1 //===-- X86TargetMachine.cpp - Define TargetMachine for the X86 -----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines the X86 specific subclass of TargetMachine. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "X86TargetMachine.h" 14 #include "MCTargetDesc/X86MCTargetDesc.h" 15 #include "TargetInfo/X86TargetInfo.h" 16 #include "X86.h" 17 #include "X86CallLowering.h" 18 #include "X86LegalizerInfo.h" 19 #include "X86MacroFusion.h" 20 #include "X86Subtarget.h" 21 #include "X86TargetObjectFile.h" 22 #include "X86TargetTransformInfo.h" 23 #include "llvm/ADT/Optional.h" 24 #include "llvm/ADT/STLExtras.h" 25 #include "llvm/ADT/SmallString.h" 26 #include "llvm/ADT/StringRef.h" 27 #include "llvm/ADT/Triple.h" 28 #include "llvm/Analysis/TargetTransformInfo.h" 29 #include "llvm/CodeGen/ExecutionDomainFix.h" 30 #include "llvm/CodeGen/GlobalISel/CallLowering.h" 31 #include "llvm/CodeGen/GlobalISel/IRTranslator.h" 32 #include "llvm/CodeGen/GlobalISel/InstructionSelect.h" 33 #include "llvm/CodeGen/GlobalISel/Legalizer.h" 34 #include "llvm/CodeGen/GlobalISel/RegBankSelect.h" 35 #include "llvm/CodeGen/MachineScheduler.h" 36 #include "llvm/CodeGen/Passes.h" 37 #include "llvm/CodeGen/TargetPassConfig.h" 38 #include "llvm/IR/Attributes.h" 39 #include "llvm/IR/DataLayout.h" 40 #include "llvm/IR/Function.h" 41 #include "llvm/MC/MCAsmInfo.h" 42 #include "llvm/Pass.h" 43 #include "llvm/Support/CodeGen.h" 44 #include "llvm/Support/CommandLine.h" 45 #include "llvm/Support/ErrorHandling.h" 46 #include "llvm/Support/TargetRegistry.h" 47 #include "llvm/Target/TargetLoweringObjectFile.h" 48 #include "llvm/Target/TargetOptions.h" 49 #include "llvm/Transforms/CFGuard.h" 50 #include <memory> 51 #include <string> 52 53 using namespace llvm; 54 55 static cl::opt<bool> EnableMachineCombinerPass("x86-machine-combiner", 56 cl::desc("Enable the machine combiner pass"), 57 cl::init(true), cl::Hidden); 58 59 static cl::opt<bool> EnableCondBrFoldingPass("x86-condbr-folding", 60 cl::desc("Enable the conditional branch " 61 "folding pass"), 62 cl::init(false), cl::Hidden); 63 64 extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeX86Target() { 65 // Register the target. 66 RegisterTargetMachine<X86TargetMachine> X(getTheX86_32Target()); 67 RegisterTargetMachine<X86TargetMachine> Y(getTheX86_64Target()); 68 69 PassRegistry &PR = *PassRegistry::getPassRegistry(); 70 initializeGlobalISel(PR); 71 initializeWinEHStatePassPass(PR); 72 initializeFixupBWInstPassPass(PR); 73 initializeEvexToVexInstPassPass(PR); 74 initializeFixupLEAPassPass(PR); 75 initializeFPSPass(PR); 76 initializeX86CallFrameOptimizationPass(PR); 77 initializeX86CmovConverterPassPass(PR); 78 initializeX86ExpandPseudoPass(PR); 79 initializeX86ExecutionDomainFixPass(PR); 80 initializeX86DomainReassignmentPass(PR); 81 initializeX86AvoidSFBPassPass(PR); 82 initializeX86AvoidTrailingCallPassPass(PR); 83 initializeX86SpeculativeLoadHardeningPassPass(PR); 84 initializeX86FlagsCopyLoweringPassPass(PR); 85 initializeX86CondBrFoldingPassPass(PR); 86 initializeX86OptimizeLEAPassPass(PR); 87 } 88 89 static std::unique_ptr<TargetLoweringObjectFile> createTLOF(const Triple &TT) { 90 if (TT.isOSBinFormatMachO()) { 91 if (TT.getArch() == Triple::x86_64) 92 return std::make_unique<X86_64MachoTargetObjectFile>(); 93 return std::make_unique<TargetLoweringObjectFileMachO>(); 94 } 95 96 if (TT.isOSBinFormatCOFF()) 97 return std::make_unique<TargetLoweringObjectFileCOFF>(); 98 return std::make_unique<X86ELFTargetObjectFile>(); 99 } 100 101 static std::string computeDataLayout(const Triple &TT) { 102 // X86 is little endian 103 std::string Ret = "e"; 104 105 Ret += DataLayout::getManglingComponent(TT); 106 // X86 and x32 have 32 bit pointers. 107 if ((TT.isArch64Bit() && 108 (TT.getEnvironment() == Triple::GNUX32 || TT.isOSNaCl())) || 109 !TT.isArch64Bit()) 110 Ret += "-p:32:32"; 111 112 // Address spaces for 32 bit signed, 32 bit unsigned, and 64 bit pointers. 113 Ret += "-p270:32:32-p271:32:32-p272:64:64"; 114 115 // Some ABIs align 64 bit integers and doubles to 64 bits, others to 32. 116 if (TT.isArch64Bit() || TT.isOSWindows() || TT.isOSNaCl()) 117 Ret += "-i64:64"; 118 else if (TT.isOSIAMCU()) 119 Ret += "-i64:32-f64:32"; 120 else 121 Ret += "-f64:32:64"; 122 123 // Some ABIs align long double to 128 bits, others to 32. 124 if (TT.isOSNaCl() || TT.isOSIAMCU()) 125 ; // No f80 126 else if (TT.isArch64Bit() || TT.isOSDarwin()) 127 Ret += "-f80:128"; 128 else 129 Ret += "-f80:32"; 130 131 if (TT.isOSIAMCU()) 132 Ret += "-f128:32"; 133 134 // The registers can hold 8, 16, 32 or, in x86-64, 64 bits. 135 if (TT.isArch64Bit()) 136 Ret += "-n8:16:32:64"; 137 else 138 Ret += "-n8:16:32"; 139 140 // The stack is aligned to 32 bits on some ABIs and 128 bits on others. 141 if ((!TT.isArch64Bit() && TT.isOSWindows()) || TT.isOSIAMCU()) 142 Ret += "-a:0:32-S32"; 143 else 144 Ret += "-S128"; 145 146 return Ret; 147 } 148 149 static Reloc::Model getEffectiveRelocModel(const Triple &TT, 150 bool JIT, 151 Optional<Reloc::Model> RM) { 152 bool is64Bit = TT.getArch() == Triple::x86_64; 153 if (!RM.hasValue()) { 154 // JIT codegen should use static relocations by default, since it's 155 // typically executed in process and not relocatable. 156 if (JIT) 157 return Reloc::Static; 158 159 // Darwin defaults to PIC in 64 bit mode and dynamic-no-pic in 32 bit mode. 160 // Win64 requires rip-rel addressing, thus we force it to PIC. Otherwise we 161 // use static relocation model by default. 162 if (TT.isOSDarwin()) { 163 if (is64Bit) 164 return Reloc::PIC_; 165 return Reloc::DynamicNoPIC; 166 } 167 if (TT.isOSWindows() && is64Bit) 168 return Reloc::PIC_; 169 return Reloc::Static; 170 } 171 172 // ELF and X86-64 don't have a distinct DynamicNoPIC model. DynamicNoPIC 173 // is defined as a model for code which may be used in static or dynamic 174 // executables but not necessarily a shared library. On X86-32 we just 175 // compile in -static mode, in x86-64 we use PIC. 176 if (*RM == Reloc::DynamicNoPIC) { 177 if (is64Bit) 178 return Reloc::PIC_; 179 if (!TT.isOSDarwin()) 180 return Reloc::Static; 181 } 182 183 // If we are on Darwin, disallow static relocation model in X86-64 mode, since 184 // the Mach-O file format doesn't support it. 185 if (*RM == Reloc::Static && TT.isOSDarwin() && is64Bit) 186 return Reloc::PIC_; 187 188 return *RM; 189 } 190 191 static CodeModel::Model getEffectiveX86CodeModel(Optional<CodeModel::Model> CM, 192 bool JIT, bool Is64Bit) { 193 if (CM) { 194 if (*CM == CodeModel::Tiny) 195 report_fatal_error("Target does not support the tiny CodeModel", false); 196 return *CM; 197 } 198 if (JIT) 199 return Is64Bit ? CodeModel::Large : CodeModel::Small; 200 return CodeModel::Small; 201 } 202 203 /// Create an X86 target. 204 /// 205 X86TargetMachine::X86TargetMachine(const Target &T, const Triple &TT, 206 StringRef CPU, StringRef FS, 207 const TargetOptions &Options, 208 Optional<Reloc::Model> RM, 209 Optional<CodeModel::Model> CM, 210 CodeGenOpt::Level OL, bool JIT) 211 : LLVMTargetMachine( 212 T, computeDataLayout(TT), TT, CPU, FS, Options, 213 getEffectiveRelocModel(TT, JIT, RM), 214 getEffectiveX86CodeModel(CM, JIT, TT.getArch() == Triple::x86_64), 215 OL), 216 TLOF(createTLOF(getTargetTriple())) { 217 // On PS4, the "return address" of a 'noreturn' call must still be within 218 // the calling function, and TrapUnreachable is an easy way to get that. 219 if (TT.isPS4() || TT.isOSBinFormatMachO()) { 220 this->Options.TrapUnreachable = true; 221 this->Options.NoTrapAfterNoreturn = TT.isOSBinFormatMachO(); 222 } 223 224 setMachineOutliner(true); 225 226 // x86 supports the debug entry values. 227 setSupportsDebugEntryValues(true); 228 229 initAsmInfo(); 230 } 231 232 X86TargetMachine::~X86TargetMachine() = default; 233 234 const X86Subtarget * 235 X86TargetMachine::getSubtargetImpl(const Function &F) const { 236 Attribute CPUAttr = F.getFnAttribute("target-cpu"); 237 Attribute FSAttr = F.getFnAttribute("target-features"); 238 239 StringRef CPU = !CPUAttr.hasAttribute(Attribute::None) 240 ? CPUAttr.getValueAsString() 241 : (StringRef)TargetCPU; 242 StringRef FS = !FSAttr.hasAttribute(Attribute::None) 243 ? FSAttr.getValueAsString() 244 : (StringRef)TargetFS; 245 246 SmallString<512> Key; 247 Key.reserve(CPU.size() + FS.size()); 248 Key += CPU; 249 Key += FS; 250 251 // FIXME: This is related to the code below to reset the target options, 252 // we need to know whether or not the soft float flag is set on the 253 // function before we can generate a subtarget. We also need to use 254 // it as a key for the subtarget since that can be the only difference 255 // between two functions. 256 bool SoftFloat = 257 F.getFnAttribute("use-soft-float").getValueAsString() == "true"; 258 // If the soft float attribute is set on the function turn on the soft float 259 // subtarget feature. 260 if (SoftFloat) 261 Key += FS.empty() ? "+soft-float" : ",+soft-float"; 262 263 // Keep track of the key width after all features are added so we can extract 264 // the feature string out later. 265 unsigned CPUFSWidth = Key.size(); 266 267 // Extract prefer-vector-width attribute. 268 unsigned PreferVectorWidthOverride = 0; 269 if (F.hasFnAttribute("prefer-vector-width")) { 270 StringRef Val = F.getFnAttribute("prefer-vector-width").getValueAsString(); 271 unsigned Width; 272 if (!Val.getAsInteger(0, Width)) { 273 Key += ",prefer-vector-width="; 274 Key += Val; 275 PreferVectorWidthOverride = Width; 276 } 277 } 278 279 // Extract min-legal-vector-width attribute. 280 unsigned RequiredVectorWidth = UINT32_MAX; 281 if (F.hasFnAttribute("min-legal-vector-width")) { 282 StringRef Val = 283 F.getFnAttribute("min-legal-vector-width").getValueAsString(); 284 unsigned Width; 285 if (!Val.getAsInteger(0, Width)) { 286 Key += ",min-legal-vector-width="; 287 Key += Val; 288 RequiredVectorWidth = Width; 289 } 290 } 291 292 // Extracted here so that we make sure there is backing for the StringRef. If 293 // we assigned earlier, its possible the SmallString reallocated leaving a 294 // dangling StringRef. 295 FS = Key.slice(CPU.size(), CPUFSWidth); 296 297 auto &I = SubtargetMap[Key]; 298 if (!I) { 299 // This needs to be done before we create a new subtarget since any 300 // creation will depend on the TM and the code generation flags on the 301 // function that reside in TargetOptions. 302 resetTargetOptions(F); 303 I = std::make_unique<X86Subtarget>( 304 TargetTriple, CPU, FS, *this, 305 MaybeAlign(Options.StackAlignmentOverride), PreferVectorWidthOverride, 306 RequiredVectorWidth); 307 } 308 return I.get(); 309 } 310 311 //===----------------------------------------------------------------------===// 312 // Command line options for x86 313 //===----------------------------------------------------------------------===// 314 static cl::opt<bool> 315 UseVZeroUpper("x86-use-vzeroupper", cl::Hidden, 316 cl::desc("Minimize AVX to SSE transition penalty"), 317 cl::init(true)); 318 319 //===----------------------------------------------------------------------===// 320 // X86 TTI query. 321 //===----------------------------------------------------------------------===// 322 323 TargetTransformInfo 324 X86TargetMachine::getTargetTransformInfo(const Function &F) { 325 return TargetTransformInfo(X86TTIImpl(this, F)); 326 } 327 328 //===----------------------------------------------------------------------===// 329 // Pass Pipeline Configuration 330 //===----------------------------------------------------------------------===// 331 332 namespace { 333 334 /// X86 Code Generator Pass Configuration Options. 335 class X86PassConfig : public TargetPassConfig { 336 public: 337 X86PassConfig(X86TargetMachine &TM, PassManagerBase &PM) 338 : TargetPassConfig(TM, PM) {} 339 340 X86TargetMachine &getX86TargetMachine() const { 341 return getTM<X86TargetMachine>(); 342 } 343 344 ScheduleDAGInstrs * 345 createMachineScheduler(MachineSchedContext *C) const override { 346 ScheduleDAGMILive *DAG = createGenericSchedLive(C); 347 DAG->addMutation(createX86MacroFusionDAGMutation()); 348 return DAG; 349 } 350 351 ScheduleDAGInstrs * 352 createPostMachineScheduler(MachineSchedContext *C) const override { 353 ScheduleDAGMI *DAG = createGenericSchedPostRA(C); 354 DAG->addMutation(createX86MacroFusionDAGMutation()); 355 return DAG; 356 } 357 358 void addIRPasses() override; 359 bool addInstSelector() override; 360 bool addIRTranslator() override; 361 bool addLegalizeMachineIR() override; 362 bool addRegBankSelect() override; 363 bool addGlobalInstructionSelect() override; 364 bool addILPOpts() override; 365 bool addPreISel() override; 366 void addMachineSSAOptimization() override; 367 void addPreRegAlloc() override; 368 void addPostRegAlloc() override; 369 void addPreEmitPass() override; 370 void addPreEmitPass2() override; 371 void addPreSched2() override; 372 373 std::unique_ptr<CSEConfigBase> getCSEConfig() const override; 374 }; 375 376 class X86ExecutionDomainFix : public ExecutionDomainFix { 377 public: 378 static char ID; 379 X86ExecutionDomainFix() : ExecutionDomainFix(ID, X86::VR128XRegClass) {} 380 StringRef getPassName() const override { 381 return "X86 Execution Dependency Fix"; 382 } 383 }; 384 char X86ExecutionDomainFix::ID; 385 386 } // end anonymous namespace 387 388 INITIALIZE_PASS_BEGIN(X86ExecutionDomainFix, "x86-execution-domain-fix", 389 "X86 Execution Domain Fix", false, false) 390 INITIALIZE_PASS_DEPENDENCY(ReachingDefAnalysis) 391 INITIALIZE_PASS_END(X86ExecutionDomainFix, "x86-execution-domain-fix", 392 "X86 Execution Domain Fix", false, false) 393 394 TargetPassConfig *X86TargetMachine::createPassConfig(PassManagerBase &PM) { 395 return new X86PassConfig(*this, PM); 396 } 397 398 void X86PassConfig::addIRPasses() { 399 addPass(createAtomicExpandPass()); 400 401 TargetPassConfig::addIRPasses(); 402 403 if (TM->getOptLevel() != CodeGenOpt::None) 404 addPass(createInterleavedAccessPass()); 405 406 // Add passes that handle indirect branch removal and insertion of a retpoline 407 // thunk. These will be a no-op unless a function subtarget has the retpoline 408 // feature enabled. 409 addPass(createIndirectBrExpandPass()); 410 411 // Add Control Flow Guard checks. 412 const Triple &TT = TM->getTargetTriple(); 413 if (TT.isOSWindows()) { 414 if (TT.getArch() == Triple::x86_64) { 415 addPass(createCFGuardDispatchPass()); 416 } else { 417 addPass(createCFGuardCheckPass()); 418 } 419 } 420 } 421 422 bool X86PassConfig::addInstSelector() { 423 // Install an instruction selector. 424 addPass(createX86ISelDag(getX86TargetMachine(), getOptLevel())); 425 426 // For ELF, cleanup any local-dynamic TLS accesses. 427 if (TM->getTargetTriple().isOSBinFormatELF() && 428 getOptLevel() != CodeGenOpt::None) 429 addPass(createCleanupLocalDynamicTLSPass()); 430 431 addPass(createX86GlobalBaseRegPass()); 432 return false; 433 } 434 435 bool X86PassConfig::addIRTranslator() { 436 addPass(new IRTranslator()); 437 return false; 438 } 439 440 bool X86PassConfig::addLegalizeMachineIR() { 441 addPass(new Legalizer()); 442 return false; 443 } 444 445 bool X86PassConfig::addRegBankSelect() { 446 addPass(new RegBankSelect()); 447 return false; 448 } 449 450 bool X86PassConfig::addGlobalInstructionSelect() { 451 addPass(new InstructionSelect()); 452 return false; 453 } 454 455 bool X86PassConfig::addILPOpts() { 456 if (EnableCondBrFoldingPass) 457 addPass(createX86CondBrFolding()); 458 addPass(&EarlyIfConverterID); 459 if (EnableMachineCombinerPass) 460 addPass(&MachineCombinerID); 461 addPass(createX86CmovConverterPass()); 462 return true; 463 } 464 465 bool X86PassConfig::addPreISel() { 466 // Only add this pass for 32-bit x86 Windows. 467 const Triple &TT = TM->getTargetTriple(); 468 if (TT.isOSWindows() && TT.getArch() == Triple::x86) 469 addPass(createX86WinEHStatePass()); 470 return true; 471 } 472 473 void X86PassConfig::addPreRegAlloc() { 474 if (getOptLevel() != CodeGenOpt::None) { 475 addPass(&LiveRangeShrinkID); 476 addPass(createX86FixupSetCC()); 477 addPass(createX86OptimizeLEAs()); 478 addPass(createX86CallFrameOptimization()); 479 addPass(createX86AvoidStoreForwardingBlocks()); 480 } 481 482 addPass(createX86SpeculativeLoadHardeningPass()); 483 addPass(createX86FlagsCopyLoweringPass()); 484 addPass(createX86WinAllocaExpander()); 485 } 486 void X86PassConfig::addMachineSSAOptimization() { 487 addPass(createX86DomainReassignmentPass()); 488 TargetPassConfig::addMachineSSAOptimization(); 489 } 490 491 void X86PassConfig::addPostRegAlloc() { 492 addPass(createX86FloatingPointStackifierPass()); 493 } 494 495 void X86PassConfig::addPreSched2() { addPass(createX86ExpandPseudoPass()); } 496 497 void X86PassConfig::addPreEmitPass() { 498 if (getOptLevel() != CodeGenOpt::None) { 499 addPass(new X86ExecutionDomainFix()); 500 addPass(createBreakFalseDeps()); 501 } 502 503 addPass(createX86IndirectBranchTrackingPass()); 504 505 if (UseVZeroUpper) 506 addPass(createX86IssueVZeroUpperPass()); 507 508 if (getOptLevel() != CodeGenOpt::None) { 509 addPass(createX86FixupBWInsts()); 510 addPass(createX86PadShortFunctions()); 511 addPass(createX86FixupLEAs()); 512 addPass(createX86EvexToVexInsts()); 513 } 514 addPass(createX86DiscriminateMemOpsPass()); 515 addPass(createX86InsertPrefetchPass()); 516 addPass(createX86InsertX87waitPass()); 517 } 518 519 void X86PassConfig::addPreEmitPass2() { 520 const Triple &TT = TM->getTargetTriple(); 521 const MCAsmInfo *MAI = TM->getMCAsmInfo(); 522 523 addPass(createX86RetpolineThunksPass()); 524 525 // Insert extra int3 instructions after trailing call instructions to avoid 526 // issues in the unwinder. 527 if (TT.isOSWindows() && TT.getArch() == Triple::x86_64) 528 addPass(createX86AvoidTrailingCallPass()); 529 530 // Verify basic block incoming and outgoing cfa offset and register values and 531 // correct CFA calculation rule where needed by inserting appropriate CFI 532 // instructions. 533 if (!TT.isOSDarwin() && 534 (!TT.isOSWindows() || 535 MAI->getExceptionHandlingType() == ExceptionHandling::DwarfCFI)) 536 addPass(createCFIInstrInserter()); 537 // Identify valid longjmp targets for Windows Control Flow Guard. 538 if (TT.isOSWindows()) 539 addPass(createCFGuardLongjmpPass()); 540 } 541 542 std::unique_ptr<CSEConfigBase> X86PassConfig::getCSEConfig() const { 543 return getStandardCSEConfigForOpt(TM->getOptLevel()); 544 } 545