1 //===-- X86TargetMachine.cpp - Define TargetMachine for the X86 -----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines the X86 specific subclass of TargetMachine. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "X86TargetMachine.h" 15 #include "X86.h" 16 #include "X86TargetObjectFile.h" 17 #include "X86TargetTransformInfo.h" 18 #include "llvm/CodeGen/Passes.h" 19 #include "llvm/CodeGen/TargetPassConfig.h" 20 #include "llvm/IR/Function.h" 21 #include "llvm/IR/LegacyPassManager.h" 22 #include "llvm/Support/CommandLine.h" 23 #include "llvm/Support/FormattedStream.h" 24 #include "llvm/Support/TargetRegistry.h" 25 #include "llvm/Target/TargetOptions.h" 26 using namespace llvm; 27 28 static cl::opt<bool> EnableMachineCombinerPass("x86-machine-combiner", 29 cl::desc("Enable the machine combiner pass"), 30 cl::init(true), cl::Hidden); 31 32 namespace llvm { 33 void initializeWinEHStatePassPass(PassRegistry &); 34 } 35 36 extern "C" void LLVMInitializeX86Target() { 37 // Register the target. 38 RegisterTargetMachine<X86TargetMachine> X(TheX86_32Target); 39 RegisterTargetMachine<X86TargetMachine> Y(TheX86_64Target); 40 41 PassRegistry &PR = *PassRegistry::getPassRegistry(); 42 initializeWinEHStatePassPass(PR); 43 initializeFixupBWInstPassPass(PR); 44 } 45 46 static std::unique_ptr<TargetLoweringObjectFile> createTLOF(const Triple &TT) { 47 if (TT.isOSBinFormatMachO()) { 48 if (TT.getArch() == Triple::x86_64) 49 return make_unique<X86_64MachoTargetObjectFile>(); 50 return make_unique<TargetLoweringObjectFileMachO>(); 51 } 52 53 if (TT.isOSLinux() || TT.isOSNaCl()) 54 return make_unique<X86LinuxNaClTargetObjectFile>(); 55 if (TT.isOSBinFormatELF()) 56 return make_unique<X86ELFTargetObjectFile>(); 57 if (TT.isKnownWindowsMSVCEnvironment() || TT.isWindowsCoreCLREnvironment()) 58 return make_unique<X86WindowsTargetObjectFile>(); 59 if (TT.isOSBinFormatCOFF()) 60 return make_unique<TargetLoweringObjectFileCOFF>(); 61 llvm_unreachable("unknown subtarget type"); 62 } 63 64 static std::string computeDataLayout(const Triple &TT) { 65 // X86 is little endian 66 std::string Ret = "e"; 67 68 Ret += DataLayout::getManglingComponent(TT); 69 // X86 and x32 have 32 bit pointers. 70 if ((TT.isArch64Bit() && 71 (TT.getEnvironment() == Triple::GNUX32 || TT.isOSNaCl())) || 72 !TT.isArch64Bit()) 73 Ret += "-p:32:32"; 74 75 // Some ABIs align 64 bit integers and doubles to 64 bits, others to 32. 76 if (TT.isArch64Bit() || TT.isOSWindows() || TT.isOSNaCl()) 77 Ret += "-i64:64"; 78 else if (TT.isOSIAMCU()) 79 Ret += "-i64:32-f64:32"; 80 else 81 Ret += "-f64:32:64"; 82 83 // Some ABIs align long double to 128 bits, others to 32. 84 if (TT.isOSNaCl() || TT.isOSIAMCU()) 85 ; // No f80 86 else if (TT.isArch64Bit() || TT.isOSDarwin()) 87 Ret += "-f80:128"; 88 else 89 Ret += "-f80:32"; 90 91 if (TT.isOSIAMCU()) 92 Ret += "-f128:32"; 93 94 // The registers can hold 8, 16, 32 or, in x86-64, 64 bits. 95 if (TT.isArch64Bit()) 96 Ret += "-n8:16:32:64"; 97 else 98 Ret += "-n8:16:32"; 99 100 // The stack is aligned to 32 bits on some ABIs and 128 bits on others. 101 if ((!TT.isArch64Bit() && TT.isOSWindows()) || TT.isOSIAMCU()) 102 Ret += "-a:0:32-S32"; 103 else 104 Ret += "-S128"; 105 106 return Ret; 107 } 108 109 static Reloc::Model getEffectiveRelocModel(const Triple &TT, 110 Optional<Reloc::Model> RM) { 111 bool is64Bit = TT.getArch() == Triple::x86_64; 112 if (!RM.hasValue()) { 113 // Darwin defaults to PIC in 64 bit mode and dynamic-no-pic in 32 bit mode. 114 // Win64 requires rip-rel addressing, thus we force it to PIC. Otherwise we 115 // use static relocation model by default. 116 if (TT.isOSDarwin()) { 117 if (is64Bit) 118 return Reloc::PIC_; 119 return Reloc::DynamicNoPIC; 120 } 121 if (TT.isOSWindows() && is64Bit) 122 return Reloc::PIC_; 123 return Reloc::Static; 124 } 125 126 // ELF and X86-64 don't have a distinct DynamicNoPIC model. DynamicNoPIC 127 // is defined as a model for code which may be used in static or dynamic 128 // executables but not necessarily a shared library. On X86-32 we just 129 // compile in -static mode, in x86-64 we use PIC. 130 if (*RM == Reloc::DynamicNoPIC) { 131 if (is64Bit) 132 return Reloc::PIC_; 133 if (!TT.isOSDarwin()) 134 return Reloc::Static; 135 } 136 137 // If we are on Darwin, disallow static relocation model in X86-64 mode, since 138 // the Mach-O file format doesn't support it. 139 if (*RM == Reloc::Static && TT.isOSDarwin() && is64Bit) 140 return Reloc::PIC_; 141 142 return *RM; 143 } 144 145 /// Create an X86 target. 146 /// 147 X86TargetMachine::X86TargetMachine(const Target &T, const Triple &TT, 148 StringRef CPU, StringRef FS, 149 const TargetOptions &Options, 150 Optional<Reloc::Model> RM, 151 CodeModel::Model CM, CodeGenOpt::Level OL) 152 : LLVMTargetMachine(T, computeDataLayout(TT), TT, CPU, FS, Options, 153 getEffectiveRelocModel(TT, RM), CM, OL), 154 TLOF(createTLOF(getTargetTriple())), 155 Subtarget(TT, CPU, FS, *this, Options.StackAlignmentOverride) { 156 // Windows stack unwinder gets confused when execution flow "falls through" 157 // after a call to 'noreturn' function. 158 // To prevent that, we emit a trap for 'unreachable' IR instructions. 159 // (which on X86, happens to be the 'ud2' instruction) 160 // On PS4, the "return address" of a 'noreturn' call must still be within 161 // the calling function, and TrapUnreachable is an easy way to get that. 162 if (Subtarget.isTargetWin64() || Subtarget.isTargetPS4()) 163 this->Options.TrapUnreachable = true; 164 165 // By default (and when -ffast-math is on), enable estimate codegen for 166 // everything except scalar division. By default, use 1 refinement step for 167 // all operations. Defaults may be overridden by using command-line options. 168 // Scalar division estimates are disabled because they break too much 169 // real-world code. These defaults match GCC behavior. 170 this->Options.Reciprocals.setDefaults("sqrtf", true, 1); 171 this->Options.Reciprocals.setDefaults("divf", false, 1); 172 this->Options.Reciprocals.setDefaults("vec-sqrtf", true, 1); 173 this->Options.Reciprocals.setDefaults("vec-divf", true, 1); 174 175 initAsmInfo(); 176 } 177 178 X86TargetMachine::~X86TargetMachine() {} 179 180 const X86Subtarget * 181 X86TargetMachine::getSubtargetImpl(const Function &F) const { 182 Attribute CPUAttr = F.getFnAttribute("target-cpu"); 183 Attribute FSAttr = F.getFnAttribute("target-features"); 184 185 StringRef CPU = !CPUAttr.hasAttribute(Attribute::None) 186 ? CPUAttr.getValueAsString() 187 : (StringRef)TargetCPU; 188 StringRef FS = !FSAttr.hasAttribute(Attribute::None) 189 ? FSAttr.getValueAsString() 190 : (StringRef)TargetFS; 191 192 SmallString<512> Key; 193 Key.reserve(CPU.size() + FS.size()); 194 Key += CPU; 195 Key += FS; 196 197 // FIXME: This is related to the code below to reset the target options, 198 // we need to know whether or not the soft float flag is set on the 199 // function before we can generate a subtarget. We also need to use 200 // it as a key for the subtarget since that can be the only difference 201 // between two functions. 202 bool SoftFloat = 203 F.getFnAttribute("use-soft-float").getValueAsString() == "true"; 204 // If the soft float attribute is set on the function turn on the soft float 205 // subtarget feature. 206 if (SoftFloat) 207 Key += FS.empty() ? "+soft-float" : ",+soft-float"; 208 209 FS = Key.substr(CPU.size()); 210 211 auto &I = SubtargetMap[Key]; 212 if (!I) { 213 // This needs to be done before we create a new subtarget since any 214 // creation will depend on the TM and the code generation flags on the 215 // function that reside in TargetOptions. 216 resetTargetOptions(F); 217 I = llvm::make_unique<X86Subtarget>(TargetTriple, CPU, FS, *this, 218 Options.StackAlignmentOverride); 219 } 220 return I.get(); 221 } 222 223 //===----------------------------------------------------------------------===// 224 // Command line options for x86 225 //===----------------------------------------------------------------------===// 226 static cl::opt<bool> 227 UseVZeroUpper("x86-use-vzeroupper", cl::Hidden, 228 cl::desc("Minimize AVX to SSE transition penalty"), 229 cl::init(true)); 230 231 //===----------------------------------------------------------------------===// 232 // X86 TTI query. 233 //===----------------------------------------------------------------------===// 234 235 TargetIRAnalysis X86TargetMachine::getTargetIRAnalysis() { 236 return TargetIRAnalysis([this](const Function &F) { 237 return TargetTransformInfo(X86TTIImpl(this, F)); 238 }); 239 } 240 241 242 //===----------------------------------------------------------------------===// 243 // Pass Pipeline Configuration 244 //===----------------------------------------------------------------------===// 245 246 namespace { 247 /// X86 Code Generator Pass Configuration Options. 248 class X86PassConfig : public TargetPassConfig { 249 public: 250 X86PassConfig(X86TargetMachine *TM, PassManagerBase &PM) 251 : TargetPassConfig(TM, PM) {} 252 253 X86TargetMachine &getX86TargetMachine() const { 254 return getTM<X86TargetMachine>(); 255 } 256 257 void addIRPasses() override; 258 bool addInstSelector() override; 259 bool addILPOpts() override; 260 bool addPreISel() override; 261 void addPreRegAlloc() override; 262 void addPostRegAlloc() override; 263 void addPreEmitPass() override; 264 void addPreSched2() override; 265 }; 266 } // namespace 267 268 TargetPassConfig *X86TargetMachine::createPassConfig(PassManagerBase &PM) { 269 return new X86PassConfig(this, PM); 270 } 271 272 void X86PassConfig::addIRPasses() { 273 addPass(createAtomicExpandPass(&getX86TargetMachine())); 274 275 TargetPassConfig::addIRPasses(); 276 } 277 278 bool X86PassConfig::addInstSelector() { 279 // Install an instruction selector. 280 addPass(createX86ISelDag(getX86TargetMachine(), getOptLevel())); 281 282 // For ELF, cleanup any local-dynamic TLS accesses. 283 if (TM->getTargetTriple().isOSBinFormatELF() && 284 getOptLevel() != CodeGenOpt::None) 285 addPass(createCleanupLocalDynamicTLSPass()); 286 287 addPass(createX86GlobalBaseRegPass()); 288 return false; 289 } 290 291 bool X86PassConfig::addILPOpts() { 292 addPass(&EarlyIfConverterID); 293 if (EnableMachineCombinerPass) 294 addPass(&MachineCombinerID); 295 return true; 296 } 297 298 bool X86PassConfig::addPreISel() { 299 // Only add this pass for 32-bit x86 Windows. 300 const Triple &TT = TM->getTargetTriple(); 301 if (TT.isOSWindows() && TT.getArch() == Triple::x86) 302 addPass(createX86WinEHStatePass()); 303 return true; 304 } 305 306 void X86PassConfig::addPreRegAlloc() { 307 if (getOptLevel() != CodeGenOpt::None) { 308 addPass(createX86FixupSetCC()); 309 addPass(createX86OptimizeLEAs()); 310 addPass(createX86CallFrameOptimization()); 311 } 312 313 addPass(createX86WinAllocaExpander()); 314 } 315 316 void X86PassConfig::addPostRegAlloc() { 317 addPass(createX86FloatingPointStackifierPass()); 318 } 319 320 void X86PassConfig::addPreSched2() { addPass(createX86ExpandPseudoPass()); } 321 322 void X86PassConfig::addPreEmitPass() { 323 if (getOptLevel() != CodeGenOpt::None) 324 addPass(createExecutionDependencyFixPass(&X86::VR128XRegClass)); 325 326 if (UseVZeroUpper) 327 addPass(createX86IssueVZeroUpperPass()); 328 329 if (getOptLevel() != CodeGenOpt::None) { 330 addPass(createX86FixupBWInsts()); 331 addPass(createX86PadShortFunctions()); 332 addPass(createX86FixupLEAs()); 333 } 334 } 335