1 //===-- X86TargetMachine.cpp - Define TargetMachine for the X86 -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the X86 specific subclass of TargetMachine.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "X86TargetMachine.h"
14 #include "MCTargetDesc/X86MCTargetDesc.h"
15 #include "TargetInfo/X86TargetInfo.h"
16 #include "X86.h"
17 #include "X86CallLowering.h"
18 #include "X86LegalizerInfo.h"
19 #include "X86MacroFusion.h"
20 #include "X86Subtarget.h"
21 #include "X86TargetObjectFile.h"
22 #include "X86TargetTransformInfo.h"
23 #include "llvm/ADT/Optional.h"
24 #include "llvm/ADT/STLExtras.h"
25 #include "llvm/ADT/SmallString.h"
26 #include "llvm/ADT/StringRef.h"
27 #include "llvm/ADT/Triple.h"
28 #include "llvm/Analysis/TargetTransformInfo.h"
29 #include "llvm/CodeGen/ExecutionDomainFix.h"
30 #include "llvm/CodeGen/GlobalISel/CallLowering.h"
31 #include "llvm/CodeGen/GlobalISel/IRTranslator.h"
32 #include "llvm/CodeGen/GlobalISel/InstructionSelect.h"
33 #include "llvm/CodeGen/GlobalISel/Legalizer.h"
34 #include "llvm/CodeGen/GlobalISel/RegBankSelect.h"
35 #include "llvm/CodeGen/MachineScheduler.h"
36 #include "llvm/CodeGen/Passes.h"
37 #include "llvm/CodeGen/TargetPassConfig.h"
38 #include "llvm/IR/Attributes.h"
39 #include "llvm/IR/DataLayout.h"
40 #include "llvm/IR/Function.h"
41 #include "llvm/MC/MCAsmInfo.h"
42 #include "llvm/Pass.h"
43 #include "llvm/Support/CodeGen.h"
44 #include "llvm/Support/CommandLine.h"
45 #include "llvm/Support/ErrorHandling.h"
46 #include "llvm/Support/TargetRegistry.h"
47 #include "llvm/Target/TargetLoweringObjectFile.h"
48 #include "llvm/Target/TargetOptions.h"
49 #include <memory>
50 #include <string>
51 
52 using namespace llvm;
53 
54 static cl::opt<bool> EnableMachineCombinerPass("x86-machine-combiner",
55                                cl::desc("Enable the machine combiner pass"),
56                                cl::init(true), cl::Hidden);
57 
58 static cl::opt<bool> EnableCondBrFoldingPass("x86-condbr-folding",
59                                cl::desc("Enable the conditional branch "
60                                         "folding pass"),
61                                cl::init(false), cl::Hidden);
62 
63 extern "C" void LLVMInitializeX86Target() {
64   // Register the target.
65   RegisterTargetMachine<X86TargetMachine> X(getTheX86_32Target());
66   RegisterTargetMachine<X86TargetMachine> Y(getTheX86_64Target());
67 
68   PassRegistry &PR = *PassRegistry::getPassRegistry();
69   initializeGlobalISel(PR);
70   initializeWinEHStatePassPass(PR);
71   initializeFixupBWInstPassPass(PR);
72   initializeEvexToVexInstPassPass(PR);
73   initializeFixupLEAPassPass(PR);
74   initializeX86CallFrameOptimizationPass(PR);
75   initializeX86CmovConverterPassPass(PR);
76   initializeX86ExpandPseudoPass(PR);
77   initializeX86ExecutionDomainFixPass(PR);
78   initializeX86DomainReassignmentPass(PR);
79   initializeX86AvoidSFBPassPass(PR);
80   initializeX86SpeculativeLoadHardeningPassPass(PR);
81   initializeX86FlagsCopyLoweringPassPass(PR);
82   initializeX86CondBrFoldingPassPass(PR);
83 }
84 
85 static std::unique_ptr<TargetLoweringObjectFile> createTLOF(const Triple &TT) {
86   if (TT.isOSBinFormatMachO()) {
87     if (TT.getArch() == Triple::x86_64)
88       return llvm::make_unique<X86_64MachoTargetObjectFile>();
89     return llvm::make_unique<TargetLoweringObjectFileMachO>();
90   }
91 
92   if (TT.isOSFreeBSD())
93     return llvm::make_unique<X86FreeBSDTargetObjectFile>();
94   if (TT.isOSLinux() || TT.isOSNaCl() || TT.isOSIAMCU())
95     return llvm::make_unique<X86LinuxNaClTargetObjectFile>();
96   if (TT.isOSSolaris())
97     return llvm::make_unique<X86SolarisTargetObjectFile>();
98   if (TT.isOSFuchsia())
99     return llvm::make_unique<X86FuchsiaTargetObjectFile>();
100   if (TT.isOSBinFormatELF())
101     return llvm::make_unique<X86ELFTargetObjectFile>();
102   if (TT.isOSBinFormatCOFF())
103     return llvm::make_unique<TargetLoweringObjectFileCOFF>();
104   llvm_unreachable("unknown subtarget type");
105 }
106 
107 static std::string computeDataLayout(const Triple &TT) {
108   // X86 is little endian
109   std::string Ret = "e";
110 
111   Ret += DataLayout::getManglingComponent(TT);
112   // X86 and x32 have 32 bit pointers.
113   if ((TT.isArch64Bit() &&
114        (TT.getEnvironment() == Triple::GNUX32 || TT.isOSNaCl())) ||
115       !TT.isArch64Bit())
116     Ret += "-p:32:32";
117 
118   // Some ABIs align 64 bit integers and doubles to 64 bits, others to 32.
119   if (TT.isArch64Bit() || TT.isOSWindows() || TT.isOSNaCl())
120     Ret += "-i64:64";
121   else if (TT.isOSIAMCU())
122     Ret += "-i64:32-f64:32";
123   else
124     Ret += "-f64:32:64";
125 
126   // Some ABIs align long double to 128 bits, others to 32.
127   if (TT.isOSNaCl() || TT.isOSIAMCU())
128     ; // No f80
129   else if (TT.isArch64Bit() || TT.isOSDarwin())
130     Ret += "-f80:128";
131   else
132     Ret += "-f80:32";
133 
134   if (TT.isOSIAMCU())
135     Ret += "-f128:32";
136 
137   // The registers can hold 8, 16, 32 or, in x86-64, 64 bits.
138   if (TT.isArch64Bit())
139     Ret += "-n8:16:32:64";
140   else
141     Ret += "-n8:16:32";
142 
143   // The stack is aligned to 32 bits on some ABIs and 128 bits on others.
144   if ((!TT.isArch64Bit() && TT.isOSWindows()) || TT.isOSIAMCU())
145     Ret += "-a:0:32-S32";
146   else
147     Ret += "-S128";
148 
149   return Ret;
150 }
151 
152 static Reloc::Model getEffectiveRelocModel(const Triple &TT,
153                                            bool JIT,
154                                            Optional<Reloc::Model> RM) {
155   bool is64Bit = TT.getArch() == Triple::x86_64;
156   if (!RM.hasValue()) {
157     // JIT codegen should use static relocations by default, since it's
158     // typically executed in process and not relocatable.
159     if (JIT)
160       return Reloc::Static;
161 
162     // Darwin defaults to PIC in 64 bit mode and dynamic-no-pic in 32 bit mode.
163     // Win64 requires rip-rel addressing, thus we force it to PIC. Otherwise we
164     // use static relocation model by default.
165     if (TT.isOSDarwin()) {
166       if (is64Bit)
167         return Reloc::PIC_;
168       return Reloc::DynamicNoPIC;
169     }
170     if (TT.isOSWindows() && is64Bit)
171       return Reloc::PIC_;
172     return Reloc::Static;
173   }
174 
175   // ELF and X86-64 don't have a distinct DynamicNoPIC model.  DynamicNoPIC
176   // is defined as a model for code which may be used in static or dynamic
177   // executables but not necessarily a shared library. On X86-32 we just
178   // compile in -static mode, in x86-64 we use PIC.
179   if (*RM == Reloc::DynamicNoPIC) {
180     if (is64Bit)
181       return Reloc::PIC_;
182     if (!TT.isOSDarwin())
183       return Reloc::Static;
184   }
185 
186   // If we are on Darwin, disallow static relocation model in X86-64 mode, since
187   // the Mach-O file format doesn't support it.
188   if (*RM == Reloc::Static && TT.isOSDarwin() && is64Bit)
189     return Reloc::PIC_;
190 
191   return *RM;
192 }
193 
194 static CodeModel::Model getEffectiveX86CodeModel(Optional<CodeModel::Model> CM,
195                                                  bool JIT, bool Is64Bit) {
196   if (CM) {
197     if (*CM == CodeModel::Tiny)
198       report_fatal_error("Target does not support the tiny CodeModel", false);
199     return *CM;
200   }
201   if (JIT)
202     return Is64Bit ? CodeModel::Large : CodeModel::Small;
203   return CodeModel::Small;
204 }
205 
206 /// Create an X86 target.
207 ///
208 X86TargetMachine::X86TargetMachine(const Target &T, const Triple &TT,
209                                    StringRef CPU, StringRef FS,
210                                    const TargetOptions &Options,
211                                    Optional<Reloc::Model> RM,
212                                    Optional<CodeModel::Model> CM,
213                                    CodeGenOpt::Level OL, bool JIT)
214     : LLVMTargetMachine(
215           T, computeDataLayout(TT), TT, CPU, FS, Options,
216           getEffectiveRelocModel(TT, JIT, RM),
217           getEffectiveX86CodeModel(CM, JIT, TT.getArch() == Triple::x86_64),
218           OL),
219       TLOF(createTLOF(getTargetTriple())) {
220   // Windows stack unwinder gets confused when execution flow "falls through"
221   // after a call to 'noreturn' function.
222   // To prevent that, we emit a trap for 'unreachable' IR instructions.
223   // (which on X86, happens to be the 'ud2' instruction)
224   // On PS4, the "return address" of a 'noreturn' call must still be within
225   // the calling function, and TrapUnreachable is an easy way to get that.
226   // The check here for 64-bit windows is a bit icky, but as we're unlikely
227   // to ever want to mix 32 and 64-bit windows code in a single module
228   // this should be fine.
229   if ((TT.isOSWindows() && TT.getArch() == Triple::x86_64) || TT.isPS4() ||
230       TT.isOSBinFormatMachO()) {
231     this->Options.TrapUnreachable = true;
232     this->Options.NoTrapAfterNoreturn = TT.isOSBinFormatMachO();
233   }
234 
235   // Outlining is available for x86-64.
236   if (TT.getArch() == Triple::x86_64)
237     setMachineOutliner(true);
238 
239   initAsmInfo();
240 }
241 
242 X86TargetMachine::~X86TargetMachine() = default;
243 
244 const X86Subtarget *
245 X86TargetMachine::getSubtargetImpl(const Function &F) const {
246   Attribute CPUAttr = F.getFnAttribute("target-cpu");
247   Attribute FSAttr = F.getFnAttribute("target-features");
248 
249   StringRef CPU = !CPUAttr.hasAttribute(Attribute::None)
250                       ? CPUAttr.getValueAsString()
251                       : (StringRef)TargetCPU;
252   StringRef FS = !FSAttr.hasAttribute(Attribute::None)
253                      ? FSAttr.getValueAsString()
254                      : (StringRef)TargetFS;
255 
256   SmallString<512> Key;
257   Key.reserve(CPU.size() + FS.size());
258   Key += CPU;
259   Key += FS;
260 
261   // FIXME: This is related to the code below to reset the target options,
262   // we need to know whether or not the soft float flag is set on the
263   // function before we can generate a subtarget. We also need to use
264   // it as a key for the subtarget since that can be the only difference
265   // between two functions.
266   bool SoftFloat =
267       F.getFnAttribute("use-soft-float").getValueAsString() == "true";
268   // If the soft float attribute is set on the function turn on the soft float
269   // subtarget feature.
270   if (SoftFloat)
271     Key += FS.empty() ? "+soft-float" : ",+soft-float";
272 
273   // Keep track of the key width after all features are added so we can extract
274   // the feature string out later.
275   unsigned CPUFSWidth = Key.size();
276 
277   // Extract prefer-vector-width attribute.
278   unsigned PreferVectorWidthOverride = 0;
279   if (F.hasFnAttribute("prefer-vector-width")) {
280     StringRef Val = F.getFnAttribute("prefer-vector-width").getValueAsString();
281     unsigned Width;
282     if (!Val.getAsInteger(0, Width)) {
283       Key += ",prefer-vector-width=";
284       Key += Val;
285       PreferVectorWidthOverride = Width;
286     }
287   }
288 
289   // Extract min-legal-vector-width attribute.
290   unsigned RequiredVectorWidth = UINT32_MAX;
291   if (F.hasFnAttribute("min-legal-vector-width")) {
292     StringRef Val =
293         F.getFnAttribute("min-legal-vector-width").getValueAsString();
294     unsigned Width;
295     if (!Val.getAsInteger(0, Width)) {
296       Key += ",min-legal-vector-width=";
297       Key += Val;
298       RequiredVectorWidth = Width;
299     }
300   }
301 
302   // Extracted here so that we make sure there is backing for the StringRef. If
303   // we assigned earlier, its possible the SmallString reallocated leaving a
304   // dangling StringRef.
305   FS = Key.slice(CPU.size(), CPUFSWidth);
306 
307   auto &I = SubtargetMap[Key];
308   if (!I) {
309     // This needs to be done before we create a new subtarget since any
310     // creation will depend on the TM and the code generation flags on the
311     // function that reside in TargetOptions.
312     resetTargetOptions(F);
313     I = llvm::make_unique<X86Subtarget>(TargetTriple, CPU, FS, *this,
314                                         Options.StackAlignmentOverride,
315                                         PreferVectorWidthOverride,
316                                         RequiredVectorWidth);
317   }
318   return I.get();
319 }
320 
321 //===----------------------------------------------------------------------===//
322 // Command line options for x86
323 //===----------------------------------------------------------------------===//
324 static cl::opt<bool>
325 UseVZeroUpper("x86-use-vzeroupper", cl::Hidden,
326   cl::desc("Minimize AVX to SSE transition penalty"),
327   cl::init(true));
328 
329 //===----------------------------------------------------------------------===//
330 // X86 TTI query.
331 //===----------------------------------------------------------------------===//
332 
333 TargetTransformInfo
334 X86TargetMachine::getTargetTransformInfo(const Function &F) {
335   return TargetTransformInfo(X86TTIImpl(this, F));
336 }
337 
338 //===----------------------------------------------------------------------===//
339 // Pass Pipeline Configuration
340 //===----------------------------------------------------------------------===//
341 
342 namespace {
343 
344 /// X86 Code Generator Pass Configuration Options.
345 class X86PassConfig : public TargetPassConfig {
346 public:
347   X86PassConfig(X86TargetMachine &TM, PassManagerBase &PM)
348     : TargetPassConfig(TM, PM) {}
349 
350   X86TargetMachine &getX86TargetMachine() const {
351     return getTM<X86TargetMachine>();
352   }
353 
354   ScheduleDAGInstrs *
355   createMachineScheduler(MachineSchedContext *C) const override {
356     ScheduleDAGMILive *DAG = createGenericSchedLive(C);
357     DAG->addMutation(createX86MacroFusionDAGMutation());
358     return DAG;
359   }
360 
361   ScheduleDAGInstrs *
362   createPostMachineScheduler(MachineSchedContext *C) const override {
363     ScheduleDAGMI *DAG = createGenericSchedPostRA(C);
364     DAG->addMutation(createX86MacroFusionDAGMutation());
365     return DAG;
366   }
367 
368   void addIRPasses() override;
369   bool addInstSelector() override;
370   bool addIRTranslator() override;
371   bool addLegalizeMachineIR() override;
372   bool addRegBankSelect() override;
373   bool addGlobalInstructionSelect() override;
374   bool addILPOpts() override;
375   bool addPreISel() override;
376   void addMachineSSAOptimization() override;
377   void addPreRegAlloc() override;
378   void addPostRegAlloc() override;
379   void addPreEmitPass() override;
380   void addPreEmitPass2() override;
381   void addPreSched2() override;
382 
383   std::unique_ptr<CSEConfigBase> getCSEConfig() const override;
384 };
385 
386 class X86ExecutionDomainFix : public ExecutionDomainFix {
387 public:
388   static char ID;
389   X86ExecutionDomainFix() : ExecutionDomainFix(ID, X86::VR128XRegClass) {}
390   StringRef getPassName() const override {
391     return "X86 Execution Dependency Fix";
392   }
393 };
394 char X86ExecutionDomainFix::ID;
395 
396 } // end anonymous namespace
397 
398 INITIALIZE_PASS_BEGIN(X86ExecutionDomainFix, "x86-execution-domain-fix",
399   "X86 Execution Domain Fix", false, false)
400 INITIALIZE_PASS_DEPENDENCY(ReachingDefAnalysis)
401 INITIALIZE_PASS_END(X86ExecutionDomainFix, "x86-execution-domain-fix",
402   "X86 Execution Domain Fix", false, false)
403 
404 TargetPassConfig *X86TargetMachine::createPassConfig(PassManagerBase &PM) {
405   return new X86PassConfig(*this, PM);
406 }
407 
408 void X86PassConfig::addIRPasses() {
409   addPass(createAtomicExpandPass());
410 
411   TargetPassConfig::addIRPasses();
412 
413   if (TM->getOptLevel() != CodeGenOpt::None)
414     addPass(createInterleavedAccessPass());
415 
416   // Add passes that handle indirect branch removal and insertion of a retpoline
417   // thunk. These will be a no-op unless a function subtarget has the retpoline
418   // feature enabled.
419   addPass(createIndirectBrExpandPass());
420 }
421 
422 bool X86PassConfig::addInstSelector() {
423   // Install an instruction selector.
424   addPass(createX86ISelDag(getX86TargetMachine(), getOptLevel()));
425 
426   // For ELF, cleanup any local-dynamic TLS accesses.
427   if (TM->getTargetTriple().isOSBinFormatELF() &&
428       getOptLevel() != CodeGenOpt::None)
429     addPass(createCleanupLocalDynamicTLSPass());
430 
431   addPass(createX86GlobalBaseRegPass());
432   return false;
433 }
434 
435 bool X86PassConfig::addIRTranslator() {
436   addPass(new IRTranslator());
437   return false;
438 }
439 
440 bool X86PassConfig::addLegalizeMachineIR() {
441   addPass(new Legalizer());
442   return false;
443 }
444 
445 bool X86PassConfig::addRegBankSelect() {
446   addPass(new RegBankSelect());
447   return false;
448 }
449 
450 bool X86PassConfig::addGlobalInstructionSelect() {
451   addPass(new InstructionSelect());
452   return false;
453 }
454 
455 bool X86PassConfig::addILPOpts() {
456   if (EnableCondBrFoldingPass)
457     addPass(createX86CondBrFolding());
458   addPass(&EarlyIfConverterID);
459   if (EnableMachineCombinerPass)
460     addPass(&MachineCombinerID);
461   addPass(createX86CmovConverterPass());
462   return true;
463 }
464 
465 bool X86PassConfig::addPreISel() {
466   // Only add this pass for 32-bit x86 Windows.
467   const Triple &TT = TM->getTargetTriple();
468   if (TT.isOSWindows() && TT.getArch() == Triple::x86)
469     addPass(createX86WinEHStatePass());
470   return true;
471 }
472 
473 void X86PassConfig::addPreRegAlloc() {
474   if (getOptLevel() != CodeGenOpt::None) {
475     addPass(&LiveRangeShrinkID);
476     addPass(createX86FixupSetCC());
477     addPass(createX86OptimizeLEAs());
478     addPass(createX86CallFrameOptimization());
479     addPass(createX86AvoidStoreForwardingBlocks());
480   }
481 
482   addPass(createX86SpeculativeLoadHardeningPass());
483   addPass(createX86FlagsCopyLoweringPass());
484   addPass(createX86WinAllocaExpander());
485 }
486 void X86PassConfig::addMachineSSAOptimization() {
487   addPass(createX86DomainReassignmentPass());
488   TargetPassConfig::addMachineSSAOptimization();
489 }
490 
491 void X86PassConfig::addPostRegAlloc() {
492   addPass(createX86FloatingPointStackifierPass());
493 }
494 
495 void X86PassConfig::addPreSched2() { addPass(createX86ExpandPseudoPass()); }
496 
497 void X86PassConfig::addPreEmitPass() {
498   if (getOptLevel() != CodeGenOpt::None) {
499     addPass(new X86ExecutionDomainFix());
500     addPass(createBreakFalseDeps());
501   }
502 
503   addPass(createX86IndirectBranchTrackingPass());
504 
505   if (UseVZeroUpper)
506     addPass(createX86IssueVZeroUpperPass());
507 
508   if (getOptLevel() != CodeGenOpt::None) {
509     addPass(createX86FixupBWInsts());
510     addPass(createX86PadShortFunctions());
511     addPass(createX86FixupLEAs());
512     addPass(createX86EvexToVexInsts());
513   }
514   addPass(createX86DiscriminateMemOpsPass());
515   addPass(createX86InsertPrefetchPass());
516 }
517 
518 void X86PassConfig::addPreEmitPass2() {
519   addPass(createX86RetpolineThunksPass());
520   // Verify basic block incoming and outgoing cfa offset and register values and
521   // correct CFA calculation rule where needed by inserting appropriate CFI
522   // instructions.
523   const Triple &TT = TM->getTargetTriple();
524   const MCAsmInfo *MAI = TM->getMCAsmInfo();
525   if (!TT.isOSDarwin() &&
526       (!TT.isOSWindows() ||
527        MAI->getExceptionHandlingType() == ExceptionHandling::DwarfCFI))
528     addPass(createCFIInstrInserter());
529 }
530 
531 std::unique_ptr<CSEConfigBase> X86PassConfig::getCSEConfig() const {
532   return getStandardCSEConfigForOpt(TM->getOptLevel());
533 }
534