPassConfig *X86TargetMachine::createPassConfig(PassManagerBase &PM) {
404   return new X86PassConfig(*this, PM);
405 }
406 
407 void X86PassConfig::addIRPasses() {
408   addPass(createAtomicExpandPass());
409 
410   TargetPassConfig::addIRPasses();
411 
412   if (TM->getOptLevel() != CodeGenOpt::None)
413     addPass(createInterleavedAccessPass());
414 
415   // Add passes that handle indirect branch removal and insertion of a retpoline
416   // thunk. These will be a no-op unless a function subtarget has the retpoline
417   // feature enabled.
418   addPass(createIndirectBrExpandPass());
419 
420   // Add Control Flow Guard checks.
421   const Triple &TT = TM->getTargetTriple();
422   if (TT.isOSWindows()) {
423     if (TT.getArch() == Triple::x86_64) {
424       addPass(createCFGuardDispatchPass());
425     } else {
426       addPass(createCFGuardCheckPass());
427     }
428   }
429 }
430 
431 bool X86PassConfig::addInstSelector() {
432   // Install an instruction selector.
433   addPass(createX86ISelDag(getX86TargetMachine(), getOptLevel()));
434 
435   // For ELF, cleanup any local-dynamic TLS accesses.
436   if (TM->getTargetTriple().isOSBinFormatELF() &&
437       getOptLevel() != CodeGenOpt::None)
438     addPass(createCleanupLocalDynamicTLSPass());
439 
440   addPass(createX86GlobalBaseRegPass());
441   return false;
442 }
443 
444 bool X86PassConfig::addIRTranslator() {
445   addPass(new IRTranslator());
446   return false;
447 }
448 
449 bool X86PassConfig::addLegalizeMachineIR() {
450   addPass(new Legalizer());
451   return false;
452 }
453 
454 bool X86PassConfig::addRegBankSelect() {
455   addPass(new RegBankSelect());
456   return false;
457 }
458 
459 bool X86PassConfig::addGlobalInstructionSelect() {
460   addPass(new InstructionSelect());
461   return false;
462 }
463 
464 bool X86PassConfig::addILPOpts() {
465   if (EnableCondBrFoldingPass)
466     addPass(createX86CondBrFolding());
467   addPass(&EarlyIfConverterID);
468   if (EnableMachineCombinerPass)
469     addPass(&MachineCombinerID);
470   addPass(createX86CmovConverterPass());
471   return true;
472 }
473 
474 bool X86PassConfig::addPreISel() {
475   // Only add this pass for 32-bit x86 Windows.
476   const Triple &TT = TM->getTargetTriple();
477   if (TT.isOSWindows() && TT.getArch() == Triple::x86)
478     addPass(createX86WinEHStatePass());
479   return true;
480 }
481 
482 void X86PassConfig::addPreRegAlloc() {
483   if (getOptLevel() != CodeGenOpt::None) {
484     addPass(&LiveRangeShrinkID);
485     addPass(createX86FixupSetCC());
486     addPass(createX86OptimizeLEAs());
487     addPass(createX86CallFrameOptimization());
488     addPass(createX86AvoidStoreForwardingBlocks());
489   }
490 
491   addPass(createX86SpeculativeLoadHardeningPass());
492   addPass(createX86FlagsCopyLoweringPass());
493   addPass(createX86WinAllocaExpander());
494 }
495 void X86PassConfig::addMachineSSAOptimization() {
496   addPass(createX86DomainReassignmentPass());
497   TargetPassConfig::addMachineSSAOptimization();
498 }
499 
500 void X86PassConfig::addPostRegAlloc() {
501   addPass(createX86FloatingPointStackifierPass());
502 }
503 
504 void X86PassConfig::addPreSched2() { addPass(createX86ExpandPseudoPass()); }
505 
506 void X86PassConfig::addPreEmitPass() {
507   if (getOptLevel() != CodeGenOpt::None) {
508     addPass(new X86ExecutionDomainFix());
509     addPass(createBreakFalseDeps());
510   }
511 
512   addPass(createX86IndirectBranchTrackingPass());
513 
514   if (UseVZeroUpper)
515     addPass(createX86IssueVZeroUpperPass());
516 
517   if (getOptLevel() != CodeGenOpt::None) {
518     addPass(createX86FixupBWInsts());
519     addPass(createX86PadShortFunctions());
520     addPass(createX86FixupLEAs());
521     addPass(createX86EvexToVexInsts());
522   }
523   addPass(createX86DiscriminateMemOpsPass());
524   addPass(createX86InsertPrefetchPass());
525   addPass(createX86InsertX87waitPass());
526 }
527 
528 void X86PassConfig::addPreEmitPass2() {
529   const Triple &TT = TM->getTargetTriple();
530   const MCAsmInfo *MAI = TM->getMCAsmInfo();
531 
532   addPass(createX86RetpolineThunksPass());
533 
534   // Insert extra int3 instructions after trailing call instructions to avoid
535   // issues in the unwinder.
536   if (TT.isOSWindows() && TT.getArch() == Triple::x86_64)
537     addPass(createX86AvoidTrailingCallPass());
538 
539   // Verify basic block incoming and outgoing cfa offset and register values and
540   // correct CFA calculation rule where needed by inserting appropriate CFI
541   // instructions.
542   if (!TT.isOSDarwin() &&
543       (!TT.isOSWindows() ||
544        MAI->getExceptionHandlingType() == ExceptionHandling::DwarfCFI))
545     addPass(createCFIInstrInserter());
546   // Identify valid longjmp targets for Windows Control Flow Guard.
547   if (TT.isOSWindows())
548     addPass(createCFGuardLongjmpPass());
549 }
550 
551 std::unique_ptr<CSEConfigBase> X86PassConfig::getCSEConfig() const {
552   return getStandardCSEConfigForOpt(TM->getOptLevel());
553 }
554