1 //===-- X86TargetMachine.cpp - Define TargetMachine for the X86 -----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines the X86 specific subclass of TargetMachine. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "MCTargetDesc/X86MCTargetDesc.h" 15 #include "X86.h" 16 #include "X86CallLowering.h" 17 #include "X86LegalizerInfo.h" 18 #include "X86MacroFusion.h" 19 #include "X86Subtarget.h" 20 #include "X86TargetMachine.h" 21 #include "X86TargetObjectFile.h" 22 #include "X86TargetTransformInfo.h" 23 #include "llvm/ADT/Optional.h" 24 #include "llvm/ADT/STLExtras.h" 25 #include "llvm/ADT/SmallString.h" 26 #include "llvm/ADT/StringRef.h" 27 #include "llvm/ADT/Triple.h" 28 #include "llvm/Analysis/TargetTransformInfo.h" 29 #include "llvm/CodeGen/ExecutionDepsFix.h" 30 #include "llvm/CodeGen/GlobalISel/CallLowering.h" 31 #include "llvm/CodeGen/GlobalISel/IRTranslator.h" 32 #include "llvm/CodeGen/GlobalISel/InstructionSelect.h" 33 #include "llvm/CodeGen/GlobalISel/Legalizer.h" 34 #include "llvm/CodeGen/GlobalISel/RegBankSelect.h" 35 #include "llvm/CodeGen/MachineScheduler.h" 36 #include "llvm/CodeGen/Passes.h" 37 #include "llvm/CodeGen/TargetPassConfig.h" 38 #include "llvm/IR/Attributes.h" 39 #include "llvm/IR/DataLayout.h" 40 #include "llvm/IR/Function.h" 41 #include "llvm/Pass.h" 42 #include "llvm/Support/CodeGen.h" 43 #include "llvm/Support/CommandLine.h" 44 #include "llvm/Support/ErrorHandling.h" 45 #include "llvm/Support/TargetRegistry.h" 46 #include "llvm/Target/TargetLoweringObjectFile.h" 47 #include "llvm/Target/TargetOptions.h" 48 #include <memory> 49 #include <string> 50 51 using namespace llvm; 52 53 static cl::opt<bool> EnableMachineCombinerPass("x86-machine-combiner", 54 cl::desc("Enable the machine combiner pass"), 55 cl::init(true), cl::Hidden); 56 57 namespace llvm { 58 59 void initializeWinEHStatePassPass(PassRegistry &); 60 void initializeFixupLEAPassPass(PassRegistry &); 61 void initializeX86CmovConverterPassPass(PassRegistry &); 62 void initializeX86ExecutionDepsFixPass(PassRegistry &); 63 64 } // end namespace llvm 65 66 extern "C" void LLVMInitializeX86Target() { 67 // Register the target. 68 RegisterTargetMachine<X86TargetMachine> X(getTheX86_32Target()); 69 RegisterTargetMachine<X86TargetMachine> Y(getTheX86_64Target()); 70 71 PassRegistry &PR = *PassRegistry::getPassRegistry(); 72 initializeGlobalISel(PR); 73 initializeWinEHStatePassPass(PR); 74 initializeFixupBWInstPassPass(PR); 75 initializeEvexToVexInstPassPass(PR); 76 initializeFixupLEAPassPass(PR); 77 initializeX86CmovConverterPassPass(PR); 78 initializeX86ExecutionDepsFixPass(PR); 79 } 80 81 static std::unique_ptr<TargetLoweringObjectFile> createTLOF(const Triple &TT) { 82 if (TT.isOSBinFormatMachO()) { 83 if (TT.getArch() == Triple::x86_64) 84 return llvm::make_unique<X86_64MachoTargetObjectFile>(); 85 return llvm::make_unique<TargetLoweringObjectFileMachO>(); 86 } 87 88 if (TT.isOSFreeBSD()) 89 return llvm::make_unique<X86FreeBSDTargetObjectFile>(); 90 if (TT.isOSLinux() || TT.isOSNaCl() || TT.isOSIAMCU()) 91 return llvm::make_unique<X86LinuxNaClTargetObjectFile>(); 92 if (TT.isOSSolaris()) 93 return llvm::make_unique<X86SolarisTargetObjectFile>(); 94 if (TT.isOSFuchsia()) 95 return llvm::make_unique<X86FuchsiaTargetObjectFile>(); 96 if (TT.isOSBinFormatELF()) 97 return llvm::make_unique<X86ELFTargetObjectFile>(); 98 if (TT.isKnownWindowsMSVCEnvironment() || TT.isWindowsCoreCLREnvironment()) 99 return llvm::make_unique<X86WindowsTargetObjectFile>(); 100 if (TT.isOSBinFormatCOFF()) 101 return llvm::make_unique<TargetLoweringObjectFileCOFF>(); 102 llvm_unreachable("unknown subtarget type"); 103 } 104 105 static std::string computeDataLayout(const Triple &TT) { 106 // X86 is little endian 107 std::string Ret = "e"; 108 109 Ret += DataLayout::getManglingComponent(TT); 110 // X86 and x32 have 32 bit pointers. 111 if ((TT.isArch64Bit() && 112 (TT.getEnvironment() == Triple::GNUX32 || TT.isOSNaCl())) || 113 !TT.isArch64Bit()) 114 Ret += "-p:32:32"; 115 116 // Some ABIs align 64 bit integers and doubles to 64 bits, others to 32. 117 if (TT.isArch64Bit() || TT.isOSWindows() || TT.isOSNaCl()) 118 Ret += "-i64:64"; 119 else if (TT.isOSIAMCU()) 120 Ret += "-i64:32-f64:32"; 121 else 122 Ret += "-f64:32:64"; 123 124 // Some ABIs align long double to 128 bits, others to 32. 125 if (TT.isOSNaCl() || TT.isOSIAMCU()) 126 ; // No f80 127 else if (TT.isArch64Bit() || TT.isOSDarwin()) 128 Ret += "-f80:128"; 129 else 130 Ret += "-f80:32"; 131 132 if (TT.isOSIAMCU()) 133 Ret += "-f128:32"; 134 135 // The registers can hold 8, 16, 32 or, in x86-64, 64 bits. 136 if (TT.isArch64Bit()) 137 Ret += "-n8:16:32:64"; 138 else 139 Ret += "-n8:16:32"; 140 141 // The stack is aligned to 32 bits on some ABIs and 128 bits on others. 142 if ((!TT.isArch64Bit() && TT.isOSWindows()) || TT.isOSIAMCU()) 143 Ret += "-a:0:32-S32"; 144 else 145 Ret += "-S128"; 146 147 return Ret; 148 } 149 150 static Reloc::Model getEffectiveRelocModel(const Triple &TT, 151 Optional<Reloc::Model> RM) { 152 bool is64Bit = TT.getArch() == Triple::x86_64; 153 if (!RM.hasValue()) { 154 // Darwin defaults to PIC in 64 bit mode and dynamic-no-pic in 32 bit mode. 155 // Win64 requires rip-rel addressing, thus we force it to PIC. Otherwise we 156 // use static relocation model by default. 157 if (TT.isOSDarwin()) { 158 if (is64Bit) 159 return Reloc::PIC_; 160 return Reloc::DynamicNoPIC; 161 } 162 if (TT.isOSWindows() && is64Bit) 163 return Reloc::PIC_; 164 return Reloc::Static; 165 } 166 167 // ELF and X86-64 don't have a distinct DynamicNoPIC model. DynamicNoPIC 168 // is defined as a model for code which may be used in static or dynamic 169 // executables but not necessarily a shared library. On X86-32 we just 170 // compile in -static mode, in x86-64 we use PIC. 171 if (*RM == Reloc::DynamicNoPIC) { 172 if (is64Bit) 173 return Reloc::PIC_; 174 if (!TT.isOSDarwin()) 175 return Reloc::Static; 176 } 177 178 // If we are on Darwin, disallow static relocation model in X86-64 mode, since 179 // the Mach-O file format doesn't support it. 180 if (*RM == Reloc::Static && TT.isOSDarwin() && is64Bit) 181 return Reloc::PIC_; 182 183 return *RM; 184 } 185 186 static CodeModel::Model getEffectiveCodeModel(Optional<CodeModel::Model> CM, 187 bool JIT, bool Is64Bit) { 188 if (CM) 189 return *CM; 190 if (JIT) 191 return Is64Bit ? CodeModel::Large : CodeModel::Small; 192 return CodeModel::Small; 193 } 194 195 /// Create an X86 target. 196 /// 197 X86TargetMachine::X86TargetMachine(const Target &T, const Triple &TT, 198 StringRef CPU, StringRef FS, 199 const TargetOptions &Options, 200 Optional<Reloc::Model> RM, 201 Optional<CodeModel::Model> CM, 202 CodeGenOpt::Level OL, bool JIT) 203 : LLVMTargetMachine( 204 T, computeDataLayout(TT), TT, CPU, FS, Options, 205 getEffectiveRelocModel(TT, RM), 206 getEffectiveCodeModel(CM, JIT, TT.getArch() == Triple::x86_64), OL), 207 TLOF(createTLOF(getTargetTriple())) { 208 // Windows stack unwinder gets confused when execution flow "falls through" 209 // after a call to 'noreturn' function. 210 // To prevent that, we emit a trap for 'unreachable' IR instructions. 211 // (which on X86, happens to be the 'ud2' instruction) 212 // On PS4, the "return address" of a 'noreturn' call must still be within 213 // the calling function, and TrapUnreachable is an easy way to get that. 214 // The check here for 64-bit windows is a bit icky, but as we're unlikely 215 // to ever want to mix 32 and 64-bit windows code in a single module 216 // this should be fine. 217 if ((TT.isOSWindows() && TT.getArch() == Triple::x86_64) || TT.isPS4()) 218 this->Options.TrapUnreachable = true; 219 220 initAsmInfo(); 221 } 222 223 X86TargetMachine::~X86TargetMachine() = default; 224 225 const X86Subtarget * 226 X86TargetMachine::getSubtargetImpl(const Function &F) const { 227 Attribute CPUAttr = F.getFnAttribute("target-cpu"); 228 Attribute FSAttr = F.getFnAttribute("target-features"); 229 230 StringRef CPU = !CPUAttr.hasAttribute(Attribute::None) 231 ? CPUAttr.getValueAsString() 232 : (StringRef)TargetCPU; 233 StringRef FS = !FSAttr.hasAttribute(Attribute::None) 234 ? FSAttr.getValueAsString() 235 : (StringRef)TargetFS; 236 237 SmallString<512> Key; 238 Key.reserve(CPU.size() + FS.size()); 239 Key += CPU; 240 Key += FS; 241 242 // FIXME: This is related to the code below to reset the target options, 243 // we need to know whether or not the soft float flag is set on the 244 // function before we can generate a subtarget. We also need to use 245 // it as a key for the subtarget since that can be the only difference 246 // between two functions. 247 bool SoftFloat = 248 F.getFnAttribute("use-soft-float").getValueAsString() == "true"; 249 // If the soft float attribute is set on the function turn on the soft float 250 // subtarget feature. 251 if (SoftFloat) 252 Key += FS.empty() ? "+soft-float" : ",+soft-float"; 253 254 FS = Key.substr(CPU.size()); 255 256 auto &I = SubtargetMap[Key]; 257 if (!I) { 258 // This needs to be done before we create a new subtarget since any 259 // creation will depend on the TM and the code generation flags on the 260 // function that reside in TargetOptions. 261 resetTargetOptions(F); 262 I = llvm::make_unique<X86Subtarget>(TargetTriple, CPU, FS, *this, 263 Options.StackAlignmentOverride); 264 } 265 return I.get(); 266 } 267 268 //===----------------------------------------------------------------------===// 269 // Command line options for x86 270 //===----------------------------------------------------------------------===// 271 static cl::opt<bool> 272 UseVZeroUpper("x86-use-vzeroupper", cl::Hidden, 273 cl::desc("Minimize AVX to SSE transition penalty"), 274 cl::init(true)); 275 276 //===----------------------------------------------------------------------===// 277 // X86 TTI query. 278 //===----------------------------------------------------------------------===// 279 280 TargetIRAnalysis X86TargetMachine::getTargetIRAnalysis() { 281 return TargetIRAnalysis([this](const Function &F) { 282 return TargetTransformInfo(X86TTIImpl(this, F)); 283 }); 284 } 285 286 //===----------------------------------------------------------------------===// 287 // Pass Pipeline Configuration 288 //===----------------------------------------------------------------------===// 289 290 namespace { 291 292 /// X86 Code Generator Pass Configuration Options. 293 class X86PassConfig : public TargetPassConfig { 294 public: 295 X86PassConfig(X86TargetMachine &TM, PassManagerBase &PM) 296 : TargetPassConfig(TM, PM) {} 297 298 X86TargetMachine &getX86TargetMachine() const { 299 return getTM<X86TargetMachine>(); 300 } 301 302 ScheduleDAGInstrs * 303 createMachineScheduler(MachineSchedContext *C) const override { 304 ScheduleDAGMILive *DAG = createGenericSchedLive(C); 305 DAG->addMutation(createX86MacroFusionDAGMutation()); 306 return DAG; 307 } 308 309 void addIRPasses() override; 310 bool addInstSelector() override; 311 bool addIRTranslator() override; 312 bool addLegalizeMachineIR() override; 313 bool addRegBankSelect() override; 314 bool addGlobalInstructionSelect() override; 315 bool addILPOpts() override; 316 bool addPreISel() override; 317 void addPreRegAlloc() override; 318 void addPostRegAlloc() override; 319 void addPreEmitPass() override; 320 void addPreSched2() override; 321 }; 322 323 class X86ExecutionDepsFix : public ExecutionDepsFix { 324 public: 325 static char ID; 326 X86ExecutionDepsFix() : ExecutionDepsFix(ID, X86::VR128XRegClass) {} 327 StringRef getPassName() const override { 328 return "X86 Execution Dependency Fix"; 329 } 330 }; 331 char X86ExecutionDepsFix::ID; 332 333 } // end anonymous namespace 334 335 INITIALIZE_PASS(X86ExecutionDepsFix, "x86-execution-deps-fix", 336 "X86 Execution Dependency Fix", false, false) 337 338 TargetPassConfig *X86TargetMachine::createPassConfig(PassManagerBase &PM) { 339 return new X86PassConfig(*this, PM); 340 } 341 342 void X86PassConfig::addIRPasses() { 343 addPass(createAtomicExpandPass()); 344 345 TargetPassConfig::addIRPasses(); 346 347 if (TM->getOptLevel() != CodeGenOpt::None) 348 addPass(createInterleavedAccessPass()); 349 } 350 351 bool X86PassConfig::addInstSelector() { 352 // Install an instruction selector. 353 addPass(createX86ISelDag(getX86TargetMachine(), getOptLevel())); 354 355 // For ELF, cleanup any local-dynamic TLS accesses. 356 if (TM->getTargetTriple().isOSBinFormatELF() && 357 getOptLevel() != CodeGenOpt::None) 358 addPass(createCleanupLocalDynamicTLSPass()); 359 360 addPass(createX86GlobalBaseRegPass()); 361 return false; 362 } 363 364 bool X86PassConfig::addIRTranslator() { 365 addPass(new IRTranslator()); 366 return false; 367 } 368 369 bool X86PassConfig::addLegalizeMachineIR() { 370 addPass(new Legalizer()); 371 return false; 372 } 373 374 bool X86PassConfig::addRegBankSelect() { 375 addPass(new RegBankSelect()); 376 return false; 377 } 378 379 bool X86PassConfig::addGlobalInstructionSelect() { 380 addPass(new InstructionSelect()); 381 return false; 382 } 383 384 bool X86PassConfig::addILPOpts() { 385 addPass(&EarlyIfConverterID); 386 if (EnableMachineCombinerPass) 387 addPass(&MachineCombinerID); 388 addPass(createX86CmovConverterPass()); 389 return true; 390 } 391 392 bool X86PassConfig::addPreISel() { 393 // Only add this pass for 32-bit x86 Windows. 394 const Triple &TT = TM->getTargetTriple(); 395 if (TT.isOSWindows() && TT.getArch() == Triple::x86) 396 addPass(createX86WinEHStatePass()); 397 return true; 398 } 399 400 void X86PassConfig::addPreRegAlloc() { 401 if (getOptLevel() != CodeGenOpt::None) { 402 addPass(&LiveRangeShrinkID); 403 addPass(createX86FixupSetCC()); 404 addPass(createX86OptimizeLEAs()); 405 addPass(createX86CallFrameOptimization()); 406 } 407 408 addPass(createX86WinAllocaExpander()); 409 } 410 411 void X86PassConfig::addPostRegAlloc() { 412 addPass(createX86FloatingPointStackifierPass()); 413 } 414 415 void X86PassConfig::addPreSched2() { addPass(createX86ExpandPseudoPass()); } 416 417 void X86PassConfig::addPreEmitPass() { 418 if (getOptLevel() != CodeGenOpt::None) 419 addPass(new X86ExecutionDepsFix()); 420 421 if (UseVZeroUpper) 422 addPass(createX86IssueVZeroUpperPass()); 423 424 if (getOptLevel() != CodeGenOpt::None) { 425 addPass(createX86FixupBWInsts()); 426 addPass(createX86PadShortFunctions()); 427 addPass(createX86FixupLEAs()); 428 addPass(createX86EvexToVexInsts()); 429 } 430 } 431