1 //===-- X86TargetMachine.cpp - Define TargetMachine for the X86 -----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines the X86 specific subclass of TargetMachine. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "X86TargetMachine.h" 14 #include "MCTargetDesc/X86MCTargetDesc.h" 15 #include "TargetInfo/X86TargetInfo.h" 16 #include "X86.h" 17 #include "X86CallLowering.h" 18 #include "X86LegalizerInfo.h" 19 #include "X86MacroFusion.h" 20 #include "X86Subtarget.h" 21 #include "X86TargetObjectFile.h" 22 #include "X86TargetTransformInfo.h" 23 #include "llvm/ADT/Optional.h" 24 #include "llvm/ADT/STLExtras.h" 25 #include "llvm/ADT/SmallString.h" 26 #include "llvm/ADT/StringRef.h" 27 #include "llvm/ADT/Triple.h" 28 #include "llvm/Analysis/TargetTransformInfo.h" 29 #include "llvm/CodeGen/ExecutionDomainFix.h" 30 #include "llvm/CodeGen/GlobalISel/CallLowering.h" 31 #include "llvm/CodeGen/GlobalISel/IRTranslator.h" 32 #include "llvm/CodeGen/GlobalISel/InstructionSelect.h" 33 #include "llvm/CodeGen/GlobalISel/Legalizer.h" 34 #include "llvm/CodeGen/GlobalISel/RegBankSelect.h" 35 #include "llvm/CodeGen/MachineScheduler.h" 36 #include "llvm/CodeGen/Passes.h" 37 #include "llvm/CodeGen/TargetPassConfig.h" 38 #include "llvm/IR/Attributes.h" 39 #include "llvm/IR/DataLayout.h" 40 #include "llvm/IR/Function.h" 41 #include "llvm/MC/MCAsmInfo.h" 42 #include "llvm/Pass.h" 43 #include "llvm/Support/CodeGen.h" 44 #include "llvm/Support/CommandLine.h" 45 #include "llvm/Support/ErrorHandling.h" 46 #include "llvm/Support/TargetRegistry.h" 47 #include "llvm/Target/TargetLoweringObjectFile.h" 48 #include "llvm/Target/TargetOptions.h" 49 #include "llvm/Transforms/CFGuard.h" 50 #include <memory> 51 #include <string> 52 53 using namespace llvm; 54 55 static cl::opt<bool> EnableMachineCombinerPass("x86-machine-combiner", 56 cl::desc("Enable the machine combiner pass"), 57 cl::init(true), cl::Hidden); 58 59 static cl::opt<bool> EnableCondBrFoldingPass("x86-condbr-folding", 60 cl::desc("Enable the conditional branch " 61 "folding pass"), 62 cl::init(false), cl::Hidden); 63 64 extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeX86Target() { 65 // Register the target. 66 RegisterTargetMachine<X86TargetMachine> X(getTheX86_32Target()); 67 RegisterTargetMachine<X86TargetMachine> Y(getTheX86_64Target()); 68 69 PassRegistry &PR = *PassRegistry::getPassRegistry(); 70 initializeGlobalISel(PR); 71 initializeWinEHStatePassPass(PR); 72 initializeFixupBWInstPassPass(PR); 73 initializeEvexToVexInstPassPass(PR); 74 initializeFixupLEAPassPass(PR); 75 initializeFPSPass(PR); 76 initializeX86FixupSetCCPassPass(PR); 77 initializeX86CallFrameOptimizationPass(PR); 78 initializeX86CmovConverterPassPass(PR); 79 initializeX86ExpandPseudoPass(PR); 80 initializeX86ExecutionDomainFixPass(PR); 81 initializeX86DomainReassignmentPass(PR); 82 initializeX86AvoidSFBPassPass(PR); 83 initializeX86AvoidTrailingCallPassPass(PR); 84 initializeX86SpeculativeLoadHardeningPassPass(PR); 85 initializeX86FlagsCopyLoweringPassPass(PR); 86 initializeX86CondBrFoldingPassPass(PR); 87 initializeX86LoadValueInjectionRetHardeningPassPass(PR); 88 initializeX86OptimizeLEAPassPass(PR); 89 initializeX86PartialReductionPass(PR); 90 } 91 92 static std::unique_ptr<TargetLoweringObjectFile> createTLOF(const Triple &TT) { 93 if (TT.isOSBinFormatMachO()) { 94 if (TT.getArch() == Triple::x86_64) 95 return std::make_unique<X86_64MachoTargetObjectFile>(); 96 return std::make_unique<TargetLoweringObjectFileMachO>(); 97 } 98 99 if (TT.isOSBinFormatCOFF()) 100 return std::make_unique<TargetLoweringObjectFileCOFF>(); 101 return std::make_unique<X86ELFTargetObjectFile>(); 102 } 103 104 static std::string computeDataLayout(const Triple &TT) { 105 // X86 is little endian 106 std::string Ret = "e"; 107 108 Ret += DataLayout::getManglingComponent(TT); 109 // X86 and x32 have 32 bit pointers. 110 if ((TT.isArch64Bit() && 111 (TT.getEnvironment() == Triple::GNUX32 || TT.isOSNaCl())) || 112 !TT.isArch64Bit()) 113 Ret += "-p:32:32"; 114 115 // Address spaces for 32 bit signed, 32 bit unsigned, and 64 bit pointers. 116 Ret += "-p270:32:32-p271:32:32-p272:64:64"; 117 118 // Some ABIs align 64 bit integers and doubles to 64 bits, others to 32. 119 if (TT.isArch64Bit() || TT.isOSWindows() || TT.isOSNaCl()) 120 Ret += "-i64:64"; 121 else if (TT.isOSIAMCU()) 122 Ret += "-i64:32-f64:32"; 123 else 124 Ret += "-f64:32:64"; 125 126 // Some ABIs align long double to 128 bits, others to 32. 127 if (TT.isOSNaCl() || TT.isOSIAMCU()) 128 ; // No f80 129 else if (TT.isArch64Bit() || TT.isOSDarwin()) 130 Ret += "-f80:128"; 131 else 132 Ret += "-f80:32"; 133 134 if (TT.isOSIAMCU()) 135 Ret += "-f128:32"; 136 137 // The registers can hold 8, 16, 32 or, in x86-64, 64 bits. 138 if (TT.isArch64Bit()) 139 Ret += "-n8:16:32:64"; 140 else 141 Ret += "-n8:16:32"; 142 143 // The stack is aligned to 32 bits on some ABIs and 128 bits on others. 144 if ((!TT.isArch64Bit() && TT.isOSWindows()) || TT.isOSIAMCU()) 145 Ret += "-a:0:32-S32"; 146 else 147 Ret += "-S128"; 148 149 return Ret; 150 } 151 152 static Reloc::Model getEffectiveRelocModel(const Triple &TT, 153 bool JIT, 154 Optional<Reloc::Model> RM) { 155 bool is64Bit = TT.getArch() == Triple::x86_64; 156 if (!RM.hasValue()) { 157 // JIT codegen should use static relocations by default, since it's 158 // typically executed in process and not relocatable. 159 if (JIT) 160 return Reloc::Static; 161 162 // Darwin defaults to PIC in 64 bit mode and dynamic-no-pic in 32 bit mode. 163 // Win64 requires rip-rel addressing, thus we force it to PIC. Otherwise we 164 // use static relocation model by default. 165 if (TT.isOSDarwin()) { 166 if (is64Bit) 167 return Reloc::PIC_; 168 return Reloc::DynamicNoPIC; 169 } 170 if (TT.isOSWindows() && is64Bit) 171 return Reloc::PIC_; 172 return Reloc::Static; 173 } 174 175 // ELF and X86-64 don't have a distinct DynamicNoPIC model. DynamicNoPIC 176 // is defined as a model for code which may be used in static or dynamic 177 // executables but not necessarily a shared library. On X86-32 we just 178 // compile in -static mode, in x86-64 we use PIC. 179 if (*RM == Reloc::DynamicNoPIC) { 180 if (is64Bit) 181 return Reloc::PIC_; 182 if (!TT.isOSDarwin()) 183 return Reloc::Static; 184 } 185 186 // If we are on Darwin, disallow static relocation model in X86-64 mode, since 187 // the Mach-O file format doesn't support it. 188 if (*RM == Reloc::Static && TT.isOSDarwin() && is64Bit) 189 return Reloc::PIC_; 190 191 return *RM; 192 } 193 194 static CodeModel::Model getEffectiveX86CodeModel(Optional<CodeModel::Model> CM, 195 bool JIT, bool Is64Bit) { 196 if (CM) { 197 if (*CM == CodeModel::Tiny) 198 report_fatal_error("Target does not support the tiny CodeModel", false); 199 return *CM; 200 } 201 if (JIT) 202 return Is64Bit ? CodeModel::Large : CodeModel::Small; 203 return CodeModel::Small; 204 } 205 206 /// Create an X86 target. 207 /// 208 X86TargetMachine::X86TargetMachine(const Target &T, const Triple &TT, 209 StringRef CPU, StringRef FS, 210 const TargetOptions &Options, 211 Optional<Reloc::Model> RM, 212 Optional<CodeModel::Model> CM, 213 CodeGenOpt::Level OL, bool JIT) 214 : LLVMTargetMachine( 215 T, computeDataLayout(TT), TT, CPU, FS, Options, 216 getEffectiveRelocModel(TT, JIT, RM), 217 getEffectiveX86CodeModel(CM, JIT, TT.getArch() == Triple::x86_64), 218 OL), 219 TLOF(createTLOF(getTargetTriple())), IsJIT(JIT) { 220 // On PS4, the "return address" of a 'noreturn' call must still be within 221 // the calling function, and TrapUnreachable is an easy way to get that. 222 if (TT.isPS4() || TT.isOSBinFormatMachO()) { 223 this->Options.TrapUnreachable = true; 224 this->Options.NoTrapAfterNoreturn = TT.isOSBinFormatMachO(); 225 } 226 227 setMachineOutliner(true); 228 229 // x86 supports the debug entry values. 230 setSupportsDebugEntryValues(true); 231 232 initAsmInfo(); 233 } 234 235 X86TargetMachine::~X86TargetMachine() = default; 236 237 const X86Subtarget * 238 X86TargetMachine::getSubtargetImpl(const Function &F) const { 239 Attribute CPUAttr = F.getFnAttribute("target-cpu"); 240 Attribute FSAttr = F.getFnAttribute("target-features"); 241 242 StringRef CPU = !CPUAttr.hasAttribute(Attribute::None) 243 ? CPUAttr.getValueAsString() 244 : (StringRef)TargetCPU; 245 StringRef FS = !FSAttr.hasAttribute(Attribute::None) 246 ? FSAttr.getValueAsString() 247 : (StringRef)TargetFS; 248 249 SmallString<512> Key; 250 Key.reserve(CPU.size() + FS.size()); 251 Key += CPU; 252 Key += FS; 253 254 // FIXME: This is related to the code below to reset the target options, 255 // we need to know whether or not the soft float flag is set on the 256 // function before we can generate a subtarget. We also need to use 257 // it as a key for the subtarget since that can be the only difference 258 // between two functions. 259 bool SoftFloat = 260 F.getFnAttribute("use-soft-float").getValueAsString() == "true"; 261 // If the soft float attribute is set on the function turn on the soft float 262 // subtarget feature. 263 if (SoftFloat) 264 Key += FS.empty() ? "+soft-float" : ",+soft-float"; 265 266 // Keep track of the key width after all features are added so we can extract 267 // the feature string out later. 268 unsigned CPUFSWidth = Key.size(); 269 270 // Extract prefer-vector-width attribute. 271 unsigned PreferVectorWidthOverride = 0; 272 if (F.hasFnAttribute("prefer-vector-width")) { 273 StringRef Val = F.getFnAttribute("prefer-vector-width").getValueAsString(); 274 unsigned Width; 275 if (!Val.getAsInteger(0, Width)) { 276 Key += ",prefer-vector-width="; 277 Key += Val; 278 PreferVectorWidthOverride = Width; 279 } 280 } 281 282 // Extract min-legal-vector-width attribute. 283 unsigned RequiredVectorWidth = UINT32_MAX; 284 if (F.hasFnAttribute("min-legal-vector-width")) { 285 StringRef Val = 286 F.getFnAttribute("min-legal-vector-width").getValueAsString(); 287 unsigned Width; 288 if (!Val.getAsInteger(0, Width)) { 289 Key += ",min-legal-vector-width="; 290 Key += Val; 291 RequiredVectorWidth = Width; 292 } 293 } 294 295 // Extracted here so that we make sure there is backing for the StringRef. If 296 // we assigned earlier, its possible the SmallString reallocated leaving a 297 // dangling StringRef. 298 FS = Key.slice(CPU.size(), CPUFSWidth); 299 300 auto &I = SubtargetMap[Key]; 301 if (!I) { 302 // This needs to be done before we create a new subtarget since any 303 // creation will depend on the TM and the code generation flags on the 304 // function that reside in TargetOptions. 305 resetTargetOptions(F); 306 I = std::make_unique<X86Subtarget>( 307 TargetTriple, CPU, FS, *this, 308 MaybeAlign(Options.StackAlignmentOverride), PreferVectorWidthOverride, 309 RequiredVectorWidth); 310 } 311 return I.get(); 312 } 313 314 //===----------------------------------------------------------------------===// 315 // Command line options for x86 316 //===----------------------------------------------------------------------===// 317 static cl::opt<bool> 318 UseVZeroUpper("x86-use-vzeroupper", cl::Hidden, 319 cl::desc("Minimize AVX to SSE transition penalty"), 320 cl::init(true)); 321 322 //===----------------------------------------------------------------------===// 323 // X86 TTI query. 324 //===----------------------------------------------------------------------===// 325 326 TargetTransformInfo 327 X86TargetMachine::getTargetTransformInfo(const Function &F) { 328 return TargetTransformInfo(X86TTIImpl(this, F)); 329 } 330 331 //===----------------------------------------------------------------------===// 332 // Pass Pipeline Configuration 333 //===----------------------------------------------------------------------===// 334 335 namespace { 336 337 /// X86 Code Generator Pass Configuration Options. 338 class X86PassConfig : public TargetPassConfig { 339 public: 340 X86PassConfig(X86TargetMachine &TM, PassManagerBase &PM) 341 : TargetPassConfig(TM, PM) {} 342 343 X86TargetMachine &getX86TargetMachine() const { 344 return getTM<X86TargetMachine>(); 345 } 346 347 ScheduleDAGInstrs * 348 createMachineScheduler(MachineSchedContext *C) const override { 349 ScheduleDAGMILive *DAG = createGenericSchedLive(C); 350 DAG->addMutation(createX86MacroFusionDAGMutation()); 351 return DAG; 352 } 353 354 ScheduleDAGInstrs * 355 createPostMachineScheduler(MachineSchedContext *C) const override { 356 ScheduleDAGMI *DAG = createGenericSchedPostRA(C); 357 DAG->addMutation(createX86MacroFusionDAGMutation()); 358 return DAG; 359 } 360 361 void addIRPasses() override; 362 bool addInstSelector() override; 363 bool addIRTranslator() override; 364 bool addLegalizeMachineIR() override; 365 bool addRegBankSelect() override; 366 bool addGlobalInstructionSelect() override; 367 bool addILPOpts() override; 368 bool addPreISel() override; 369 void addMachineSSAOptimization() override; 370 void addPreRegAlloc() override; 371 void addPostRegAlloc() override; 372 void addPreEmitPass() override; 373 void addPreEmitPass2() override; 374 void addPreSched2() override; 375 376 std::unique_ptr<CSEConfigBase> getCSEConfig() const override; 377 }; 378 379 class X86ExecutionDomainFix : public ExecutionDomainFix { 380 public: 381 static char ID; 382 X86ExecutionDomainFix() : ExecutionDomainFix(ID, X86::VR128XRegClass) {} 383 StringRef getPassName() const override { 384 return "X86 Execution Dependency Fix"; 385 } 386 }; 387 char X86ExecutionDomainFix::ID; 388 389 } // end anonymous namespace 390 391 INITIALIZE_PASS_BEGIN(X86ExecutionDomainFix, "x86-execution-domain-fix", 392 "X86 Execution Domain Fix", false, false) 393 INITIALIZE_PASS_DEPENDENCY(ReachingDefAnalysis) 394 INITIALIZE_PASS_END(X86ExecutionDomainFix, "x86-execution-domain-fix", 395 "X86 Execution Domain Fix", false, false) 396 397 TargetPassConfig *X86TargetMachine::createPassConfig(PassManagerBase &PM) { 398 return new X86PassConfig(*this, PM); 399 } 400 401 void X86PassConfig::addIRPasses() { 402 addPass(createAtomicExpandPass()); 403 404 TargetPassConfig::addIRPasses(); 405 406 if (TM->getOptLevel() != CodeGenOpt::None) { 407 addPass(createInterleavedAccessPass()); 408 addPass(createX86PartialReductionPass()); 409 } 410 411 // Add passes that handle indirect branch removal and insertion of a retpoline 412 // thunk. These will be a no-op unless a function subtarget has the retpoline 413 // feature enabled. 414 addPass(createIndirectBrExpandPass()); 415 416 // Add Control Flow Guard checks. 417 const Triple &TT = TM->getTargetTriple(); 418 if (TT.isOSWindows()) { 419 if (TT.getArch() == Triple::x86_64) { 420 addPass(createCFGuardDispatchPass()); 421 } else { 422 addPass(createCFGuardCheckPass()); 423 } 424 } 425 } 426 427 bool X86PassConfig::addInstSelector() { 428 // Install an instruction selector. 429 addPass(createX86ISelDag(getX86TargetMachine(), getOptLevel())); 430 431 // For ELF, cleanup any local-dynamic TLS accesses. 432 if (TM->getTargetTriple().isOSBinFormatELF() && 433 getOptLevel() != CodeGenOpt::None) 434 addPass(createCleanupLocalDynamicTLSPass()); 435 436 addPass(createX86GlobalBaseRegPass()); 437 return false; 438 } 439 440 bool X86PassConfig::addIRTranslator() { 441 addPass(new IRTranslator()); 442 return false; 443 } 444 445 bool X86PassConfig::addLegalizeMachineIR() { 446 addPass(new Legalizer()); 447 return false; 448 } 449 450 bool X86PassConfig::addRegBankSelect() { 451 addPass(new RegBankSelect()); 452 return false; 453 } 454 455 bool X86PassConfig::addGlobalInstructionSelect() { 456 addPass(new InstructionSelect()); 457 return false; 458 } 459 460 bool X86PassConfig::addILPOpts() { 461 if (EnableCondBrFoldingPass) 462 addPass(createX86CondBrFolding()); 463 addPass(&EarlyIfConverterID); 464 if (EnableMachineCombinerPass) 465 addPass(&MachineCombinerID); 466 addPass(createX86CmovConverterPass()); 467 return true; 468 } 469 470 bool X86PassConfig::addPreISel() { 471 // Only add this pass for 32-bit x86 Windows. 472 const Triple &TT = TM->getTargetTriple(); 473 if (TT.isOSWindows() && TT.getArch() == Triple::x86) 474 addPass(createX86WinEHStatePass()); 475 return true; 476 } 477 478 void X86PassConfig::addPreRegAlloc() { 479 if (getOptLevel() != CodeGenOpt::None) { 480 addPass(&LiveRangeShrinkID); 481 addPass(createX86FixupSetCC()); 482 addPass(createX86OptimizeLEAs()); 483 addPass(createX86CallFrameOptimization()); 484 addPass(createX86AvoidStoreForwardingBlocks()); 485 } 486 487 addPass(createX86SpeculativeLoadHardeningPass()); 488 addPass(createX86FlagsCopyLoweringPass()); 489 addPass(createX86WinAllocaExpander()); 490 } 491 void X86PassConfig::addMachineSSAOptimization() { 492 addPass(createX86DomainReassignmentPass()); 493 TargetPassConfig::addMachineSSAOptimization(); 494 } 495 496 void X86PassConfig::addPostRegAlloc() { 497 addPass(createX86FloatingPointStackifierPass()); 498 } 499 500 void X86PassConfig::addPreSched2() { addPass(createX86ExpandPseudoPass()); } 501 502 void X86PassConfig::addPreEmitPass() { 503 if (getOptLevel() != CodeGenOpt::None) { 504 addPass(new X86ExecutionDomainFix()); 505 addPass(createBreakFalseDeps()); 506 } 507 508 addPass(createX86IndirectBranchTrackingPass()); 509 510 if (UseVZeroUpper) 511 addPass(createX86IssueVZeroUpperPass()); 512 513 if (getOptLevel() != CodeGenOpt::None) { 514 addPass(createX86FixupBWInsts()); 515 addPass(createX86PadShortFunctions()); 516 addPass(createX86FixupLEAs()); 517 addPass(createX86EvexToVexInsts()); 518 } 519 addPass(createX86DiscriminateMemOpsPass()); 520 addPass(createX86InsertPrefetchPass()); 521 addPass(createX86InsertX87waitPass()); 522 } 523 524 void X86PassConfig::addPreEmitPass2() { 525 const Triple &TT = TM->getTargetTriple(); 526 const MCAsmInfo *MAI = TM->getMCAsmInfo(); 527 528 addPass(createX86IndirectThunksPass()); 529 530 // Insert extra int3 instructions after trailing call instructions to avoid 531 // issues in the unwinder. 532 if (TT.isOSWindows() && TT.getArch() == Triple::x86_64) 533 addPass(createX86AvoidTrailingCallPass()); 534 535 // Verify basic block incoming and outgoing cfa offset and register values and 536 // correct CFA calculation rule where needed by inserting appropriate CFI 537 // instructions. 538 if (!TT.isOSDarwin() && 539 (!TT.isOSWindows() || 540 MAI->getExceptionHandlingType() == ExceptionHandling::DwarfCFI)) 541 addPass(createCFIInstrInserter()); 542 // Identify valid longjmp targets for Windows Control Flow Guard. 543 if (TT.isOSWindows()) 544 addPass(createCFGuardLongjmpPass()); 545 addPass(createX86LoadValueInjectionRetHardeningPass()); 546 } 547 548 std::unique_ptr<CSEConfigBase> X86PassConfig::getCSEConfig() const { 549 return getStandardCSEConfigForOpt(TM->getOptLevel()); 550 } 551