1 //===-- X86TargetMachine.cpp - Define TargetMachine for the X86 -----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines the X86 specific subclass of TargetMachine. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "X86TargetMachine.h" 15 #include "MCTargetDesc/X86MCTargetDesc.h" 16 #include "X86.h" 17 #include "X86CallLowering.h" 18 #include "X86LegalizerInfo.h" 19 #include "X86MacroFusion.h" 20 #include "X86Subtarget.h" 21 #include "X86TargetObjectFile.h" 22 #include "X86TargetTransformInfo.h" 23 #include "llvm/ADT/Optional.h" 24 #include "llvm/ADT/STLExtras.h" 25 #include "llvm/ADT/SmallString.h" 26 #include "llvm/ADT/StringRef.h" 27 #include "llvm/ADT/Triple.h" 28 #include "llvm/Analysis/TargetTransformInfo.h" 29 #include "llvm/CodeGen/ExecutionDomainFix.h" 30 #include "llvm/CodeGen/GlobalISel/CallLowering.h" 31 #include "llvm/CodeGen/GlobalISel/IRTranslator.h" 32 #include "llvm/CodeGen/GlobalISel/InstructionSelect.h" 33 #include "llvm/CodeGen/GlobalISel/Legalizer.h" 34 #include "llvm/CodeGen/GlobalISel/RegBankSelect.h" 35 #include "llvm/CodeGen/MachineScheduler.h" 36 #include "llvm/CodeGen/Passes.h" 37 #include "llvm/CodeGen/TargetPassConfig.h" 38 #include "llvm/IR/Attributes.h" 39 #include "llvm/IR/DataLayout.h" 40 #include "llvm/IR/Function.h" 41 #include "llvm/Pass.h" 42 #include "llvm/Support/CodeGen.h" 43 #include "llvm/Support/CommandLine.h" 44 #include "llvm/Support/ErrorHandling.h" 45 #include "llvm/Support/TargetRegistry.h" 46 #include "llvm/Target/TargetLoweringObjectFile.h" 47 #include "llvm/Target/TargetOptions.h" 48 #include <memory> 49 #include <string> 50 51 using namespace llvm; 52 53 static cl::opt<bool> EnableMachineCombinerPass("x86-machine-combiner", 54 cl::desc("Enable the machine combiner pass"), 55 cl::init(true), cl::Hidden); 56 57 namespace llvm { 58 59 void initializeWinEHStatePassPass(PassRegistry &); 60 void initializeFixupLEAPassPass(PassRegistry &); 61 void initializeShadowCallStackPass(PassRegistry &); 62 void initializeX86CallFrameOptimizationPass(PassRegistry &); 63 void initializeX86CmovConverterPassPass(PassRegistry &); 64 void initializeX86ExecutionDomainFixPass(PassRegistry &); 65 void initializeX86DomainReassignmentPass(PassRegistry &); 66 void initializeX86AvoidSFBPassPass(PassRegistry &); 67 void initializeX86SpeculativeLoadHardeningPassPass(PassRegistry &); 68 void initializeX86FlagsCopyLoweringPassPass(PassRegistry &); 69 70 } // end namespace llvm 71 72 extern "C" void LLVMInitializeX86Target() { 73 // Register the target. 74 RegisterTargetMachine<X86TargetMachine> X(getTheX86_32Target()); 75 RegisterTargetMachine<X86TargetMachine> Y(getTheX86_64Target()); 76 77 PassRegistry &PR = *PassRegistry::getPassRegistry(); 78 initializeGlobalISel(PR); 79 initializeWinEHStatePassPass(PR); 80 initializeFixupBWInstPassPass(PR); 81 initializeEvexToVexInstPassPass(PR); 82 initializeFixupLEAPassPass(PR); 83 initializeShadowCallStackPass(PR); 84 initializeX86CallFrameOptimizationPass(PR); 85 initializeX86CmovConverterPassPass(PR); 86 initializeX86ExecutionDomainFixPass(PR); 87 initializeX86DomainReassignmentPass(PR); 88 initializeX86AvoidSFBPassPass(PR); 89 initializeX86SpeculativeLoadHardeningPassPass(PR); 90 initializeX86FlagsCopyLoweringPassPass(PR); 91 } 92 93 static std::unique_ptr<TargetLoweringObjectFile> createTLOF(const Triple &TT) { 94 if (TT.isOSBinFormatMachO()) { 95 if (TT.getArch() == Triple::x86_64) 96 return llvm::make_unique<X86_64MachoTargetObjectFile>(); 97 return llvm::make_unique<TargetLoweringObjectFileMachO>(); 98 } 99 100 if (TT.isOSFreeBSD()) 101 return llvm::make_unique<X86FreeBSDTargetObjectFile>(); 102 if (TT.isOSLinux() || TT.isOSNaCl() || TT.isOSIAMCU()) 103 return llvm::make_unique<X86LinuxNaClTargetObjectFile>(); 104 if (TT.isOSSolaris()) 105 return llvm::make_unique<X86SolarisTargetObjectFile>(); 106 if (TT.isOSFuchsia()) 107 return llvm::make_unique<X86FuchsiaTargetObjectFile>(); 108 if (TT.isOSBinFormatELF()) 109 return llvm::make_unique<X86ELFTargetObjectFile>(); 110 if (TT.isOSBinFormatCOFF()) 111 return llvm::make_unique<TargetLoweringObjectFileCOFF>(); 112 llvm_unreachable("unknown subtarget type"); 113 } 114 115 static std::string computeDataLayout(const Triple &TT) { 116 // X86 is little endian 117 std::string Ret = "e"; 118 119 Ret += DataLayout::getManglingComponent(TT); 120 // X86 and x32 have 32 bit pointers. 121 if ((TT.isArch64Bit() && 122 (TT.getEnvironment() == Triple::GNUX32 || TT.isOSNaCl())) || 123 !TT.isArch64Bit()) 124 Ret += "-p:32:32"; 125 126 // Some ABIs align 64 bit integers and doubles to 64 bits, others to 32. 127 if (TT.isArch64Bit() || TT.isOSWindows() || TT.isOSNaCl()) 128 Ret += "-i64:64"; 129 else if (TT.isOSIAMCU()) 130 Ret += "-i64:32-f64:32"; 131 else 132 Ret += "-f64:32:64"; 133 134 // Some ABIs align long double to 128 bits, others to 32. 135 if (TT.isOSNaCl() || TT.isOSIAMCU()) 136 ; // No f80 137 else if (TT.isArch64Bit() || TT.isOSDarwin()) 138 Ret += "-f80:128"; 139 else 140 Ret += "-f80:32"; 141 142 if (TT.isOSIAMCU()) 143 Ret += "-f128:32"; 144 145 // The registers can hold 8, 16, 32 or, in x86-64, 64 bits. 146 if (TT.isArch64Bit()) 147 Ret += "-n8:16:32:64"; 148 else 149 Ret += "-n8:16:32"; 150 151 // The stack is aligned to 32 bits on some ABIs and 128 bits on others. 152 if ((!TT.isArch64Bit() && TT.isOSWindows()) || TT.isOSIAMCU()) 153 Ret += "-a:0:32-S32"; 154 else 155 Ret += "-S128"; 156 157 return Ret; 158 } 159 160 static Reloc::Model getEffectiveRelocModel(const Triple &TT, 161 bool JIT, 162 Optional<Reloc::Model> RM) { 163 bool is64Bit = TT.getArch() == Triple::x86_64; 164 if (!RM.hasValue()) { 165 // JIT codegen should use static relocations by default, since it's 166 // typically executed in process and not relocatable. 167 if (JIT) 168 return Reloc::Static; 169 170 // Darwin defaults to PIC in 64 bit mode and dynamic-no-pic in 32 bit mode. 171 // Win64 requires rip-rel addressing, thus we force it to PIC. Otherwise we 172 // use static relocation model by default. 173 if (TT.isOSDarwin()) { 174 if (is64Bit) 175 return Reloc::PIC_; 176 return Reloc::DynamicNoPIC; 177 } 178 if (TT.isOSWindows() && is64Bit) 179 return Reloc::PIC_; 180 return Reloc::Static; 181 } 182 183 // ELF and X86-64 don't have a distinct DynamicNoPIC model. DynamicNoPIC 184 // is defined as a model for code which may be used in static or dynamic 185 // executables but not necessarily a shared library. On X86-32 we just 186 // compile in -static mode, in x86-64 we use PIC. 187 if (*RM == Reloc::DynamicNoPIC) { 188 if (is64Bit) 189 return Reloc::PIC_; 190 if (!TT.isOSDarwin()) 191 return Reloc::Static; 192 } 193 194 // If we are on Darwin, disallow static relocation model in X86-64 mode, since 195 // the Mach-O file format doesn't support it. 196 if (*RM == Reloc::Static && TT.isOSDarwin() && is64Bit) 197 return Reloc::PIC_; 198 199 return *RM; 200 } 201 202 static CodeModel::Model getEffectiveCodeModel(Optional<CodeModel::Model> CM, 203 bool JIT, bool Is64Bit) { 204 if (CM) 205 return *CM; 206 if (JIT) 207 return Is64Bit ? CodeModel::Large : CodeModel::Small; 208 return CodeModel::Small; 209 } 210 211 /// Create an X86 target. 212 /// 213 X86TargetMachine::X86TargetMachine(const Target &T, const Triple &TT, 214 StringRef CPU, StringRef FS, 215 const TargetOptions &Options, 216 Optional<Reloc::Model> RM, 217 Optional<CodeModel::Model> CM, 218 CodeGenOpt::Level OL, bool JIT) 219 : LLVMTargetMachine( 220 T, computeDataLayout(TT), TT, CPU, FS, Options, 221 getEffectiveRelocModel(TT, JIT, RM), 222 getEffectiveCodeModel(CM, JIT, TT.getArch() == Triple::x86_64), OL), 223 TLOF(createTLOF(getTargetTriple())) { 224 // Windows stack unwinder gets confused when execution flow "falls through" 225 // after a call to 'noreturn' function. 226 // To prevent that, we emit a trap for 'unreachable' IR instructions. 227 // (which on X86, happens to be the 'ud2' instruction) 228 // On PS4, the "return address" of a 'noreturn' call must still be within 229 // the calling function, and TrapUnreachable is an easy way to get that. 230 // The check here for 64-bit windows is a bit icky, but as we're unlikely 231 // to ever want to mix 32 and 64-bit windows code in a single module 232 // this should be fine. 233 if ((TT.isOSWindows() && TT.getArch() == Triple::x86_64) || TT.isPS4() || 234 TT.isOSBinFormatMachO()) { 235 this->Options.TrapUnreachable = true; 236 this->Options.NoTrapAfterNoreturn = TT.isOSBinFormatMachO(); 237 } 238 239 // Outlining is available for x86-64. 240 if (TT.getArch() == Triple::x86_64) 241 setMachineOutliner(true); 242 243 initAsmInfo(); 244 } 245 246 X86TargetMachine::~X86TargetMachine() = default; 247 248 const X86Subtarget * 249 X86TargetMachine::getSubtargetImpl(const Function &F) const { 250 Attribute CPUAttr = F.getFnAttribute("target-cpu"); 251 Attribute FSAttr = F.getFnAttribute("target-features"); 252 253 StringRef CPU = !CPUAttr.hasAttribute(Attribute::None) 254 ? CPUAttr.getValueAsString() 255 : (StringRef)TargetCPU; 256 StringRef FS = !FSAttr.hasAttribute(Attribute::None) 257 ? FSAttr.getValueAsString() 258 : (StringRef)TargetFS; 259 260 SmallString<512> Key; 261 Key.reserve(CPU.size() + FS.size()); 262 Key += CPU; 263 Key += FS; 264 265 // FIXME: This is related to the code below to reset the target options, 266 // we need to know whether or not the soft float flag is set on the 267 // function before we can generate a subtarget. We also need to use 268 // it as a key for the subtarget since that can be the only difference 269 // between two functions. 270 bool SoftFloat = 271 F.getFnAttribute("use-soft-float").getValueAsString() == "true"; 272 // If the soft float attribute is set on the function turn on the soft float 273 // subtarget feature. 274 if (SoftFloat) 275 Key += FS.empty() ? "+soft-float" : ",+soft-float"; 276 277 // Keep track of the key width after all features are added so we can extract 278 // the feature string out later. 279 unsigned CPUFSWidth = Key.size(); 280 281 // Extract prefer-vector-width attribute. 282 unsigned PreferVectorWidthOverride = 0; 283 if (F.hasFnAttribute("prefer-vector-width")) { 284 StringRef Val = F.getFnAttribute("prefer-vector-width").getValueAsString(); 285 unsigned Width; 286 if (!Val.getAsInteger(0, Width)) { 287 Key += ",prefer-vector-width="; 288 Key += Val; 289 PreferVectorWidthOverride = Width; 290 } 291 } 292 293 // Extract required-vector-width attribute. 294 unsigned RequiredVectorWidth = UINT32_MAX; 295 if (F.hasFnAttribute("required-vector-width")) { 296 StringRef Val = F.getFnAttribute("required-vector-width").getValueAsString(); 297 unsigned Width; 298 if (!Val.getAsInteger(0, Width)) { 299 Key += ",required-vector-width="; 300 Key += Val; 301 RequiredVectorWidth = Width; 302 } 303 } 304 305 // Extracted here so that we make sure there is backing for the StringRef. If 306 // we assigned earlier, its possible the SmallString reallocated leaving a 307 // dangling StringRef. 308 FS = Key.slice(CPU.size(), CPUFSWidth); 309 310 auto &I = SubtargetMap[Key]; 311 if (!I) { 312 // This needs to be done before we create a new subtarget since any 313 // creation will depend on the TM and the code generation flags on the 314 // function that reside in TargetOptions. 315 resetTargetOptions(F); 316 I = llvm::make_unique<X86Subtarget>(TargetTriple, CPU, FS, *this, 317 Options.StackAlignmentOverride, 318 PreferVectorWidthOverride, 319 RequiredVectorWidth); 320 } 321 return I.get(); 322 } 323 324 //===----------------------------------------------------------------------===// 325 // Command line options for x86 326 //===----------------------------------------------------------------------===// 327 static cl::opt<bool> 328 UseVZeroUpper("x86-use-vzeroupper", cl::Hidden, 329 cl::desc("Minimize AVX to SSE transition penalty"), 330 cl::init(true)); 331 332 //===----------------------------------------------------------------------===// 333 // X86 TTI query. 334 //===----------------------------------------------------------------------===// 335 336 TargetTransformInfo 337 X86TargetMachine::getTargetTransformInfo(const Function &F) { 338 return TargetTransformInfo(X86TTIImpl(this, F)); 339 } 340 341 //===----------------------------------------------------------------------===// 342 // Pass Pipeline Configuration 343 //===----------------------------------------------------------------------===// 344 345 namespace { 346 347 /// X86 Code Generator Pass Configuration Options. 348 class X86PassConfig : public TargetPassConfig { 349 public: 350 X86PassConfig(X86TargetMachine &TM, PassManagerBase &PM) 351 : TargetPassConfig(TM, PM) {} 352 353 X86TargetMachine &getX86TargetMachine() const { 354 return getTM<X86TargetMachine>(); 355 } 356 357 ScheduleDAGInstrs * 358 createMachineScheduler(MachineSchedContext *C) const override { 359 ScheduleDAGMILive *DAG = createGenericSchedLive(C); 360 DAG->addMutation(createX86MacroFusionDAGMutation()); 361 return DAG; 362 } 363 364 void addIRPasses() override; 365 bool addInstSelector() override; 366 bool addIRTranslator() override; 367 bool addLegalizeMachineIR() override; 368 bool addRegBankSelect() override; 369 bool addGlobalInstructionSelect() override; 370 bool addILPOpts() override; 371 bool addPreISel() override; 372 void addMachineSSAOptimization() override; 373 void addPreRegAlloc() override; 374 void addPostRegAlloc() override; 375 void addPreEmitPass() override; 376 void addPreEmitPass2() override; 377 void addPreSched2() override; 378 }; 379 380 class X86ExecutionDomainFix : public ExecutionDomainFix { 381 public: 382 static char ID; 383 X86ExecutionDomainFix() : ExecutionDomainFix(ID, X86::VR128XRegClass) {} 384 StringRef getPassName() const override { 385 return "X86 Execution Dependency Fix"; 386 } 387 }; 388 char X86ExecutionDomainFix::ID; 389 390 } // end anonymous namespace 391 392 INITIALIZE_PASS_BEGIN(X86ExecutionDomainFix, "x86-execution-domain-fix", 393 "X86 Execution Domain Fix", false, false) 394 INITIALIZE_PASS_DEPENDENCY(ReachingDefAnalysis) 395 INITIALIZE_PASS_END(X86ExecutionDomainFix, "x86-execution-domain-fix", 396 "X86 Execution Domain Fix", false, false) 397 398 TargetPassConfig *X86TargetMachine::createPassConfig(PassManagerBase &PM) { 399 return new X86PassConfig(*this, PM); 400 } 401 402 void X86PassConfig::addIRPasses() { 403 addPass(createAtomicExpandPass()); 404 405 TargetPassConfig::addIRPasses(); 406 407 if (TM->getOptLevel() != CodeGenOpt::None) 408 addPass(createInterleavedAccessPass()); 409 410 // Add passes that handle indirect branch removal and insertion of a retpoline 411 // thunk. These will be a no-op unless a function subtarget has the retpoline 412 // feature enabled. 413 addPass(createIndirectBrExpandPass()); 414 } 415 416 bool X86PassConfig::addInstSelector() { 417 // Install an instruction selector. 418 addPass(createX86ISelDag(getX86TargetMachine(), getOptLevel())); 419 420 // For ELF, cleanup any local-dynamic TLS accesses. 421 if (TM->getTargetTriple().isOSBinFormatELF() && 422 getOptLevel() != CodeGenOpt::None) 423 addPass(createCleanupLocalDynamicTLSPass()); 424 425 addPass(createX86GlobalBaseRegPass()); 426 return false; 427 } 428 429 bool X86PassConfig::addIRTranslator() { 430 addPass(new IRTranslator()); 431 return false; 432 } 433 434 bool X86PassConfig::addLegalizeMachineIR() { 435 addPass(new Legalizer()); 436 return false; 437 } 438 439 bool X86PassConfig::addRegBankSelect() { 440 addPass(new RegBankSelect()); 441 return false; 442 } 443 444 bool X86PassConfig::addGlobalInstructionSelect() { 445 addPass(new InstructionSelect()); 446 return false; 447 } 448 449 bool X86PassConfig::addILPOpts() { 450 addPass(&EarlyIfConverterID); 451 if (EnableMachineCombinerPass) 452 addPass(&MachineCombinerID); 453 addPass(createX86CmovConverterPass()); 454 return true; 455 } 456 457 bool X86PassConfig::addPreISel() { 458 // Only add this pass for 32-bit x86 Windows. 459 const Triple &TT = TM->getTargetTriple(); 460 if (TT.isOSWindows() && TT.getArch() == Triple::x86) 461 addPass(createX86WinEHStatePass()); 462 return true; 463 } 464 465 void X86PassConfig::addPreRegAlloc() { 466 if (getOptLevel() != CodeGenOpt::None) { 467 addPass(&LiveRangeShrinkID); 468 addPass(createX86FixupSetCC()); 469 addPass(createX86OptimizeLEAs()); 470 addPass(createX86CallFrameOptimization()); 471 addPass(createX86AvoidStoreForwardingBlocks()); 472 } 473 474 addPass(createX86SpeculativeLoadHardeningPass()); 475 addPass(createX86FlagsCopyLoweringPass()); 476 addPass(createX86WinAllocaExpander()); 477 } 478 void X86PassConfig::addMachineSSAOptimization() { 479 addPass(createX86DomainReassignmentPass()); 480 TargetPassConfig::addMachineSSAOptimization(); 481 } 482 483 void X86PassConfig::addPostRegAlloc() { 484 addPass(createX86FloatingPointStackifierPass()); 485 } 486 487 void X86PassConfig::addPreSched2() { addPass(createX86ExpandPseudoPass()); } 488 489 void X86PassConfig::addPreEmitPass() { 490 if (getOptLevel() != CodeGenOpt::None) { 491 addPass(new X86ExecutionDomainFix()); 492 addPass(createBreakFalseDeps()); 493 } 494 495 addPass(createShadowCallStackPass()); 496 addPass(createX86IndirectBranchTrackingPass()); 497 498 if (UseVZeroUpper) 499 addPass(createX86IssueVZeroUpperPass()); 500 501 if (getOptLevel() != CodeGenOpt::None) { 502 addPass(createX86FixupBWInsts()); 503 addPass(createX86PadShortFunctions()); 504 addPass(createX86FixupLEAs()); 505 addPass(createX86EvexToVexInsts()); 506 } 507 } 508 509 void X86PassConfig::addPreEmitPass2() { 510 addPass(createX86RetpolineThunksPass()); 511 // Verify basic block incoming and outgoing cfa offset and register values and 512 // correct CFA calculation rule where needed by inserting appropriate CFI 513 // instructions. 514 const Triple &TT = TM->getTargetTriple(); 515 if (!TT.isOSDarwin() && !TT.isOSWindows()) 516 addPass(createCFIInstrInserter()); 517 } 518