1 //===-- X86TargetMachine.cpp - Define TargetMachine for the X86 -----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines the X86 specific subclass of TargetMachine. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "MCTargetDesc/X86MCTargetDesc.h" 15 #include "X86.h" 16 #include "X86CallLowering.h" 17 #include "X86LegalizerInfo.h" 18 #ifdef LLVM_BUILD_GLOBAL_ISEL 19 #include "X86RegisterBankInfo.h" 20 #endif 21 #include "X86MacroFusion.h" 22 #include "X86Subtarget.h" 23 #include "X86TargetMachine.h" 24 #include "X86TargetObjectFile.h" 25 #include "X86TargetTransformInfo.h" 26 #include "llvm/ADT/Optional.h" 27 #include "llvm/ADT/SmallString.h" 28 #include "llvm/ADT/STLExtras.h" 29 #include "llvm/ADT/StringRef.h" 30 #include "llvm/ADT/Triple.h" 31 #include "llvm/Analysis/TargetTransformInfo.h" 32 #include "llvm/CodeGen/ExecutionDepsFix.h" 33 #include "llvm/CodeGen/GlobalISel/CallLowering.h" 34 #include "llvm/CodeGen/GlobalISel/GISelAccessor.h" 35 #include "llvm/CodeGen/GlobalISel/IRTranslator.h" 36 #include "llvm/CodeGen/GlobalISel/InstructionSelect.h" 37 #include "llvm/CodeGen/GlobalISel/Legalizer.h" 38 #include "llvm/CodeGen/GlobalISel/RegBankSelect.h" 39 #include "llvm/CodeGen/MachineScheduler.h" 40 #include "llvm/CodeGen/Passes.h" 41 #include "llvm/CodeGen/TargetPassConfig.h" 42 #include "llvm/IR/Attributes.h" 43 #include "llvm/IR/DataLayout.h" 44 #include "llvm/IR/Function.h" 45 #include "llvm/Pass.h" 46 #include "llvm/Support/CodeGen.h" 47 #include "llvm/Support/CommandLine.h" 48 #include "llvm/Support/ErrorHandling.h" 49 #include "llvm/Support/TargetRegistry.h" 50 #include "llvm/Target/TargetLoweringObjectFile.h" 51 #include "llvm/Target/TargetOptions.h" 52 #include <memory> 53 #include <string> 54 55 using namespace llvm; 56 57 static cl::opt<bool> EnableMachineCombinerPass("x86-machine-combiner", 58 cl::desc("Enable the machine combiner pass"), 59 cl::init(true), cl::Hidden); 60 61 namespace llvm { 62 63 void initializeWinEHStatePassPass(PassRegistry &); 64 void initializeX86ExecutionDepsFixPass(PassRegistry &); 65 66 } // end namespace llvm 67 68 extern "C" void LLVMInitializeX86Target() { 69 // Register the target. 70 RegisterTargetMachine<X86TargetMachine> X(getTheX86_32Target()); 71 RegisterTargetMachine<X86TargetMachine> Y(getTheX86_64Target()); 72 73 PassRegistry &PR = *PassRegistry::getPassRegistry(); 74 initializeGlobalISel(PR); 75 initializeWinEHStatePassPass(PR); 76 initializeFixupBWInstPassPass(PR); 77 initializeEvexToVexInstPassPass(PR); 78 initializeX86ExecutionDepsFixPass(PR); 79 } 80 81 static std::unique_ptr<TargetLoweringObjectFile> createTLOF(const Triple &TT) { 82 if (TT.isOSBinFormatMachO()) { 83 if (TT.getArch() == Triple::x86_64) 84 return llvm::make_unique<X86_64MachoTargetObjectFile>(); 85 return llvm::make_unique<TargetLoweringObjectFileMachO>(); 86 } 87 88 if (TT.isOSFreeBSD()) 89 return llvm::make_unique<X86FreeBSDTargetObjectFile>(); 90 if (TT.isOSLinux() || TT.isOSNaCl() || TT.isOSIAMCU()) 91 return llvm::make_unique<X86LinuxNaClTargetObjectFile>(); 92 if (TT.isOSFuchsia()) 93 return llvm::make_unique<X86FuchsiaTargetObjectFile>(); 94 if (TT.isOSBinFormatELF()) 95 return llvm::make_unique<X86ELFTargetObjectFile>(); 96 if (TT.isKnownWindowsMSVCEnvironment() || TT.isWindowsCoreCLREnvironment()) 97 return llvm::make_unique<X86WindowsTargetObjectFile>(); 98 if (TT.isOSBinFormatCOFF()) 99 return llvm::make_unique<TargetLoweringObjectFileCOFF>(); 100 llvm_unreachable("unknown subtarget type"); 101 } 102 103 static std::string computeDataLayout(const Triple &TT) { 104 // X86 is little endian 105 std::string Ret = "e"; 106 107 Ret += DataLayout::getManglingComponent(TT); 108 // X86 and x32 have 32 bit pointers. 109 if ((TT.isArch64Bit() && 110 (TT.getEnvironment() == Triple::GNUX32 || TT.isOSNaCl())) || 111 !TT.isArch64Bit()) 112 Ret += "-p:32:32"; 113 114 // Some ABIs align 64 bit integers and doubles to 64 bits, others to 32. 115 if (TT.isArch64Bit() || TT.isOSWindows() || TT.isOSNaCl()) 116 Ret += "-i64:64"; 117 else if (TT.isOSIAMCU()) 118 Ret += "-i64:32-f64:32"; 119 else 120 Ret += "-f64:32:64"; 121 122 // Some ABIs align long double to 128 bits, others to 32. 123 if (TT.isOSNaCl() || TT.isOSIAMCU()) 124 ; // No f80 125 else if (TT.isArch64Bit() || TT.isOSDarwin()) 126 Ret += "-f80:128"; 127 else 128 Ret += "-f80:32"; 129 130 if (TT.isOSIAMCU()) 131 Ret += "-f128:32"; 132 133 // The registers can hold 8, 16, 32 or, in x86-64, 64 bits. 134 if (TT.isArch64Bit()) 135 Ret += "-n8:16:32:64"; 136 else 137 Ret += "-n8:16:32"; 138 139 // The stack is aligned to 32 bits on some ABIs and 128 bits on others. 140 if ((!TT.isArch64Bit() && TT.isOSWindows()) || TT.isOSIAMCU()) 141 Ret += "-a:0:32-S32"; 142 else 143 Ret += "-S128"; 144 145 return Ret; 146 } 147 148 static Reloc::Model getEffectiveRelocModel(const Triple &TT, 149 Optional<Reloc::Model> RM) { 150 bool is64Bit = TT.getArch() == Triple::x86_64; 151 if (!RM.hasValue()) { 152 // Darwin defaults to PIC in 64 bit mode and dynamic-no-pic in 32 bit mode. 153 // Win64 requires rip-rel addressing, thus we force it to PIC. Otherwise we 154 // use static relocation model by default. 155 if (TT.isOSDarwin()) { 156 if (is64Bit) 157 return Reloc::PIC_; 158 return Reloc::DynamicNoPIC; 159 } 160 if (TT.isOSWindows() && is64Bit) 161 return Reloc::PIC_; 162 return Reloc::Static; 163 } 164 165 // ELF and X86-64 don't have a distinct DynamicNoPIC model. DynamicNoPIC 166 // is defined as a model for code which may be used in static or dynamic 167 // executables but not necessarily a shared library. On X86-32 we just 168 // compile in -static mode, in x86-64 we use PIC. 169 if (*RM == Reloc::DynamicNoPIC) { 170 if (is64Bit) 171 return Reloc::PIC_; 172 if (!TT.isOSDarwin()) 173 return Reloc::Static; 174 } 175 176 // If we are on Darwin, disallow static relocation model in X86-64 mode, since 177 // the Mach-O file format doesn't support it. 178 if (*RM == Reloc::Static && TT.isOSDarwin() && is64Bit) 179 return Reloc::PIC_; 180 181 return *RM; 182 } 183 184 /// Create an X86 target. 185 /// 186 X86TargetMachine::X86TargetMachine(const Target &T, const Triple &TT, 187 StringRef CPU, StringRef FS, 188 const TargetOptions &Options, 189 Optional<Reloc::Model> RM, 190 CodeModel::Model CM, CodeGenOpt::Level OL) 191 : LLVMTargetMachine(T, computeDataLayout(TT), TT, CPU, FS, Options, 192 getEffectiveRelocModel(TT, RM), CM, OL), 193 TLOF(createTLOF(getTargetTriple())) { 194 // Windows stack unwinder gets confused when execution flow "falls through" 195 // after a call to 'noreturn' function. 196 // To prevent that, we emit a trap for 'unreachable' IR instructions. 197 // (which on X86, happens to be the 'ud2' instruction) 198 // On PS4, the "return address" of a 'noreturn' call must still be within 199 // the calling function, and TrapUnreachable is an easy way to get that. 200 // The check here for 64-bit windows is a bit icky, but as we're unlikely 201 // to ever want to mix 32 and 64-bit windows code in a single module 202 // this should be fine. 203 if ((TT.isOSWindows() && TT.getArch() == Triple::x86_64) || TT.isPS4()) 204 this->Options.TrapUnreachable = true; 205 206 initAsmInfo(); 207 } 208 209 X86TargetMachine::~X86TargetMachine() = default; 210 211 #ifdef LLVM_BUILD_GLOBAL_ISEL 212 namespace { 213 214 struct X86GISelActualAccessor : public GISelAccessor { 215 std::unique_ptr<CallLowering> CallLoweringInfo; 216 std::unique_ptr<LegalizerInfo> Legalizer; 217 std::unique_ptr<RegisterBankInfo> RegBankInfo; 218 std::unique_ptr<InstructionSelector> InstSelector; 219 220 const CallLowering *getCallLowering() const override { 221 return CallLoweringInfo.get(); 222 } 223 224 const InstructionSelector *getInstructionSelector() const override { 225 return InstSelector.get(); 226 } 227 228 const LegalizerInfo *getLegalizerInfo() const override { 229 return Legalizer.get(); 230 } 231 232 const RegisterBankInfo *getRegBankInfo() const override { 233 return RegBankInfo.get(); 234 } 235 }; 236 237 } // end anonymous namespace 238 #endif 239 240 const X86Subtarget * 241 X86TargetMachine::getSubtargetImpl(const Function &F) const { 242 Attribute CPUAttr = F.getFnAttribute("target-cpu"); 243 Attribute FSAttr = F.getFnAttribute("target-features"); 244 245 StringRef CPU = !CPUAttr.hasAttribute(Attribute::None) 246 ? CPUAttr.getValueAsString() 247 : (StringRef)TargetCPU; 248 StringRef FS = !FSAttr.hasAttribute(Attribute::None) 249 ? FSAttr.getValueAsString() 250 : (StringRef)TargetFS; 251 252 SmallString<512> Key; 253 Key.reserve(CPU.size() + FS.size()); 254 Key += CPU; 255 Key += FS; 256 257 // FIXME: This is related to the code below to reset the target options, 258 // we need to know whether or not the soft float flag is set on the 259 // function before we can generate a subtarget. We also need to use 260 // it as a key for the subtarget since that can be the only difference 261 // between two functions. 262 bool SoftFloat = 263 F.getFnAttribute("use-soft-float").getValueAsString() == "true"; 264 // If the soft float attribute is set on the function turn on the soft float 265 // subtarget feature. 266 if (SoftFloat) 267 Key += FS.empty() ? "+soft-float" : ",+soft-float"; 268 269 FS = Key.substr(CPU.size()); 270 271 bool OptForSize = F.optForSize(); 272 bool OptForMinSize = F.optForMinSize(); 273 274 Key += std::string(OptForSize ? "+" : "-") + "optforsize"; 275 Key += std::string(OptForMinSize ? "+" : "-") + "optforminsize"; 276 277 auto &I = SubtargetMap[Key]; 278 if (!I) { 279 // This needs to be done before we create a new subtarget since any 280 // creation will depend on the TM and the code generation flags on the 281 // function that reside in TargetOptions. 282 resetTargetOptions(F); 283 I = llvm::make_unique<X86Subtarget>(TargetTriple, CPU, FS, *this, 284 Options.StackAlignmentOverride, 285 OptForSize, OptForMinSize); 286 #ifndef LLVM_BUILD_GLOBAL_ISEL 287 GISelAccessor *GISel = new GISelAccessor(); 288 #else 289 X86GISelActualAccessor *GISel = new X86GISelActualAccessor(); 290 291 GISel->CallLoweringInfo.reset(new X86CallLowering(*I->getTargetLowering())); 292 GISel->Legalizer.reset(new X86LegalizerInfo(*I, *this)); 293 294 auto *RBI = new X86RegisterBankInfo(*I->getRegisterInfo()); 295 GISel->RegBankInfo.reset(RBI); 296 GISel->InstSelector.reset(createX86InstructionSelector( 297 *this, *I, *RBI)); 298 #endif 299 I->setGISelAccessor(*GISel); 300 } 301 return I.get(); 302 } 303 304 //===----------------------------------------------------------------------===// 305 // Command line options for x86 306 //===----------------------------------------------------------------------===// 307 static cl::opt<bool> 308 UseVZeroUpper("x86-use-vzeroupper", cl::Hidden, 309 cl::desc("Minimize AVX to SSE transition penalty"), 310 cl::init(true)); 311 312 //===----------------------------------------------------------------------===// 313 // X86 TTI query. 314 //===----------------------------------------------------------------------===// 315 316 TargetIRAnalysis X86TargetMachine::getTargetIRAnalysis() { 317 return TargetIRAnalysis([this](const Function &F) { 318 return TargetTransformInfo(X86TTIImpl(this, F)); 319 }); 320 } 321 322 //===----------------------------------------------------------------------===// 323 // Pass Pipeline Configuration 324 //===----------------------------------------------------------------------===// 325 326 namespace { 327 328 /// X86 Code Generator Pass Configuration Options. 329 class X86PassConfig : public TargetPassConfig { 330 public: 331 X86PassConfig(X86TargetMachine *TM, PassManagerBase &PM) 332 : TargetPassConfig(TM, PM) {} 333 334 X86TargetMachine &getX86TargetMachine() const { 335 return getTM<X86TargetMachine>(); 336 } 337 338 ScheduleDAGInstrs * 339 createMachineScheduler(MachineSchedContext *C) const override { 340 ScheduleDAGMILive *DAG = createGenericSchedLive(C); 341 DAG->addMutation(createX86MacroFusionDAGMutation()); 342 return DAG; 343 } 344 345 void addIRPasses() override; 346 bool addInstSelector() override; 347 #ifdef LLVM_BUILD_GLOBAL_ISEL 348 bool addIRTranslator() override; 349 bool addLegalizeMachineIR() override; 350 bool addRegBankSelect() override; 351 bool addGlobalInstructionSelect() override; 352 #endif 353 bool addILPOpts() override; 354 bool addPreISel() override; 355 void addPreRegAlloc() override; 356 void addPostRegAlloc() override; 357 void addPreEmitPass() override; 358 void addPreSched2() override; 359 }; 360 361 class X86ExecutionDepsFix : public ExecutionDepsFix { 362 public: 363 static char ID; 364 X86ExecutionDepsFix() : ExecutionDepsFix(ID, X86::VR128XRegClass) {} 365 StringRef getPassName() const override { 366 return "X86 Execution Dependency Fix"; 367 } 368 }; 369 char X86ExecutionDepsFix::ID; 370 371 } // end anonymous namespace 372 373 INITIALIZE_PASS(X86ExecutionDepsFix, "x86-execution-deps-fix", 374 "X86 Execution Dependency Fix", false, false) 375 376 TargetPassConfig *X86TargetMachine::createPassConfig(PassManagerBase &PM) { 377 return new X86PassConfig(this, PM); 378 } 379 380 void X86PassConfig::addIRPasses() { 381 addPass(createAtomicExpandPass(&getX86TargetMachine())); 382 383 TargetPassConfig::addIRPasses(); 384 385 if (TM->getOptLevel() != CodeGenOpt::None) 386 addPass(createInterleavedAccessPass(TM)); 387 } 388 389 bool X86PassConfig::addInstSelector() { 390 // Install an instruction selector. 391 addPass(createX86ISelDag(getX86TargetMachine(), getOptLevel())); 392 393 // For ELF, cleanup any local-dynamic TLS accesses. 394 if (TM->getTargetTriple().isOSBinFormatELF() && 395 getOptLevel() != CodeGenOpt::None) 396 addPass(createCleanupLocalDynamicTLSPass()); 397 398 addPass(createX86GlobalBaseRegPass()); 399 return false; 400 } 401 402 #ifdef LLVM_BUILD_GLOBAL_ISEL 403 bool X86PassConfig::addIRTranslator() { 404 addPass(new IRTranslator()); 405 return false; 406 } 407 408 bool X86PassConfig::addLegalizeMachineIR() { 409 addPass(new Legalizer()); 410 return false; 411 } 412 413 bool X86PassConfig::addRegBankSelect() { 414 addPass(new RegBankSelect()); 415 return false; 416 } 417 418 bool X86PassConfig::addGlobalInstructionSelect() { 419 addPass(new InstructionSelect()); 420 return false; 421 } 422 #endif 423 424 bool X86PassConfig::addILPOpts() { 425 addPass(&EarlyIfConverterID); 426 if (EnableMachineCombinerPass) 427 addPass(&MachineCombinerID); 428 return true; 429 } 430 431 bool X86PassConfig::addPreISel() { 432 // Only add this pass for 32-bit x86 Windows. 433 const Triple &TT = TM->getTargetTriple(); 434 if (TT.isOSWindows() && TT.getArch() == Triple::x86) 435 addPass(createX86WinEHStatePass()); 436 return true; 437 } 438 439 void X86PassConfig::addPreRegAlloc() { 440 if (getOptLevel() != CodeGenOpt::None) { 441 addPass(createX86FixupSetCC()); 442 addPass(createX86OptimizeLEAs()); 443 addPass(createX86CallFrameOptimization()); 444 } 445 446 addPass(createX86WinAllocaExpander()); 447 } 448 449 void X86PassConfig::addPostRegAlloc() { 450 addPass(createX86FloatingPointStackifierPass()); 451 } 452 453 void X86PassConfig::addPreSched2() { addPass(createX86ExpandPseudoPass()); } 454 455 void X86PassConfig::addPreEmitPass() { 456 if (getOptLevel() != CodeGenOpt::None) 457 addPass(new X86ExecutionDepsFix()); 458 459 if (UseVZeroUpper) 460 addPass(createX86IssueVZeroUpperPass()); 461 462 if (getOptLevel() != CodeGenOpt::None) { 463 addPass(createX86FixupBWInsts()); 464 addPass(createX86PadShortFunctions()); 465 addPass(createX86FixupLEAs()); 466 addPass(createX86EvexToVexInsts()); 467 } 468 } 469