1 //===-- X86TargetMachine.cpp - Define TargetMachine for the X86 -----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines the X86 specific subclass of TargetMachine. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "X86TargetMachine.h" 15 #include "X86.h" 16 #include "X86CallLowering.h" 17 #include "X86MacroFusion.h" 18 #include "X86TargetObjectFile.h" 19 #include "X86TargetTransformInfo.h" 20 #include "llvm/CodeGen/GlobalISel/GISelAccessor.h" 21 #include "llvm/CodeGen/GlobalISel/IRTranslator.h" 22 #include "llvm/CodeGen/MachineScheduler.h" 23 #include "llvm/CodeGen/Passes.h" 24 #include "llvm/CodeGen/TargetPassConfig.h" 25 #include "llvm/IR/Function.h" 26 #include "llvm/IR/LegacyPassManager.h" 27 #include "llvm/Support/CommandLine.h" 28 #include "llvm/Support/FormattedStream.h" 29 #include "llvm/Support/TargetRegistry.h" 30 #include "llvm/Target/TargetOptions.h" 31 using namespace llvm; 32 33 static cl::opt<bool> EnableMachineCombinerPass("x86-machine-combiner", 34 cl::desc("Enable the machine combiner pass"), 35 cl::init(true), cl::Hidden); 36 37 namespace llvm { 38 void initializeWinEHStatePassPass(PassRegistry &); 39 } 40 41 extern "C" void LLVMInitializeX86Target() { 42 // Register the target. 43 RegisterTargetMachine<X86TargetMachine> X(getTheX86_32Target()); 44 RegisterTargetMachine<X86TargetMachine> Y(getTheX86_64Target()); 45 46 PassRegistry &PR = *PassRegistry::getPassRegistry(); 47 initializeGlobalISel(PR); 48 initializeWinEHStatePassPass(PR); 49 initializeFixupBWInstPassPass(PR); 50 initializeEvexToVexInstPassPass(PR); 51 } 52 53 static std::unique_ptr<TargetLoweringObjectFile> createTLOF(const Triple &TT) { 54 if (TT.isOSBinFormatMachO()) { 55 if (TT.getArch() == Triple::x86_64) 56 return make_unique<X86_64MachoTargetObjectFile>(); 57 return make_unique<TargetLoweringObjectFileMachO>(); 58 } 59 60 if (TT.isOSFreeBSD()) 61 return make_unique<X86FreeBSDTargetObjectFile>(); 62 if (TT.isOSLinux() || TT.isOSNaCl()) 63 return make_unique<X86LinuxNaClTargetObjectFile>(); 64 if (TT.isOSFuchsia()) 65 return make_unique<X86FuchsiaTargetObjectFile>(); 66 if (TT.isOSBinFormatELF()) 67 return make_unique<X86ELFTargetObjectFile>(); 68 if (TT.isKnownWindowsMSVCEnvironment() || TT.isWindowsCoreCLREnvironment()) 69 return make_unique<X86WindowsTargetObjectFile>(); 70 if (TT.isOSBinFormatCOFF()) 71 return make_unique<TargetLoweringObjectFileCOFF>(); 72 llvm_unreachable("unknown subtarget type"); 73 } 74 75 static std::string computeDataLayout(const Triple &TT) { 76 // X86 is little endian 77 std::string Ret = "e"; 78 79 Ret += DataLayout::getManglingComponent(TT); 80 // X86 and x32 have 32 bit pointers. 81 if ((TT.isArch64Bit() && 82 (TT.getEnvironment() == Triple::GNUX32 || TT.isOSNaCl())) || 83 !TT.isArch64Bit()) 84 Ret += "-p:32:32"; 85 86 // Some ABIs align 64 bit integers and doubles to 64 bits, others to 32. 87 if (TT.isArch64Bit() || TT.isOSWindows() || TT.isOSNaCl()) 88 Ret += "-i64:64"; 89 else if (TT.isOSIAMCU()) 90 Ret += "-i64:32-f64:32"; 91 else 92 Ret += "-f64:32:64"; 93 94 // Some ABIs align long double to 128 bits, others to 32. 95 if (TT.isOSNaCl() || TT.isOSIAMCU()) 96 ; // No f80 97 else if (TT.isArch64Bit() || TT.isOSDarwin()) 98 Ret += "-f80:128"; 99 else 100 Ret += "-f80:32"; 101 102 if (TT.isOSIAMCU()) 103 Ret += "-f128:32"; 104 105 // The registers can hold 8, 16, 32 or, in x86-64, 64 bits. 106 if (TT.isArch64Bit()) 107 Ret += "-n8:16:32:64"; 108 else 109 Ret += "-n8:16:32"; 110 111 // The stack is aligned to 32 bits on some ABIs and 128 bits on others. 112 if ((!TT.isArch64Bit() && TT.isOSWindows()) || TT.isOSIAMCU()) 113 Ret += "-a:0:32-S32"; 114 else 115 Ret += "-S128"; 116 117 return Ret; 118 } 119 120 static Reloc::Model getEffectiveRelocModel(const Triple &TT, 121 Optional<Reloc::Model> RM) { 122 bool is64Bit = TT.getArch() == Triple::x86_64; 123 if (!RM.hasValue()) { 124 // Darwin defaults to PIC in 64 bit mode and dynamic-no-pic in 32 bit mode. 125 // Win64 requires rip-rel addressing, thus we force it to PIC. Otherwise we 126 // use static relocation model by default. 127 if (TT.isOSDarwin()) { 128 if (is64Bit) 129 return Reloc::PIC_; 130 return Reloc::DynamicNoPIC; 131 } 132 if (TT.isOSWindows() && is64Bit) 133 return Reloc::PIC_; 134 return Reloc::Static; 135 } 136 137 // ELF and X86-64 don't have a distinct DynamicNoPIC model. DynamicNoPIC 138 // is defined as a model for code which may be used in static or dynamic 139 // executables but not necessarily a shared library. On X86-32 we just 140 // compile in -static mode, in x86-64 we use PIC. 141 if (*RM == Reloc::DynamicNoPIC) { 142 if (is64Bit) 143 return Reloc::PIC_; 144 if (!TT.isOSDarwin()) 145 return Reloc::Static; 146 } 147 148 // If we are on Darwin, disallow static relocation model in X86-64 mode, since 149 // the Mach-O file format doesn't support it. 150 if (*RM == Reloc::Static && TT.isOSDarwin() && is64Bit) 151 return Reloc::PIC_; 152 153 return *RM; 154 } 155 156 /// Create an X86 target. 157 /// 158 X86TargetMachine::X86TargetMachine(const Target &T, const Triple &TT, 159 StringRef CPU, StringRef FS, 160 const TargetOptions &Options, 161 Optional<Reloc::Model> RM, 162 CodeModel::Model CM, CodeGenOpt::Level OL) 163 : LLVMTargetMachine(T, computeDataLayout(TT), TT, CPU, FS, Options, 164 getEffectiveRelocModel(TT, RM), CM, OL), 165 TLOF(createTLOF(getTargetTriple())) { 166 // Windows stack unwinder gets confused when execution flow "falls through" 167 // after a call to 'noreturn' function. 168 // To prevent that, we emit a trap for 'unreachable' IR instructions. 169 // (which on X86, happens to be the 'ud2' instruction) 170 // On PS4, the "return address" of a 'noreturn' call must still be within 171 // the calling function, and TrapUnreachable is an easy way to get that. 172 // The check here for 64-bit windows is a bit icky, but as we're unlikely 173 // to ever want to mix 32 and 64-bit windows code in a single module 174 // this should be fine. 175 if ((TT.isOSWindows() && TT.getArch() == Triple::x86_64) || TT.isPS4()) 176 this->Options.TrapUnreachable = true; 177 178 initAsmInfo(); 179 } 180 181 X86TargetMachine::~X86TargetMachine() {} 182 183 #ifdef LLVM_BUILD_GLOBAL_ISEL 184 namespace { 185 struct X86GISelActualAccessor : public GISelAccessor { 186 std::unique_ptr<CallLowering> CL; 187 X86GISelActualAccessor(CallLowering* CL): CL(CL) {} 188 const CallLowering *getCallLowering() const override { 189 return CL.get(); 190 } 191 const InstructionSelector *getInstructionSelector() const override { 192 //TODO: Implement 193 return nullptr; 194 } 195 const LegalizerInfo *getLegalizerInfo() const override { 196 //TODO: Implement 197 return nullptr; 198 } 199 const RegisterBankInfo *getRegBankInfo() const override { 200 //TODO: Implement 201 return nullptr; 202 } 203 }; 204 } // End anonymous namespace. 205 #endif 206 const X86Subtarget * 207 X86TargetMachine::getSubtargetImpl(const Function &F) const { 208 Attribute CPUAttr = F.getFnAttribute("target-cpu"); 209 Attribute FSAttr = F.getFnAttribute("target-features"); 210 211 StringRef CPU = !CPUAttr.hasAttribute(Attribute::None) 212 ? CPUAttr.getValueAsString() 213 : (StringRef)TargetCPU; 214 StringRef FS = !FSAttr.hasAttribute(Attribute::None) 215 ? FSAttr.getValueAsString() 216 : (StringRef)TargetFS; 217 218 SmallString<512> Key; 219 Key.reserve(CPU.size() + FS.size()); 220 Key += CPU; 221 Key += FS; 222 223 // FIXME: This is related to the code below to reset the target options, 224 // we need to know whether or not the soft float flag is set on the 225 // function before we can generate a subtarget. We also need to use 226 // it as a key for the subtarget since that can be the only difference 227 // between two functions. 228 bool SoftFloat = 229 F.getFnAttribute("use-soft-float").getValueAsString() == "true"; 230 // If the soft float attribute is set on the function turn on the soft float 231 // subtarget feature. 232 if (SoftFloat) 233 Key += FS.empty() ? "+soft-float" : ",+soft-float"; 234 235 FS = Key.substr(CPU.size()); 236 237 auto &I = SubtargetMap[Key]; 238 if (!I) { 239 // This needs to be done before we create a new subtarget since any 240 // creation will depend on the TM and the code generation flags on the 241 // function that reside in TargetOptions. 242 resetTargetOptions(F); 243 I = llvm::make_unique<X86Subtarget>(TargetTriple, CPU, FS, *this, 244 Options.StackAlignmentOverride); 245 #ifndef LLVM_BUILD_GLOBAL_ISEL 246 GISelAccessor *GISel = new GISelAccessor(); 247 #else 248 X86GISelActualAccessor *GISel = new X86GISelActualAccessor( 249 new X86CallLowering(*I->getTargetLowering())); 250 #endif 251 I->setGISelAccessor(*GISel); 252 } 253 return I.get(); 254 } 255 256 //===----------------------------------------------------------------------===// 257 // Command line options for x86 258 //===----------------------------------------------------------------------===// 259 static cl::opt<bool> 260 UseVZeroUpper("x86-use-vzeroupper", cl::Hidden, 261 cl::desc("Minimize AVX to SSE transition penalty"), 262 cl::init(true)); 263 264 //===----------------------------------------------------------------------===// 265 // X86 TTI query. 266 //===----------------------------------------------------------------------===// 267 268 TargetIRAnalysis X86TargetMachine::getTargetIRAnalysis() { 269 return TargetIRAnalysis([this](const Function &F) { 270 return TargetTransformInfo(X86TTIImpl(this, F)); 271 }); 272 } 273 274 275 //===----------------------------------------------------------------------===// 276 // Pass Pipeline Configuration 277 //===----------------------------------------------------------------------===// 278 279 namespace { 280 /// X86 Code Generator Pass Configuration Options. 281 class X86PassConfig : public TargetPassConfig { 282 public: 283 X86PassConfig(X86TargetMachine *TM, PassManagerBase &PM) 284 : TargetPassConfig(TM, PM) {} 285 286 X86TargetMachine &getX86TargetMachine() const { 287 return getTM<X86TargetMachine>(); 288 } 289 290 ScheduleDAGInstrs * 291 createMachineScheduler(MachineSchedContext *C) const override { 292 ScheduleDAGMILive *DAG = createGenericSchedLive(C); 293 DAG->addMutation(createX86MacroFusionDAGMutation()); 294 return DAG; 295 } 296 297 void addIRPasses() override; 298 bool addInstSelector() override; 299 #ifdef LLVM_BUILD_GLOBAL_ISEL 300 bool addIRTranslator() override; 301 bool addLegalizeMachineIR() override; 302 bool addRegBankSelect() override; 303 bool addGlobalInstructionSelect() override; 304 #endif 305 bool addILPOpts() override; 306 bool addPreISel() override; 307 void addPreRegAlloc() override; 308 void addPostRegAlloc() override; 309 void addPreEmitPass() override; 310 void addPreSched2() override; 311 }; 312 } // namespace 313 314 TargetPassConfig *X86TargetMachine::createPassConfig(PassManagerBase &PM) { 315 return new X86PassConfig(this, PM); 316 } 317 318 void X86PassConfig::addIRPasses() { 319 addPass(createAtomicExpandPass(&getX86TargetMachine())); 320 321 TargetPassConfig::addIRPasses(); 322 323 if (TM->getOptLevel() != CodeGenOpt::None) 324 addPass(createInterleavedAccessPass(TM)); 325 } 326 327 bool X86PassConfig::addInstSelector() { 328 // Install an instruction selector. 329 addPass(createX86ISelDag(getX86TargetMachine(), getOptLevel())); 330 331 // For ELF, cleanup any local-dynamic TLS accesses. 332 if (TM->getTargetTriple().isOSBinFormatELF() && 333 getOptLevel() != CodeGenOpt::None) 334 addPass(createCleanupLocalDynamicTLSPass()); 335 336 addPass(createX86GlobalBaseRegPass()); 337 return false; 338 } 339 340 #ifdef LLVM_BUILD_GLOBAL_ISEL 341 bool X86PassConfig::addIRTranslator() { 342 addPass(new IRTranslator()); 343 return false; 344 } 345 346 bool X86PassConfig::addLegalizeMachineIR() { 347 //TODO: Implement 348 return false; 349 } 350 351 bool X86PassConfig::addRegBankSelect() { 352 //TODO: Implement 353 return false; 354 } 355 356 bool X86PassConfig::addGlobalInstructionSelect() { 357 //TODO: Implement 358 return false; 359 } 360 #endif 361 362 bool X86PassConfig::addILPOpts() { 363 addPass(&EarlyIfConverterID); 364 if (EnableMachineCombinerPass) 365 addPass(&MachineCombinerID); 366 return true; 367 } 368 369 bool X86PassConfig::addPreISel() { 370 // Only add this pass for 32-bit x86 Windows. 371 const Triple &TT = TM->getTargetTriple(); 372 if (TT.isOSWindows() && TT.getArch() == Triple::x86) 373 addPass(createX86WinEHStatePass()); 374 return true; 375 } 376 377 void X86PassConfig::addPreRegAlloc() { 378 if (getOptLevel() != CodeGenOpt::None) { 379 addPass(createX86FixupSetCC()); 380 addPass(createX86OptimizeLEAs()); 381 addPass(createX86CallFrameOptimization()); 382 } 383 384 addPass(createX86WinAllocaExpander()); 385 } 386 387 void X86PassConfig::addPostRegAlloc() { 388 addPass(createX86FloatingPointStackifierPass()); 389 } 390 391 void X86PassConfig::addPreSched2() { addPass(createX86ExpandPseudoPass()); } 392 393 void X86PassConfig::addPreEmitPass() { 394 if (getOptLevel() != CodeGenOpt::None) 395 addPass(createExecutionDependencyFixPass(&X86::VR128XRegClass)); 396 397 if (UseVZeroUpper) 398 addPass(createX86IssueVZeroUpperPass()); 399 400 if (getOptLevel() != CodeGenOpt::None) { 401 addPass(createX86FixupBWInsts()); 402 addPass(createX86PadShortFunctions()); 403 addPass(createX86FixupLEAs()); 404 addPass(createX86EvexToVexInsts()); 405 } 406 } 407