1 //===-- X86TargetMachine.cpp - Define TargetMachine for the X86 -----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines the X86 specific subclass of TargetMachine. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "X86TargetMachine.h" 14 #include "MCTargetDesc/X86MCTargetDesc.h" 15 #include "TargetInfo/X86TargetInfo.h" 16 #include "X86.h" 17 #include "X86CallLowering.h" 18 #include "X86LegalizerInfo.h" 19 #include "X86MacroFusion.h" 20 #include "X86Subtarget.h" 21 #include "X86TargetObjectFile.h" 22 #include "X86TargetTransformInfo.h" 23 #include "llvm/ADT/Optional.h" 24 #include "llvm/ADT/STLExtras.h" 25 #include "llvm/ADT/SmallString.h" 26 #include "llvm/ADT/StringRef.h" 27 #include "llvm/ADT/Triple.h" 28 #include "llvm/Analysis/TargetTransformInfo.h" 29 #include "llvm/CodeGen/ExecutionDomainFix.h" 30 #include "llvm/CodeGen/GlobalISel/CallLowering.h" 31 #include "llvm/CodeGen/GlobalISel/IRTranslator.h" 32 #include "llvm/CodeGen/GlobalISel/InstructionSelect.h" 33 #include "llvm/CodeGen/GlobalISel/Legalizer.h" 34 #include "llvm/CodeGen/GlobalISel/RegBankSelect.h" 35 #include "llvm/CodeGen/MachineScheduler.h" 36 #include "llvm/CodeGen/Passes.h" 37 #include "llvm/CodeGen/TargetPassConfig.h" 38 #include "llvm/IR/Attributes.h" 39 #include "llvm/IR/DataLayout.h" 40 #include "llvm/IR/Function.h" 41 #include "llvm/MC/MCAsmInfo.h" 42 #include "llvm/Pass.h" 43 #include "llvm/Support/CodeGen.h" 44 #include "llvm/Support/CommandLine.h" 45 #include "llvm/Support/ErrorHandling.h" 46 #include "llvm/Support/TargetRegistry.h" 47 #include "llvm/Target/TargetLoweringObjectFile.h" 48 #include "llvm/Target/TargetOptions.h" 49 #include "llvm/Transforms/CFGuard.h" 50 #include <memory> 51 #include <string> 52 53 using namespace llvm; 54 55 static cl::opt<bool> EnableMachineCombinerPass("x86-machine-combiner", 56 cl::desc("Enable the machine combiner pass"), 57 cl::init(true), cl::Hidden); 58 59 static cl::opt<bool> EnableCondBrFoldingPass("x86-condbr-folding", 60 cl::desc("Enable the conditional branch " 61 "folding pass"), 62 cl::init(false), cl::Hidden); 63 64 extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeX86Target() { 65 // Register the target. 66 RegisterTargetMachine<X86TargetMachine> X(getTheX86_32Target()); 67 RegisterTargetMachine<X86TargetMachine> Y(getTheX86_64Target()); 68 69 PassRegistry &PR = *PassRegistry::getPassRegistry(); 70 initializeGlobalISel(PR); 71 initializeWinEHStatePassPass(PR); 72 initializeFixupBWInstPassPass(PR); 73 initializeEvexToVexInstPassPass(PR); 74 initializeFixupLEAPassPass(PR); 75 initializeFPSPass(PR); 76 initializeX86CallFrameOptimizationPass(PR); 77 initializeX86CmovConverterPassPass(PR); 78 initializeX86ExpandPseudoPass(PR); 79 initializeX86ExecutionDomainFixPass(PR); 80 initializeX86DomainReassignmentPass(PR); 81 initializeX86AvoidSFBPassPass(PR); 82 initializeX86AvoidTrailingCallPassPass(PR); 83 initializeX86SpeculativeLoadHardeningPassPass(PR); 84 initializeX86FlagsCopyLoweringPassPass(PR); 85 initializeX86CondBrFoldingPassPass(PR); 86 initializeX86LoadValueInjectionRetHardeningPassPass(PR); 87 initializeX86OptimizeLEAPassPass(PR); 88 initializeX86PartialReductionPass(PR); 89 } 90 91 static std::unique_ptr<TargetLoweringObjectFile> createTLOF(const Triple &TT) { 92 if (TT.isOSBinFormatMachO()) { 93 if (TT.getArch() == Triple::x86_64) 94 return std::make_unique<X86_64MachoTargetObjectFile>(); 95 return std::make_unique<TargetLoweringObjectFileMachO>(); 96 } 97 98 if (TT.isOSBinFormatCOFF()) 99 return std::make_unique<TargetLoweringObjectFileCOFF>(); 100 return std::make_unique<X86ELFTargetObjectFile>(); 101 } 102 103 static std::string computeDataLayout(const Triple &TT) { 104 // X86 is little endian 105 std::string Ret = "e"; 106 107 Ret += DataLayout::getManglingComponent(TT); 108 // X86 and x32 have 32 bit pointers. 109 if ((TT.isArch64Bit() && 110 (TT.getEnvironment() == Triple::GNUX32 || TT.isOSNaCl())) || 111 !TT.isArch64Bit()) 112 Ret += "-p:32:32"; 113 114 // Address spaces for 32 bit signed, 32 bit unsigned, and 64 bit pointers. 115 Ret += "-p270:32:32-p271:32:32-p272:64:64"; 116 117 // Some ABIs align 64 bit integers and doubles to 64 bits, others to 32. 118 if (TT.isArch64Bit() || TT.isOSWindows() || TT.isOSNaCl()) 119 Ret += "-i64:64"; 120 else if (TT.isOSIAMCU()) 121 Ret += "-i64:32-f64:32"; 122 else 123 Ret += "-f64:32:64"; 124 125 // Some ABIs align long double to 128 bits, others to 32. 126 if (TT.isOSNaCl() || TT.isOSIAMCU()) 127 ; // No f80 128 else if (TT.isArch64Bit() || TT.isOSDarwin()) 129 Ret += "-f80:128"; 130 else 131 Ret += "-f80:32"; 132 133 if (TT.isOSIAMCU()) 134 Ret += "-f128:32"; 135 136 // The registers can hold 8, 16, 32 or, in x86-64, 64 bits. 137 if (TT.isArch64Bit()) 138 Ret += "-n8:16:32:64"; 139 else 140 Ret += "-n8:16:32"; 141 142 // The stack is aligned to 32 bits on some ABIs and 128 bits on others. 143 if ((!TT.isArch64Bit() && TT.isOSWindows()) || TT.isOSIAMCU()) 144 Ret += "-a:0:32-S32"; 145 else 146 Ret += "-S128"; 147 148 return Ret; 149 } 150 151 static Reloc::Model getEffectiveRelocModel(const Triple &TT, 152 bool JIT, 153 Optional<Reloc::Model> RM) { 154 bool is64Bit = TT.getArch() == Triple::x86_64; 155 if (!RM.hasValue()) { 156 // JIT codegen should use static relocations by default, since it's 157 // typically executed in process and not relocatable. 158 if (JIT) 159 return Reloc::Static; 160 161 // Darwin defaults to PIC in 64 bit mode and dynamic-no-pic in 32 bit mode. 162 // Win64 requires rip-rel addressing, thus we force it to PIC. Otherwise we 163 // use static relocation model by default. 164 if (TT.isOSDarwin()) { 165 if (is64Bit) 166 return Reloc::PIC_; 167 return Reloc::DynamicNoPIC; 168 } 169 if (TT.isOSWindows() && is64Bit) 170 return Reloc::PIC_; 171 return Reloc::Static; 172 } 173 174 // ELF and X86-64 don't have a distinct DynamicNoPIC model. DynamicNoPIC 175 // is defined as a model for code which may be used in static or dynamic 176 // executables but not necessarily a shared library. On X86-32 we just 177 // compile in -static mode, in x86-64 we use PIC. 178 if (*RM == Reloc::DynamicNoPIC) { 179 if (is64Bit) 180 return Reloc::PIC_; 181 if (!TT.isOSDarwin()) 182 return Reloc::Static; 183 } 184 185 // If we are on Darwin, disallow static relocation model in X86-64 mode, since 186 // the Mach-O file format doesn't support it. 187 if (*RM == Reloc::Static && TT.isOSDarwin() && is64Bit) 188 return Reloc::PIC_; 189 190 return *RM; 191 } 192 193 static CodeModel::Model getEffectiveX86CodeModel(Optional<CodeModel::Model> CM, 194 bool JIT, bool Is64Bit) { 195 if (CM) { 196 if (*CM == CodeModel::Tiny) 197 report_fatal_error("Target does not support the tiny CodeModel", false); 198 return *CM; 199 } 200 if (JIT) 201 return Is64Bit ? CodeModel::Large : CodeModel::Small; 202 return CodeModel::Small; 203 } 204 205 /// Create an X86 target. 206 /// 207 X86TargetMachine::X86TargetMachine(const Target &T, const Triple &TT, 208 StringRef CPU, StringRef FS, 209 const TargetOptions &Options, 210 Optional<Reloc::Model> RM, 211 Optional<CodeModel::Model> CM, 212 CodeGenOpt::Level OL, bool JIT) 213 : LLVMTargetMachine( 214 T, computeDataLayout(TT), TT, CPU, FS, Options, 215 getEffectiveRelocModel(TT, JIT, RM), 216 getEffectiveX86CodeModel(CM, JIT, TT.getArch() == Triple::x86_64), 217 OL), 218 TLOF(createTLOF(getTargetTriple())), IsJIT(JIT) { 219 // On PS4, the "return address" of a 'noreturn' call must still be within 220 // the calling function, and TrapUnreachable is an easy way to get that. 221 if (TT.isPS4() || TT.isOSBinFormatMachO()) { 222 this->Options.TrapUnreachable = true; 223 this->Options.NoTrapAfterNoreturn = TT.isOSBinFormatMachO(); 224 } 225 226 setMachineOutliner(true); 227 228 // x86 supports the debug entry values. 229 setSupportsDebugEntryValues(true); 230 231 initAsmInfo(); 232 } 233 234 X86TargetMachine::~X86TargetMachine() = default; 235 236 const X86Subtarget * 237 X86TargetMachine::getSubtargetImpl(const Function &F) const { 238 Attribute CPUAttr = F.getFnAttribute("target-cpu"); 239 Attribute FSAttr = F.getFnAttribute("target-features"); 240 241 StringRef CPU = !CPUAttr.hasAttribute(Attribute::None) 242 ? CPUAttr.getValueAsString() 243 : (StringRef)TargetCPU; 244 StringRef FS = !FSAttr.hasAttribute(Attribute::None) 245 ? FSAttr.getValueAsString() 246 : (StringRef)TargetFS; 247 248 SmallString<512> Key; 249 Key.reserve(CPU.size() + FS.size()); 250 Key += CPU; 251 Key += FS; 252 253 // FIXME: This is related to the code below to reset the target options, 254 // we need to know whether or not the soft float flag is set on the 255 // function before we can generate a subtarget. We also need to use 256 // it as a key for the subtarget since that can be the only difference 257 // between two functions. 258 bool SoftFloat = 259 F.getFnAttribute("use-soft-float").getValueAsString() == "true"; 260 // If the soft float attribute is set on the function turn on the soft float 261 // subtarget feature. 262 if (SoftFloat) 263 Key += FS.empty() ? "+soft-float" : ",+soft-float"; 264 265 // Keep track of the key width after all features are added so we can extract 266 // the feature string out later. 267 unsigned CPUFSWidth = Key.size(); 268 269 // Extract prefer-vector-width attribute. 270 unsigned PreferVectorWidthOverride = 0; 271 if (F.hasFnAttribute("prefer-vector-width")) { 272 StringRef Val = F.getFnAttribute("prefer-vector-width").getValueAsString(); 273 unsigned Width; 274 if (!Val.getAsInteger(0, Width)) { 275 Key += ",prefer-vector-width="; 276 Key += Val; 277 PreferVectorWidthOverride = Width; 278 } 279 } 280 281 // Extract min-legal-vector-width attribute. 282 unsigned RequiredVectorWidth = UINT32_MAX; 283 if (F.hasFnAttribute("min-legal-vector-width")) { 284 StringRef Val = 285 F.getFnAttribute("min-legal-vector-width").getValueAsString(); 286 unsigned Width; 287 if (!Val.getAsInteger(0, Width)) { 288 Key += ",min-legal-vector-width="; 289 Key += Val; 290 RequiredVectorWidth = Width; 291 } 292 } 293 294 // Extracted here so that we make sure there is backing for the StringRef. If 295 // we assigned earlier, its possible the SmallString reallocated leaving a 296 // dangling StringRef. 297 FS = Key.slice(CPU.size(), CPUFSWidth); 298 299 auto &I = SubtargetMap[Key]; 300 if (!I) { 301 // This needs to be done before we create a new subtarget since any 302 // creation will depend on the TM and the code generation flags on the 303 // function that reside in TargetOptions. 304 resetTargetOptions(F); 305 I = std::make_unique<X86Subtarget>( 306 TargetTriple, CPU, FS, *this, 307 MaybeAlign(Options.StackAlignmentOverride), PreferVectorWidthOverride, 308 RequiredVectorWidth); 309 } 310 return I.get(); 311 } 312 313 //===----------------------------------------------------------------------===// 314 // Command line options for x86 315 //===----------------------------------------------------------------------===// 316 static cl::opt<bool> 317 UseVZeroUpper("x86-use-vzeroupper", cl::Hidden, 318 cl::desc("Minimize AVX to SSE transition penalty"), 319 cl::init(true)); 320 321 //===----------------------------------------------------------------------===// 322 // X86 TTI query. 323 //===----------------------------------------------------------------------===// 324 325 TargetTransformInfo 326 X86TargetMachine::getTargetTransformInfo(const Function &F) { 327 return TargetTransformInfo(X86TTIImpl(this, F)); 328 } 329 330 //===----------------------------------------------------------------------===// 331 // Pass Pipeline Configuration 332 //===----------------------------------------------------------------------===// 333 334 namespace { 335 336 /// X86 Code Generator Pass Configuration Options. 337 class X86PassConfig : public TargetPassConfig { 338 public: 339 X86PassConfig(X86TargetMachine &TM, PassManagerBase &PM) 340 : TargetPassConfig(TM, PM) {} 341 342 X86TargetMachine &getX86TargetMachine() const { 343 return getTM<X86TargetMachine>(); 344 } 345 346 ScheduleDAGInstrs * 347 createMachineScheduler(MachineSchedContext *C) const override { 348 ScheduleDAGMILive *DAG = createGenericSchedLive(C); 349 DAG->addMutation(createX86MacroFusionDAGMutation()); 350 return DAG; 351 } 352 353 ScheduleDAGInstrs * 354 createPostMachineScheduler(MachineSchedContext *C) const override { 355 ScheduleDAGMI *DAG = createGenericSchedPostRA(C); 356 DAG->addMutation(createX86MacroFusionDAGMutation()); 357 return DAG; 358 } 359 360 void addIRPasses() override; 361 bool addInstSelector() override; 362 bool addIRTranslator() override; 363 bool addLegalizeMachineIR() override; 364 bool addRegBankSelect() override; 365 bool addGlobalInstructionSelect() override; 366 bool addILPOpts() override; 367 bool addPreISel() override; 368 void addMachineSSAOptimization() override; 369 void addPreRegAlloc() override; 370 void addPostRegAlloc() override; 371 void addPreEmitPass() override; 372 void addPreEmitPass2() override; 373 void addPreSched2() override; 374 375 std::unique_ptr<CSEConfigBase> getCSEConfig() const override; 376 }; 377 378 class X86ExecutionDomainFix : public ExecutionDomainFix { 379 public: 380 static char ID; 381 X86ExecutionDomainFix() : ExecutionDomainFix(ID, X86::VR128XRegClass) {} 382 StringRef getPassName() const override { 383 return "X86 Execution Dependency Fix"; 384 } 385 }; 386 char X86ExecutionDomainFix::ID; 387 388 } // end anonymous namespace 389 390 INITIALIZE_PASS_BEGIN(X86ExecutionDomainFix, "x86-execution-domain-fix", 391 "X86 Execution Domain Fix", false, false) 392 INITIALIZE_PASS_DEPENDENCY(ReachingDefAnalysis) 393 INITIALIZE_PASS_END(X86ExecutionDomainFix, "x86-execution-domain-fix", 394 "X86 Execution Domain Fix", false, false) 395 396 TargetPassConfig *X86TargetMachine::createPassConfig(PassManagerBase &PM) { 397 return new X86PassConfig(*this, PM); 398 } 399 400 void X86PassConfig::addIRPasses() { 401 addPass(createAtomicExpandPass()); 402 403 TargetPassConfig::addIRPasses(); 404 405 if (TM->getOptLevel() != CodeGenOpt::None) { 406 addPass(createInterleavedAccessPass()); 407 addPass(createX86PartialReductionPass()); 408 } 409 410 // Add passes that handle indirect branch removal and insertion of a retpoline 411 // thunk. These will be a no-op unless a function subtarget has the retpoline 412 // feature enabled. 413 addPass(createIndirectBrExpandPass()); 414 415 // Add Control Flow Guard checks. 416 const Triple &TT = TM->getTargetTriple(); 417 if (TT.isOSWindows()) { 418 if (TT.getArch() == Triple::x86_64) { 419 addPass(createCFGuardDispatchPass()); 420 } else { 421 addPass(createCFGuardCheckPass()); 422 } 423 } 424 } 425 426 bool X86PassConfig::addInstSelector() { 427 // Install an instruction selector. 428 addPass(createX86ISelDag(getX86TargetMachine(), getOptLevel())); 429 430 // For ELF, cleanup any local-dynamic TLS accesses. 431 if (TM->getTargetTriple().isOSBinFormatELF() && 432 getOptLevel() != CodeGenOpt::None) 433 addPass(createCleanupLocalDynamicTLSPass()); 434 435 addPass(createX86GlobalBaseRegPass()); 436 return false; 437 } 438 439 bool X86PassConfig::addIRTranslator() { 440 addPass(new IRTranslator()); 441 return false; 442 } 443 444 bool X86PassConfig::addLegalizeMachineIR() { 445 addPass(new Legalizer()); 446 return false; 447 } 448 449 bool X86PassConfig::addRegBankSelect() { 450 addPass(new RegBankSelect()); 451 return false; 452 } 453 454 bool X86PassConfig::addGlobalInstructionSelect() { 455 addPass(new InstructionSelect()); 456 return false; 457 } 458 459 bool X86PassConfig::addILPOpts() { 460 if (EnableCondBrFoldingPass) 461 addPass(createX86CondBrFolding()); 462 addPass(&EarlyIfConverterID); 463 if (EnableMachineCombinerPass) 464 addPass(&MachineCombinerID); 465 addPass(createX86CmovConverterPass()); 466 return true; 467 } 468 469 bool X86PassConfig::addPreISel() { 470 // Only add this pass for 32-bit x86 Windows. 471 const Triple &TT = TM->getTargetTriple(); 472 if (TT.isOSWindows() && TT.getArch() == Triple::x86) 473 addPass(createX86WinEHStatePass()); 474 return true; 475 } 476 477 void X86PassConfig::addPreRegAlloc() { 478 if (getOptLevel() != CodeGenOpt::None) { 479 addPass(&LiveRangeShrinkID); 480 addPass(createX86FixupSetCC()); 481 addPass(createX86OptimizeLEAs()); 482 addPass(createX86CallFrameOptimization()); 483 addPass(createX86AvoidStoreForwardingBlocks()); 484 } 485 486 addPass(createX86SpeculativeLoadHardeningPass()); 487 addPass(createX86FlagsCopyLoweringPass()); 488 addPass(createX86WinAllocaExpander()); 489 } 490 void X86PassConfig::addMachineSSAOptimization() { 491 addPass(createX86DomainReassignmentPass()); 492 TargetPassConfig::addMachineSSAOptimization(); 493 } 494 495 void X86PassConfig::addPostRegAlloc() { 496 addPass(createX86FloatingPointStackifierPass()); 497 } 498 499 void X86PassConfig::addPreSched2() { addPass(createX86ExpandPseudoPass()); } 500 501 void X86PassConfig::addPreEmitPass() { 502 if (getOptLevel() != CodeGenOpt::None) { 503 addPass(new X86ExecutionDomainFix()); 504 addPass(createBreakFalseDeps()); 505 } 506 507 addPass(createX86IndirectBranchTrackingPass()); 508 509 if (UseVZeroUpper) 510 addPass(createX86IssueVZeroUpperPass()); 511 512 if (getOptLevel() != CodeGenOpt::None) { 513 addPass(createX86FixupBWInsts()); 514 addPass(createX86PadShortFunctions()); 515 addPass(createX86FixupLEAs()); 516 addPass(createX86EvexToVexInsts()); 517 } 518 addPass(createX86DiscriminateMemOpsPass()); 519 addPass(createX86InsertPrefetchPass()); 520 addPass(createX86InsertX87waitPass()); 521 } 522 523 void X86PassConfig::addPreEmitPass2() { 524 const Triple &TT = TM->getTargetTriple(); 525 const MCAsmInfo *MAI = TM->getMCAsmInfo(); 526 527 addPass(createX86IndirectThunksPass()); 528 529 // Insert extra int3 instructions after trailing call instructions to avoid 530 // issues in the unwinder. 531 if (TT.isOSWindows() && TT.getArch() == Triple::x86_64) 532 addPass(createX86AvoidTrailingCallPass()); 533 534 // Verify basic block incoming and outgoing cfa offset and register values and 535 // correct CFA calculation rule where needed by inserting appropriate CFI 536 // instructions. 537 if (!TT.isOSDarwin() && 538 (!TT.isOSWindows() || 539 MAI->getExceptionHandlingType() == ExceptionHandling::DwarfCFI)) 540 addPass(createCFIInstrInserter()); 541 // Identify valid longjmp targets for Windows Control Flow Guard. 542 if (TT.isOSWindows()) 543 addPass(createCFGuardLongjmpPass()); 544 addPass(createX86LoadValueInjectionRetHardeningPass()); 545 } 546 547 std::unique_ptr<CSEConfigBase> X86PassConfig::getCSEConfig() const { 548 return getStandardCSEConfigForOpt(TM->getOptLevel()); 549 } 550